diff options
-rw-r--r-- | src/ChangeLog | 14 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 12 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 12 | ||||
-rw-r--r-- | src/algebra/data.spad.pamphlet | 45 | ||||
-rw-r--r-- | src/algebra/java.spad.pamphlet | 225 | ||||
-rw-r--r-- | src/interp/g-opt.boot | 15 | ||||
-rw-r--r-- | src/interp/g-util.boot | 27 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2726 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 4611 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1352 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10606 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33160 |
12 files changed, 26579 insertions, 26226 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 8ce51027..55a45813 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,17 @@ +2010-07-19 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * interp/g-opt.boot ($VMsideEffectFreeOperators): Include + byte relation operators and bitmakst operators. + * interp/g-util.boot: Expand them. + * algebra/data.spad.pamphlet (Byte): Now satisfies Logic. Tidy. + (SystemNonNegativeInteger): Likewise. + * algebra/java.spad.pamphlet (JVMBytecode): Rename from JavaBytecode. + (JVMClassFileAccess): New. + (JVMFieldAccess): Likewise. + (JVMMethodAccess): Likewise. + (JVMConstantTag): Likewise. + (JVMOpcode): Likewise. + 2010-07-18 Gabriel Dos Reis <gdr@cs.tamu.edu> * boot/tokens.boot: Add char? as builtin function. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 8577be6d..e2293479 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -537,6 +537,8 @@ $(OUT)/KTVLOGIC.$(FASLEXT): $(OUT)/PROPLOG.$(FASLEXT) $(OUT)/BYTE.$(FASLEXT) $(OUT)/PROPFUN1.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT) $(OUT)/PROPFUN2.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT) $(OUT)/DIFEXT.$(FASLEXT): $(OUT)/DSEXT.$(FASLEXT) +$(OUT)/BYTE.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) +$(OUT)/SYSNNI.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) $(OUT)/ORDFIN.$(FASLEXT) axiom_algebra_layer_6 = \ PROPFRML PROPFUN1 AUTOMOR CARTEN2 CHARPOL COMPLEX2 \ @@ -797,7 +799,7 @@ axiom_algebra_layer_15 = \ FRAMALG FRAMALG- MDAGG ODPOL \ PLOT RMCAT2 ROIRC SDPOL \ ULS ULSCONS TUBETOOL UPXSCCA \ - UPXSCCA- JAVACODE POLY BYTEBUF OVERSET \ + UPXSCCA- JVMBCODE POLY BYTEBUF OVERSET \ ULSCCAT ULSCCAT- UTS UTSCAT UTSCAT- axiom_algebra_layer_15_nrlibs = \ @@ -994,7 +996,8 @@ axiom_algebra_layer_user = \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ ASP74 ASP77 ASP80 ASP29 IRFORM COMPILER \ ITFORM ELABOR TALGOP YDIAGRAM LINELT DBASIS \ - LINFORM LINBASIS + LINFORM LINBASIS JVMOP JVMCFACC JVMFDACC JVMMDACC \ + JVMCSTTG axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1081,6 +1084,11 @@ $(OUT)/DBASIS.$(FASLEXT): $(OUT)/ORDFIN.$(FASLEXT) $(OUT)/KVTFROM.$(FASLEXT) $(OUT)/LINFORM.$(FASLEXT): $(OUT)/DBASIS.$(FASLEXT) \ $(OUT)/VSPACE.$(FASLEXT) $(OUT)/LINELT.$(FASLEXT) +$(OUT)/JVMOP.$(FASLEXT): $(OUT)/JVMBCODE.$(FASLEXT) +$(OUT)/JVMCFACC.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) +$(OUT)/JVMFDACC.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) +$(OUT)/JVMMDACC.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) + .PHONY: all all-algebra mkdir-output-directory all: all-ax diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 06f10433..24d15915 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -521,6 +521,8 @@ $(OUT)/KTVLOGIC.$(FASLEXT): $(OUT)/PROPLOG.$(FASLEXT) $(OUT)/BYTE.$(FASLEXT) $(OUT)/PROPFUN1.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT) $(OUT)/PROPFUN2.$(FASLEXT): $(OUT)/PROPFRML.$(FASLEXT) $(OUT)/DIFEXT.$(FASLEXT): $(OUT)/DSEXT.$(FASLEXT) +$(OUT)/BYTE.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) +$(OUT)/SYSNNI.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) $(OUT)/ORDFIN.$(FASLEXT) axiom_algebra_layer_6 = \ PROPFRML PROPFUN1 AUTOMOR CARTEN2 CHARPOL COMPLEX2 \ @@ -829,7 +831,7 @@ axiom_algebra_layer_15 = \ FRAMALG FRAMALG- MDAGG ODPOL \ PLOT RMCAT2 ROIRC SDPOL \ ULS ULSCONS TUBETOOL UPXSCCA \ - UPXSCCA- JAVACODE POLY BYTEBUF OVERSET \ + UPXSCCA- JVMBCODE POLY BYTEBUF OVERSET \ ULSCCAT ULSCCAT- UTS UTSCAT UTSCAT- axiom_algebra_layer_15_nrlibs = \ @@ -1073,7 +1075,8 @@ axiom_algebra_layer_user = \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ ASP74 ASP77 ASP80 ASP29 IRFORM COMPILER \ ITFORM ELABOR TALGOP YDIAGRAM LINELT DBASIS \ - LINFORM LINBASIS + LINFORM LINBASIS JVMOP JVMCFACC JVMFDACC JVMMDACC \ + JVMCSTTG axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1160,6 +1163,11 @@ $(OUT)/DBASIS.$(FASLEXT): $(OUT)/ORDFIN.$(FASLEXT) $(OUT)/KVTFROM.$(FASLEXT) $(OUT)/LINFORM.$(FASLEXT): $(OUT)/DBASIS.$(FASLEXT) \ $(OUT)/VSPACE.$(FASLEXT) $(OUT)/LINELT.$(FASLEXT) +$(OUT)/JVMOP.$(FASLEXT): $(OUT)/JVMBCODE.$(FASLEXT) +$(OUT)/JVMCFACC.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) +$(OUT)/JVMFDACC.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) +$(OUT)/JVMMDACC.$(FASLEXT): $(OUT)/LOGIC.$(FASLEXT) + @ \section{Broken Files} diff --git a/src/algebra/data.spad.pamphlet b/src/algebra/data.spad.pamphlet index 81f574cc..39576863 100644 --- a/src/algebra/data.spad.pamphlet +++ b/src/algebra/data.spad.pamphlet @@ -19,13 +19,13 @@ import OutputForm )abbrev domain BYTE Byte ++ Author: Gabriel Dos Reis ++ Date Created: April 19, 2008 -++ Date Last Updated: January 6, 2009 +++ Date Last Updated: July 18, 2010 ++ Basic Operations: byte, bitand, bitor, bitxor ++ Related Constructor: NonNegativeInteger ++ Description: ++ Byte is the datatype of 8-bit sized unsigned integer values. Byte(): Public == Private where - Public == Join(OrderedFinite, HomotopicTo Character) with + Public == Join(OrderedFinite, HomotopicTo Character,Logic) with byte: NonNegativeInteger -> % ++ byte(x) injects the unsigned integer value `v' into ++ the Byte algebra. `v' must be non-negative and less than 256. @@ -36,23 +36,35 @@ Byte(): Public == Private where sample: % ++ \spad{sample} gives a sample datum of type Byte. Private == SubDomain(NonNegativeInteger, #1 < 256) add + import %beq: (%,%) -> Boolean from Foreign Builtin + import %blt: (%,%) -> Boolean from Foreign Builtin + import %bgt: (%,%) -> Boolean from Foreign Builtin + import %ble: (%,%) -> Boolean from Foreign Builtin + import %bge: (%,%) -> Boolean from Foreign Builtin + import %bitand: (%,%) -> % from Foreign Builtin + import %bitior: (%,%) -> % from Foreign Builtin + import %bitnot: % -> % from Foreign Builtin + byte(x: NonNegativeInteger): % == per x sample = 0$Foreign(Builtin) coerce(c: Character) == per ord c coerce(x: %): Character == char rep x - x = y == byteEqual(x,y)$Foreign(Builtin) - x < y == byteLessThan(x,y)$Foreign(Builtin) - x > y == byteGreaterThan(x,y)$Foreign(Builtin) - x <= y == byteLessEqual(x,y)$Foreign(Builtin) - x >= y == byteGreaterEqual(x,y)$Foreign(Builtin) + x = y == %beq(x,y) + x < y == %blt(x,y) + x > y == %bgt(x,y) + x <= y == %ble(x,y) + x >= y == %bge(x,y) min() == per 0 max() == per 255 size() == 256 index n == byte((n - 1) pretend NonNegativeInteger) lookup x == (rep x + 1) pretend PositiveInteger random() == byte random(size())$NonNegativeInteger - bitand(x,y) == bitand(x,y)$Foreign(Builtin) - bitior(x,y) == bitior(x,y)$Foreign(Builtin) + bitand(x,y) == %bitand(x,y) + bitior(x,y) == %bitior(x,y) + x /\ y == bitand(x,y) + x \/ y == bitior(x,y) + ~ x == %bitnot x @ @@ -175,19 +187,26 @@ Int64() == SystemInteger 64 ++ with the hosting operating system, reading/writing external ++ binary format files. SystemNonNegativeInteger(N: PositiveInteger): Public == Private where - Public == OrderedFinite with + Public == Join(OrderedFinite,Logic) with bitand: (%,%) -> % ++ bitand(x,y) returns the bitwise `and' of `x' and `y'. bitior: (%,%) -> % - ++ bitor(x,y) returns the bitwise `inclusive or' of `x' and `y'. + ++ bitior(x,y) returns the bitwise `inclusive or' of `x' and `y'. sample: % ++ \spad{sample} gives a sample datum of type Byte. Private == SubDomain(NonNegativeInteger, length #1 <= N) add + import %bitand: (%,%) -> % from Foreign Builtin + import %bitior: (%,%) -> % from Foreign Builtin + import %bitnot: % -> % from Foreign Builtin + min == per 0 max == per((shift(1,N)-1)::NonNegativeInteger) sample == min - bitand(x,y) == BOOLE(BOOLE_-AND$Foreign(Builtin),x,y)$Foreign(Builtin) - bitior(x,y) == BOOLE(BOOLE_-IOR$Foreign(Builtin),x,y)$Foreign(Builtin) + bitand(x,y) == %bitand(x,y) + bitior(x,y) == %bitior(x,y) + x /\ y == bitand(x,y) + x \/ y == bitior(x,y) + ~ x == %bitnot x @ diff --git a/src/algebra/java.spad.pamphlet b/src/algebra/java.spad.pamphlet index fae7c311..d09d8607 100644 --- a/src/algebra/java.spad.pamphlet +++ b/src/algebra/java.spad.pamphlet @@ -11,16 +11,203 @@ \tableofcontents \eject -\section{The JavaBytecode domain} -<<domain JAVACODE JavaBytecode>>= -)abbrev domain JAVACODE JavaBytecode +\section{Class file access flags} + +<<domain JVMCFACC JVMClassFileAccess>>= +)abbrev domain JVMCFACC JVMClassFileAccess +++ Date Created: July 18, 2008 +++ Data Last Modified: July 18, 2010 +++ Description: JVM class file access bitmask and values. +JVMClassFileAccess(): Public == Private where + Public == Join(SetCategory,Logic) with + jvmPublic: % + ++ The class was declared public, therefore may be accessed + ++ from outside its package + jvmFinal: % + ++ The class was declared final; therefore no derived class allowed. + jvmSuper: % + ++ Instruct the JVM to treat base clss method invokation specially. + jvmInterface: % + ++ The class file represents an interface, not a class. + jvmAbstract: % + ++ The class was declared abstract; therefore object of this class + ++ may not be created. + Private == UInt16 add + jvmPublic == per(16r0001::Rep) + jvmFinal == per(16r0010::Rep) + jvmSuper == per(16r0020::Rep) + jvmInterface == per(16r0200::Rep) + jvmAbstract == per(16r0400::Rep) +@ + +\section{JVM field access flags} + +<<domain JVMFDACC JVMFieldAccess>>= +)abbrev domain JVMFDACC JVMFieldAccess +++ Date Created: July 18, 2008 +++ Data Last Modified: July 18, 2010 +++ Description: +++ JVM class field access bitmask and values. +JVMFieldAccess(): Public == Private where + Public == Join(SetCategory,Logic) with + jvmPublic: % + ++ The field was declared public; therefore mey accessed from + ++ outside its package. + jvmPrivate: % + ++ The field was declared private; threfore can be accessed only + ++ within the defining class. + jvmProtected: % + ++ The field was declared protected; therefore may be accessed + ++ withing derived classes. + jvmStatic: % + ++ The field was declared static. + jvmFinal: % + ++ The field was declared final; therefore may not be modified + ++ after initialization. + jvmVolatile: % + ++ The field was declared volatile. + jvmTransient: % + ++ The field was declared transient. + Private == UInt16 add + jvmPublic == per(16r0001::Rep) + jvmPrivate == per(16r0002::Rep) + jvmProtected == per(16r0004::Rep) + jvmStatic == per(16r0008::Rep) + jvmFinal == per(16r0010::Rep) + jvmVolatile == per(16r0040::Rep) + jvmTransient == per(16r0080::Rep) +@ + + +\section{JVM method access flags} + +<<domain JVMMDACC JVMMethodAccess>>= +)abbrev domain JVMMDACC JVMMethodAccess +)abbrev domain JVMFDACC JVMFieldAccess +++ Date Created: July 18, 2008 +++ Data Last Modified: July 18, 2010 +++ Description: +++ JVM class method access bitmask and values. +JVMMethodAccess(): Public == Private where + Public == Join(SetCategory,Logic) with + jvmPublic: % + ++ The method was declared public; therefore mey accessed from + ++ outside its package. + jvmPrivate: % + ++ The method was declared private; threfore can be accessed only + ++ within the defining class. + jvmProtected: % + ++ The method was declared protected; therefore may be accessed + ++ withing derived classes. + jvmStatic: % + ++ The method was declared static. + jvmFinal: % + ++ The method was declared final; therefore may not be overriden. + ++ in derived classes. + jvmSynchronized: % + ++ The method was declared synchronized. + jvmNative: % + ++ The method was declared native; therefore implemented in a language + ++ other than Java. + jvmAbstract: % + ++ The method was declared abstract; therefore no implementation + ++ is provided. + jvmStrict: % + ++ The method was declared fpstrict; therefore floating-point mode + ++ is FP-strict. + Private == UInt16 add + jvmPublic == per(16r0001::Rep) + jvmPrivate == per(16r0002::Rep) + jvmProtected == per(16r0004::Rep) + jvmStatic == per(16r0008::Rep) + jvmFinal == per(16r0010::Rep) + jvmSynchronized == per(16r0020::Rep) + jvmNative == per(16r0100::Rep) + jvmAbstract == per(16r0400::Rep) + jvmStrict == per(16r0800::Rep) + +@ + +\section{JVM constant pool tags} + +<<domain JVMCSTTG JVMConstantTag>>= +)abbrev domain JVMCSTTG JVMConstantTag +++ Date Created: July 18, 2008 +++ Data Last Modified: July 18, 2010 +++ Description: +++ JVM class file constant pool tags. +JVMConstantTag(): Public == Private where + Public == Join(SetCategory,CoercibleTo Byte) with + jvmUTF8ConstantTag: % + ++ The corresponding constant pool entry is sequence of bytes + ++ representing Java UTF8 string constant. + jvmIntegerConstantTag: % + ++ The corresponding constant pool entry is an integer constant info. + jvmFloatConstantTag: % + ++ The corresponding constant pool entry is a float constant info. + jvmLongConstantTag: % + ++ The corresponding constant pool entry is a long constant info. + jvmDoubleConstantTag: % + ++ The corresponding constant pool entry is a double constant info. + jvmClassConstantTag: % + ++ The corresponding constant pool entry represents a class or + ++ and interface. + jvmStringConstantTag: % + ++ The corresponding constant pool entry is a string constant info. + jvmFieldrefConstantTag: % + ++ The corresponding constant pool entry represents a class field info. + jvmMethodrefConstantTag: % + ++ The correspondong constant pool entry represents a class method info. + jvmInterfaceMethodConstantTag: % + ++ The correspondong constant pool entry represents an interface + ++ method info. + jvmNameAndTypeConstantTag: % + ++ The correspondong constant pool entry represents the name + ++ and type of a field or method info. + Private == Byte add + jvmUTF8ConstantTag == per byte 1 + jvmIntegerConstantTag == per byte 3 + jvmFloatConstantTag == per byte 4 + jvmLongConstantTag == per byte 5 + jvmDoubleConstantTag == per byte 6 + jvmClassConstantTag == per byte 7 + jvmStringConstantTag == per byte 8 + jvmFieldrefConstantTag == per byte 9 + jvmMethodrefConstantTag == per byte 10 + jvmInterfaceMethodConstantTag == per byte 11 + jvmNameAndTypeConstantTag == per byte 12 +@ + + +\section{The JVMBytecode domain} +<<domain JVMBCODE JVMBytecode>>= +)abbrev domain JVMBCODE JVMBytecode ++ Author: Gabriel Dos Reis ++ Date Created: May 08, 2008 -++ Description: This domain defines the datatype for the Java -++ Virtual Machine byte codes. -JavaBytecode(): Public == Private where - Public == Join(CoercibleTo OutputForm, HomotopicTo Byte) - Private == add +++ Data Last Modified: July 18, 2010 +++ Description: +++ This is the datatype for the JVM bytecodes. +JVMBytecode(): Public == Private where + Public == Join(SetCategory, HomotopicTo Byte) + Private == Byte add + coerce(b: Byte): % == + per b + + coerce(x: %): Byte == + rep x +@ + +\section{JVM Opcodes} + +<<domain JVMOP JVMOpcode>>= +)abbrev domain JVMOP JVMOpcode +++ Date Created: July 18, 2008 +++ Data Last Modified: July 18, 2010 +++ Description: +++ This is the datatype for the JVM opcodes. +JVMOpcode(): Public == Private where + Public == Join(SetCategory,HomotopicTo JVMBytecode,HomotopicTo Byte) + Private == JVMBytecode add -- mnemonics equivalent of bytecodes. mnemonics : PrimitiveArray Symbol := [['nop, 'aconst__null, 'iconst__m1, 'iconst__0, 'iconst__1, _ @@ -77,22 +264,17 @@ JavaBytecode(): Public == Private where 'unknownopcode49, 'unknownopcode50, _ 'impldep1, 'impldep2 ]]$PrimitiveArray(Symbol) - Rep == Byte - - coerce(x: Byte): % == - per x - - coerce(x: %): Byte == - rep x - + coerce(x: %): JVMBytecode == rep x + coerce(b: JVMBytecode): % == per b coerce(x: %): OutputForm == mnemonics.(x::Byte::Integer) :: OutputForm + @ \section{License} <<license>>= ---Copyright (C) 2007-2008, Gabriel Dos Reis. +--Copyright (C) 2007-2010, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without @@ -126,7 +308,14 @@ JavaBytecode(): Public == Private where <<*>>= <<license>> -<<domain JAVACODE JavaBytecode>> + +<<domain JVMCFACC JVMClassFileAccess>> +<<domain JVMFDACC JVMFieldAccess>> +<<domain JVMMDACC JVMMethodAccess>> +<<domain JVMCSTTG JVMConstantTag>> +<<domain JVMBCODE JVMBytecode>> +<<domain JVMOP JVMOpcode>> + @ \end{document} diff --git a/src/interp/g-opt.boot b/src/interp/g-opt.boot index 9c4004ed..4d598b05 100644 --- a/src/interp/g-opt.boot +++ b/src/interp/g-opt.boot @@ -473,13 +473,14 @@ $VMsideEffectFreeOperators == MINUSP GREATERP ZEROP ODDP FLOAT_-RADIX FLOAT FLOAT_-SIGN FLOAT_-DIGITS CGREATERP GGREATERP CHAR BOOLE GET BVEC_-GREATER %false %true %and %or %not %peq %ieq %ilt %ile %igt %ige %head %tail %integer? - %imul %iadd %isub %igcd %ilcm %ipow %imin %imax %ieven? %iodd? %iinc - %feq %flt %fle %fgt %fge %fmul %fadd %fsub %fexp %fmin %fmax %float? - %fpow %fdiv %fneg %i2f %fminval %fmaxval %fbase %fprec %ftrunc - %nil %pair? %lconcat %llength %lfirst %lsecond %lthird - %lreverse %lempty? %hash %ismall? %string? %f2s - %ceq %clt %cle %cgt %cge %c2i %i2c %sname - %vref %vlength %before?) + %beq %blt %ble %bgt %bge %bitand %bitior %bitnot + %imul %iadd %isub %igcd %ilcm %ipow %imin %imax %ieven? %iodd? %iinc + %feq %flt %fle %fgt %fge %fmul %fadd %fsub %fexp %fmin %fmax %float? + %fpow %fdiv %fneg %i2f %fminval %fmaxval %fbase %fprec %ftrunc + %nil %pair? %lconcat %llength %lfirst %lsecond %lthird + %lreverse %lempty? %hash %ismall? %string? %f2s + %ceq %clt %cle %cgt %cge %c2i %i2c %sname + %vref %vlength %before?) ++ List of simple VM operators $simpleVMoperators == diff --git a/src/interp/g-util.boot b/src/interp/g-util.boot index c2463dc5..df6628f9 100644 --- a/src/interp/g-util.boot +++ b/src/interp/g-util.boot @@ -244,6 +244,15 @@ expandIlt ['%ilt,x,y] == expandIgt ['%igt,x,y] == expandFlt ['%ilt,y,x] +expandBitand ['%bitand,x,y] == + ['BOOLE,'BOOLE_-AND,expandToVMForm x,expandToVMForm y] + +expandBitior ['%bitior,x,y] == + ['BOOLE,'BOOLE_-IOR,expandToVMForm x,expandToVMForm y] + +expandBitnot ['%bitnot,x] == + ['LOGNOT,expandToVMForm x] + -- Floating point support expandFbase ['%fbase] == @@ -319,6 +328,13 @@ for x in [ ['%c2i, :'CHAR_-CODE], ['%i2c, :'CODE_-CHAR], + -- byte operations + ['%beq, :'byteEqual], + ['%blt, :'byteLessThan], + ['%ble, :'byteLessEqual], + ['%bgt, :'byteGreaterThan], + ['%bge, :'byteGreaterEqual], + -- unary integer operations. ['%iabs, :'ABS], ['%ieven?, :'EVENP], @@ -404,6 +420,9 @@ for x in [ ['%igt, :function expandIgt], ['%ilt, :function expandIlt], ['%ineg, :function expandIneg], + ['%bitand, :function expandBitand], + ['%bitior, :function expandBitior], + ['%bitnot, :function expandBitnot], ['%i2f, :function expandI2f], ['%fbase, :function expandFbase], @@ -417,10 +436,10 @@ for x in [ ['%peq, :function expandPeq], ['%before?, :function expandBefore?], - ["%bind", :function expandBind], - ["%store", :function expandStore], - ["%dynval", :function expandDynval] - ] repeat property(first x,"%Expander") := rest x + ['%bind, :function expandBind], + ['%store, :function expandStore], + ['%dynval, :function expandDynval] + ] repeat property(first x,'%Expander) := rest x ++ Return the expander of a middle-end opcode, or nil if there is none. getOpcodeExpander op == diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index e77bac28..b5dad787 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2296269 . 3487991533) +(2296416 . 3488491117) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4467 . T) (-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4463 . T) (-4468 . T) (-4462 . T)) +((-4496 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4492 . T) (-4497 . T) (-4491 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1985) +(-32 R -2057) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) +((|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4470))) +((|HasAttribute| |#1| (QUOTE -4499))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1985 UP UPUP -1688) +(-40 -2057 UP UPUP -3351) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4463 |has| (-420 |#2|) (-375)) (-4468 |has| (-420 |#2|) (-375)) (-4462 |has| (-420 |#2|) (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2811 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2811 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2811 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2811 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2811 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -654) (QUOTE (-577)))) (-2811 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) -(-41 R -1985) +((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2867 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) +(-41 R -2057) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -443) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -443) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-318)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4467 |has| |#1| (-569)) (-4465 . T) (-4464 . T)) +((-4496 |has| |#1| (-569)) (-4494 . T) (-4493 . T)) ((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4470 . T) (-4471 . T)) -((-2811 (-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|))))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-865))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|))))))) +((-4499 . T) (-4500 . T)) +((-2867 (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|))))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4467 . T)) +((-4496 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1985) +(-54 |Base| R -2057) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -2668) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -2758) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2668) +(-62 -2758) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2668) +(-63 -2758) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2668) +(-64 -2758) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2668) +(-65 -2758) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2668) +(-66 -2758) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2668) +(-67 -2758) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2668) +(-68 -2758) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2668) +(-69 -2758) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2668) +(-70 -2758) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2668) +(-71 -2758) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2668) +(-72 -2758) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2668) +(-73 -2758) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2668) +(-74 -2758) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2668) +(-77 -2758) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2668) +(-78 -2758) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2668) +(-79 -2758) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2668) +(-80 -2758) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2668) +(-81 -2758) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2668) +(-82 -2758) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2668) +(-83 -2758) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2668) +(-84 -2758) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2668) +(-85 -2758) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2668) +(-86 -2758) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2668) +(-87 -2758) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2668) +(-88 -2758) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2668) +(-89 -2758) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-375)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4470 . T)) +((-4499 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4470 . T) ((-4472 "*") . T) (-4471 . T) (-4467 . T) (-4465 . T) (-4464 . T) (-4463 . T) (-4468 . T) (-4462 . T) (-4461 . T) (-4460 . T) (-4459 . T) (-4458 . T) (-4466 . T) (-4469 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4457 . T)) +((-4499 . T) ((-4501 "*") . T) (-4500 . T) (-4496 . T) (-4494 . T) (-4493 . T) (-4492 . T) (-4497 . T) (-4491 . T) (-4490 . T) (-4489 . T) (-4488 . T) (-4487 . T) (-4495 . T) (-4498 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4486 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4467 . T)) +((-4496 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4472 "*")))) +((|HasAttribute| |#1| (QUOTE (-4501 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4470 . T)) +((-4499 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4471 . T)) +((-4500 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2811 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-865))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-870))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-112) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -1985 UP) +(-116 -2057 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-932))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-117 |#1|) (QUOTE (-1047))) (|HasCategory| (-117 |#1|) (QUOTE (-836))) (|HasCategory| (-117 |#1|) (QUOTE (-865))) (-2811 (|HasCategory| (-117 |#1|) (QUOTE (-836))) (|HasCategory| (-117 |#1|) (QUOTE (-865)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-1177))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-318))) (|HasCategory| (-117 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-932)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-937))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-117 |#1|) (QUOTE (-1052))) (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870))) (-2867 (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-1182))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-318))) (|HasCategory| (-117 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4471))) +((|HasAttribute| |#1| (QUOTE -4500))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| (-130) (QUOTE (-865))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-2811 (-12 (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-130) (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| (-130) (QUOTE (-865))) (|HasCategory| (-130) (QUOTE (-1125)))) (|HasCategory| (-130) (QUOTE (-865))) (-2811 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-865))) (|HasCategory| (-130) (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-2867 (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-130) (QUOTE (-870))) (-2867 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4472 "*") . T)) +(((-4501 "*") . T)) NIL -(-136 |minix| -3985 S T$) +(-136 |minix| -3651 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -3985 R) +(-137 |minix| -3651 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4470 . T) (-4460 . T) (-4471 . T)) -((-2811 (-12 (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +((-4499 . T) (-4489 . T) (-4500 . T)) +((-2867 (-12 (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4467 . T)) +((-4496 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4467 . T)) +((-4496 . T)) NIL -(-149 -1985 UP UPUP) +(-149 -2057 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasAttribute| |#1| (QUOTE -4470))) +((|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasAttribute| |#1| (QUOTE -4499))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4465 . T) (-4464 . T) (-4467 . T)) +((-4494 . T) (-4493 . T) (-4496 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -1985) +(-159 R -2057) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1227))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4466)) (|HasAttribute| |#2| (QUOTE -4469)) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569)))) +((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4495)) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4463 -2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4466 |has| |#1| (-6 -4466)) (-4469 |has| |#1| (-6 -4469)) (-4155 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 -2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-4225 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4463 -2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4466 |has| |#1| (-6 -4466)) (-4469 |has| |#1| (-6 -4469)) (-4155 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2811 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-361)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-932))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-932))))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1085))) (-12 (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasAttribute| |#1| (QUOTE -4466)) (|HasAttribute| |#1| (QUOTE -4469)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201))))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-361))))) +((-4492 -2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-4225 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2867 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-361)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasAttribute| |#1| (QUOTE -4495)) (|HasAttribute| |#1| (QUOTE -4498)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-361))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4472 "*") . T) (-4463 . T) (-4468 . T) (-4462 . T) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") . T) (-4492 . T) (-4497 . T) (-4491 . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -651,7 +651,7 @@ NIL (-180 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-975 |#2|) (LIST (QUOTE -905) (|devaluate| |#1|)))) +((|HasCategory| (-980 |#2|) (LIST (QUOTE -910) (|devaluate| |#1|)))) (-181 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -1985) +(-190 R -2057) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -800,23 +800,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-218 -1985 UP UPUP R) +(-218 -2057 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-219 -1985 FP) +(-219 -2057 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-220) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2811 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-221) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-222 R -1985) +(-222 R -2057) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -830,19 +830,19 @@ NIL NIL (-225 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-226 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4467 . T)) +((-4496 . T)) NIL -(-227 R -1985) +(-227 R -2057) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-228) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4142 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-229) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -850,19 +850,19 @@ NIL NIL (-230 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4472 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-231 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-232 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4471 . T)) +((-4500 . T)) NIL (-233 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4467 . T)) +((-4496 . T)) NIL (-234 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -874,7 +874,7 @@ NIL NIL (-236 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL (-237 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -886,36 +886,36 @@ NIL NIL (-239) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4467 . T)) +((-4496 . T)) NIL (-240 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4470))) +((|HasAttribute| |#1| (QUOTE -4499))) (-241 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4471 . T)) +((-4500 . T)) NIL (-242) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-243 S -3985 R) +(-243 S -3651 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865))) (|HasAttribute| |#3| (QUOTE -4467)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-1125)))) -(-244 -3985 R) +((|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasAttribute| |#3| (QUOTE -4496)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) +(-244 -3651 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) +((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) NIL -(-245 -3985 A B) +(-245 -3651 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-246 -3985 R) +(-246 -3651 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-375))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (-2811 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-239))) (-2811 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074))))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-1125))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2811 (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasAttribute| |#2| (QUOTE -4467)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2867 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2867 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) (-247) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -926,7 +926,7 @@ NIL NIL (-249) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4463 . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-250 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -934,20 +934,20 @@ NIL NIL (-251 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-252 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-253 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL (-254 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-932))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) (-255) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -962,23 +962,23 @@ NIL NIL (-258 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4467 -2811 (-2700 (|has| |#4| (-1074)) (|has| |#4| (-239))) (|has| |#4| (-6 -4467)) (-2700 (|has| |#4| (-1074)) (|has| |#4| (-921 (-1201))))) (-4464 |has| |#4| (-1074)) (-4465 |has| |#4| (-1074)) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#4| (QUOTE (-375))) (-2811 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-1074)))) (-2811 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (QUOTE (-809))) (-2811 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (QUOTE (-865)))) (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (QUOTE (-380))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1074)))) (|HasCategory| |#4| (QUOTE (-239))) (-2811 (|HasCategory| |#4| (QUOTE (-239))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1074))))) (-2811 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#4| (QUOTE (-1125))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-380)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-742)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-809)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-865)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1125))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1074))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-2811 (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1074))))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-2811 (|HasCategory| |#4| (QUOTE (-1074))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1125)))) (-2811 (|HasAttribute| |#4| (QUOTE -4467)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -923) (QUOTE (-1201))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))))) +((-4496 -2867 (-2790 (|has| |#4| (-1079)) (|has| |#4| (-239))) (|has| |#4| (-6 -4496)) (-2790 (|has| |#4| (-1079)) (|has| |#4| (-926 (-1206))))) (-4493 |has| |#4| (-1079)) (-4494 |has| |#4| (-1079)) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-375))) (-2867 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-1079)))) (-2867 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (QUOTE (-814))) (-2867 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (QUOTE (-870)))) (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (|HasCategory| |#4| (QUOTE (-239))) (-2867 (|HasCategory| |#4| (QUOTE (-239))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-2867 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-380)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-747)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-814)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-870)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2867 (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130)))) (-2867 (|HasAttribute| |#4| (QUOTE -4496)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))))) (-259 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4467 -2811 (-2700 (|has| |#3| (-1074)) (|has| |#3| (-239))) (|has| |#3| (-6 -4467)) (-2700 (|has| |#3| (-1074)) (|has| |#3| (-921 (-1201))))) (-4464 |has| |#3| (-1074)) (-4465 |has| |#3| (-1074)) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#3| (QUOTE (-375))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (-2811 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865)))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-380))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-239))) (-2811 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074))))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#3| (QUOTE (-1125))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-742)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-809)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-865)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-2811 (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125)))) (-2811 (|HasAttribute| |#3| (QUOTE -4467)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) +((-4496 -2867 (-2790 (|has| |#3| (-1079)) (|has| |#3| (-239))) (|has| |#3| (-6 -4496)) (-2790 (|has| |#3| (-1079)) (|has| |#3| (-926 (-1206))))) (-4493 |has| |#3| (-1079)) (-4494 |has| |#3| (-1079)) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-375))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2867 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2867 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2867 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2867 (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (-260 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-239)))) (-261 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL (-262 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL (-263) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -1019,15 +1019,15 @@ NIL (-272 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-238)))) +((|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-238)))) (-273 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-274 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-275 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1072,11 +1072,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-286 R -1985) +(-286 R -2057) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-287 R -1985) +(-287 R -2057) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1099,10 +1099,10 @@ NIL (-292 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125)))) +((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130)))) (-293 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4471 . T)) +((-4500 . T)) NIL (-294 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1123,18 +1123,18 @@ NIL (-298 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4471))) +((|HasAttribute| |#1| (QUOTE -4500))) (-299 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-300 S R |Mod| -2871 -1334 |exactQuo|) +(-300 S R |Mod| -3530 -3771 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-301) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4463 . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-302) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1150,21 +1150,21 @@ NIL NIL (-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4467 -2811 (|has| |#1| (-1074)) (|has| |#1| (-486))) (-4464 |has| |#1| (-1074)) (-4465 |has| |#1| (-1074))) -((|HasCategory| |#1| (QUOTE (-375))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-486))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1137)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-313))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742)))) (-2811 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-742)))) +((-4496 -2867 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4493 |has| |#1| (-1079)) (-4494 |has| |#1| (-1079))) +((|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747)))) (|HasCategory| |#1| (QUOTE (-486))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-313))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486)))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-747)))) (-306 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102)))) (-307) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-308 -1985 S) +(-308 -2057 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-309 E -1985) +(-309 E -2057) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1179,7 +1179,7 @@ NIL (-312 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1074)))) +((|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-313) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1202,7 +1202,7 @@ NIL NIL (-318) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-319 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1212,7 +1212,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-321 -1985) +(-321 -2057) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1226,8 +1226,8 @@ NIL NIL (-324 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-932))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-1047))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-865))) (-2811 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-865)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-1177))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -320) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -297) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-558))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-932))) (|HasCategory| $ (QUOTE (-146)))) (-2811 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-932))) (|HasCategory| $ (QUOTE (-146)))))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1052))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870))) (-2867 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -320) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -297) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-558))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))) (-2867 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))))) (-325 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1238,9 +1238,9 @@ NIL NIL (-327 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4467 -2811 (-12 (|has| |#1| (-569)) (-2811 (|has| |#1| (-1074)) (|has| |#1| (-486)))) (|has| |#1| (-1074)) (|has| |#1| (-486))) (-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) ((-4472 "*") |has| |#1| (-569)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-569)) (-4462 |has| |#1| (-569))) -((-2811 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (-2811 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-1074))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))))) (-2811 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1137)))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1137)))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))))) (-2811 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1137))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) -(-328 R -1985) +((-4496 -2867 (-12 (|has| |#1| (-569)) (-2867 (|has| |#1| (-1079)) (|has| |#1| (-486)))) (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) +((-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-21))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-1079))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2867 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1142)))) (-2867 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) +(-328 R -2057) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1250,8 +1250,8 @@ NIL NIL (-330 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) (-331 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1262,8 +1262,8 @@ NIL NIL (-333 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4465 . T) (-4464 . T)) -((|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| (-577) (QUOTE (-808)))) +((-4494 . T) (-4493 . T)) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| (-577) (QUOTE (-813)))) (-334 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1271,26 +1271,26 @@ NIL (-335 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-787) (QUOTE (-808)))) +((|HasCategory| (-792) (QUOTE (-813)))) (-336 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL ((|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174)))) (-337 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-338 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-339 S -1985) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-339 S -2057) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-380)))) -(-340 -1985) +(-340 -2057) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-341) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1312,54 +1312,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-346 S -1985 UP UPUP R) +(-346 S -2057 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -1985 UP UPUP R) +(-347 -2057 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-348 -1985 UP UPUP R) +(-348 -2057 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-349 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-350 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-351 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) (-352 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-353 S -1985 UP UPUP) +(-353 S -2057 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-375)))) -(-354 -1985 UP UPUP) +(-354 -2057 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4463 |has| (-420 |#2|) (-375)) (-4468 |has| (-420 |#2|) (-375)) (-4462 |has| (-420 |#2|) (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-355 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| (-933 |#1|) (QUOTE (-146))) (|HasCategory| (-933 |#1|) (QUOTE (-380)))) (|HasCategory| (-933 |#1|) (QUOTE (-148))) (|HasCategory| (-933 |#1|) (QUOTE (-380))) (|HasCategory| (-933 |#1|) (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) (-356 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-357 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-358 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1374,33 +1374,33 @@ NIL NIL (-361) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-362 R UP -1985) +(-362 R UP -2057) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-363 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| (-933 |#1|) (QUOTE (-146))) (|HasCategory| (-933 |#1|) (QUOTE (-380)))) (|HasCategory| (-933 |#1|) (QUOTE (-148))) (|HasCategory| (-933 |#1|) (QUOTE (-380))) (|HasCategory| (-933 |#1|) (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) (-364 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-365 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-366 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| (-933 |#1|) (QUOTE (-146))) (|HasCategory| (-933 |#1|) (QUOTE (-380)))) (|HasCategory| (-933 |#1|) (QUOTE (-148))) (|HasCategory| (-933 |#1|) (QUOTE (-380))) (|HasCategory| (-933 |#1|) (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) (-367 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-368 -1985 GF) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-368 -2057 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1408,21 +1408,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-370 -1985 FP FPP) +(-370 -2057 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-371 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-372 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-373 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4467 . T)) +((-4496 . T)) NIL (-374 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1430,7 +1430,7 @@ NIL NIL (-375) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-376 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1446,7 +1446,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-569)))) (-379 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4467 |has| |#1| (-569)) (-4465 . T) (-4464 . T)) +((-4496 |has| |#1| (-569)) (-4494 . T) (-4493 . T)) NIL (-380) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1458,7 +1458,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-375)))) (-382 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL (-383 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1467,14 +1467,14 @@ NIL (-384 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125)))) +((|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130)))) (-385 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4470 . T)) +((-4499 . T)) NIL (-386 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4465 . T) (-4464 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4494 . T) (-4493 . T)) NIL (-387 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1483,7 +1483,7 @@ NIL (-388 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) +((|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-389 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL @@ -1494,7 +1494,7 @@ NIL NIL (-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4453 . T) (-4461 . T) (-4142 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4482 . T) (-4490 . T) (-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1502,11 +1502,11 @@ NIL NIL (-393 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-394 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL (-395) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1518,8 +1518,8 @@ NIL NIL (-397 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4465 . T) (-4464 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +((-4494 . T) (-4493 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) (-398 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL @@ -1527,10 +1527,10 @@ NIL (-399 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-865)))) +((|HasCategory| |#1| (QUOTE (-870)))) (-400) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-401) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1542,13 +1542,13 @@ NIL NIL (-403 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL (-404) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-405 -1985 UP UPUP R) +(-405 -2057 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1572,11 +1572,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-411 -2668 |returnType| -1951 |symbols|) +(-411 -2758 |returnType| -2112 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-412 -1985 UP) +(-412 -2057 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1590,15 +1590,15 @@ NIL NIL (-415) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-416 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4461))) +((|HasAttribute| |#1| (QUOTE -4482)) (|HasAttribute| |#1| (QUOTE -4490))) (-417) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4142 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-418 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1610,20 +1610,20 @@ NIL NIL (-420 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4457 -12 (|has| |#1| (-6 -4468)) (|has| |#1| (-465)) (|has| |#1| (-6 -4457))) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-865)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-558))) (-12 (|HasAttribute| |#1| (QUOTE -4468)) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-465)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +((-4486 -12 (|has| |#1| (-6 -4497)) (|has| |#1| (-465)) (|has| |#1| (-6 -4486))) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-558))) (-12 (|HasAttribute| |#1| (QUOTE -4497)) (|HasAttribute| |#1| (QUOTE -4486)) (|HasCategory| |#1| (QUOTE (-465)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-421 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-422 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL (-423 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) +((|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-424 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1632,14 +1632,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-426 R -1985 UP A) +(-426 R -2057 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4467 . T)) +((-4496 . T)) NIL -(-427 R -1985 UP A |ibasis|) +(-427 R -2057 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1063) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1068) (|devaluate| |#2|)))) (-428 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1650,12 +1650,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-375)))) (-430 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4467 |has| |#1| (-569)) (-4465 . T) (-4464 . T)) +((-4496 |has| |#1| (-569)) (-4494 . T) (-4493 . T)) NIL (-431 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -320) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -297) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1246))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1246)))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-465)))) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -320) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -297) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1251))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1251)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-465)))) (-432 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1679,40 +1679,40 @@ NIL (-437 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380)))) +((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380)))) (-438 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4470 . T) (-4460 . T) (-4471 . T)) +((-4499 . T) (-4489 . T) (-4500 . T)) NIL -(-439 R -1985) +(-439 R -2057) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-440 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4457 -12 (|has| |#1| (-6 -4457)) (|has| |#2| (-6 -4457))) (-4464 . T) (-4465 . T) (-4467 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#2| (QUOTE -4457)))) -(-441 R -1985) +((-4486 -12 (|has| |#1| (-6 -4486)) (|has| |#2| (-6 -4486))) (-4493 . T) (-4494 . T) (-4496 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4486)) (|HasAttribute| |#2| (QUOTE -4486)))) +(-441 R -2057) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-442 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-1137))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) +((|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-1142))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-443 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4467 -2811 (|has| |#1| (-1074)) (|has| |#1| (-486))) (-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) ((-4472 "*") |has| |#1| (-569)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-569)) (-4462 |has| |#1| (-569))) +((-4496 -2867 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) NIL -(-444 R -1985) +(-444 R -2057) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-445 R -1985) +(-445 R -2057) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-446 R -1985) +(-446 R -2057) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1720,10 +1720,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-448 R -1985 UP) +(-448 R -2057 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-48))))) (-449) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1752,7 +1752,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-456 R UP -1985) +(-456 R UP -2057) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1790,16 +1790,16 @@ NIL NIL (-465) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-466 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4467 |has| (-420 (-975 |#1|)) (-569)) (-4465 . T) (-4464 . T)) -((|HasCategory| (-420 (-975 |#1|)) (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-420 (-975 |#1|)) (QUOTE (-569)))) +((-4496 |has| (-420 (-980 |#1|)) (-569)) (-4494 . T) (-4493 . T)) +((|HasCategory| (-420 (-980 |#1|)) (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-420 (-980 |#1|)) (QUOTE (-569)))) (-467 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-932))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) (-468 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1826,7 +1826,7 @@ NIL NIL (-474 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL (-475 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1834,8 +1834,8 @@ NIL NIL (-476 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) (-477 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1864,7 +1864,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-484 |lv| -1985 R) +(-484 |lv| -2057 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1874,23 +1874,23 @@ NIL NIL (-486) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4467 . T)) +((-4496 . T)) NIL (-487 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) (-488 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125)))) +((-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130)))) (-489 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) (-490) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-491) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1898,29 +1898,29 @@ NIL NIL (-492 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102)))) (-493) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-494 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-932))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-495 -3985 S) +(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-495 -3651 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-375))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (-2811 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-239))) (-2811 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074))))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-1125))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2811 (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasAttribute| |#2| (QUOTE -4467)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2867 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2867 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) (-496) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-497 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-498 -1985 UP UPUP R) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-498 -2057 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1930,12 +1930,12 @@ NIL NIL (-500) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2811 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-501 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4470)) (|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) +((|HasAttribute| |#1| (QUOTE -4499)) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-502 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1956,34 +1956,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-507 -1985 UP |AlExt| |AlPol|) +(-507 -2057 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-508) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) (-509 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-510 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-511 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-512 R UP -1985) +(-512 R UP -2057) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-513 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-865))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-870))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-112) (QUOTE (-102)))) (-514 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1996,10 +1996,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-517 -1985 |Expon| |VarSet| |DPoly|) +(-517 -2057 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-1201))))) +((|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-1206))))) (-518 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2011,11 +2011,11 @@ NIL (-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) (-521 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) (-522 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL @@ -2023,15 +2023,15 @@ NIL (-523 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) (-524 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) (-525 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) (-526 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL @@ -2043,39 +2043,39 @@ NIL (-528 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-808)))) +((|HasCategory| |#2| (QUOTE (-813)))) (-529 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-530) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-531 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| (-594 |#1|) (QUOTE (-146))) (|HasCategory| (-594 |#1|) (QUOTE (-380)))) (|HasCategory| (-594 |#1|) (QUOTE (-148))) (|HasCategory| (-594 |#1|) (QUOTE (-380))) (|HasCategory| (-594 |#1|) (QUOTE (-146)))) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| (-594 |#1|) (QUOTE (-146))) (|HasCategory| (-594 |#1|) (QUOTE (-380)))) (|HasCategory| (-594 |#1|) (QUOTE (-148))) (|HasCategory| (-594 |#1|) (QUOTE (-380))) (|HasCategory| (-594 |#1|) (QUOTE (-146)))) (-532 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-533 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-534 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4471))) +((|HasAttribute| |#3| (QUOTE -4500))) (-535 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4471))) +((|HasAttribute| |#7| (QUOTE -4500))) (-536 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4472 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-537) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2107,8 +2107,8 @@ NIL (-544 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| (-787) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1125))))) -(-545 K -1985 |Par|) +((-12 (|HasCategory| (-792) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130))))) +(-545 K -2057 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2132,7 +2132,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-551 K -1985 |Par|) +(-551 K -2057 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2162,7 +2162,7 @@ NIL NIL (-558) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-559) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2182,13 +2182,13 @@ NIL NIL (-563 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102)))) -(-564 R -1985) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102)))) +(-564 R -2057) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-565 R0 -1985 UP UPUP R) +(-565 R0 -2057 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2198,7 +2198,7 @@ NIL NIL (-567 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4142 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4215 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-568 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2206,9 +2206,9 @@ NIL NIL (-569) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-570 R -1985) +(-570 R -2057) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2220,39 +2220,39 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-573 R -1985 L) +(-573 R -2057 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -672) (|devaluate| |#2|)))) +((|HasCategory| |#3| (LIST (QUOTE -677) (|devaluate| |#2|)))) (-574) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-575 -1985 UP UPUP R) +(-575 -2057 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-576 -1985 UP) +(-576 -2057 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-577) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4452 . T) (-4458 . T) (-4462 . T) (-4457 . T) (-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4481 . T) (-4487 . T) (-4491 . T) (-4486 . T) (-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-578) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-579 R -1985 L) +(-579 R -2057 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -672) (|devaluate| |#2|)))) -(-580 R -1985) +((|HasCategory| |#3| (LIST (QUOTE -677) (|devaluate| |#2|)))) +(-580 R -2057) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-642))))) -(-581 -1985 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-647))))) +(-581 -2057 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2260,27 +2260,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-583 -1985) +(-583 -2057) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-584 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4142 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4215 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-585) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-586 R -1985) +(-586 R -2057) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-642))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-569)))) -(-587 -1985 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-647))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-569)))) +(-587 -2057 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-588 R -1985) +(-588 R -2057) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2302,21 +2302,21 @@ NIL NIL (-593 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-594 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-380)))) (-595) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-596 R -1985) +(-596 R -2057) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-597 E -1985) +(-597 E -2057) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2324,10 +2324,10 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-599 -1985) +(-599 -2057) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4465 . T) (-4464 . T)) -((|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-1201))))) +((-4494 . T) (-4493 . T)) +((|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-600 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2354,19 +2354,19 @@ NIL NIL (-606 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2811 (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-145) (QUOTE (-865))) (-2811 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2867 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2867 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-607 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-608 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))) (|HasCategory| (-577) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577)))))) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))) (|HasCategory| (-577) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577)))))) (-609 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4472 "*") |has| |#1| (-569)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-569)))) (-610) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) @@ -2380,7 +2380,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-613 R -1985 FG) +(-613 R -2057 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2390,2831 +2390,2851 @@ NIL NIL (-615 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-616 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (QUOTE (-865))) (|HasAttribute| |#1| (QUOTE -4470)) (|HasCategory| |#3| (QUOTE (-1125)))) +((|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-870))) (|HasAttribute| |#1| (QUOTE -4499)) (|HasCategory| |#3| (QUOTE (-1130)))) (-617 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL (-618) -((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) -NIL -NIL -(-619) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-620 R A) +(-619 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4467 -2811 (-2700 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4465 . T) (-4464 . T)) -((-2811 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) -(-621 |Entry|) +((-4496 -2867 (-2790 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) +((-2867 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) +(-620) +((|constructor| (NIL "This is the datatype for the \\spad{JVM} bytecodes."))) +NIL +NIL +(-621) +NIL +NIL +NIL +(-622) +NIL +NIL +NIL +(-623) +NIL +NIL +NIL +(-624) +NIL +NIL +NIL +(-625) +((|constructor| (NIL "This is the datatype for the \\spad{JVM} opcodes."))) +NIL +NIL +(-626 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| (-1183) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-102)))) -(-622 S |Key| |Entry|) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102)))) +(-627 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-623 |Key| |Entry|) +(-628 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4471 . T)) +((-4500 . T)) NIL -(-624 R S) +(-629 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-625 S) +(-630 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) -(-626 S) +((|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) +(-631 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 S) +(-632 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-628 -1985 UP) +(-633 -2057 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-629 S) +(-634 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-630) +(-635) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-631 S) +(-636 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-632 S R) +(-637 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-633 R) +(-638 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4467 . T)) +((-4496 . T)) NIL -(-634 A R S) +(-639 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-864)))) -(-635 R -1985) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-869)))) +(-640 R -2057) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-636 R UP) +(-641 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4463 . T) (-4467 . T)) -((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) -(-637 R E V P TS ST) +((-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4492 . T) (-4496 . T)) +((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) +(-642 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-638 OV E Z P) +(-643 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-639) +(-644) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-640 |VarSet| R |Order|) +(-645 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4467 . T)) +((-4496 . T)) NIL -(-641 R |ls|) +(-646 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-642) +(-647) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-643 R -1985) +(-648 R -2057) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-644 |lv| -1985) +(-649 |lv| -2057) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-645) +(-650) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2438) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1183) (QUOTE (-865))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (QUOTE (-1125)))) -(-646 S R) +((-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2727) (QUOTE (-52))))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1188) (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130)))) +(-651 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-375)))) -(-647 R) +(-652 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4465 . T) (-4464 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4494 . T) (-4493 . T)) NIL -(-648 R A) +(-653 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4467 -2811 (-2700 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4465 . T) (-4464 . T)) -((-2811 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) -(-649 R FE) +((-4496 -2867 (-2790 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) +((-2867 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) +(-654 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-650 R) +(-655 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-651 |vars|) +(-656 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-652 S R) +(-657 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2686 (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-375)))) -(-653 K B) +((-2779 (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-375)))) +(-658 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-4465 . T) (-4464 . T)) -((-12 (|HasCategory| (-651 |#2|) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1125))))) -(-654 R) +((-4494 . T) (-4493 . T)) +((-12 (|HasCategory| (-656 |#2|) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130))))) +(-659 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-655 K B) +(-660 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL -(-656 S) +(-661 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-657 A B) +(-662 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-658 A B) +(-663 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-659 A B C) +(-664 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-660 S) +(-665 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-661 T$) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-666 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-662 S) +(-667 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-663 S) +(-668 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-664 R) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-669 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-665 S E |un|) +(-670 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-666 A S) +(-671 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4471))) -(-667 S) +((|HasAttribute| |#1| (QUOTE -4500))) +(-672 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-668 R -1985 L) +(-673 R -2057 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-669 A) +(-674 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-670 A M) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-675 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-671 S A) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-676 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-375)))) -(-672 A) +(-677 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-673 -1985 UP) +(-678 -2057 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-674 A -2202) +(-679 A -1357) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-675 A L) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-680 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-676 S) +(-681 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-677) +(-682) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-678 M R S) +(-683 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4465 . T) (-4464 . T)) -((|HasCategory| |#1| (QUOTE (-807)))) -(-679 R) +((-4494 . T) (-4493 . T)) +((|HasCategory| |#1| (QUOTE (-812)))) +(-684 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-680 |VarSet| R) +(-685 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4465 . T) (-4464 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4494 . T) (-4493 . T)) ((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-174)))) -(-681 A S) +(-686 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-682 S) +(-687 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-683 -1985) +(-688 -2057) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-684 -1985 |Row| |Col| M) +(-689 -2057 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-685 R E OV P) +(-690 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-686 |n| R) +(-691 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4467 . T) (-4470 . T) (-4464 . T) (-4465 . T)) -((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569))) (-2811 (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-687) +((-4496 . T) (-4499 . T) (-4493 . T) (-4494 . T)) +((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569))) (-2867 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-692) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-688 |VarSet|) +(-693 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-689 A S) +(-694 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-690 S) +(-695 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-691 R) +(-696 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-692) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-697) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-693 |VarSet|) +(-698 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-694 A) +(-699 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-695 A C) +(-700 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-696 A B C) +(-701 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-697) +(-702) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-698 A) +(-703 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-699 A C) +(-704 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-700 A B C) +(-705 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-701 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-706 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-702 S R |Row| |Col|) +(-707 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569)))) -(-703 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569)))) +(-708 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL -(-704 R |Row| |Col| M) +(-709 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569)))) -(-705 R) +(-710 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4470 . T) (-4471 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4472 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-706 R) +((-4499 . T) (-4500 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-711 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-707 T$) +(-712 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-708 S -1985 FLAF FLAS) +(-713 S -2057 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-709 R Q) +(-714 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-710) +(-715) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4463 . T) (-4468 |has| (-715) (-375)) (-4462 |has| (-715) (-375)) (-4155 . T) (-4469 |has| (-715) (-6 -4469)) (-4466 |has| (-715) (-6 -4466)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-715) (QUOTE (-148))) (|HasCategory| (-715) (QUOTE (-146))) (|HasCategory| (-715) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-715) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-715) (QUOTE (-380))) (|HasCategory| (-715) (QUOTE (-375))) (-2811 (|HasCategory| (-715) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-239))) (|HasCategory| (-715) (QUOTE (-238))) (-2811 (-12 (|HasCategory| (-715) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (LIST (QUOTE -923) (QUOTE (-1201))))) (-2811 (|HasCategory| (-715) (QUOTE (-375))) (|HasCategory| (-715) (QUOTE (-361)))) (|HasCategory| (-715) (QUOTE (-361))) (|HasCategory| (-715) (LIST (QUOTE -297) (QUOTE (-715)) (QUOTE (-715)))) (|HasCategory| (-715) (LIST (QUOTE -320) (QUOTE (-715)))) (|HasCategory| (-715) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-715)))) (|HasCategory| (-715) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-715) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-715) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-715) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (-2811 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-375))) (|HasCategory| (-715) (QUOTE (-361)))) (|HasCategory| (-715) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-715) (QUOTE (-1047))) (|HasCategory| (-715) (QUOTE (-1227))) (-12 (|HasCategory| (-715) (QUOTE (-1027))) (|HasCategory| (-715) (QUOTE (-1227)))) (-2811 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-375))) (-12 (|HasCategory| (-715) (QUOTE (-361))) (|HasCategory| (-715) (QUOTE (-932))))) (-2811 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (-12 (|HasCategory| (-715) (QUOTE (-375))) (|HasCategory| (-715) (QUOTE (-932)))) (-12 (|HasCategory| (-715) (QUOTE (-361))) (|HasCategory| (-715) (QUOTE (-932))))) (|HasCategory| (-715) (QUOTE (-558))) (-12 (|HasCategory| (-715) (QUOTE (-1085))) (|HasCategory| (-715) (QUOTE (-1227)))) (|HasCategory| (-715) (QUOTE (-1085))) (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932))) (-2811 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-375)))) (-2811 (-12 (|HasCategory| (-715) (QUOTE (-239))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (QUOTE (-238)))) (-2811 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-569)))) (-12 (|HasCategory| (-715) (QUOTE (-238))) (|HasCategory| (-715) (QUOTE (-375)))) (-12 (|HasCategory| (-715) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-375)))) (-12 (|HasCategory| (-715) (QUOTE (-239))) (|HasCategory| (-715) (QUOTE (-375)))) (-12 (|HasCategory| (-715) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-715) (QUOTE (-569))) (|HasAttribute| (-715) (QUOTE -4469)) (|HasAttribute| (-715) (QUOTE -4466)) (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (LIST (QUOTE -923) (QUOTE (-1201)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-146)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-361))))) -(-711 S) +((-4492 . T) (-4497 |has| (-720) (-375)) (-4491 |has| (-720) (-375)) (-4225 . T) (-4498 |has| (-720) (-6 -4498)) (-4495 |has| (-720) (-6 -4495)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-720) (QUOTE (-148))) (|HasCategory| (-720) (QUOTE (-146))) (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-380))) (|HasCategory| (-720) (QUOTE (-375))) (-2867 (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-238))) (-2867 (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (LIST (QUOTE -297) (QUOTE (-720)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -320) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2867 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-720) (QUOTE (-1052))) (|HasCategory| (-720) (QUOTE (-1232))) (-12 (|HasCategory| (-720) (QUOTE (-1032))) (|HasCategory| (-720) (QUOTE (-1232)))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (|HasCategory| (-720) (QUOTE (-558))) (-12 (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-1232)))) (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375)))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (QUOTE (-238)))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-569)))) (-12 (|HasCategory| (-720) (QUOTE (-238))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-569))) (|HasAttribute| (-720) (QUOTE -4498)) (|HasAttribute| (-720) (QUOTE -4495)) (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-146)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-361))))) +(-716 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4471 . T)) +((-4500 . T)) NIL -(-712 U) +(-717 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-713) +(-718) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-714 OV E -1985 PG) +(-719 OV E -2057 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-715) +(-720) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4142 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-716 R) +(-721 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-717) +(-722) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4469 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4498 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-718 S D1 D2 I) +(-723 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-719 S) +(-724 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-720 S) +(-725 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-721 S T$) +(-726 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-722 S -2136 I) +(-727 S -2389 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-723 E OV R P) +(-728 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-724 R) +(-729 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-725 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-730 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-726) +(-731) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-727 R |Mod| -2871 -1334 |exactQuo|) +(-732 R |Mod| -3530 -3771 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-728 R |Rep|) +(-733 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-729 IS E |ff|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-734 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-730 R M) +(-735 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) +((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-731 R |Mod| -2871 -1334 |exactQuo|) +(-736 R |Mod| -3530 -3771 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4467 . T)) +((-4496 . T)) NIL -(-732 S R) +(-737 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-733 R) +(-738 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL -(-734 -1985) +(-739 -2057) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4467 . T)) +((-4496 . T)) NIL -(-735 S) +(-740 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-736) +(-741) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-737 S) +(-742 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-738) +(-743) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-739 S R UP) +(-744 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380)))) -(-740 R UP) +(-745 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4463 |has| |#1| (-375)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 |has| |#1| (-375)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-741 S) +(-746 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-742) +(-747) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-743 -1985 UP) +(-748 -2057 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-744 |VarSet| E1 E2 R S PR PS) +(-749 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-745 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-750 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-746 E OV R PPR) +(-751 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-747 |vl| R) +(-752 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-932))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-748 E OV R PRF) +(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-753 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-749 E OV R P) +(-754 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-750 R S M) +(-755 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-751 R M) +(-756 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-865)))) -(-752 S) +((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-870)))) +(-757 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4460 . T) (-4471 . T)) +((-4489 . T) (-4500 . T)) NIL -(-753 S) +(-758 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4470 . T) (-4460 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-754) +((-4499 . T) (-4489 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-759) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-755 S) +(-760 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-756 |Coef| |Var|) +(-761 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4465 . T) (-4464 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-757 OV E R P) +(-762 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-758 E OV R P) +(-763 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-759 S R) +(-764 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-760 R) +(-765 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL -(-761) +(-766) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-762) +(-767) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-763) +(-768) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-764) +(-769) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-765) +(-770) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-766) +(-771) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-767) +(-772) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-768) +(-773) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-769) +(-774) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-770) +(-775) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-771) +(-776) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-772) +(-777) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-773) +(-778) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-774) +(-779) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-775) +(-780) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-776 S) +(-781 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-777) +(-782) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-778 S) +(-783 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-779) +(-784) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-780 |Par|) +(-785 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-781 -1985) +(-786 -2057) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-782 P -1985) +(-787 P -2057) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-783 T$) +(-788 T$) NIL NIL NIL -(-784 UP -1985) +(-789 UP -2057) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-785) +(-790) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-786 R) +(-791 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-787) +(-792) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4472 "*") . T)) +(((-4501 "*") . T)) NIL -(-788 R -1985) +(-793 R -2057) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-789 S) +(-794 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-790) +(-795) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-791 R |PolR| E |PolE|) +(-796 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-792 R E V P TS) +(-797 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-793 -1985 |ExtF| |SUEx| |ExtP| |n|) +(-798 -2057 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-794 BP E OV R P) +(-799 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-795 |Par|) +(-800 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-796 R |VarSet|) +(-801 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2686 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2686 (|HasCategory| |#1| (QUOTE (-558)))) (-2686 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2686 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577))))) (-2686 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2686 (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-577))))))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-797 R S) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (QUOTE (-558)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577))))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -1022) (QUOTE (-577))))))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-802 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-798 R) +(-803 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-799 R) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-804 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-800 R E V P) +(-805 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-801 S) +(-806 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-865)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-174)))) -(-802) +((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-174)))) +(-807) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-803) +(-808) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-804) +(-809) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-805) +(-810) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-806 |Curve|) +(-811 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-807) +(-812) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-808) +(-813) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-809) +(-814) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-810) +(-815) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-811) +(-816) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-812 S R) +(-817 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380)))) -(-813 R) +((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380)))) +(-818 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-814 -2811 R OS S) +(-819 -2867 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-815 R) +(-820 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-2811 (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) -(-816) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-2867 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) +(-821) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-817 R -1985 L) +(-822 R -2057 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-818 R -1985) +(-823 R -2057) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-819) +(-824) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-820 R -1985) +(-825 R -2057) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-821) +(-826) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-822 -1985 UP UPUP R) +(-827 -2057 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-823 -1985 UP L LQ) +(-828 -2057 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-824) +(-829) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-825 -1985 UP L LQ) +(-830 -2057 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-826 -1985 UP) +(-831 -2057 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-827 -1985 L UP A LO) +(-832 -2057 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-828 -1985 UP) +(-833 -2057 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-829 -1985 LO) +(-834 -2057 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-830 -1985 LODO) +(-835 -2057 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-831 -3985 S |f|) +(-836 -3651 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-375))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (-2811 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-239))) (-2811 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074))))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-1125))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2811 (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasAttribute| |#2| (QUOTE -4467)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) -(-832 R) +((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2867 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2867 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +(-837 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-833 |Kernels| R |var|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-838 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4472 "*") |has| |#2| (-375)) (-4463 |has| |#2| (-375)) (-4468 |has| |#2| (-375)) (-4462 |has| |#2| (-375)) (-4467 . T) (-4465 . T) (-4464 . T)) +(((-4501 "*") |has| |#2| (-375)) (-4492 |has| |#2| (-375)) (-4497 |has| |#2| (-375)) (-4491 |has| |#2| (-375)) (-4496 . T) (-4494 . T) (-4493 . T)) ((|HasCategory| |#2| (QUOTE (-375)))) -(-834 S) +(-839 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-835 S) +(-840 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-865)))) -(-836) +((|HasCategory| |#1| (QUOTE (-870)))) +(-841) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-837) +(-842) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-838) +(-843) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-839) +(-844) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-840) +(-845) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-841) +(-846) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-842 R) +(-847 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-843 P R) +(-848 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239)))) -(-844) +(-849) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-845) +(-850) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-846 S) +(-851 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4470 . T) (-4460 . T) (-4471 . T)) +((-4499 . T) (-4489 . T) (-4500 . T)) NIL -(-847) +(-852) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-848 R S) +(-853 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-849 R) +(-854 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4467 |has| |#1| (-864))) -((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-864)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2811 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) -(-850 A S) +((-4496 |has| |#1| (-869))) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) +(-855 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-851 S) +(-856 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-852 R) +(-857 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) +((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-853) +(-858) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-854) +(-859) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-855) +(-860) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-856) +(-861) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-857) +(-862) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-858 R S) +(-863 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-859 R) +(-864 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4467 |has| |#1| (-864))) -((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-864)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2811 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) -(-860) +((-4496 |has| |#1| (-869))) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) +(-865) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-861 -3985 S) +(-866 -3651 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-862) +(-867) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-863 S) +(-868 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-864) +(-869) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4467 . T)) +((-4496 . T)) NIL -(-865) +(-870) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-866 T$ |f|) +(-871 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) -(-867 S) +((|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) +(-872 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-868) +(-873) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-869 S R) +(-874 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174)))) -(-870 R) +(-875 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-871 R C) +(-876 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) -(-872 R |sigma| -2630) +(-877 R |sigma| -1797) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-873 |x| R |sigma| -2630) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-878 |x| R |sigma| -1797) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-375)))) -(-874 R) +((-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-375)))) +(-879 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-875) +(-880) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-876) +(-881) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-877 S) +(-882 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-878) +(-883) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-879) +(-884) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-880) +(-885) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-881) +(-886) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-882 |VariableList|) +(-887 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-883) +(-888) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-884 R |vl| |wl| |wtlevel|) +(-889 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) +((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) -(-885 R PS UP) +(-890 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-886 R |x| |pt|) +(-891 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-887 |p|) +(-892 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-888 |p|) +(-893 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-889 |p|) +(-894 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-888 |#1|) (QUOTE (-932))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-888 |#1|) (QUOTE (-146))) (|HasCategory| (-888 |#1|) (QUOTE (-148))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-888 |#1|) (QUOTE (-1047))) (|HasCategory| (-888 |#1|) (QUOTE (-836))) (|HasCategory| (-888 |#1|) (QUOTE (-865))) (-2811 (|HasCategory| (-888 |#1|) (QUOTE (-836))) (|HasCategory| (-888 |#1|) (QUOTE (-865)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-888 |#1|) (QUOTE (-1177))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-888 |#1|) (QUOTE (-238))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-888 |#1|) (QUOTE (-239))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -888) (|devaluate| |#1|)) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| (-888 |#1|) (QUOTE (-318))) (|HasCategory| (-888 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-888 |#1|) (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-888 |#1|) (QUOTE (-932)))) (|HasCategory| (-888 |#1|) (QUOTE (-146))))) -(-890 |p| PADIC) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-893 |#1|) (QUOTE (-937))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-148))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1052))) (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870))) (-2867 (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-238))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -893) (|devaluate| |#1|)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-318))) (|HasCategory| (-893 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))))) +(-895 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-865))) (-2811 (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1177))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-891 S T$) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870))) (-2867 (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-896 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))))) -(-892) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) +(-897) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-893) +(-898) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-894) +(-899) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-895 CF1 CF2) +(-900 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-896 |ComponentFunction|) +(-901 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-897 CF1 CF2) +(-902 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-898 |ComponentFunction|) +(-903 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-899) +(-904) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-900 CF1 CF2) +(-905 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-901 |ComponentFunction|) +(-906 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-902) +(-907) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-903 R) +(-908 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-904 R S L) +(-909 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-905 S) +(-910 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-906 |Base| |Subject| |Pat|) +(-911 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2686 (|HasCategory| |#2| (QUOTE (-1074)))) (-2686 (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (-2686 (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201))))) -(-907 R A B) +((-12 (-2779 (|HasCategory| |#2| (QUOTE (-1079)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) +(-912 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-908 R S) +(-913 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-909 R -2136) +(-914 R -2389) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-910 R S) +(-915 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-911 R) +(-916 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-912 |VarSet|) +(-917 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-913 UP R) +(-918 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-914 A T$ S) +(-919 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-915 T$ S) +(-920 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-916) +(-921) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-917 UP -1985) +(-922 UP -2057) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-918) +(-923) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-919) +(-924) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-920 R S) +(-925 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL -(-921 S) +(-926 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4467 . T)) +((-4496 . T)) NIL -(-922 A S) +(-927 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-923 S) +(-928 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-924 S) +(-929 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-925 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-930 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-926 S) +(-931 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4467 . T)) +((-4496 . T)) NIL -(-927 S) +(-932 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-928 S) +(-933 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4467 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-865)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-865)))) -(-929 R E |VarSet| S) +((-4496 . T)) +((-2867 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) +(-934 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-930 R S) +(-935 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-931 S) +(-936 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-932) +(-937) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-933 |p|) +(-938 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-380)))) -(-934 R0 -1985 UP UPUP R) +(-939 R0 -2057 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-935 UP UPUP R) +(-940 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-936 UP UPUP) +(-941 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-937 R) +(-942 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-938 R) +(-943 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-939 E OV R P) +(-944 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-940) +(-945) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-941 -1985) +(-946 -2057) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-942 R) +(-947 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-943) +(-948) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-944) +(-949) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4472 "*") . T)) +(((-4501 "*") . T)) NIL -(-945 -1985 P) +(-950 -2057 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-946 |xx| -1985) +(-951 |xx| -2057) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-947 R |Var| |Expon| GR) +(-952 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-948 S) +(-953 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-949) +(-954) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-950) +(-955) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-951) +(-956) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-952 R -1985) +(-957 R -2057) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-953) +(-958) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-954 S A B) +(-959 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-955 S R -1985) +(-960 S R -2057) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-956 I) +(-961 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-957 S E) +(-962 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-958 S R L) +(-963 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-959 S E V R P) +(-964 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -905) (|devaluate| |#1|)))) -(-960 R -1985 -2136) +((|HasCategory| |#3| (LIST (QUOTE -910) (|devaluate| |#1|)))) +(-965 R -2057 -2389) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-961 -2136) +(-966 -2389) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-962 S R Q) +(-967 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-963 S) +(-968 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-964 S R P) +(-969 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-965) +(-970) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-966 R) +(-971 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-967 |lv| R) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-972 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-968 |TheField| |ThePols|) +(-973 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-864)))) -(-969 R S) +((|HasCategory| |#1| (QUOTE (-869)))) +(-974 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-970 |x| R) +(-975 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-971 S R E |VarSet|) +(-976 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-932))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#4| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#4| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) -(-972 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-937))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#4| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) +(-977 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-973 E V R P -1985) +(-978 E V R P -2057) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-974 E |Vars| R P S) +(-979 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-975 R) +(-980 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-976 E V R P -1985) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-981 E V R P -2057) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-465)))) -(-977) +(-982) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-978) +(-983) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-979 R L) +(-984 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-980 A B) +(-985 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-981 S) +(-986 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-982) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-987) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-983 -1985) +(-988 -2057) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-984 I) +(-989 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-985) +(-990) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-986 R E) +(-991 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4468))) -(-987 A B) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4497))) +(-992 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4467 -12 (|has| |#2| (-486)) (|has| |#1| (-486)))) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-865))))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809))))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-742))))) (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809))))) (-12 (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-865))))) -(-988) +((-4496 -12 (|has| |#2| (-486)) (|has| |#1| (-486)))) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747))))) (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) +(-993) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-989 T$) +(-994 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-990 T$) +(-995 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-991 S T$) +(-996 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-992) +(-997) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-993 S) +(-998 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL -(-994 R |polR|) +(-999 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-465)))) -(-995) +(-1000) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-996) +(-1001) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-997 S |Coef| |Expon| |Var|) +(-1002 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-998 |Coef| |Expon| |Var|) +(-1003 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-999) +(-1004) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-1000 S R E |VarSet| P) +(-1005 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-569)))) -(-1001 R E |VarSet| P) +(-1006 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4470 . T)) +((-4499 . T)) NIL -(-1002 R E V P) +(-1007 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-465)))) -(-1003 K) +(-1008 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-1004 |VarSet| E RC P) +(-1009 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-1005 R) +(-1010 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-1006 R1 R2) +(-1011 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1007 R) +(-1012 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1008 K) +(-1013 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1009 R E OV PPR) +(-1014 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1010 K R UP -1985) +(-1015 K R UP -2057) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1011 |vl| |nv|) +(-1016 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1012 R |Var| |Expon| |Dpoly|) +(-1017 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-318))))) -(-1013 R E V P TS) +(-1018 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1014) +(-1019) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1015 A B R S) +(-1020 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1016 A S) +(-1021 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1177)))) -(-1017 S) +((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1182)))) +(-1022 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1018 |n| K) +(-1023 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1019) +(-1024) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1020 S) +(-1025 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL -(-1021 S R) +(-1026 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-301)))) -(-1022 R) +((|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-301)))) +(-1027 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4463 |has| |#1| (-301)) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 |has| |#1| (-301)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1023 QR R QS S) +(-1028 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1024 R) +(-1029 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4463 |has| |#1| (-301)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-558)))) -(-1025 S) +((-4492 |has| |#1| (-301)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558)))) +(-1030 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1026 S) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1031 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1027) +(-1032) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1028 -1985 UP UPUP |radicnd| |n|) +(-1033 -2057 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4463 |has| (-420 |#2|) (-375)) (-4468 |has| (-420 |#2|) (-375)) (-4462 |has| (-420 |#2|) (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2811 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2811 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2811 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2811 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2811 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -654) (QUOTE (-577)))) (-2811 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) -(-1029 |bb|) +((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2867 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) +(-1034 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2811 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) -(-1030) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) +(-1035) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1031) +(-1036) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1032 RP) +(-1037 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1033 S) +(-1038 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1034 A S) +(-1039 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (QUOTE (-1125)))) -(-1035 S) +((|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-1130)))) +(-1040 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1036 S) +(-1041 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1037) +(-1042) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4463 . T) (-4468 . T) (-4462 . T) (-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4467 . T)) +((-4492 . T) (-4497 . T) (-4491 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4496 . T)) NIL -(-1038 R -1985) +(-1043 R -2057) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1039 R -1985) +(-1044 R -2057) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1040 -1985 UP) +(-1045 -2057 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1041 -1985 UP) +(-1046 -2057 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1042 S) +(-1047 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1043 F1 UP UPUP R F2) +(-1048 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1044) +(-1049) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1045 |Pol|) +(-1050 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1046 |Pol|) +(-1051 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1047) +(-1052) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1048) +(-1053) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1049 |TheField|) +(-1054 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4463 . T) (-4468 . T) (-4462 . T) (-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4467 . T)) -((-2811 (|HasCategory| (-420 (-577)) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1063) (QUOTE (-577))))) -(-1050 -1985 L) +((-4492 . T) (-4497 . T) (-4491 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4496 . T)) +((-2867 (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577))))) +(-1055 -2057 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1051 S) +(-1056 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1125)))) -(-1052 R E V P) +((|HasCategory| |#1| (QUOTE (-1130)))) +(-1057 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1053 R) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1058 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4472 "*")))) -(-1054 R) +((|HasAttribute| |#1| (QUOTE (-4501 "*")))) +(-1059 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-318)))) -(-1055 S) +(-1060 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1056) +(-1061) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1057 S) +(-1062 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1058 S) +(-1063 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1059 -1985 |Expon| |VarSet| |FPol| |LFPol|) +(-1064 -2057 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1060) +(-1065) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (QUOTE (-1201))) (LIST (QUOTE |:|) (QUOTE -2438) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-1201) (QUOTE (-865))) (|HasCategory| (-52) (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-102)))) -(-1061) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2727) (QUOTE (-52))))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102)))) +(-1066) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1062 A S) +(-1067 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1063 S) +(-1068 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1064 Q R) +(-1069 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1065) +(-1070) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1066 UP) +(-1071 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1067 R) +(-1072 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1068 R) +(-1073 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1069 T$) +(-1074 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1070 T$) +(-1075 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1071 R |ls|) +(-1076 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| (-796 |#1| (-882 |#2|)) (QUOTE (-1125))) (|HasCategory| (-796 |#1| (-882 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -796) (|devaluate| |#1|) (LIST (QUOTE -882) (|devaluate| |#2|)))))) (|HasCategory| (-796 |#1| (-882 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-796 |#1| (-882 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-882 |#2|) (QUOTE (-380))) (|HasCategory| (-796 |#1| (-882 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-796 |#1| (-882 |#2|)) (QUOTE (-102)))) -(-1072) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| (-801 |#1| (-887 |#2|)) (QUOTE (-1130))) (|HasCategory| (-801 |#1| (-887 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -801) (|devaluate| |#1|) (LIST (QUOTE -887) (|devaluate| |#2|)))))) (|HasCategory| (-801 |#1| (-887 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-801 |#1| (-887 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-887 |#2|) (QUOTE (-380))) (|HasCategory| (-801 |#1| (-887 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-801 |#1| (-887 |#2|)) (QUOTE (-102)))) +(-1077) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1073 S) +(-1078 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1074) +(-1079) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4467 . T)) +((-4496 . T)) NIL -(-1075 |xx| -1985) +(-1080 |xx| -2057) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1076 S) +(-1081 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1077 S |m| |n| R |Row| |Col|) +(-1082 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-569))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1078 |m| |n| R |Row| |Col|) +(-1083 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4470 . T) (-4465 . T) (-4464 . T)) +((-4499 . T) (-4494 . T) (-4493 . T)) NIL -(-1079 |m| |n| R) +(-1084 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4470 . T) (-4465 . T) (-4464 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880))))) -(-1080 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4499 . T) (-4494 . T) (-4493 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2867 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) +(-1085 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1081 R) +(-1086 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1082 S T$) +(-1087 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1125)))) -(-1083) +((|HasCategory| |#1| (QUOTE (-1130)))) +(-1088) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1084 S) +(-1089 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1085) +(-1090) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1086 |TheField| |ThePolDom|) +(-1091 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1087) +(-1092) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4458 . T) (-4462 . T) (-4457 . T) (-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4487 . T) (-4491 . T) (-4486 . T) (-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1088) +(-1093) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (QUOTE (-1201))) (LIST (QUOTE |:|) (QUOTE -2438) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-1125))) (|HasCategory| (-1201) (QUOTE (-865))) (|HasCategory| (-52) (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (QUOTE (-102)))) -(-1089 S R E V) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2727) (QUOTE (-52))))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102)))) +(-1094 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-1201))))) -(-1090 R E V) +((|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1022) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-1206))))) +(-1095 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-1091) +(-1096) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1092 S |TheField| |ThePols|) +(-1097 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1093 |TheField| |ThePols|) +(-1098 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1094 R E V P TS) +(-1099 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1095 S R E V P) +(-1100 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1096 R E V P) +(-1101 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-1097 R E V P TS) +(-1102 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1098) +(-1103) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1099) +(-1104) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1100 |f|) +(-1105 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1101 |Base| R -1985) +(-1106 |Base| R -2057) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1102 |Base| R -1985) +(-1107 |Base| R -2057) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1103 R |ls|) +(-1108 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1104 UP SAE UPA) +(-1109 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1105 R UP M) +(-1110 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4463 |has| |#1| (-375)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))))) -(-1106 UP SAE UPA) +((-4492 |has| |#1| (-375)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) +(-1111 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1107) +(-1112) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1108) +(-1113) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1109 S) +(-1114 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1110) +(-1115) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1111 R) +(-1116 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1112 R) +(-1117 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1113 S) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1118 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1114 R S) +(-1119 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-864)))) -(-1115) +((|HasCategory| |#1| (QUOTE (-869)))) +(-1120) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1116 R S) +(-1121 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1117 S) +(-1122 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1119 |#1|) (QUOTE (-1125)))) -(-1118 S) +((|HasCategory| (-1124 |#1|) (QUOTE (-1130)))) +(-1123 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1119 S) +(-1124 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1125)))) -(-1120 S L) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) +(-1125 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1121) +(-1126) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1122 A S) +(-1127 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1123 S) +(-1128 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4460 . T)) +((-4489 . T)) NIL -(-1124 S) +(-1129 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1125) +(-1130) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1126 |m| |n|) +(-1131 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1127 S) +(-1132 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4470 . T) (-4460 . T) (-4471 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-1128 |Str| |Sym| |Int| |Flt| |Expr|) +((-4499 . T) (-4489 . T) (-4500 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-1133 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1129) +(-1134) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1130 |Str| |Sym| |Int| |Flt| |Expr|) +(-1135 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1131 R FS) +(-1136 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1132 R E V P TS) +(-1137 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1133 R E V P TS) +(-1138 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1134 R E V P) +(-1139 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-1135) +(-1140) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1136 S) +(-1141 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1137) +(-1142) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1138 |dimtot| |dim1| S) +(-1143 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4464 |has| |#3| (-1074)) (-4465 |has| |#3| (-1074)) (-4467 |has| |#3| (-6 -4467)) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#3| (QUOTE (-375))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (-2811 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865)))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-380))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-1125)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-1125)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-239))) (-2811 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074))))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#3| (QUOTE (-1125))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-742)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-809)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-865)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2811 (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125)))) (|HasAttribute| |#3| (QUOTE -4467)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) -(-1139 R |x|) +((-4493 |has| |#3| (-1079)) (-4494 |has| |#3| (-1079)) (-4496 |has| |#3| (-6 -4496)) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#3| (QUOTE (-375))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2867 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2867 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) +(-1144 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-465)))) -(-1140) +(-1145) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1141 R -1985) +(-1146 R -2057) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1142 R) +(-1147 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1143) +(-1148) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1144) +(-1149) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1145) +(-1150) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4458 . T) (-4462 . T) (-4457 . T) (-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4487 . T) (-4491 . T) (-4486 . T) (-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1146 S) +(-1151 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4470 . T) (-4471 . T)) +((-4499 . T) (-4500 . T)) NIL -(-1147 S |ndim| R |Row| |Col|) +(-1152 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-375))) (|HasAttribute| |#3| (QUOTE (-4472 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1148 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-375))) (|HasAttribute| |#3| (QUOTE (-4501 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1153 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4470 . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4499 . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1149 R |Row| |Col| M) +(-1154 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1150 R |VarSet|) +(-1155 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1151 |Coef| |Var| SMP) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1156 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) -(-1152 R E V P) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) +(-1157 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-1153 UP -1985) +(-1158 UP -2057) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1154 R) +(-1159 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1155 R) +(-1160 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1156 R) +(-1161 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1157 S A) +(-1162 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-865)))) -(-1158 R) +((|HasCategory| |#1| (QUOTE (-870)))) +(-1163 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1159 R) +(-1164 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1160) +(-1165) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1161) +(-1166) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1162) +(-1167) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1163) +(-1168) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1164) +(-1169) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1165 V C) +(-1170 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1166 V C) +(-1171 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125))) (-2811 (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125)))) (-2811 (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -626) (QUOTE (-880)))) (-12 (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125))))) (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-102)))) -(-1167 |ndim| R) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))) (-2867 (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (-2867 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))))) (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102)))) +(-1172 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4467 . T) (-4459 |has| |#2| (-6 (-4472 "*"))) (-4470 . T) (-4464 . T) (-4465 . T)) -((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-375))) (-2811 (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1168 S) +((-4496 . T) (-4488 |has| |#2| (-6 (-4501 "*"))) (-4499 . T) (-4493 . T) (-4494 . T)) +((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1173 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1169) +(-1174) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-1170 R E V P TS) +(-1175 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1171 R E V P) +(-1176 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1172 S) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1177 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1173 A S) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1178 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1174 S) +(-1179 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1175 |Key| |Ent| |dent|) +(-1180 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125)))) -(-1176) +((-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130)))) +(-1181) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1177) +(-1182) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1178 |Coef|) +(-1183 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1179 S) +(-1184 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1180 A B) +(-1185 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1181 A B C) +(-1186 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1182 S) +(-1187 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4471 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1183) +((-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1188) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2811 (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-145) (QUOTE (-865))) (-2811 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) -(-1184 |Entry|) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2867 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2867 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +(-1189 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#1|)))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-1125))) (|HasCategory| (-1183) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (QUOTE (-102)))) -(-1185 A) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#1|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102)))) +(-1190 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-1186 |Coef|) +(-1191 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1187 |Coef|) +(-1192 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1188 R UP) +(-1193 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-318)))) -(-1189 |n| R) +(-1194 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1190 S1 S2) +(-1195 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1191) +(-1196) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1192 |Coef| |var| |cen|) +(-1197 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4472 "*") -2811 (-2700 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-836))) (|has| |#1| (-174)) (-2700 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-932)))) (-4463 -2811 (-2700 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-836))) (|has| |#1| (-569)) (-2700 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1137))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1193 R -1985) +(((-4501 "*") -2867 (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4492 -2867 (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1198 R -2057) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1194 R) +(-1199 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1195 R S) +(-1200 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1196 E OV R P) +(-1201 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1197 R) +(-1202 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1198 |Coef| |var| |cen|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1203 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) -(-1199 |Coef| |var| |cen|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +(-1204 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|)))) (|HasCategory| (-787) (QUOTE (-1137))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) -(-1200) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +(-1205) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1201) +(-1206) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1202 R) +(-1207 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1203 R) +(-1208 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| (-996) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasAttribute| |#1| (QUOTE -4468))) -(-1204) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| (-1001) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasAttribute| |#1| (QUOTE -4497))) +(-1209) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1205) +(-1210) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1206) +(-1211) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1207 N) +(-1212 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1208 N) -((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) +(-1213 N) +((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1209) +(-1214) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1210 R) +(-1215 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1211) +(-1216) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1212 S) +(-1217 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1213 S) +(-1218 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1214 |Key| |Entry|) +(-1219 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4470 . T) (-4471 . T)) -((-12 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4323) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2438) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2811 (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (QUOTE (-102)))) -(-1215 S) +((-4499 . T) (-4500 . T)) +((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102)))) +(-1220 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1216 R) +(-1221 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1217 S |Key| |Entry|) +(-1222 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1218 |Key| |Entry|) +(-1223 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4471 . T)) +((-4500 . T)) NIL -(-1219 |Key| |Entry|) +(-1224 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1220) +(-1225) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1221 S) +(-1226 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1222) +(-1227) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1223) +(-1228) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1224 R) +(-1229 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1225) +(-1230) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1226 S) +(-1231 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1227) +(-1232) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1228 S) +(-1233 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1229 S) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1234 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1230) +(-1235) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1231 R -1985) +(-1236 R -2057) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1232 R |Row| |Col| M) +(-1237 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1233 R -1985) +(-1238 R -2057) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -905) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -905) (|devaluate| |#1|))))) -(-1234 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -910) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -910) (|devaluate| |#1|))))) +(-1239 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-380)))) -(-1235 R E V P) +(-1240 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-1236 |Coef|) +(-1241 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) -(-1237 |Curve|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) +(-1242 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1238) +(-1243) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1239 S) +(-1244 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) -(-1240 -1985) +((|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) +(-1245 -2057) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1241) +(-1246) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1242) +(-1247) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1243 S) +(-1248 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-865)))) -(-1244) +((|HasCategory| |#1| (QUOTE (-870)))) +(-1249) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1245 S) +(-1250 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1246) +(-1251) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1247) +(-1252) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1248) +(-1253) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1249) +(-1254) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1250) +(-1255) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1251 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1256 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1252 |Coef|) +(-1257 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1253 S |Coef| UTS) +(-1258 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-375)))) -(-1254 |Coef| UTS) +(-1259 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1255 |Coef| UTS) +(-1260 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))) (-2811 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-148))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1137))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-932))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1256 |Coef| |var| |cen|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))) (-2867 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-148))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870))))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-937))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1261 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4472 "*") -2811 (-2700 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-836))) (|has| |#1| (-174)) (-2700 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-932)))) (-4463 -2811 (-2700 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-836))) (|has| |#1| (-569)) (-2700 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1137))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1257 ZP) +(((-4501 "*") -2867 (-2790 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2790 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-937)))) (-4492 -2867 (-2790 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2790 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1262 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1258 R S) +(-1263 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-864)))) -(-1259 S) +((|HasCategory| |#1| (QUOTE (-869)))) +(-1264 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1125)))) -(-1260 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) +(-1265 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1261 R Q UP) +(-1266 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1262 R UP) +(-1267 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1263 R UP) +(-1268 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1264 R U) +(-1269 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1265 |x| R) +(-1270 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4466 |has| |#2| (-375)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1266 R PR S PS) +(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4495 |has| |#2| (-375)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1271 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1267 S R) +(-1272 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1177)))) -(-1268 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1182)))) +(-1273 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-1269 S |Coef| |Expon|) +(-1274 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1137))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3603) (LIST (|devaluate| |#2|) (QUOTE (-1201)))))) -(-1270 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1142))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3709) (LIST (|devaluate| |#2|) (QUOTE (-1206)))))) +(-1275 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1271 RC P) +(-1276 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1272 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1277 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1273 |Coef|) +(-1278 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1274 S |Coef| ULS) +(-1279 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1275 |Coef| ULS) +(-1280 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1276 |Coef| ULS) +(-1281 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-1277 |Coef| |var| |cen|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) +(-1282 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2811 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) -(-1278 R FE |var| |cen|) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +(-1283 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4472 "*") |has| (-1277 |#2| |#3| |#4|) (-174)) (-4463 |has| (-1277 |#2| |#3| |#4|) (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-174))) (-2811 (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-375))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-465))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-569)))) -(-1279 A S) +(((-4501 "*") |has| (-1282 |#2| |#3| |#4|) (-174)) (-4492 |has| (-1282 |#2| |#3| |#4|) (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-174))) (-2867 (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-375))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-465))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-569)))) +(-1284 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4471))) -(-1280 S) +((|HasAttribute| |#1| (QUOTE -4500))) +(-1285 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1281 |Coef1| |Coef2| UTS1 UTS2) +(-1286 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1282 S |Coef|) +(-1287 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-1227))) (|HasSignature| |#2| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4129) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1201))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) -(-1283 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasSignature| |#2| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1869) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) +(-1288 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1284 |Coef| |var| |cen|) +(-1289 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|)))) (|HasCategory| (-787) (QUOTE (-1137))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasSignature| |#1| (LIST (QUOTE -3603) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasCategory| |#1| (QUOTE (-375))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4129) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -3206) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) -(-1285 |Coef| UTS) +(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +(-1290 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1286 -1985 UP L UTS) +(-1291 -2057 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-569)))) -(-1287) +(-1292) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1288 |sym|) +(-1293 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1289 S R) +(-1294 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1290 R) +((|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1295 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4471 . T) (-4470 . T)) +((-4500 . T) (-4499 . T)) NIL -(-1291 A B) +(-1296 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1292 R) +(-1297 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4471 . T) (-4470 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2811 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2811 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-1293) +((-4500 . T) (-4499 . T)) +((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-1298) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1294) +(-1299) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1295) +(-1300) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1296) +(-1301) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1297) +(-1302) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1298 A S) +(-1303 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1299 S) +(-1304 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4465 . T) (-4464 . T)) +((-4494 . T) (-4493 . T)) NIL -(-1300 R) +(-1305 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1301 K R UP -1985) +(-1306 K R UP -2057) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1302) +(-1307) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1303) +(-1308) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1304 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1309 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) +((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) -(-1305 R E V P) +(-1310 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4471 . T) (-4470 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1306 R) +((-4500 . T) (-4499 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1311 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4464 . T) (-4465 . T) (-4467 . T)) +((-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1307 |vl| R) +(-1312 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4467 . T) (-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4463))) -(-1308 R |VarSet| XPOLY) +((-4496 . T) (-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4492))) +(-1313 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1309 |vl| R) +(-1314 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) +((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-1310 S -1985) +(-1315 S -2057) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1311 -1985) +(-1316 -2057) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-1312 |VarSet| R) +(-1317 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -733) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasAttribute| |#2| (QUOTE -4463))) -(-1313 |vl| R) +((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -738) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasAttribute| |#2| (QUOTE -4492))) +(-1318 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) +((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-1314 R) +(-1319 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4463 |has| |#1| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4463))) -(-1315 R E) +((-4492 |has| |#1| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4492))) +(-1320 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4467 . T) (-4468 |has| |#1| (-6 -4468)) (-4463 |has| |#1| (-6 -4463)) (-4465 . T) (-4464 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4467)) (|HasAttribute| |#1| (QUOTE -4468)) (|HasAttribute| |#1| (QUOTE -4463))) -(-1316 |VarSet| R) +((-4496 . T) (-4497 |has| |#1| (-6 -4497)) (-4492 |has| |#1| (-6 -4492)) (-4494 . T) (-4493 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4496)) (|HasAttribute| |#1| (QUOTE -4497)) (|HasAttribute| |#1| (QUOTE -4492))) +(-1321 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4463))) -(-1317) +((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4492))) +(-1322) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1318 A) +(-1323 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1319 R |ls| |ls2|) +(-1324 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1320 R) +(-1325 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1321 |p|) +(-1326 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +(((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL NIL NIL @@ -5232,4 +5252,4 @@ NIL NIL NIL NIL -((-3 NIL 2296249 2296254 2296259 2296264) (-2 NIL 2296229 2296234 2296239 2296244) (-1 NIL 2296209 2296214 2296219 2296224) (0 NIL 2296189 2296194 2296199 2296204) (-1321 "ZMOD.spad" 2295998 2296011 2296127 2296184) (-1320 "ZLINDEP.spad" 2295064 2295075 2295988 2295993) (-1319 "ZDSOLVE.spad" 2285009 2285031 2295054 2295059) (-1318 "YSTREAM.spad" 2284504 2284515 2284999 2285004) (-1317 "YDIAGRAM.spad" 2284138 2284147 2284494 2284499) (-1316 "XRPOLY.spad" 2283358 2283378 2283994 2284063) (-1315 "XPR.spad" 2281153 2281166 2283076 2283175) (-1314 "XPOLY.spad" 2280708 2280719 2281009 2281078) (-1313 "XPOLYC.spad" 2280027 2280043 2280634 2280703) (-1312 "XPBWPOLY.spad" 2278464 2278484 2279807 2279876) (-1311 "XF.spad" 2276927 2276942 2278366 2278459) (-1310 "XF.spad" 2275370 2275387 2276811 2276816) (-1309 "XFALG.spad" 2272418 2272434 2275296 2275365) (-1308 "XEXPPKG.spad" 2271669 2271695 2272408 2272413) (-1307 "XDPOLY.spad" 2271283 2271299 2271525 2271594) (-1306 "XALG.spad" 2270943 2270954 2271239 2271278) (-1305 "WUTSET.spad" 2266746 2266763 2270553 2270580) (-1304 "WP.spad" 2265945 2265989 2266604 2266671) (-1303 "WHILEAST.spad" 2265743 2265752 2265935 2265940) (-1302 "WHEREAST.spad" 2265414 2265423 2265733 2265738) (-1301 "WFFINTBS.spad" 2263077 2263099 2265404 2265409) (-1300 "WEIER.spad" 2261299 2261310 2263067 2263072) (-1299 "VSPACE.spad" 2260972 2260983 2261267 2261294) (-1298 "VSPACE.spad" 2260665 2260678 2260962 2260967) (-1297 "VOID.spad" 2260342 2260351 2260655 2260660) (-1296 "VIEW.spad" 2258022 2258031 2260332 2260337) (-1295 "VIEWDEF.spad" 2253223 2253232 2258012 2258017) (-1294 "VIEW3D.spad" 2237184 2237193 2253213 2253218) (-1293 "VIEW2D.spad" 2225075 2225084 2237174 2237179) (-1292 "VECTOR.spad" 2223596 2223607 2223847 2223874) (-1291 "VECTOR2.spad" 2222235 2222248 2223586 2223591) (-1290 "VECTCAT.spad" 2220139 2220150 2222203 2222230) (-1289 "VECTCAT.spad" 2217850 2217863 2219916 2219921) (-1288 "VARIABLE.spad" 2217630 2217645 2217840 2217845) (-1287 "UTYPE.spad" 2217274 2217283 2217620 2217625) (-1286 "UTSODETL.spad" 2216569 2216593 2217230 2217235) (-1285 "UTSODE.spad" 2214785 2214805 2216559 2216564) (-1284 "UTS.spad" 2209732 2209760 2213252 2213349) (-1283 "UTSCAT.spad" 2207211 2207227 2209630 2209727) (-1282 "UTSCAT.spad" 2204334 2204352 2206755 2206760) (-1281 "UTS2.spad" 2203929 2203964 2204324 2204329) (-1280 "URAGG.spad" 2198602 2198613 2203919 2203924) (-1279 "URAGG.spad" 2193239 2193252 2198558 2198563) (-1278 "UPXSSING.spad" 2190884 2190910 2192320 2192453) (-1277 "UPXS.spad" 2188180 2188208 2189016 2189165) (-1276 "UPXSCONS.spad" 2185939 2185959 2186312 2186461) (-1275 "UPXSCCA.spad" 2184510 2184530 2185785 2185934) (-1274 "UPXSCCA.spad" 2183223 2183245 2184500 2184505) (-1273 "UPXSCAT.spad" 2181812 2181828 2183069 2183218) (-1272 "UPXS2.spad" 2181355 2181408 2181802 2181807) (-1271 "UPSQFREE.spad" 2179769 2179783 2181345 2181350) (-1270 "UPSCAT.spad" 2177556 2177580 2179667 2179764) (-1269 "UPSCAT.spad" 2175049 2175075 2177162 2177167) (-1268 "UPOLYC.spad" 2170089 2170100 2174891 2175044) (-1267 "UPOLYC.spad" 2165021 2165034 2169825 2169830) (-1266 "UPOLYC2.spad" 2164492 2164511 2165011 2165016) (-1265 "UP.spad" 2161598 2161613 2161985 2162138) (-1264 "UPMP.spad" 2160498 2160511 2161588 2161593) (-1263 "UPDIVP.spad" 2160063 2160077 2160488 2160493) (-1262 "UPDECOMP.spad" 2158308 2158322 2160053 2160058) (-1261 "UPCDEN.spad" 2157517 2157533 2158298 2158303) (-1260 "UP2.spad" 2156881 2156902 2157507 2157512) (-1259 "UNISEG.spad" 2156234 2156245 2156800 2156805) (-1258 "UNISEG2.spad" 2155731 2155744 2156190 2156195) (-1257 "UNIFACT.spad" 2154834 2154846 2155721 2155726) (-1256 "ULS.spad" 2144618 2144646 2145563 2145992) (-1255 "ULSCONS.spad" 2135752 2135772 2136122 2136271) (-1254 "ULSCCAT.spad" 2133489 2133509 2135598 2135747) (-1253 "ULSCCAT.spad" 2131334 2131356 2133445 2133450) (-1252 "ULSCAT.spad" 2129566 2129582 2131180 2131329) (-1251 "ULS2.spad" 2129080 2129133 2129556 2129561) (-1250 "UINT8.spad" 2128957 2128966 2129070 2129075) (-1249 "UINT64.spad" 2128833 2128842 2128947 2128952) (-1248 "UINT32.spad" 2128709 2128718 2128823 2128828) (-1247 "UINT16.spad" 2128585 2128594 2128699 2128704) (-1246 "UFD.spad" 2127650 2127659 2128511 2128580) (-1245 "UFD.spad" 2126777 2126788 2127640 2127645) (-1244 "UDVO.spad" 2125658 2125667 2126767 2126772) (-1243 "UDPO.spad" 2123151 2123162 2125614 2125619) (-1242 "TYPE.spad" 2123083 2123092 2123141 2123146) (-1241 "TYPEAST.spad" 2123002 2123011 2123073 2123078) (-1240 "TWOFACT.spad" 2121654 2121669 2122992 2122997) (-1239 "TUPLE.spad" 2121140 2121151 2121553 2121558) (-1238 "TUBETOOL.spad" 2118007 2118016 2121130 2121135) (-1237 "TUBE.spad" 2116654 2116671 2117997 2118002) (-1236 "TS.spad" 2115253 2115269 2116219 2116316) (-1235 "TSETCAT.spad" 2102380 2102397 2115221 2115248) (-1234 "TSETCAT.spad" 2089493 2089512 2102336 2102341) (-1233 "TRMANIP.spad" 2083859 2083876 2089199 2089204) (-1232 "TRIMAT.spad" 2082822 2082847 2083849 2083854) (-1231 "TRIGMNIP.spad" 2081349 2081366 2082812 2082817) (-1230 "TRIGCAT.spad" 2080861 2080870 2081339 2081344) (-1229 "TRIGCAT.spad" 2080371 2080382 2080851 2080856) (-1228 "TREE.spad" 2078829 2078840 2079861 2079888) (-1227 "TRANFUN.spad" 2078668 2078677 2078819 2078824) (-1226 "TRANFUN.spad" 2078505 2078516 2078658 2078663) (-1225 "TOPSP.spad" 2078179 2078188 2078495 2078500) (-1224 "TOOLSIGN.spad" 2077842 2077853 2078169 2078174) (-1223 "TEXTFILE.spad" 2076403 2076412 2077832 2077837) (-1222 "TEX.spad" 2073549 2073558 2076393 2076398) (-1221 "TEX1.spad" 2073105 2073116 2073539 2073544) (-1220 "TEMUTL.spad" 2072660 2072669 2073095 2073100) (-1219 "TBCMPPK.spad" 2070753 2070776 2072650 2072655) (-1218 "TBAGG.spad" 2069803 2069826 2070733 2070748) (-1217 "TBAGG.spad" 2068861 2068886 2069793 2069798) (-1216 "TANEXP.spad" 2068269 2068280 2068851 2068856) (-1215 "TALGOP.spad" 2067993 2068004 2068259 2068264) (-1214 "TABLE.spad" 2065962 2065985 2066232 2066259) (-1213 "TABLEAU.spad" 2065443 2065454 2065952 2065957) (-1212 "TABLBUMP.spad" 2062246 2062257 2065433 2065438) (-1211 "SYSTEM.spad" 2061474 2061483 2062236 2062241) (-1210 "SYSSOLP.spad" 2058957 2058968 2061464 2061469) (-1209 "SYSPTR.spad" 2058856 2058865 2058947 2058952) (-1208 "SYSNNI.spad" 2058038 2058049 2058846 2058851) (-1207 "SYSINT.spad" 2057442 2057453 2058028 2058033) (-1206 "SYNTAX.spad" 2053648 2053657 2057432 2057437) (-1205 "SYMTAB.spad" 2051716 2051725 2053638 2053643) (-1204 "SYMS.spad" 2047739 2047748 2051706 2051711) (-1203 "SYMPOLY.spad" 2046746 2046757 2046828 2046955) (-1202 "SYMFUNC.spad" 2046247 2046258 2046736 2046741) (-1201 "SYMBOL.spad" 2043750 2043759 2046237 2046242) (-1200 "SWITCH.spad" 2040521 2040530 2043740 2043745) (-1199 "SUTS.spad" 2037569 2037597 2038988 2039085) (-1198 "SUPXS.spad" 2034852 2034880 2035701 2035850) (-1197 "SUP.spad" 2031572 2031583 2032345 2032498) (-1196 "SUPFRACF.spad" 2030677 2030695 2031562 2031567) (-1195 "SUP2.spad" 2030069 2030082 2030667 2030672) (-1194 "SUMRF.spad" 2029043 2029054 2030059 2030064) (-1193 "SUMFS.spad" 2028680 2028697 2029033 2029038) (-1192 "SULS.spad" 2018451 2018479 2019409 2019838) (-1191 "SUCHTAST.spad" 2018220 2018229 2018441 2018446) (-1190 "SUCH.spad" 2017902 2017917 2018210 2018215) (-1189 "SUBSPACE.spad" 2010017 2010032 2017892 2017897) (-1188 "SUBRESP.spad" 2009187 2009201 2009973 2009978) (-1187 "STTF.spad" 2005286 2005302 2009177 2009182) (-1186 "STTFNC.spad" 2001754 2001770 2005276 2005281) (-1185 "STTAYLOR.spad" 1994389 1994400 2001635 2001640) (-1184 "STRTBL.spad" 1992440 1992457 1992589 1992616) (-1183 "STRING.spad" 1991227 1991236 1991448 1991475) (-1182 "STREAM.spad" 1988028 1988039 1990635 1990650) (-1181 "STREAM3.spad" 1987601 1987616 1988018 1988023) (-1180 "STREAM2.spad" 1986729 1986742 1987591 1987596) (-1179 "STREAM1.spad" 1986435 1986446 1986719 1986724) (-1178 "STINPROD.spad" 1985371 1985387 1986425 1986430) (-1177 "STEP.spad" 1984572 1984581 1985361 1985366) (-1176 "STEPAST.spad" 1983806 1983815 1984562 1984567) (-1175 "STBL.spad" 1981890 1981918 1982057 1982072) (-1174 "STAGG.spad" 1980965 1980976 1981880 1981885) (-1173 "STAGG.spad" 1980038 1980051 1980955 1980960) (-1172 "STACK.spad" 1979278 1979289 1979528 1979555) (-1171 "SREGSET.spad" 1976946 1976963 1978888 1978915) (-1170 "SRDCMPK.spad" 1975507 1975527 1976936 1976941) (-1169 "SRAGG.spad" 1970650 1970659 1975475 1975502) (-1168 "SRAGG.spad" 1965813 1965824 1970640 1970645) (-1167 "SQMATRIX.spad" 1963356 1963374 1964272 1964359) (-1166 "SPLTREE.spad" 1957752 1957765 1962636 1962663) (-1165 "SPLNODE.spad" 1954340 1954353 1957742 1957747) (-1164 "SPFCAT.spad" 1953149 1953158 1954330 1954335) (-1163 "SPECOUT.spad" 1951701 1951710 1953139 1953144) (-1162 "SPADXPT.spad" 1943296 1943305 1951691 1951696) (-1161 "spad-parser.spad" 1942761 1942770 1943286 1943291) (-1160 "SPADAST.spad" 1942462 1942471 1942751 1942756) (-1159 "SPACEC.spad" 1926661 1926672 1942452 1942457) (-1158 "SPACE3.spad" 1926437 1926448 1926651 1926656) (-1157 "SORTPAK.spad" 1925986 1925999 1926393 1926398) (-1156 "SOLVETRA.spad" 1923749 1923760 1925976 1925981) (-1155 "SOLVESER.spad" 1922277 1922288 1923739 1923744) (-1154 "SOLVERAD.spad" 1918303 1918314 1922267 1922272) (-1153 "SOLVEFOR.spad" 1916765 1916783 1918293 1918298) (-1152 "SNTSCAT.spad" 1916365 1916382 1916733 1916760) (-1151 "SMTS.spad" 1914637 1914663 1915930 1916027) (-1150 "SMP.spad" 1912112 1912132 1912502 1912629) (-1149 "SMITH.spad" 1910957 1910982 1912102 1912107) (-1148 "SMATCAT.spad" 1909067 1909097 1910901 1910952) (-1147 "SMATCAT.spad" 1907109 1907141 1908945 1908950) (-1146 "SKAGG.spad" 1906072 1906083 1907077 1907104) (-1145 "SINT.spad" 1905012 1905021 1905938 1906067) (-1144 "SIMPAN.spad" 1904740 1904749 1905002 1905007) (-1143 "SIG.spad" 1904070 1904079 1904730 1904735) (-1142 "SIGNRF.spad" 1903188 1903199 1904060 1904065) (-1141 "SIGNEF.spad" 1902467 1902484 1903178 1903183) (-1140 "SIGAST.spad" 1901852 1901861 1902457 1902462) (-1139 "SHP.spad" 1899780 1899795 1901808 1901813) (-1138 "SHDP.spad" 1887458 1887485 1887967 1888066) (-1137 "SGROUP.spad" 1887066 1887075 1887448 1887453) (-1136 "SGROUP.spad" 1886672 1886683 1887056 1887061) (-1135 "SGCF.spad" 1879811 1879820 1886662 1886667) (-1134 "SFRTCAT.spad" 1878741 1878758 1879779 1879806) (-1133 "SFRGCD.spad" 1877804 1877824 1878731 1878736) (-1132 "SFQCMPK.spad" 1872441 1872461 1877794 1877799) (-1131 "SFORT.spad" 1871880 1871894 1872431 1872436) (-1130 "SEXOF.spad" 1871723 1871763 1871870 1871875) (-1129 "SEX.spad" 1871615 1871624 1871713 1871718) (-1128 "SEXCAT.spad" 1869387 1869427 1871605 1871610) (-1127 "SET.spad" 1867675 1867686 1868772 1868811) (-1126 "SETMN.spad" 1866125 1866142 1867665 1867670) (-1125 "SETCAT.spad" 1865610 1865619 1866115 1866120) (-1124 "SETCAT.spad" 1865093 1865104 1865600 1865605) (-1123 "SETAGG.spad" 1861642 1861653 1865073 1865088) (-1122 "SETAGG.spad" 1858199 1858212 1861632 1861637) (-1121 "SEQAST.spad" 1857902 1857911 1858189 1858194) (-1120 "SEGXCAT.spad" 1857058 1857071 1857892 1857897) (-1119 "SEG.spad" 1856871 1856882 1856977 1856982) (-1118 "SEGCAT.spad" 1855796 1855807 1856861 1856866) (-1117 "SEGBIND.spad" 1855554 1855565 1855743 1855748) (-1116 "SEGBIND2.spad" 1855252 1855265 1855544 1855549) (-1115 "SEGAST.spad" 1854966 1854975 1855242 1855247) (-1114 "SEG2.spad" 1854401 1854414 1854922 1854927) (-1113 "SDVAR.spad" 1853677 1853688 1854391 1854396) (-1112 "SDPOL.spad" 1851010 1851021 1851301 1851428) (-1111 "SCPKG.spad" 1849099 1849110 1851000 1851005) (-1110 "SCOPE.spad" 1848252 1848261 1849089 1849094) (-1109 "SCACHE.spad" 1846948 1846959 1848242 1848247) (-1108 "SASTCAT.spad" 1846857 1846866 1846938 1846943) (-1107 "SAOS.spad" 1846729 1846738 1846847 1846852) (-1106 "SAERFFC.spad" 1846442 1846462 1846719 1846724) (-1105 "SAE.spad" 1843912 1843928 1844523 1844658) (-1104 "SAEFACT.spad" 1843613 1843633 1843902 1843907) (-1103 "RURPK.spad" 1841272 1841288 1843603 1843608) (-1102 "RULESET.spad" 1840725 1840749 1841262 1841267) (-1101 "RULE.spad" 1838965 1838989 1840715 1840720) (-1100 "RULECOLD.spad" 1838817 1838830 1838955 1838960) (-1099 "RTVALUE.spad" 1838552 1838561 1838807 1838812) (-1098 "RSTRCAST.spad" 1838269 1838278 1838542 1838547) (-1097 "RSETGCD.spad" 1834647 1834667 1838259 1838264) (-1096 "RSETCAT.spad" 1824583 1824600 1834615 1834642) (-1095 "RSETCAT.spad" 1814539 1814558 1824573 1824578) (-1094 "RSDCMPK.spad" 1812991 1813011 1814529 1814534) (-1093 "RRCC.spad" 1811375 1811405 1812981 1812986) (-1092 "RRCC.spad" 1809757 1809789 1811365 1811370) (-1091 "RPTAST.spad" 1809459 1809468 1809747 1809752) (-1090 "RPOLCAT.spad" 1788819 1788834 1809327 1809454) (-1089 "RPOLCAT.spad" 1767892 1767909 1788402 1788407) (-1088 "ROUTINE.spad" 1763313 1763322 1766077 1766104) (-1087 "ROMAN.spad" 1762641 1762650 1763179 1763308) (-1086 "ROIRC.spad" 1761721 1761753 1762631 1762636) (-1085 "RNS.spad" 1760624 1760633 1761623 1761716) (-1084 "RNS.spad" 1759613 1759624 1760614 1760619) (-1083 "RNG.spad" 1759348 1759357 1759603 1759608) (-1082 "RNGBIND.spad" 1758508 1758522 1759303 1759308) (-1081 "RMODULE.spad" 1758273 1758284 1758498 1758503) (-1080 "RMCAT2.spad" 1757693 1757750 1758263 1758268) (-1079 "RMATRIX.spad" 1756481 1756500 1756824 1756863) (-1078 "RMATCAT.spad" 1752060 1752091 1756437 1756476) (-1077 "RMATCAT.spad" 1747529 1747562 1751908 1751913) (-1076 "RLINSET.spad" 1747233 1747244 1747519 1747524) (-1075 "RINTERP.spad" 1747121 1747141 1747223 1747228) (-1074 "RING.spad" 1746591 1746600 1747101 1747116) (-1073 "RING.spad" 1746069 1746080 1746581 1746586) (-1072 "RIDIST.spad" 1745461 1745470 1746059 1746064) (-1071 "RGCHAIN.spad" 1743989 1744005 1744891 1744918) (-1070 "RGBCSPC.spad" 1743770 1743782 1743979 1743984) (-1069 "RGBCMDL.spad" 1743300 1743312 1743760 1743765) (-1068 "RF.spad" 1740942 1740953 1743290 1743295) (-1067 "RFFACTOR.spad" 1740404 1740415 1740932 1740937) (-1066 "RFFACT.spad" 1740139 1740151 1740394 1740399) (-1065 "RFDIST.spad" 1739135 1739144 1740129 1740134) (-1064 "RETSOL.spad" 1738554 1738567 1739125 1739130) (-1063 "RETRACT.spad" 1737982 1737993 1738544 1738549) (-1062 "RETRACT.spad" 1737408 1737421 1737972 1737977) (-1061 "RETAST.spad" 1737220 1737229 1737398 1737403) (-1060 "RESULT.spad" 1734818 1734827 1735405 1735432) (-1059 "RESRING.spad" 1734165 1734212 1734756 1734813) (-1058 "RESLATC.spad" 1733489 1733500 1734155 1734160) (-1057 "REPSQ.spad" 1733220 1733231 1733479 1733484) (-1056 "REP.spad" 1730774 1730783 1733210 1733215) (-1055 "REPDB.spad" 1730481 1730492 1730764 1730769) (-1054 "REP2.spad" 1720139 1720150 1730323 1730328) (-1053 "REP1.spad" 1714335 1714346 1720089 1720094) (-1052 "REGSET.spad" 1712096 1712113 1713945 1713972) (-1051 "REF.spad" 1711431 1711442 1712051 1712056) (-1050 "REDORDER.spad" 1710637 1710654 1711421 1711426) (-1049 "RECLOS.spad" 1709420 1709440 1710124 1710217) (-1048 "REALSOLV.spad" 1708560 1708569 1709410 1709415) (-1047 "REAL.spad" 1708432 1708441 1708550 1708555) (-1046 "REAL0Q.spad" 1705730 1705745 1708422 1708427) (-1045 "REAL0.spad" 1702574 1702589 1705720 1705725) (-1044 "RDUCEAST.spad" 1702295 1702304 1702564 1702569) (-1043 "RDIV.spad" 1701950 1701975 1702285 1702290) (-1042 "RDIST.spad" 1701517 1701528 1701940 1701945) (-1041 "RDETRS.spad" 1700381 1700399 1701507 1701512) (-1040 "RDETR.spad" 1698520 1698538 1700371 1700376) (-1039 "RDEEFS.spad" 1697619 1697636 1698510 1698515) (-1038 "RDEEF.spad" 1696629 1696646 1697609 1697614) (-1037 "RCFIELD.spad" 1693815 1693824 1696531 1696624) (-1036 "RCFIELD.spad" 1691087 1691098 1693805 1693810) (-1035 "RCAGG.spad" 1689015 1689026 1691077 1691082) (-1034 "RCAGG.spad" 1686870 1686883 1688934 1688939) (-1033 "RATRET.spad" 1686230 1686241 1686860 1686865) (-1032 "RATFACT.spad" 1685922 1685934 1686220 1686225) (-1031 "RANDSRC.spad" 1685241 1685250 1685912 1685917) (-1030 "RADUTIL.spad" 1684997 1685006 1685231 1685236) (-1029 "RADIX.spad" 1681821 1681835 1683367 1683460) (-1028 "RADFF.spad" 1679560 1679597 1679679 1679835) (-1027 "RADCAT.spad" 1679155 1679164 1679550 1679555) (-1026 "RADCAT.spad" 1678748 1678759 1679145 1679150) (-1025 "QUEUE.spad" 1677979 1677990 1678238 1678265) (-1024 "QUAT.spad" 1676467 1676478 1676810 1676875) (-1023 "QUATCT2.spad" 1676087 1676106 1676457 1676462) (-1022 "QUATCAT.spad" 1674257 1674268 1676017 1676082) (-1021 "QUATCAT.spad" 1672178 1672191 1673940 1673945) (-1020 "QUAGG.spad" 1671005 1671016 1672146 1672173) (-1019 "QQUTAST.spad" 1670773 1670782 1670995 1671000) (-1018 "QFORM.spad" 1670391 1670406 1670763 1670768) (-1017 "QFCAT.spad" 1669093 1669104 1670293 1670386) (-1016 "QFCAT.spad" 1667386 1667399 1668588 1668593) (-1015 "QFCAT2.spad" 1667078 1667095 1667376 1667381) (-1014 "QEQUAT.spad" 1666636 1666645 1667068 1667073) (-1013 "QCMPACK.spad" 1661382 1661402 1666626 1666631) (-1012 "QALGSET.spad" 1657460 1657493 1661296 1661301) (-1011 "QALGSET2.spad" 1655455 1655474 1657450 1657455) (-1010 "PWFFINTB.spad" 1652870 1652892 1655445 1655450) (-1009 "PUSHVAR.spad" 1652208 1652228 1652860 1652865) (-1008 "PTRANFN.spad" 1648335 1648346 1652198 1652203) (-1007 "PTPACK.spad" 1645422 1645433 1648325 1648330) (-1006 "PTFUNC2.spad" 1645244 1645259 1645412 1645417) (-1005 "PTCAT.spad" 1644498 1644509 1645212 1645239) (-1004 "PSQFR.spad" 1643804 1643829 1644488 1644493) (-1003 "PSEUDLIN.spad" 1642689 1642700 1643794 1643799) (-1002 "PSETPK.spad" 1628121 1628138 1642567 1642572) (-1001 "PSETCAT.spad" 1622040 1622064 1628101 1628116) (-1000 "PSETCAT.spad" 1615933 1615959 1621996 1622001) (-999 "PSCURVE.spad" 1614916 1614924 1615923 1615928) (-998 "PSCAT.spad" 1613699 1613728 1614814 1614911) (-997 "PSCAT.spad" 1612572 1612603 1613689 1613694) (-996 "PRTITION.spad" 1611270 1611278 1612562 1612567) (-995 "PRTDAST.spad" 1610989 1610997 1611260 1611265) (-994 "PRS.spad" 1600551 1600568 1610945 1610950) (-993 "PRQAGG.spad" 1599986 1599996 1600519 1600546) (-992 "PROPLOG.spad" 1599558 1599566 1599976 1599981) (-991 "PROPFUN2.spad" 1599181 1599194 1599548 1599553) (-990 "PROPFUN1.spad" 1598579 1598590 1599171 1599176) (-989 "PROPFRML.spad" 1597147 1597158 1598569 1598574) (-988 "PROPERTY.spad" 1596635 1596643 1597137 1597142) (-987 "PRODUCT.spad" 1594317 1594329 1594601 1594656) (-986 "PR.spad" 1592709 1592721 1593408 1593535) (-985 "PRINT.spad" 1592461 1592469 1592699 1592704) (-984 "PRIMES.spad" 1590714 1590724 1592451 1592456) (-983 "PRIMELT.spad" 1588795 1588809 1590704 1590709) (-982 "PRIMCAT.spad" 1588422 1588430 1588785 1588790) (-981 "PRIMARR.spad" 1587274 1587284 1587452 1587479) (-980 "PRIMARR2.spad" 1586041 1586053 1587264 1587269) (-979 "PREASSOC.spad" 1585423 1585435 1586031 1586036) (-978 "PPCURVE.spad" 1584560 1584568 1585413 1585418) (-977 "PORTNUM.spad" 1584335 1584343 1584550 1584555) (-976 "POLYROOT.spad" 1583184 1583206 1584291 1584296) (-975 "POLY.spad" 1580519 1580529 1581034 1581161) (-974 "POLYLIFT.spad" 1579784 1579807 1580509 1580514) (-973 "POLYCATQ.spad" 1577902 1577924 1579774 1579779) (-972 "POLYCAT.spad" 1571372 1571393 1577770 1577897) (-971 "POLYCAT.spad" 1564180 1564203 1570580 1570585) (-970 "POLY2UP.spad" 1563632 1563646 1564170 1564175) (-969 "POLY2.spad" 1563229 1563241 1563622 1563627) (-968 "POLUTIL.spad" 1562170 1562199 1563185 1563190) (-967 "POLTOPOL.spad" 1560918 1560933 1562160 1562165) (-966 "POINT.spad" 1559603 1559613 1559690 1559717) (-965 "PNTHEORY.spad" 1556305 1556313 1559593 1559598) (-964 "PMTOOLS.spad" 1555080 1555094 1556295 1556300) (-963 "PMSYM.spad" 1554629 1554639 1555070 1555075) (-962 "PMQFCAT.spad" 1554220 1554234 1554619 1554624) (-961 "PMPRED.spad" 1553699 1553713 1554210 1554215) (-960 "PMPREDFS.spad" 1553153 1553175 1553689 1553694) (-959 "PMPLCAT.spad" 1552233 1552251 1553085 1553090) (-958 "PMLSAGG.spad" 1551818 1551832 1552223 1552228) (-957 "PMKERNEL.spad" 1551397 1551409 1551808 1551813) (-956 "PMINS.spad" 1550977 1550987 1551387 1551392) (-955 "PMFS.spad" 1550554 1550572 1550967 1550972) (-954 "PMDOWN.spad" 1549844 1549858 1550544 1550549) (-953 "PMASS.spad" 1548854 1548862 1549834 1549839) (-952 "PMASSFS.spad" 1547821 1547837 1548844 1548849) (-951 "PLOTTOOL.spad" 1547601 1547609 1547811 1547816) (-950 "PLOT.spad" 1542524 1542532 1547591 1547596) (-949 "PLOT3D.spad" 1538988 1538996 1542514 1542519) (-948 "PLOT1.spad" 1538145 1538155 1538978 1538983) (-947 "PLEQN.spad" 1525435 1525462 1538135 1538140) (-946 "PINTERP.spad" 1525057 1525076 1525425 1525430) (-945 "PINTERPA.spad" 1524841 1524857 1525047 1525052) (-944 "PI.spad" 1524450 1524458 1524815 1524836) (-943 "PID.spad" 1523420 1523428 1524376 1524445) (-942 "PICOERCE.spad" 1523077 1523087 1523410 1523415) (-941 "PGROEB.spad" 1521678 1521692 1523067 1523072) (-940 "PGE.spad" 1513295 1513303 1521668 1521673) (-939 "PGCD.spad" 1512185 1512202 1513285 1513290) (-938 "PFRPAC.spad" 1511334 1511344 1512175 1512180) (-937 "PFR.spad" 1507997 1508007 1511236 1511329) (-936 "PFOTOOLS.spad" 1507255 1507271 1507987 1507992) (-935 "PFOQ.spad" 1506625 1506643 1507245 1507250) (-934 "PFO.spad" 1506044 1506071 1506615 1506620) (-933 "PF.spad" 1505618 1505630 1505849 1505942) (-932 "PFECAT.spad" 1503300 1503308 1505544 1505613) (-931 "PFECAT.spad" 1501010 1501020 1503256 1503261) (-930 "PFBRU.spad" 1498898 1498910 1501000 1501005) (-929 "PFBR.spad" 1496458 1496481 1498888 1498893) (-928 "PERM.spad" 1492265 1492275 1496288 1496303) (-927 "PERMGRP.spad" 1487035 1487045 1492255 1492260) (-926 "PERMCAT.spad" 1485696 1485706 1487015 1487030) (-925 "PERMAN.spad" 1484228 1484242 1485686 1485691) (-924 "PENDTREE.spad" 1483452 1483462 1483740 1483745) (-923 "PDSPC.spad" 1482265 1482275 1483442 1483447) (-922 "PDSPC.spad" 1481076 1481088 1482255 1482260) (-921 "PDRING.spad" 1480918 1480928 1481056 1481071) (-920 "PDMOD.spad" 1480734 1480746 1480886 1480913) (-919 "PDEPROB.spad" 1479749 1479757 1480724 1480729) (-918 "PDEPACK.spad" 1473789 1473797 1479739 1479744) (-917 "PDECOMP.spad" 1473259 1473276 1473779 1473784) (-916 "PDECAT.spad" 1471615 1471623 1473249 1473254) (-915 "PDDOM.spad" 1471053 1471066 1471605 1471610) (-914 "PDDOM.spad" 1470489 1470504 1471043 1471048) (-913 "PCOMP.spad" 1470342 1470355 1470479 1470484) (-912 "PBWLB.spad" 1468930 1468947 1470332 1470337) (-911 "PATTERN.spad" 1463469 1463479 1468920 1468925) (-910 "PATTERN2.spad" 1463207 1463219 1463459 1463464) (-909 "PATTERN1.spad" 1461543 1461559 1463197 1463202) (-908 "PATRES.spad" 1459118 1459130 1461533 1461538) (-907 "PATRES2.spad" 1458790 1458804 1459108 1459113) (-906 "PATMATCH.spad" 1456987 1457018 1458498 1458503) (-905 "PATMAB.spad" 1456416 1456426 1456977 1456982) (-904 "PATLRES.spad" 1455502 1455516 1456406 1456411) (-903 "PATAB.spad" 1455266 1455276 1455492 1455497) (-902 "PARTPERM.spad" 1453274 1453282 1455256 1455261) (-901 "PARSURF.spad" 1452708 1452736 1453264 1453269) (-900 "PARSU2.spad" 1452505 1452521 1452698 1452703) (-899 "script-parser.spad" 1452025 1452033 1452495 1452500) (-898 "PARSCURV.spad" 1451459 1451487 1452015 1452020) (-897 "PARSC2.spad" 1451250 1451266 1451449 1451454) (-896 "PARPCURV.spad" 1450712 1450740 1451240 1451245) (-895 "PARPC2.spad" 1450503 1450519 1450702 1450707) (-894 "PARAMAST.spad" 1449631 1449639 1450493 1450498) (-893 "PAN2EXPR.spad" 1449043 1449051 1449621 1449626) (-892 "PALETTE.spad" 1448013 1448021 1449033 1449038) (-891 "PAIR.spad" 1447000 1447013 1447601 1447606) (-890 "PADICRC.spad" 1444241 1444259 1445412 1445505) (-889 "PADICRAT.spad" 1442149 1442161 1442370 1442463) (-888 "PADIC.spad" 1441844 1441856 1442075 1442144) (-887 "PADICCT.spad" 1440393 1440405 1441770 1441839) (-886 "PADEPAC.spad" 1439082 1439101 1440383 1440388) (-885 "PADE.spad" 1437834 1437850 1439072 1439077) (-884 "OWP.spad" 1437074 1437104 1437692 1437759) (-883 "OVERSET.spad" 1436647 1436655 1437064 1437069) (-882 "OVAR.spad" 1436428 1436451 1436637 1436642) (-881 "OUT.spad" 1435514 1435522 1436418 1436423) (-880 "OUTFORM.spad" 1424906 1424914 1435504 1435509) (-879 "OUTBFILE.spad" 1424324 1424332 1424896 1424901) (-878 "OUTBCON.spad" 1423330 1423338 1424314 1424319) (-877 "OUTBCON.spad" 1422334 1422344 1423320 1423325) (-876 "OSI.spad" 1421809 1421817 1422324 1422329) (-875 "OSGROUP.spad" 1421727 1421735 1421799 1421804) (-874 "ORTHPOL.spad" 1420212 1420222 1421644 1421649) (-873 "OREUP.spad" 1419665 1419693 1419892 1419931) (-872 "ORESUP.spad" 1418966 1418990 1419345 1419384) (-871 "OREPCTO.spad" 1416823 1416835 1418886 1418891) (-870 "OREPCAT.spad" 1410970 1410980 1416779 1416818) (-869 "OREPCAT.spad" 1405007 1405019 1410818 1410823) (-868 "ORDTYPE.spad" 1404244 1404252 1404997 1405002) (-867 "ORDTYPE.spad" 1403479 1403489 1404234 1404239) (-866 "ORDSTRCT.spad" 1403252 1403267 1403415 1403420) (-865 "ORDSET.spad" 1402952 1402960 1403242 1403247) (-864 "ORDRING.spad" 1402342 1402350 1402932 1402947) (-863 "ORDRING.spad" 1401740 1401750 1402332 1402337) (-862 "ORDMON.spad" 1401595 1401603 1401730 1401735) (-861 "ORDFUNS.spad" 1400727 1400743 1401585 1401590) (-860 "ORDFIN.spad" 1400547 1400555 1400717 1400722) (-859 "ORDCOMP.spad" 1399012 1399022 1400094 1400123) (-858 "ORDCOMP2.spad" 1398305 1398317 1399002 1399007) (-857 "OPTPROB.spad" 1396943 1396951 1398295 1398300) (-856 "OPTPACK.spad" 1389352 1389360 1396933 1396938) (-855 "OPTCAT.spad" 1387031 1387039 1389342 1389347) (-854 "OPSIG.spad" 1386685 1386693 1387021 1387026) (-853 "OPQUERY.spad" 1386234 1386242 1386675 1386680) (-852 "OP.spad" 1385976 1385986 1386056 1386123) (-851 "OPERCAT.spad" 1385442 1385452 1385966 1385971) (-850 "OPERCAT.spad" 1384906 1384918 1385432 1385437) (-849 "ONECOMP.spad" 1383651 1383661 1384453 1384482) (-848 "ONECOMP2.spad" 1383075 1383087 1383641 1383646) (-847 "OMSERVER.spad" 1382081 1382089 1383065 1383070) (-846 "OMSAGG.spad" 1381869 1381879 1382037 1382076) (-845 "OMPKG.spad" 1380485 1380493 1381859 1381864) (-844 "OM.spad" 1379458 1379466 1380475 1380480) (-843 "OMLO.spad" 1378883 1378895 1379344 1379383) (-842 "OMEXPR.spad" 1378717 1378727 1378873 1378878) (-841 "OMERR.spad" 1378262 1378270 1378707 1378712) (-840 "OMERRK.spad" 1377296 1377304 1378252 1378257) (-839 "OMENC.spad" 1376640 1376648 1377286 1377291) (-838 "OMDEV.spad" 1370949 1370957 1376630 1376635) (-837 "OMCONN.spad" 1370358 1370366 1370939 1370944) (-836 "OINTDOM.spad" 1370121 1370129 1370284 1370353) (-835 "OFMONOID.spad" 1368244 1368254 1370077 1370082) (-834 "ODVAR.spad" 1367505 1367515 1368234 1368239) (-833 "ODR.spad" 1367149 1367175 1367317 1367466) (-832 "ODPOL.spad" 1364438 1364448 1364778 1364905) (-831 "ODP.spad" 1352252 1352272 1352625 1352724) (-830 "ODETOOLS.spad" 1350901 1350920 1352242 1352247) (-829 "ODESYS.spad" 1348595 1348612 1350891 1350896) (-828 "ODERTRIC.spad" 1344604 1344621 1348552 1348557) (-827 "ODERED.spad" 1344003 1344027 1344594 1344599) (-826 "ODERAT.spad" 1341618 1341635 1343993 1343998) (-825 "ODEPRRIC.spad" 1338655 1338677 1341608 1341613) (-824 "ODEPROB.spad" 1337912 1337920 1338645 1338650) (-823 "ODEPRIM.spad" 1335246 1335268 1337902 1337907) (-822 "ODEPAL.spad" 1334632 1334656 1335236 1335241) (-821 "ODEPACK.spad" 1321298 1321306 1334622 1334627) (-820 "ODEINT.spad" 1320733 1320749 1321288 1321293) (-819 "ODEIFTBL.spad" 1318128 1318136 1320723 1320728) (-818 "ODEEF.spad" 1313619 1313635 1318118 1318123) (-817 "ODECONST.spad" 1313156 1313174 1313609 1313614) (-816 "ODECAT.spad" 1311754 1311762 1313146 1313151) (-815 "OCT.spad" 1309890 1309900 1310604 1310643) (-814 "OCTCT2.spad" 1309536 1309557 1309880 1309885) (-813 "OC.spad" 1307332 1307342 1309492 1309531) (-812 "OC.spad" 1304853 1304865 1307015 1307020) (-811 "OCAMON.spad" 1304701 1304709 1304843 1304848) (-810 "OASGP.spad" 1304516 1304524 1304691 1304696) (-809 "OAMONS.spad" 1304038 1304046 1304506 1304511) (-808 "OAMON.spad" 1303899 1303907 1304028 1304033) (-807 "OAGROUP.spad" 1303761 1303769 1303889 1303894) (-806 "NUMTUBE.spad" 1303352 1303368 1303751 1303756) (-805 "NUMQUAD.spad" 1291328 1291336 1303342 1303347) (-804 "NUMODE.spad" 1282682 1282690 1291318 1291323) (-803 "NUMINT.spad" 1280248 1280256 1282672 1282677) (-802 "NUMFMT.spad" 1279088 1279096 1280238 1280243) (-801 "NUMERIC.spad" 1271202 1271212 1278893 1278898) (-800 "NTSCAT.spad" 1269710 1269726 1271170 1271197) (-799 "NTPOLFN.spad" 1269261 1269271 1269627 1269632) (-798 "NSUP.spad" 1262214 1262224 1266754 1266907) (-797 "NSUP2.spad" 1261606 1261618 1262204 1262209) (-796 "NSMP.spad" 1257836 1257855 1258144 1258271) (-795 "NREP.spad" 1256214 1256228 1257826 1257831) (-794 "NPCOEF.spad" 1255460 1255480 1256204 1256209) (-793 "NORMRETR.spad" 1255058 1255097 1255450 1255455) (-792 "NORMPK.spad" 1252960 1252979 1255048 1255053) (-791 "NORMMA.spad" 1252648 1252674 1252950 1252955) (-790 "NONE.spad" 1252389 1252397 1252638 1252643) (-789 "NONE1.spad" 1252065 1252075 1252379 1252384) (-788 "NODE1.spad" 1251552 1251568 1252055 1252060) (-787 "NNI.spad" 1250447 1250455 1251526 1251547) (-786 "NLINSOL.spad" 1249073 1249083 1250437 1250442) (-785 "NIPROB.spad" 1247614 1247622 1249063 1249068) (-784 "NFINTBAS.spad" 1245174 1245191 1247604 1247609) (-783 "NETCLT.spad" 1245148 1245159 1245164 1245169) (-782 "NCODIV.spad" 1243364 1243380 1245138 1245143) (-781 "NCNTFRAC.spad" 1243006 1243020 1243354 1243359) (-780 "NCEP.spad" 1241172 1241186 1242996 1243001) (-779 "NASRING.spad" 1240768 1240776 1241162 1241167) (-778 "NASRING.spad" 1240362 1240372 1240758 1240763) (-777 "NARNG.spad" 1239714 1239722 1240352 1240357) (-776 "NARNG.spad" 1239064 1239074 1239704 1239709) (-775 "NAGSP.spad" 1238141 1238149 1239054 1239059) (-774 "NAGS.spad" 1227802 1227810 1238131 1238136) (-773 "NAGF07.spad" 1226233 1226241 1227792 1227797) (-772 "NAGF04.spad" 1220635 1220643 1226223 1226228) (-771 "NAGF02.spad" 1214704 1214712 1220625 1220630) (-770 "NAGF01.spad" 1210465 1210473 1214694 1214699) (-769 "NAGE04.spad" 1204165 1204173 1210455 1210460) (-768 "NAGE02.spad" 1194825 1194833 1204155 1204160) (-767 "NAGE01.spad" 1190827 1190835 1194815 1194820) (-766 "NAGD03.spad" 1188831 1188839 1190817 1190822) (-765 "NAGD02.spad" 1181578 1181586 1188821 1188826) (-764 "NAGD01.spad" 1175871 1175879 1181568 1181573) (-763 "NAGC06.spad" 1171746 1171754 1175861 1175866) (-762 "NAGC05.spad" 1170247 1170255 1171736 1171741) (-761 "NAGC02.spad" 1169514 1169522 1170237 1170242) (-760 "NAALG.spad" 1169055 1169065 1169482 1169509) (-759 "NAALG.spad" 1168616 1168628 1169045 1169050) (-758 "MULTSQFR.spad" 1165574 1165591 1168606 1168611) (-757 "MULTFACT.spad" 1164957 1164974 1165564 1165569) (-756 "MTSCAT.spad" 1163051 1163072 1164855 1164952) (-755 "MTHING.spad" 1162710 1162720 1163041 1163046) (-754 "MSYSCMD.spad" 1162144 1162152 1162700 1162705) (-753 "MSET.spad" 1160066 1160076 1161814 1161853) (-752 "MSETAGG.spad" 1159911 1159921 1160034 1160061) (-751 "MRING.spad" 1156888 1156900 1159619 1159686) (-750 "MRF2.spad" 1156458 1156472 1156878 1156883) (-749 "MRATFAC.spad" 1156004 1156021 1156448 1156453) (-748 "MPRFF.spad" 1154044 1154063 1155994 1155999) (-747 "MPOLY.spad" 1151515 1151530 1151874 1152001) (-746 "MPCPF.spad" 1150779 1150798 1151505 1151510) (-745 "MPC3.spad" 1150596 1150636 1150769 1150774) (-744 "MPC2.spad" 1150242 1150275 1150586 1150591) (-743 "MONOTOOL.spad" 1148593 1148610 1150232 1150237) (-742 "MONOID.spad" 1147912 1147920 1148583 1148588) (-741 "MONOID.spad" 1147229 1147239 1147902 1147907) (-740 "MONOGEN.spad" 1145977 1145990 1147089 1147224) (-739 "MONOGEN.spad" 1144747 1144762 1145861 1145866) (-738 "MONADWU.spad" 1142777 1142785 1144737 1144742) (-737 "MONADWU.spad" 1140805 1140815 1142767 1142772) (-736 "MONAD.spad" 1139965 1139973 1140795 1140800) (-735 "MONAD.spad" 1139123 1139133 1139955 1139960) (-734 "MOEBIUS.spad" 1137859 1137873 1139103 1139118) (-733 "MODULE.spad" 1137729 1137739 1137827 1137854) (-732 "MODULE.spad" 1137619 1137631 1137719 1137724) (-731 "MODRING.spad" 1136954 1136993 1137599 1137614) (-730 "MODOP.spad" 1135619 1135631 1136776 1136843) (-729 "MODMONOM.spad" 1135350 1135368 1135609 1135614) (-728 "MODMON.spad" 1132052 1132068 1132771 1132924) (-727 "MODFIELD.spad" 1131414 1131453 1131954 1132047) (-726 "MMLFORM.spad" 1130274 1130282 1131404 1131409) (-725 "MMAP.spad" 1130016 1130050 1130264 1130269) (-724 "MLO.spad" 1128475 1128485 1129972 1130011) (-723 "MLIFT.spad" 1127087 1127104 1128465 1128470) (-722 "MKUCFUNC.spad" 1126622 1126640 1127077 1127082) (-721 "MKRECORD.spad" 1126226 1126239 1126612 1126617) (-720 "MKFUNC.spad" 1125633 1125643 1126216 1126221) (-719 "MKFLCFN.spad" 1124601 1124611 1125623 1125628) (-718 "MKBCFUNC.spad" 1124096 1124114 1124591 1124596) (-717 "MINT.spad" 1123535 1123543 1123998 1124091) (-716 "MHROWRED.spad" 1122046 1122056 1123525 1123530) (-715 "MFLOAT.spad" 1120566 1120574 1121936 1122041) (-714 "MFINFACT.spad" 1119966 1119988 1120556 1120561) (-713 "MESH.spad" 1117748 1117756 1119956 1119961) (-712 "MDDFACT.spad" 1115959 1115969 1117738 1117743) (-711 "MDAGG.spad" 1115250 1115260 1115939 1115954) (-710 "MCMPLX.spad" 1110681 1110689 1111295 1111496) (-709 "MCDEN.spad" 1109891 1109903 1110671 1110676) (-708 "MCALCFN.spad" 1107013 1107039 1109881 1109886) (-707 "MAYBE.spad" 1106297 1106308 1107003 1107008) (-706 "MATSTOR.spad" 1103605 1103615 1106287 1106292) (-705 "MATRIX.spad" 1102192 1102202 1102676 1102703) (-704 "MATLIN.spad" 1099536 1099560 1102076 1102081) (-703 "MATCAT.spad" 1091058 1091080 1099504 1099531) (-702 "MATCAT.spad" 1082452 1082476 1090900 1090905) (-701 "MATCAT2.spad" 1081734 1081782 1082442 1082447) (-700 "MAPPKG3.spad" 1080649 1080663 1081724 1081729) (-699 "MAPPKG2.spad" 1079987 1079999 1080639 1080644) (-698 "MAPPKG1.spad" 1078815 1078825 1079977 1079982) (-697 "MAPPAST.spad" 1078130 1078138 1078805 1078810) (-696 "MAPHACK3.spad" 1077942 1077956 1078120 1078125) (-695 "MAPHACK2.spad" 1077711 1077723 1077932 1077937) (-694 "MAPHACK1.spad" 1077355 1077365 1077701 1077706) (-693 "MAGMA.spad" 1075145 1075162 1077345 1077350) (-692 "MACROAST.spad" 1074724 1074732 1075135 1075140) (-691 "M3D.spad" 1072327 1072337 1073985 1073990) (-690 "LZSTAGG.spad" 1069565 1069575 1072317 1072322) (-689 "LZSTAGG.spad" 1066801 1066813 1069555 1069560) (-688 "LWORD.spad" 1063506 1063523 1066791 1066796) (-687 "LSTAST.spad" 1063290 1063298 1063496 1063501) (-686 "LSQM.spad" 1061447 1061461 1061841 1061892) (-685 "LSPP.spad" 1060982 1060999 1061437 1061442) (-684 "LSMP.spad" 1059832 1059860 1060972 1060977) (-683 "LSMP1.spad" 1057650 1057664 1059822 1059827) (-682 "LSAGG.spad" 1057319 1057329 1057618 1057645) (-681 "LSAGG.spad" 1057008 1057020 1057309 1057314) (-680 "LPOLY.spad" 1055962 1055981 1056864 1056933) (-679 "LPEFRAC.spad" 1055233 1055243 1055952 1055957) (-678 "LO.spad" 1054634 1054648 1055167 1055194) (-677 "LOGIC.spad" 1054236 1054244 1054624 1054629) (-676 "LOGIC.spad" 1053836 1053846 1054226 1054231) (-675 "LODOOPS.spad" 1052766 1052778 1053826 1053831) (-674 "LODO.spad" 1052150 1052166 1052446 1052485) (-673 "LODOF.spad" 1051196 1051213 1052107 1052112) (-672 "LODOCAT.spad" 1049862 1049872 1051152 1051191) (-671 "LODOCAT.spad" 1048526 1048538 1049818 1049823) (-670 "LODO2.spad" 1047799 1047811 1048206 1048245) (-669 "LODO1.spad" 1047199 1047209 1047479 1047518) (-668 "LODEEF.spad" 1046001 1046019 1047189 1047194) (-667 "LNAGG.spad" 1042148 1042158 1045991 1045996) (-666 "LNAGG.spad" 1038259 1038271 1042104 1042109) (-665 "LMOPS.spad" 1035027 1035044 1038249 1038254) (-664 "LMODULE.spad" 1034795 1034805 1035017 1035022) (-663 "LMDICT.spad" 1033965 1033975 1034229 1034256) (-662 "LLINSET.spad" 1033672 1033682 1033955 1033960) (-661 "LITERAL.spad" 1033578 1033589 1033662 1033667) (-660 "LIST.spad" 1031160 1031170 1032572 1032599) (-659 "LIST3.spad" 1030471 1030485 1031150 1031155) (-658 "LIST2.spad" 1029173 1029185 1030461 1030466) (-657 "LIST2MAP.spad" 1026076 1026088 1029163 1029168) (-656 "LINSET.spad" 1025855 1025865 1026066 1026071) (-655 "LINFORM.spad" 1025318 1025330 1025823 1025850) (-654 "LINEXP.spad" 1024061 1024071 1025308 1025313) (-653 "LINELT.spad" 1023432 1023444 1023944 1023971) (-652 "LINDEP.spad" 1022241 1022253 1023344 1023349) (-651 "LINBASIS.spad" 1021877 1021892 1022231 1022236) (-650 "LIMITRF.spad" 1019805 1019815 1021867 1021872) (-649 "LIMITPS.spad" 1018708 1018721 1019795 1019800) (-648 "LIE.spad" 1016724 1016736 1017998 1018143) (-647 "LIECAT.spad" 1016200 1016210 1016650 1016719) (-646 "LIECAT.spad" 1015704 1015716 1016156 1016161) (-645 "LIB.spad" 1013455 1013463 1013901 1013916) (-644 "LGROBP.spad" 1010808 1010827 1013445 1013450) (-643 "LF.spad" 1009763 1009779 1010798 1010803) (-642 "LFCAT.spad" 1008822 1008830 1009753 1009758) (-641 "LEXTRIPK.spad" 1004325 1004340 1008812 1008817) (-640 "LEXP.spad" 1002328 1002355 1004305 1004320) (-639 "LETAST.spad" 1002027 1002035 1002318 1002323) (-638 "LEADCDET.spad" 1000425 1000442 1002017 1002022) (-637 "LAZM3PK.spad" 999129 999151 1000415 1000420) (-636 "LAUPOL.spad" 997729 997742 998629 998698) (-635 "LAPLACE.spad" 997312 997328 997719 997724) (-634 "LA.spad" 996752 996766 997234 997273) (-633 "LALG.spad" 996528 996538 996732 996747) (-632 "LALG.spad" 996312 996324 996518 996523) (-631 "KVTFROM.spad" 996047 996057 996302 996307) (-630 "KTVLOGIC.spad" 995559 995567 996037 996042) (-629 "KRCFROM.spad" 995297 995307 995549 995554) (-628 "KOVACIC.spad" 994020 994037 995287 995292) (-627 "KONVERT.spad" 993742 993752 994010 994015) (-626 "KOERCE.spad" 993479 993489 993732 993737) (-625 "KERNEL.spad" 992134 992144 993263 993268) (-624 "KERNEL2.spad" 991837 991849 992124 992129) (-623 "KDAGG.spad" 990946 990968 991817 991832) (-622 "KDAGG.spad" 990063 990087 990936 990941) (-621 "KAFILE.spad" 988917 988933 989152 989179) (-620 "JORDAN.spad" 986746 986758 988207 988352) (-619 "JOINAST.spad" 986440 986448 986736 986741) (-618 "JAVACODE.spad" 986306 986314 986430 986435) (-617 "IXAGG.spad" 984439 984463 986296 986301) (-616 "IXAGG.spad" 982427 982453 984286 984291) (-615 "IVECTOR.spad" 981044 981059 981199 981226) (-614 "ITUPLE.spad" 980205 980215 981034 981039) (-613 "ITRIGMNP.spad" 979044 979063 980195 980200) (-612 "ITFUN3.spad" 978550 978564 979034 979039) (-611 "ITFUN2.spad" 978294 978306 978540 978545) (-610 "ITFORM.spad" 977649 977657 978284 978289) (-609 "ITAYLOR.spad" 975643 975658 977513 977610) (-608 "ISUPS.spad" 968080 968095 974617 974714) (-607 "ISUMP.spad" 967581 967597 968070 968075) (-606 "ISTRING.spad" 966508 966521 966589 966616) (-605 "ISAST.spad" 966227 966235 966498 966503) (-604 "IRURPK.spad" 964944 964963 966217 966222) (-603 "IRSN.spad" 962916 962924 964934 964939) (-602 "IRRF2F.spad" 961401 961411 962872 962877) (-601 "IRREDFFX.spad" 961002 961013 961391 961396) (-600 "IROOT.spad" 959341 959351 960992 960997) (-599 "IR.spad" 957142 957156 959196 959223) (-598 "IRFORM.spad" 956466 956474 957132 957137) (-597 "IR2.spad" 955494 955510 956456 956461) (-596 "IR2F.spad" 954700 954716 955484 955489) (-595 "IPRNTPK.spad" 954460 954468 954690 954695) (-594 "IPF.spad" 954025 954037 954265 954358) (-593 "IPADIC.spad" 953786 953812 953951 954020) (-592 "IP4ADDR.spad" 953343 953351 953776 953781) (-591 "IOMODE.spad" 952865 952873 953333 953338) (-590 "IOBFILE.spad" 952226 952234 952855 952860) (-589 "IOBCON.spad" 952091 952099 952216 952221) (-588 "INVLAPLA.spad" 951740 951756 952081 952086) (-587 "INTTR.spad" 945122 945139 951730 951735) (-586 "INTTOOLS.spad" 942877 942893 944696 944701) (-585 "INTSLPE.spad" 942197 942205 942867 942872) (-584 "INTRVL.spad" 941763 941773 942111 942192) (-583 "INTRF.spad" 940187 940201 941753 941758) (-582 "INTRET.spad" 939619 939629 940177 940182) (-581 "INTRAT.spad" 938346 938363 939609 939614) (-580 "INTPM.spad" 936731 936747 937989 937994) (-579 "INTPAF.spad" 934595 934613 936663 936668) (-578 "INTPACK.spad" 924969 924977 934585 934590) (-577 "INT.spad" 924417 924425 924823 924964) (-576 "INTHERTR.spad" 923691 923708 924407 924412) (-575 "INTHERAL.spad" 923361 923385 923681 923686) (-574 "INTHEORY.spad" 919800 919808 923351 923356) (-573 "INTG0.spad" 913533 913551 919732 919737) (-572 "INTFTBL.spad" 907562 907570 913523 913528) (-571 "INTFACT.spad" 906621 906631 907552 907557) (-570 "INTEF.spad" 905006 905022 906611 906616) (-569 "INTDOM.spad" 903629 903637 904932 905001) (-568 "INTDOM.spad" 902314 902324 903619 903624) (-567 "INTCAT.spad" 900573 900583 902228 902309) (-566 "INTBIT.spad" 900080 900088 900563 900568) (-565 "INTALG.spad" 899268 899295 900070 900075) (-564 "INTAF.spad" 898768 898784 899258 899263) (-563 "INTABL.spad" 896844 896875 897007 897034) (-562 "INT8.spad" 896724 896732 896834 896839) (-561 "INT64.spad" 896603 896611 896714 896719) (-560 "INT32.spad" 896482 896490 896593 896598) (-559 "INT16.spad" 896361 896369 896472 896477) (-558 "INS.spad" 893864 893872 896263 896356) (-557 "INS.spad" 891453 891463 893854 893859) (-556 "INPSIGN.spad" 890901 890914 891443 891448) (-555 "INPRODPF.spad" 889997 890016 890891 890896) (-554 "INPRODFF.spad" 889085 889109 889987 889992) (-553 "INNMFACT.spad" 888060 888077 889075 889080) (-552 "INMODGCD.spad" 887548 887578 888050 888055) (-551 "INFSP.spad" 885845 885867 887538 887543) (-550 "INFPROD0.spad" 884925 884944 885835 885840) (-549 "INFORM.spad" 882124 882132 884915 884920) (-548 "INFORM1.spad" 881749 881759 882114 882119) (-547 "INFINITY.spad" 881301 881309 881739 881744) (-546 "INETCLTS.spad" 881278 881286 881291 881296) (-545 "INEP.spad" 879816 879838 881268 881273) (-544 "INDE.spad" 879465 879482 879726 879731) (-543 "INCRMAPS.spad" 878886 878896 879455 879460) (-542 "INBFILE.spad" 877958 877966 878876 878881) (-541 "INBFF.spad" 873752 873763 877948 877953) (-540 "INBCON.spad" 872042 872050 873742 873747) (-539 "INBCON.spad" 870330 870340 872032 872037) (-538 "INAST.spad" 869991 869999 870320 870325) (-537 "IMPTAST.spad" 869699 869707 869981 869986) (-536 "IMATRIX.spad" 868527 868553 869039 869066) (-535 "IMATQF.spad" 867621 867665 868483 868488) (-534 "IMATLIN.spad" 866226 866250 867577 867582) (-533 "ILIST.spad" 864731 864746 865256 865283) (-532 "IIARRAY2.spad" 864002 864040 864221 864248) (-531 "IFF.spad" 863412 863428 863683 863776) (-530 "IFAST.spad" 863026 863034 863402 863407) (-529 "IFARRAY.spad" 860366 860381 862056 862083) (-528 "IFAMON.spad" 860228 860245 860322 860327) (-527 "IEVALAB.spad" 859633 859645 860218 860223) (-526 "IEVALAB.spad" 859036 859050 859623 859628) (-525 "IDPO.spad" 858771 858783 858948 858953) (-524 "IDPOAMS.spad" 858449 858461 858683 858688) (-523 "IDPOAM.spad" 858091 858103 858361 858366) (-522 "IDPC.spad" 856820 856832 858081 858086) (-521 "IDPAM.spad" 856487 856499 856732 856737) (-520 "IDPAG.spad" 856156 856168 856399 856404) (-519 "IDENT.spad" 855806 855814 856146 856151) (-518 "IDECOMP.spad" 853045 853063 855796 855801) (-517 "IDEAL.spad" 847994 848033 852980 852985) (-516 "ICDEN.spad" 847183 847199 847984 847989) (-515 "ICARD.spad" 846374 846382 847173 847178) (-514 "IBPTOOLS.spad" 844981 844998 846364 846369) (-513 "IBITS.spad" 844146 844159 844579 844606) (-512 "IBATOOL.spad" 841123 841142 844136 844141) (-511 "IBACHIN.spad" 839630 839645 841113 841118) (-510 "IARRAY2.spad" 838501 838527 839120 839147) (-509 "IARRAY1.spad" 837393 837408 837531 837558) (-508 "IAN.spad" 835616 835624 837209 837302) (-507 "IALGFACT.spad" 835219 835252 835606 835611) (-506 "HYPCAT.spad" 834643 834651 835209 835214) (-505 "HYPCAT.spad" 834065 834075 834633 834638) (-504 "HOSTNAME.spad" 833873 833881 834055 834060) (-503 "HOMOTOP.spad" 833616 833626 833863 833868) (-502 "HOAGG.spad" 830898 830908 833606 833611) (-501 "HOAGG.spad" 827919 827931 830629 830634) (-500 "HEXADEC.spad" 825924 825932 826289 826382) (-499 "HEUGCD.spad" 824959 824970 825914 825919) (-498 "HELLFDIV.spad" 824549 824573 824949 824954) (-497 "HEAP.spad" 823824 823834 824039 824066) (-496 "HEADAST.spad" 823357 823365 823814 823819) (-495 "HDP.spad" 811167 811183 811544 811643) (-494 "HDMP.spad" 808381 808396 808997 809124) (-493 "HB.spad" 806632 806640 808371 808376) (-492 "HASHTBL.spad" 804660 804691 804871 804898) (-491 "HASAST.spad" 804376 804384 804650 804655) (-490 "HACKPI.spad" 803867 803875 804278 804371) (-489 "GTSET.spad" 802770 802786 803477 803504) (-488 "GSTBL.spad" 800847 800882 801021 801036) (-487 "GSERIES.spad" 798160 798187 798979 799128) (-486 "GROUP.spad" 797433 797441 798140 798155) (-485 "GROUP.spad" 796714 796724 797423 797428) (-484 "GROEBSOL.spad" 795208 795229 796704 796709) (-483 "GRMOD.spad" 793779 793791 795198 795203) (-482 "GRMOD.spad" 792348 792362 793769 793774) (-481 "GRIMAGE.spad" 785237 785245 792338 792343) (-480 "GRDEF.spad" 783616 783624 785227 785232) (-479 "GRAY.spad" 782079 782087 783606 783611) (-478 "GRALG.spad" 781156 781168 782069 782074) (-477 "GRALG.spad" 780231 780245 781146 781151) (-476 "GPOLSET.spad" 779649 779672 779877 779904) (-475 "GOSPER.spad" 778918 778936 779639 779644) (-474 "GMODPOL.spad" 778066 778093 778886 778913) (-473 "GHENSEL.spad" 777149 777163 778056 778061) (-472 "GENUPS.spad" 773442 773455 777139 777144) (-471 "GENUFACT.spad" 773019 773029 773432 773437) (-470 "GENPGCD.spad" 772605 772622 773009 773014) (-469 "GENMFACT.spad" 772057 772076 772595 772600) (-468 "GENEEZ.spad" 770008 770021 772047 772052) (-467 "GDMP.spad" 767064 767081 767838 767965) (-466 "GCNAALG.spad" 760987 761014 766858 766925) (-465 "GCDDOM.spad" 760163 760171 760913 760982) (-464 "GCDDOM.spad" 759401 759411 760153 760158) (-463 "GB.spad" 756927 756965 759357 759362) (-462 "GBINTERN.spad" 752947 752985 756917 756922) (-461 "GBF.spad" 748714 748752 752937 752942) (-460 "GBEUCLID.spad" 746596 746634 748704 748709) (-459 "GAUSSFAC.spad" 745909 745917 746586 746591) (-458 "GALUTIL.spad" 744235 744245 745865 745870) (-457 "GALPOLYU.spad" 742689 742702 744225 744230) (-456 "GALFACTU.spad" 740862 740881 742679 742684) (-455 "GALFACT.spad" 731051 731062 740852 740857) (-454 "FVFUN.spad" 728074 728082 731041 731046) (-453 "FVC.spad" 727126 727134 728064 728069) (-452 "FUNDESC.spad" 726804 726812 727116 727121) (-451 "FUNCTION.spad" 726653 726665 726794 726799) (-450 "FT.spad" 724950 724958 726643 726648) (-449 "FTEM.spad" 724115 724123 724940 724945) (-448 "FSUPFACT.spad" 723015 723034 724051 724056) (-447 "FST.spad" 721101 721109 723005 723010) (-446 "FSRED.spad" 720581 720597 721091 721096) (-445 "FSPRMELT.spad" 719463 719479 720538 720543) (-444 "FSPECF.spad" 717554 717570 719453 719458) (-443 "FS.spad" 711822 711832 717329 717549) (-442 "FS.spad" 705868 705880 711377 711382) (-441 "FSINT.spad" 705528 705544 705858 705863) (-440 "FSERIES.spad" 704719 704731 705348 705447) (-439 "FSCINT.spad" 704036 704052 704709 704714) (-438 "FSAGG.spad" 703153 703163 703992 704031) (-437 "FSAGG.spad" 702232 702244 703073 703078) (-436 "FSAGG2.spad" 700975 700991 702222 702227) (-435 "FS2UPS.spad" 695466 695500 700965 700970) (-434 "FS2.spad" 695113 695129 695456 695461) (-433 "FS2EXPXP.spad" 694238 694261 695103 695108) (-432 "FRUTIL.spad" 693192 693202 694228 694233) (-431 "FR.spad" 686815 686825 692123 692192) (-430 "FRNAALG.spad" 682084 682094 686757 686810) (-429 "FRNAALG.spad" 677365 677377 682040 682045) (-428 "FRNAAF2.spad" 676821 676839 677355 677360) (-427 "FRMOD.spad" 676231 676261 676752 676757) (-426 "FRIDEAL.spad" 675456 675477 676211 676226) (-425 "FRIDEAL2.spad" 675060 675092 675446 675451) (-424 "FRETRCT.spad" 674571 674581 675050 675055) (-423 "FRETRCT.spad" 673948 673960 674429 674434) (-422 "FRAMALG.spad" 672296 672309 673904 673943) (-421 "FRAMALG.spad" 670676 670691 672286 672291) (-420 "FRAC.spad" 667682 667692 668085 668258) (-419 "FRAC2.spad" 667287 667299 667672 667677) (-418 "FR2.spad" 666623 666635 667277 667282) (-417 "FPS.spad" 663438 663446 666513 666618) (-416 "FPS.spad" 660281 660291 663358 663363) (-415 "FPC.spad" 659327 659335 660183 660276) (-414 "FPC.spad" 658459 658469 659317 659322) (-413 "FPATMAB.spad" 658221 658231 658449 658454) (-412 "FPARFRAC.spad" 657071 657088 658211 658216) (-411 "FORTRAN.spad" 655577 655620 657061 657066) (-410 "FORT.spad" 654526 654534 655567 655572) (-409 "FORTFN.spad" 651696 651704 654516 654521) (-408 "FORTCAT.spad" 651380 651388 651686 651691) (-407 "FORMULA.spad" 648854 648862 651370 651375) (-406 "FORMULA1.spad" 648333 648343 648844 648849) (-405 "FORDER.spad" 648024 648048 648323 648328) (-404 "FOP.spad" 647225 647233 648014 648019) (-403 "FNLA.spad" 646649 646671 647193 647220) (-402 "FNCAT.spad" 645244 645252 646639 646644) (-401 "FNAME.spad" 645136 645144 645234 645239) (-400 "FMTC.spad" 644934 644942 645062 645131) (-399 "FMONOID.spad" 644599 644609 644890 644895) (-398 "FMONCAT.spad" 641752 641762 644589 644594) (-397 "FM.spad" 641367 641379 641606 641633) (-396 "FMFUN.spad" 638397 638405 641357 641362) (-395 "FMC.spad" 637449 637457 638387 638392) (-394 "FMCAT.spad" 635117 635135 637417 637444) (-393 "FM1.spad" 634474 634486 635051 635078) (-392 "FLOATRP.spad" 632209 632223 634464 634469) (-391 "FLOAT.spad" 625523 625531 632075 632204) (-390 "FLOATCP.spad" 622954 622968 625513 625518) (-389 "FLINEXP.spad" 622676 622686 622944 622949) (-388 "FLINEXP.spad" 622342 622354 622612 622617) (-387 "FLASORT.spad" 621668 621680 622332 622337) (-386 "FLALG.spad" 619314 619333 621594 621663) (-385 "FLAGG.spad" 616356 616366 619294 619309) (-384 "FLAGG.spad" 613299 613311 616239 616244) (-383 "FLAGG2.spad" 612024 612040 613289 613294) (-382 "FINRALG.spad" 610085 610098 611980 612019) (-381 "FINRALG.spad" 608072 608087 609969 609974) (-380 "FINITE.spad" 607224 607232 608062 608067) (-379 "FINAALG.spad" 596345 596355 607166 607219) (-378 "FINAALG.spad" 585478 585490 596301 596306) (-377 "FILE.spad" 585061 585071 585468 585473) (-376 "FILECAT.spad" 583587 583604 585051 585056) (-375 "FIELD.spad" 582993 583001 583489 583582) (-374 "FIELD.spad" 582485 582495 582983 582988) (-373 "FGROUP.spad" 581132 581142 582465 582480) (-372 "FGLMICPK.spad" 579919 579934 581122 581127) (-371 "FFX.spad" 579294 579309 579635 579728) (-370 "FFSLPE.spad" 578797 578818 579284 579289) (-369 "FFPOLY.spad" 570059 570070 578787 578792) (-368 "FFPOLY2.spad" 569119 569136 570049 570054) (-367 "FFP.spad" 568516 568536 568835 568928) (-366 "FF.spad" 567964 567980 568197 568290) (-365 "FFNBX.spad" 566476 566496 567680 567773) (-364 "FFNBP.spad" 564989 565006 566192 566285) (-363 "FFNB.spad" 563454 563475 564670 564763) (-362 "FFINTBAS.spad" 560968 560987 563444 563449) (-361 "FFIELDC.spad" 558545 558553 560870 560963) (-360 "FFIELDC.spad" 556208 556218 558535 558540) (-359 "FFHOM.spad" 554956 554973 556198 556203) (-358 "FFF.spad" 552391 552402 554946 554951) (-357 "FFCGX.spad" 551238 551258 552107 552200) (-356 "FFCGP.spad" 550127 550147 550954 551047) (-355 "FFCG.spad" 548919 548940 549808 549901) (-354 "FFCAT.spad" 542092 542114 548758 548914) (-353 "FFCAT.spad" 535344 535368 542012 542017) (-352 "FFCAT2.spad" 535091 535131 535334 535339) (-351 "FEXPR.spad" 526808 526854 534847 534886) (-350 "FEVALAB.spad" 526516 526526 526798 526803) (-349 "FEVALAB.spad" 526009 526021 526293 526298) (-348 "FDIV.spad" 525451 525475 525999 526004) (-347 "FDIVCAT.spad" 523515 523539 525441 525446) (-346 "FDIVCAT.spad" 521577 521603 523505 523510) (-345 "FDIV2.spad" 521233 521273 521567 521572) (-344 "FCTRDATA.spad" 520241 520249 521223 521228) (-343 "FCPAK1.spad" 518808 518816 520231 520236) (-342 "FCOMP.spad" 518187 518197 518798 518803) (-341 "FC.spad" 508194 508202 518177 518182) (-340 "FAXF.spad" 501165 501179 508096 508189) (-339 "FAXF.spad" 494188 494204 501121 501126) (-338 "FARRAY.spad" 492185 492195 493218 493245) (-337 "FAMR.spad" 490321 490333 492083 492180) (-336 "FAMR.spad" 488441 488455 490205 490210) (-335 "FAMONOID.spad" 488109 488119 488395 488400) (-334 "FAMONC.spad" 486405 486417 488099 488104) (-333 "FAGROUP.spad" 486029 486039 486301 486328) (-332 "FACUTIL.spad" 484233 484250 486019 486024) (-331 "FACTFUNC.spad" 483427 483437 484223 484228) (-330 "EXPUPXS.spad" 480260 480283 481559 481708) (-329 "EXPRTUBE.spad" 477548 477556 480250 480255) (-328 "EXPRODE.spad" 474708 474724 477538 477543) (-327 "EXPR.spad" 469883 469893 470597 470892) (-326 "EXPR2UPS.spad" 466005 466018 469873 469878) (-325 "EXPR2.spad" 465710 465722 465995 466000) (-324 "EXPEXPAN.spad" 462511 462536 463143 463236) (-323 "EXIT.spad" 462182 462190 462501 462506) (-322 "EXITAST.spad" 461918 461926 462172 462177) (-321 "EVALCYC.spad" 461378 461392 461908 461913) (-320 "EVALAB.spad" 460950 460960 461368 461373) (-319 "EVALAB.spad" 460520 460532 460940 460945) (-318 "EUCDOM.spad" 458094 458102 460446 460515) (-317 "EUCDOM.spad" 455730 455740 458084 458089) (-316 "ESTOOLS.spad" 447576 447584 455720 455725) (-315 "ESTOOLS2.spad" 447179 447193 447566 447571) (-314 "ESTOOLS1.spad" 446864 446875 447169 447174) (-313 "ES.spad" 439679 439687 446854 446859) (-312 "ES.spad" 432400 432410 439577 439582) (-311 "ESCONT.spad" 429193 429201 432390 432395) (-310 "ESCONT1.spad" 428942 428954 429183 429188) (-309 "ES2.spad" 428447 428463 428932 428937) (-308 "ES1.spad" 428017 428033 428437 428442) (-307 "ERROR.spad" 425344 425352 428007 428012) (-306 "EQTBL.spad" 423374 423396 423583 423610) (-305 "EQ.spad" 418179 418189 420966 421078) (-304 "EQ2.spad" 417897 417909 418169 418174) (-303 "EP.spad" 414223 414233 417887 417892) (-302 "ENV.spad" 412901 412909 414213 414218) (-301 "ENTIRER.spad" 412569 412577 412845 412896) (-300 "EMR.spad" 411857 411898 412495 412564) (-299 "ELTAGG.spad" 410111 410130 411847 411852) (-298 "ELTAGG.spad" 408329 408350 410067 410072) (-297 "ELTAB.spad" 407804 407817 408319 408324) (-296 "ELFUTS.spad" 407191 407210 407794 407799) (-295 "ELEMFUN.spad" 406880 406888 407181 407186) (-294 "ELEMFUN.spad" 406567 406577 406870 406875) (-293 "ELAGG.spad" 404538 404548 406547 406562) (-292 "ELAGG.spad" 402446 402458 404457 404462) (-291 "ELABOR.spad" 401792 401800 402436 402441) (-290 "ELABEXPR.spad" 400724 400732 401782 401787) (-289 "EFUPXS.spad" 397500 397530 400680 400685) (-288 "EFULS.spad" 394336 394359 397456 397461) (-287 "EFSTRUC.spad" 392351 392367 394326 394331) (-286 "EF.spad" 387127 387143 392341 392346) (-285 "EAB.spad" 385403 385411 387117 387122) (-284 "E04UCFA.spad" 384939 384947 385393 385398) (-283 "E04NAFA.spad" 384516 384524 384929 384934) (-282 "E04MBFA.spad" 384096 384104 384506 384511) (-281 "E04JAFA.spad" 383632 383640 384086 384091) (-280 "E04GCFA.spad" 383168 383176 383622 383627) (-279 "E04FDFA.spad" 382704 382712 383158 383163) (-278 "E04DGFA.spad" 382240 382248 382694 382699) (-277 "E04AGNT.spad" 378090 378098 382230 382235) (-276 "DVARCAT.spad" 374980 374990 378080 378085) (-275 "DVARCAT.spad" 371868 371880 374970 374975) (-274 "DSMP.spad" 369242 369256 369547 369674) (-273 "DSEXT.spad" 368544 368554 369232 369237) (-272 "DSEXT.spad" 367753 367765 368443 368448) (-271 "DROPT.spad" 361712 361720 367743 367748) (-270 "DROPT1.spad" 361377 361387 361702 361707) (-269 "DROPT0.spad" 356234 356242 361367 361372) (-268 "DRAWPT.spad" 354407 354415 356224 356229) (-267 "DRAW.spad" 347283 347296 354397 354402) (-266 "DRAWHACK.spad" 346591 346601 347273 347278) (-265 "DRAWCX.spad" 344061 344069 346581 346586) (-264 "DRAWCURV.spad" 343608 343623 344051 344056) (-263 "DRAWCFUN.spad" 333140 333148 343598 343603) (-262 "DQAGG.spad" 331318 331328 333108 333135) (-261 "DPOLCAT.spad" 326667 326683 331186 331313) (-260 "DPOLCAT.spad" 322102 322120 326623 326628) (-259 "DPMO.spad" 313862 313878 314000 314213) (-258 "DPMM.spad" 305635 305653 305760 305973) (-257 "DOMTMPLT.spad" 305406 305414 305625 305630) (-256 "DOMCTOR.spad" 305161 305169 305396 305401) (-255 "DOMAIN.spad" 304248 304256 305151 305156) (-254 "DMP.spad" 301508 301523 302078 302205) (-253 "DMEXT.spad" 301375 301385 301476 301503) (-252 "DLP.spad" 300727 300737 301365 301370) (-251 "DLIST.spad" 299153 299163 299757 299784) (-250 "DLAGG.spad" 297570 297580 299143 299148) (-249 "DIVRING.spad" 297112 297120 297514 297565) (-248 "DIVRING.spad" 296698 296708 297102 297107) (-247 "DISPLAY.spad" 294888 294896 296688 296693) (-246 "DIRPROD.spad" 282435 282451 283075 283174) (-245 "DIRPROD2.spad" 281253 281271 282425 282430) (-244 "DIRPCAT.spad" 280446 280462 281149 281248) (-243 "DIRPCAT.spad" 279266 279284 279971 279976) (-242 "DIOSP.spad" 278091 278099 279256 279261) (-241 "DIOPS.spad" 277087 277097 278071 278086) (-240 "DIOPS.spad" 276057 276069 277043 277048) (-239 "DIFRING.spad" 275895 275903 276037 276052) (-238 "DIFFSPC.spad" 275474 275482 275885 275890) (-237 "DIFFSPC.spad" 275051 275061 275464 275469) (-236 "DIFFMOD.spad" 274540 274550 275019 275046) (-235 "DIFFDOM.spad" 273705 273716 274530 274535) (-234 "DIFFDOM.spad" 272868 272881 273695 273700) (-233 "DIFEXT.spad" 272687 272697 272848 272863) (-232 "DIAGG.spad" 272317 272327 272667 272682) (-231 "DIAGG.spad" 271955 271967 272307 272312) (-230 "DHMATRIX.spad" 270150 270160 271295 271322) (-229 "DFSFUN.spad" 263790 263798 270140 270145) (-228 "DFLOAT.spad" 260521 260529 263680 263785) (-227 "DFINTTLS.spad" 258752 258768 260511 260516) (-226 "DERHAM.spad" 256666 256698 258732 258747) (-225 "DEQUEUE.spad" 255873 255883 256156 256183) (-224 "DEGRED.spad" 255490 255504 255863 255868) (-223 "DEFINTRF.spad" 253027 253037 255480 255485) (-222 "DEFINTEF.spad" 251537 251553 253017 253022) (-221 "DEFAST.spad" 250905 250913 251527 251532) (-220 "DECIMAL.spad" 248914 248922 249275 249368) (-219 "DDFACT.spad" 246727 246744 248904 248909) (-218 "DBLRESP.spad" 246327 246351 246717 246722) (-217 "DBASIS.spad" 245953 245968 246317 246322) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2296396 2296401 2296406 2296411) (-2 NIL 2296376 2296381 2296386 2296391) (-1 NIL 2296356 2296361 2296366 2296371) (0 NIL 2296336 2296341 2296346 2296351) (-1326 "ZMOD.spad" 2296145 2296158 2296274 2296331) (-1325 "ZLINDEP.spad" 2295211 2295222 2296135 2296140) (-1324 "ZDSOLVE.spad" 2285156 2285178 2295201 2295206) (-1323 "YSTREAM.spad" 2284651 2284662 2285146 2285151) (-1322 "YDIAGRAM.spad" 2284285 2284294 2284641 2284646) (-1321 "XRPOLY.spad" 2283505 2283525 2284141 2284210) (-1320 "XPR.spad" 2281300 2281313 2283223 2283322) (-1319 "XPOLY.spad" 2280855 2280866 2281156 2281225) (-1318 "XPOLYC.spad" 2280174 2280190 2280781 2280850) (-1317 "XPBWPOLY.spad" 2278611 2278631 2279954 2280023) (-1316 "XF.spad" 2277074 2277089 2278513 2278606) (-1315 "XF.spad" 2275517 2275534 2276958 2276963) (-1314 "XFALG.spad" 2272565 2272581 2275443 2275512) (-1313 "XEXPPKG.spad" 2271816 2271842 2272555 2272560) (-1312 "XDPOLY.spad" 2271430 2271446 2271672 2271741) (-1311 "XALG.spad" 2271090 2271101 2271386 2271425) (-1310 "WUTSET.spad" 2266893 2266910 2270700 2270727) (-1309 "WP.spad" 2266092 2266136 2266751 2266818) (-1308 "WHILEAST.spad" 2265890 2265899 2266082 2266087) (-1307 "WHEREAST.spad" 2265561 2265570 2265880 2265885) (-1306 "WFFINTBS.spad" 2263224 2263246 2265551 2265556) (-1305 "WEIER.spad" 2261446 2261457 2263214 2263219) (-1304 "VSPACE.spad" 2261119 2261130 2261414 2261441) (-1303 "VSPACE.spad" 2260812 2260825 2261109 2261114) (-1302 "VOID.spad" 2260489 2260498 2260802 2260807) (-1301 "VIEW.spad" 2258169 2258178 2260479 2260484) (-1300 "VIEWDEF.spad" 2253370 2253379 2258159 2258164) (-1299 "VIEW3D.spad" 2237331 2237340 2253360 2253365) (-1298 "VIEW2D.spad" 2225222 2225231 2237321 2237326) (-1297 "VECTOR.spad" 2223743 2223754 2223994 2224021) (-1296 "VECTOR2.spad" 2222382 2222395 2223733 2223738) (-1295 "VECTCAT.spad" 2220286 2220297 2222350 2222377) (-1294 "VECTCAT.spad" 2217997 2218010 2220063 2220068) (-1293 "VARIABLE.spad" 2217777 2217792 2217987 2217992) (-1292 "UTYPE.spad" 2217421 2217430 2217767 2217772) (-1291 "UTSODETL.spad" 2216716 2216740 2217377 2217382) (-1290 "UTSODE.spad" 2214932 2214952 2216706 2216711) (-1289 "UTS.spad" 2209879 2209907 2213399 2213496) (-1288 "UTSCAT.spad" 2207358 2207374 2209777 2209874) (-1287 "UTSCAT.spad" 2204481 2204499 2206902 2206907) (-1286 "UTS2.spad" 2204076 2204111 2204471 2204476) (-1285 "URAGG.spad" 2198749 2198760 2204066 2204071) (-1284 "URAGG.spad" 2193386 2193399 2198705 2198710) (-1283 "UPXSSING.spad" 2191031 2191057 2192467 2192600) (-1282 "UPXS.spad" 2188327 2188355 2189163 2189312) (-1281 "UPXSCONS.spad" 2186086 2186106 2186459 2186608) (-1280 "UPXSCCA.spad" 2184657 2184677 2185932 2186081) (-1279 "UPXSCCA.spad" 2183370 2183392 2184647 2184652) (-1278 "UPXSCAT.spad" 2181959 2181975 2183216 2183365) (-1277 "UPXS2.spad" 2181502 2181555 2181949 2181954) (-1276 "UPSQFREE.spad" 2179916 2179930 2181492 2181497) (-1275 "UPSCAT.spad" 2177703 2177727 2179814 2179911) (-1274 "UPSCAT.spad" 2175196 2175222 2177309 2177314) (-1273 "UPOLYC.spad" 2170236 2170247 2175038 2175191) (-1272 "UPOLYC.spad" 2165168 2165181 2169972 2169977) (-1271 "UPOLYC2.spad" 2164639 2164658 2165158 2165163) (-1270 "UP.spad" 2161745 2161760 2162132 2162285) (-1269 "UPMP.spad" 2160645 2160658 2161735 2161740) (-1268 "UPDIVP.spad" 2160210 2160224 2160635 2160640) (-1267 "UPDECOMP.spad" 2158455 2158469 2160200 2160205) (-1266 "UPCDEN.spad" 2157664 2157680 2158445 2158450) (-1265 "UP2.spad" 2157028 2157049 2157654 2157659) (-1264 "UNISEG.spad" 2156381 2156392 2156947 2156952) (-1263 "UNISEG2.spad" 2155878 2155891 2156337 2156342) (-1262 "UNIFACT.spad" 2154981 2154993 2155868 2155873) (-1261 "ULS.spad" 2144765 2144793 2145710 2146139) (-1260 "ULSCONS.spad" 2135899 2135919 2136269 2136418) (-1259 "ULSCCAT.spad" 2133636 2133656 2135745 2135894) (-1258 "ULSCCAT.spad" 2131481 2131503 2133592 2133597) (-1257 "ULSCAT.spad" 2129713 2129729 2131327 2131476) (-1256 "ULS2.spad" 2129227 2129280 2129703 2129708) (-1255 "UINT8.spad" 2129104 2129113 2129217 2129222) (-1254 "UINT64.spad" 2128980 2128989 2129094 2129099) (-1253 "UINT32.spad" 2128856 2128865 2128970 2128975) (-1252 "UINT16.spad" 2128732 2128741 2128846 2128851) (-1251 "UFD.spad" 2127797 2127806 2128658 2128727) (-1250 "UFD.spad" 2126924 2126935 2127787 2127792) (-1249 "UDVO.spad" 2125805 2125814 2126914 2126919) (-1248 "UDPO.spad" 2123298 2123309 2125761 2125766) (-1247 "TYPE.spad" 2123230 2123239 2123288 2123293) (-1246 "TYPEAST.spad" 2123149 2123158 2123220 2123225) (-1245 "TWOFACT.spad" 2121801 2121816 2123139 2123144) (-1244 "TUPLE.spad" 2121287 2121298 2121700 2121705) (-1243 "TUBETOOL.spad" 2118154 2118163 2121277 2121282) (-1242 "TUBE.spad" 2116801 2116818 2118144 2118149) (-1241 "TS.spad" 2115400 2115416 2116366 2116463) (-1240 "TSETCAT.spad" 2102527 2102544 2115368 2115395) (-1239 "TSETCAT.spad" 2089640 2089659 2102483 2102488) (-1238 "TRMANIP.spad" 2084006 2084023 2089346 2089351) (-1237 "TRIMAT.spad" 2082969 2082994 2083996 2084001) (-1236 "TRIGMNIP.spad" 2081496 2081513 2082959 2082964) (-1235 "TRIGCAT.spad" 2081008 2081017 2081486 2081491) (-1234 "TRIGCAT.spad" 2080518 2080529 2080998 2081003) (-1233 "TREE.spad" 2078976 2078987 2080008 2080035) (-1232 "TRANFUN.spad" 2078815 2078824 2078966 2078971) (-1231 "TRANFUN.spad" 2078652 2078663 2078805 2078810) (-1230 "TOPSP.spad" 2078326 2078335 2078642 2078647) (-1229 "TOOLSIGN.spad" 2077989 2078000 2078316 2078321) (-1228 "TEXTFILE.spad" 2076550 2076559 2077979 2077984) (-1227 "TEX.spad" 2073696 2073705 2076540 2076545) (-1226 "TEX1.spad" 2073252 2073263 2073686 2073691) (-1225 "TEMUTL.spad" 2072807 2072816 2073242 2073247) (-1224 "TBCMPPK.spad" 2070900 2070923 2072797 2072802) (-1223 "TBAGG.spad" 2069950 2069973 2070880 2070895) (-1222 "TBAGG.spad" 2069008 2069033 2069940 2069945) (-1221 "TANEXP.spad" 2068416 2068427 2068998 2069003) (-1220 "TALGOP.spad" 2068140 2068151 2068406 2068411) (-1219 "TABLE.spad" 2066109 2066132 2066379 2066406) (-1218 "TABLEAU.spad" 2065590 2065601 2066099 2066104) (-1217 "TABLBUMP.spad" 2062393 2062404 2065580 2065585) (-1216 "SYSTEM.spad" 2061621 2061630 2062383 2062388) (-1215 "SYSSOLP.spad" 2059104 2059115 2061611 2061616) (-1214 "SYSPTR.spad" 2059003 2059012 2059094 2059099) (-1213 "SYSNNI.spad" 2058194 2058205 2058993 2058998) (-1212 "SYSINT.spad" 2057598 2057609 2058184 2058189) (-1211 "SYNTAX.spad" 2053804 2053813 2057588 2057593) (-1210 "SYMTAB.spad" 2051872 2051881 2053794 2053799) (-1209 "SYMS.spad" 2047895 2047904 2051862 2051867) (-1208 "SYMPOLY.spad" 2046901 2046912 2046983 2047110) (-1207 "SYMFUNC.spad" 2046402 2046413 2046891 2046896) (-1206 "SYMBOL.spad" 2043905 2043914 2046392 2046397) (-1205 "SWITCH.spad" 2040676 2040685 2043895 2043900) (-1204 "SUTS.spad" 2037724 2037752 2039143 2039240) (-1203 "SUPXS.spad" 2035007 2035035 2035856 2036005) (-1202 "SUP.spad" 2031727 2031738 2032500 2032653) (-1201 "SUPFRACF.spad" 2030832 2030850 2031717 2031722) (-1200 "SUP2.spad" 2030224 2030237 2030822 2030827) (-1199 "SUMRF.spad" 2029198 2029209 2030214 2030219) (-1198 "SUMFS.spad" 2028835 2028852 2029188 2029193) (-1197 "SULS.spad" 2018606 2018634 2019564 2019993) (-1196 "SUCHTAST.spad" 2018375 2018384 2018596 2018601) (-1195 "SUCH.spad" 2018057 2018072 2018365 2018370) (-1194 "SUBSPACE.spad" 2010172 2010187 2018047 2018052) (-1193 "SUBRESP.spad" 2009342 2009356 2010128 2010133) (-1192 "STTF.spad" 2005441 2005457 2009332 2009337) (-1191 "STTFNC.spad" 2001909 2001925 2005431 2005436) (-1190 "STTAYLOR.spad" 1994544 1994555 2001790 2001795) (-1189 "STRTBL.spad" 1992595 1992612 1992744 1992771) (-1188 "STRING.spad" 1991382 1991391 1991603 1991630) (-1187 "STREAM.spad" 1988183 1988194 1990790 1990805) (-1186 "STREAM3.spad" 1987756 1987771 1988173 1988178) (-1185 "STREAM2.spad" 1986884 1986897 1987746 1987751) (-1184 "STREAM1.spad" 1986590 1986601 1986874 1986879) (-1183 "STINPROD.spad" 1985526 1985542 1986580 1986585) (-1182 "STEP.spad" 1984727 1984736 1985516 1985521) (-1181 "STEPAST.spad" 1983961 1983970 1984717 1984722) (-1180 "STBL.spad" 1982045 1982073 1982212 1982227) (-1179 "STAGG.spad" 1981120 1981131 1982035 1982040) (-1178 "STAGG.spad" 1980193 1980206 1981110 1981115) (-1177 "STACK.spad" 1979433 1979444 1979683 1979710) (-1176 "SREGSET.spad" 1977101 1977118 1979043 1979070) (-1175 "SRDCMPK.spad" 1975662 1975682 1977091 1977096) (-1174 "SRAGG.spad" 1970805 1970814 1975630 1975657) (-1173 "SRAGG.spad" 1965968 1965979 1970795 1970800) (-1172 "SQMATRIX.spad" 1963511 1963529 1964427 1964514) (-1171 "SPLTREE.spad" 1957907 1957920 1962791 1962818) (-1170 "SPLNODE.spad" 1954495 1954508 1957897 1957902) (-1169 "SPFCAT.spad" 1953304 1953313 1954485 1954490) (-1168 "SPECOUT.spad" 1951856 1951865 1953294 1953299) (-1167 "SPADXPT.spad" 1943451 1943460 1951846 1951851) (-1166 "spad-parser.spad" 1942916 1942925 1943441 1943446) (-1165 "SPADAST.spad" 1942617 1942626 1942906 1942911) (-1164 "SPACEC.spad" 1926816 1926827 1942607 1942612) (-1163 "SPACE3.spad" 1926592 1926603 1926806 1926811) (-1162 "SORTPAK.spad" 1926141 1926154 1926548 1926553) (-1161 "SOLVETRA.spad" 1923904 1923915 1926131 1926136) (-1160 "SOLVESER.spad" 1922432 1922443 1923894 1923899) (-1159 "SOLVERAD.spad" 1918458 1918469 1922422 1922427) (-1158 "SOLVEFOR.spad" 1916920 1916938 1918448 1918453) (-1157 "SNTSCAT.spad" 1916520 1916537 1916888 1916915) (-1156 "SMTS.spad" 1914792 1914818 1916085 1916182) (-1155 "SMP.spad" 1912267 1912287 1912657 1912784) (-1154 "SMITH.spad" 1911112 1911137 1912257 1912262) (-1153 "SMATCAT.spad" 1909222 1909252 1911056 1911107) (-1152 "SMATCAT.spad" 1907264 1907296 1909100 1909105) (-1151 "SKAGG.spad" 1906227 1906238 1907232 1907259) (-1150 "SINT.spad" 1905167 1905176 1906093 1906222) (-1149 "SIMPAN.spad" 1904895 1904904 1905157 1905162) (-1148 "SIG.spad" 1904225 1904234 1904885 1904890) (-1147 "SIGNRF.spad" 1903343 1903354 1904215 1904220) (-1146 "SIGNEF.spad" 1902622 1902639 1903333 1903338) (-1145 "SIGAST.spad" 1902007 1902016 1902612 1902617) (-1144 "SHP.spad" 1899935 1899950 1901963 1901968) (-1143 "SHDP.spad" 1887613 1887640 1888122 1888221) (-1142 "SGROUP.spad" 1887221 1887230 1887603 1887608) (-1141 "SGROUP.spad" 1886827 1886838 1887211 1887216) (-1140 "SGCF.spad" 1879966 1879975 1886817 1886822) (-1139 "SFRTCAT.spad" 1878896 1878913 1879934 1879961) (-1138 "SFRGCD.spad" 1877959 1877979 1878886 1878891) (-1137 "SFQCMPK.spad" 1872596 1872616 1877949 1877954) (-1136 "SFORT.spad" 1872035 1872049 1872586 1872591) (-1135 "SEXOF.spad" 1871878 1871918 1872025 1872030) (-1134 "SEX.spad" 1871770 1871779 1871868 1871873) (-1133 "SEXCAT.spad" 1869542 1869582 1871760 1871765) (-1132 "SET.spad" 1867830 1867841 1868927 1868966) (-1131 "SETMN.spad" 1866280 1866297 1867820 1867825) (-1130 "SETCAT.spad" 1865765 1865774 1866270 1866275) (-1129 "SETCAT.spad" 1865248 1865259 1865755 1865760) (-1128 "SETAGG.spad" 1861797 1861808 1865228 1865243) (-1127 "SETAGG.spad" 1858354 1858367 1861787 1861792) (-1126 "SEQAST.spad" 1858057 1858066 1858344 1858349) (-1125 "SEGXCAT.spad" 1857213 1857226 1858047 1858052) (-1124 "SEG.spad" 1857026 1857037 1857132 1857137) (-1123 "SEGCAT.spad" 1855951 1855962 1857016 1857021) (-1122 "SEGBIND.spad" 1855709 1855720 1855898 1855903) (-1121 "SEGBIND2.spad" 1855407 1855420 1855699 1855704) (-1120 "SEGAST.spad" 1855121 1855130 1855397 1855402) (-1119 "SEG2.spad" 1854556 1854569 1855077 1855082) (-1118 "SDVAR.spad" 1853832 1853843 1854546 1854551) (-1117 "SDPOL.spad" 1851165 1851176 1851456 1851583) (-1116 "SCPKG.spad" 1849254 1849265 1851155 1851160) (-1115 "SCOPE.spad" 1848407 1848416 1849244 1849249) (-1114 "SCACHE.spad" 1847103 1847114 1848397 1848402) (-1113 "SASTCAT.spad" 1847012 1847021 1847093 1847098) (-1112 "SAOS.spad" 1846884 1846893 1847002 1847007) (-1111 "SAERFFC.spad" 1846597 1846617 1846874 1846879) (-1110 "SAE.spad" 1844067 1844083 1844678 1844813) (-1109 "SAEFACT.spad" 1843768 1843788 1844057 1844062) (-1108 "RURPK.spad" 1841427 1841443 1843758 1843763) (-1107 "RULESET.spad" 1840880 1840904 1841417 1841422) (-1106 "RULE.spad" 1839120 1839144 1840870 1840875) (-1105 "RULECOLD.spad" 1838972 1838985 1839110 1839115) (-1104 "RTVALUE.spad" 1838707 1838716 1838962 1838967) (-1103 "RSTRCAST.spad" 1838424 1838433 1838697 1838702) (-1102 "RSETGCD.spad" 1834802 1834822 1838414 1838419) (-1101 "RSETCAT.spad" 1824738 1824755 1834770 1834797) (-1100 "RSETCAT.spad" 1814694 1814713 1824728 1824733) (-1099 "RSDCMPK.spad" 1813146 1813166 1814684 1814689) (-1098 "RRCC.spad" 1811530 1811560 1813136 1813141) (-1097 "RRCC.spad" 1809912 1809944 1811520 1811525) (-1096 "RPTAST.spad" 1809614 1809623 1809902 1809907) (-1095 "RPOLCAT.spad" 1788974 1788989 1809482 1809609) (-1094 "RPOLCAT.spad" 1768047 1768064 1788557 1788562) (-1093 "ROUTINE.spad" 1763468 1763477 1766232 1766259) (-1092 "ROMAN.spad" 1762796 1762805 1763334 1763463) (-1091 "ROIRC.spad" 1761876 1761908 1762786 1762791) (-1090 "RNS.spad" 1760779 1760788 1761778 1761871) (-1089 "RNS.spad" 1759768 1759779 1760769 1760774) (-1088 "RNG.spad" 1759503 1759512 1759758 1759763) (-1087 "RNGBIND.spad" 1758663 1758677 1759458 1759463) (-1086 "RMODULE.spad" 1758428 1758439 1758653 1758658) (-1085 "RMCAT2.spad" 1757848 1757905 1758418 1758423) (-1084 "RMATRIX.spad" 1756636 1756655 1756979 1757018) (-1083 "RMATCAT.spad" 1752215 1752246 1756592 1756631) (-1082 "RMATCAT.spad" 1747684 1747717 1752063 1752068) (-1081 "RLINSET.spad" 1747388 1747399 1747674 1747679) (-1080 "RINTERP.spad" 1747276 1747296 1747378 1747383) (-1079 "RING.spad" 1746746 1746755 1747256 1747271) (-1078 "RING.spad" 1746224 1746235 1746736 1746741) (-1077 "RIDIST.spad" 1745616 1745625 1746214 1746219) (-1076 "RGCHAIN.spad" 1744144 1744160 1745046 1745073) (-1075 "RGBCSPC.spad" 1743925 1743937 1744134 1744139) (-1074 "RGBCMDL.spad" 1743455 1743467 1743915 1743920) (-1073 "RF.spad" 1741097 1741108 1743445 1743450) (-1072 "RFFACTOR.spad" 1740559 1740570 1741087 1741092) (-1071 "RFFACT.spad" 1740294 1740306 1740549 1740554) (-1070 "RFDIST.spad" 1739290 1739299 1740284 1740289) (-1069 "RETSOL.spad" 1738709 1738722 1739280 1739285) (-1068 "RETRACT.spad" 1738137 1738148 1738699 1738704) (-1067 "RETRACT.spad" 1737563 1737576 1738127 1738132) (-1066 "RETAST.spad" 1737375 1737384 1737553 1737558) (-1065 "RESULT.spad" 1734973 1734982 1735560 1735587) (-1064 "RESRING.spad" 1734320 1734367 1734911 1734968) (-1063 "RESLATC.spad" 1733644 1733655 1734310 1734315) (-1062 "REPSQ.spad" 1733375 1733386 1733634 1733639) (-1061 "REP.spad" 1730929 1730938 1733365 1733370) (-1060 "REPDB.spad" 1730636 1730647 1730919 1730924) (-1059 "REP2.spad" 1720294 1720305 1730478 1730483) (-1058 "REP1.spad" 1714490 1714501 1720244 1720249) (-1057 "REGSET.spad" 1712251 1712268 1714100 1714127) (-1056 "REF.spad" 1711586 1711597 1712206 1712211) (-1055 "REDORDER.spad" 1710792 1710809 1711576 1711581) (-1054 "RECLOS.spad" 1709575 1709595 1710279 1710372) (-1053 "REALSOLV.spad" 1708715 1708724 1709565 1709570) (-1052 "REAL.spad" 1708587 1708596 1708705 1708710) (-1051 "REAL0Q.spad" 1705885 1705900 1708577 1708582) (-1050 "REAL0.spad" 1702729 1702744 1705875 1705880) (-1049 "RDUCEAST.spad" 1702450 1702459 1702719 1702724) (-1048 "RDIV.spad" 1702105 1702130 1702440 1702445) (-1047 "RDIST.spad" 1701672 1701683 1702095 1702100) (-1046 "RDETRS.spad" 1700536 1700554 1701662 1701667) (-1045 "RDETR.spad" 1698675 1698693 1700526 1700531) (-1044 "RDEEFS.spad" 1697774 1697791 1698665 1698670) (-1043 "RDEEF.spad" 1696784 1696801 1697764 1697769) (-1042 "RCFIELD.spad" 1693970 1693979 1696686 1696779) (-1041 "RCFIELD.spad" 1691242 1691253 1693960 1693965) (-1040 "RCAGG.spad" 1689170 1689181 1691232 1691237) (-1039 "RCAGG.spad" 1687025 1687038 1689089 1689094) (-1038 "RATRET.spad" 1686385 1686396 1687015 1687020) (-1037 "RATFACT.spad" 1686077 1686089 1686375 1686380) (-1036 "RANDSRC.spad" 1685396 1685405 1686067 1686072) (-1035 "RADUTIL.spad" 1685152 1685161 1685386 1685391) (-1034 "RADIX.spad" 1681976 1681990 1683522 1683615) (-1033 "RADFF.spad" 1679715 1679752 1679834 1679990) (-1032 "RADCAT.spad" 1679310 1679319 1679705 1679710) (-1031 "RADCAT.spad" 1678903 1678914 1679300 1679305) (-1030 "QUEUE.spad" 1678134 1678145 1678393 1678420) (-1029 "QUAT.spad" 1676622 1676633 1676965 1677030) (-1028 "QUATCT2.spad" 1676242 1676261 1676612 1676617) (-1027 "QUATCAT.spad" 1674412 1674423 1676172 1676237) (-1026 "QUATCAT.spad" 1672333 1672346 1674095 1674100) (-1025 "QUAGG.spad" 1671160 1671171 1672301 1672328) (-1024 "QQUTAST.spad" 1670928 1670937 1671150 1671155) (-1023 "QFORM.spad" 1670546 1670561 1670918 1670923) (-1022 "QFCAT.spad" 1669248 1669259 1670448 1670541) (-1021 "QFCAT.spad" 1667541 1667554 1668743 1668748) (-1020 "QFCAT2.spad" 1667233 1667250 1667531 1667536) (-1019 "QEQUAT.spad" 1666791 1666800 1667223 1667228) (-1018 "QCMPACK.spad" 1661537 1661557 1666781 1666786) (-1017 "QALGSET.spad" 1657615 1657648 1661451 1661456) (-1016 "QALGSET2.spad" 1655610 1655629 1657605 1657610) (-1015 "PWFFINTB.spad" 1653025 1653047 1655600 1655605) (-1014 "PUSHVAR.spad" 1652363 1652383 1653015 1653020) (-1013 "PTRANFN.spad" 1648490 1648501 1652353 1652358) (-1012 "PTPACK.spad" 1645577 1645588 1648480 1648485) (-1011 "PTFUNC2.spad" 1645399 1645414 1645567 1645572) (-1010 "PTCAT.spad" 1644653 1644664 1645367 1645394) (-1009 "PSQFR.spad" 1643959 1643984 1644643 1644648) (-1008 "PSEUDLIN.spad" 1642844 1642855 1643949 1643954) (-1007 "PSETPK.spad" 1628276 1628293 1642722 1642727) (-1006 "PSETCAT.spad" 1622195 1622219 1628256 1628271) (-1005 "PSETCAT.spad" 1616088 1616114 1622151 1622156) (-1004 "PSCURVE.spad" 1615070 1615079 1616078 1616083) (-1003 "PSCAT.spad" 1613852 1613882 1614968 1615065) (-1002 "PSCAT.spad" 1612724 1612756 1613842 1613847) (-1001 "PRTITION.spad" 1611421 1611430 1612714 1612719) (-1000 "PRTDAST.spad" 1611139 1611148 1611411 1611416) (-999 "PRS.spad" 1600701 1600718 1611095 1611100) (-998 "PRQAGG.spad" 1600136 1600146 1600669 1600696) (-997 "PROPLOG.spad" 1599708 1599716 1600126 1600131) (-996 "PROPFUN2.spad" 1599331 1599344 1599698 1599703) (-995 "PROPFUN1.spad" 1598729 1598740 1599321 1599326) (-994 "PROPFRML.spad" 1597297 1597308 1598719 1598724) (-993 "PROPERTY.spad" 1596785 1596793 1597287 1597292) (-992 "PRODUCT.spad" 1594467 1594479 1594751 1594806) (-991 "PR.spad" 1592859 1592871 1593558 1593685) (-990 "PRINT.spad" 1592611 1592619 1592849 1592854) (-989 "PRIMES.spad" 1590864 1590874 1592601 1592606) (-988 "PRIMELT.spad" 1588945 1588959 1590854 1590859) (-987 "PRIMCAT.spad" 1588572 1588580 1588935 1588940) (-986 "PRIMARR.spad" 1587424 1587434 1587602 1587629) (-985 "PRIMARR2.spad" 1586191 1586203 1587414 1587419) (-984 "PREASSOC.spad" 1585573 1585585 1586181 1586186) (-983 "PPCURVE.spad" 1584710 1584718 1585563 1585568) (-982 "PORTNUM.spad" 1584485 1584493 1584700 1584705) (-981 "POLYROOT.spad" 1583334 1583356 1584441 1584446) (-980 "POLY.spad" 1580669 1580679 1581184 1581311) (-979 "POLYLIFT.spad" 1579934 1579957 1580659 1580664) (-978 "POLYCATQ.spad" 1578052 1578074 1579924 1579929) (-977 "POLYCAT.spad" 1571522 1571543 1577920 1578047) (-976 "POLYCAT.spad" 1564330 1564353 1570730 1570735) (-975 "POLY2UP.spad" 1563782 1563796 1564320 1564325) (-974 "POLY2.spad" 1563379 1563391 1563772 1563777) (-973 "POLUTIL.spad" 1562320 1562349 1563335 1563340) (-972 "POLTOPOL.spad" 1561068 1561083 1562310 1562315) (-971 "POINT.spad" 1559753 1559763 1559840 1559867) (-970 "PNTHEORY.spad" 1556455 1556463 1559743 1559748) (-969 "PMTOOLS.spad" 1555230 1555244 1556445 1556450) (-968 "PMSYM.spad" 1554779 1554789 1555220 1555225) (-967 "PMQFCAT.spad" 1554370 1554384 1554769 1554774) (-966 "PMPRED.spad" 1553849 1553863 1554360 1554365) (-965 "PMPREDFS.spad" 1553303 1553325 1553839 1553844) (-964 "PMPLCAT.spad" 1552383 1552401 1553235 1553240) (-963 "PMLSAGG.spad" 1551968 1551982 1552373 1552378) (-962 "PMKERNEL.spad" 1551547 1551559 1551958 1551963) (-961 "PMINS.spad" 1551127 1551137 1551537 1551542) (-960 "PMFS.spad" 1550704 1550722 1551117 1551122) (-959 "PMDOWN.spad" 1549994 1550008 1550694 1550699) (-958 "PMASS.spad" 1549004 1549012 1549984 1549989) (-957 "PMASSFS.spad" 1547971 1547987 1548994 1548999) (-956 "PLOTTOOL.spad" 1547751 1547759 1547961 1547966) (-955 "PLOT.spad" 1542674 1542682 1547741 1547746) (-954 "PLOT3D.spad" 1539138 1539146 1542664 1542669) (-953 "PLOT1.spad" 1538295 1538305 1539128 1539133) (-952 "PLEQN.spad" 1525585 1525612 1538285 1538290) (-951 "PINTERP.spad" 1525207 1525226 1525575 1525580) (-950 "PINTERPA.spad" 1524991 1525007 1525197 1525202) (-949 "PI.spad" 1524600 1524608 1524965 1524986) (-948 "PID.spad" 1523570 1523578 1524526 1524595) (-947 "PICOERCE.spad" 1523227 1523237 1523560 1523565) (-946 "PGROEB.spad" 1521828 1521842 1523217 1523222) (-945 "PGE.spad" 1513445 1513453 1521818 1521823) (-944 "PGCD.spad" 1512335 1512352 1513435 1513440) (-943 "PFRPAC.spad" 1511484 1511494 1512325 1512330) (-942 "PFR.spad" 1508147 1508157 1511386 1511479) (-941 "PFOTOOLS.spad" 1507405 1507421 1508137 1508142) (-940 "PFOQ.spad" 1506775 1506793 1507395 1507400) (-939 "PFO.spad" 1506194 1506221 1506765 1506770) (-938 "PF.spad" 1505768 1505780 1505999 1506092) (-937 "PFECAT.spad" 1503450 1503458 1505694 1505763) (-936 "PFECAT.spad" 1501160 1501170 1503406 1503411) (-935 "PFBRU.spad" 1499048 1499060 1501150 1501155) (-934 "PFBR.spad" 1496608 1496631 1499038 1499043) (-933 "PERM.spad" 1492415 1492425 1496438 1496453) (-932 "PERMGRP.spad" 1487185 1487195 1492405 1492410) (-931 "PERMCAT.spad" 1485846 1485856 1487165 1487180) (-930 "PERMAN.spad" 1484378 1484392 1485836 1485841) (-929 "PENDTREE.spad" 1483602 1483612 1483890 1483895) (-928 "PDSPC.spad" 1482415 1482425 1483592 1483597) (-927 "PDSPC.spad" 1481226 1481238 1482405 1482410) (-926 "PDRING.spad" 1481068 1481078 1481206 1481221) (-925 "PDMOD.spad" 1480884 1480896 1481036 1481063) (-924 "PDEPROB.spad" 1479899 1479907 1480874 1480879) (-923 "PDEPACK.spad" 1473939 1473947 1479889 1479894) (-922 "PDECOMP.spad" 1473409 1473426 1473929 1473934) (-921 "PDECAT.spad" 1471765 1471773 1473399 1473404) (-920 "PDDOM.spad" 1471203 1471216 1471755 1471760) (-919 "PDDOM.spad" 1470639 1470654 1471193 1471198) (-918 "PCOMP.spad" 1470492 1470505 1470629 1470634) (-917 "PBWLB.spad" 1469080 1469097 1470482 1470487) (-916 "PATTERN.spad" 1463619 1463629 1469070 1469075) (-915 "PATTERN2.spad" 1463357 1463369 1463609 1463614) (-914 "PATTERN1.spad" 1461693 1461709 1463347 1463352) (-913 "PATRES.spad" 1459268 1459280 1461683 1461688) (-912 "PATRES2.spad" 1458940 1458954 1459258 1459263) (-911 "PATMATCH.spad" 1457137 1457168 1458648 1458653) (-910 "PATMAB.spad" 1456566 1456576 1457127 1457132) (-909 "PATLRES.spad" 1455652 1455666 1456556 1456561) (-908 "PATAB.spad" 1455416 1455426 1455642 1455647) (-907 "PARTPERM.spad" 1453424 1453432 1455406 1455411) (-906 "PARSURF.spad" 1452858 1452886 1453414 1453419) (-905 "PARSU2.spad" 1452655 1452671 1452848 1452853) (-904 "script-parser.spad" 1452175 1452183 1452645 1452650) (-903 "PARSCURV.spad" 1451609 1451637 1452165 1452170) (-902 "PARSC2.spad" 1451400 1451416 1451599 1451604) (-901 "PARPCURV.spad" 1450862 1450890 1451390 1451395) (-900 "PARPC2.spad" 1450653 1450669 1450852 1450857) (-899 "PARAMAST.spad" 1449781 1449789 1450643 1450648) (-898 "PAN2EXPR.spad" 1449193 1449201 1449771 1449776) (-897 "PALETTE.spad" 1448163 1448171 1449183 1449188) (-896 "PAIR.spad" 1447150 1447163 1447751 1447756) (-895 "PADICRC.spad" 1444391 1444409 1445562 1445655) (-894 "PADICRAT.spad" 1442299 1442311 1442520 1442613) (-893 "PADIC.spad" 1441994 1442006 1442225 1442294) (-892 "PADICCT.spad" 1440543 1440555 1441920 1441989) (-891 "PADEPAC.spad" 1439232 1439251 1440533 1440538) (-890 "PADE.spad" 1437984 1438000 1439222 1439227) (-889 "OWP.spad" 1437224 1437254 1437842 1437909) (-888 "OVERSET.spad" 1436797 1436805 1437214 1437219) (-887 "OVAR.spad" 1436578 1436601 1436787 1436792) (-886 "OUT.spad" 1435664 1435672 1436568 1436573) (-885 "OUTFORM.spad" 1425056 1425064 1435654 1435659) (-884 "OUTBFILE.spad" 1424474 1424482 1425046 1425051) (-883 "OUTBCON.spad" 1423480 1423488 1424464 1424469) (-882 "OUTBCON.spad" 1422484 1422494 1423470 1423475) (-881 "OSI.spad" 1421959 1421967 1422474 1422479) (-880 "OSGROUP.spad" 1421877 1421885 1421949 1421954) (-879 "ORTHPOL.spad" 1420362 1420372 1421794 1421799) (-878 "OREUP.spad" 1419815 1419843 1420042 1420081) (-877 "ORESUP.spad" 1419116 1419140 1419495 1419534) (-876 "OREPCTO.spad" 1416973 1416985 1419036 1419041) (-875 "OREPCAT.spad" 1411120 1411130 1416929 1416968) (-874 "OREPCAT.spad" 1405157 1405169 1410968 1410973) (-873 "ORDTYPE.spad" 1404394 1404402 1405147 1405152) (-872 "ORDTYPE.spad" 1403629 1403639 1404384 1404389) (-871 "ORDSTRCT.spad" 1403402 1403417 1403565 1403570) (-870 "ORDSET.spad" 1403102 1403110 1403392 1403397) (-869 "ORDRING.spad" 1402492 1402500 1403082 1403097) (-868 "ORDRING.spad" 1401890 1401900 1402482 1402487) (-867 "ORDMON.spad" 1401745 1401753 1401880 1401885) (-866 "ORDFUNS.spad" 1400877 1400893 1401735 1401740) (-865 "ORDFIN.spad" 1400697 1400705 1400867 1400872) (-864 "ORDCOMP.spad" 1399162 1399172 1400244 1400273) (-863 "ORDCOMP2.spad" 1398455 1398467 1399152 1399157) (-862 "OPTPROB.spad" 1397093 1397101 1398445 1398450) (-861 "OPTPACK.spad" 1389502 1389510 1397083 1397088) (-860 "OPTCAT.spad" 1387181 1387189 1389492 1389497) (-859 "OPSIG.spad" 1386835 1386843 1387171 1387176) (-858 "OPQUERY.spad" 1386384 1386392 1386825 1386830) (-857 "OP.spad" 1386126 1386136 1386206 1386273) (-856 "OPERCAT.spad" 1385592 1385602 1386116 1386121) (-855 "OPERCAT.spad" 1385056 1385068 1385582 1385587) (-854 "ONECOMP.spad" 1383801 1383811 1384603 1384632) (-853 "ONECOMP2.spad" 1383225 1383237 1383791 1383796) (-852 "OMSERVER.spad" 1382231 1382239 1383215 1383220) (-851 "OMSAGG.spad" 1382019 1382029 1382187 1382226) (-850 "OMPKG.spad" 1380635 1380643 1382009 1382014) (-849 "OM.spad" 1379608 1379616 1380625 1380630) (-848 "OMLO.spad" 1379033 1379045 1379494 1379533) (-847 "OMEXPR.spad" 1378867 1378877 1379023 1379028) (-846 "OMERR.spad" 1378412 1378420 1378857 1378862) (-845 "OMERRK.spad" 1377446 1377454 1378402 1378407) (-844 "OMENC.spad" 1376790 1376798 1377436 1377441) (-843 "OMDEV.spad" 1371099 1371107 1376780 1376785) (-842 "OMCONN.spad" 1370508 1370516 1371089 1371094) (-841 "OINTDOM.spad" 1370271 1370279 1370434 1370503) (-840 "OFMONOID.spad" 1368394 1368404 1370227 1370232) (-839 "ODVAR.spad" 1367655 1367665 1368384 1368389) (-838 "ODR.spad" 1367299 1367325 1367467 1367616) (-837 "ODPOL.spad" 1364588 1364598 1364928 1365055) (-836 "ODP.spad" 1352402 1352422 1352775 1352874) (-835 "ODETOOLS.spad" 1351051 1351070 1352392 1352397) (-834 "ODESYS.spad" 1348745 1348762 1351041 1351046) (-833 "ODERTRIC.spad" 1344754 1344771 1348702 1348707) (-832 "ODERED.spad" 1344153 1344177 1344744 1344749) (-831 "ODERAT.spad" 1341768 1341785 1344143 1344148) (-830 "ODEPRRIC.spad" 1338805 1338827 1341758 1341763) (-829 "ODEPROB.spad" 1338062 1338070 1338795 1338800) (-828 "ODEPRIM.spad" 1335396 1335418 1338052 1338057) (-827 "ODEPAL.spad" 1334782 1334806 1335386 1335391) (-826 "ODEPACK.spad" 1321448 1321456 1334772 1334777) (-825 "ODEINT.spad" 1320883 1320899 1321438 1321443) (-824 "ODEIFTBL.spad" 1318278 1318286 1320873 1320878) (-823 "ODEEF.spad" 1313769 1313785 1318268 1318273) (-822 "ODECONST.spad" 1313306 1313324 1313759 1313764) (-821 "ODECAT.spad" 1311904 1311912 1313296 1313301) (-820 "OCT.spad" 1310040 1310050 1310754 1310793) (-819 "OCTCT2.spad" 1309686 1309707 1310030 1310035) (-818 "OC.spad" 1307482 1307492 1309642 1309681) (-817 "OC.spad" 1305003 1305015 1307165 1307170) (-816 "OCAMON.spad" 1304851 1304859 1304993 1304998) (-815 "OASGP.spad" 1304666 1304674 1304841 1304846) (-814 "OAMONS.spad" 1304188 1304196 1304656 1304661) (-813 "OAMON.spad" 1304049 1304057 1304178 1304183) (-812 "OAGROUP.spad" 1303911 1303919 1304039 1304044) (-811 "NUMTUBE.spad" 1303502 1303518 1303901 1303906) (-810 "NUMQUAD.spad" 1291478 1291486 1303492 1303497) (-809 "NUMODE.spad" 1282832 1282840 1291468 1291473) (-808 "NUMINT.spad" 1280398 1280406 1282822 1282827) (-807 "NUMFMT.spad" 1279238 1279246 1280388 1280393) (-806 "NUMERIC.spad" 1271352 1271362 1279043 1279048) (-805 "NTSCAT.spad" 1269860 1269876 1271320 1271347) (-804 "NTPOLFN.spad" 1269411 1269421 1269777 1269782) (-803 "NSUP.spad" 1262364 1262374 1266904 1267057) (-802 "NSUP2.spad" 1261756 1261768 1262354 1262359) (-801 "NSMP.spad" 1257986 1258005 1258294 1258421) (-800 "NREP.spad" 1256364 1256378 1257976 1257981) (-799 "NPCOEF.spad" 1255610 1255630 1256354 1256359) (-798 "NORMRETR.spad" 1255208 1255247 1255600 1255605) (-797 "NORMPK.spad" 1253110 1253129 1255198 1255203) (-796 "NORMMA.spad" 1252798 1252824 1253100 1253105) (-795 "NONE.spad" 1252539 1252547 1252788 1252793) (-794 "NONE1.spad" 1252215 1252225 1252529 1252534) (-793 "NODE1.spad" 1251702 1251718 1252205 1252210) (-792 "NNI.spad" 1250597 1250605 1251676 1251697) (-791 "NLINSOL.spad" 1249223 1249233 1250587 1250592) (-790 "NIPROB.spad" 1247764 1247772 1249213 1249218) (-789 "NFINTBAS.spad" 1245324 1245341 1247754 1247759) (-788 "NETCLT.spad" 1245298 1245309 1245314 1245319) (-787 "NCODIV.spad" 1243514 1243530 1245288 1245293) (-786 "NCNTFRAC.spad" 1243156 1243170 1243504 1243509) (-785 "NCEP.spad" 1241322 1241336 1243146 1243151) (-784 "NASRING.spad" 1240918 1240926 1241312 1241317) (-783 "NASRING.spad" 1240512 1240522 1240908 1240913) (-782 "NARNG.spad" 1239864 1239872 1240502 1240507) (-781 "NARNG.spad" 1239214 1239224 1239854 1239859) (-780 "NAGSP.spad" 1238291 1238299 1239204 1239209) (-779 "NAGS.spad" 1227952 1227960 1238281 1238286) (-778 "NAGF07.spad" 1226383 1226391 1227942 1227947) (-777 "NAGF04.spad" 1220785 1220793 1226373 1226378) (-776 "NAGF02.spad" 1214854 1214862 1220775 1220780) (-775 "NAGF01.spad" 1210615 1210623 1214844 1214849) (-774 "NAGE04.spad" 1204315 1204323 1210605 1210610) (-773 "NAGE02.spad" 1194975 1194983 1204305 1204310) (-772 "NAGE01.spad" 1190977 1190985 1194965 1194970) (-771 "NAGD03.spad" 1188981 1188989 1190967 1190972) (-770 "NAGD02.spad" 1181728 1181736 1188971 1188976) (-769 "NAGD01.spad" 1176021 1176029 1181718 1181723) (-768 "NAGC06.spad" 1171896 1171904 1176011 1176016) (-767 "NAGC05.spad" 1170397 1170405 1171886 1171891) (-766 "NAGC02.spad" 1169664 1169672 1170387 1170392) (-765 "NAALG.spad" 1169205 1169215 1169632 1169659) (-764 "NAALG.spad" 1168766 1168778 1169195 1169200) (-763 "MULTSQFR.spad" 1165724 1165741 1168756 1168761) (-762 "MULTFACT.spad" 1165107 1165124 1165714 1165719) (-761 "MTSCAT.spad" 1163201 1163222 1165005 1165102) (-760 "MTHING.spad" 1162860 1162870 1163191 1163196) (-759 "MSYSCMD.spad" 1162294 1162302 1162850 1162855) (-758 "MSET.spad" 1160216 1160226 1161964 1162003) (-757 "MSETAGG.spad" 1160061 1160071 1160184 1160211) (-756 "MRING.spad" 1157038 1157050 1159769 1159836) (-755 "MRF2.spad" 1156608 1156622 1157028 1157033) (-754 "MRATFAC.spad" 1156154 1156171 1156598 1156603) (-753 "MPRFF.spad" 1154194 1154213 1156144 1156149) (-752 "MPOLY.spad" 1151665 1151680 1152024 1152151) (-751 "MPCPF.spad" 1150929 1150948 1151655 1151660) (-750 "MPC3.spad" 1150746 1150786 1150919 1150924) (-749 "MPC2.spad" 1150392 1150425 1150736 1150741) (-748 "MONOTOOL.spad" 1148743 1148760 1150382 1150387) (-747 "MONOID.spad" 1148062 1148070 1148733 1148738) (-746 "MONOID.spad" 1147379 1147389 1148052 1148057) (-745 "MONOGEN.spad" 1146127 1146140 1147239 1147374) (-744 "MONOGEN.spad" 1144897 1144912 1146011 1146016) (-743 "MONADWU.spad" 1142927 1142935 1144887 1144892) (-742 "MONADWU.spad" 1140955 1140965 1142917 1142922) (-741 "MONAD.spad" 1140115 1140123 1140945 1140950) (-740 "MONAD.spad" 1139273 1139283 1140105 1140110) (-739 "MOEBIUS.spad" 1138009 1138023 1139253 1139268) (-738 "MODULE.spad" 1137879 1137889 1137977 1138004) (-737 "MODULE.spad" 1137769 1137781 1137869 1137874) (-736 "MODRING.spad" 1137104 1137143 1137749 1137764) (-735 "MODOP.spad" 1135769 1135781 1136926 1136993) (-734 "MODMONOM.spad" 1135500 1135518 1135759 1135764) (-733 "MODMON.spad" 1132202 1132218 1132921 1133074) (-732 "MODFIELD.spad" 1131564 1131603 1132104 1132197) (-731 "MMLFORM.spad" 1130424 1130432 1131554 1131559) (-730 "MMAP.spad" 1130166 1130200 1130414 1130419) (-729 "MLO.spad" 1128625 1128635 1130122 1130161) (-728 "MLIFT.spad" 1127237 1127254 1128615 1128620) (-727 "MKUCFUNC.spad" 1126772 1126790 1127227 1127232) (-726 "MKRECORD.spad" 1126376 1126389 1126762 1126767) (-725 "MKFUNC.spad" 1125783 1125793 1126366 1126371) (-724 "MKFLCFN.spad" 1124751 1124761 1125773 1125778) (-723 "MKBCFUNC.spad" 1124246 1124264 1124741 1124746) (-722 "MINT.spad" 1123685 1123693 1124148 1124241) (-721 "MHROWRED.spad" 1122196 1122206 1123675 1123680) (-720 "MFLOAT.spad" 1120716 1120724 1122086 1122191) (-719 "MFINFACT.spad" 1120116 1120138 1120706 1120711) (-718 "MESH.spad" 1117898 1117906 1120106 1120111) (-717 "MDDFACT.spad" 1116109 1116119 1117888 1117893) (-716 "MDAGG.spad" 1115400 1115410 1116089 1116104) (-715 "MCMPLX.spad" 1110831 1110839 1111445 1111646) (-714 "MCDEN.spad" 1110041 1110053 1110821 1110826) (-713 "MCALCFN.spad" 1107163 1107189 1110031 1110036) (-712 "MAYBE.spad" 1106447 1106458 1107153 1107158) (-711 "MATSTOR.spad" 1103755 1103765 1106437 1106442) (-710 "MATRIX.spad" 1102342 1102352 1102826 1102853) (-709 "MATLIN.spad" 1099686 1099710 1102226 1102231) (-708 "MATCAT.spad" 1091208 1091230 1099654 1099681) (-707 "MATCAT.spad" 1082602 1082626 1091050 1091055) (-706 "MATCAT2.spad" 1081884 1081932 1082592 1082597) (-705 "MAPPKG3.spad" 1080799 1080813 1081874 1081879) (-704 "MAPPKG2.spad" 1080137 1080149 1080789 1080794) (-703 "MAPPKG1.spad" 1078965 1078975 1080127 1080132) (-702 "MAPPAST.spad" 1078280 1078288 1078955 1078960) (-701 "MAPHACK3.spad" 1078092 1078106 1078270 1078275) (-700 "MAPHACK2.spad" 1077861 1077873 1078082 1078087) (-699 "MAPHACK1.spad" 1077505 1077515 1077851 1077856) (-698 "MAGMA.spad" 1075295 1075312 1077495 1077500) (-697 "MACROAST.spad" 1074874 1074882 1075285 1075290) (-696 "M3D.spad" 1072477 1072487 1074135 1074140) (-695 "LZSTAGG.spad" 1069715 1069725 1072467 1072472) (-694 "LZSTAGG.spad" 1066951 1066963 1069705 1069710) (-693 "LWORD.spad" 1063656 1063673 1066941 1066946) (-692 "LSTAST.spad" 1063440 1063448 1063646 1063651) (-691 "LSQM.spad" 1061597 1061611 1061991 1062042) (-690 "LSPP.spad" 1061132 1061149 1061587 1061592) (-689 "LSMP.spad" 1059982 1060010 1061122 1061127) (-688 "LSMP1.spad" 1057800 1057814 1059972 1059977) (-687 "LSAGG.spad" 1057469 1057479 1057768 1057795) (-686 "LSAGG.spad" 1057158 1057170 1057459 1057464) (-685 "LPOLY.spad" 1056112 1056131 1057014 1057083) (-684 "LPEFRAC.spad" 1055383 1055393 1056102 1056107) (-683 "LO.spad" 1054784 1054798 1055317 1055344) (-682 "LOGIC.spad" 1054386 1054394 1054774 1054779) (-681 "LOGIC.spad" 1053986 1053996 1054376 1054381) (-680 "LODOOPS.spad" 1052916 1052928 1053976 1053981) (-679 "LODO.spad" 1052300 1052316 1052596 1052635) (-678 "LODOF.spad" 1051346 1051363 1052257 1052262) (-677 "LODOCAT.spad" 1050012 1050022 1051302 1051341) (-676 "LODOCAT.spad" 1048676 1048688 1049968 1049973) (-675 "LODO2.spad" 1047949 1047961 1048356 1048395) (-674 "LODO1.spad" 1047349 1047359 1047629 1047668) (-673 "LODEEF.spad" 1046151 1046169 1047339 1047344) (-672 "LNAGG.spad" 1042298 1042308 1046141 1046146) (-671 "LNAGG.spad" 1038409 1038421 1042254 1042259) (-670 "LMOPS.spad" 1035177 1035194 1038399 1038404) (-669 "LMODULE.spad" 1034945 1034955 1035167 1035172) (-668 "LMDICT.spad" 1034115 1034125 1034379 1034406) (-667 "LLINSET.spad" 1033822 1033832 1034105 1034110) (-666 "LITERAL.spad" 1033728 1033739 1033812 1033817) (-665 "LIST.spad" 1031310 1031320 1032722 1032749) (-664 "LIST3.spad" 1030621 1030635 1031300 1031305) (-663 "LIST2.spad" 1029323 1029335 1030611 1030616) (-662 "LIST2MAP.spad" 1026226 1026238 1029313 1029318) (-661 "LINSET.spad" 1026005 1026015 1026216 1026221) (-660 "LINFORM.spad" 1025468 1025480 1025973 1026000) (-659 "LINEXP.spad" 1024211 1024221 1025458 1025463) (-658 "LINELT.spad" 1023582 1023594 1024094 1024121) (-657 "LINDEP.spad" 1022391 1022403 1023494 1023499) (-656 "LINBASIS.spad" 1022027 1022042 1022381 1022386) (-655 "LIMITRF.spad" 1019955 1019965 1022017 1022022) (-654 "LIMITPS.spad" 1018858 1018871 1019945 1019950) (-653 "LIE.spad" 1016874 1016886 1018148 1018293) (-652 "LIECAT.spad" 1016350 1016360 1016800 1016869) (-651 "LIECAT.spad" 1015854 1015866 1016306 1016311) (-650 "LIB.spad" 1013605 1013613 1014051 1014066) (-649 "LGROBP.spad" 1010958 1010977 1013595 1013600) (-648 "LF.spad" 1009913 1009929 1010948 1010953) (-647 "LFCAT.spad" 1008972 1008980 1009903 1009908) (-646 "LEXTRIPK.spad" 1004475 1004490 1008962 1008967) (-645 "LEXP.spad" 1002478 1002505 1004455 1004470) (-644 "LETAST.spad" 1002177 1002185 1002468 1002473) (-643 "LEADCDET.spad" 1000575 1000592 1002167 1002172) (-642 "LAZM3PK.spad" 999279 999301 1000565 1000570) (-641 "LAUPOL.spad" 997879 997892 998779 998848) (-640 "LAPLACE.spad" 997462 997478 997869 997874) (-639 "LA.spad" 996902 996916 997384 997423) (-638 "LALG.spad" 996678 996688 996882 996897) (-637 "LALG.spad" 996462 996474 996668 996673) (-636 "KVTFROM.spad" 996197 996207 996452 996457) (-635 "KTVLOGIC.spad" 995709 995717 996187 996192) (-634 "KRCFROM.spad" 995447 995457 995699 995704) (-633 "KOVACIC.spad" 994170 994187 995437 995442) (-632 "KONVERT.spad" 993892 993902 994160 994165) (-631 "KOERCE.spad" 993629 993639 993882 993887) (-630 "KERNEL.spad" 992284 992294 993413 993418) (-629 "KERNEL2.spad" 991987 991999 992274 992279) (-628 "KDAGG.spad" 991096 991118 991967 991982) (-627 "KDAGG.spad" 990213 990237 991086 991091) (-626 "KAFILE.spad" 989067 989083 989302 989329) (-625 "JVMOP.spad" 988972 988980 989057 989062) (-624 "JVMMDACC.spad" 988949 988957 988962 988967) (-623 "JVMFDACC.spad" 988926 988934 988939 988944) (-622 "JVMCSTTG.spad" 988903 988911 988916 988921) (-621 "JVMCFACC.spad" 988880 988888 988893 988898) (-620 "JVMBCODE.spad" 988783 988791 988870 988875) (-619 "JORDAN.spad" 986612 986624 988073 988218) (-618 "JOINAST.spad" 986306 986314 986602 986607) (-617 "IXAGG.spad" 984439 984463 986296 986301) (-616 "IXAGG.spad" 982427 982453 984286 984291) (-615 "IVECTOR.spad" 981044 981059 981199 981226) (-614 "ITUPLE.spad" 980205 980215 981034 981039) (-613 "ITRIGMNP.spad" 979044 979063 980195 980200) (-612 "ITFUN3.spad" 978550 978564 979034 979039) (-611 "ITFUN2.spad" 978294 978306 978540 978545) (-610 "ITFORM.spad" 977649 977657 978284 978289) (-609 "ITAYLOR.spad" 975643 975658 977513 977610) (-608 "ISUPS.spad" 968080 968095 974617 974714) (-607 "ISUMP.spad" 967581 967597 968070 968075) (-606 "ISTRING.spad" 966508 966521 966589 966616) (-605 "ISAST.spad" 966227 966235 966498 966503) (-604 "IRURPK.spad" 964944 964963 966217 966222) (-603 "IRSN.spad" 962916 962924 964934 964939) (-602 "IRRF2F.spad" 961401 961411 962872 962877) (-601 "IRREDFFX.spad" 961002 961013 961391 961396) (-600 "IROOT.spad" 959341 959351 960992 960997) (-599 "IR.spad" 957142 957156 959196 959223) (-598 "IRFORM.spad" 956466 956474 957132 957137) (-597 "IR2.spad" 955494 955510 956456 956461) (-596 "IR2F.spad" 954700 954716 955484 955489) (-595 "IPRNTPK.spad" 954460 954468 954690 954695) (-594 "IPF.spad" 954025 954037 954265 954358) (-593 "IPADIC.spad" 953786 953812 953951 954020) (-592 "IP4ADDR.spad" 953343 953351 953776 953781) (-591 "IOMODE.spad" 952865 952873 953333 953338) (-590 "IOBFILE.spad" 952226 952234 952855 952860) (-589 "IOBCON.spad" 952091 952099 952216 952221) (-588 "INVLAPLA.spad" 951740 951756 952081 952086) (-587 "INTTR.spad" 945122 945139 951730 951735) (-586 "INTTOOLS.spad" 942877 942893 944696 944701) (-585 "INTSLPE.spad" 942197 942205 942867 942872) (-584 "INTRVL.spad" 941763 941773 942111 942192) (-583 "INTRF.spad" 940187 940201 941753 941758) (-582 "INTRET.spad" 939619 939629 940177 940182) (-581 "INTRAT.spad" 938346 938363 939609 939614) (-580 "INTPM.spad" 936731 936747 937989 937994) (-579 "INTPAF.spad" 934595 934613 936663 936668) (-578 "INTPACK.spad" 924969 924977 934585 934590) (-577 "INT.spad" 924417 924425 924823 924964) (-576 "INTHERTR.spad" 923691 923708 924407 924412) (-575 "INTHERAL.spad" 923361 923385 923681 923686) (-574 "INTHEORY.spad" 919800 919808 923351 923356) (-573 "INTG0.spad" 913533 913551 919732 919737) (-572 "INTFTBL.spad" 907562 907570 913523 913528) (-571 "INTFACT.spad" 906621 906631 907552 907557) (-570 "INTEF.spad" 905006 905022 906611 906616) (-569 "INTDOM.spad" 903629 903637 904932 905001) (-568 "INTDOM.spad" 902314 902324 903619 903624) (-567 "INTCAT.spad" 900573 900583 902228 902309) (-566 "INTBIT.spad" 900080 900088 900563 900568) (-565 "INTALG.spad" 899268 899295 900070 900075) (-564 "INTAF.spad" 898768 898784 899258 899263) (-563 "INTABL.spad" 896844 896875 897007 897034) (-562 "INT8.spad" 896724 896732 896834 896839) (-561 "INT64.spad" 896603 896611 896714 896719) (-560 "INT32.spad" 896482 896490 896593 896598) (-559 "INT16.spad" 896361 896369 896472 896477) (-558 "INS.spad" 893864 893872 896263 896356) (-557 "INS.spad" 891453 891463 893854 893859) (-556 "INPSIGN.spad" 890901 890914 891443 891448) (-555 "INPRODPF.spad" 889997 890016 890891 890896) (-554 "INPRODFF.spad" 889085 889109 889987 889992) (-553 "INNMFACT.spad" 888060 888077 889075 889080) (-552 "INMODGCD.spad" 887548 887578 888050 888055) (-551 "INFSP.spad" 885845 885867 887538 887543) (-550 "INFPROD0.spad" 884925 884944 885835 885840) (-549 "INFORM.spad" 882124 882132 884915 884920) (-548 "INFORM1.spad" 881749 881759 882114 882119) (-547 "INFINITY.spad" 881301 881309 881739 881744) (-546 "INETCLTS.spad" 881278 881286 881291 881296) (-545 "INEP.spad" 879816 879838 881268 881273) (-544 "INDE.spad" 879465 879482 879726 879731) (-543 "INCRMAPS.spad" 878886 878896 879455 879460) (-542 "INBFILE.spad" 877958 877966 878876 878881) (-541 "INBFF.spad" 873752 873763 877948 877953) (-540 "INBCON.spad" 872042 872050 873742 873747) (-539 "INBCON.spad" 870330 870340 872032 872037) (-538 "INAST.spad" 869991 869999 870320 870325) (-537 "IMPTAST.spad" 869699 869707 869981 869986) (-536 "IMATRIX.spad" 868527 868553 869039 869066) (-535 "IMATQF.spad" 867621 867665 868483 868488) (-534 "IMATLIN.spad" 866226 866250 867577 867582) (-533 "ILIST.spad" 864731 864746 865256 865283) (-532 "IIARRAY2.spad" 864002 864040 864221 864248) (-531 "IFF.spad" 863412 863428 863683 863776) (-530 "IFAST.spad" 863026 863034 863402 863407) (-529 "IFARRAY.spad" 860366 860381 862056 862083) (-528 "IFAMON.spad" 860228 860245 860322 860327) (-527 "IEVALAB.spad" 859633 859645 860218 860223) (-526 "IEVALAB.spad" 859036 859050 859623 859628) (-525 "IDPO.spad" 858771 858783 858948 858953) (-524 "IDPOAMS.spad" 858449 858461 858683 858688) (-523 "IDPOAM.spad" 858091 858103 858361 858366) (-522 "IDPC.spad" 856820 856832 858081 858086) (-521 "IDPAM.spad" 856487 856499 856732 856737) (-520 "IDPAG.spad" 856156 856168 856399 856404) (-519 "IDENT.spad" 855806 855814 856146 856151) (-518 "IDECOMP.spad" 853045 853063 855796 855801) (-517 "IDEAL.spad" 847994 848033 852980 852985) (-516 "ICDEN.spad" 847183 847199 847984 847989) (-515 "ICARD.spad" 846374 846382 847173 847178) (-514 "IBPTOOLS.spad" 844981 844998 846364 846369) (-513 "IBITS.spad" 844146 844159 844579 844606) (-512 "IBATOOL.spad" 841123 841142 844136 844141) (-511 "IBACHIN.spad" 839630 839645 841113 841118) (-510 "IARRAY2.spad" 838501 838527 839120 839147) (-509 "IARRAY1.spad" 837393 837408 837531 837558) (-508 "IAN.spad" 835616 835624 837209 837302) (-507 "IALGFACT.spad" 835219 835252 835606 835611) (-506 "HYPCAT.spad" 834643 834651 835209 835214) (-505 "HYPCAT.spad" 834065 834075 834633 834638) (-504 "HOSTNAME.spad" 833873 833881 834055 834060) (-503 "HOMOTOP.spad" 833616 833626 833863 833868) (-502 "HOAGG.spad" 830898 830908 833606 833611) (-501 "HOAGG.spad" 827919 827931 830629 830634) (-500 "HEXADEC.spad" 825924 825932 826289 826382) (-499 "HEUGCD.spad" 824959 824970 825914 825919) (-498 "HELLFDIV.spad" 824549 824573 824949 824954) (-497 "HEAP.spad" 823824 823834 824039 824066) (-496 "HEADAST.spad" 823357 823365 823814 823819) (-495 "HDP.spad" 811167 811183 811544 811643) (-494 "HDMP.spad" 808381 808396 808997 809124) (-493 "HB.spad" 806632 806640 808371 808376) (-492 "HASHTBL.spad" 804660 804691 804871 804898) (-491 "HASAST.spad" 804376 804384 804650 804655) (-490 "HACKPI.spad" 803867 803875 804278 804371) (-489 "GTSET.spad" 802770 802786 803477 803504) (-488 "GSTBL.spad" 800847 800882 801021 801036) (-487 "GSERIES.spad" 798160 798187 798979 799128) (-486 "GROUP.spad" 797433 797441 798140 798155) (-485 "GROUP.spad" 796714 796724 797423 797428) (-484 "GROEBSOL.spad" 795208 795229 796704 796709) (-483 "GRMOD.spad" 793779 793791 795198 795203) (-482 "GRMOD.spad" 792348 792362 793769 793774) (-481 "GRIMAGE.spad" 785237 785245 792338 792343) (-480 "GRDEF.spad" 783616 783624 785227 785232) (-479 "GRAY.spad" 782079 782087 783606 783611) (-478 "GRALG.spad" 781156 781168 782069 782074) (-477 "GRALG.spad" 780231 780245 781146 781151) (-476 "GPOLSET.spad" 779649 779672 779877 779904) (-475 "GOSPER.spad" 778918 778936 779639 779644) (-474 "GMODPOL.spad" 778066 778093 778886 778913) (-473 "GHENSEL.spad" 777149 777163 778056 778061) (-472 "GENUPS.spad" 773442 773455 777139 777144) (-471 "GENUFACT.spad" 773019 773029 773432 773437) (-470 "GENPGCD.spad" 772605 772622 773009 773014) (-469 "GENMFACT.spad" 772057 772076 772595 772600) (-468 "GENEEZ.spad" 770008 770021 772047 772052) (-467 "GDMP.spad" 767064 767081 767838 767965) (-466 "GCNAALG.spad" 760987 761014 766858 766925) (-465 "GCDDOM.spad" 760163 760171 760913 760982) (-464 "GCDDOM.spad" 759401 759411 760153 760158) (-463 "GB.spad" 756927 756965 759357 759362) (-462 "GBINTERN.spad" 752947 752985 756917 756922) (-461 "GBF.spad" 748714 748752 752937 752942) (-460 "GBEUCLID.spad" 746596 746634 748704 748709) (-459 "GAUSSFAC.spad" 745909 745917 746586 746591) (-458 "GALUTIL.spad" 744235 744245 745865 745870) (-457 "GALPOLYU.spad" 742689 742702 744225 744230) (-456 "GALFACTU.spad" 740862 740881 742679 742684) (-455 "GALFACT.spad" 731051 731062 740852 740857) (-454 "FVFUN.spad" 728074 728082 731041 731046) (-453 "FVC.spad" 727126 727134 728064 728069) (-452 "FUNDESC.spad" 726804 726812 727116 727121) (-451 "FUNCTION.spad" 726653 726665 726794 726799) (-450 "FT.spad" 724950 724958 726643 726648) (-449 "FTEM.spad" 724115 724123 724940 724945) (-448 "FSUPFACT.spad" 723015 723034 724051 724056) (-447 "FST.spad" 721101 721109 723005 723010) (-446 "FSRED.spad" 720581 720597 721091 721096) (-445 "FSPRMELT.spad" 719463 719479 720538 720543) (-444 "FSPECF.spad" 717554 717570 719453 719458) (-443 "FS.spad" 711822 711832 717329 717549) (-442 "FS.spad" 705868 705880 711377 711382) (-441 "FSINT.spad" 705528 705544 705858 705863) (-440 "FSERIES.spad" 704719 704731 705348 705447) (-439 "FSCINT.spad" 704036 704052 704709 704714) (-438 "FSAGG.spad" 703153 703163 703992 704031) (-437 "FSAGG.spad" 702232 702244 703073 703078) (-436 "FSAGG2.spad" 700975 700991 702222 702227) (-435 "FS2UPS.spad" 695466 695500 700965 700970) (-434 "FS2.spad" 695113 695129 695456 695461) (-433 "FS2EXPXP.spad" 694238 694261 695103 695108) (-432 "FRUTIL.spad" 693192 693202 694228 694233) (-431 "FR.spad" 686815 686825 692123 692192) (-430 "FRNAALG.spad" 682084 682094 686757 686810) (-429 "FRNAALG.spad" 677365 677377 682040 682045) (-428 "FRNAAF2.spad" 676821 676839 677355 677360) (-427 "FRMOD.spad" 676231 676261 676752 676757) (-426 "FRIDEAL.spad" 675456 675477 676211 676226) (-425 "FRIDEAL2.spad" 675060 675092 675446 675451) (-424 "FRETRCT.spad" 674571 674581 675050 675055) (-423 "FRETRCT.spad" 673948 673960 674429 674434) (-422 "FRAMALG.spad" 672296 672309 673904 673943) (-421 "FRAMALG.spad" 670676 670691 672286 672291) (-420 "FRAC.spad" 667682 667692 668085 668258) (-419 "FRAC2.spad" 667287 667299 667672 667677) (-418 "FR2.spad" 666623 666635 667277 667282) (-417 "FPS.spad" 663438 663446 666513 666618) (-416 "FPS.spad" 660281 660291 663358 663363) (-415 "FPC.spad" 659327 659335 660183 660276) (-414 "FPC.spad" 658459 658469 659317 659322) (-413 "FPATMAB.spad" 658221 658231 658449 658454) (-412 "FPARFRAC.spad" 657071 657088 658211 658216) (-411 "FORTRAN.spad" 655577 655620 657061 657066) (-410 "FORT.spad" 654526 654534 655567 655572) (-409 "FORTFN.spad" 651696 651704 654516 654521) (-408 "FORTCAT.spad" 651380 651388 651686 651691) (-407 "FORMULA.spad" 648854 648862 651370 651375) (-406 "FORMULA1.spad" 648333 648343 648844 648849) (-405 "FORDER.spad" 648024 648048 648323 648328) (-404 "FOP.spad" 647225 647233 648014 648019) (-403 "FNLA.spad" 646649 646671 647193 647220) (-402 "FNCAT.spad" 645244 645252 646639 646644) (-401 "FNAME.spad" 645136 645144 645234 645239) (-400 "FMTC.spad" 644934 644942 645062 645131) (-399 "FMONOID.spad" 644599 644609 644890 644895) (-398 "FMONCAT.spad" 641752 641762 644589 644594) (-397 "FM.spad" 641367 641379 641606 641633) (-396 "FMFUN.spad" 638397 638405 641357 641362) (-395 "FMC.spad" 637449 637457 638387 638392) (-394 "FMCAT.spad" 635117 635135 637417 637444) (-393 "FM1.spad" 634474 634486 635051 635078) (-392 "FLOATRP.spad" 632209 632223 634464 634469) (-391 "FLOAT.spad" 625523 625531 632075 632204) (-390 "FLOATCP.spad" 622954 622968 625513 625518) (-389 "FLINEXP.spad" 622676 622686 622944 622949) (-388 "FLINEXP.spad" 622342 622354 622612 622617) (-387 "FLASORT.spad" 621668 621680 622332 622337) (-386 "FLALG.spad" 619314 619333 621594 621663) (-385 "FLAGG.spad" 616356 616366 619294 619309) (-384 "FLAGG.spad" 613299 613311 616239 616244) (-383 "FLAGG2.spad" 612024 612040 613289 613294) (-382 "FINRALG.spad" 610085 610098 611980 612019) (-381 "FINRALG.spad" 608072 608087 609969 609974) (-380 "FINITE.spad" 607224 607232 608062 608067) (-379 "FINAALG.spad" 596345 596355 607166 607219) (-378 "FINAALG.spad" 585478 585490 596301 596306) (-377 "FILE.spad" 585061 585071 585468 585473) (-376 "FILECAT.spad" 583587 583604 585051 585056) (-375 "FIELD.spad" 582993 583001 583489 583582) (-374 "FIELD.spad" 582485 582495 582983 582988) (-373 "FGROUP.spad" 581132 581142 582465 582480) (-372 "FGLMICPK.spad" 579919 579934 581122 581127) (-371 "FFX.spad" 579294 579309 579635 579728) (-370 "FFSLPE.spad" 578797 578818 579284 579289) (-369 "FFPOLY.spad" 570059 570070 578787 578792) (-368 "FFPOLY2.spad" 569119 569136 570049 570054) (-367 "FFP.spad" 568516 568536 568835 568928) (-366 "FF.spad" 567964 567980 568197 568290) (-365 "FFNBX.spad" 566476 566496 567680 567773) (-364 "FFNBP.spad" 564989 565006 566192 566285) (-363 "FFNB.spad" 563454 563475 564670 564763) (-362 "FFINTBAS.spad" 560968 560987 563444 563449) (-361 "FFIELDC.spad" 558545 558553 560870 560963) (-360 "FFIELDC.spad" 556208 556218 558535 558540) (-359 "FFHOM.spad" 554956 554973 556198 556203) (-358 "FFF.spad" 552391 552402 554946 554951) (-357 "FFCGX.spad" 551238 551258 552107 552200) (-356 "FFCGP.spad" 550127 550147 550954 551047) (-355 "FFCG.spad" 548919 548940 549808 549901) (-354 "FFCAT.spad" 542092 542114 548758 548914) (-353 "FFCAT.spad" 535344 535368 542012 542017) (-352 "FFCAT2.spad" 535091 535131 535334 535339) (-351 "FEXPR.spad" 526808 526854 534847 534886) (-350 "FEVALAB.spad" 526516 526526 526798 526803) (-349 "FEVALAB.spad" 526009 526021 526293 526298) (-348 "FDIV.spad" 525451 525475 525999 526004) (-347 "FDIVCAT.spad" 523515 523539 525441 525446) (-346 "FDIVCAT.spad" 521577 521603 523505 523510) (-345 "FDIV2.spad" 521233 521273 521567 521572) (-344 "FCTRDATA.spad" 520241 520249 521223 521228) (-343 "FCPAK1.spad" 518808 518816 520231 520236) (-342 "FCOMP.spad" 518187 518197 518798 518803) (-341 "FC.spad" 508194 508202 518177 518182) (-340 "FAXF.spad" 501165 501179 508096 508189) (-339 "FAXF.spad" 494188 494204 501121 501126) (-338 "FARRAY.spad" 492185 492195 493218 493245) (-337 "FAMR.spad" 490321 490333 492083 492180) (-336 "FAMR.spad" 488441 488455 490205 490210) (-335 "FAMONOID.spad" 488109 488119 488395 488400) (-334 "FAMONC.spad" 486405 486417 488099 488104) (-333 "FAGROUP.spad" 486029 486039 486301 486328) (-332 "FACUTIL.spad" 484233 484250 486019 486024) (-331 "FACTFUNC.spad" 483427 483437 484223 484228) (-330 "EXPUPXS.spad" 480260 480283 481559 481708) (-329 "EXPRTUBE.spad" 477548 477556 480250 480255) (-328 "EXPRODE.spad" 474708 474724 477538 477543) (-327 "EXPR.spad" 469883 469893 470597 470892) (-326 "EXPR2UPS.spad" 466005 466018 469873 469878) (-325 "EXPR2.spad" 465710 465722 465995 466000) (-324 "EXPEXPAN.spad" 462511 462536 463143 463236) (-323 "EXIT.spad" 462182 462190 462501 462506) (-322 "EXITAST.spad" 461918 461926 462172 462177) (-321 "EVALCYC.spad" 461378 461392 461908 461913) (-320 "EVALAB.spad" 460950 460960 461368 461373) (-319 "EVALAB.spad" 460520 460532 460940 460945) (-318 "EUCDOM.spad" 458094 458102 460446 460515) (-317 "EUCDOM.spad" 455730 455740 458084 458089) (-316 "ESTOOLS.spad" 447576 447584 455720 455725) (-315 "ESTOOLS2.spad" 447179 447193 447566 447571) (-314 "ESTOOLS1.spad" 446864 446875 447169 447174) (-313 "ES.spad" 439679 439687 446854 446859) (-312 "ES.spad" 432400 432410 439577 439582) (-311 "ESCONT.spad" 429193 429201 432390 432395) (-310 "ESCONT1.spad" 428942 428954 429183 429188) (-309 "ES2.spad" 428447 428463 428932 428937) (-308 "ES1.spad" 428017 428033 428437 428442) (-307 "ERROR.spad" 425344 425352 428007 428012) (-306 "EQTBL.spad" 423374 423396 423583 423610) (-305 "EQ.spad" 418179 418189 420966 421078) (-304 "EQ2.spad" 417897 417909 418169 418174) (-303 "EP.spad" 414223 414233 417887 417892) (-302 "ENV.spad" 412901 412909 414213 414218) (-301 "ENTIRER.spad" 412569 412577 412845 412896) (-300 "EMR.spad" 411857 411898 412495 412564) (-299 "ELTAGG.spad" 410111 410130 411847 411852) (-298 "ELTAGG.spad" 408329 408350 410067 410072) (-297 "ELTAB.spad" 407804 407817 408319 408324) (-296 "ELFUTS.spad" 407191 407210 407794 407799) (-295 "ELEMFUN.spad" 406880 406888 407181 407186) (-294 "ELEMFUN.spad" 406567 406577 406870 406875) (-293 "ELAGG.spad" 404538 404548 406547 406562) (-292 "ELAGG.spad" 402446 402458 404457 404462) (-291 "ELABOR.spad" 401792 401800 402436 402441) (-290 "ELABEXPR.spad" 400724 400732 401782 401787) (-289 "EFUPXS.spad" 397500 397530 400680 400685) (-288 "EFULS.spad" 394336 394359 397456 397461) (-287 "EFSTRUC.spad" 392351 392367 394326 394331) (-286 "EF.spad" 387127 387143 392341 392346) (-285 "EAB.spad" 385403 385411 387117 387122) (-284 "E04UCFA.spad" 384939 384947 385393 385398) (-283 "E04NAFA.spad" 384516 384524 384929 384934) (-282 "E04MBFA.spad" 384096 384104 384506 384511) (-281 "E04JAFA.spad" 383632 383640 384086 384091) (-280 "E04GCFA.spad" 383168 383176 383622 383627) (-279 "E04FDFA.spad" 382704 382712 383158 383163) (-278 "E04DGFA.spad" 382240 382248 382694 382699) (-277 "E04AGNT.spad" 378090 378098 382230 382235) (-276 "DVARCAT.spad" 374980 374990 378080 378085) (-275 "DVARCAT.spad" 371868 371880 374970 374975) (-274 "DSMP.spad" 369242 369256 369547 369674) (-273 "DSEXT.spad" 368544 368554 369232 369237) (-272 "DSEXT.spad" 367753 367765 368443 368448) (-271 "DROPT.spad" 361712 361720 367743 367748) (-270 "DROPT1.spad" 361377 361387 361702 361707) (-269 "DROPT0.spad" 356234 356242 361367 361372) (-268 "DRAWPT.spad" 354407 354415 356224 356229) (-267 "DRAW.spad" 347283 347296 354397 354402) (-266 "DRAWHACK.spad" 346591 346601 347273 347278) (-265 "DRAWCX.spad" 344061 344069 346581 346586) (-264 "DRAWCURV.spad" 343608 343623 344051 344056) (-263 "DRAWCFUN.spad" 333140 333148 343598 343603) (-262 "DQAGG.spad" 331318 331328 333108 333135) (-261 "DPOLCAT.spad" 326667 326683 331186 331313) (-260 "DPOLCAT.spad" 322102 322120 326623 326628) (-259 "DPMO.spad" 313862 313878 314000 314213) (-258 "DPMM.spad" 305635 305653 305760 305973) (-257 "DOMTMPLT.spad" 305406 305414 305625 305630) (-256 "DOMCTOR.spad" 305161 305169 305396 305401) (-255 "DOMAIN.spad" 304248 304256 305151 305156) (-254 "DMP.spad" 301508 301523 302078 302205) (-253 "DMEXT.spad" 301375 301385 301476 301503) (-252 "DLP.spad" 300727 300737 301365 301370) (-251 "DLIST.spad" 299153 299163 299757 299784) (-250 "DLAGG.spad" 297570 297580 299143 299148) (-249 "DIVRING.spad" 297112 297120 297514 297565) (-248 "DIVRING.spad" 296698 296708 297102 297107) (-247 "DISPLAY.spad" 294888 294896 296688 296693) (-246 "DIRPROD.spad" 282435 282451 283075 283174) (-245 "DIRPROD2.spad" 281253 281271 282425 282430) (-244 "DIRPCAT.spad" 280446 280462 281149 281248) (-243 "DIRPCAT.spad" 279266 279284 279971 279976) (-242 "DIOSP.spad" 278091 278099 279256 279261) (-241 "DIOPS.spad" 277087 277097 278071 278086) (-240 "DIOPS.spad" 276057 276069 277043 277048) (-239 "DIFRING.spad" 275895 275903 276037 276052) (-238 "DIFFSPC.spad" 275474 275482 275885 275890) (-237 "DIFFSPC.spad" 275051 275061 275464 275469) (-236 "DIFFMOD.spad" 274540 274550 275019 275046) (-235 "DIFFDOM.spad" 273705 273716 274530 274535) (-234 "DIFFDOM.spad" 272868 272881 273695 273700) (-233 "DIFEXT.spad" 272687 272697 272848 272863) (-232 "DIAGG.spad" 272317 272327 272667 272682) (-231 "DIAGG.spad" 271955 271967 272307 272312) (-230 "DHMATRIX.spad" 270150 270160 271295 271322) (-229 "DFSFUN.spad" 263790 263798 270140 270145) (-228 "DFLOAT.spad" 260521 260529 263680 263785) (-227 "DFINTTLS.spad" 258752 258768 260511 260516) (-226 "DERHAM.spad" 256666 256698 258732 258747) (-225 "DEQUEUE.spad" 255873 255883 256156 256183) (-224 "DEGRED.spad" 255490 255504 255863 255868) (-223 "DEFINTRF.spad" 253027 253037 255480 255485) (-222 "DEFINTEF.spad" 251537 251553 253017 253022) (-221 "DEFAST.spad" 250905 250913 251527 251532) (-220 "DECIMAL.spad" 248914 248922 249275 249368) (-219 "DDFACT.spad" 246727 246744 248904 248909) (-218 "DBLRESP.spad" 246327 246351 246717 246722) (-217 "DBASIS.spad" 245953 245968 246317 246322) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 33c4302b..7682a5a2 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,114 +1,114 @@ -(205526 . 3487991541) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) #0#) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) -((((-577)) . T) (($) -2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T)) +(205732 . 3488491124) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) #0#) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) +((((-577)) . T) (($) -2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-577)) . T)) -((($ $) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2| |#2|) . T) ((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577))))) +((($ $) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2| |#2|) . T) ((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577))))) ((($) . T)) (((|#1|) . T)) -((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#2|) . T)) -((($) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -(|has| |#1| (-932)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) +((($) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +(|has| |#1| (-937)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1|) . T) (((-577)) . T)) ((($) . T) (((-420 (-577))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-549)) . T) (((-1183)) . T) (((-228)) . T) (((-391)) . T) (((-911 (-391))) . T)) -(((|#1|) . T)) -((((-228)) . T) (((-880)) . T)) -(-2811 (|has| |#2| (-809)) (|has| |#2| (-865))) -(-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) -((($ $) . T) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) -(-2811 (|has| |#1| (-836)) (|has| |#1| (-865))) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) -((((-880)) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -(|has| |#1| (-864)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-549)) . T) (((-1188)) . T) (((-228)) . T) (((-391)) . T) (((-916 (-391))) . T)) +(((|#1|) . T)) +((((-228)) . T) (((-885)) . T)) +(-2867 (|has| |#2| (-814)) (|has| |#2| (-870))) +(-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) +((($ $) . T) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) +(-2867 (|has| |#1| (-841)) (|has| |#1| (-870))) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) +((((-885)) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +(|has| |#1| (-869)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((((-327 |#1|)) . T) (((-577)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-577)) . T) (((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-420 (-577))) . T) (((-715)) . T) (($) . T)) -((((-880)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) +((((-577)) . T) (((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-420 (-577))) . T) (((-720)) . T) (($) . T)) +((((-885)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) (((|#4|) . T)) -((((-420 (-577))) . T) (((-715)) . T) (($) . T)) -((((-880)) . T)) -((((-880)) |has| (-1119 |#1|) (-1125))) -((((-880)) . T) (((-1206)) . T)) +((((-420 (-577))) . T) (((-720)) . T) (($) . T)) +((((-885)) . T)) +((((-885)) |has| (-1124 |#1|) (-1130))) +((((-885)) . T) (((-1211)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1206)) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -(-2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(((|#2| (-495 (-3501 |#1|) (-787))) . T)) -((((-1201)) -2811 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) -(((|#1| (-544 (-1201))) . T)) -((((-1183)) . T) (((-981 (-130))) . T) (((-880)) . T)) -((((-880)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(((#0=(-888 |#1|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +((((-1211)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +(-2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(((|#2| (-495 (-3600 |#1|) (-792))) . T)) +((((-1206)) -2867 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) +(((|#1| (-544 (-1206))) . T)) +((((-1188)) . T) (((-986 (-130))) . T) (((-885)) . T)) +((((-885)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(((#0=(-893 |#1|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) (|has| |#4| (-380)) (|has| |#3| (-380)) (((|#1|) . T)) -((((-1201)) . T)) +((((-1206)) . T)) ((((-519)) . T)) -((((-888 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-893 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1| |#2|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-569)) -((((-577)) . T) (((-420 (-577))) -2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-2 (|:| -3251 |#1|) (|:| -1527 |#2|))) . T)) +((((-577)) . T) (((-420 (-577))) -2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-2 (|:| -3354 |#1|) (|:| -2328 |#2|))) . T)) ((($) . T)) -((((-880)) |has| |#1| (-626 (-880))) ((|#1|) . T)) -((((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1201)) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) -((((-1201)) . T)) +((((-885)) |has| |#1| (-631 (-885))) ((|#1|) . T)) +((((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1206)) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) +((((-1206)) . T)) (((|#1|) . T)) ((((-577)) . T) (($) . T)) ((((-594 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) ((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1|) . T) (((-577)) . T) (($) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1|) . T)) ((((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -(|has| |#1| (-1125)) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +(|has| |#1| (-1130)) (((|#1|) . T)) ((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) ((((-117 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) @@ -116,14 +116,14 @@ ((((-420 (-577))) . T) (($) . T) (((-577)) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) (((|#2|) . T) (((-577)) . T) ((|#6|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) ((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) ((($ $) . T)) ((($) . T)) ((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) @@ -131,454 +131,454 @@ (((|#1|) . T)) (|has| |#1| (-380)) (((|#1|) . T)) -((((-880)) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) +((((-885)) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) ((((-577)) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) -((($) -2811 (|has| |#1| (-239)) (|has| |#1| (-238)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) +((($) -2867 (|has| |#1| (-239)) (|has| |#1| (-238)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (|has| |#1| (-569)) (((|#1|) . T) (((-577)) . T) (($) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) ((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -(|has| |#1| (-1125)) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -(|has| |#1| (-1125)) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -(|has| |#1| (-864)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +(|has| |#1| (-1130)) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +(|has| |#1| (-1130)) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +(|has| |#1| (-869)) (((|#1| |#1|) . T)) ((($) . T) (((-420 (-577))) . T)) (((|#1|) . T)) ((((-420 (-577))) . T) (($) . T)) ((((-577) (-130)) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T) (((-420 (-577))) . T)) ((((-130)) . T)) -(|has| |#4| (-809)) -(|has| |#4| (-809)) -(|has| |#3| (-809)) -(|has| |#3| (-809)) +(|has| |#4| (-814)) +(|has| |#4| (-814)) +(|has| |#3| (-814)) +(|has| |#3| (-814)) (((|#1| |#2|) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1206)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1211)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) (((-1201) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1201) |#2|)))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(((|#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) (((-1206) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1206) |#2|)))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) ((((-577)) . T) (((-420 (-577))) . T)) -(((|#1| (-1201) (-1113 (-1201)) (-544 (-1113 (-1201)))) . T)) +(((|#1| (-1206) (-1118 (-1206)) (-544 (-1118 (-1206)))) . T)) ((((-577) |#1|) . T)) ((((-577)) . T)) ((((-577)) . T)) -((((-933 |#1|)) . T)) +((((-938 |#1|)) . T)) (((|#1| (-544 |#2|)) . T)) ((((-577)) . T)) ((((-577)) . T)) (((|#1|) . T)) -(|has| |#2| (-1074)) -(((|#1| (-787)) . T)) -(|has| |#2| (-809)) -(|has| |#2| (-809)) +(|has| |#2| (-1079)) +(((|#1| (-792)) . T)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1183) |#1|) . T)) -((((-1259 (-577)) $) . T) (((-577) (-130)) . T)) +((((-1188) |#1|) . T)) +((((-1264 (-577)) $) . T) (((-577) (-130)) . T)) (((|#1|) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -(((|#3| (-787)) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +(((|#3| (-792)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) ((($) . T) (((-420 (-577))) . T)) ((($) . T)) ((($) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((((-420 (-577))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1125)) +(|has| |#1| (-1130)) ((((-420 (-577))) . T) (((-577)) . T)) -((((-577)) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#2|) . T)) -((((-1201) |#2|) |has| |#2| (-527 (-1201) |#2|)) ((|#2| |#2|) |has| |#2| (-320 |#2|))) +((((-577)) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#2|) . T)) +((((-1206) |#2|) |has| |#2| (-527 (-1206) |#2|)) ((|#2| |#2|) |has| |#2| (-320 |#2|))) ((((-420 (-577))) . T) (((-577)) . T)) -((((-577)) . T) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1107)) . T) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) +((((-577)) . T) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1112)) . T) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) (((|#1|) . T) (($) . T)) ((((-577)) . T)) ((((-577)) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) ((((-577)) . T)) ((((-577)) . T)) ((((-420 (-577))) . T) (($) . T)) -(((#0=(-715) (-1197 #0#)) . T)) +(((#0=(-720) (-1202 #0#)) . T)) ((((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-375)) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) -((($) -2811 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +((($) -2867 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) (((|#1| |#2|) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) -((((-1183) |#1|) . T)) +((((-1188) |#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1| |#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) ((((-577) |#1|) . T)) -((((-880)) . T)) -((((-171 (-228))) |has| |#1| (-1047)) (((-171 (-391))) |has| |#1| (-1047)) (((-549)) |has| |#1| (-627 (-549))) (((-1197 |#1|)) . T) (((-911 (-577))) |has| |#1| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((((-885)) . T)) +((((-171 (-228))) |has| |#1| (-1052)) (((-171 (-391))) |has| |#1| (-1052)) (((-549)) |has| |#1| (-632 (-549))) (((-1202 |#1|)) . T) (((-916 (-577))) |has| |#1| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) . T)) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) (|has| |#1| (-375)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -(-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) -((($) -2811 (|has| |#2| (-239)) (|has| |#2| (-238)))) -(|has| |#4| (-1074)) -(|has| |#3| (-1074)) -((((-880)) . T) (((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T)) -(((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) -(((|#2|) . T) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) +(-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) +((($) -2867 (|has| |#2| (-239)) (|has| |#2| (-238)))) +(|has| |#4| (-1079)) +(|has| |#3| (-1079)) +((((-885)) . T) (((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T)) +(((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) +(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) (|has| |#1| (-569)) -((((-577)) -2811 (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) (|has| |#4| (-1074))) ((|#4|) |has| |#4| (-1125)) (((-420 (-577))) -12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125)))) -((((-577)) -2811 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074))) ((|#3|) |has| |#3| (-1125)) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-577)) -2867 (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) (|has| |#4| (-1079))) ((|#4|) |has| |#4| (-1130)) (((-420 (-577))) -12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130)))) +((((-577)) -2867 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ((|#3|) |has| |#3| (-1130)) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (|has| |#1| (-569)) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) (((|#1|) . T)) (|has| |#1| (-569)) -((((-882 |#1|)) . T)) +((((-887 |#1|)) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) (((|#2|) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1107)) . T)) -((((-715)) . T)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1112)) . T)) +((((-720)) . T)) (((|#1|) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1113 (-1201))) . T)) -(-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1118 (-1206))) . T)) +(-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-420 (-577))) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) +(-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) -(((|#4| |#4|) -2811 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1074)))) -(((|#3| |#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) +(((|#4| |#4|) -2867 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1079)))) +(((|#3| |#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) (((|#2|) . T)) (((|#1|) . T)) -((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) -((((-880)) . T)) +((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) +((((-885)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -3251 |#1|) (|:| -1527 |#2|))) . T) (((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577))))) -(((|#4|) -2811 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1074)))) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) -((((-2 (|:| -3251 |#1|) (|:| -1527 |#2|))) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-660 |#1|)) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-2 (|:| -3354 |#1|) (|:| -2328 |#2|))) . T) (((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577))))) +(((|#4|) -2867 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1079)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) +((((-2 (|:| -3354 |#1|) (|:| -2328 |#2|))) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-665 |#1|)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) ((((-420 $) (-420 $)) |has| |#2| (-569)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) -((((-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-932)) -((((-1183) (-52)) . T)) -((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T)) -((((-549)) . T) (((-228)) . T) (((-391)) . T) (((-911 (-391))) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +((($ (-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) +((((-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-937)) +((((-1188) (-52)) . T)) +((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T)) +((((-549)) . T) (((-228)) . T) (((-391)) . T) (((-916 (-391))) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) (((|#1|) |has| |#1| (-174))) (((|#1| $) |has| |#1| (-297 |#1| |#1|))) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) ((((-420 (-577))) . T) (($) . T)) ((((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) -((((-880)) . T)) -(|has| |#1| (-865)) -(((|#2|) . T) (((-577)) . T) (((-835 |#1|)) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-1125)) -((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) . T) (((-1206)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((((-1206)) . T)) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-885)) . T)) +(|has| |#1| (-870)) +(((|#2|) . T) (((-577)) . T) (((-840 |#1|)) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-1130)) +((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) . T) (((-1211)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-1211)) . T)) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-239)) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1| (-544 (-834 (-1201)))) . T)) -(((|#1| (-996)) . T)) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1| (-544 (-839 (-1206)))) . T)) +(((|#1| (-1001)) . T)) ((((-577)) . T) ((|#2|) . T)) -(|has| |#1| (-864)) -((((-1201)) . T)) -(((#0=(-888 |#1|) $) |has| #0# (-297 #0# #0#))) +(|has| |#1| (-869)) +((((-1206)) . T)) +(((#0=(-893 |#1|) $) |has| #0# (-297 #0# #0#))) ((((-577) |#4|) . T)) ((((-577) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1177)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) -(|has| (-1278 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1278 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1182)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) +(|has| (-1283 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1283 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) +((((-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1125)) -((((-1183) |#1|) . T)) +(|has| |#1| (-1130)) +((((-1188) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) -((((-1150 |#1| (-1201))) . T) (((-577)) . T) (((-834 (-1201))) . T) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-1201)) . T)) +(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +((((-1155 |#1| (-1206))) . T) (((-577)) . T) (((-839 (-1206))) . T) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-1206)) . T)) (|has| |#2| (-380)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1074))) -((((-880)) . T)) -(|has| |#1| (-864)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) #0#) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) -(((|#1|) . T)) -((((-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((#0=(-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) #0#) |has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))))) -((((-880)) . T)) +(((|#2|) |has| |#2| (-1079))) +((((-885)) . T)) +(|has| |#1| (-869)) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) #0#) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) +(((|#1|) . T)) +((((-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((#0=(-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) #0#) |has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))))) +((((-885)) . T)) ((((-577) |#1|) . T)) -((((-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549)))) (((-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) (((-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) +((((-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549)))) (((-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) (((-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577)))))) ((($) . T)) -((((-880)) . T)) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T)) +((((-885)) . T)) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-885)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T)) -((((-880)) . T)) -(|has| (-1277 |#2| |#3| |#4|) (-148)) -(|has| (-1277 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1125)) (((-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-885)) . T)) +((((-885)) . T)) +(|has| (-1282 |#2| |#3| |#4|) (-148)) +(|has| (-1282 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1130)) (((-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) (((|#1|) . T)) -(|has| |#1| (-1125)) -((((-880)) . T)) +(|has| |#1| (-1130)) +((((-885)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) (((|#1|) . T)) ((($) . T)) ((((-577) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) -((((-880)) |has| |#1| (-1125))) -((($) -2811 (|has| |#1| (-239)) (|has| |#1| (-238)))) -(-2811 (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-933 |#1|)) . T)) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) +((((-885)) |has| |#1| (-1130))) +((($) -2867 (|has| |#1| (-239)) (|has| |#1| (-238)))) +(-2867 (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-938 |#1|)) . T)) ((((-420 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-577) |#1|))) ((((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) (|has| |#1| (-375)) -(-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +(-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-375)) -(|has| |#1| (-15 * (|#1| (-787) |#1|))) +(|has| |#1| (-15 * (|#1| (-792) |#1|))) ((((-577)) . T)) ((((-577)) . T)) -((((-1167 |#2| (-420 (-975 |#1|)))) . T) (((-420 (-975 |#1|))) . T)) +((((-1172 |#2| (-420 (-980 |#1|)))) . T) (((-420 (-980 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) (((|#1|) . T)) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) -((((-880)) . T)) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +((((-885)) . T)) (((|#2|) . T)) -(-2811 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(-2867 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) ((($) |has| |#1| (-569)) (((-577)) . T)) -(|has| |#2| (-809)) -(|has| |#2| (-809)) -((((-1284 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) -((((-1288 |#2|)) . T) (((-1284 |#1| |#2| |#3|)) . T) (((-1256 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +((((-1289 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) +((((-1293 |#2|)) . T) (((-1289 |#1| |#2| |#3|)) . T) (((-1261 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T)) (((|#1|) . T)) -((((-1201)) -12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074)))) +((((-1206)) -12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079)))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) -(-2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) +(-2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) ((($ $) |has| |#1| (-569)) ((|#1| |#1|) . T)) -((($ (-1201)) -2811 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) -(((#0=(-715) (-1197 #0#)) . T)) +((($ (-1206)) -2867 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) +(((#0=(-720) (-1202 #0#)) . T)) ((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) ((((-420 (-577))) . T) (($) . T)) -((((-880)) . T) (((-1292 |#4|)) . T)) -((((-880)) . T) (((-1292 |#3|)) . T)) +((((-885)) . T) (((-1297 |#4|)) . T)) +((((-885)) . T) (((-1297 |#3|)) . T)) ((((-594 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) ((($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) ((($) . T)) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1284 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -(((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -(((|#3|) |has| |#3| (-1074))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -(|has| (-1119 |#1|) (-1125)) -(((|#2| (-835 |#1|)) . T)) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1289 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +(((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +(((|#3|) |has| |#3| (-1079))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(|has| (-1124 |#1|) (-1130)) +(((|#2| (-840 |#1|)) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) ((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-375)) ((((-577)) . T) ((|#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T)) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) ((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((#0=(-1107) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-880)) . T)) -((((-933 |#1|)) . T)) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((#0=(-1112) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-885)) . T)) +((((-938 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) ((((-246 |#1| |#2|) |#2|) . T)) -((((-880)) . T)) -(((|#3|) |has| |#3| (-1125)) (((-577)) -12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-885)) . T)) +(((|#3|) |has| |#3| (-1130)) (((-577)) -12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1|) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) (|has| |#1| (-375)) -((((-1206)) . T)) +((((-1211)) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) ((($) . T)) -((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) -(|has| |#2| (-836)) +((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +(|has| |#2| (-841)) (|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-864)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +(|has| |#1| (-869)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| (-544 |#3|)) . T)) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) ((((-420 (-577))) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((((-420 (-577))) . T)) -((((-1183) |#1|) . T)) +((((-1188) |#1|) . T)) (|has| |#1| (-380)) ((((-577)) . T)) ((((-577)) . T)) (((|#1|) . T) (((-577)) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -((((-880)) . T)) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +((((-885)) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-1201)) -12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))))) +((((-1206)) -12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))))) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-880)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) -((((-1201) #0=(-888 |#1|)) |has| #0# (-527 (-1201) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) +((((-885)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) +((((-1206) #0=(-893 |#1|)) |has| #0# (-527 (-1206) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) (((|#1|) . T)) -((((-549)) |has| |#1| (-627 (-549)))) +((((-549)) |has| |#1| (-632 (-549)))) ((((-577) |#4|) . T)) ((((-577) |#3|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) -(|has| |#2| (-1074)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(-2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -((((-880)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) +(|has| |#2| (-1079)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(-2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +((((-885)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) ((((-420 (-577))) . T) (((-577)) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) ((((-577)) . T)) ((((-577)) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-577)) -2811 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ((|#2|) |has| |#2| (-1125)) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +((((-577)) -2867 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1130)) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -592,119 +592,119 @@ (((|#1|) |has| |#1| (-569))) ((((-577) |#4|) . T)) ((((-577) |#3|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((((-880)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((((-885)) . T)) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) ((((-577) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1201) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1206) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2811 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -(((|#2| |#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +((($) -2867 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +(((|#2| |#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) ((((-145)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) -((((-880)) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +((((-885)) . T)) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) (((|#1|) . T)) -((((-880)) . T)) -(|has| |#1| (-1125)) +((((-885)) . T)) +(|has| |#1| (-1130)) (|has| $ (-148)) -((((-1206)) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) -((($) -2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1211)) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +((($) -2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) (|has| |#1| (-375)) -(-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +(-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-375)) -(|has| |#1| (-15 * (|#1| (-787) |#1|))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) -((((-880)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(-2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -(((|#2| (-544 (-882 |#1|))) . T)) -((((-880)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(|has| |#1| (-15 * (|#1| (-792) |#1|))) +(((|#1|) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) +((((-885)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(-2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(((|#2| (-544 (-887 |#1|))) . T)) +((((-885)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((((-594 |#1|)) . T)) ((($) . T)) ((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) (((|#1|) . T) (($) . T)) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) -((((-1199 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) -((((-1288 |#2|)) . T) (((-1199 |#1| |#2| |#3|)) . T) (((-1192 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) +((((-1204 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) +((((-1293 |#2|)) . T) (((-1204 |#1| |#2| |#3|)) . T) (((-1197 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) (((|#4|) . T)) (((|#3|) . T)) -((((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T)) -((((-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) -(-2811 (|has| |#2| (-239)) (|has| |#2| (-238))) +((((-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) +(-2867 (|has| |#2| (-239)) (|has| |#2| (-238))) (((|#1|) . T)) -((((-882 |#1|)) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) ((|#3|) . T)) +((((-887 |#1|)) . T)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) ((|#3|) . T)) ((($) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-577)) . T) (((-420 (-577))) -2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-577)) . T) (((-420 (-577))) -2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) ((((-577) |#2|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T) (((-577)) . T) ((|#2|) . T) (((-420 (-577))) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1199 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T)) -(((|#2|) |has| |#2| (-1074))) -(|has| |#1| (-1125)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -(((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1204 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-885)) . T)) +(((|#2|) |has| |#2| (-1079))) +(|has| |#1| (-1130)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +(((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((((-880)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($ (-882 |#1|)) . T)) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-885)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($ (-887 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) ((($ |#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1107)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1112)) . T)) ((($) . T)) -(((#0=(-1107) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1113 (-1201))) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((#0=(-1112) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1118 (-1206))) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1125)) (((-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +(((|#2|) |has| |#2| (-1130)) (((-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) -(|has| |#1| (-1125)) +(|has| |#1| (-1130)) (((|#2|) |has| |#1| (-375))) (((|#2|) |has| |#1| (-375))) ((((-577) |#1|) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-420 |#2|) |#3|) . T)) (((|#1| (-420 (-577))) . T)) (((|#1|) . T) (((-577)) . T)) @@ -713,179 +713,179 @@ (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-880)) . T) (((-1206)) . T)) +((((-885)) . T) (((-1211)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1206)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-1211)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) ((((-420 (-577))) . T) (($) . T)) ((((-420 (-577))) . T) (($) . T)) ((((-420 (-577))) . T) (($) . T)) -(((|#2| |#3| (-882 |#1|)) . T)) -((((-1201)) |has| |#2| (-921 (-1201)))) +(((|#2| |#3| (-887 |#1|)) . T)) +((((-1206)) |has| |#2| (-926 (-1206)))) (((|#1|) . T)) (((|#1| (-544 |#2|) |#2|) . T)) -(((|#1| (-787) (-1107)) . T)) +(((|#1| (-792) (-1112)) . T)) ((((-420 (-577))) |has| |#2| (-375)) (($) . T)) -(((|#1| (-544 (-1113 (-1201))) (-1113 (-1201))) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +(((|#1| (-544 (-1118 (-1206))) (-1118 (-1206))) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) (((|#2|) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((|#1|) . T)) (((|#2|) . T)) -((((-1024 |#1|)) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2811 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) -(|has| |#2| (-1074)) -(|has| |#2| (-809)) -(|has| |#2| (-809)) +((((-1029 |#1|)) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2867 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) +(|has| |#2| (-1079)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) -((((-912 |#1|)) . T) (((-835 |#1|)) . T)) -((((-835 (-1201))) . T)) +((((-917 |#1|)) . T) (((-840 |#1|)) . T)) +((((-840 (-1206))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-660 (-944))) . T) (((-880)) . T)) -((((-420 (-577))) . T) (((-880)) . T)) -((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-665 (-949))) . T) (((-885)) . T)) +((((-420 (-577))) . T) (((-885)) . T)) +((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) (|has| |#1| (-239)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((($ $) . T) (((-577) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-1284 |#1| |#2| |#3|) $) -12 (|has| (-1284 |#1| |#2| |#3|) (-297 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-1289 |#1| |#2| |#3|) $) -12 (|has| (-1289 |#1| |#2| |#3|) (-297 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) ((($ $) . T) (((-420 (-577)) |#1|) . T)) -((((-787) |#1|) . T) (($ $) . T)) -(((|#1|) . T)) -((($ (-1201)) . T)) -(-2811 (|has| |#1| (-836)) (|has| |#1| (-865))) -((((-1165 |#1| |#2|)) |has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) -(((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) -(|has| |#1| (-864)) -(((|#1|) . T)) -((((-1201)) -2811 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))))) +((((-792) |#1|) . T) (($ $) . T)) +(((|#1|) . T)) +((($ (-1206)) . T)) +(-2867 (|has| |#1| (-841)) (|has| |#1| (-870))) +((((-1170 |#1| |#2|)) |has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) +(((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) +(|has| |#1| (-869)) +(((|#1|) . T)) +((((-1206)) -2867 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))))) (((|#1| |#2|) . T)) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) (((|#2|) . T)) -((((-880)) -2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-626 (-880))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) (((-1292 |#2|)) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T) (($) . T)) +((((-885)) -2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-631 (-885))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) (((-1297 |#2|)) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((((-577)) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) -(|has| |#1| (-1125)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +(|has| |#1| (-1130)) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) ((((-577) (-145)) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) ((((-577)) . T)) (((|#1|) . T) ((|#2|) . T) (((-577)) . T)) -((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-577)) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-577)) . T)) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) (((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((($) . T) (((-577)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) (((|#2|) |has| |#1| (-375))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-1206)) . T)) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-1211)) . T)) ((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1| (-544 #0=(-1201)) #0#) . T)) +(((|#1| (-544 #0=(-1206)) #0#) . T)) (((|#1|) . T) (($) . T)) ((((-577)) . T)) -(((#0=(-420 (-975 |#1|)) #0#) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) +(((#0=(-420 (-980 |#1|)) #0#) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(-2811 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-420 (-975 |#1|))) . T)) +(-2867 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-420 (-980 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-577)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -((((-880)) . T)) -((((-880)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1074)) (((-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) +((((-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +((((-885)) . T)) +((((-885)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1079)) (((-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) (((|#1| |#2|) . T)) -(|has| |#3| (-1074)) -(|has| |#3| (-809)) -(|has| |#3| (-809)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(|has| |#3| (-1079)) +(|has| |#3| (-814)) +(|has| |#3| (-814)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) (((|#2|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -(((|#1| (-1182 |#1|)) |has| |#1| (-864))) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +(((|#1| (-1187 |#1|)) |has| |#1| (-869))) ((((-577) |#2|) . T)) -(|has| |#1| (-1125)) +(|has| |#1| (-1130)) (((|#1|) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-1177))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-1182))) ((((-420 (-577))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((($) . T) (((-420 (-577))) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) (((|#2|) . T)) -((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) -(((|#4|) -2811 (|has| |#4| (-174)) (|has| |#4| (-375)))) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)))) -((((-880)) . T)) -(((|#1|) . T)) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-932))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) +(((|#4|) -2867 (|has| |#4| (-174)) (|has| |#4| (-375)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)))) +((((-885)) . T)) +(((|#1|) . T)) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-937))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-932))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-937))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-932))) -((($ $) . T) ((#0=(-1201) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-834 (-1201)) |#1|) . T) ((#1# $) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-932))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-937))) +((($ $) . T) ((#0=(-1206) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-839 (-1206)) |#1|) . T) ((#1# $) . T)) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-937))) ((((-577) |#2|) . T)) -((((-880)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) +((((-885)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) ((((-577) |#1|) . T)) (|has| (-420 |#2|) (-148)) (|has| (-420 |#2|) (-146)) @@ -893,95 +893,95 @@ (|has| |#1| (-38 (-420 (-577)))) (((|#1|) . T)) (((|#2|) . T) (($) . T) (((-420 (-577))) . T)) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-880)) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-885)) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) (|has| |#1| (-38 (-420 (-577)))) -((((-401) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) +((((-401) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) (|has| |#1| (-38 (-420 (-577)))) -(|has| |#2| (-1177)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-880)) . T) (((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-1241)) . T) (((-880)) . T) (((-1206)) . T)) +(|has| |#2| (-1182)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-885)) . T) (((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-1246)) . T) (((-885)) . T) (((-1211)) . T)) ((((-117 |#1|)) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) (((|#1|) . T)) -((((-401) (-1183)) . T)) +((((-401) (-1188)) . T)) (|has| |#1| (-569)) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) (((|#2|) . T)) -((((-787) (-1206)) . T)) -((((-880)) . T)) -((((-835 |#1|)) . T)) +((((-792) (-1211)) . T)) +((((-885)) . T)) +((((-840 |#1|)) . T)) ((($) . T)) -((((-1201) (-52)) . T)) +((((-1206) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-569)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) -((((-660 |#1|)) . T)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-665 |#1|)) . T)) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) (((|#2|) |has| |#2| (-320 |#2|))) (((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1197 |#1|)) . T)) +(((|#1| (-1202 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) (|has| |#2| (-380)) (((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) -((((-880)) . T)) -((((-1199 |#1| |#2| |#3|) $) -12 (|has| (-1199 |#1| |#2| |#3|) (-297 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) +((((-885)) . T)) +((((-1204 |#1| |#2| |#3|) $) -12 (|has| (-1204 |#1| |#2| |#3|) (-297 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) ((($ $) . T) (((-420 (-577)) |#1|) . T)) -((((-787) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((#0=(-1284 |#1| |#2| |#3|) #0#) -12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1201) #0#) -12 (|has| (-1284 |#1| |#2| |#3|) (-527 (-1201) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) -(-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) +((((-792) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((#0=(-1289 |#1| |#2| |#3|) #0#) -12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1206) #0#) -12 (|has| (-1289 |#1| |#2| |#3|) (-527 (-1206) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +(-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-577)) . T) (($) . T)) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) ((($) . T) (((-577)) . T) ((|#2|) . T)) ((((-577)) . T) (($) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) ((((-420 (-577))) . T) (((-577)) . T)) @@ -989,173 +989,173 @@ ((((-145)) . T)) (((|#1|) . T)) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((((-112)) . T)) -((((-549)) |has| |#1| (-627 (-549))) (((-228)) . #0=(|has| |#1| (-1047))) (((-391)) . #0#)) -((((-880)) . T)) -(((|#1|) . T)) -((((-1206)) . T)) -(|has| |#1| (-836)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-569))) +((((-549)) |has| |#1| (-632 (-549))) (((-228)) . #0=(|has| |#1| (-1052))) (((-391)) . #0#)) +((((-885)) . T)) +(((|#1|) . T)) +((((-1211)) . T)) +(|has| |#1| (-841)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-569))) (|has| |#1| (-569)) -(((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) . T) (((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) -(|has| |#1| (-932)) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) -(((|#1|) . T)) -(|has| |#1| (-1125)) -((((-880)) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-569))) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -(|has| |#1| (-865)) -(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) -((((-577) (-145)) . T) (((-1259 (-577)) $) . T)) +(((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) . T) (((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) +(|has| |#1| (-937)) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(((|#1|) . T)) +(|has| |#1| (-1130)) +((((-885)) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-569))) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +(|has| |#1| (-870)) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) +((((-577) (-145)) . T) (((-1264 (-577)) $) . T)) ((($) . T)) -(|has| |#4| (-1074)) -(|has| |#3| (-1074)) -((((-1206)) . T) (((-880)) . T)) -((((-1206)) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(((|#1| (-996)) . T)) +(|has| |#4| (-1079)) +(|has| |#3| (-1079)) +((((-1211)) . T) (((-885)) . T)) +((((-1211)) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(((|#1| (-1001)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(|has| |#2| (-809)) -(|has| |#2| (-809)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) -(|has| |#2| (-1074)) -((($) . T) (((-577)) . T) (((-888 |#1|)) . T) (((-420 (-577))) . T)) +(|has| |#2| (-1079)) +((($) . T) (((-577)) . T) (((-893 |#1|)) . T) (((-420 (-577))) . T)) (((|#1|) . T)) -(|has| |#2| (-809)) -(|has| |#2| (-809)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) -(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) -(-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) +(-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-577)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-880)) . T)) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-238))) +((((-885)) . T)) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-238))) (|has| |#1| (-361)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-420 (-577))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-420 (-577))) . T)) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) -(|has| |#1| (-844)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +(|has| |#1| (-849)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) (((|#1| $) |has| |#1| (-297 |#1| |#1|))) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) ((($) |has| |#1| (-569))) (((|#2|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1125))) -(((|#3|) |has| |#3| (-1125))) +(((|#4|) |has| |#4| (-1130))) +(((|#3|) |has| |#3| (-1130))) (|has| |#3| (-380)) -((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-577)) . T)) -((((-880)) . T)) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-577)) . T)) +((((-885)) . T)) (((|#1| |#2|) . T)) -((((-880)) . T)) -(|has| |#1| (-865)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +((((-885)) . T)) +(|has| |#1| (-870)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (|has| |#2| (-375)) ((((-420 (-577))) . T) (((-577)) . T)) -((($) -2811 (|has| |#2| (-239)) (|has| |#2| (-238)))) -((($ (-882 |#1|)) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ |#3|) . T)) +((($) -2867 (|has| |#2| (-239)) (|has| |#2| (-238)))) +((($ (-887 |#1|)) . T)) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ |#3|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) (((|#1|) . T)) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) (((|#2|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) ((($) . T) (((-577)) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174))) (((|#1| |#1|) |has| |#1| (-174))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) ((((-145)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) ((((-145)) . T)) ((((-145)) . T)) ((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#) ((|#2|) . T) (((-577)) . T)) (((|#1| |#2| |#3|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1206)) . T)) +((((-1211)) . T)) (((|#1|) |has| |#1| (-174))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -((((-880)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +((((-885)) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1074)) (|has| |#1| (-1137))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1079)) (|has| |#1| (-1142))) ((($ $) |has| |#1| (-297 $ $)) ((|#1| $) |has| |#1| (-297 |#1| |#1|))) (((|#1| (-420 (-577))) . T)) (((|#1|) . T)) ((((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1201)) . T)) +((((-1206)) . T)) (|has| |#1| (-569)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (|has| |#1| (-569)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-880)) . T)) +((((-885)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-577) (-420 (-975 |#1|))) . T)) +((((-577) (-420 (-980 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-246 (-3501 |#1|) (-787)) (-882 |#1|)) . T)) +(((|#2| (-246 (-3600 |#1|) (-792)) (-887 |#1|)) . T)) (((|#1| (-544 |#3|) |#3|) . T)) (|has| |#1| (-146)) (((#0=(-420 (-577)) #0#) |has| |#2| (-375)) (($ $) . T)) -((((-888 |#1|)) . T)) -((((-888 |#1|)) . T)) +((((-893 |#1|)) . T)) +((((-893 |#1|)) . T)) (|has| |#1| (-148)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-146)) ((((-420 (-577))) |has| |#2| (-375)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -(-2811 (|has| |#1| (-361)) (|has| |#1| (-380))) -((((-1167 |#2| |#1|)) . T) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(-2867 (|has| |#1| (-361)) (|has| |#1| (-380))) +((((-1172 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) -(((|#2|) . T) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(|has| |#3| (-809)) -(|has| |#3| (-809)) -((((-880)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) +(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(|has| |#3| (-814)) +(|has| |#3| (-814)) +((((-885)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-715)) . T)) -(|has| |#2| (-1074)) +((((-720)) . T)) +(|has| |#2| (-1079)) (|has| |#1| (-569)) (((|#1|) . T)) (((|#1|) . T)) @@ -1166,65 +1166,65 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1201) (-52)) . T)) -((((-1029 10)) . T) (((-420 (-577))) . T) (((-880)) . T)) -((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-1206) (-52)) . T)) +((((-1034 10)) . T) (((-420 (-577))) . T) (((-885)) . T)) +((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) (((|#1|) . T)) -((((-1029 16)) . T) (((-420 (-577))) . T) (((-880)) . T)) -((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-1034 16)) . T) (((-420 (-577))) . T) (((-885)) . T)) +((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) (((|#1| (-577)) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1| |#2|) . T)) -((((-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201)))) (((-1107)) . T)) +((((-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206)))) (((-1112)) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-625 $)) . T)) +(((|#3|) . T) (((-630 $)) . T)) (((|#1| (-420 (-577))) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-577)) -2811 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ((|#2|) |has| |#2| (-1125)) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-577)) -2867 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1130)) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -(((#0=(-1199 |#1| |#2| |#3|) #0#) -12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1201) #0#) -12 (|has| (-1199 |#1| |#2| |#3|) (-527 (-1201) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) -((((-880)) . T)) -((((-880)) . T)) +(((#0=(-1204 |#1| |#2| |#3|) #0#) -12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1206) #0#) -12 (|has| (-1204 |#1| |#2| |#3|) (-527 (-1206) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +((((-885)) . T)) +((((-885)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) |has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))))) -((((-880)) . T)) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) |has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))))) +((((-885)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) -((((-1201) (-52)) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +((((-1206) (-52)) . T)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) (((|#3|) . T)) -((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-844)) +((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-849)) ((($) . T) (((-577)) . T) ((|#1|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) ((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| (-1119 |#1|) (-1125)) -(((|#2| |#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)))) -((((-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +(|has| (-1124 |#1|) (-1130)) +(((|#2| |#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)))) +((((-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) ((((-577)) . T)) -((((-1206)) . T)) -((((-787)) . T)) +((((-1211)) . T)) +((((-792)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-569)) ((((-577)) . T)) (((|#2|) . T)) -((((-880)) . T)) -(((|#1| (-420 (-577)) (-1107)) . T)) +((((-885)) . T)) +(((|#1| (-420 (-577)) (-1112)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (|has| |#1| (-569)) @@ -1233,114 +1233,117 @@ (((|#1|) . T)) ((((-420 (-577))) . T) (($) . T)) ((($) . T) (((-420 (-577))) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-569))) -((((-1206)) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-569))) +((((-1211)) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((((-577)) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-569))) (|has| |#1| (-146)) ((((-577)) . T)) (|has| |#1| (-148)) -((($ (-1201)) -2811 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))))) -((($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-911 (-577))) . T) (((-911 (-391))) . T) (((-549)) . T) (((-1201)) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) +((($ (-1206)) -2867 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))))) +((($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-916 (-577))) . T) (((-916 (-391))) . T) (((-549)) . T) (((-1206)) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) ((($) . T)) (((|#1|) . T)) -((((-880)) . T)) -(-2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-885)) . T)) +(-2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2811 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -((((-888 |#1|)) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) -(|has| |#2| (-1177)) -(((#0=(-52)) . T) (((-2 (|:| -4323 (-1201)) (|:| -2438 #0#))) . T)) +((($) -2867 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +((((-893 |#1|)) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) +(|has| |#2| (-1182)) +(((#0=(-52)) . T) (((-2 (|:| -4376 (-1206)) (|:| -2727 #0#))) . T)) (((|#1| |#2|) . T)) -(((|#1| (-651 |#2|)) . T)) -(|has| |#3| (-1074)) -((((-882 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1| (-577) (-1107)) . T)) -(((|#1| (-420 (-577)) (-1107)) . T)) -((((-1201)) . T)) -((($) -2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((($) -2811 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) +(((|#1| (-656 |#2|)) . T)) +(|has| |#3| (-1079)) +((((-887 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1| (-577) (-1112)) . T)) +(((|#1| (-420 (-577)) (-1112)) . T)) +((((-1206)) . T)) +((($) -2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((($) -2867 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) ((((-577) |#2|) . T)) -((($ (-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +((($ (-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-380)) (((|#1| |#1|) . T)) -((((-880)) . T)) -((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +((((-885)) . T)) +((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -(((|#1|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) (|has| |#1| (-361)) -((((-577)) -2811 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074))) ((|#3|) |has| |#3| (-1125)) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) +((((-577)) -2867 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ((|#3|) |has| |#3| (-1130)) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) +(((|#1|) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#4|) . T)) -(((|#4|) . T) (((-880)) . T)) -(((|#3|) . T) ((|#2|) . T) (((-577)) . T) ((|#4|) -2811 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-742)) (|has| |#4| (-1074))) (($) |has| |#4| (-1074))) -(((|#2|) . T) (((-577)) . T) ((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) #0#) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) +(((|#4|) . T) (((-885)) . T)) +(((|#3|) . T) ((|#2|) . T) (((-577)) . T) ((|#4|) -2867 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-747)) (|has| |#4| (-1079))) (($) |has| |#4| (-1079))) +(((|#2|) . T) (((-577)) . T) ((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) #0#) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) (|has| |#1| (-569)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-880)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-885)) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-932))) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-932))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-937))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-937))) (((|#1|) . T)) ((((-420 (-577))) . T) (((-577)) . T)) ((((-577)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) ((($) . T)) -((((-880)) -12 (|has| |#1| (-1125)) (|has| |#2| (-1125)))) -(((|#1|) . T)) -((((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-880)) . T)) -(((|#3| |#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) -(|has| |#1| (-1047)) -((((-880)) . T)) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) +((((-885)) -12 (|has| |#1| (-1130)) (|has| |#2| (-1130)))) +(((|#1|) . T)) +((((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-885)) . T)) +(((|#3| |#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) +(|has| |#1| (-1052)) +((((-885)) . T)) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) ((((-577) (-112)) . T)) -((((-1206)) . T)) +((((-1211)) . T)) (((|#1|) |has| |#1| (-320 |#1|))) -((((-1206)) . T)) +((((-1211)) . T)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) -((((-1201) $) |has| |#1| (-527 (-1201) $)) (($ $) |has| |#1| (-320 $)) ((|#1| |#1|) |has| |#1| (-320 |#1|)) (((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|))) -((((-1201)) |has| |#1| (-921 (-1201)))) -(-2811 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-361))) +((((-1206) $) |has| |#1| (-527 (-1206) $)) (($ $) |has| |#1| (-320 $)) ((|#1| |#1|) |has| |#1| (-320 |#1|)) (((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|))) +((((-1206)) |has| |#1| (-926 (-1206)))) +(-2867 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-361))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) ((((-401) |#1|) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(((|#2|) . T) (((-880)) . T)) -((((-880)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(((|#2|) . T) (((-885)) . T)) +((((-885)) . T)) (((|#2|) . T)) -((((-933 |#1|)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((((-938 |#1|)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) @@ -1348,250 +1351,250 @@ (((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) (((|#1| |#1|) . T)) -(((#0=(-888 |#1|)) |has| #0# (-320 #0#))) -((((-577)) . T) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T)) +(((#0=(-893 |#1|)) |has| #0# (-320 #0#))) +((((-577)) . T) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-809)) -(|has| |#2| (-809)) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (((|#1|) . T)) -(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) -(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) -(|has| |#2| (-1074)) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) +(|has| |#2| (-1079)) ((($) . T) (((-577)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1227)) +(|has| |#1| (-1232)) (((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) ((((-420 (-577))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1074))) -(((|#4|) |has| |#4| (-1074))) -(((|#3|) |has| |#3| (-1074))) -(((|#3|) |has| |#3| (-1074))) +(((|#4|) |has| |#4| (-1079))) +(((|#4|) |has| |#4| (-1079))) +(((|#3|) |has| |#3| (-1079))) +(((|#3|) |has| |#3| (-1079))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) (|has| |#1| (-375)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T)) -((((-880)) . T)) -((($ $) . T) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) -((((-549)) |has| |#3| (-627 (-549)))) +((((-885)) . T)) +((($ $) . T) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) +((((-549)) |has| |#3| (-632 (-549)))) (((|#1| |#2|) . T)) -(|has| |#1| (-864)) -(|has| |#1| (-864)) -((((-705 |#3|)) . T) (((-880)) . T)) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-710 |#3|)) . T) (((-885)) . T)) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((($) . T)) -(((#0=(-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) #0#) |has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))))) +(((#0=(-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) #0#) |has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))))) ((((-577) |#3|) . T)) (((|#2|) . T)) ((($) . T)) ((($) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1107)) . T)) -(((|#2|) |has| |#2| (-1125))) -((((-880)) -2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-626 (-880))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) (((-1292 |#2|)) . T)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1112)) . T)) +(((|#2|) |has| |#2| (-1130))) +((((-885)) -2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-631 (-885))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) (((-1297 |#2|)) . T)) ((($) . T)) ((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-1183) (-52)) . T)) +((((-1188) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2811 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -((((-880)) . T)) +((($) -2867 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +((((-885)) . T)) (((|#2|) . T)) -((($) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T)) +((($) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T)) ((($) . T) (((-577)) . T)) ((((-577) (-145)) . T)) -((((-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) ((|#1| |#2|) . T)) +((((-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) ((|#1| |#2|) . T)) ((((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-880)) . T)) -((((-933 |#1|)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-885)) . T)) +((((-938 |#1|)) . T)) (|has| |#1| (-375)) (|has| |#1| (-375)) (|has| |#1| (-375)) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-864)) -((($) -2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(|has| |#1| (-869)) +((($) -2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) (|has| |#1| (-375)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-864)) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-1201)) |has| |#1| (-921 (-1201)))) -(|has| |#1| (-864)) +(|has| |#1| (-869)) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-1206)) |has| |#1| (-926 (-1206)))) +(|has| |#1| (-869)) ((((-519)) . T)) -(((|#1| (-1201)) . T)) -(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) -((((-880)) . T) (((-1206)) . T)) +(((|#1| (-1206)) . T)) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) +((((-885)) . T) (((-1211)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1206)) . T)) -(|has| |#1| (-1125)) -(((|#1| (-1201) (-834 (-1201)) (-544 (-834 (-1201)))) . T)) -((((-420 (-975 |#1|))) . T)) +((((-1211)) . T)) +(|has| |#1| (-1130)) +(((|#1| (-1206) (-839 (-1206)) (-544 (-839 (-1206)))) . T)) +((((-420 (-980 |#1|))) . T)) ((((-549)) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T)) -((((-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) (((-1259 (-577)) $) . T) ((|#1| |#2|) . T)) +((((-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) (((-1264 (-577)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T)) (((|#1|) . T)) -((((-549)) |has| |#1| (-627 (-549))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577))))) -((((-880)) . T)) -((((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#2|) . T) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-549)) |has| |#1| (-632 (-549))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577))))) +((((-885)) . T)) +((((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) ((((-519)) . T)) ((((-519)) . T)) -((((-1201)) -2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) -((((-1201)) -2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) +((((-1206)) -2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079))))) +((((-1206)) -2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) (|has| |#1| (-569)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-238))) -((((-888 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-238))) +((((-893 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) -(|has| |#2| (-1074)) -((((-1183) |#1|) . T)) -(|has| |#1| (-1177)) -((((-981 |#1|)) . T)) -(((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-577))) (((-577)) |has| |#1| (-1063 (-577))) (((-1201)) |has| |#1| (-1063 (-1201))) ((|#1|) . T)) +(|has| |#2| (-1079)) +((((-1188) |#1|) . T)) +(|has| |#1| (-1182)) +((((-986 |#1|)) . T)) +(((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-577))) (((-577)) |has| |#1| (-1068 (-577))) (((-1206)) |has| |#1| (-1068 (-1206))) ((|#1|) . T)) ((($) . T)) ((($) . T)) ((((-577) |#2|) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -((((-577)) |has| |#1| (-905 (-577))) (((-391)) |has| |#1| (-905 (-391)))) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-577)) |has| |#1| (-910 (-577))) (((-391)) |has| |#1| (-910 (-391)))) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-577)) . T)) -((((-660 |#4|)) . T) (((-880)) . T)) -((((-549)) |has| |#4| (-627 (-549)))) -((((-549)) |has| |#4| (-627 (-549)))) -((((-880)) . T) (((-660 |#4|)) . T)) -((($) |has| |#1| (-864))) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) -((((-577)) -2811 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ((|#2|) |has| |#2| (-1125)) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +((((-665 |#4|)) . T) (((-885)) . T)) +((((-549)) |has| |#4| (-632 (-549)))) +((((-549)) |has| |#4| (-632 (-549)))) +((((-885)) . T) (((-665 |#4|)) . T)) +((($) |has| |#1| (-869))) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) +((((-577)) -2867 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1130)) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) (((|#1|) . T)) (((|#1|) . T)) -((((-660 |#4|)) . T) (((-880)) . T)) -((((-549)) |has| |#4| (-627 (-549)))) +((((-665 |#4|)) . T) (((-885)) . T)) +((((-549)) |has| |#4| (-632 (-549)))) (((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -((((-1201)) |has| (-420 |#2|) (-921 (-1201)))) +((((-1206)) |has| (-420 |#2|) (-926 (-1206)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) #0#) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) #0#) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) ((($) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($) -2811 (|has| |#1| (-239)) (|has| |#1| (-238)))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($) -2867 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) ((($) . T)) ((($) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) ((($) . T)) ((($) . T)) -((((-880)) -2811 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-626 (-880))) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-742)) (|has| |#3| (-809)) (|has| |#3| (-865)) (|has| |#3| (-1074)) (|has| |#3| (-1125))) (((-1292 |#3|)) . T)) +((((-885)) -2867 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-631 (-885))) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-747)) (|has| |#3| (-814)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1130))) (((-1297 |#3|)) . T)) (((|#2|) . T)) ((((-577) |#2|) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) -(((|#2| |#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) +(((|#2| |#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) (((|#2|) . T) (((-577)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) ((|#2|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-1183) (-1201) (-577) (-228) (-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) ((|#2|) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-1188) (-1206) (-577) (-228) (-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-880)) . T)) +((((-885)) . T)) ((((-577) (-112)) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) ((((-112)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) ((((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) ((($) . T) (((-420 (-577))) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) (|has| $ (-148)) ((((-420 |#2|)) . T)) -((((-420 (-577))) |has| #0=(-420 |#2|) (-1063 (-420 (-577)))) (((-577)) |has| #0# (-1063 (-577))) ((#0#) . T)) +((((-420 (-577))) |has| #0=(-420 |#2|) (-1068 (-420 (-577)))) (((-577)) |has| #0# (-1068 (-577))) ((#0#) . T)) (((|#2| |#2|) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#2| (-239)) -((((-880)) . T) (((-1206)) . T)) +((((-885)) . T) (((-1211)) . T)) (((|#2|) . T)) -((((-1206)) . T)) -((((-1201) (-52)) . T)) +((((-1211)) . T)) +((((-1206) (-52)) . T)) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -((((-880)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) +((((-885)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) (((|#1| |#1|) . T)) -((((-1201)) |has| |#2| (-921 (-1201)))) +((((-1206)) |has| |#2| (-926 (-1206)))) ((((-130)) . T)) -((((-577) (-112)) . T) (((-1259 (-577)) $) . T)) +((((-577) (-112)) . T) (((-1264 (-577)) $) . T)) (|has| |#1| (-569)) (((|#2|) . T)) (((|#2|) . T)) -((((-912 |#1|)) . T) ((|#2|) . T) (((-577)) . T) (((-835 |#1|)) . T)) -(((|#1|) . T) (((-577)) . T) (((-835 (-1201))) . T)) +((((-917 |#1|)) . T) ((|#2|) . T) (((-577)) . T) (((-840 |#1|)) . T)) +(((|#1|) . T) (((-577)) . T) (((-840 (-1206))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) @@ -1600,69 +1603,69 @@ (|has| |#1| (-38 (-420 (-577)))) (((|#3|) . T)) (|has| |#1| (-38 (-420 (-577)))) -((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) -(((|#1|) . T)) -((((-1029 2)) . T) (((-420 (-577))) . T) (((-880)) . T)) -((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-1024 |#1|)) . T) ((|#1|) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-834 (-1201))) . T)) -((((-880)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) +(((|#1|) . T)) +((((-1034 2)) . T) (((-420 (-577))) . T) (((-885)) . T)) +((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-1029 |#1|)) . T) ((|#1|) . T)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-839 (-1206))) . T)) +((((-885)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) ((((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1197 |#1|)) . T)) +(((|#1| (-1202 |#1|)) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-865)) +(|has| |#1| (-870)) (((|#1|) . T) (((-577)) . T) (($) . T)) (((|#2|) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) ((((-577) |#2|) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#2|) . T)) ((((-577) |#3|) . T)) (((|#2|) . T)) -((((-880)) . T)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) -(-2811 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238)))) +((((-885)) . T)) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) +(-2867 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238)))) (|has| |#1| (-38 (-420 (-577)))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) #0#) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) #0#) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) (((|#2| |#2|) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-375)) -(((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +(((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) (((|#2|) . T)) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) (((|#1|) |has| |#1| (-174))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#1| (-1125)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#1| (-1130)) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-38 (-420 (-577)))) -((((-1183) (-52)) . T)) +((((-1188) (-52)) . T)) (((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($ (-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201)))) (($ (-1107)) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($ (-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206)))) (($ (-1112)) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (((|#2|) |has| |#2| (-174))) (((|#2|) . T)) -((((-577)) -2811 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) ((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074))) +((((-577)) -2867 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) ((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) (((|#1|) . T)) ((((-577) |#3|) . T)) ((((-577) (-145)) . T)) ((((-145)) . T)) -((((-880)) . T)) -((((-1206)) . T)) +((((-885)) . T)) +((((-1211)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) @@ -1670,127 +1673,127 @@ ((($) . T)) (|has| |#1| (-569)) ((((-577)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1|) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) -(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) +(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) ((((-145)) . T)) -((((-880)) . T)) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) -((((-1201) (-52)) . T) (((-1183) (-52)) . T)) +((((-885)) . T)) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) +((((-1206) (-52)) . T) (((-1188) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1| |#2|) . T)) -(-2811 (|has| |#2| (-239)) (|has| |#2| (-238))) -((((-577) (-145)) . T) (((-1259 (-577)) $) . T)) -(((#0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) #0#) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#1| (-865)) -(((|#2| (-787) (-1107)) . T)) +(-2867 (|has| |#2| (-239)) (|has| |#2| (-238))) +((((-577) (-145)) . T) (((-1264 (-577)) $) . T)) +(((#0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) #0#) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#1| (-870)) +(((|#2| (-792) (-1112)) . T)) (((|#1| |#2|) . T)) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) -(|has| |#1| (-807)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-569))) -((((-1201)) -2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) +(|has| |#1| (-812)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-569))) +((((-1206)) -2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#1| (-148)) (-12 (|has| |#1| (-375)) (|has| |#2| (-148)))) +(-2867 (|has| |#1| (-148)) (-12 (|has| |#1| (-375)) (|has| |#2| (-148)))) (((|#4|) . T)) -(-2811 (|has| |#1| (-146)) (-12 (|has| |#1| (-375)) (|has| |#2| (-146)))) -((((-1183) |#1|) . T)) +(-2867 (|has| |#1| (-146)) (-12 (|has| |#1| (-375)) (|has| |#2| (-146)))) +((((-1188) |#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (((|#1|) . T)) ((((-577)) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-577)) . T)) (((|#1| |#2|) . T)) -((((-880)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-885)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#3|) . T)) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) (((|#1|) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125))) (((-981 |#1|)) . T)) -(|has| |#1| (-864)) -(|has| |#1| (-864)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-981 |#1|)) . T)) -(((|#4|) -2811 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-742)))) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130))) (((-986 |#1|)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-986 |#1|)) . T)) +(((|#4|) -2867 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-747)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)))) (|has| |#2| (-375)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -2811 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-742)) (|has| |#4| (-1074)))) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074)))) -(((|#2|) |has| |#2| (-1074))) -(((|#2|) |has| |#2| (-1074))) -((((-1183) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) -(((|#2| (-912 |#1|)) . T)) +(((|#4|) -2867 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-747)) (|has| |#4| (-1079)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079)))) +(((|#2|) |has| |#2| (-1079))) +(((|#2|) |has| |#2| (-1079))) +((((-1188) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) +(((|#2| (-917 |#1|)) . T)) ((($) . T)) -((($ (-882 |#1|)) . T)) +((($ (-887 |#1|)) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) -((((-401) (-1183)) . T)) -((($ (-1201)) . T)) +((((-401) (-1188)) . T)) +((($ (-1206)) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) -2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-626 (-880))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) (((-1292 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4323 (-1183)) (|:| -2438 #0#))) . T)) +((((-885)) -2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-631 (-885))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) (((-1297 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4376 (-1188)) (|:| -2727 #0#))) . T)) (((|#1|) . T)) -((((-880)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((((-885)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) ((((-145)) . T)) (|has| |#2| (-146)) ((((-577)) . T)) (|has| |#2| (-148)) (|has| |#1| (-486)) -(-2811 (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +(-2867 (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) (|has| |#1| (-375)) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-38 (-420 (-577)))) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) ((($) |has| |#1| (-569))) -((((-1206)) . T)) -(|has| |#1| (-864)) -(|has| |#1| (-864)) -((((-880)) . T)) +((((-1211)) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +((((-885)) . T)) (((|#2|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) . T) (((-577)) . T) (((-835 |#1|)) . T)) +(((|#2|) . T) (((-577)) . T) (((-840 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1201)) |has| |#1| (-921 (-1201)))) +((((-1206)) |has| |#1| (-926 (-1206)))) (((|#2| |#2|) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(((|#2| (-495 (-3501 |#1|) (-787)) (-882 |#1|)) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-885)) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(((|#2| (-495 (-3600 |#1|) (-792)) (-887 |#1|)) . T)) ((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) -(((|#1| (-544 (-1201)) (-1201)) . T)) +(((|#1| (-544 (-1206)) (-1206)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) +(-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) @@ -1798,81 +1801,81 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-1201) (-52)) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-1206) (-52)) . T)) ((((-420 (-577)) |#1|) . T) (($ $) . T)) (((|#1| (-577)) . T)) -((((-933 |#1|)) . T)) -(((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074))) (($) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)))) -((((-1201)) -2811 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) -(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -(|has| |#1| (-865)) -(|has| |#1| (-865)) +((((-938 |#1|)) . T)) +(((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079))) (($) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)))) +((((-1206)) -2867 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) +(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +(|has| |#1| (-870)) +(|has| |#1| (-870)) ((((-577) |#2|) . T)) ((($) . T) (((-577)) . T) ((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-577)) . T)) -(|has| |#1| (-865)) -((((-705 |#2|)) . T) (((-880)) . T)) -((((-1284 |#1| |#2| |#3|)) -12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +(|has| |#1| (-870)) +((((-710 |#2|)) . T) (((-885)) . T)) +((((-1289 |#1| |#2| |#3|)) -12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375)))) ((((-420 (-577))) . T) (((-577)) . T) (($) . T)) (|has| |#1| (-239)) -(|has| |#1| (-865)) +(|has| |#1| (-870)) (((|#1| |#2|) . T)) -((((-420 (-975 |#1|))) . T)) -((((-996)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +((((-420 (-980 |#1|))) . T)) +((((-1001)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) (((|#1|) |has| |#1| (-174))) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)))) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(-2811 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-932))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(-2867 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-937))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) ((($ |#2|) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1107)) . T)) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1112)) . T)) ((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) ((((-577) |#2|) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)))) (|has| |#1| (-361)) -(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) +(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) (((|#2|) . T) (((-577)) . T)) ((($) . T) (((-420 (-577))) . T)) ((((-577) (-112)) . T)) -(|has| |#1| (-836)) -(|has| |#1| (-836)) +(|has| |#1| (-841)) +(|has| |#1| (-841)) (((|#1|) . T)) -(-2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) -(|has| |#1| (-864)) -(|has| |#1| (-864)) -(|has| |#1| (-864)) +(-2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-577)) . T) (($) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-1201)) |has| |#1| (-921 (-1201))) (((-1107)) . T)) -(((|#1|) . T)) -(|has| |#1| (-864)) -(((#0=(-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) #0#) |has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(|has| |#1| (-1125)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-1206)) |has| |#1| (-926 (-1206))) (((-1112)) . T)) +(((|#1|) . T)) +(|has| |#1| (-869)) +(((#0=(-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) #0#) |has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(|has| |#1| (-1130)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1167 |#2| (-420 (-975 |#1|)))) . T) (((-420 (-975 |#1|))) . T) (((-577)) . T)) +((((-1172 |#2| (-420 (-980 |#1|)))) . T) (((-420 (-980 |#1|))) . T) (((-577)) . T)) (((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) @@ -1881,21 +1884,21 @@ (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-880)) . T)) -((((-145)) . T) (((-880)) . T)) +((((-885)) . T)) +((((-145)) . T) (((-885)) . T)) ((((-577) |#1|) . T)) (((|#1| (-544 |#2|) |#2|) . T)) (((|#3|) . T)) -(((|#1| (-787) (-1107)) . T)) +(((|#1| (-792) (-1112)) . T)) ((((-145)) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) -2811 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))) ((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) -2867 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) ((((-145)) . T)) -((((-1201)) -2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) +((((-1206)) -2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -1903,91 +1906,91 @@ (((|#3|) |has| |#3| (-375))) (((|#1|) . T)) (((|#2|) |has| |#1| (-375))) -((((-880)) . T)) -((((-880)) . T)) -((((-882 |#1|)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-887 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1197 |#1|)) . T)) -((((-1107)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((($) . T) ((|#1|) . T) (((-420 (-577))) . T) (((-577)) |has| |#1| (-654 (-577)))) +(((|#1| (-1202 |#1|)) . T)) +((((-1112)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((($) . T) ((|#1|) . T) (((-420 (-577))) . T) (((-577)) |has| |#1| (-659 (-577)))) ((($) . T)) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) ((($) |has| |#1| (-569))) (((|#2|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) . T)) -((($) |has| |#1| (-864))) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) -(|has| |#1| (-932)) -((((-1201)) . T)) -((((-880)) . T)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($) |has| |#1| (-869))) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) +(|has| |#1| (-937)) +((((-1206)) . T)) +((((-885)) . T)) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((((-577) |#2|) . T)) -((($ (-1201)) -2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) -((($ (-1201)) -2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) -((($) -2811 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((($ (-1206)) -2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079))))) +((($ (-1206)) -2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) +((($) -2867 (|has| |#1| (-239)) (|has| |#1| (-238)))) ((($) |has| |#1| (-380))) ((($) |has| |#1| (-380))) ((($) |has| |#1| (-380))) (((|#1| |#2|) . T)) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-932))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((#0=(-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) #0#) |has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-932))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-937))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((#0=(-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) #0#) |has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-937))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)))) -(|has| |#1| (-865)) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)))) +(|has| |#1| (-870)) (|has| |#1| (-569)) ((((-594 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-836))) (-12 (|has| |#1| (-375)) (|has| |#2| (-865)))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-933 |#1|)) . T)) +(-2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-841))) (-12 (|has| |#1| (-375)) (|has| |#2| (-870)))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-938 |#1|)) . T)) (((|#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-787)) . T)) +(((|#1| (-792)) . T)) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) -((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) -((((-688 |#1|)) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) +((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) +((((-693 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-880)) . T) (((-1206)) . T)) +((((-885)) . T) (((-1211)) . T)) ((((-549)) . T)) -((((-880)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-880)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((((-1206)) . T)) +((((-885)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-885)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-1211)) . T)) ((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T) (((-577)) . T)) -(((|#3|) . T) (((-577)) . T) (((-625 $)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) +(((|#3|) . T) (((-577)) . T) (((-630 $)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#2|) . T)) -(-2811 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-742)) (|has| |#3| (-809)) (|has| |#3| (-865)) (|has| |#3| (-1074)) (|has| |#3| (-1125))) -(|has| |#2| (-1074)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) -(|has| |#1| (-1227)) -(|has| |#1| (-1227)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) -(|has| |#1| (-1227)) -(|has| |#1| (-1227)) +(-2867 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-747)) (|has| |#3| (-814)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1130))) +(|has| |#2| (-1079)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) +(|has| |#1| (-1232)) +(|has| |#1| (-1232)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) +(|has| |#1| (-1232)) +(|has| |#1| (-1232)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) ((($ $) . T) ((#0=(-420 (-577)) #0#) . T) ((#1=(-420 |#1|) #1#) . T) ((|#1| |#1|) . T)) @@ -2001,213 +2004,213 @@ (((|#1|) . T)) ((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-1183) (-52)) . T)) -(|has| |#1| (-1125)) +((((-1188) (-52)) . T)) +(|has| |#1| (-1130)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-2811 (|has| |#2| (-836)) (|has| |#2| (-865))) +(-2867 (|has| |#2| (-841)) (|has| |#2| (-870))) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) ((((-577)) . T) (($) . T)) -((((-787)) . T)) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361))) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -((((-880)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(|has| |#2| (-932)) +((((-792)) . T)) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361))) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +((((-885)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(|has| |#2| (-937)) (|has| |#1| (-375)) -(((|#2|) |has| |#2| (-1125))) +(((|#2|) |has| |#2| (-1130))) ((($) . T) (((-577)) . T)) ((($) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -((((-549)) . T) (((-420 (-1197 (-577)))) . T) (((-228)) . T) (((-391)) . T)) -((((-391)) . T) (((-228)) . T) (((-880)) . T)) -(|has| |#1| (-932)) -(|has| |#1| (-932)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-834 (-1201))) . T)) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +((((-549)) . T) (((-420 (-1202 (-577)))) . T) (((-228)) . T) (((-391)) . T)) +((((-391)) . T) (((-228)) . T) (((-885)) . T)) +(|has| |#1| (-937)) +(|has| |#1| (-937)) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-839 (-1206))) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -(|has| |#1| (-932)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-932))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(|has| |#1| (-937)) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-937))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074)))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) -((((-1199 |#1| |#2| |#3|)) -12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-932))) -((((-880)) . T)) -((((-880)) . T)) +((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079)))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +((((-1204 |#1| |#2| |#3|)) -12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-937))) +((((-885)) . T)) +((((-885)) . T)) ((($ $) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((($) -2811 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238))))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((($) -2867 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238))))) ((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -((((-996)) . T)) -((((-996)) . T) (((-880)) . T)) +((((-1001)) . T)) +((((-1001)) . T) (((-885)) . T)) ((($ $) . T)) ((((-577) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((((-577)) . T)) (((|#1| (-577)) . T)) ((($) . T)) -(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) +(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1201)) |has| |#1| (-1074))) +((((-1206)) |has| |#1| (-1079))) ((((-577)) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-38 (-420 (-577)))) (((|#1|) . T)) (((|#1| (-577)) . T)) -(((|#1| (-1284 |#1| |#2| |#3|)) . T)) +(((|#1| (-1289 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-420 (-577))) . T)) -(((|#1| (-1256 |#1| |#2| |#3|)) . T)) -((((-880)) . T)) -(|has| |#1| (-1125)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(((|#1| (-787)) . T)) -((((-1183) |#1|) . T)) +(((|#1| (-1261 |#1| |#2| |#3|)) . T)) +((((-885)) . T)) +(|has| |#1| (-1130)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(((|#1| (-792)) . T)) +((((-1188) |#1|) . T)) (((|#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-544 (-834 (-1201))) (-834 (-1201))) . T)) -((((-880)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1074))) -((((-577) (-112)) . T) (((-1259 (-577)) $) . T)) -((((-880)) |has| |#1| (-1125))) +(((|#1| (-544 (-839 (-1206))) (-839 (-1206))) . T)) +((((-885)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1079))) +((((-577) (-112)) . T) (((-1264 (-577)) $) . T)) +((((-885)) |has| |#1| (-1130))) (((|#1|) . T) (((-577)) . T) (($) . T)) ((((-577)) . T)) ((((-577)) . T)) (((|#1|) . T)) ((((-577)) . T)) ((((-577)) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-361))) -((((-880)) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-361))) +((((-885)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) -((((-880)) . T)) -(|has| |#3| (-1074)) -((($) -2811 (|has| |#2| (-239)) (|has| |#2| (-238)))) -((((-1277 |#2| |#3| |#4|)) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T)) -((((-880)) . T)) -((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (((-625 $)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) -2811 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-420 (-975 |#1|))) |has| |#1| (-569)) (((-975 |#1|)) |has| |#1| (-1074)) (((-1201)) . T)) +((((-885)) . T)) +(|has| |#3| (-1079)) +((($) -2867 (|has| |#2| (-239)) (|has| |#2| (-238)))) +((((-1282 |#2| |#3| |#4|)) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T)) +((((-885)) . T)) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (((-630 $)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) -2867 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-420 (-980 |#1|))) |has| |#1| (-569)) (((-980 |#1|)) |has| |#1| (-1079)) (((-1206)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-787)) . T)) +(((|#1| (-792)) . T)) (((|#1|) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) (((|#1|) |has| |#1| (-320 |#1|))) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) -((((-577)) |has| |#1| (-905 (-577))) (((-391)) |has| |#1| (-905 (-391)))) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) +((((-577)) |has| |#1| (-910 (-577))) (((-391)) |has| |#1| (-910 (-391)))) (((|#1|) . T)) -((($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) +((($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) (((|#1|) . T)) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) (((|#1|) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -(((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +(((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) (((|#1|) |has| |#1| (-174))) -((((-880)) . T)) +((((-885)) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (|has| |#1| (-569)) -((($ (-1288 |#2|)) . T) (($ (-1201)) -2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) -((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) +((($ (-1293 |#2|)) . T) (($ (-1206)) -2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) (((|#1|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1125))) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)))) -((((-882 |#1|)) . T)) -((((-1277 |#2| |#3| |#4|)) . T)) +(((|#3|) |has| |#3| (-1130))) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)))) +((((-887 |#1|)) . T)) +((((-1282 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-836)) -(|has| |#1| (-836)) -(((|#1| (-577) (-1107)) . T)) +(|has| |#1| (-841)) +(|has| |#1| (-841)) +(((|#1| (-577) (-1112)) . T)) ((($) |has| |#1| (-320 $)) ((|#1|) |has| |#1| (-320 |#1|))) -(|has| |#1| (-864)) -(|has| |#1| (-864)) -(((|#1| (-577) (-1107)) . T)) -(-2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(((|#1| (-420 (-577)) (-1107)) . T)) -(((|#1| (-787) (-1107)) . T)) -(|has| |#1| (-865)) -(((#0=(-933 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) +(|has| |#1| (-869)) +(|has| |#1| (-869)) +(((|#1| (-577) (-1112)) . T)) +(-2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(((|#1| (-420 (-577)) (-1112)) . T)) +(((|#1| (-792) (-1112)) . T)) +(|has| |#1| (-870)) +(((#0=(-938 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1125)) -((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(|has| |#1| (-1125)) +(|has| |#1| (-1130)) +((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-1130)) ((((-420 (-577))) |has| |#2| (-375)) (($) . T) (((-577)) . T)) -((((-577)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)))) +((((-577)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)))) (((|#1|) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) ((|#2|) |has| |#1| (-375))) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) -((((-705 (-351 (-3614) (-3614 (QUOTE X) (QUOTE HESS)) (-715)))) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) ((|#2|) |has| |#1| (-375))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) +((((-710 (-351 (-3722) (-3722 (QUOTE X) (QUOTE HESS)) (-720)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074)))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079)))) (((|#1|) . T)) ((((-577)) . T)) ((((-577)) . T)) -(((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074)))) +(((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079)))) (((|#2|) |has| |#2| (-375))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-375)) (((-577)) |has| |#1| (-654 (-577)))) -(|has| |#1| (-865)) +((($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-375)) (((-577)) |has| |#1| (-659 (-577)))) +(|has| |#1| (-870)) (((|#1|) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1|) . T) (((-577)) . T)) (((|#2|) . T)) ((((-577)) . T) ((|#3|) . T)) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) |has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-932))) -(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) -((((-880)) . T)) -((((-880)) . T)) -((($ (-1201)) -2811 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) -((((-577)) -2811 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) ((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074))) -((((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-880)) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) |has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-937))) +(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +((((-885)) . T)) +((((-885)) . T)) +((($ (-1206)) -2867 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) +((((-577)) -2867 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) ((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) +((((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-885)) . T)) ((($) |has| |#1| (-239))) (|has| |#1| (-38 (-420 (-577)))) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) @@ -2217,158 +2220,158 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-864)) +(|has| |#1| (-869)) (((|#1| (-577)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1199 |#1| |#2| |#3|)) . T)) +(((|#1| (-1204 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-420 (-577))) . T)) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#1| (-1192 |#1| |#2| |#3|)) . T)) -(((|#1| (-787)) . T)) +(((|#1| (-1197 |#1| |#2| |#3|)) . T)) +(((|#1| (-792)) . T)) (((|#1|) . T)) -((((-420 (-975 |#1|))) . T)) +((((-420 (-980 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-420 (-975 |#1|))) . T)) +((((-420 (-980 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-577)) . T) ((|#1|) . T) (($) . T) (((-420 (-577))) . T) (((-1201)) |has| |#1| (-1063 (-1201)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-577)) . T) ((|#1|) . T) (($) . T) (((-420 (-577))) . T) (((-1206)) |has| |#1| (-1068 (-1206)))) (((|#1| |#2|) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) -2811 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))) ((|#1|) . T)) -(-2811 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))) -(-2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) -2867 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ((|#1|) . T)) +(-2867 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) +(-2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ((((-145)) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (((|#1|) . T)) -(|has| |#2| (-1074)) +(|has| |#2| (-1079)) (((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) . T) (($ $) . T)) (((|#2|) . T) ((|#1|) . T) (((-577)) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) (|has| |#1| (-375)) (|has| |#1| (-375)) ((($ |#2|) . T)) (|has| (-420 |#2|) (-239)) -((((-660 |#1|)) . T)) -((($ (-1288 |#2|)) . T) (($ (-1201)) -2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) -((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) -(|has| |#1| (-932)) -(((|#2|) |has| |#2| (-1074))) -(((|#2|) |has| |#2| (-1074))) +((((-665 |#1|)) . T)) +((($ (-1293 |#2|)) . T) (($ (-1206)) -2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) +((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) +(|has| |#1| (-937)) +(((|#2|) |has| |#2| (-1079))) +(((|#2|) |has| |#2| (-1079))) (|has| |#1| (-375)) ((($) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) (((|#1|) |has| |#1| (-174))) -((($ (-882 |#1|)) . T)) +((($ (-887 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-888 |#1|)) . T)) -((((-880)) . T)) +((((-893 |#1|)) . T)) +((((-885)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1125))) +(((|#2|) |has| |#2| (-1130))) (((|#1|) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-660 $)) . T) (((-1183)) . T) (((-1201)) . T) (((-577)) . T) (((-228)) . T) (((-880)) . T)) -((((-577)) -2811 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) ((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074))) -((((-420 (-577))) . T) (((-577)) . T) (((-625 $)) . T)) +((((-665 $)) . T) (((-1188)) . T) (((-1206)) . T) (((-577)) . T) (((-228)) . T) (((-885)) . T)) +((((-577)) -2867 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) ((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079))) +((((-420 (-577))) . T) (((-577)) . T) (((-630 $)) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T)) (((|#1| (-544 |#2|) |#2|) . T)) -((((-880)) . T)) -(((|#1| (-577) (-1107)) . T)) -((((-933 |#1|)) . T)) -((((-880)) . T)) +((((-885)) . T)) +(((|#1| (-577) (-1112)) . T)) +((((-938 |#1|)) . T)) +((((-885)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-420 (-577)) (-1107)) . T)) -(((|#1| (-787) (-1107)) . T)) -((((-880)) . T)) +(((|#1| (-420 (-577)) (-1112)) . T)) +(((|#1| (-792) (-1112)) . T)) +((((-885)) . T)) (((#0=(-420 |#2|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-577)) -2811 (|has| (-420 (-577)) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) (((-420 (-577))) . T)) +(((|#1|) . T) (((-577)) -2867 (|has| (-420 (-577)) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) (((-420 (-577))) . T)) (((|#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-865)) +(|has| |#1| (-870)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) (|has| |#2| (-239)) -(((|#2| (-544 (-882 |#1|)) (-882 |#1|)) . T)) -((((-880)) . T)) +(((|#2| (-544 (-887 |#1|)) (-887 |#1|)) . T)) +((((-885)) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T)) +((((-885)) . T)) (((|#1| |#3|) . T)) -((((-880)) . T)) -(((|#1|) |has| |#1| (-174)) (((-975 |#1|)) . T) (((-577)) . T)) +((((-885)) . T)) +(((|#1|) |has| |#1| (-174)) (((-980 |#1|)) . T) (((-577)) . T)) (((|#1|) |has| |#1| (-174))) -((((-715)) . T)) -((((-715)) . T)) +((((-720)) . T)) +((((-720)) . T)) (((|#2|) |has| |#2| (-174))) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-238))) -((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) -((((-112)) |has| |#1| (-1125)) (((-880)) -2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137)) (|has| |#1| (-1125)))) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-238))) +((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) +((((-112)) |has| |#1| (-1130)) (((-885)) -2867 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1130)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) -((((-1201)) -2811 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +((((-885)) . T)) +((((-1206)) -2867 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) -((((-715)) . T) (((-420 (-577))) . T) (((-577)) . T)) +((((-885)) . T)) +((((-720)) . T) (((-420 (-577))) . T) (((-577)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) ((((-577) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) ((((-391)) . T)) -((((-715)) . T)) +((((-720)) . T)) ((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-420 (-975 |#1|))) . T)) +((((-420 (-980 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1074))) -(|has| |#2| (-932)) -(|has| |#1| (-932)) +(((|#3|) |has| |#3| (-1079))) +(|has| |#2| (-937)) +(|has| |#1| (-937)) (|has| |#1| (-375)) -(((|#3|) |has| |#3| (-1074))) +(((|#3|) |has| |#3| (-1079))) ((($) . T)) -((((-1201)) |has| |#2| (-921 (-1201)))) -(|has| |#1| (-865)) -((((-880)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(|has| |#1| (-807)) +((((-1206)) |has| |#2| (-926 (-1206)))) +(|has| |#1| (-870)) +((((-885)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(|has| |#1| (-812)) ((((-420 (-577))) . T) (($) . T)) (|has| |#1| (-486)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-375)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1074)) (|has| |#1| (-1137))) -((($) -2811 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361)))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1079)) (|has| |#1| (-1142))) +((($) -2867 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-361)) @@ -2377,9 +2380,9 @@ ((($) . T) (((-577)) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -(((|#2|) . T) (((-880)) . T)) -(((|#2|) . T) (((-880)) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +(((|#2|) . T) (((-885)) . T)) +(((|#2|) . T) (((-885)) . T)) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) @@ -2389,23 +2392,23 @@ (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-865)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) +(|has| |#1| (-870)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-577)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) ((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) ((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) (((|#2|) . T)) (|has| |#1| (-15 * (|#1| (-577) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-380)) -(-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +(-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-865)) -(|has| |#1| (-15 * (|#1| (-787) |#1|))) -(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +(|has| |#1| (-870)) +(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-792) |#1|))) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) @@ -2414,57 +2417,57 @@ ((((-577)) . T)) (|has| |#1| (-375)) (|has| |#1| (-375)) -((((-880)) . T)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391)))) (((-391)) . #0=(|has| |#1| (-1047))) (((-228)) . #0#)) +((((-885)) . T)) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391)))) (((-391)) . #0=(|has| |#1| (-1052))) (((-228)) . #0#)) (((|#1|) |has| |#1| (-375))) (((|#1|) |has| |#1| (-375))) -((((-880)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((($ $) . T) (((-625 $) $) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -((($) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) -((($) -2811 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) ((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-1074))) (((-420 (-577))) |has| |#1| (-569)) (((-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) -((($) . T) (((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +((((-885)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((($ $) . T) (((-630 $) $) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +((($) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) +((($) -2867 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-1079))) (((-420 (-577))) |has| |#1| (-569)) (((-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) +((($) . T) (((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) (|has| |#1| (-375)) (|has| |#1| (-375)) (|has| |#1| (-375)) ((((-391)) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-1201)) -2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) -((((-660 (-796 |#1| (-882 |#2|)))) . T) (((-880)) . T)) -((((-549)) |has| (-796 |#1| (-882 |#2|)) (-627 (-549)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-1206)) -2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) +((((-665 (-801 |#1| (-887 |#2|)))) . T) (((-885)) . T)) +((((-549)) |has| (-801 |#1| (-887 |#2|)) (-632 (-549)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((((-391)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) +(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) (((|#1|) |has| |#1| (-174))) -((((-880)) . T)) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-932))) +((((-885)) . T)) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-937))) (((|#1|) . T)) ((($) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) -((((-787)) . T)) -(|has| |#1| (-1125)) -((((-577)) -2811 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) ((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074))) -((((-880)) . T)) -((((-1183)) . T) (((-1201)) . T) (((-880)) . T)) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +((((-792)) . T)) +(|has| |#1| (-1130)) +((((-577)) -2867 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) ((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) +((((-885)) . T)) +((((-1188)) . T) (((-1206)) . T) (((-885)) . T)) ((((-577)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-420 (-577))) . T) (((-577)) . T) (((-625 $)) . T)) +((((-420 (-577))) . T) (((-577)) . T) (((-630 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) ((((-577)) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -(((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (($) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +(((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (($) . T)) ((((-577)) . T)) ((($) . T)) (|has| |#1| (-375)) -(-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) -(-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) +(-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) +(-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) (|has| |#1| (-375)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2472,88 +2475,88 @@ (|has| |#1| (-239)) (|has| |#1| (-375)) (((|#3|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-577)) |has| |#2| (-654 (-577))) ((|#2|) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-577)) |has| |#2| (-659 (-577))) ((|#2|) . T)) (|has| |#1| (-146)) ((((-577) |#1|) |has| |#2| (-430 |#1|))) ((((-577) |#1|) |has| |#2| (-430 |#1|))) (((|#2|) . T) (($) . T) (((-577)) . T)) (((|#2|) . T)) -(|has| |#1| (-865)) -(|has| |#1| (-865)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) ((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) -(|has| |#1| (-865)) +(|has| |#1| (-870)) ((((-420 (-577))) |has| |#2| (-375)) (($) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -((((-1167 |#2| |#1|)) . T) ((|#1|) . T) (((-577)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +((((-1172 |#2| |#1|)) . T) ((|#1|) . T) (((-577)) . T)) (((|#1| |#2|) . T)) -((((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577)))))) -((((-1201)) -2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))))) -(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577)))))) +((((-1206)) -2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))))) +(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) (((|#2|) . T) (($) . T) (((-577)) . T)) (((|#1|) . T) (($) . T) (((-577)) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) -((((-880)) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) +((((-885)) . T)) ((((-577)) . T)) -(-2811 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) +(-2867 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079)))) (((|#1| $) |has| |#1| (-297 |#1| |#1|))) ((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) -((((-975 |#1|)) . T) (((-880)) . T)) +((((-980 |#1|)) . T) (((-885)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-301)) (|has| |#1| (-375))) ((#0=(-420 (-577)) #0#) |has| |#1| (-375))) -((((-975 |#1|)) . T)) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-301)) (|has| |#1| (-375))) ((#0=(-420 (-577)) #0#) |has| |#1| (-375))) +((((-980 |#1|)) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) ((($) . T)) ((((-577) |#1|) . T)) -((((-1201)) |has| (-420 |#2|) (-921 (-1201)))) -(((|#1|) . T) (($) -2811 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) -((((-549)) |has| |#2| (-627 (-549)))) -((((-705 |#2|)) . T) (((-880)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -((((-888 |#1|)) . T)) +((((-1206)) |has| (-420 |#2|) (-926 (-1206)))) +(((|#1|) . T) (($) -2867 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) +((((-549)) |has| |#2| (-632 (-549)))) +((((-710 |#2|)) . T) (((-885)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +((((-893 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-2811 (|has| |#4| (-809)) (|has| |#4| (-865))) -(-2811 (|has| |#3| (-809)) (|has| |#3| (-865))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-880)) . T)) +(-2867 (|has| |#4| (-814)) (|has| |#4| (-870))) +(-2867 (|has| |#3| (-814)) (|has| |#3| (-870))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-885)) . T)) (((|#1|) . T)) ((($) . T) (((-577)) . T) ((|#2|) . T)) -((((-880)) . T)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)))) -(((|#2|) |has| |#2| (-1074))) -(((|#2|) |has| |#2| (-1074))) +((((-885)) . T)) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)))) +(((|#2|) |has| |#2| (-1079))) +(((|#2|) |has| |#2| (-1079))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) ((((-420 |#2|)) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)))) (((|#1|) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074)))) -(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079)))) +(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) (((|#1|) . T)) ((($) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) ((((-420 (-577))) . T) (($) . T)) ((((-420 (-577))) . T) (($) . T)) ((((-420 (-577))) . T) (($) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-1246))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-1251))) ((($) . T)) -((((-420 (-577))) |has| #0=(-420 |#2|) (-1063 (-420 (-577)))) (((-577)) |has| #0# (-1063 (-577))) ((#0#) . T)) -(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) -(((|#1| (-787)) . T)) -(|has| |#1| (-865)) -(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-420 (-577))) |has| #0=(-420 |#2|) (-1068 (-420 (-577)))) (((-577)) |has| #0# (-1068 (-577))) ((#0#) . T)) +(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +(((|#1| (-792)) . T)) +(|has| |#1| (-870)) +(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) ((((-577)) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) |has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(|has| |#1| (-864)) -((((-577) $) . T) (((-660 (-577)) $) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) |has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(|has| |#1| (-869)) +((((-577) $) . T) (((-665 (-577)) $) . T)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) @@ -2574,90 +2577,90 @@ (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -(-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +(-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-15 * (|#1| (-787) |#1|))) -((((-1183)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) -((((-880)) . T)) -(((|#2|) . T) (((-577)) . T) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1107)) . T) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) +(|has| |#1| (-15 * (|#1| (-792) |#1|))) +((((-1188)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) +((((-885)) . T)) +(((|#2|) . T) (((-577)) . T) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1112)) . T) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) -((((-796 |#1| (-882 |#2|))) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -(|has| |#1| (-1227)) -((((-880)) . T)) +((((-801 |#1| (-887 |#2|))) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +(|has| |#1| (-1232)) +((((-885)) . T)) (((|#1|) . T)) -(-2811 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-742)) (|has| |#3| (-809)) (|has| |#3| (-865)) (|has| |#3| (-1074)) (|has| |#3| (-1125))) -((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|))) +(-2867 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-747)) (|has| |#3| (-814)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1130))) +((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|))) (((|#2|) . T)) (((|#2|) . T)) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-933 |#1|)) . T)) -((($) -2811 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074))))) -((($) -2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-938 |#1|)) . T)) +((($) -2867 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079))))) +((($) -2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))))) ((($) . T)) -((((-420 (-975 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(|has| |#1| (-865)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-1201)) -2811 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) -(|has| |#1| (-864)) -((((-549)) |has| |#4| (-627 (-549)))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -((((-880)) . T) (((-660 |#4|)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-420 (-980 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(|has| |#1| (-870)) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-1206)) -2867 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) +(|has| |#1| (-869)) +((((-549)) |has| |#4| (-632 (-549)))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +((((-885)) . T) (((-665 |#4|)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1|) . T)) (|has| |#1| (-375)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) |has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))))) -(-2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-836))) (-12 (|has| |#1| (-375)) (|has| |#2| (-865)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) |has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))))) +(-2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-841))) (-12 (|has| |#1| (-375)) (|has| |#2| (-870)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)))) -((((-688 |#1|)) . T)) -(((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074)))) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)))) +((((-693 |#1|)) . T)) +(((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079)))) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) -(-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) +(-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) +(-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) -(|has| |#1| (-864)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) +(|has| |#1| (-869)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-1125)) +(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-1130)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T) (((-577)) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -(-2811 (|has| |#2| (-836)) (|has| |#2| (-865))) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(-2867 (|has| |#2| (-841)) (|has| |#2| (-870))) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) ((((-577)) . T) ((|#1|) . T)) (((|#2|) . T) (($) . T) (((-577)) . T)) (((|#2|) . T)) -((((-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +((((-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-375))) ((((-420 |#2|)) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) -(((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)))) +((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +(((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)))) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) @@ -2667,47 +2670,47 @@ (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#2|) |has| |#2| (-375))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) (((|#2|) . T)) -((((-420 (-577))) . T) (((-715)) . T) (($) . T)) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-238))) -(((#0=(-796 |#1| (-882 |#2|)) #0#) |has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|))))) -((($) -2811 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((((-420 (-577))) . T) (((-720)) . T) (($) . T)) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-238))) +(((#0=(-801 |#1| (-887 |#2|)) #0#) |has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|))))) +((($) -2867 (|has| |#1| (-239)) (|has| |#1| (-238)))) ((((-577)) . T) (($) . T)) -((((-882 |#1|)) . T)) +((((-887 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1201)) |has| |#1| (-921 (-1201))) (((-1107)) . T)) -((((-1201)) |has| |#1| (-921 (-1201))) (((-1113 (-1201))) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) -((($ (-1201)) -2811 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +((((-1206)) |has| |#1| (-926 (-1206))) (((-1112)) . T)) +((((-1206)) |has| |#1| (-926 (-1206))) (((-1118 (-1206))) . T)) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +((($ (-1206)) -2867 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) ((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (|has| |#1| (-38 (-420 (-577)))) -(((|#4|) |has| |#4| (-1074)) (((-577)) -12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074)))) -(((|#3|) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) +(((|#4|) |has| |#4| (-1079)) (((-577)) -12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079)))) +(((|#3|) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137)) (|has| |#1| (-1125))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1130))) (|has| |#1| (-569)) (((|#2|) . T)) ((((-577)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((((-594 |#1|)) . T)) ((($) . T)) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-6 (-4472 "*")))) +(((|#2|) |has| |#2| (-6 (-4501 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2717,38 +2720,38 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T) (((-577)) . T)) -((((-1277 |#2| |#3| |#4|)) . T) (((-577)) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (((-577)) -2811 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))) (|has| |#1| (-1074))) ((|#1|) . T) (((-625 $)) . T) (($) |has| |#1| (-569)) (((-420 (-577))) -2811 (|has| |#1| (-569)) (|has| |#1| (-1063 (-420 (-577))))) (((-420 (-975 |#1|))) |has| |#1| (-569)) (((-975 |#1|)) |has| |#1| (-1074)) (((-1201)) . T)) -((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) +((((-1282 |#2| |#3| |#4|)) . T) (((-577)) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (((-577)) -2867 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1068 (-577))) (|has| |#1| (-1079))) ((|#1|) . T) (((-630 $)) . T) (($) |has| |#1| (-569)) (((-420 (-577))) -2867 (|has| |#1| (-569)) (|has| |#1| (-1068 (-420 (-577))))) (((-420 (-980 |#1|))) |has| |#1| (-569)) (((-980 |#1|)) |has| |#1| (-1079)) (((-1206)) . T)) +((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) ((($) . T) (((-117 |#1|)) . T) (((-420 (-577))) . T)) -((((-1150 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((((-1197 |#1|)) . T) (((-1107)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((((-1150 |#1| (-1201))) . T) (((-1113 (-1201))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-1201)) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-1155 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((((-1202 |#1|)) . T) (((-1112)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((((-1155 |#1| (-1206))) . T) (((-1118 (-1206))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-1206)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) ((($) . T)) -(|has| |#1| (-1125)) -((((-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577)))) (((-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391))))) +(|has| |#1| (-1130)) +((((-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577)))) (((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391))))) (((|#1| |#2|) . T)) -((((-1201) |#1|) . T)) +((((-1206) |#1|) . T)) (((|#4|) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1201) (-52)) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) -((((-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) -((((-880)) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) -(((#0=(-1278 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1206) (-52)) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) +((((-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) +((((-885)) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) +(((#0=(-1283 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-174)) ((#0=(-420 (-577)) #0#) |has| |#1| (-569)) (($ $) |has| |#1| (-569))) ((($) |has| |#1| (-15 * (|#1| (-577) |#1|)))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1| $) |has| |#1| (-297 |#1| |#1|))) -((((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-569)) (($) |has| |#1| (-569))) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) (|has| |#1| (-375)) -((($) |has| |#1| (-864)) (((-577)) -2811 (|has| |#1| (-21)) (|has| |#1| (-864)))) -((($) -2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) +((($) |has| |#1| (-869)) (((-577)) -2867 (|has| |#1| (-21)) (|has| |#1| (-869)))) +((($) -2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2756,260 +2759,263 @@ (|has| |#1| (-146)) ((((-420 (-577))) . T) (($) . T)) (((|#3|) |has| |#3| (-375))) -((($) |has| |#1| (-15 * (|#1| (-787) |#1|)))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) -((((-1201)) . T)) -((($) . T) (((-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577)))) (((-577)) . T)) +((($) |has| |#1| (-15 * (|#1| (-792) |#1|)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +((((-1206)) . T)) +((($) . T) (((-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) (((-577)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) -(|has| |#1| (-865)) +((((-130)) . T) (((-885)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +(|has| |#1| (-870)) (((|#2| |#3|) . T)) (((|#1| (-544 |#2|)) . T)) -(((|#1| (-787)) . T)) -(-2811 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -(((|#1| (-544 (-1113 (-1201)))) . T)) +(((|#1| (-792)) . T)) +(-2867 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(((|#1| (-544 (-1118 (-1206)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-932)) -(-2811 (|has| |#2| (-809)) (|has| |#2| (-865))) -((((-880)) . T)) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)))) -(((|#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074)))) -((($ (-1201)) -2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) -((($ $) . T) ((#0=(-1277 |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) |has| #0# (-38 (-420 (-577))))) -((((-933 |#1|)) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) +(|has| |#2| (-937)) +(-2867 (|has| |#2| (-814)) (|has| |#2| (-870))) +((((-885)) . T)) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)))) +(((|#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079)))) +((($ (-1206)) -2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) +((($ $) . T) ((#0=(-1282 |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) |has| #0# (-38 (-420 (-577))))) +((((-938 |#1|)) . T)) +(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T) (((-577)) . T)) ((($) . T)) -(-2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (|has| |#1| (-375)) (|has| |#1| (-375)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) -(-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375)) (|has| |#1| (-361))) -(-2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) +((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) +(-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) . T)) +(((|#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) . T)) (((|#2|) . T)) (|has| |#2| (-375)) -(|has| |#1| (-865)) -(|has| |#1| (-865)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-577)) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1125)) +(|has| |#1| (-1130)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T) (((-577)) . T) (($) . T)) (((|#3|) . T) (((-577)) . T) (($) . T)) ((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-836)) +(|has| |#2| (-841)) ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1201)) -2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))))) -((((-880)) . T)) -(((|#1| (-544 (-1201))) . T)) +((($ (-1206)) -2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))))) +((((-885)) . T)) +(((|#1| (-544 (-1206))) . T)) ((($ $) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) (((|#2|) . T)) -(((|#2|) -2811 (|has| |#2| (-6 (-4472 "*"))) (|has| |#2| (-174)))) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(|has| |#2| (-932)) -(|has| |#1| (-932)) -((($) -2811 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))))) +(((|#2|) -2867 (|has| |#2| (-6 (-4501 "*"))) (|has| |#2| (-174)))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(|has| |#2| (-937)) +(|has| |#1| (-937)) +((($) -2867 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-880)) . T)) -((((-880)) . T)) -((((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-885)) . T)) +((((-885)) . T)) +((((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-577)) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-880)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-885)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-577)) . T)) (((|#1| (-420 (-577))) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-301)) (|has| |#1| (-375))) +(-2867 (|has| |#1| (-301)) (|has| |#1| (-375))) ((((-145)) . T)) -((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-864)) -((((-880)) . T)) -((((-880)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-869)) +((((-885)) . T)) +((((-885)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-189)) . T) (((-880)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-189)) . T) (((-885)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391))))) -((((-1201) (-52)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391))))) +((((-1206) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-660 (-145))) . T) (((-1183)) . T)) -((((-880)) . T)) -((((-1183)) . T)) -((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) -(|has| |#1| (-865)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) -((($) -2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) -((((-880)) . T)) +((($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-665 (-145))) . T) (((-1188)) . T)) +((((-885)) . T)) +((((-1188)) . T)) +((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +(|has| |#1| (-870)) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) +((($) -2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) +((((-885)) . T)) (((|#2|) |has| |#2| (-375))) -((((-880)) . T)) +((((-885)) . T)) ((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-787) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-792) |#1|)))) (((|#2|) . T)) -((((-549)) |has| |#4| (-627 (-549)))) -((((-880)) . T) (((-660 |#4|)) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-625 $)) . T)) -(|has| |#4| (-1074)) -(|has| |#3| (-1074)) -(|has| |#1| (-1125)) -((((-1201) (-52)) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) -(|has| |#1| (-932)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(|has| |#1| (-932)) +((((-549)) |has| |#4| (-632 (-549)))) +((((-885)) . T) (((-665 |#4|)) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-630 $)) . T)) +(|has| |#4| (-1079)) +(|has| |#3| (-1079)) +(|has| |#1| (-1130)) +((((-1206) (-52)) . T)) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) +(|has| |#1| (-937)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(|has| |#1| (-937)) (((|#1|) . T) (((-577)) . T) (((-420 (-577))) . T) (($) . T)) (((|#2|) . T)) -((($ (-1201)) -2811 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +((($ (-1206)) -2867 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) (((#0=(-420 (-577)) #0#) . T) (($ $) . T)) ((((-577)) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-420 (-577))) . T) (($) . T)) -(((|#1| (-420 (-577)) (-1107)) . T)) -(|has| |#1| (-1125)) +(((|#1| (-420 (-577)) (-1112)) . T)) +(|has| |#1| (-1130)) (|has| |#1| (-569)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(|has| |#1| (-836)) -(((#0=(-933 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(|has| |#1| (-841)) +(((#0=(-938 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) ((((-420 |#2|)) . T)) -(|has| |#1| (-864)) -((((-1228 |#1|)) . T) (((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(|has| |#1| (-869)) +((((-1233 |#1|)) . T) (((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) (((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) . T) ((#1=(-577) #1#) . T) (($ $) . T)) -((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#2|) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#2|) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) -((((-880)) . T)) -((((-1201)) . T)) -((((-420 (-577))) . T) (((-715)) . T) (($) . T) (((-577)) . T)) +((((-885)) . T)) +((((-1206)) . T)) +((((-130)) . T)) +((((-130)) . T) (((-620)) . T)) +((((-420 (-577))) . T) (((-720)) . T) (($) . T) (((-577)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) ((((-577) |#3|) . T)) (((|#1|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4323 (-1201)) (|:| -2438 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4376 (-1206)) (|:| -2727 #0#))) . T)) (|has| |#1| (-361)) ((((-577)) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) -(((#0=(-1278 |#1| |#2| |#3| |#4|) $) |has| #0# (-297 #0# #0#))) +(((#0=(-1283 |#1| |#2| |#3| |#4|) $) |has| #0# (-297 #0# #0#))) (|has| |#1| (-375)) -(-2811 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) -(((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074))) (($) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) (((-577)) -2811 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)))) -(((#0=(-1107) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -(((#0=(-420 (-577)) #0#) . T) ((#1=(-715) #1#) . T) (($ $) . T)) +(-2867 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079)))) +(((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079))) (($) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) (((-577)) -2867 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)))) +(((#0=(-1112) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +(((#0=(-420 (-577)) #0#) . T) ((#1=(-720) #1#) . T) (($ $) . T)) ((((-327 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) -((((-880)) . T)) -(|has| |#1| (-1125)) +((((-885)) . T)) +(|has| |#1| (-1130)) (((|#1|) . T)) -(((|#1|) -2811 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) -(((|#1|) -2811 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) +(((|#1|) -2867 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) +(((|#1|) -2867 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) (((|#2|) . T)) -((((-420 (-577))) . T) (((-715)) . T) (($) . T)) +((((-420 (-577))) . T) (((-720)) . T) (($) . T)) ((((-592)) . T)) (((|#3| |#3|) . T)) -((($ (-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) -(|has| |#1| (-865)) +((($ (-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) +(|has| |#1| (-870)) (|has| |#2| (-239)) -((((-882 |#1|)) . T)) -((((-1201)) |has| |#1| (-921 (-1201))) ((|#3|) . T)) -((((-660 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-1047))) -(|has| |#1| (-865)) +((((-887 |#1|)) . T)) +((((-1206)) |has| |#1| (-926 (-1206))) ((|#3|) . T)) +((((-665 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-375)) (|has| |#2| (-1052))) +(|has| |#1| (-870)) ((((-420 (-577))) . T) (($) . T)) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) ((($) . T) (((-420 (-577))) . T)) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-375)) (|has| |#1| (-375)) ((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) ((((-577)) . T) (((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) ((((-577)) . T)) (((|#3|) . T)) -(|has| |#1| (-1125)) +(|has| |#1| (-1130)) (((|#2|) . T)) (((|#1|) . T)) -((($) -2811 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((($) -2867 (|has| |#1| (-239)) (|has| |#1| (-238)))) ((((-577)) . T)) -(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (($) . T) (((-577)) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (($) . T) (((-577)) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) @@ -3018,40 +3024,40 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-577)) . T)) (((|#1|) . T) (((-577)) . T)) -(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-880)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#2|) . T)) (((|#3|) . T)) (((#0=(-117 |#1|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) -((((-1150 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#2|) . T)) +((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) +((((-1155 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-688 |#1|)) . T)) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-693 |#1|)) . T)) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) ((((-117 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) (((-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391))))) +((((-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) (((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391))))) (((|#2|) . T) ((|#6|) . T)) -((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) +((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) ((((-145)) . T)) ((($) . T)) -((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) ((((-391)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T)) -(|has| |#2| (-932)) -(|has| |#1| (-932)) -(|has| |#1| (-932)) -(|has| |#2| (-1047)) +(|has| |#2| (-937)) +(|has| |#1| (-937)) +(|has| |#1| (-937)) +(|has| |#2| (-1052)) ((($) . T)) -(|has| |#1| (-932)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +(|has| |#1| (-937)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#4|) . T)) ((($) . T)) (((|#2|) . T)) @@ -3059,43 +3065,43 @@ (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-375)) -((((-933 |#1|)) . T)) +((((-938 |#1|)) . T)) ((($) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) |has| |#1| (-864)) (((-577)) -2811 (|has| |#1| (-21)) (|has| |#1| (-864)))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) |has| |#1| (-869)) (((-577)) -2867 (|has| |#1| (-21)) (|has| |#1| (-869)))) ((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(-2811 (|has| |#1| (-380)) (|has| |#1| (-865))) +(-2867 (|has| |#1| (-380)) (|has| |#1| (-870))) (((|#1|) . T)) -((((-787)) . T)) -((((-880)) . T)) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-792)) . T)) +((((-885)) . T)) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) ((((-420 |#2|) |#3|) . T)) -(-2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) +(-2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ((($) . T) (((-420 (-577))) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-625 $)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-630 $)) . T)) ((((-577)) . T) (($) . T)) ((((-577)) . T) (($) . T)) -((((-787) |#1|) . T)) -(((|#2| (-246 (-3501 |#1|) (-787))) . T)) +((((-792) |#1|) . T)) +(((|#2| (-246 (-3600 |#1|) (-792))) . T)) (((|#1| (-544 |#3|)) . T)) ((((-420 (-577))) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -((((-1183)) . T) (((-880)) . T)) -(((#0=(-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) #0#) |has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))))) -((((-1183)) . T)) -(|has| |#1| (-932)) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +((((-1188)) . T) (((-885)) . T)) +(((#0=(-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) #0#) |has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))))) +((((-1188)) . T)) +(|has| |#1| (-937)) (|has| |#2| (-375)) (((|#1|) . T) (($) . T) (((-577)) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) ((((-171 (-391))) . T) (((-228)) . T) (((-391)) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) ((((-391)) . T) (((-577)) . T)) (((#0=(-420 (-577)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-569)) ((((-420 (-577))) . T) (($) . T)) ((($) . T)) @@ -3103,13 +3109,13 @@ (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -(-2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) (|has| |#1| (-38 (-420 (-577)))) -(-12 (|has| |#1| (-558)) (|has| |#1| (-844))) -((((-880)) . T)) -((((-1201)) -2811 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))))) +(-12 (|has| |#1| (-558)) (|has| |#1| (-849))) +((((-885)) . T)) +((((-1206)) -2867 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))))) (|has| |#1| (-375)) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) (|has| |#1| (-375)) ((((-420 (-577))) . T) (($) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) @@ -3118,27 +3124,31 @@ (|has| |#1| (-380)) (|has| |#1| (-380)) ((((-577) |#1|) . T)) -((((-1201)) |has| |#1| (-921 (-1201)))) +((((-1206)) |has| |#1| (-926 (-1206)))) (((|#1|) . T)) -(-2811 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) +(-2867 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) (((|#2|) |has| |#1| (-375))) (((|#2|) |has| |#1| (-375))) -(-2811 (|has| |#4| (-809)) (|has| |#4| (-865))) -(-2811 (|has| |#3| (-809)) (|has| |#3| (-865))) +(-2867 (|has| |#4| (-814)) (|has| |#4| (-870))) +(-2867 (|has| |#3| (-814)) (|has| |#3| (-870))) ((((-577)) . T) (($) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) +((((-130)) . T) (((-885)) . T)) +((((-130)) . T) (((-620)) . T) (((-885)) . T)) +((((-130)) . T)) +((((-130)) . T) (((-620)) . T)) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1201)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577)))) (((-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577))))) +(((|#2|) . T) (((-1206)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577)))) (((-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577))))) (((|#2|) . T)) ((($) . T)) -((((-1201) #0=(-1278 |#1| |#2| |#3| |#4|)) |has| #0# (-527 (-1201) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) +((((-1206) #0=(-1283 |#1| |#2| |#3| |#4|)) |has| #0# (-527 (-1206) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) ((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) -((((-625 $) $) . T) (($ $) . T)) -((((-171 (-228))) . T) (((-171 (-391))) . T) (((-1197 (-715))) . T) (((-911 (-391))) . T)) +((((-630 $) $) . T) (($ $) . T)) +((((-171 (-228))) . T) (((-171 (-391))) . T) (((-1202 (-720))) . T) (((-916 (-391))) . T)) (((|#3|) . T)) (|has| |#1| (-569)) (|has| (-420 |#2|) (-239)) @@ -3146,52 +3156,52 @@ ((($) . T) (((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) (|has| |#1| (-569)) -((((-880)) . T)) +((((-885)) . T)) ((($ $) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T)) ((((-420 (-577))) . T) (($) . T)) -((((-1201)) |has| |#2| (-921 (-1201)))) +((((-1206)) |has| |#2| (-926 (-1206)))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(|has| |#1| (-865)) -((((-880)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(|has| |#1| (-870)) +((((-885)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#2|) |has| |#1| (-375))) -((((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-391)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-577))))) +((((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-391)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-577))))) (((|#1|) . T)) ((($) . T) (((-577)) . T) ((|#2|) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((|#3|) . T)) -((((-1183)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) +((((-1188)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) (((|#1|) . T)) (|has| |#1| (-375)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (|has| |#1| (-375)) (|has| |#1| (-569)) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) (((|#2|) . T)) (((|#2|) . T)) -(|has| |#2| (-1074)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +(|has| |#2| (-1079)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (|has| |#1| (-38 (-420 (-577)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-420 (-577)))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ((($) . T)) (|has| |#1| (-148)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) ((($) . T)) ((((-594 |#1|)) . T)) ((($) . T)) -((((-1183) |#1|) . T)) +((((-1188) |#1|) . T)) (|has| |#1| (-569)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) @@ -3199,104 +3209,104 @@ ((($) . T)) ((((-420 |#2|)) . T)) ((((-420 |#2|)) . T)) -((((-420 (-577))) |has| |#2| (-1063 (-577))) (((-577)) |has| |#2| (-1063 (-577))) (((-1201)) |has| |#2| (-1063 (-1201))) ((|#2|) . T)) +((((-420 (-577))) |has| |#2| (-1068 (-577))) (((-577)) |has| |#2| (-1068 (-577))) (((-1206)) |has| |#2| (-1068 (-1206))) ((|#2|) . T)) (((#0=(-420 |#2|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-361))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-361))) (|has| |#1| (-148)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T)) -((((-1165 |#1| |#2|)) . T)) +((((-1170 |#1| |#2|)) . T)) (((|#1| (-577)) . T)) (((|#1| (-420 (-577))) . T)) -((((-577)) |has| |#2| (-905 (-577))) (((-391)) |has| |#2| (-905 (-391)))) +((((-577)) |has| |#2| (-910 (-577))) (((-391)) |has| |#2| (-910 (-391)))) (((|#2|) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) ((((-112)) . T)) (((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-880)) . T)) +((((-885)) . T)) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-1201) (-52)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-1206) (-52)) . T)) ((((-420 |#2|)) . T)) -((((-880)) . T)) -(((|#1|) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(|has| |#1| (-807)) -(|has| |#1| (-807)) -((((-880)) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-880)) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-885)) . T)) +(((|#1|) . T)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(|has| |#1| (-812)) +(|has| |#1| (-812)) +((((-885)) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((((-885)) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-228)) . T) (((-391)) . T) (((-911 (-391))) . T)) -((((-880)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-228)) . T) (((-391)) . T) (((-916 (-391))) . T)) +((((-885)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) -((((-880)) . T)) -(-2811 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) -((((-880)) . T)) -(((|#2|) . T)) +((((-885)) . T)) +((((-885)) . T)) +(-2867 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079)))) +(((#0=(-938 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) (((|#2|) . T)) -(((#0=(-933 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) (((|#1|) . T)) -((((-880)) . T)) +(((|#2|) . T)) +((((-885)) . T)) (((|#1|) . T)) -((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) (|has| |#1| (-375)) -((((-880)) . T)) +((((-885)) . T)) (((|#2|) . T)) ((((-577)) . T)) -((((-1201)) -2811 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) -((((-880)) . T)) +((((-1206)) -2867 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) +((((-885)) . T)) ((((-577)) . T)) -(-2811 (|has| |#2| (-809)) (|has| |#2| (-865))) +(-2867 (|has| |#2| (-814)) (|has| |#2| (-870))) ((((-171 (-391))) . T) (((-228)) . T) (((-391)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-1183)) . T) (((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-1188)) . T) (((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-885)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (|has| |#1| (-375)) (|has| |#1| (-375)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-880)) . T)) -((((-577) $) . T) (((-660 (-577)) $) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137)) (|has| |#1| (-1125))) -(|has| |#1| (-1177)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-885)) . T)) +((((-577) $) . T) (((-665 (-577)) $) . T)) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1130))) +(|has| |#1| (-1182)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) ((($) . T)) -((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) ((((-577) |#1|) . T)) (((|#1|) . T)) (((#0=(-117 |#1|) $) |has| #0# (-297 #0# #0#))) (((|#1|) |has| |#1| (-174))) ((((-327 |#1|)) . T) (((-577)) . T)) -(-2811 (|has| |#2| (-239)) (|has| |#2| (-238))) +(-2867 (|has| |#2| (-239)) (|has| |#2| (-238))) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-880)) . T)) -((((-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +((((-885)) . T)) +((((-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) (((|#1|) |has| |#1| (-320 |#1|))) -((((-577) |#1|) . T) (((-1259 (-577)) $) . T)) +((((-577) |#1|) . T) (((-1264 (-577)) $) . T)) (((|#1| |#2|) . T)) -((((-1201) |#1|) . T)) -(((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)))) +((((-1206) |#1|) . T)) +(((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)))) (((|#1|) . T)) -((($ (-1201)) . T)) -(((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074)))) +((($ (-1206)) . T)) +(((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079)))) ((((-577)) . T) (((-420 (-577))) . T)) (((|#1|) . T)) (|has| |#1| (-569)) @@ -3305,54 +3315,54 @@ (((|#1|) . T)) (((|#1|) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (|has| |#1| (-375)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (|has| |#1| (-375)) (|has| |#1| (-569)) ((($) . T)) -(|has| |#1| (-1125)) -((((-796 |#1| (-882 |#2|))) |has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|))))) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(|has| |#1| (-1130)) +((((-801 |#1| (-887 |#2|))) |has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|))))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-932)) +(|has| |#2| (-937)) (((|#1| (-544 |#2|)) . T)) -(((|#1| (-787)) . T)) +(((|#1| (-792)) . T)) (|has| |#1| (-239)) -(((|#1| (-544 (-1113 (-1201)))) . T)) -((($) -2811 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))))) +(((|#1| (-544 (-1118 (-1206)))) . T)) +((($) -2867 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))))) ((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-577)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (|has| |#2| (-375)) -((((-880)) . T)) -((((-880)) . T)) -(-2811 (|has| |#3| (-809)) (|has| |#3| (-865))) -((((-880)) . T)) -((((-1145)) . T) (((-880)) . T)) -((((-549)) . T) (((-880)) . T)) +((((-885)) . T)) +((((-885)) . T)) +(-2867 (|has| |#3| (-814)) (|has| |#3| (-870))) +((((-885)) . T)) +((((-1150)) . T) (((-885)) . T)) +((((-549)) . T) (((-885)) . T)) (((|#1|) . T)) -((($ $) . T) (((-625 $) $) . T)) +((($ $) . T) (((-630 $) $) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-577)) . T)) (((|#3|) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-577)) . T) (((-420 (-577))) -2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) -((((-1150 |#1| |#2|)) . T) ((|#2|) . T) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-577)) . T)) -((((-1197 |#1|)) . T) (((-577)) . T) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1107)) . T) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) -(-2811 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +((((-885)) . T)) +(-2867 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-577)) . T) (((-420 (-577))) -2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) +((((-1155 |#1| |#2|)) . T) ((|#2|) . T) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-577)) . T)) +((((-1202 |#1|)) . T) (((-577)) . T) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1112)) . T) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) +(-2867 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) (((#0=(-594 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) ((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-1150 |#1| (-1201))) . T) (((-577)) . T) (((-1113 (-1201))) . T) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-1201)) . T)) +((((-1155 |#1| (-1206))) . T) (((-577)) . T) (((-1118 (-1206))) . T) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-1206)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) +(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) ((((-594 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) ((($) . T) (((-420 (-577))) . T)) (((|#1|) . T)) @@ -3360,133 +3370,133 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-420 (-577))) . T)) -(((|#2|) |has| |#2| (-6 (-4472 "*")))) +(((|#2|) |has| |#2| (-6 (-4501 "*")))) (((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) (((|#1|) . T)) -((((-880)) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-885)) . T)) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) ((((-305 |#3|)) . T)) (((|#1|) . T)) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) -((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) (((|#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#2| (-932)) -(|has| |#1| (-932)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T)) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-885)) . T)) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#2| (-937)) +(|has| |#1| (-937)) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-885)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) . T)) +((((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-809)) (|has| |#2| (-865))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(-2867 (|has| |#2| (-814)) (|has| |#2| (-870))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -((((-1201)) . T) ((|#1|) . T)) -((((-880)) . T)) +((((-1206)) . T) ((|#1|) . T)) +((((-885)) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) (((#0=(-420 (-577)) #0#) . T)) ((((-420 (-577))) . T)) (((|#1|) |has| |#1| (-174))) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) (((|#1|) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) (((|#1|) . T)) ((((-420 (-577))) . T) (((-577)) . T) (($) . T)) ((((-549)) . T)) -((((-880)) . T)) -((($) -2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))))) -(|has| |#1| (-865)) -((((-880)) . T)) +((((-885)) . T)) +((($) -2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))))) +(|has| |#1| (-870)) +((((-885)) . T)) ((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((((-933 |#1|)) . T)) -((((-1201)) |has| |#2| (-921 (-1201))) (((-1107)) . T)) -((((-1277 |#2| |#3| |#4|)) . T)) +((((-938 |#1|)) . T)) +((((-1206)) |has| |#2| (-926 (-1206))) (((-1112)) . T)) +((((-1282 |#2| |#3| |#4|)) . T)) ((($) . T) (((-420 (-577))) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) -((((-880)) . T)) -(|has| |#1| (-1246)) +(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) +((((-885)) . T)) +(|has| |#1| (-1251)) (((|#2|) . T)) ((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-1201)) |has| |#1| (-921 (-1201)))) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((((-1206)) |has| |#1| (-926 (-1206)))) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) ((($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +(((|#2|) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-569)))) (|has| |#1| (-569)) (((|#1|) |has| |#1| (-375))) ((((-577)) . T)) -((((-1201) #0=(-117 |#1|)) |has| #0# (-527 (-1201) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) -(|has| |#1| (-807)) -(|has| |#1| (-807)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) -(((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) -((((-1107)) . T) ((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +((((-1206) #0=(-117 |#1|)) |has| #0# (-527 (-1206) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) +(|has| |#1| (-812)) +(|has| |#1| (-812)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) +(((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) +((((-1112)) . T) ((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) (((|#1|) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (((-577)) . T) (($) . T)) -((((-577) (-787)) . T) ((|#3| (-787)) . T)) +((((-577) (-792)) . T) ((|#3| (-792)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-880)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-885)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((($) |has| |#1| (-380))) ((($) |has| |#1| (-380))) ((($) |has| |#1| (-380))) -(|has| |#2| (-836)) -(|has| |#2| (-836)) -((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) -((($ (-1201)) |has| |#1| (-921 (-1201)))) -(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((($) -2811 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) -(((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-577)) |has| |#1| (-905 (-577))) (((-391)) |has| |#1| (-905 (-391)))) -(((|#1|) . T)) -((((-888 |#1|)) . T)) -((((-888 |#1|)) . T)) -((((-420 (-577))) . T) (((-715)) . T) (($) . T)) +(|has| |#2| (-841)) +(|has| |#2| (-841)) +((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) +((($ (-1206)) |has| |#1| (-926 (-1206)))) +(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((($) -2867 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) +(((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-577)) |has| |#1| (-910 (-577))) (((-391)) |has| |#1| (-910 (-391)))) +(((|#1|) . T)) +((((-893 |#1|)) . T)) +((((-893 |#1|)) . T)) +((((-420 (-577))) . T) (((-720)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-932))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-937))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-375)) (|has| |#1| (-375)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#2|) -2811 (|has| |#2| (-6 (-4472 "*"))) (|has| |#2| (-174)))) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#2|) -2867 (|has| |#2| (-6 (-4501 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) (|has| |#1| (-375)) (((|#2|) . T)) @@ -3494,501 +3504,500 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-882 |#1|)) . T)) +((((-887 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-787)) . T)) -((((-1201)) . T)) -((((-888 |#1|)) . T)) -(-2811 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) -(-2811 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-809)) (|has| |#3| (-1074))) -((((-880)) . T)) +(((|#2| (-792)) . T)) +((((-1206)) . T)) +((((-893 |#1|)) . T)) +(-2867 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) +(-2867 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-814)) (|has| |#3| (-1079))) +((((-885)) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-809)) (|has| |#2| (-865))) -(-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) -((((-888 |#1|)) . T)) +(-2867 (|has| |#2| (-814)) (|has| |#2| (-870))) +(-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) +((((-893 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) -((($ $) . T) (((-625 $) $) . T)) +((($ $) . T) (((-630 $) $) . T)) ((($) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-577)) . T)) (((|#2|) . T)) -((((-880)) . T)) -((($) . T) (((-577)) . T)) +((((-885)) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) -((((-880)) . T)) -(((|#1|) . T)) -((((-880)) . T)) -((($) . T) ((|#2|) . T) (((-420 (-577))) . T) (((-577)) |has| |#2| (-654 (-577)))) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-880)) . T)) -(|has| |#2| (-932)) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) -((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) -((((-880)) . T)) -((((-880)) . T)) -(|has| |#1| (-865)) -(((|#3|) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) -((((-1150 |#1| |#2|)) . T) (((-975 |#1|)) |has| |#2| (-627 (-1201))) (((-880)) . T)) -((((-975 |#1|)) |has| |#2| (-627 (-1201))) (((-1183)) -12 (|has| |#1| (-1063 (-577))) (|has| |#2| (-627 (-1201)))) (((-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) (((-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) (((-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549))))) -((((-1197 |#1|)) . T) (((-880)) . T)) -((((-880)) . T)) -((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) -((((-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1107)) . T)) +((($) . T) (((-577)) . T)) +((((-885)) . T)) +(((|#1|) . T)) +((((-885)) . T)) +((($) . T) ((|#2|) . T) (((-420 (-577))) . T) (((-577)) |has| |#2| (-659 (-577)))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-885)) . T)) +(|has| |#2| (-937)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) +((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) +((((-885)) . T)) +((((-885)) . T)) +(|has| |#1| (-870)) +(((|#3|) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) +((((-1155 |#1| |#2|)) . T) (((-980 |#1|)) |has| |#2| (-632 (-1206))) (((-885)) . T)) +((((-980 |#1|)) |has| |#2| (-632 (-1206))) (((-1188)) -12 (|has| |#1| (-1068 (-577))) (|has| |#2| (-632 (-1206)))) (((-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) (((-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) (((-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549))))) +((((-1202 |#1|)) . T) (((-885)) . T)) +((((-885)) . T)) +((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) +((((-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1112)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T) (((-1201)) . T)) -((((-880)) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T) (((-1206)) . T)) +((((-885)) . T)) ((((-577)) . T)) (((|#1|) . T)) ((($) . T)) -((((-391)) |has| |#1| (-905 (-391))) (((-577)) |has| |#1| (-905 (-577)))) +((((-391)) |has| |#1| (-910 (-391))) (((-577)) |has| |#1| (-910 (-577)))) ((((-577)) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) -((((-880)) . T)) -((((-653 |#1| |#2|) |#1|) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-660 |#1|)) . T)) +((((-885)) . T)) +((((-658 |#1| |#2|) |#1|) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-665 |#1|)) . T)) ((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -((($) . T) (((-577)) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) -((((-577)) -2811 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) (($) -2811 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) ((|#1|) -2811 (|has| |#1| (-174)) (|has| |#1| (-1074))) (((-420 (-577))) |has| |#1| (-569))) -((((-1206)) . T)) +((($) . T) (((-577)) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) +((((-577)) -2867 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) (($) -2867 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((|#1|) -2867 (|has| |#1| (-174)) (|has| |#1| (-1079))) (((-420 (-577))) |has| |#1| (-569))) +((((-1211)) . T)) ((((-577)) . T) (((-420 (-577))) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) (((|#1|) . T)) -((((-1206)) . T)) -((((-1206)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1206)) . T)) +((((-1211)) . T)) (((|#1|) |has| |#1| (-320 |#1|))) ((((-391)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-420 (-577))) . T) (($) . T)) ((((-420 |#2|) |#3|) . T)) (((|#1|) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(((|#2| (-495 (-3501 |#1|) (-787))) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(((|#2| (-495 (-3600 |#1|) (-792))) . T)) ((((-577) |#1|) . T)) -((((-1183)) . T) (((-880)) . T)) +((((-1188)) . T) (((-885)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-544 (-1201))) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(((|#1| (-544 (-1206))) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) ((((-577)) . T)) (((|#2|) . T)) -((($) -2811 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))))) +((($) -2867 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))))) (((|#2|) . T)) -((((-1201)) |has| |#1| (-921 (-1201))) (((-1107)) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((((-1206)) |has| |#1| (-926 (-1206))) (((-1112)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) (|has| |#1| (-569)) -(((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) +(((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) ((($) . T) (((-420 (-577))) . T)) ((($) . T)) ((($) . T)) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) (((|#1|) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-880)) . T)) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-885)) . T)) ((((-145)) . T)) (((|#1|) . T) (((-420 (-577))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) -(|has| |#1| (-1177)) -((($ (-1201)) -2811 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) +(|has| |#1| (-1182)) +((($ (-1206)) -2867 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) (((|#1|) . T)) -(((|#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) . T)) +(((|#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) . T)) ((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((((-880)) . T)) -((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T) ((|#2|) . T)) -((((-1107)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) -((((-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391)))) (((-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577))))) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((((-885)) . T)) +((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T) ((|#2|) . T)) +((((-1112)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) (((-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577))))) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) ((((-577) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) ((($) . T)) -((((-715)) . T)) -((((-796 |#1| (-882 |#2|))) . T)) +((((-720)) . T)) +((((-801 |#1| (-887 |#2|))) . T)) ((((-577)) . T) (($) . T)) ((($) . T)) (((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) ((((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-1125)) -(|has| |#1| (-1125)) +(|has| |#1| (-1130)) +(|has| |#1| (-1130)) (|has| |#2| (-375)) -(((|#1|) . T) (($) -2811 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) +(((|#1|) . T) (($) -2867 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) (|has| |#1| (-375)) (|has| |#1| (-375)) -((($) -2811 (|has| |#2| (-239)) (|has| |#2| (-238)))) +((($) -2867 (|has| |#2| (-239)) (|has| |#2| (-238)))) ((((-577)) . T)) (|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-1125)) -((($ (-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) -((((-1201)) -12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074)))) -((((-1201)) -12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074)))) +(|has| |#1| (-1130)) +((($ (-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) +((((-1206)) -12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079)))) +((((-1206)) -12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079)))) (((|#1|) . T)) (|has| |#1| (-239)) -(((|#2| (-246 (-3501 |#1|) (-787))) . T)) +(((|#2| (-246 (-3600 |#1|) (-792))) . T)) (((|#1| (-544 |#3|)) . T)) (|has| |#1| (-380)) (|has| |#1| (-380)) (|has| |#1| (-380)) (((|#1|) . T) (($) . T)) (((|#1| (-544 |#2|)) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) -(((|#1| (-787)) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) +(((|#1| (-792)) . T)) (|has| |#1| (-569)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-880)) . T)) +((((-885)) . T)) ((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) -(-2811 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-809)) (|has| |#3| (-1074))) -(|has| |#2| (-1074)) +(-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) +(-2867 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-814)) (|has| |#3| (-1079))) +(|has| |#2| (-1079)) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1074))) -(((|#3|) |has| |#3| (-1074))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) -((((-577)) . T) (((-420 (-577))) -2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) -((((-1150 |#1| |#2|)) . T) (((-577)) . T) ((|#3|) . T) (($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ((|#2|) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) +(((|#4|) |has| |#4| (-1079))) +(((|#3|) |has| |#3| (-1079))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) +((((-577)) . T) (((-420 (-577))) -2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) +((((-1155 |#1| |#2|)) . T) (((-577)) . T) ((|#3|) . T) (($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ((|#2|) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) (((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) (((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-1206)) . T)) -((((-688 |#1|)) . T)) +((((-1211)) . T)) +((((-693 |#1|)) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) ((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-880)) . T)) -((((-660 $)) . T) (((-1183)) . T) (((-1201)) . T) (((-577)) . T) (((-228)) . T) (((-880)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) +((((-885)) . T)) +((((-665 $)) . T) (((-1188)) . T) (((-1206)) . T) (((-577)) . T) (((-228)) . T) (((-885)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) ((($) . T) (((-420 (-577))) . T)) (((|#1|) . T)) -(((|#4|) |has| |#4| (-1125)) (((-577)) -12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) (((-420 (-577))) -12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125)))) -(((|#3|) |has| |#3| (-1125)) (((-577)) -12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) +(((|#4|) |has| |#4| (-1130)) (((-577)) -12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) (((-420 (-577))) -12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130)))) +(((|#3|) |has| |#3| (-1130)) (((-577)) -12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) (|has| |#2| (-375)) -(((|#2|) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) -(-2811 (|has| |#1| (-380)) (|has| |#1| (-865))) +(((|#2|) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) +(-2867 (|has| |#1| (-380)) (|has| |#1| (-870))) (((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-1201)) |has| |#1| (-1074))) +((((-1206)) |has| |#1| (-1079))) (|has| |#2| (-375)) (((|#2| |#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#2|) . T)) -((((-880)) |has| |#1| (-1125))) +((((-885)) |has| |#1| (-1130))) ((($) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-836)) -(|has| |#2| (-836)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#2| (-841)) +(|has| |#2| (-841)) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-375)) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-375)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-375)) (((|#1|) |has| |#2| (-430 |#1|))) (((|#1|) |has| |#2| (-430 |#1|))) -((((-1183)) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-660 |#1|)) . T) (((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-660 |#1|)) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1241)) . T) (((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) |has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))))) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-1188)) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-665 |#1|)) . T) (((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-665 |#1|)) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1246)) . T) (((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) |has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))))) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((((-577) |#1|) . T)) ((((-577) |#1|) . T)) ((((-577) |#1|) . T)) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((((-577) |#1|) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -((((-1201)) |has| |#1| (-921 (-1201))) (((-834 (-1201))) . T)) -(-2811 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-809)) (|has| |#3| (-1074))) -((((-835 |#1|)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((((-1206)) |has| |#1| (-926 (-1206))) (((-839 (-1206))) . T)) +(-2867 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-814)) (|has| |#3| (-1079))) +((((-840 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-880)) . T)) -(|has| |#3| (-1074)) +((((-885)) . T)) +(|has| |#3| (-1079)) (((|#1| |#2|) . T)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) (|has| |#1| (-38 (-420 (-577)))) -((((-880)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-885)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) -(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) (|has| |#1| (-375)) -(-2811 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239)))) +(-2867 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239)))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-375)) (((|#1|) . T)) -(((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +(((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) ((((-327 |#1|)) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((#0=(-715) (-1197 #0#)) . T)) -((((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((#0=(-720) (-1202 #0#)) . T)) +((((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-577)) . T) (((-420 (-577))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-864)) -(((|#2|) . T) (((-1201)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2811 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1150 |#1| (-1201))) . T) (((-834 (-1201))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-1201)) . T)) +(|has| |#1| (-869)) +(((|#2|) . T) (((-1206)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2867 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1155 |#1| (-1206))) . T) (((-839 (-1206))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-1206)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1107) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1201) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1113 (-1201)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1112) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1206) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1118 (-1206)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-577)) |has| |#2| (-654 (-577))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -(|has| |#2| (-932)) -((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +((($) . T) (((-577)) |has| |#2| (-659 (-577))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +(|has| |#2| (-937)) +((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) ((((-577) |#1|) . T)) (((|#1|) . T)) -((((-1206)) . T)) -(((#0=(-1278 |#1| |#2| |#3| |#4|)) |has| #0# (-320 #0#))) +((((-1211)) . T)) +(((#0=(-1283 |#1| |#2| |#3| |#4|)) |has| #0# (-320 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2| |#2|) |has| |#1| (-375)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2| |#2|) |has| |#1| (-375)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) (|has| |#2| (-239)) (|has| $ (-148)) -((((-880)) . T)) -((($) . T) (((-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) -((((-880)) . T)) -(|has| |#1| (-864)) +((((-885)) . T)) +((($) . T) (((-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) +((((-885)) . T)) +(|has| |#1| (-869)) ((((-130)) . T)) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-420 (-577))) . T) (((-715)) . T) (($) . T) (((-577)) . T)) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-420 (-577))) . T) (((-720)) . T) (($) . T) (((-577)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) -((((-880)) . T)) -(-12 (|has| |#1| (-318)) (|has| |#1| (-932))) -(((|#2| (-688 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) +((((-885)) . T)) +(-12 (|has| |#1| (-318)) (|has| |#1| (-937))) +(((|#2| (-693 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) ((((-420 |#2|) |#3|) . T)) -((((-880)) |has| |#1| (-1125))) +((((-885)) |has| |#1| (-1130))) (((|#4|) . T)) (|has| |#1| (-569)) -((($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) -((((-1201)) -2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) -(((|#1|) . T) (($) -2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) -(-2811 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) -(((|#1|) . T)) -(((|#1| (-544 (-834 (-1201)))) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -((((-577)) . T) ((|#2|) . T) (($) . T) (((-420 (-577))) . T) (((-1201)) |has| |#2| (-1063 (-1201)))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) -(((|#1|) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) -(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) -((($) . T) (((-888 |#1|)) . T) (((-420 (-577))) . T)) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +((($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) +((((-1206)) -2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) +(((|#1|) . T) (($) -2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +(-2867 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#1|) . T)) +(((|#1| (-544 (-839 (-1206)))) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +((((-577)) . T) ((|#2|) . T) (($) . T) (((-420 (-577))) . T) (((-1206)) |has| |#2| (-1068 (-1206)))) +(((|#1|) . T)) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(((|#1|) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) +(-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) +((($) . T) (((-893 |#1|)) . T) (((-420 (-577))) . T)) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) (|has| |#1| (-569)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-420 |#2|)) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-420 (-577)) #0#) . T) (($ $) . T)) (((|#2|) . T) (((-420 (-577))) . T) (($) . T)) ((((-577)) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-420 (-577))) . T) (($) . T)) ((((-577) |#1|) . T)) ((($) . T)) ((($) . T)) -((((-880)) . T)) -((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) -((((-880)) . T)) -((((-880)) . T)) -((((-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) (((-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) (((-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549))))) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-238))) -(((|#1|) . T) (((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T)) +((((-885)) . T)) +((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) +((((-885)) . T)) +((((-885)) . T)) +((((-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) (((-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) (((-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549))))) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-238))) +(((|#1|) . T) (((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T)) ((((-115)) . T) ((|#1|) . T) (((-577)) . T)) -((((-130)) . T)) ((($) . T) (((-577)) . T) (((-117 |#1|)) . T) (((-420 (-577))) . T)) -((((-651 |#2|)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-656 |#2|)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) ((($) . T) (((-577)) . T)) -(((|#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) . T)) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-1129)) . T)) -((((-880)) . T)) -((((-1206)) . T) (((-880)) . T)) -((((-1206)) . T) (((-880)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((($) -2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-1134)) . T)) +((((-885)) . T)) +((((-1211)) . T) (((-885)) . T)) +((((-1211)) . T) (((-885)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((($) -2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) ((($) . T) (((-577)) . T)) -(|has| |#2| (-932)) -((($) -2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#2| (-937)) (((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-880)) . T)) +((((-885)) . T)) (((|#1|) . T)) -((($ $) . T) (((-1201) $) . T)) -((((-1284 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-932)) -((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-1284 |#1| |#2| |#3|)) . T) (((-1256 |#1| |#2| |#3|)) . T)) +((($ $) . T) (((-1206) $) . T)) +((((-1289 |#1| |#2| |#3|)) . T)) +((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) +(|has| |#1| (-937)) +((((-1289 |#1| |#2| |#3|)) . T) (((-1261 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -((((-1201)) . T) (((-880)) . T)) +((((-1206)) . T) (((-885)) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -((((-715)) . T)) -((((-715)) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-1206)) . T)) -(-2811 (|has| |#2| (-809)) (|has| |#2| (-865))) +((((-720)) . T)) +((((-720)) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-1211)) . T)) +(-2867 (|has| |#2| (-814)) (|has| |#2| (-870))) (((|#1|) |has| |#1| (-174))) -((((-1206)) . T)) +((((-1211)) . T)) (((|#1| |#1|) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) -((((-1206)) . T)) -((((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-1211)) . T)) +((((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-569)) (($) |has| |#1| (-569))) ((((-420 (-577))) . T) (($) . T)) (((|#1| (-577)) . T)) (((|#1|) . T)) ((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((($ (-1201)) -2811 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1107)) . T)) +((($ (-1206)) -2867 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1112)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -((((-1206)) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1206)) . T)) -((((-1206)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +((((-1211)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1211)) . T)) +((((-1211)) . T)) (|has| |#1| (-375)) (|has| |#1| (-375)) -(-2811 (|has| |#1| (-174)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-174)) (|has| |#1| (-569))) (((|#1| (-577)) . T)) (((|#1| (-420 (-577))) . T)) -(((|#1| (-787)) . T)) +(((|#1| (-792)) . T)) ((((-420 (-577))) . T)) (((|#1| (-544 |#2|) |#2|) . T)) ((((-577) |#1|) . T)) ((((-577) |#1|) . T)) -(-2811 (|has| |#1| (-102)) (|has| |#1| (-1125))) -(-2811 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) +(-2867 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(-2867 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) ((((-577) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-911 (-391))) . T) (((-911 (-577))) . T) (((-1201)) . T) (((-549)) . T)) -(-2811 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) -(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) -((((-880)) . T)) +((((-916 (-391))) . T) (((-916 (-577))) . T) (((-1206)) . T) (((-549)) . T)) +(-2867 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) +(-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) +((((-885)) . T)) ((((-577)) . T)) ((((-577)) . T)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) -(|has| |#2| (-1074)) -(-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) +((((-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) +(|has| |#2| (-1079)) +(-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-375)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) (|has| |#1| (-239)) ((($) . T) (((-577)) . T) (((-420 (-577))) . T)) ((($) . T) (((-577)) . T)) ((($) . T) (((-577)) . T)) -((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) -((((-880)) . T)) -(((|#1| (-787) (-1107)) . T)) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) -((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +((((-885)) . T)) +(((|#1| (-792) (-1112)) . T)) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(((|#2|) |has| |#2| (-1074))) +(((|#2|) |has| |#2| (-1079))) ((((-420 (-577))) . T) (($) . T)) ((((-420 (-577))) . T) (((-577)) . T)) (((|#2|) . T)) @@ -3996,44 +4005,44 @@ ((((-577)) . T)) ((((-577)) . T)) ((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((((-1183) (-1201) (-577) (-228) (-880)) . T)) +((((-1188) (-1206) (-577) (-228) (-885)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-577)) . T) ((|#2|) |has| |#2| (-174))) ((((-115)) . T) ((|#1|) . T) (((-577)) . T)) -(-2811 (|has| |#1| (-361)) (|has| |#1| (-380))) +(-2867 (|has| |#1| (-361)) (|has| |#1| (-380))) (((|#1| |#2|) . T)) ((((-228)) . T)) ((((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-880)) . T)) +((((-885)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) -((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) |has| |#2| (-1125)) (((-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) -(-2811 (|has| |#2| (-239)) (|has| |#2| (-238))) +((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) +((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) |has| |#2| (-1130)) (((-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) +(-2867 (|has| |#2| (-239)) (|has| |#2| (-238))) (((|#1|) . T)) (((|#1|) . T)) -((((-549)) |has| |#1| (-627 (-549)))) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) -((((-577) $) . T) (((-660 (-577)) $) . T)) +((((-549)) |has| |#1| (-632 (-549)))) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) +((((-577) $) . T) (((-665 (-577)) $) . T)) ((($) . T) (((-420 (-577))) . T)) -(|has| |#1| (-932)) -(|has| |#1| (-932)) -((((-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) (((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) (((-911 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-391))))) (((-911 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-577))))) (((-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-549))))) -((((-880)) . T)) -((((-880)) . T)) +(|has| |#1| (-937)) +(|has| |#1| (-937)) +((((-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) (((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) (((-916 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-391))))) (((-916 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-577))))) (((-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-549))))) +((((-885)) . T)) +((((-885)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#1|) . T) (((-577)) . T)) -((((-1206)) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) +((((-1211)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) (((|#2|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-864))) +(-2867 (|has| |#1| (-21)) (|has| |#1| (-869))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-880)) -2811 (-12 (|has| |#1| (-626 (-880))) (|has| |#2| (-626 (-880)))) (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) +((((-885)) -2867 (-12 (|has| |#1| (-631 (-885))) (|has| |#2| (-631 (-885)))) (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))))) ((((-420 |#2|) |#3|) . T)) ((((-420 (-577))) . T) (($) . T)) (|has| |#1| (-38 (-420 (-577)))) @@ -4042,141 +4051,139 @@ ((($) . T) (((-577)) . T)) (|has| (-420 |#2|) (-148)) (|has| (-420 |#2|) (-146)) -(-2811 (|has| |#3| (-809)) (|has| |#3| (-865))) +(-2867 (|has| |#3| (-814)) (|has| |#3| (-870))) ((($) . T)) -((((-715)) . T)) +((((-720)) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((#0=(-577) #0#) . T)) ((($) . T) (((-420 (-577))) . T)) -(|has| |#4| (-1074)) -(|has| |#3| (-1074)) -((((-880)) . T) (((-1206)) . T)) -(|has| |#4| (-809)) -(|has| |#4| (-809)) -(|has| |#3| (-809)) -(|has| |#3| (-809)) -((((-1206)) . T)) +(|has| |#4| (-1079)) +(|has| |#3| (-1079)) +((((-885)) . T) (((-1211)) . T)) +(|has| |#4| (-814)) +(|has| |#4| (-814)) +(|has| |#3| (-814)) +(|has| |#3| (-814)) +((((-1211)) . T)) ((((-577)) . T)) (((|#2|) . T)) -((((-1201)) -2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) -((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1206)) -2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-882 |#1|)) . T)) +((((-887 |#1|)) . T)) (((|#1|) . T)) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-1165 |#1| |#2|)) . T)) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) -(((|#2|) . T) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1170 |#1| |#2|)) . T)) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) +(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1047)) -(((|#2|) . T) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) +(|has| |#1| (-1052)) +(((|#2|) . T) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) ((($) . T)) -((((-880)) . T)) -((((-549)) |has| |#2| (-627 (-549))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-391)) . #0=(|has| |#2| (-1047))) (((-228)) . #0#)) +((((-885)) . T)) +((((-549)) |has| |#2| (-632 (-549))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-391)) . #0=(|has| |#2| (-1052))) (((-228)) . #0#)) ((((-305 |#3|)) . T)) -((((-1201) (-52)) . T)) +((((-1206) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))) -((((-1201)) -2811 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) -((((-880)) . T)) +((((-1206)) -2867 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) +((((-885)) . T)) (((|#2|) . T)) -((((-880)) . T)) +((((-885)) . T)) ((((-420 (-577)) |#1|) . T) (($ $) . T)) ((((-420 |#2|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-420 (-577))) . T) (((-715)) . T) (($) . T)) -((((-1199 |#1| |#2| |#3|)) . T)) -((((-1199 |#1| |#2| |#3|)) . T) (((-1192 |#1| |#2| |#3|)) . T)) -((((-880)) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-420 (-577))) . T) (((-720)) . T) (($) . T)) +((((-1204 |#1| |#2| |#3|)) . T)) +((((-1204 |#1| |#2| |#3|)) . T) (((-1197 |#1| |#2| |#3|)) . T)) +((((-885)) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) ((((-577) |#1|) . T)) -((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-375)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -2811 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1074))) (($) |has| |#4| (-1074)) (((-577)) -12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074)))) -(((|#2|) . T) ((|#3|) -2811 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -2867 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1079))) (($) |has| |#4| (-1079)) (((-577)) -12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079)))) +(((|#2|) . T) ((|#3|) -2867 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) -((((-1201)) . T) ((|#1|) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) -((((-189)) . T) (((-880)) . T)) -((((-880)) . T)) +((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) +((((-1206)) . T) ((|#1|) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-189)) . T) (((-885)) . T)) +((((-885)) . T)) (((|#1|) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) -((((-130)) . T) (((-880)) . T)) -((((-577) |#1|) . T) (((-1259 (-577)) $) . T)) -((((-880)) . T)) -((((-130)) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-577) |#1|) . T) (((-1264 (-577)) $) . T)) +((((-885)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-375)) (|has| |#2| (-297 |#2| |#2|))) (($ $) . T) (((-577) |#1|) . T)) ((($ $) . T) (((-420 (-577)) |#1|) . T)) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-932))) -((($ (-1201)) |has| |#1| (-1074))) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -((((-880)) . T)) -((((-880)) . T)) -((((-880)) . T)) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-937))) +((($ (-1206)) |has| |#1| (-1079))) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T)) (((|#1| (-544 |#2|)) . T)) -((((-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) . T)) +((((-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) . T)) ((((-577) (-130)) . T)) (((|#1| (-577)) . T)) (((|#1| (-420 (-577))) . T)) -(((|#1| (-787)) . T)) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) +(((|#1| (-792)) . T)) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -(-2811 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) -(-2811 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +(-2867 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(-2867 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((($) . T)) -(((|#2| (-544 (-882 |#1|))) . T)) -((((-1206)) . T)) -((((-1206)) . T)) +(((|#2| (-544 (-887 |#1|))) . T)) +((((-1211)) . T)) +((((-1211)) . T)) ((((-577) |#1|) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) (((|#2|) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-880)) . T) (((-1206)) . T)) -((((-1206)) . T)) -((((-880)) -2811 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-885)) . T) (((-1211)) . T)) +((((-1211)) . T)) +((((-885)) -2867 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1183) |#1|) . T)) +((((-1188) |#1|) . T)) ((((-420 |#2|)) . T)) ((((-420 |#2|)) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) -((((-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T)) -(((|#2| (-787)) . T)) +((((-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T)) +(((|#2| (-792)) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-420 (-577))) . T)) ((((-420 (-577))) . T) (($) . T)) @@ -4184,36 +4191,36 @@ (((|#1| |#2|) . T)) ((((-577)) . T) (($) . T)) (((|#2| $) |has| |#2| (-297 |#2| |#2|))) -(((|#1| (-660 |#1|)) |has| |#1| (-864))) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-361))) -(-2811 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1288 |#1|)) . T) (((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) -(|has| |#1| (-1125)) +(((|#1| (-665 |#1|)) |has| |#1| (-869))) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-361))) +(-2867 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1293 |#1|)) . T) (((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) +(|has| |#1| (-1130)) (((|#1|) . T)) ((((-420 (-577))) . T) (($) . T)) -((((-1288 |#1|)) . T) (((-577)) . T) (($) -2811 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-1107)) . T) ((|#2|) . T) (((-420 (-577))) -2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577)))))) -((((-1024 |#1|)) . T) ((|#1|) . T) (((-577)) -2811 (|has| (-1024 |#1|) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) (((-420 (-577))) -2811 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) -((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-1201)) |has| |#1| (-921 (-1201)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) -((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-1293 |#1|)) . T) (((-577)) . T) (($) -2867 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-1112)) . T) ((|#2|) . T) (((-420 (-577))) -2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577)))))) +((((-1029 |#1|)) . T) ((|#1|) . T) (((-577)) -2867 (|has| (-1029 |#1|) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) (((-420 (-577))) -2867 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) +((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-1206)) |has| |#1| (-926 (-1206)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) (((|#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1165 |#1| |#2|) #0#) |has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|)))) +(((#0=(-1170 |#1| |#2|) #0#) |has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) #0#) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) -(-2811 (|has| |#1| (-239)) (|has| |#1| (-238))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) #0#) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) +(-2867 (|has| |#1| (-239)) (|has| |#1| (-238))) (((#0=(-117 |#1|)) |has| #0# (-320 #0#))) ((($ $) . T)) -(-2811 (|has| |#1| (-865)) (|has| |#1| (-1125))) -((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) +(-2867 (|has| |#1| (-870)) (|has| |#1| (-1130))) +((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-491 . -1125) T) ((-274 . -527) 205417) ((-254 . -527) 205360) ((-251 . -1125) 205310) ((-584 . -111) 205295) ((-544 . -23) T) ((-139 . -1125) T) ((-138 . -1125) T) ((-118 . -320) 205252) ((-134 . -1125) T) ((-1024 . -238) 205203) ((-815 . -1242) T) ((-492 . -527) 204995) ((-693 . -629) 204979) ((-710 . -102) T) ((-1166 . -527) 204898) ((-412 . -238) T) ((-403 . -132) T) ((-1305 . -1001) 204867) ((-1049 . -1076) 204804) ((-330 . -868) T) ((-31 . -93) T) ((-615 . -502) 204788) ((-1049 . -656) 204725) ((-634 . -132) T) ((-835 . -862) T) ((-536 . -57) 204675) ((-532 . -527) 204608) ((-363 . -235) 204595) ((-366 . -1076) 204540) ((-59 . -527) 204473) ((-529 . -527) 204406) ((-431 . -921) 204365) ((-171 . -1074) T) ((-510 . -527) 204298) ((-509 . -527) 204231) ((-366 . -656) 204176) ((-815 . -1063) 203956) ((-1265 . -629) 203704) ((-715 . -38) 203669) ((-1119 . -1118) 203653) ((-355 . -361) T) ((-481 . -1242) T) ((-1119 . -1125) 203631) ((-873 . -629) 203528) ((-171 . -249) 203479) ((-171 . -239) 203430) ((-1119 . -1120) 203388) ((-890 . -297) 203346) ((-228 . -811) T) ((-228 . -808) T) ((-710 . -295) NIL) ((-584 . -629) 203318) ((-1175 . -1218) 203297) ((-420 . -1017) 203281) ((-48 . -1076) 203246) ((-717 . -21) T) ((-717 . -25) T) ((-48 . -656) 203211) ((-1307 . -664) 203185) ((-1265 . -337) 203162) ((-1175 . -107) 203112) ((-327 . -161) 203091) ((-327 . -144) 203070) ((-117 . -21) T) ((-40 . -233) 203047) ((-40 . -273) 203024) ((-135 . -25) T) ((-117 . -25) T) ((-1265 . -239) T) ((-1265 . -1074) T) ((-621 . -299) 203000) ((-873 . -1074) T) ((-619 . -1242) T) ((-815 . -350) 202984) ((-488 . -299) 202963) ((-687 . -1242) T) ((-182 . -1242) T) ((-162 . -1242) T) ((-157 . -1242) T) ((-155 . -1242) T) ((-140 . -187) T) ((-118 . -1177) NIL) ((-91 . -626) 202895) ((-490 . -132) T) ((-1190 . -1242) T) ((-1121 . -503) 202876) ((-1121 . -626) 202842) ((-1115 . -503) 202823) ((-1115 . -626) 202789) ((-606 . -1242) T) ((-1098 . -503) 202770) ((-584 . -1074) T) ((-1098 . -626) 202736) ((-678 . -733) 202720) ((-1091 . -503) 202701) ((-1091 . -626) 202667) ((-981 . -299) 202644) ((-60 . -34) T) ((-1087 . -811) T) ((-1087 . -808) T) ((-1061 . -503) 202625) ((-1044 . -503) 202606) ((-832 . -742) T) ((-747 . -47) 202571) ((-636 . -38) 202558) ((-367 . -301) T) ((-364 . -301) T) ((-356 . -301) T) ((-274 . -301) 202489) ((-254 . -301) 202420) ((-1061 . -626) 202386) ((-1049 . -102) T) ((-1044 . -626) 202352) ((-639 . -503) 202333) ((-426 . -742) T) ((-118 . -38) 202278) ((-496 . -503) 202259) ((-639 . -626) 202225) ((-426 . -486) T) ((-221 . -503) 202206) ((-496 . -626) 202172) ((-366 . -102) T) ((-221 . -626) 202138) ((-1236 . -1083) T) ((-355 . -662) 202068) ((-727 . -1083) T) ((-1199 . -47) 202045) ((-1198 . -47) 202015) ((-1192 . -47) 201992) ((-129 . -299) 201967) ((-1060 . -152) 201913) ((-933 . -301) T) ((-1151 . -47) 201885) ((-710 . -320) NIL) ((-528 . -626) 201867) ((-523 . -626) 201849) ((-521 . -626) 201831) ((-498 . -1242) T) ((-338 . -1125) 201781) ((-327 . -915) 201745) ((-324 . -915) NIL) ((-728 . -465) 201676) ((-48 . -102) T) ((-1276 . -297) 201634) ((-1255 . -297) 201534) ((-660 . -682) 201518) ((-660 . -667) 201502) ((-351 . -21) T) ((-351 . -25) T) ((-40 . -361) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-660 . -385) 201486) ((-618 . -503) 201468) ((-653 . -626) 201450) ((-615 . -297) 201402) ((-618 . -626) 201369) ((-401 . -102) T) ((-1145 . -144) T) ((-127 . -626) 201301) ((-892 . -1125) T) ((-674 . -424) 201285) ((-747 . -1242) T) ((-730 . -626) 201267) ((-256 . -626) 201234) ((-189 . -626) 201216) ((-163 . -626) 201198) ((-158 . -626) 201180) ((-1307 . -742) T) ((-1127 . -34) T) ((-889 . -811) NIL) ((-889 . -808) NIL) ((-876 . -865) T) ((-747 . -905) NIL) ((-1316 . -132) T) ((-393 . -132) T) ((-911 . -629) 201148) ((-927 . -102) T) ((-747 . -1063) 201024) ((-1199 . -1242) T) ((-1198 . -1242) T) ((-544 . -132) T) ((-1192 . -1242) T) ((-1112 . -424) 201008) ((-1025 . -502) 200992) ((-118 . -413) 200969) ((-1151 . -1242) T) ((-798 . -424) 200953) ((-796 . -424) 200937) ((-966 . -34) T) ((-710 . -1177) NIL) ((-259 . -664) 200757) ((-258 . -664) 200564) ((-833 . -943) 200543) ((-467 . -424) 200527) ((-651 . -865) T) ((-615 . -19) 200511) ((-1171 . -1235) 200480) ((-1192 . -905) NIL) ((-1192 . -903) 200432) ((-615 . -617) 200409) ((-108 . -868) T) ((-1228 . -626) 200341) ((-1200 . -626) 200323) ((-62 . -408) T) ((-1198 . -1063) 200258) ((-1192 . -1063) 200224) ((-710 . -38) 200174) ((-40 . -662) 200104) ((-487 . -297) 200062) ((-1248 . -626) 200044) ((-747 . -389) 200028) ((-854 . -626) 200010) ((-674 . -1083) T) ((-636 . -923) 199933) ((-1276 . -1027) 199899) ((-449 . -1242) T) ((-1255 . -1027) 199865) ((-257 . -1242) T) ((-1113 . -629) 199849) ((-1088 . -1218) 199824) ((-1101 . -629) 199801) ((-890 . -627) 199608) ((-890 . -626) 199590) ((-118 . -923) NIL) ((-717 . -235) 199577) ((-1214 . -502) 199514) ((-431 . -1047) 199492) ((-48 . -320) 199479) ((-1088 . -107) 199425) ((-492 . -502) 199362) ((-538 . -1242) T) ((-533 . -1242) T) ((-1192 . -350) 199314) ((-1166 . -502) 199285) ((-1192 . -389) 199237) ((-1112 . -1083) T) ((-450 . -102) T) ((-185 . -1125) T) ((-259 . -34) T) ((-258 . -34) T) ((-1183 . -868) T) ((-866 . -629) 199221) ((-798 . -1083) T) ((-796 . -1083) T) ((-747 . -921) 199198) ((-467 . -1083) T) ((-59 . -502) 199182) ((-1059 . -1081) 199156) ((-532 . -502) 199140) ((-529 . -502) 199124) ((-510 . -502) 199108) ((-509 . -502) 199092) ((-251 . -527) 199025) ((-1059 . -111) 198992) ((-1199 . -921) 198905) ((-1198 . -921) 198811) ((-686 . -1137) T) ((-1192 . -921) 198644) ((-661 . -93) T) ((-1151 . -921) 198628) ((-366 . -1177) T) ((-333 . -1081) 198610) ((-31 . -503) 198591) ((-259 . -810) 198570) ((-259 . -809) 198549) ((-258 . -810) 198528) ((-258 . -809) 198507) ((-31 . -626) 198473) ((-50 . -1083) T) ((-259 . -742) 198451) ((-258 . -742) 198429) ((-1236 . -1125) T) ((-686 . -23) T) ((-594 . -1083) T) ((-531 . -1083) T) ((-391 . -1081) 198394) ((-333 . -111) 198369) ((-73 . -395) T) ((-73 . -408) T) ((-1049 . -38) 198306) ((-710 . -413) 198288) ((-99 . -102) T) ((-1321 . -1076) 198275) ((-727 . -1125) T) ((-1138 . -868) 198226) ((-1028 . -146) 198198) ((-1028 . -148) 198170) ((-888 . -662) 198142) ((-391 . -111) 198098) ((-330 . -1246) 198077) ((-487 . -1027) 198043) ((-366 . -38) 198008) ((-40 . -382) 197980) ((-891 . -626) 197852) ((-128 . -126) 197836) ((-122 . -126) 197820) ((-852 . -1081) 197790) ((-849 . -21) 197742) ((-843 . -1081) 197726) ((-849 . -25) 197678) ((-330 . -569) 197629) ((-530 . -629) 197610) ((-577 . -844) T) ((-246 . -1242) T) ((-1059 . -629) 197579) ((-852 . -111) 197544) ((-843 . -111) 197523) ((-1276 . -626) 197505) ((-1255 . -626) 197487) ((-1255 . -627) 197158) ((-1197 . -932) 197137) ((-1150 . -932) 197116) ((-48 . -38) 197081) ((-1314 . -1137) T) ((-549 . -297) 197037) ((-615 . -626) 196949) ((-615 . -627) 196910) ((-1312 . -1137) T) ((-373 . -629) 196894) ((-333 . -629) 196878) ((-1167 . -238) 196829) ((-246 . -1063) 196656) ((-1197 . -664) 196545) ((-1150 . -664) 196434) ((-872 . -664) 196408) ((-734 . -626) 196390) ((-559 . -380) T) ((-1314 . -23) T) ((-710 . -923) NIL) ((-1312 . -23) T) ((-504 . -1125) T) ((-391 . -629) 196340) ((-391 . -631) 196322) ((-1059 . -1074) T) ((-883 . -102) T) ((-1214 . -297) 196301) ((-171 . -380) 196252) ((-1029 . -1242) T) ((-996 . -1242) T) ((-937 . -1242) T) ((-852 . -629) 196206) ((-843 . -629) 196161) ((-44 . -23) T) ((-1321 . -102) T) ((-492 . -297) 196140) ((-599 . -1125) T) ((-1171 . -1134) 196109) ((-440 . -1242) T) ((-1129 . -1128) 196061) ((-403 . -21) T) ((-403 . -25) T) ((-153 . -1137) T) ((-1236 . -733) 195958) ((-1222 . -1125) T) ((-1029 . -903) 195940) ((-1029 . -905) 195922) ((-636 . -233) 195906) ((-636 . -273) 195890) ((-634 . -21) T) ((-300 . -569) T) ((-634 . -25) T) ((-1029 . -1063) 195850) ((-727 . -733) 195815) ((-246 . -389) 195784) ((-391 . -1074) T) ((-226 . -1083) T) ((-118 . -273) 195761) ((-118 . -233) 195738) ((-59 . -297) 195690) ((-153 . -23) T) ((-529 . -297) 195642) ((-338 . -527) 195575) ((-509 . -297) 195527) ((-391 . -249) T) ((-391 . -239) T) ((-852 . -1074) T) ((-843 . -1074) T) ((-728 . -972) 195496) ((-717 . -865) T) ((-625 . -868) T) ((-487 . -626) 195478) ((-1278 . -1076) 195383) ((-593 . -662) 195355) ((-577 . -662) 195327) ((-508 . -662) 195277) ((-843 . -239) 195256) ((-135 . -865) T) ((-1278 . -656) 195148) ((-674 . -1125) T) ((-1214 . -617) 195127) ((-563 . -1218) 195106) ((-348 . -1125) T) ((-330 . -375) 195085) ((-420 . -148) 195064) ((-420 . -146) 195043) ((-987 . -1137) 194942) ((-831 . -1137) 194920) ((-246 . -921) 194852) ((-670 . -870) 194836) ((-492 . -617) 194815) ((-110 . -868) T) ((-537 . -1242) T) ((-563 . -107) 194765) ((-1029 . -389) 194747) ((-1029 . -350) 194729) ((-1201 . -626) 194711) ((-97 . -1125) T) ((-987 . -23) 194522) ((-490 . -21) T) ((-490 . -25) T) ((-831 . -23) 194374) ((-1201 . -627) 194296) ((-59 . -19) 194280) ((-1197 . -742) T) ((-1150 . -742) T) ((-1112 . -1125) T) ((-529 . -19) 194264) ((-509 . -19) 194248) ((-59 . -617) 194225) ((-1028 . -238) 194162) ((-924 . -102) 194112) ((-872 . -742) T) ((-798 . -1125) T) ((-529 . -617) 194089) ((-509 . -617) 194066) ((-796 . -1125) T) ((-796 . -1090) 194033) ((-474 . -1125) T) ((-467 . -1125) T) ((-599 . -733) 194008) ((-665 . -1125) T) ((-1284 . -47) 193985) ((-1278 . -102) T) ((-1277 . -47) 193955) ((-1256 . -47) 193932) ((-1236 . -174) 193883) ((-1198 . -318) 193862) ((-1192 . -318) 193841) ((-1121 . -629) 193822) ((-1115 . -629) 193803) ((-1105 . -569) 193754) ((-1105 . -1246) 193705) ((-1098 . -629) 193686) ((-1029 . -921) NIL) ((-1091 . -629) 193667) ((-686 . -132) T) ((-640 . -1137) T) ((-1061 . -629) 193648) ((-1044 . -629) 193629) ((-730 . -1081) 193599) ((-728 . -915) 193502) ((-715 . -662) 193452) ((-285 . -1125) T) ((-85 . -454) T) ((-85 . -408) T) ((-727 . -174) T) ((-653 . -1081) 193436) ((-50 . -1125) T) ((-608 . -47) 193413) ((-228 . -664) 193378) ((-594 . -1125) T) ((-531 . -1125) T) ((-500 . -836) T) ((-500 . -943) T) ((-371 . -1246) T) ((-365 . -1246) T) ((-357 . -1246) T) ((-330 . -1137) T) ((-327 . -1076) 193288) ((-324 . -1076) 193217) ((-108 . -1246) T) ((-639 . -629) 193198) ((-371 . -569) T) ((-220 . -943) T) ((-220 . -836) T) ((-327 . -656) 193108) ((-324 . -656) 193037) ((-365 . -569) T) ((-357 . -569) T) ((-653 . -111) 193016) ((-1321 . -1177) T) ((-496 . -629) 192997) ((-108 . -569) T) ((-1192 . -1047) NIL) ((-674 . -733) 192967) ((-495 . -868) 192918) ((-221 . -629) 192899) ((-330 . -23) T) ((-67 . -1242) T) ((-1025 . -626) 192831) ((-1316 . -21) T) ((-710 . -273) 192813) ((-710 . -233) 192795) ((-1316 . -25) T) ((-730 . -111) 192760) ((-1314 . -132) T) ((-660 . -34) T) ((-251 . -502) 192744) ((-1312 . -132) T) ((-1305 . -102) T) ((-1288 . -626) 192710) ((-1284 . -1242) T) ((-1127 . -1123) 192694) ((-173 . -1125) T) ((-1277 . -1242) T) ((-1277 . -1063) 192629) ((-1256 . -1242) T) ((-1256 . -905) NIL) ((-1256 . -903) 192581) ((-975 . -932) 192560) ((-1256 . -1063) 192526) ((-1236 . -527) 192493) ((-1214 . -627) NIL) ((-528 . -629) 192477) ((-1214 . -626) 192459) ((-1167 . -1148) 192404) ((-1112 . -733) 192253) ((-494 . -932) 192232) ((-1102 . -102) T) ((-1087 . -664) 192204) ((-975 . -664) 192093) ((-834 . -868) T) ((-798 . -733) 191922) ((-610 . -503) 191903) ((-598 . -503) 191884) ((-610 . -626) 191850) ((-598 . -626) 191816) ((-549 . -626) 191798) ((-592 . -1242) T) ((-549 . -627) 191779) ((-796 . -733) 191628) ((-1071 . -1235) 191557) ((-636 . -662) 191529) ((-393 . -25) T) ((-393 . -21) T) ((-494 . -664) 191418) ((-474 . -733) 191389) ((-467 . -733) 191238) ((-1012 . -102) T) ((-924 . -320) 191176) ((-894 . -93) T) ((-753 . -102) T) ((-653 . -629) 191153) ((-118 . -662) 191083) ((-618 . -629) 191065) ((-730 . -629) 191019) ((-697 . -93) T) ((-544 . -25) T) ((-692 . -93) T) ((-680 . -626) 191001) ((-661 . -503) 190982) ((-661 . -626) 190935) ((-142 . -102) T) ((-44 . -132) T) ((-609 . -1242) T) ((-608 . -1242) T) ((-355 . -1083) T) ((-300 . -1137) T) ((-491 . -93) T) ((-420 . -238) 190886) ((-367 . -626) 190868) ((-364 . -626) 190850) ((-356 . -626) 190832) ((-274 . -627) 190580) ((-274 . -626) 190562) ((-254 . -626) 190544) ((-254 . -627) 190405) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1166 . -626) 190387) ((-1145 . -656) 190374) ((-1145 . -1076) 190361) ((-835 . -742) T) ((-835 . -875) T) ((-615 . -299) 190338) ((-594 . -733) 190303) ((-492 . -627) NIL) ((-492 . -626) 190285) ((-531 . -733) 190230) ((-327 . -102) T) ((-324 . -102) T) ((-300 . -23) T) ((-153 . -132) T) ((-933 . -626) 190212) ((-933 . -627) 190194) ((-399 . -742) T) ((-890 . -1081) 190146) ((-890 . -111) 190084) ((-730 . -1074) T) ((-728 . -1268) 190068) ((-710 . -361) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-532 . -626) 190000) ((-391 . -811) T) ((-169 . -1242) T) ((-226 . -1125) T) ((-391 . -808) T) ((-59 . -627) 189961) ((-228 . -810) T) ((-228 . -807) T) ((-59 . -626) 189873) ((-228 . -742) T) ((-529 . -627) 189834) ((-529 . -626) 189746) ((-510 . -626) 189678) ((-509 . -627) 189639) ((-509 . -626) 189551) ((-1105 . -375) 189502) ((-40 . -424) 189479) ((-77 . -1242) T) ((-889 . -932) NIL) ((-371 . -340) 189463) ((-371 . -375) T) ((-365 . -340) 189447) ((-365 . -375) T) ((-357 . -340) 189431) ((-357 . -375) T) ((-327 . -295) 189410) ((-108 . -375) T) ((-70 . -1242) T) ((-655 . -1125) T) ((-1256 . -350) 189362) ((-889 . -664) 189307) ((-1256 . -389) 189259) ((-987 . -132) 189114) ((-831 . -132) 188985) ((-45 . -868) NIL) ((-981 . -667) 188969) ((-1112 . -174) 188880) ((-981 . -385) 188864) ((-1087 . -810) T) ((-1087 . -807) T) ((-890 . -629) 188762) ((-798 . -174) 188653) ((-796 . -174) 188564) ((-832 . -47) 188526) ((-1087 . -742) T) ((-338 . -502) 188510) ((-975 . -742) T) ((-1305 . -320) 188448) ((-1284 . -921) 188361) ((-467 . -174) 188272) ((-251 . -297) 188224) ((-1277 . -921) 188130) ((-1276 . -1081) 187965) ((-1256 . -921) 187798) ((-494 . -742) T) ((-1255 . -1081) 187606) ((-1236 . -301) 187585) ((-1211 . -1242) T) ((-1208 . -380) T) ((-1207 . -380) T) ((-1171 . -152) 187569) ((-1145 . -102) T) ((-1143 . -1125) T) ((-1105 . -23) T) ((-1105 . -1137) T) ((-1100 . -102) T) ((-1082 . -626) 187536) ((-1028 . -422) 187508) ((-950 . -978) T) ((-753 . -320) 187446) ((-75 . -1242) T) ((-680 . -394) 187418) ((-171 . -932) 187371) ((-30 . -978) T) ((-112 . -860) T) ((-1 . -626) 187353) ((-1024 . -915) 187274) ((-129 . -667) 187256) ((-50 . -633) 187240) ((-710 . -662) 187175) ((-608 . -921) 187088) ((-451 . -102) T) ((-129 . -385) 187070) ((-142 . -320) NIL) ((-890 . -1074) T) ((-849 . -865) 187049) ((-81 . -1242) T) ((-727 . -301) T) ((-40 . -1083) T) ((-594 . -174) T) ((-531 . -174) T) ((-524 . -626) 187031) ((-171 . -664) 186905) ((-520 . -626) 186887) ((-363 . -148) 186869) ((-363 . -146) T) ((-371 . -1137) T) ((-365 . -1137) T) ((-357 . -1137) T) ((-1029 . -318) T) ((-937 . -318) T) ((-890 . -249) T) ((-108 . -1137) T) ((-890 . -239) 186848) ((-1276 . -111) 186669) ((-1255 . -111) 186458) ((-251 . -1280) 186442) ((-577 . -864) T) ((-371 . -23) T) ((-366 . -361) T) ((-327 . -320) 186429) ((-324 . -320) 186370) ((-365 . -23) T) ((-330 . -132) T) ((-357 . -23) T) ((-1029 . -1047) T) ((-31 . -629) 186351) ((-108 . -23) T) ((-670 . -1076) 186335) ((-251 . -617) 186312) ((-655 . -733) 186296) ((-344 . -1125) T) ((-670 . -656) 186266) ((-1278 . -38) 186158) ((-1265 . -932) 186137) ((-112 . -1125) T) ((-832 . -1242) T) ((-426 . -1242) T) ((-1060 . -102) T) ((-1265 . -664) 186026) ((-889 . -810) NIL) ((-873 . -664) 186000) ((-889 . -807) NIL) ((-832 . -905) NIL) ((-889 . -742) T) ((-1112 . -527) 185873) ((-798 . -527) 185820) ((-796 . -527) 185772) ((-584 . -664) 185759) ((-832 . -1063) 185587) ((-467 . -527) 185530) ((-401 . -402) T) ((-1276 . -629) 185343) ((-1255 . -629) 185091) ((-60 . -1242) T) ((-634 . -865) 185070) ((-513 . -677) T) ((-1171 . -1001) 185039) ((-1049 . -662) 184976) ((-1028 . -465) T) ((-715 . -864) T) ((-523 . -808) T) ((-487 . -1081) 184811) ((-513 . -113) T) ((-355 . -1125) T) ((-324 . -1177) NIL) ((-300 . -132) T) ((-407 . -1125) T) ((-888 . -1083) T) ((-710 . -382) 184778) ((-366 . -662) 184708) ((-226 . -633) 184685) ((-338 . -297) 184637) ((-487 . -111) 184458) ((-1276 . -1074) T) ((-1255 . -1074) T) ((-832 . -389) 184442) ((-840 . -1242) T) ((-171 . -742) T) ((-1307 . -1242) T) ((-670 . -102) T) ((-1276 . -249) 184421) ((-1276 . -239) 184373) ((-1255 . -239) 184278) ((-1255 . -249) 184257) ((-1028 . -415) NIL) ((-686 . -654) 184205) ((-327 . -38) 184115) ((-324 . -38) 184044) ((-69 . -626) 184026) ((-330 . -506) 183992) ((-48 . -662) 183942) ((-1214 . -299) 183921) ((-1250 . -865) T) ((-1138 . -1137) 183899) ((-83 . -1242) T) ((-61 . -626) 183881) ((-882 . -868) T) ((-492 . -299) 183860) ((-1307 . -1063) 183837) ((-1189 . -1125) T) ((-1138 . -23) 183689) ((-832 . -921) 183625) ((-1265 . -742) T) ((-1127 . -1242) T) ((-487 . -629) 183451) ((-363 . -238) T) ((-1112 . -301) 183382) ((-989 . -1125) T) ((-912 . -102) T) ((-798 . -301) 183293) ((-338 . -19) 183277) ((-59 . -299) 183254) ((-796 . -301) 183185) ((-873 . -742) T) ((-118 . -864) NIL) ((-529 . -299) 183162) ((-338 . -617) 183139) ((-509 . -299) 183116) ((-467 . -301) 183047) ((-1060 . -320) 182898) ((-894 . -503) 182879) ((-894 . -626) 182845) ((-697 . -503) 182826) ((-584 . -742) T) ((-692 . -503) 182807) ((-697 . -626) 182757) ((-692 . -626) 182723) ((-678 . -626) 182705) ((-491 . -503) 182686) ((-491 . -626) 182652) ((-251 . -627) 182613) ((-251 . -503) 182590) ((-139 . -503) 182571) ((-138 . -503) 182552) ((-134 . -503) 182533) ((-251 . -626) 182425) ((-215 . -102) T) ((-139 . -626) 182391) ((-138 . -626) 182357) ((-134 . -626) 182323) ((-1172 . -34) T) ((-966 . -1242) T) ((-355 . -733) 182268) ((-686 . -25) T) ((-686 . -21) T) ((-1201 . -629) 182249) ((-342 . -1242) T) ((-487 . -1074) T) ((-648 . -430) 182214) ((-620 . -430) 182179) ((-1145 . -1177) T) ((-1277 . -318) 182158) ((-728 . -1076) 181981) ((-594 . -301) T) ((-531 . -301) T) ((-1256 . -318) 181960) ((-487 . -239) 181912) ((-487 . -249) 181891) ((-452 . -1242) T) ((-728 . -656) 181720) ((-1256 . -1047) NIL) ((-1105 . -132) T) ((-890 . -811) 181699) ((-145 . -102) T) ((-40 . -1125) T) ((-890 . -808) 181678) ((-660 . -1035) 181662) ((-593 . -1083) T) ((-577 . -1083) T) ((-508 . -1083) T) ((-420 . -465) T) ((-371 . -132) T) ((-327 . -413) 181646) ((-324 . -413) 181607) ((-365 . -132) T) ((-357 . -132) T) ((-1206 . -1125) T) ((-1145 . -38) 181594) ((-1119 . -626) 181561) ((-108 . -132) T) ((-977 . -1125) T) ((-944 . -1125) T) ((-787 . -1125) T) ((-688 . -1125) T) ((-717 . -148) T) ((-117 . -148) T) ((-1314 . -21) T) ((-1314 . -25) T) ((-1312 . -21) T) ((-1312 . -25) T) ((-680 . -1081) 181545) ((-544 . -865) T) ((-513 . -865) T) ((-377 . -1242) T) ((-367 . -1081) 181497) ((-364 . -1081) 181449) ((-356 . -1081) 181401) ((-259 . -1242) T) ((-258 . -1242) T) ((-274 . -1081) 181244) ((-254 . -1081) 181087) ((-680 . -111) 181066) ((-833 . -1246) 181045) ((-560 . -860) T) ((-327 . -923) 181011) ((-367 . -111) 180949) ((-364 . -111) 180887) ((-356 . -111) 180825) ((-274 . -111) 180654) ((-254 . -111) 180483) ((-324 . -923) NIL) ((-636 . -424) 180467) ((-44 . -21) T) ((-44 . -25) T) ((-928 . -868) 180418) ((-831 . -654) 180324) ((-833 . -569) 180303) ((-500 . -868) T) ((-259 . -1063) 180130) ((-258 . -1063) 179957) ((-127 . -120) 179941) ((-220 . -868) T) ((-933 . -1081) 179906) ((-728 . -102) T) ((-715 . -1083) T) ((-610 . -629) 179887) ((-598 . -629) 179868) ((-549 . -631) 179771) ((-355 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -626) 179753) ((-933 . -111) 179709) ((-40 . -733) 179654) ((-888 . -1125) T) ((-680 . -629) 179631) ((-661 . -629) 179612) ((-367 . -629) 179549) ((-364 . -629) 179486) ((-356 . -629) 179423) ((-560 . -1125) T) ((-338 . -627) 179384) ((-338 . -626) 179296) ((-274 . -629) 179049) ((-254 . -629) 178834) ((-188 . -1242) T) ((-1255 . -808) 178787) ((-1255 . -811) 178740) ((-259 . -389) 178709) ((-258 . -389) 178678) ((-562 . -868) T) ((-670 . -38) 178648) ((-621 . -34) T) ((-495 . -1137) 178626) ((-488 . -34) T) ((-1138 . -132) 178497) ((-987 . -25) 178308) ((-933 . -629) 178258) ((-892 . -626) 178240) ((-217 . -860) T) ((-987 . -21) 178195) ((-831 . -25) 178028) ((-831 . -21) 177939) ((-1248 . -380) T) ((-636 . -1083) T) ((-1203 . -569) 177918) ((-1197 . -47) 177895) ((-367 . -1074) T) ((-364 . -1074) T) ((-495 . -23) 177747) ((-356 . -1074) T) ((-274 . -1074) T) ((-254 . -1074) T) ((-1150 . -47) 177719) ((-118 . -1083) T) ((-1059 . -664) 177693) ((-981 . -34) T) ((-367 . -239) 177672) ((-367 . -249) T) ((-364 . -239) 177651) ((-364 . -249) T) ((-356 . -239) 177630) ((-356 . -249) T) ((-274 . -337) 177602) ((-254 . -337) 177559) ((-274 . -239) 177538) ((-1182 . -152) 177522) ((-259 . -921) 177454) ((-258 . -921) 177386) ((-1167 . -915) 177307) ((-1107 . -865) T) ((-1259 . -1242) 177285) ((-427 . -1137) T) ((-1236 . -1027) 177251) ((-1079 . -23) T) ((-1049 . -864) T) ((-933 . -1074) T) ((-333 . -664) 177233) ((-717 . -238) T) ((-686 . -235) 177178) ((-1198 . -943) 177157) ((-1192 . -943) 177136) ((-1192 . -836) NIL) ((-1024 . -1076) 177032) ((-990 . -1242) T) ((-933 . -249) T) ((-833 . -375) 177011) ((-217 . -1125) T) ((-397 . -23) T) ((-128 . -1125) 176989) ((-122 . -1125) 176967) ((-933 . -239) T) ((-129 . -34) T) ((-391 . -664) 176932) ((-1024 . -656) 176880) ((-888 . -733) 176867) ((-1321 . -662) 176839) ((-1071 . -152) 176804) ((-1018 . -1242) T) ((-880 . -1242) T) ((-40 . -174) T) ((-710 . -424) 176786) ((-728 . -320) 176773) ((-852 . -664) 176733) ((-843 . -664) 176707) ((-330 . -25) T) ((-330 . -21) T) ((-674 . -297) 176686) ((-593 . -1125) T) ((-577 . -1125) T) ((-508 . -1125) T) ((-1197 . -1242) T) ((-251 . -299) 176663) ((-1150 . -1242) T) ((-872 . -1242) T) ((-324 . -273) 176624) ((-324 . -233) 176585) ((-1247 . -868) T) ((-1197 . -905) NIL) ((-55 . -1125) T) ((-1150 . -905) 176444) ((-130 . -865) T) ((-1197 . -1063) 176324) ((-1150 . -1063) 176207) ((-185 . -626) 176189) ((-872 . -1063) 176085) ((-798 . -297) 176012) ((-833 . -1137) T) ((-1059 . -742) T) ((-1071 . -1001) 175941) ((-615 . -667) 175925) ((-1028 . -915) 175832) ((-1024 . -102) T) ((-833 . -23) T) ((-728 . -1177) 175810) ((-710 . -1083) T) ((-615 . -385) 175794) ((-363 . -465) T) ((-355 . -301) T) ((-1293 . -1125) T) ((-255 . -1125) T) ((-412 . -102) T) ((-300 . -21) T) ((-300 . -25) T) ((-373 . -742) T) ((-726 . -1125) T) ((-715 . -1125) T) ((-373 . -486) T) ((-1236 . -626) 175776) ((-1197 . -389) 175760) ((-1150 . -389) 175744) ((-1049 . -424) 175706) ((-142 . -232) 175688) ((-391 . -810) T) ((-391 . -807) T) ((-888 . -174) T) ((-391 . -742) T) ((-727 . -626) 175670) ((-728 . -38) 175499) ((-1292 . -1290) 175483) ((-363 . -415) T) ((-1292 . -1125) 175433) ((-1215 . -1125) T) ((-593 . -733) 175420) ((-577 . -733) 175407) ((-508 . -733) 175372) ((-1278 . -662) 175262) ((-327 . -642) 175241) ((-852 . -742) T) ((-843 . -742) T) ((-1140 . -1242) T) ((-660 . -1242) T) ((-1105 . -654) 175189) ((-1197 . -921) 175132) ((-1150 . -921) 175116) ((-831 . -235) 175007) ((-678 . -1081) 174991) ((-108 . -654) 174973) ((-495 . -132) 174844) ((-1203 . -1137) T) ((-835 . -1242) T) ((-975 . -47) 174813) ((-636 . -1125) T) ((-678 . -111) 174792) ((-504 . -626) 174758) ((-338 . -299) 174735) ((-399 . -1242) T) ((-335 . -1242) T) ((-494 . -47) 174692) ((-1203 . -23) T) ((-118 . -1125) T) ((-103 . -102) 174642) ((-1304 . -1137) T) ((-561 . -865) T) ((-228 . -1242) T) ((-1079 . -132) T) ((-1049 . -1083) T) ((-1304 . -23) T) ((-1222 . -626) 174624) ((-835 . -1063) 174608) ((-1145 . -844) T) ((-1028 . -740) 174580) ((-1130 . -1125) T) ((-715 . -733) 174545) ((-599 . -626) 174527) ((-399 . -1063) 174511) ((-366 . -1083) T) ((-397 . -132) T) ((-335 . -1063) 174495) ((-1105 . -21) T) ((-1105 . -25) T) ((-1029 . -836) T) ((-228 . -905) 174477) ((-1029 . -943) T) ((-91 . -34) T) ((-1024 . -320) 174442) ((-937 . -943) T) ((-894 . -629) 174423) ((-730 . -664) 174383) ((-500 . -1246) T) ((-697 . -629) 174364) ((-692 . -629) 174345) ((-653 . -664) 174329) ((-220 . -1246) T) ((-420 . -915) 174250) ((-228 . -1063) 174210) ((-40 . -301) T) ((-500 . -569) T) ((-491 . -629) 174191) ((-371 . -25) T) ((-327 . -662) 173846) ((-324 . -662) 173760) ((-371 . -21) T) ((-365 . -25) T) ((-365 . -21) T) ((-220 . -569) T) ((-357 . -25) T) ((-357 . -21) T) ((-330 . -235) 173706) ((-251 . -629) 173683) ((-139 . -629) 173664) ((-138 . -629) 173645) ((-134 . -629) 173626) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1083) T) ((-593 . -174) T) ((-577 . -174) T) ((-508 . -174) T) ((-1087 . -1242) T) ((-975 . -1242) T) ((-729 . -1242) T) ((-655 . -297) 173593) ((-674 . -626) 173575) ((-494 . -1242) T) ((-753 . -752) 173559) ((-348 . -626) 173541) ((-68 . -395) T) ((-68 . -408) T) ((-1127 . -107) 173525) ((-1087 . -905) 173507) ((-975 . -905) 173432) ((-669 . -1137) T) ((-636 . -733) 173419) ((-494 . -905) NIL) ((-1171 . -102) T) ((-1119 . -631) 173403) ((-1087 . -1063) 173385) ((-97 . -626) 173367) ((-490 . -148) T) ((-975 . -1063) 173247) ((-118 . -733) 173192) ((-728 . -923) 173099) ((-669 . -23) T) ((-494 . -1063) 172975) ((-1112 . -627) NIL) ((-1112 . -626) 172957) ((-798 . -627) NIL) ((-798 . -626) 172918) ((-796 . -627) 172552) ((-796 . -626) 172466) ((-1138 . -654) 172372) ((-815 . -868) 172351) ((-474 . -626) 172333) ((-467 . -626) 172315) ((-467 . -627) 172176) ((-1060 . -232) 172122) ((-890 . -932) 172101) ((-127 . -34) T) ((-833 . -132) T) ((-665 . -626) 172083) ((-591 . -102) T) ((-367 . -1311) 172067) ((-364 . -1311) 172051) ((-356 . -1311) 172035) ((-122 . -527) 171968) ((-128 . -527) 171901) ((-524 . -808) T) ((-524 . -811) T) ((-523 . -810) T) ((-103 . -320) 171839) ((-225 . -102) 171789) ((-715 . -174) T) ((-710 . -1125) T) ((-890 . -664) 171705) ((-65 . -396) T) ((-285 . -626) 171687) ((-65 . -408) T) ((-975 . -389) 171671) ((-888 . -301) T) ((-50 . -626) 171653) ((-1024 . -38) 171601) ((-1145 . -662) 171573) ((-594 . -626) 171555) ((-494 . -389) 171539) ((-594 . -627) 171521) ((-531 . -626) 171503) ((-933 . -1311) 171490) ((-889 . -1242) T) ((-717 . -465) T) ((-508 . -527) 171456) ((-1303 . -1242) T) ((-1302 . -1242) T) ((-500 . -375) T) ((-367 . -380) 171435) ((-364 . -380) 171414) ((-356 . -380) 171393) ((-730 . -742) T) ((-220 . -375) T) ((-117 . -465) T) ((-1315 . -1306) 171377) ((-889 . -903) 171354) ((-889 . -905) NIL) ((-987 . -865) 171253) ((-831 . -865) 171204) ((-1249 . -102) T) ((-670 . -672) 171188) ((-1228 . -34) T) ((-173 . -626) 171170) ((-1138 . -25) 171003) ((-1138 . -21) 170914) ((-889 . -1063) 170891) ((-975 . -921) 170872) ((-1265 . -47) 170849) ((-933 . -380) T) ((-606 . -868) T) ((-59 . -667) 170833) ((-529 . -667) 170817) ((-494 . -921) 170794) ((-71 . -454) T) ((-71 . -408) T) ((-509 . -667) 170778) ((-59 . -385) 170762) ((-636 . -174) T) ((-529 . -385) 170746) ((-509 . -385) 170730) ((-559 . -1242) T) ((-843 . -724) 170714) ((-1197 . -318) 170693) ((-1203 . -132) T) ((-1167 . -1076) 170677) ((-118 . -174) T) ((-1167 . -656) 170609) ((-1171 . -320) 170547) ((-171 . -1242) T) ((-1304 . -132) T) ((-1277 . -943) 170526) ((-1256 . -943) 170505) ((-1256 . -836) NIL) ((-884 . -1076) 170475) ((-648 . -760) 170459) ((-620 . -760) 170443) ((-1255 . -932) 170396) ((-1049 . -1125) T) ((-928 . -1137) T) ((-884 . -656) 170366) ((-710 . -733) 170316) ((-919 . -1242) T) ((-889 . -389) 170293) ((-889 . -350) 170270) ((-857 . -1242) T) ((-824 . -1242) T) ((-171 . -903) 170254) ((-171 . -905) 170179) ((-785 . -1242) T) ((-693 . -1242) T) ((-1292 . -527) 170112) ((-1276 . -664) 170009) ((-1105 . -235) 169882) ((-500 . -1137) T) ((-366 . -1125) T) ((-220 . -1137) T) ((-76 . -454) T) ((-76 . -408) T) ((-171 . -1063) 169778) ((-305 . -915) 169735) ((-330 . -865) T) ((-1255 . -664) 169543) ((-890 . -810) 169522) ((-890 . -807) 169501) ((-890 . -742) T) ((-500 . -23) T) ((-371 . -235) 169474) ((-365 . -235) 169447) ((-357 . -235) 169420) ((-176 . -465) T) ((-86 . -454) T) ((-225 . -320) 169358) ((-86 . -408) T) ((-226 . -626) 169340) ((-108 . -235) 169327) ((-220 . -23) T) ((-1316 . -1309) 169306) ((-693 . -1063) 169290) ((-593 . -301) T) ((-577 . -301) T) ((-508 . -301) T) ((-1265 . -1242) T) ((-137 . -483) 169245) ((-873 . -1242) T) ((-670 . -662) 169204) ((-48 . -1125) T) ((-728 . -273) 169188) ((-728 . -233) 169172) ((-889 . -921) NIL) ((-584 . -1242) T) ((-1265 . -905) NIL) ((-908 . -102) T) ((-904 . -102) T) ((-655 . -626) 169154) ((-401 . -1125) T) ((-171 . -389) 169138) ((-171 . -350) 169122) ((-1265 . -1063) 169002) ((-873 . -1063) 168898) ((-1167 . -102) T) ((-1024 . -923) 168821) ((-678 . -808) 168800) ((-669 . -132) T) ((-678 . -811) 168779) ((-118 . -527) 168687) ((-584 . -1063) 168669) ((-305 . -1299) 168639) ((-1192 . -868) NIL) ((-884 . -102) T) ((-986 . -569) 168618) ((-1236 . -1081) 168501) ((-1028 . -1076) 168446) ((-495 . -654) 168352) ((-927 . -1125) T) ((-1049 . -733) 168289) ((-727 . -1081) 168254) ((-1028 . -656) 168199) ((-630 . -102) T) ((-615 . -34) T) ((-1172 . -1242) T) ((-1236 . -111) 168068) ((-487 . -664) 167965) ((-366 . -733) 167910) ((-171 . -921) 167869) ((-715 . -301) T) ((-710 . -174) T) ((-727 . -111) 167825) ((-1321 . -1083) T) ((-1265 . -389) 167809) ((-431 . -1246) 167787) ((-1143 . -626) 167769) ((-324 . -864) NIL) ((-431 . -569) T) ((-228 . -318) T) ((-1255 . -807) 167722) ((-1255 . -810) 167675) ((-1276 . -742) T) ((-1255 . -742) T) ((-48 . -733) 167640) ((-228 . -1047) T) ((-1278 . -424) 167606) ((-1265 . -921) 167549) ((-363 . -1299) 167526) ((-1236 . -629) 167408) ((-734 . -742) T) ((-344 . -626) 167390) ((-533 . -868) 167369) ((-1138 . -235) 167260) ((-112 . -626) 167242) ((-112 . -627) 167224) ((-734 . -486) T) ((-727 . -629) 167174) ((-1315 . -1076) 167158) ((-495 . -25) 166991) ((-128 . -502) 166975) ((-122 . -502) 166959) ((-495 . -21) 166870) ((-1315 . -656) 166840) ((-636 . -301) T) ((-599 . -1081) 166815) ((-450 . -1125) T) ((-1087 . -318) T) ((-118 . -301) T) ((-1129 . -102) T) ((-1028 . -102) T) ((-599 . -111) 166783) ((-1236 . -1074) T) ((-1167 . -320) 166721) ((-1087 . -1047) T) ((-1079 . -25) T) ((-66 . -1242) T) ((-911 . -1242) T) ((-1079 . -21) T) ((-727 . -1074) T) ((-397 . -21) T) ((-397 . -25) T) ((-710 . -527) NIL) ((-1049 . -174) T) ((-727 . -249) T) ((-1087 . -558) T) ((-728 . -662) 166631) ((-519 . -102) T) ((-515 . -102) T) ((-366 . -174) T) ((-355 . -626) 166613) ((-420 . -1076) 166565) ((-407 . -626) 166547) ((-1145 . -864) T) ((-487 . -742) T) ((-911 . -1063) 166515) ((-420 . -656) 166467) ((-108 . -865) T) ((-674 . -1081) 166451) ((-500 . -132) T) ((-1278 . -1083) T) ((-220 . -132) T) ((-1182 . -102) 166401) ((-99 . -1125) T) ((-246 . -868) 166352) ((-251 . -682) 166336) ((-251 . -667) 166320) ((-674 . -111) 166299) ((-599 . -629) 166283) ((-327 . -424) 166267) ((-251 . -385) 166251) ((-1184 . -241) 166198) ((-1024 . -273) 166182) ((-1024 . -233) 166166) ((-74 . -1242) T) ((-48 . -174) T) ((-717 . -400) T) ((-717 . -144) T) ((-1315 . -102) T) ((-1223 . -1242) T) ((-1222 . -629) 166148) ((-1113 . -1242) T) ((-1112 . -1081) 165991) ((-1101 . -1242) T) ((-274 . -932) 165970) ((-254 . -932) 165949) ((-798 . -1081) 165772) ((-796 . -1081) 165615) ((-621 . -1242) T) ((-1189 . -626) 165597) ((-1112 . -111) 165426) ((-1071 . -102) T) ((-488 . -1242) T) ((-474 . -1081) 165397) ((-467 . -1081) 165240) ((-680 . -664) 165224) ((-889 . -318) T) ((-798 . -111) 165033) ((-796 . -111) 164862) ((-367 . -664) 164814) ((-364 . -664) 164766) ((-356 . -664) 164718) ((-274 . -664) 164607) ((-254 . -664) 164496) ((-1183 . -865) T) ((-1113 . -1063) 164480) ((-1101 . -1063) 164457) ((-1029 . -868) T) ((-1025 . -34) T) ((-474 . -111) 164418) ((-467 . -111) 164247) ((-996 . -868) T) ((-989 . -626) 164229) ((-986 . -1137) T) ((-981 . -1242) T) ((-127 . -1035) 164213) ((-866 . -1242) T) ((-889 . -1047) NIL) ((-751 . -1137) T) ((-731 . -1137) T) ((-674 . -629) 164131) ((-1292 . -502) 164115) ((-1209 . -1242) T) ((-1208 . -1242) T) ((-1167 . -38) 164075) ((-986 . -23) T) ((-933 . -664) 164040) ((-883 . -1125) T) ((-859 . -102) T) ((-833 . -21) T) ((-648 . -1076) 164024) ((-620 . -1076) 164008) ((-833 . -25) T) ((-751 . -23) T) ((-731 . -23) T) ((-648 . -656) 163992) ((-110 . -677) T) ((-620 . -656) 163976) ((-594 . -1081) 163941) ((-531 . -1081) 163886) ((-230 . -57) 163844) ((-466 . -23) T) ((-420 . -102) T) ((-1207 . -1242) T) ((-271 . -102) T) ((-110 . -113) T) ((-710 . -301) T) ((-884 . -38) 163814) ((-1112 . -629) 163550) ((-594 . -111) 163506) ((-531 . -111) 163435) ((-431 . -1137) T) ((-327 . -1083) 163325) ((-324 . -1083) T) ((-129 . -1242) T) ((-131 . -1242) T) ((-798 . -629) 163073) ((-796 . -629) 162839) ((-674 . -1074) T) ((-1321 . -1125) T) ((-467 . -629) 162624) ((-171 . -318) 162555) ((-431 . -23) T) ((-40 . -626) 162537) ((-40 . -627) 162521) ((-108 . -1017) 162503) ((-117 . -887) 162487) ((-665 . -629) 162471) ((-48 . -527) 162437) ((-1228 . -1035) 162421) ((-1206 . -626) 162388) ((-1214 . -34) T) ((-977 . -626) 162354) ((-944 . -626) 162336) ((-1138 . -865) 162287) ((-787 . -626) 162269) ((-688 . -626) 162251) ((-530 . -1242) T) ((-1265 . -318) 162230) ((-1182 . -320) 162168) ((-1166 . -34) T) ((-492 . -34) T) ((-1117 . -1242) T) ((-490 . -465) T) ((-1059 . -1242) T) ((-1112 . -1074) T) ((-50 . -629) 162137) ((-798 . -1074) T) ((-796 . -1074) T) ((-663 . -241) 162121) ((-645 . -241) 162067) ((-1203 . -21) T) ((-594 . -629) 162017) ((-531 . -629) 161947) ((-495 . -235) 161838) ((-1203 . -25) T) ((-1112 . -337) 161799) ((-467 . -1074) T) ((-1112 . -239) 161778) ((-798 . -337) 161755) ((-798 . -239) T) ((-796 . -337) 161727) ((-747 . -1246) 161706) ((-532 . -34) T) ((-338 . -667) 161690) ((-529 . -34) T) ((-59 . -34) T) ((-510 . -34) T) ((-509 . -34) T) ((-467 . -337) 161669) ((-338 . -385) 161653) ((-373 . -1242) T) ((-333 . -1242) T) ((-1028 . -1177) NIL) ((-747 . -569) 161584) ((-648 . -102) T) ((-620 . -102) T) ((-367 . -742) T) ((-364 . -742) T) ((-356 . -742) T) ((-274 . -742) T) ((-254 . -742) T) ((-391 . -1242) T) ((-1304 . -21) T) ((-1071 . -320) 161492) ((-1304 . -25) T) ((-924 . -1125) 161470) ((-834 . -235) 161457) ((-50 . -1074) T) ((-1199 . -569) 161436) ((-1198 . -1246) 161415) ((-1198 . -569) 161366) ((-1192 . -1246) 161345) ((-1192 . -569) 161296) ((-1049 . -301) T) ((-594 . -1074) T) ((-531 . -1074) T) ((-1028 . -38) 161241) ((-373 . -1063) 161225) ((-333 . -1063) 161209) ((-1024 . -662) 161132) ((-391 . -905) 161114) ((-852 . -1242) T) ((-843 . -1242) T) ((-841 . -1242) T) ((-815 . -1137) T) ((-933 . -742) T) ((-594 . -249) T) ((-594 . -239) T) ((-531 . -239) T) ((-531 . -249) T) ((-1151 . -569) 161093) ((-366 . -301) T) ((-663 . -711) 161077) ((-391 . -1063) 161037) ((-305 . -1076) 160958) ((-351 . -915) 160937) ((-1145 . -1083) T) ((-103 . -126) 160921) ((-305 . -656) 160863) ((-815 . -23) T) ((-1314 . -1309) 160839) ((-1312 . -1309) 160818) ((-1292 . -297) 160770) ((-1278 . -1125) T) ((-420 . -320) 160735) ((-1167 . -923) 160658) ((-888 . -626) 160640) ((-852 . -1063) 160609) ((-655 . -1081) 160593) ((-205 . -803) T) ((-204 . -803) T) ((-203 . -803) T) ((-202 . -803) T) ((-201 . -803) T) ((-200 . -803) T) ((-199 . -803) T) ((-198 . -803) T) ((-197 . -803) T) ((-196 . -803) T) ((-560 . -626) 160575) ((-508 . -1027) T) ((-284 . -855) T) ((-283 . -855) T) ((-282 . -855) T) ((-281 . -855) T) ((-48 . -301) T) ((-280 . -855) T) ((-279 . -855) T) ((-278 . -855) T) ((-195 . -803) T) ((-655 . -111) 160554) ((-625 . -865) T) ((-670 . -424) 160538) ((-686 . -238) 160489) ((-226 . -629) 160451) ((-110 . -865) T) ((-669 . -21) T) ((-669 . -25) T) ((-1315 . -38) 160421) ((-118 . -297) 160372) ((-1292 . -19) 160356) ((-1256 . -868) NIL) ((-1292 . -617) 160333) ((-1305 . -1125) T) ((-363 . -1076) 160278) ((-1102 . -1125) T) ((-1012 . -1125) T) ((-986 . -132) T) ((-833 . -235) 160265) ((-753 . -1125) T) ((-363 . -656) 160210) ((-751 . -132) T) ((-731 . -132) T) ((-524 . -809) T) ((-524 . -810) T) ((-466 . -132) T) ((-420 . -1177) 160188) ((-226 . -1074) T) ((-305 . -102) 159970) ((-142 . -1125) T) ((-715 . -1027) T) ((-1130 . -297) 159926) ((-91 . -1242) T) ((-217 . -626) 159908) ((-128 . -626) 159840) ((-122 . -626) 159772) ((-1321 . -174) T) ((-1198 . -375) 159751) ((-1192 . -375) 159730) ((-327 . -1125) T) ((-431 . -132) T) ((-324 . -1125) T) ((-420 . -38) 159682) ((-1158 . -102) T) ((-1278 . -733) 159574) ((-1160 . -1287) T) ((-1121 . -1242) T) ((-1115 . -1242) T) ((-670 . -1083) T) ((-1098 . -1242) T) ((-1091 . -1242) T) ((-1061 . -1242) T) ((-1044 . -1242) T) ((-330 . -146) 159553) ((-330 . -148) 159532) ((-140 . -1125) T) ((-137 . -1125) T) ((-115 . -1125) T) ((-876 . -102) T) ((-639 . -1242) T) ((-496 . -1242) T) ((-593 . -626) 159514) ((-577 . -627) 159413) ((-577 . -626) 159395) ((-508 . -626) 159377) ((-508 . -627) 159322) ((-498 . -23) T) ((-221 . -1242) T) ((-495 . -865) 159273) ((-500 . -654) 159255) ((-988 . -626) 159237) ((-1028 . -923) 159146) ((-220 . -654) 159128) ((-228 . -417) T) ((-678 . -664) 159112) ((-55 . -626) 159094) ((-1197 . -943) 159073) ((-747 . -1137) T) ((-651 . -102) T) ((-528 . -1242) T) ((-523 . -1242) T) ((-521 . -1242) T) ((-363 . -102) T) ((-1241 . -1108) T) ((-1145 . -860) T) ((-834 . -865) T) ((-747 . -23) T) ((-355 . -1081) 159018) ((-1172 . -107) 159002) ((-1293 . -626) 158984) ((-653 . -1242) T) ((-1199 . -23) T) ((-1199 . -1137) T) ((-1198 . -1137) T) ((-1198 . -23) T) ((-528 . -1063) 158968) ((-1192 . -1137) T) ((-1151 . -1137) T) ((-355 . -111) 158897) ((-1029 . -1246) T) ((-127 . -1242) T) ((-937 . -1246) T) ((-1192 . -23) T) ((-1167 . -273) 158881) ((-710 . -297) NIL) ((-730 . -1242) T) ((-1167 . -233) 158865) ((-1151 . -23) T) ((-1100 . -1125) T) ((-1029 . -569) T) ((-937 . -569) T) ((-256 . -1242) T) ((-189 . -1242) T) ((-163 . -1242) T) ((-158 . -1242) T) ((-255 . -626) 158847) ((-831 . -238) 158744) ((-815 . -132) T) ((-726 . -626) 158726) ((-327 . -733) 158636) ((-324 . -733) 158565) ((-715 . -626) 158547) ((-715 . -627) 158492) ((-420 . -413) 158476) ((-451 . -1125) T) ((-500 . -25) T) ((-500 . -21) T) ((-1145 . -1125) T) ((-220 . -25) T) ((-220 . -21) T) ((-728 . -424) 158460) ((-730 . -1063) 158429) ((-1292 . -626) 158341) ((-1292 . -627) 158302) ((-1278 . -174) T) ((-1215 . -626) 158284) ((-251 . -34) T) ((-355 . -629) 158214) ((-407 . -629) 158196) ((-949 . -999) T) ((-1228 . -1242) T) ((-678 . -807) 158175) ((-678 . -810) 158154) ((-411 . -408) T) ((-536 . -102) 158104) ((-1248 . -1242) T) ((-1060 . -1125) T) ((-420 . -923) 158027) ((-225 . -1020) 158011) ((-854 . -1242) T) ((-517 . -102) T) ((-636 . -626) 157993) ((-45 . -865) NIL) ((-636 . -627) 157970) ((-1060 . -623) 157945) ((-924 . -527) 157878) ((-330 . -238) 157830) ((-355 . -1074) T) ((-118 . -627) NIL) ((-118 . -626) 157812) ((-890 . -1242) T) ((-686 . -430) 157796) ((-686 . -1148) 157741) ((-513 . -152) 157723) ((-355 . -239) T) ((-355 . -249) T) ((-40 . -1081) 157668) ((-890 . -903) 157652) ((-890 . -905) 157577) ((-728 . -1083) T) ((-710 . -1027) NIL) ((-1276 . -47) 157547) ((-1255 . -47) 157524) ((-1166 . -1035) 157495) ((-1145 . -733) 157482) ((-3 . |UnionCategory|) T) ((-1130 . -626) 157464) ((-1105 . -148) 157443) ((-1105 . -146) 157394) ((-1029 . -375) T) ((-989 . -629) 157378) ((-228 . -943) T) ((-40 . -111) 157307) ((-890 . -1063) 157171) ((-1028 . -233) 157148) ((-1028 . -273) 157125) ((-717 . -1076) 157112) ((-937 . -375) T) ((-717 . -656) 157099) ((-330 . -1230) 157065) ((-391 . -318) T) ((-330 . -1227) 157031) ((-327 . -174) 157010) ((-324 . -174) T) ((-621 . -1218) 156986) ((-594 . -1311) 156973) ((-531 . -1311) 156950) ((-117 . -1076) 156937) ((-371 . -148) 156916) ((-371 . -146) 156867) ((-365 . -148) 156846) ((-365 . -146) 156797) ((-357 . -148) 156776) ((-117 . -656) 156763) ((-357 . -146) 156714) ((-330 . -35) 156680) ((-488 . -1218) 156659) ((0 . |EnumerationCategory|) T) ((-330 . -95) 156625) ((-391 . -1047) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 156575) ((-670 . -1125) T) ((-621 . -107) 156522) ((-498 . -132) T) ((-488 . -107) 156472) ((-246 . -1137) 156450) ((-31 . -1242) T) ((-890 . -389) 156434) ((-890 . -350) 156418) ((-246 . -23) 156270) ((-40 . -629) 156200) ((-1305 . -527) 156133) ((-1087 . -943) T) ((-1087 . -836) T) ((-594 . -380) T) ((-531 . -380) T) ((-1284 . -569) 156112) ((-1277 . -1246) 156091) ((-1277 . -569) 156042) ((-1276 . -1242) T) ((-1256 . -1246) 156021) ((-363 . -1177) T) ((-338 . -34) T) ((-44 . -430) 156005) ((-1206 . -629) 155941) ((-891 . -1242) T) ((-403 . -760) 155925) ((-1256 . -569) 155876) ((-1255 . -1242) T) ((-1167 . -662) 155835) ((-747 . -132) T) ((-688 . -629) 155819) ((-1255 . -905) 155692) ((-1255 . -903) 155662) ((-1199 . -132) T) ((-1198 . -132) T) ((-1192 . -132) T) ((-1151 . -132) T) ((-322 . -1108) T) ((-1049 . -1027) T) ((-753 . -527) 155595) ((-1029 . -23) T) ((-1029 . -1137) T) ((-912 . -1125) T) ((-145 . -860) T) ((-1028 . -361) NIL) ((-707 . -626) 155577) ((-966 . -868) 155556) ((-536 . -320) 155494) ((-996 . -23) T) ((-142 . -527) NIL) ((-884 . -662) 155439) ((-937 . -1137) T) ((-937 . -23) T) ((-890 . -921) 155398) ((-363 . -38) 155363) ((-888 . -1081) 155350) ((-342 . -868) T) ((-82 . -626) 155332) ((-40 . -1074) T) ((-888 . -111) 155317) ((-734 . -1242) T) ((-717 . -102) T) ((-710 . -626) 155299) ((-615 . -1242) T) ((-609 . -569) 155278) ((-440 . -1137) T) ((-351 . -1076) 155262) ((-215 . -1125) T) ((-176 . -1076) 155194) ((-487 . -47) 155164) ((-40 . -239) 155136) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-608 . -569) 155115) ((-351 . -656) 155099) ((-710 . -627) 155007) ((-327 . -527) 154973) ((-176 . -656) 154905) ((-324 . -527) 154797) ((-500 . -235) 154784) ((-1276 . -1063) 154768) ((-1255 . -1063) 154554) ((-1024 . -424) 154538) ((-220 . -235) 154525) ((-440 . -23) T) ((-1145 . -174) T) ((-1278 . -301) T) ((-670 . -733) 154495) ((-145 . -1125) T) ((-48 . -1027) T) ((-420 . -273) 154479) ((-420 . -233) 154463) ((-306 . -241) 154413) ((-889 . -943) T) ((-889 . -836) NIL) ((-888 . -629) 154385) ((-259 . -868) 154336) ((-258 . -868) 154287) ((-882 . -865) T) ((-1255 . -350) 154257) ((-1255 . -389) 154227) ((-1105 . -238) 154106) ((-225 . -1146) 154090) ((-305 . -923) 154049) ((-1292 . -299) 154026) ((-371 . -238) 154005) ((-365 . -238) 153984) ((-487 . -1242) T) ((-357 . -238) 153963) ((-108 . -238) T) ((-1236 . -664) 153888) ((-1028 . -662) 153818) ((-986 . -21) T) ((-986 . -25) T) ((-751 . -21) T) ((-751 . -25) T) ((-731 . -21) T) ((-731 . -25) T) ((-727 . -664) 153783) ((-466 . -21) T) ((-466 . -25) T) ((-351 . -102) T) ((-176 . -102) T) ((-1024 . -1083) T) ((-888 . -1074) T) ((-790 . -102) T) ((-1277 . -375) 153762) ((-1276 . -921) 153668) ((-1256 . -375) 153647) ((-1255 . -921) 153498) ((-1201 . -1242) T) ((-1049 . -626) 153480) ((-420 . -844) 153433) ((-1199 . -506) 153399) ((-171 . -943) 153330) ((-1198 . -506) 153296) ((-1192 . -506) 153262) ((-728 . -1125) T) ((-1151 . -506) 153228) ((-593 . -1081) 153215) ((-577 . -1081) 153202) ((-508 . -1081) 153167) ((-327 . -301) 153146) ((-324 . -301) T) ((-366 . -626) 153128) ((-431 . -25) T) ((-431 . -21) T) ((-99 . -297) 153107) ((-593 . -111) 153092) ((-577 . -111) 153077) ((-508 . -111) 153033) ((-1201 . -905) 153000) ((-924 . -502) 152984) ((-48 . -626) 152966) ((-48 . -627) 152911) ((-246 . -132) 152782) ((-1315 . -662) 152741) ((-1265 . -943) 152720) ((-832 . -1246) 152699) ((-401 . -503) 152680) ((-1060 . -527) 152524) ((-401 . -626) 152490) ((-832 . -569) 152421) ((-599 . -664) 152396) ((-274 . -47) 152368) ((-254 . -47) 152325) ((-544 . -522) 152302) ((-593 . -629) 152274) ((-577 . -629) 152246) ((-508 . -629) 152179) ((-1099 . -1242) T) ((-1025 . -1242) T) ((-1284 . -23) T) ((-1284 . -1137) T) ((-1277 . -1137) T) ((-1277 . -23) T) ((-1256 . -1137) T) ((-715 . -1081) 152144) ((-1256 . -23) T) ((-1236 . -742) T) ((-1145 . -301) T) ((-1138 . -238) 152041) ((-1029 . -132) T) ((-1028 . -382) 152013) ((-112 . -380) T) ((-487 . -921) 151919) ((-996 . -132) T) ((-927 . -626) 151901) ((-55 . -629) 151883) ((-91 . -107) 151867) ((-937 . -132) T) ((-928 . -865) 151818) ((-717 . -1177) T) ((-715 . -111) 151774) ((-859 . -662) 151691) ((-609 . -1137) T) ((-608 . -1137) T) ((-728 . -733) 151520) ((-727 . -742) T) ((-815 . -25) T) ((-815 . -21) T) ((-500 . -865) T) ((-610 . -1242) T) ((-609 . -23) T) ((-598 . -1242) T) ((-220 . -865) T) ((-420 . -662) 151457) ((-593 . -1074) T) ((-577 . -1074) T) ((-549 . -1242) T) ((-508 . -1074) T) ((-355 . -1311) 151434) ((-330 . -465) 151413) ((-351 . -320) 151400) ((-608 . -23) T) ((-440 . -132) T) ((-674 . -664) 151374) ((-251 . -1035) 151358) ((-890 . -318) T) ((-1316 . -1306) 151342) ((-787 . -808) T) ((-787 . -811) T) ((-717 . -38) 151329) ((-577 . -239) T) ((-508 . -249) T) ((-508 . -239) T) ((-1305 . -502) 151313) ((-1288 . -1242) T) ((-1175 . -241) 151263) ((-1112 . -932) 151242) ((-117 . -38) 151229) ((-211 . -816) T) ((-210 . -816) T) ((-209 . -816) T) ((-208 . -816) T) ((-890 . -1047) 151207) ((-680 . -1242) T) ((-661 . -1242) T) ((-798 . -932) 151186) ((-796 . -932) 151165) ((-1214 . -1242) T) ((-367 . -1242) T) ((-364 . -1242) T) ((-356 . -1242) T) ((-274 . -1242) T) ((-254 . -1242) T) ((-467 . -932) 151144) ((-753 . -502) 151128) ((-1112 . -664) 151017) ((-715 . -629) 150952) ((-798 . -664) 150841) ((-636 . -1081) 150828) ((-492 . -1242) T) ((-355 . -380) T) ((-142 . -502) 150810) ((-796 . -664) 150699) ((-1166 . -1242) T) ((-562 . -865) T) ((-474 . -664) 150670) ((-274 . -905) 150529) ((-254 . -905) NIL) ((-118 . -1081) 150474) ((-467 . -664) 150363) ((-680 . -1063) 150340) ((-636 . -111) 150325) ((-403 . -1076) 150309) ((-367 . -1063) 150293) ((-364 . -1063) 150277) ((-356 . -1063) 150261) ((-274 . -1063) 150105) ((-254 . -1063) 149981) ((-933 . -1242) T) ((-118 . -111) 149910) ((-59 . -1242) T) ((-403 . -656) 149894) ((-634 . -1076) 149878) ((-532 . -1242) T) ((-529 . -1242) T) ((-510 . -1242) T) ((-509 . -1242) T) ((-450 . -626) 149860) ((-447 . -626) 149842) ((-634 . -656) 149826) ((-3 . -102) T) ((-1052 . -1235) 149795) ((-849 . -102) T) ((-705 . -57) 149753) ((-715 . -1074) T) ((-648 . -662) 149722) ((-620 . -662) 149691) ((-50 . -664) 149665) ((-300 . -465) T) ((-489 . -1235) 149634) ((0 . -102) T) ((-594 . -664) 149599) ((-531 . -664) 149544) ((-49 . -102) T) ((-933 . -1063) 149531) ((-715 . -249) T) ((-1105 . -422) 149510) ((-747 . -654) 149458) ((-1024 . -1125) T) ((-728 . -174) 149349) ((-636 . -629) 149244) ((-500 . -1017) 149226) ((-431 . -235) 149171) ((-274 . -389) 149155) ((-254 . -389) 149139) ((-412 . -1125) T) ((-1051 . -102) 149117) ((-351 . -38) 149101) ((-220 . -1017) 149083) ((-118 . -629) 149013) ((-176 . -38) 148945) ((-1276 . -318) 148924) ((-1255 . -318) 148903) ((-674 . -742) T) ((-99 . -626) 148885) ((-490 . -1076) 148850) ((-1192 . -654) 148802) ((-490 . -656) 148767) ((-660 . -868) 148746) ((-498 . -25) T) ((-498 . -21) T) ((-1255 . -1047) 148698) ((-1082 . -1242) T) ((-1 . -1242) T) ((-636 . -1074) T) ((-391 . -417) T) ((-403 . -102) T) ((-1130 . -631) 148613) ((-274 . -921) 148559) ((-254 . -921) 148536) ((-118 . -1074) T) ((-1112 . -742) T) ((-832 . -1137) T) ((-835 . -868) T) ((-636 . -239) 148515) ((-634 . -102) T) ((-524 . -1242) T) ((-520 . -1242) T) ((-798 . -742) T) ((-796 . -742) T) ((-1247 . -865) T) ((-426 . -1137) T) ((-118 . -249) T) ((-40 . -380) NIL) ((-118 . -239) NIL) ((-399 . -868) 148494) ((-467 . -742) T) ((-832 . -23) T) ((-747 . -25) T) ((-747 . -21) T) ((-686 . -915) 148415) ((-1102 . -297) 148394) ((-78 . -409) T) ((-78 . -408) T) ((-546 . -783) 148376) ((-228 . -868) T) ((-710 . -1081) 148326) ((-1317 . -102) T) ((-1284 . -132) T) ((-1277 . -132) T) ((-1256 . -132) T) ((-1199 . -25) T) ((-1167 . -424) 148310) ((-648 . -379) 148242) ((-620 . -379) 148174) ((-1182 . -1174) 148158) ((-103 . -1125) 148136) ((-1199 . -21) T) ((-1198 . -21) T) ((-883 . -626) 148118) ((-1024 . -733) 148066) ((-226 . -664) 148033) ((-710 . -111) 147967) ((-50 . -742) T) ((-1198 . -25) T) ((-363 . -361) T) ((-1192 . -21) T) ((-1105 . -465) 147918) ((-1192 . -25) T) ((-728 . -527) 147865) ((-594 . -742) T) ((-531 . -742) T) ((-1151 . -21) T) ((-1151 . -25) T) ((-609 . -132) T) ((-608 . -132) T) ((-305 . -662) 147600) ((-495 . -238) 147497) ((-371 . -465) T) ((-365 . -465) T) ((-357 . -465) T) ((-487 . -318) 147476) ((-1250 . -102) T) ((-324 . -297) 147411) ((-108 . -465) T) ((-79 . -454) T) ((-79 . -408) T) ((-490 . -102) T) ((-707 . -629) 147395) ((-1321 . -626) 147377) ((-1321 . -627) 147359) ((-1105 . -415) 147338) ((-1060 . -502) 147269) ((-655 . -664) 147253) ((-137 . -297) 147230) ((-577 . -811) T) ((-577 . -808) T) ((-1088 . -241) 147176) ((-1087 . -868) T) ((-729 . -868) T) ((-371 . -415) 147127) ((-365 . -415) 147078) ((-357 . -415) 147029) ((-1307 . -1137) T) ((-1316 . -1076) 147013) ((-393 . -1076) 146997) ((-1316 . -656) 146967) ((-834 . -238) T) ((-393 . -656) 146937) ((-710 . -629) 146872) ((-1307 . -23) T) ((-1294 . -102) T) ((-351 . -923) 146853) ((-177 . -626) 146835) ((-1167 . -1083) T) ((-560 . -380) T) ((-686 . -760) 146819) ((-1203 . -146) 146798) ((-1203 . -148) 146777) ((-1171 . -1125) T) ((-1171 . -1096) 146746) ((-69 . -1242) T) ((-1049 . -1081) 146683) ((-363 . -662) 146613) ((-884 . -1083) T) ((-246 . -654) 146519) ((-710 . -1074) T) ((-366 . -1081) 146464) ((-61 . -1242) T) ((-1049 . -111) 146380) ((-924 . -626) 146291) ((-710 . -249) T) ((-710 . -239) NIL) ((-859 . -864) 146270) ((-715 . -811) T) ((-715 . -808) T) ((-1028 . -424) 146247) ((-366 . -111) 146176) ((-391 . -943) T) ((-420 . -864) 146155) ((-728 . -301) 146066) ((-226 . -742) T) ((-1284 . -506) 146032) ((-1277 . -506) 145998) ((-1256 . -506) 145964) ((-591 . -1125) T) ((-327 . -1027) 145943) ((-225 . -1125) 145921) ((-1249 . -860) T) ((-330 . -998) 145883) ((-105 . -102) T) ((-48 . -1081) 145848) ((-889 . -868) NIL) ((-1316 . -102) T) ((-393 . -102) T) ((-1278 . -626) 145830) ((-1158 . -1159) 145814) ((-1029 . -654) 145796) ((-894 . -1242) T) ((-48 . -111) 145752) ((-697 . -1242) T) ((-692 . -1242) T) ((-678 . -1242) T) ((-831 . -915) 145619) ((-491 . -1242) T) ((-251 . -1242) T) ((-544 . -102) T) ((-513 . -102) T) ((-153 . -1299) 145603) ((-139 . -1242) T) ((-138 . -1242) T) ((-134 . -1242) T) ((-1241 . -102) T) ((-1049 . -629) 145540) ((-833 . -238) T) ((-1197 . -1246) 145519) ((-217 . -380) T) ((-366 . -629) 145449) ((-1150 . -1246) 145428) ((-246 . -25) 145261) ((-246 . -21) 145172) ((-128 . -120) 145156) ((-122 . -120) 145140) ((-44 . -760) 145124) ((-1197 . -569) 145035) ((-1150 . -569) 144966) ((-1249 . -1125) T) ((-559 . -868) T) ((-1060 . -297) 144941) ((-1191 . -1108) T) ((-1019 . -1108) T) ((-832 . -132) T) ((-118 . -811) NIL) ((-118 . -808) NIL) ((-367 . -318) T) ((-364 . -318) T) ((-356 . -318) T) ((-1119 . -1242) 144919) ((-259 . -1137) 144897) ((-258 . -1137) 144875) ((-1049 . -1074) T) ((-1028 . -1083) T) ((-48 . -629) 144808) ((-355 . -664) 144753) ((-1305 . -626) 144715) ((-1305 . -627) 144676) ((-634 . -38) 144660) ((-1199 . -235) 144613) ((-1198 . -235) 144559) ((-1102 . -626) 144541) ((-1049 . -249) T) ((-366 . -1074) T) ((-831 . -1299) 144511) ((-259 . -23) T) ((-258 . -23) T) ((-1012 . -626) 144493) ((-1192 . -235) 144310) ((-1184 . -152) 144257) ((-753 . -627) 144218) ((-753 . -626) 144200) ((-1029 . -25) T) ((-815 . -865) 144179) ((-1024 . -527) 144091) ((-693 . -868) T) ((-366 . -239) T) ((-366 . -249) T) ((-401 . -629) 144072) ((-933 . -318) T) ((-142 . -626) 144054) ((-142 . -627) 144013) ((-330 . -915) 143917) ((-1029 . -21) T) ((-996 . -25) T) ((-937 . -21) T) ((-937 . -25) T) ((-440 . -21) T) ((-440 . -25) T) ((-859 . -424) 143901) ((-48 . -1074) T) ((-1314 . -1306) 143885) ((-1312 . -1306) 143869) ((-1060 . -617) 143844) ((-327 . -627) 143705) ((-327 . -626) 143687) ((-324 . -627) NIL) ((-324 . -626) 143669) ((-48 . -249) T) ((-48 . -239) T) ((-670 . -297) 143630) ((-563 . -241) 143580) ((-584 . -868) T) ((-140 . -626) 143547) ((-137 . -626) 143529) ((-115 . -626) 143511) ((-490 . -38) 143476) ((-1316 . -1313) 143455) ((-1307 . -132) T) ((-1315 . -1083) T) ((-1107 . -102) T) ((-88 . -1242) T) ((-513 . -320) NIL) ((-1025 . -107) 143439) ((-908 . -1125) T) ((-904 . -1125) T) ((-1292 . -667) 143423) ((-1292 . -385) 143407) ((-338 . -1242) T) ((-606 . -865) T) ((-1167 . -1125) T) ((-1167 . -1078) 143347) ((-103 . -527) 143280) ((-950 . -626) 143262) ((-355 . -742) T) ((-30 . -626) 143244) ((-884 . -1125) T) ((-859 . -1083) 143223) ((-40 . -664) 143130) ((-228 . -1246) T) ((-420 . -1083) T) ((-1183 . -152) 143112) ((-1024 . -301) 143063) ((-892 . -1242) T) ((-630 . -1125) T) ((-228 . -569) T) ((-330 . -1273) 143047) ((-330 . -1270) 143017) ((-717 . -662) 142989) ((-1214 . -1218) 142968) ((-1100 . -626) 142950) ((-1214 . -107) 142900) ((-663 . -152) 142884) ((-645 . -152) 142830) ((-117 . -662) 142802) ((-492 . -1218) 142781) ((-500 . -148) T) ((-500 . -146) NIL) ((-1145 . -627) 142696) ((-451 . -626) 142678) ((-220 . -148) T) ((-220 . -146) NIL) ((-1145 . -626) 142660) ((-130 . -102) T) ((-52 . -102) T) ((-1256 . -654) 142612) ((-492 . -107) 142562) ((-1018 . -23) T) ((-1316 . -38) 142532) ((-1197 . -1137) T) ((-1150 . -1137) T) ((-1087 . -1246) T) ((-246 . -235) 142423) ((-322 . -102) T) ((-872 . -1137) T) ((-975 . -1246) 142402) ((-494 . -1246) 142381) ((-1087 . -569) T) ((-975 . -569) 142312) ((-1197 . -23) T) ((-1176 . -1108) T) ((-1150 . -23) T) ((-872 . -23) T) ((-494 . -569) 142243) ((-1167 . -733) 142175) ((-686 . -1076) 142159) ((-1171 . -527) 142092) ((-686 . -656) 142076) ((-1060 . -627) NIL) ((-1060 . -626) 142058) ((-96 . -1108) T) ((-1321 . -1081) 142045) ((-884 . -733) 142015) ((-1321 . -111) 142000) ((-1236 . -47) 141969) ((-1192 . -865) NIL) ((-259 . -132) T) ((-258 . -132) T) ((-1129 . -1125) T) ((-1028 . -1125) T) ((-62 . -626) 141951) ((-1105 . -915) 141820) ((-1049 . -808) T) ((-1049 . -811) T) ((-1284 . -25) T) ((-1284 . -21) T) ((-1277 . -21) T) ((-1277 . -25) T) ((-888 . -664) 141807) ((-1256 . -21) T) ((-1256 . -25) T) ((-1052 . -152) 141791) ((-1029 . -235) 141778) ((-890 . -836) 141757) ((-890 . -943) T) ((-728 . -297) 141684) ((-609 . -21) T) ((-351 . -662) 141643) ((-108 . -915) NIL) ((-609 . -25) T) ((-608 . -21) T) ((-176 . -662) 141560) ((-40 . -742) T) ((-225 . -527) 141493) ((-608 . -25) T) ((-489 . -152) 141477) ((-476 . -152) 141461) ((-185 . -1242) T) ((-944 . -810) T) ((-944 . -742) T) ((-787 . -809) T) ((-787 . -810) T) ((-519 . -1125) T) ((-515 . -1125) T) ((-787 . -742) T) ((-228 . -375) T) ((-1314 . -1076) 141445) ((-1312 . -1076) 141429) ((-1314 . -656) 141399) ((-1182 . -1125) 141377) ((-889 . -1246) T) ((-1312 . -656) 141347) ((-1113 . -868) T) ((-670 . -626) 141329) ((-889 . -569) T) ((-710 . -380) NIL) ((-44 . -1076) 141313) ((-1321 . -629) 141295) ((-1315 . -1125) T) ((-686 . -102) T) ((-371 . -1299) 141279) ((-365 . -1299) 141263) ((-44 . -656) 141247) ((-357 . -1299) 141231) ((-561 . -102) T) ((-1236 . -1242) T) ((-533 . -865) 141210) ((-727 . -1242) T) ((-981 . -868) 141189) ((-866 . -868) T) ((-500 . -238) T) ((-220 . -238) T) ((-1071 . -1125) T) ((-833 . -465) 141168) ((-153 . -1076) 141152) ((-1071 . -1096) 141081) ((-1052 . -1001) 141050) ((-835 . -1137) T) ((-1028 . -733) 140995) ((-153 . -656) 140979) ((-399 . -1137) T) ((-489 . -1001) 140948) ((-476 . -1001) 140917) ((-1208 . -868) T) ((-110 . -152) 140899) ((-73 . -626) 140881) ((-912 . -626) 140863) ((-1207 . -868) T) ((-1105 . -740) 140842) ((-1321 . -1074) T) ((-832 . -654) 140790) ((-305 . -1083) 140732) ((-171 . -1246) 140637) ((-228 . -1137) T) ((-335 . -23) T) ((-1192 . -1017) 140589) ((-1278 . -1081) 140494) ((-859 . -1125) T) ((-129 . -868) T) ((-1151 . -756) 140473) ((-1276 . -943) 140452) ((-1255 . -943) 140431) ((-888 . -742) T) ((-171 . -569) 140342) ((-593 . -664) 140329) ((-577 . -664) 140301) ((-420 . -1125) T) ((-271 . -1125) T) ((-215 . -626) 140283) ((-508 . -664) 140233) ((-228 . -23) T) ((-1255 . -836) 140186) ((-1314 . -102) T) ((-504 . -1242) T) ((-366 . -1311) 140163) ((-1312 . -102) T) ((-1278 . -111) 140055) ((-1138 . -915) 139922) ((-831 . -1076) 139823) ((-831 . -656) 139745) ((-145 . -626) 139727) ((-1018 . -132) T) ((-44 . -102) T) ((-246 . -865) 139678) ((-599 . -1242) T) ((-1265 . -1246) 139657) ((-103 . -502) 139641) ((-1315 . -733) 139611) ((-1112 . -47) 139572) ((-1087 . -1137) T) ((-975 . -1137) T) ((-128 . -34) T) ((-122 . -34) T) ((-1265 . -569) 139483) ((-798 . -47) 139460) ((-796 . -47) 139432) ((-1222 . -1242) T) ((-1197 . -132) T) ((-366 . -380) T) ((-494 . -1137) T) ((-1150 . -132) T) ((-889 . -375) T) ((-467 . -47) 139411) ((-872 . -132) T) ((-333 . -868) 139390) ((-153 . -102) T) ((-1087 . -23) T) ((-975 . -23) T) ((-584 . -569) T) ((-832 . -25) T) ((-832 . -21) T) ((-1167 . -527) 139323) ((-605 . -1108) T) ((-599 . -1063) 139307) ((-1278 . -629) 139181) ((-494 . -23) T) ((-363 . -1083) T) ((-391 . -868) T) ((-1236 . -921) 139162) ((-686 . -320) 139100) ((-1284 . -235) 139053) ((-1138 . -1299) 139023) ((-715 . -664) 138988) ((-1029 . -865) T) ((-1028 . -174) T) ((-986 . -146) 138967) ((-648 . -1125) T) ((-620 . -1125) T) ((-986 . -148) 138946) ((-751 . -148) 138925) ((-751 . -146) 138904) ((-674 . -1242) T) ((-996 . -865) T) ((-1277 . -235) 138850) ((-1256 . -235) 138667) ((-849 . -662) 138584) ((-487 . -943) 138563) ((-348 . -1242) T) ((-330 . -1076) 138398) ((-327 . -1081) 138308) ((-324 . -1081) 138237) ((-1024 . -297) 138195) ((-420 . -733) 138147) ((-330 . -656) 137988) ((-608 . -235) 137941) ((-717 . -864) T) ((-1278 . -1074) T) ((-327 . -111) 137837) ((-324 . -111) 137750) ((-97 . -1242) T) ((-987 . -102) T) ((-831 . -102) 137482) ((-728 . -627) NIL) ((-728 . -626) 137464) ((-1278 . -337) 137408) ((-674 . -1063) 137304) ((-1112 . -1242) T) ((-1060 . -299) 137279) ((-593 . -742) T) ((-577 . -810) T) ((-171 . -375) 137230) ((-577 . -807) T) ((-577 . -742) T) ((-508 . -742) T) ((-798 . -1242) T) ((-796 . -1242) T) ((-1171 . -502) 137214) ((-474 . -1242) T) ((-467 . -1242) T) ((-1314 . -1313) 137190) ((-1112 . -905) NIL) ((-889 . -1137) T) ((-118 . -932) NIL) ((-1312 . -1313) 137169) ((-665 . -1242) T) ((-798 . -905) NIL) ((-796 . -905) 137028) ((-1307 . -25) T) ((-1307 . -21) T) ((-1239 . -102) 137006) ((-1131 . -408) T) ((-636 . -664) 136993) ((-467 . -905) NIL) ((-691 . -102) 136943) ((-1112 . -1063) 136770) ((-889 . -23) T) ((-798 . -1063) 136629) ((-796 . -1063) 136486) ((-118 . -664) 136431) ((-467 . -1063) 136307) ((-285 . -1242) T) ((-327 . -629) 135871) ((-324 . -629) 135754) ((-50 . -1242) T) ((-403 . -662) 135723) ((-665 . -1063) 135707) ((-640 . -102) T) ((-594 . -1242) T) ((-531 . -1242) T) ((-225 . -502) 135691) ((-1292 . -34) T) ((-634 . -662) 135650) ((-300 . -1076) 135637) ((-137 . -629) 135621) ((-300 . -656) 135608) ((-648 . -733) 135592) ((-620 . -733) 135576) ((-686 . -38) 135536) ((-330 . -102) T) ((-1145 . -1081) 135523) ((-85 . -626) 135505) ((-50 . -1063) 135489) ((-1112 . -389) 135473) ((-798 . -389) 135457) ((-715 . -742) T) ((-715 . -810) T) ((-715 . -807) T) ((-60 . -57) 135419) ((-594 . -1063) 135406) ((-531 . -1063) 135383) ((-173 . -1242) T) ((-335 . -132) T) ((-327 . -1074) 135273) ((-324 . -1074) T) ((-171 . -1137) T) ((-796 . -389) 135257) ((-45 . -152) 135207) ((-1029 . -1017) 135189) ((-467 . -389) 135173) ((-420 . -174) T) ((-327 . -249) 135152) ((-324 . -249) T) ((-324 . -239) NIL) ((-305 . -1125) 134934) ((-228 . -132) T) ((-1145 . -111) 134919) ((-171 . -23) T) ((-815 . -148) 134898) ((-815 . -146) 134877) ((-259 . -654) 134783) ((-258 . -654) 134689) ((-330 . -295) 134655) ((-1182 . -527) 134588) ((-490 . -662) 134538) ((-651 . -860) T) ((-495 . -915) 134405) ((-1158 . -1125) T) ((-228 . -1085) T) ((-831 . -320) 134343) ((-1112 . -921) 134278) ((-798 . -921) 134221) ((-796 . -921) 134205) ((-1314 . -38) 134175) ((-1312 . -38) 134145) ((-1265 . -1137) T) ((-873 . -1137) T) ((-467 . -921) 134122) ((-876 . -1125) T) ((-1265 . -23) T) ((-1145 . -629) 134094) ((-1087 . -132) T) ((-873 . -23) T) ((-584 . -1137) T) ((-636 . -742) T) ((-523 . -868) T) ((-367 . -943) T) ((-364 . -943) T) ((-300 . -102) T) ((-356 . -943) T) ((-995 . -1108) T) ((-975 . -132) T) ((-832 . -235) 134039) ((-118 . -810) NIL) ((-118 . -807) NIL) ((-118 . -742) T) ((-1071 . -527) 133940) ((-710 . -932) NIL) ((-584 . -23) T) ((-494 . -132) T) ((-431 . -238) 133891) ((-691 . -320) 133829) ((-226 . -1242) T) ((-651 . -1125) T) ((-648 . -777) T) ((-620 . -777) T) ((-1256 . -865) NIL) ((-1105 . -1076) 133739) ((-1028 . -301) T) ((-710 . -664) 133689) ((-259 . -25) T) ((-363 . -1125) T) ((-259 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-153 . -38) 133673) ((-2 . -102) T) ((-933 . -943) T) ((-1105 . -656) 133541) ((-495 . -1299) 133511) ((-1145 . -1074) T) ((-727 . -318) T) ((-717 . -1083) T) ((-371 . -1076) 133463) ((-365 . -1076) 133415) ((-357 . -1076) 133367) ((-371 . -656) 133319) ((-226 . -1063) 133296) ((-365 . -656) 133248) ((-108 . -1076) 133198) ((-357 . -656) 133150) ((-305 . -733) 133092) ((-655 . -1242) T) ((-500 . -465) T) ((-420 . -527) 133004) ((-108 . -656) 132954) ((-220 . -465) T) ((-1145 . -239) T) ((-306 . -152) 132904) ((-1024 . -627) 132865) ((-1024 . -626) 132847) ((-1014 . -626) 132829) ((-117 . -1083) T) ((-670 . -1081) 132813) ((-228 . -506) T) ((-412 . -626) 132795) ((-412 . -627) 132772) ((-1079 . -1299) 132742) ((-670 . -111) 132721) ((-686 . -923) 132644) ((-1167 . -502) 132628) ((-1316 . -662) 132587) ((-393 . -662) 132556) ((-63 . -454) T) ((-63 . -408) T) ((-1184 . -102) T) ((-889 . -132) T) ((-497 . -102) 132506) ((-1143 . -1242) T) ((-1248 . -868) T) ((-1321 . -380) T) ((-1105 . -102) T) ((-1086 . -102) T) ((-363 . -733) 132451) ((-890 . -868) 132402) ((-747 . -148) 132381) ((-747 . -146) 132360) ((-670 . -629) 132278) ((-1049 . -664) 132215) ((-536 . -1125) 132193) ((-371 . -102) T) ((-365 . -102) T) ((-357 . -102) T) ((-108 . -102) T) ((-517 . -1125) T) ((-366 . -664) 132138) ((-1197 . -654) 132086) ((-1150 . -654) 132034) ((-397 . -522) 132013) ((-849 . -864) 131992) ((-710 . -742) T) ((-391 . -1246) T) ((-344 . -1242) T) ((-1256 . -1017) 131944) ((-351 . -1083) T) ((-112 . -1242) T) ((-176 . -1083) T) ((-103 . -626) 131876) ((-1199 . -146) 131855) ((-1199 . -148) 131834) ((-391 . -569) T) ((-1198 . -148) 131813) ((-1198 . -146) 131792) ((-1192 . -146) 131699) ((-420 . -301) T) ((-1192 . -148) 131606) ((-1151 . -148) 131585) ((-1151 . -146) 131564) ((-330 . -38) 131405) ((-171 . -132) T) ((-324 . -811) NIL) ((-324 . -808) NIL) ((-670 . -1074) T) ((-48 . -664) 131355) ((-1138 . -1076) 131256) ((-912 . -629) 131233) ((-1138 . -656) 131155) ((-1191 . -102) T) ((-1019 . -102) T) ((-1018 . -21) T) ((-128 . -1035) 131139) ((-122 . -1035) 131123) ((-1018 . -25) T) ((-924 . -120) 131107) ((-1183 . -102) T) ((-1265 . -132) T) ((-1255 . -868) 131006) ((-1197 . -25) T) ((-1197 . -21) T) ((-1184 . -320) 130801) ((-355 . -1242) T) ((-1150 . -25) T) ((-873 . -132) T) ((-407 . -1242) T) ((-1150 . -21) T) ((-872 . -25) T) ((-872 . -21) T) ((-798 . -318) 130780) ((-1182 . -502) 130764) ((-1175 . -152) 130714) ((-1171 . -626) 130676) ((-663 . -102) 130626) ((-645 . -102) T) ((-1171 . -627) 130587) ((-584 . -132) T) ((-634 . -864) 130566) ((-1049 . -807) T) ((-1049 . -810) T) ((-1049 . -742) T) ((-831 . -923) 130435) ((-728 . -1081) 130258) ((-615 . -868) 130237) ((-497 . -320) 130175) ((-466 . -430) 130145) ((-363 . -174) T) ((-300 . -38) 130132) ((-259 . -235) 130023) ((-258 . -235) 129914) ((-284 . -102) T) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-355 . -1063) 129891) ((-278 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-728 . -111) 129700) ((-366 . -742) T) ((-686 . -273) 129684) ((-686 . -233) 129668) ((-594 . -318) T) ((-531 . -318) T) ((-305 . -527) 129617) ((-1189 . -1242) T) ((-108 . -320) NIL) ((-72 . -408) T) ((-1138 . -102) 129349) ((-849 . -424) 129333) ((-1145 . -811) T) ((-1145 . -808) T) ((-717 . -1125) T) ((-591 . -626) 129315) ((-391 . -375) T) ((-171 . -506) 129293) ((-225 . -626) 129225) ((-135 . -1125) T) ((-117 . -1125) T) ((-989 . -1242) T) ((-48 . -742) T) ((-1071 . -502) 129190) ((-142 . -438) 129172) ((-142 . -380) T) ((-1052 . -102) T) ((-525 . -522) 129151) ((-728 . -629) 128907) ((-1249 . -626) 128889) ((-1206 . -1242) T) ((-1206 . -1063) 128825) ((-1199 . -238) 128784) ((-489 . -102) T) ((-476 . -102) T) ((-1198 . -238) 128736) ((-1192 . -238) 128559) ((-1059 . -1137) T) ((-330 . -923) 128465) ((-1201 . -868) T) ((-1199 . -35) 128431) ((-1199 . -95) 128397) ((-1199 . -1230) 128363) ((-1199 . -1227) 128329) ((-1198 . -1227) 128295) ((-1198 . -1230) 128261) ((-1198 . -95) 128227) ((-1198 . -35) 128193) ((-1192 . -1227) 128159) ((-1192 . -1230) 128125) ((-1183 . -320) NIL) ((-89 . -409) T) ((-89 . -408) T) ((-1105 . -1177) 128104) ((-40 . -1242) T) ((-1192 . -95) 128070) ((-1059 . -23) T) ((-1192 . -35) 128036) ((-584 . -506) T) ((-1151 . -35) 128002) ((-1151 . -95) 127968) ((-1151 . -1230) 127934) ((-1151 . -1227) 127900) ((-373 . -1137) T) ((-371 . -1177) 127879) ((-365 . -1177) 127858) ((-357 . -1177) 127837) ((-1129 . -297) 127793) ((-977 . -1242) T) ((-944 . -1242) T) ((-108 . -1177) T) ((-849 . -1083) 127772) ((-787 . -1242) T) ((-663 . -320) 127710) ((-645 . -320) 127561) ((-688 . -1242) T) ((-728 . -1074) T) ((-1087 . -654) 127543) ((-1105 . -38) 127411) ((-975 . -654) 127359) ((-1029 . -148) T) ((-1029 . -146) NIL) ((-391 . -1137) T) ((-335 . -25) T) ((-333 . -23) T) ((-966 . -865) 127338) ((-728 . -337) 127315) ((-494 . -654) 127263) ((-40 . -1063) 127151) ((-728 . -239) T) ((-717 . -733) 127138) ((-351 . -1125) T) ((-176 . -1125) T) ((-342 . -865) T) ((-431 . -465) 127088) ((-391 . -23) T) ((-371 . -38) 127053) ((-365 . -38) 127018) ((-357 . -38) 126983) ((-80 . -454) T) ((-80 . -408) T) ((-228 . -25) T) ((-228 . -21) T) ((-852 . -1137) T) ((-108 . -38) 126933) ((-843 . -1137) T) ((-790 . -1125) T) ((-117 . -733) 126920) ((-688 . -1063) 126904) ((-625 . -102) T) ((-852 . -23) T) ((-843 . -23) T) ((-1182 . -297) 126856) ((-1138 . -320) 126794) ((-495 . -1076) 126695) ((-1127 . -241) 126679) ((-64 . -409) T) ((-64 . -408) T) ((-1176 . -102) T) ((-110 . -102) T) ((-495 . -656) 126601) ((-40 . -389) 126578) ((-96 . -102) T) ((-669 . -870) 126562) ((-1197 . -235) 126549) ((-1160 . -1108) T) ((-1087 . -21) T) ((-1087 . -25) T) ((-1079 . -1076) 126533) ((-831 . -273) 126502) ((-831 . -233) 126471) ((-975 . -25) T) ((-975 . -21) T) ((-1145 . -380) T) ((-1079 . -656) 126413) ((-634 . -1083) T) ((-1052 . -320) 126351) ((-908 . -626) 126333) ((-686 . -662) 126292) ((-494 . -25) T) ((-494 . -21) T) ((-397 . -1076) 126276) ((-904 . -626) 126258) ((-888 . -1242) T) ((-536 . -527) 126191) ((-259 . -865) 126142) ((-258 . -865) 126093) ((-397 . -656) 126063) ((-889 . -654) 126040) ((-489 . -320) 125978) ((-560 . -1242) T) ((-476 . -320) 125916) ((-363 . -301) T) ((-1182 . -1280) 125900) ((-1167 . -626) 125862) ((-1167 . -627) 125823) ((-1165 . -102) T) ((-1024 . -1081) 125719) ((-40 . -921) 125671) ((-1182 . -617) 125648) ((-1321 . -664) 125635) ((-1088 . -152) 125581) ((-500 . -915) NIL) ((-884 . -503) 125558) ((-1024 . -111) 125440) ((-890 . -1246) T) ((-220 . -915) NIL) ((-351 . -733) 125424) ((-884 . -626) 125386) ((-176 . -733) 125318) ((-890 . -569) T) ((-420 . -297) 125276) ((-246 . -238) 125173) ((-108 . -413) 125155) ((-84 . -396) T) ((-84 . -408) T) ((-717 . -174) T) ((-630 . -626) 125137) ((-99 . -742) T) ((-495 . -102) 124869) ((-99 . -486) T) ((-117 . -174) T) ((-1314 . -662) 124828) ((-1312 . -662) 124787) ((-171 . -654) 124735) ((-1105 . -923) 124606) ((-1079 . -102) T) ((-1024 . -629) 124496) ((-889 . -25) T) ((-831 . -244) 124475) ((-889 . -21) T) ((-834 . -102) T) ((-1029 . -238) T) ((-44 . -662) 124418) ((-427 . -102) T) ((-397 . -102) T) ((-110 . -320) NIL) ((-230 . -102) 124368) ((-217 . -1242) T) ((-128 . -1242) T) ((-122 . -1242) T) ((-108 . -923) NIL) ((-833 . -1076) 124319) ((-59 . -868) 124298) ((-833 . -656) 124240) ((-529 . -868) 124219) ((-509 . -868) 124198) ((-1059 . -132) T) ((-686 . -379) 124182) ((-153 . -662) 124141) ((-1321 . -742) T) ((-648 . -297) 124099) ((-620 . -297) 124057) ((-1284 . -146) 124036) ((-1265 . -654) 123984) ((-1024 . -1074) T) ((-1129 . -626) 123966) ((-1028 . -626) 123948) ((-593 . -1242) T) ((-577 . -1242) T) ((-508 . -1242) T) ((-528 . -23) T) ((-523 . -23) T) ((-355 . -318) T) ((-521 . -23) T) ((-333 . -132) T) ((-3 . -1125) T) ((-1028 . -627) 123932) ((-1024 . -249) 123911) ((-1024 . -239) 123890) ((-1284 . -148) 123869) ((-1277 . -148) 123848) ((-849 . -1125) T) ((-1277 . -146) 123827) ((-1276 . -1246) 123806) ((-1256 . -146) 123713) ((-1256 . -148) 123620) ((-1255 . -1246) 123599) ((-391 . -132) T) ((-228 . -235) 123586) ((-176 . -174) T) ((-577 . -905) 123568) ((0 . -1125) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1242) T) ((-49 . -1125) T) ((-1278 . -664) 123473) ((-1276 . -569) 123424) ((-1255 . -569) 123375) ((-730 . -1137) T) ((-653 . -23) T) ((-577 . -1063) 123357) ((-608 . -148) 123336) ((-608 . -146) 123315) ((-508 . -1063) 123258) ((-1160 . -1162) T) ((-87 . -396) T) ((-87 . -408) T) ((-890 . -375) T) ((-852 . -132) T) ((-843 . -132) T) ((-987 . -662) 123202) ((-730 . -23) T) ((-519 . -626) 123152) ((-515 . -626) 123134) ((-831 . -662) 122913) ((-1316 . -1083) T) ((-391 . -1085) T) ((-1051 . -1125) 122891) ((-55 . -1063) 122873) ((-924 . -34) T) ((-495 . -320) 122811) ((-605 . -102) T) ((-1182 . -627) 122772) ((-1182 . -626) 122704) ((-1203 . -1076) 122587) ((-45 . -102) T) ((-833 . -102) T) ((-1203 . -656) 122484) ((-1293 . -1242) T) ((-1265 . -25) T) ((-1265 . -21) T) ((-1087 . -235) 122471) ((-873 . -25) T) ((-524 . -868) T) ((-255 . -1242) T) ((-44 . -379) 122455) ((-873 . -21) T) ((-747 . -465) 122406) ((-1315 . -626) 122388) ((-726 . -1242) T) ((-715 . -1242) T) ((-1304 . -1076) 122358) ((-1079 . -320) 122296) ((-687 . -1108) T) ((-619 . -1108) T) ((-403 . -1125) T) ((-584 . -25) T) ((-584 . -21) T) ((-182 . -1108) T) ((-162 . -1108) T) ((-157 . -1108) T) ((-155 . -1108) T) ((-1304 . -656) 122266) ((-634 . -1125) T) ((-715 . -905) 122248) ((-1292 . -1242) T) ((-230 . -320) 122186) ((-145 . -380) T) ((-1215 . -1242) T) ((-1071 . -627) 122128) ((-1071 . -626) 122071) ((-324 . -932) NIL) ((-1250 . -860) T) ((-1138 . -923) 121940) ((-715 . -1063) 121885) ((-727 . -943) T) ((-487 . -1246) 121864) ((-1198 . -465) 121843) ((-1192 . -465) 121822) ((-341 . -102) T) ((-890 . -1137) T) ((-330 . -662) 121704) ((-327 . -664) 121433) ((-324 . -664) 121362) ((-487 . -569) 121313) ((-351 . -527) 121279) ((-563 . -152) 121229) ((-40 . -318) T) ((-859 . -626) 121211) ((-717 . -301) T) ((-890 . -23) T) ((-391 . -506) T) ((-1105 . -273) 121181) ((-1105 . -233) 121151) ((-525 . -102) T) ((-420 . -627) 120958) ((-420 . -626) 120940) ((-271 . -626) 120922) ((-117 . -301) T) ((-1278 . -742) T) ((-636 . -1242) T) ((-1317 . -1125) T) ((-1276 . -375) 120901) ((-1255 . -375) 120880) ((-1305 . -34) T) ((-1250 . -1125) T) ((-118 . -1242) T) ((-108 . -273) 120862) ((-108 . -233) 120844) ((-1203 . -102) T) ((-490 . -1125) T) ((-536 . -502) 120828) ((-753 . -34) T) ((-669 . -1076) 120812) ((-669 . -656) 120782) ((-889 . -235) NIL) ((-142 . -34) T) ((-118 . -903) 120759) ((-118 . -905) NIL) ((-636 . -1063) 120642) ((-1304 . -102) T) ((-1284 . -238) 120601) ((-660 . -865) 120580) ((-1277 . -238) 120532) ((-1256 . -238) 120355) ((-306 . -102) T) ((-728 . -380) 120334) ((-118 . -1063) 120311) ((-403 . -733) 120295) ((-608 . -238) 120254) ((-634 . -733) 120238) ((-1130 . -1242) T) ((-45 . -320) 120042) ((-832 . -146) 120021) ((-832 . -148) 120000) ((-300 . -662) 119972) ((-1315 . -394) 119951) ((-835 . -865) T) ((-1294 . -1125) T) ((-1184 . -232) 119898) ((-399 . -865) 119877) ((-1284 . -35) 119843) ((-1284 . -1230) 119809) ((-1284 . -1227) 119775) ((-1277 . -1227) 119741) ((-528 . -132) T) ((-1277 . -1230) 119707) ((-1256 . -1227) 119673) ((-1256 . -1230) 119639) ((-1284 . -95) 119605) ((-1277 . -95) 119571) ((-431 . -915) 119492) ((-648 . -626) 119461) ((-620 . -626) 119430) ((-228 . -865) T) ((-1277 . -35) 119396) ((-1276 . -1137) T) ((-1256 . -95) 119362) ((-1145 . -664) 119334) ((-1256 . -35) 119300) ((-1255 . -1137) T) ((-606 . -152) 119282) ((-1105 . -361) 119261) ((-176 . -301) T) ((-118 . -389) 119238) ((-118 . -350) 119215) ((-171 . -235) 119140) ((-888 . -318) T) ((-324 . -810) NIL) ((-324 . -807) NIL) ((-327 . -742) 118989) ((-324 . -742) T) ((-653 . -132) T) ((-487 . -375) 118968) ((-371 . -361) 118947) ((-365 . -361) 118926) ((-357 . -361) 118905) ((-327 . -486) 118884) ((-1276 . -23) T) ((-1255 . -23) T) ((-734 . -1137) T) ((-730 . -132) T) ((-669 . -102) T) ((-490 . -733) 118849) ((-678 . -868) 118828) ((-45 . -293) 118778) ((-105 . -1125) T) ((-68 . -626) 118760) ((-251 . -868) 118739) ((-995 . -102) T) ((-882 . -102) T) ((-636 . -921) 118698) ((-1316 . -1125) T) ((-393 . -1125) T) ((-1265 . -235) 118685) ((-1241 . -1125) T) ((-82 . -1242) T) ((-1138 . -273) 118654) ((-1087 . -865) T) ((-118 . -921) NIL) ((-798 . -943) 118633) ((-729 . -865) T) ((-544 . -1125) T) ((-513 . -1125) T) ((-367 . -1246) T) ((-364 . -1246) T) ((-356 . -1246) T) ((-274 . -1246) 118612) ((-254 . -1246) 118591) ((-546 . -878) T) ((-1138 . -233) 118560) ((-1183 . -844) T) ((-1167 . -1081) 118544) ((-403 . -777) T) ((-710 . -1242) T) ((-707 . -1063) 118528) ((-367 . -569) T) ((-364 . -569) T) ((-356 . -569) T) ((-274 . -569) 118459) ((-254 . -569) 118390) ((-538 . -1108) T) ((-1167 . -111) 118369) ((-466 . -760) 118339) ((-884 . -1081) 118309) ((-833 . -38) 118251) ((-710 . -903) 118233) ((-710 . -905) 118215) ((-306 . -320) 118019) ((-1182 . -299) 117996) ((-933 . -1246) T) ((-1105 . -662) 117891) ((-1029 . -465) T) ((-686 . -424) 117875) ((-884 . -111) 117840) ((-937 . -465) T) ((-710 . -1063) 117785) ((-933 . -569) T) ((-546 . -626) 117767) ((-594 . -943) T) ((-500 . -1076) 117717) ((-487 . -1137) T) ((-531 . -943) T) ((-495 . -923) 117586) ((-65 . -626) 117568) ((-220 . -1076) 117518) ((-500 . -656) 117468) ((-371 . -662) 117405) ((-365 . -662) 117342) ((-357 . -662) 117279) ((-645 . -232) 117225) ((-220 . -656) 117175) ((-108 . -662) 117125) ((-487 . -23) T) ((-1145 . -810) T) ((-890 . -132) T) ((-1145 . -807) T) ((-1307 . -1309) 117104) ((-1145 . -742) T) ((-670 . -664) 117078) ((-305 . -626) 116819) ((-1167 . -629) 116737) ((-1060 . -34) T) ((-832 . -238) 116688) ((-593 . -318) T) ((-577 . -318) T) ((-508 . -318) T) ((-1316 . -733) 116658) ((-710 . -389) 116640) ((-710 . -350) 116622) ((-490 . -174) T) ((-393 . -733) 116592) ((-884 . -629) 116527) ((-889 . -865) NIL) ((-577 . -1047) T) ((-508 . -1047) T) ((-1158 . -626) 116509) ((-1138 . -244) 116488) ((-216 . -102) T) ((-1175 . -102) T) ((-71 . -626) 116470) ((-1049 . -1242) T) ((-1167 . -1074) T) ((-1203 . -38) 116367) ((-876 . -626) 116349) ((-577 . -558) T) ((-686 . -1083) T) ((-747 . -972) 116302) ((-1167 . -239) 116281) ((-366 . -1242) T) ((-1107 . -1125) T) ((-1059 . -25) T) ((-1059 . -21) T) ((-1028 . -1081) 116226) ((-338 . -868) 116205) ((-928 . -102) T) ((-884 . -1074) T) ((-710 . -921) NIL) ((-367 . -340) 116189) ((-367 . -375) T) ((-364 . -340) 116173) ((-364 . -375) T) ((-356 . -340) 116157) ((-356 . -375) T) ((-500 . -102) T) ((-1304 . -38) 116127) ((-559 . -865) T) ((-536 . -703) 116077) ((-220 . -102) T) ((-1049 . -1063) 115957) ((-1028 . -111) 115886) ((-651 . -626) 115868) ((-1199 . -998) 115837) ((-1198 . -998) 115799) ((-533 . -152) 115783) ((-1105 . -382) 115762) ((-363 . -626) 115744) ((-333 . -21) T) ((-366 . -1063) 115721) ((-333 . -25) T) ((-1192 . -998) 115690) ((-48 . -1242) T) ((-76 . -626) 115672) ((-1151 . -998) 115639) ((-715 . -318) T) ((-130 . -860) T) ((-933 . -375) T) ((-391 . -25) T) ((-391 . -21) T) ((-933 . -340) 115626) ((-86 . -626) 115608) ((-715 . -1047) T) ((-693 . -865) T) ((-401 . -1242) T) ((-1276 . -132) T) ((-1255 . -132) T) ((-924 . -1035) 115592) ((-852 . -21) T) ((-48 . -1063) 115535) ((-852 . -25) T) ((-843 . -25) T) ((-843 . -21) T) ((-1138 . -662) 115314) ((-1314 . -1083) T) ((-562 . -102) T) ((-1312 . -1083) T) ((-670 . -742) T) ((-1129 . -631) 115217) ((-1028 . -629) 115147) ((-1315 . -1081) 115131) ((-927 . -1242) T) ((-831 . -424) 115100) ((-103 . -120) 115084) ((-130 . -1125) T) ((-52 . -1125) T) ((-949 . -626) 115066) ((-889 . -1017) 115043) ((-839 . -102) T) ((-1315 . -111) 115022) ((-747 . -915) 114997) ((-669 . -38) 114967) ((-584 . -865) T) ((-367 . -1137) T) ((-364 . -1137) T) ((-356 . -1137) T) ((-274 . -1137) T) ((-254 . -1137) T) ((-1175 . -320) 114771) ((-1113 . -235) 114758) ((-636 . -318) 114737) ((-680 . -23) T) ((-537 . -1108) T) ((-322 . -1125) T) ((-495 . -273) 114706) ((-495 . -233) 114675) ((-153 . -1083) T) ((-367 . -23) T) ((-364 . -23) T) ((-356 . -23) T) ((-118 . -318) T) ((-274 . -23) T) ((-254 . -23) T) ((-1028 . -1074) T) ((-728 . -932) 114654) ((-1199 . -915) 114542) ((-1198 . -915) 114423) ((-1192 . -915) 114159) ((-1182 . -629) 114136) ((-1028 . -239) 114108) ((-1028 . -249) T) ((-1151 . -915) 114090) ((-118 . -1047) NIL) ((-933 . -1137) T) ((-1277 . -465) 114069) ((-1256 . -465) 114048) ((-536 . -626) 113980) ((-728 . -664) 113869) ((-420 . -1081) 113821) ((-517 . -626) 113803) ((-933 . -23) T) ((-500 . -320) NIL) ((-1315 . -629) 113759) ((-487 . -132) T) ((-220 . -320) NIL) ((-420 . -111) 113697) ((-831 . -1083) 113675) ((-753 . -1123) 113659) ((-1276 . -506) 113625) ((-1255 . -506) 113591) ((-450 . -1242) T) ((-561 . -860) T) ((-142 . -1123) 113573) ((-490 . -301) T) ((-1315 . -1074) T) ((-259 . -238) 113470) ((-258 . -238) 113367) ((-1247 . -102) T) ((-1088 . -102) T) ((-859 . -629) 113235) ((-513 . -527) NIL) ((-495 . -244) 113214) ((-420 . -629) 113112) ((-986 . -1076) 112995) ((-751 . -1076) 112965) ((-986 . -656) 112862) ((-1197 . -146) 112841) ((-751 . -656) 112811) ((-466 . -1076) 112781) ((-1197 . -148) 112760) ((-1150 . -148) 112739) ((-1150 . -146) 112718) ((-648 . -1081) 112702) ((-620 . -1081) 112686) ((-466 . -656) 112656) ((-1199 . -1283) 112640) ((-1199 . -1270) 112617) ((-1198 . -1275) 112578) ((-686 . -1125) T) ((-686 . -1078) 112518) ((-1198 . -1270) 112488) ((-561 . -1125) T) ((-500 . -1177) T) ((-1198 . -1273) 112472) ((-1192 . -1254) 112433) ((-834 . -276) 112417) ((-220 . -1177) T) ((-355 . -943) T) ((-99 . -1242) T) ((-648 . -111) 112396) ((-620 . -111) 112375) ((-1192 . -1270) 112352) ((-859 . -1074) 112331) ((-1192 . -1252) 112315) ((-528 . -25) T) ((-508 . -313) T) ((-524 . -23) T) ((-523 . -25) T) ((-521 . -25) T) ((-520 . -23) T) ((-431 . -1076) 112289) ((-420 . -1074) T) ((-330 . -1083) T) ((-710 . -318) T) ((-431 . -656) 112263) ((-108 . -864) T) ((-728 . -742) T) ((-420 . -249) T) ((-420 . -239) 112242) ((-391 . -235) 112229) ((-500 . -38) 112179) ((-220 . -38) 112129) ((-487 . -506) 112095) ((-653 . -21) T) ((-653 . -25) T) ((-1249 . -380) T) ((-1183 . -1169) T) ((-1126 . -102) T) ((-843 . -235) 112068) ((-717 . -626) 112050) ((-717 . -627) 111965) ((-730 . -21) T) ((-730 . -25) T) ((-1160 . -102) T) ((-495 . -662) 111744) ((-246 . -915) 111611) ((-135 . -626) 111593) ((-117 . -626) 111575) ((-158 . -25) T) ((-1314 . -1125) T) ((-890 . -654) 111523) ((-1312 . -1125) T) ((-883 . -1242) T) ((-986 . -102) T) ((-751 . -102) T) ((-731 . -102) T) ((-466 . -102) T) ((-832 . -465) 111474) ((-44 . -1125) T) ((-1113 . -865) T) ((-1088 . -320) 111325) ((-680 . -132) T) ((-1079 . -662) 111294) ((-686 . -733) 111278) ((-300 . -1083) T) ((-367 . -132) T) ((-364 . -132) T) ((-356 . -132) T) ((-274 . -132) T) ((-254 . -132) T) ((-397 . -662) 111247) ((-1321 . -1242) T) ((-431 . -102) T) ((-153 . -1125) T) ((-45 . -232) 111197) ((-1029 . -915) NIL) ((-815 . -1076) 111181) ((-981 . -865) 111160) ((-1024 . -664) 111062) ((-815 . -656) 111046) ((-246 . -1299) 111016) ((-1049 . -318) T) ((-305 . -1081) 110937) ((-933 . -132) T) ((-40 . -943) T) ((-500 . -413) 110919) ((-366 . -318) T) ((-220 . -413) 110901) ((-1105 . -424) 110885) ((-305 . -111) 110801) ((-1208 . -865) T) ((-1207 . -865) T) ((-890 . -25) T) ((-890 . -21) T) ((-1278 . -47) 110745) ((-351 . -626) 110727) ((-1197 . -238) T) ((-228 . -148) T) ((-176 . -626) 110709) ((-790 . -626) 110691) ((-129 . -865) T) ((-621 . -241) 110638) ((-488 . -241) 110588) ((-1314 . -733) 110558) ((-48 . -318) T) ((-1312 . -733) 110528) ((-65 . -629) 110457) ((-987 . -1125) T) ((-831 . -1125) 110209) ((-323 . -102) T) ((-924 . -1242) T) ((-48 . -1047) T) ((-1255 . -654) 110117) ((-705 . -102) 110067) ((-44 . -733) 110051) ((-563 . -102) T) ((-305 . -629) 109982) ((-67 . -395) T) ((-500 . -923) NIL) ((-67 . -408) T) ((-285 . -868) T) ((-220 . -923) NIL) ((-678 . -23) T) ((-833 . -662) 109918) ((-686 . -777) T) ((-1239 . -1125) 109896) ((-363 . -1081) 109841) ((-691 . -1125) 109819) ((-1087 . -148) T) ((-975 . -148) 109798) ((-975 . -146) 109777) ((-815 . -102) T) ((-153 . -733) 109761) ((-494 . -148) 109740) ((-494 . -146) 109719) ((-363 . -111) 109648) ((-1105 . -1083) T) ((-333 . -865) 109627) ((-1284 . -998) 109596) ((-1278 . -1242) T) ((-640 . -1125) T) ((-1277 . -998) 109558) ((-524 . -132) T) ((-520 . -132) T) ((-306 . -232) 109508) ((-371 . -1083) T) ((-365 . -1083) T) ((-357 . -1083) T) ((-305 . -1074) 109450) ((-1256 . -998) 109419) ((-391 . -865) T) ((-108 . -1083) T) ((-1024 . -742) T) ((-888 . -943) T) ((-859 . -811) 109398) ((-859 . -808) 109377) ((-431 . -320) 109316) ((-481 . -102) T) ((-608 . -998) 109285) ((-330 . -1125) T) ((-420 . -811) 109264) ((-420 . -808) 109243) ((-513 . -502) 109225) ((-1278 . -1063) 109191) ((-1276 . -21) T) ((-1276 . -25) T) ((-1255 . -21) T) ((-1255 . -25) T) ((-651 . -629) 109168) ((-831 . -733) 109110) ((-363 . -629) 109040) ((-715 . -417) T) ((-1305 . -1242) T) ((-1138 . -424) 109009) ((-1102 . -1242) T) ((-619 . -102) T) ((-1028 . -380) NIL) ((-1012 . -1242) T) ((-687 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1203 . -662) 108919) ((-753 . -1242) T) ((-747 . -1076) 108762) ((-44 . -777) T) ((-747 . -656) 108611) ((-606 . -102) T) ((-669 . -672) 108595) ((-77 . -409) T) ((-77 . -408) T) ((-142 . -1242) T) ((-889 . -148) T) ((-889 . -146) NIL) ((-1304 . -662) 108540) ((-1284 . -915) 108428) ((-1277 . -915) 108309) ((-1241 . -93) T) ((-363 . -1074) T) ((-228 . -238) T) ((-70 . -395) T) ((-70 . -408) T) ((-1190 . -102) T) ((-686 . -527) 108242) ((-1256 . -915) 107978) ((-1236 . -569) 107957) ((-705 . -320) 107895) ((-986 . -38) 107792) ((-1205 . -626) 107774) ((-751 . -38) 107744) ((-563 . -320) 107548) ((-1199 . -1076) 107431) ((-327 . -1242) T) ((-363 . -239) T) ((-363 . -249) T) ((-324 . -1242) T) ((-300 . -1125) T) ((-1198 . -1076) 107266) ((-1192 . -1076) 107056) ((-1151 . -1076) 106939) ((-1199 . -656) 106836) ((-1198 . -656) 106677) ((-727 . -1246) T) ((-1192 . -656) 106473) ((-1182 . -667) 106457) ((-1151 . -656) 106354) ((-835 . -398) 106338) ((-727 . -569) T) ((-608 . -915) 106249) ((-327 . -903) 106233) ((-327 . -905) 106158) ((-324 . -903) 106119) ((-140 . -1242) T) ((-137 . -1242) T) ((-115 . -1242) T) ((-324 . -905) NIL) ((-815 . -320) 106084) ((-330 . -733) 105925) ((-399 . -398) 105909) ((-335 . -334) 105886) ((-498 . -102) T) ((-487 . -25) T) ((-487 . -21) T) ((-431 . -38) 105860) ((-327 . -1063) 105523) ((-228 . -1227) T) ((-228 . -1230) T) ((-3 . -626) 105505) ((-324 . -1063) 105435) ((-890 . -235) 105380) ((-2 . -1125) T) ((-2 . |RecordCategory|) T) ((-1138 . -1083) 105358) ((-849 . -626) 105340) ((-1087 . -238) T) ((-593 . -943) T) ((-577 . -836) T) ((-577 . -943) T) ((-508 . -943) T) ((-137 . -1063) 105324) ((-228 . -95) T) ((-171 . -148) 105303) ((-75 . -454) T) ((0 . -626) 105285) ((-75 . -408) T) ((-171 . -146) 105236) ((-228 . -35) T) ((-49 . -626) 105218) ((-490 . -1083) T) ((-500 . -273) 105200) ((-500 . -233) 105182) ((-497 . -993) 105166) ((-220 . -273) 105148) ((-220 . -233) 105130) ((-81 . -454) T) ((-81 . -408) T) ((-1171 . -34) T) ((-747 . -102) T) ((-669 . -662) 105089) ((-1051 . -626) 105056) ((-513 . -297) 105006) ((-327 . -389) 104975) ((-324 . -389) 104936) ((-324 . -350) 104897) ((-1110 . -626) 104879) ((-832 . -972) 104826) ((-678 . -132) T) ((-1265 . -146) 104805) ((-1265 . -148) 104784) ((-1199 . -102) T) ((-1198 . -102) T) ((-1192 . -102) T) ((-1184 . -1125) T) ((-1151 . -102) T) ((-1100 . -1242) T) ((-225 . -34) T) ((-300 . -733) 104771) ((-1284 . -1283) 104755) ((-1184 . -623) 104731) ((-606 . -320) NIL) ((-1284 . -1270) 104708) ((-1175 . -232) 104658) ((-497 . -1125) 104636) ((-451 . -1242) T) ((-403 . -626) 104618) ((-523 . -865) T) ((-1145 . -1242) T) ((-1277 . -1275) 104579) ((-1277 . -1270) 104549) ((-1277 . -1273) 104533) ((-1256 . -1254) 104494) ((-1256 . -1270) 104471) ((-1256 . -1252) 104455) ((-1199 . -295) 104421) ((-634 . -626) 104403) ((-1198 . -295) 104369) ((-715 . -943) T) ((-1192 . -295) 104335) ((-1151 . -295) 104301) ((-1145 . -905) 104283) ((-1105 . -1125) T) ((-1086 . -1125) T) ((-48 . -313) T) ((-327 . -921) 104249) ((-324 . -921) NIL) ((-1086 . -1093) 104228) ((-815 . -38) 104212) ((-274 . -654) 104160) ((-112 . -868) T) ((-254 . -654) 104108) ((-717 . -1081) 104095) ((-608 . -1270) 104072) ((-1145 . -1063) 104054) ((-330 . -174) 103985) ((-371 . -1125) T) ((-365 . -1125) T) ((-357 . -1125) T) ((-513 . -19) 103967) ((-1127 . -152) 103951) ((-889 . -238) NIL) ((-108 . -1125) T) ((-117 . -1081) 103938) ((-727 . -375) T) ((-513 . -617) 103913) ((-717 . -111) 103898) ((-1317 . -626) 103865) ((-1317 . -503) 103847) ((-1276 . -235) 103793) ((-1255 . -235) 103646) ((-449 . -102) T) ((-894 . -1287) T) ((-257 . -102) T) ((-45 . -1174) 103596) ((-117 . -111) 103581) ((-1294 . -626) 103563) ((-1265 . -238) T) ((-1250 . -626) 103545) ((-1248 . -865) T) ((-648 . -736) T) ((-620 . -736) T) ((-1236 . -1137) T) ((-1236 . -23) T) ((-1197 . -465) 103476) ((-1192 . -320) 103361) ((-1191 . -1125) T) ((-831 . -527) 103294) ((-1060 . -1242) T) ((-246 . -1076) 103195) ((-1183 . -1125) T) ((-1167 . -664) 103133) ((-966 . -152) 103117) ((-1151 . -320) 103104) ((-1150 . -465) 103055) ((-246 . -656) 102977) ((-1112 . -569) 102908) ((-1112 . -1246) 102887) ((-1105 . -733) 102755) ((-538 . -102) T) ((-533 . -102) 102685) ((-1029 . -1076) 102635) ((-1019 . -1125) T) ((-832 . -915) 102531) ((-798 . -1246) 102510) ((-796 . -1246) 102489) ((-62 . -1242) T) ((-490 . -626) 102441) ((-490 . -627) 102363) ((-798 . -569) 102274) ((-796 . -569) 102205) ((-747 . -320) 102192) ((-717 . -629) 102164) ((-495 . -424) 102133) ((-636 . -943) 102112) ((-467 . -1246) 102091) ((-691 . -527) 102024) ((-680 . -25) T) ((-411 . -626) 102006) ((-680 . -21) T) ((-467 . -569) 101937) ((-431 . -923) 101860) ((-367 . -25) T) ((-367 . -21) T) ((-364 . -25) T) ((-118 . -943) T) ((-118 . -836) NIL) ((-364 . -21) T) ((-356 . -25) T) ((-356 . -21) T) ((-274 . -25) T) ((-274 . -21) T) ((-254 . -25) T) ((-254 . -21) T) ((-171 . -238) 101791) ((-83 . -396) T) ((-83 . -408) T) ((-135 . -629) 101773) ((-117 . -629) 101745) ((-1029 . -656) 101695) ((-966 . -1005) 101679) ((-937 . -656) 101631) ((-937 . -1076) 101583) ((-933 . -21) T) ((-933 . -25) T) ((-890 . -865) 101534) ((-884 . -664) 101494) ((-727 . -1137) T) ((-727 . -23) T) ((-717 . -1074) T) ((-717 . -239) T) ((-300 . -174) T) ((-670 . -1242) T) ((-322 . -93) T) ((-663 . -1125) 101472) ((-645 . -623) 101447) ((-645 . -1125) T) ((-594 . -1246) T) ((-594 . -569) T) ((-531 . -1246) T) ((-531 . -569) T) ((-500 . -662) 101397) ((-487 . -235) 101343) ((-440 . -1076) 101327) ((-440 . -656) 101311) ((-371 . -733) 101263) ((-365 . -733) 101215) ((-351 . -1081) 101199) ((-357 . -733) 101151) ((-351 . -111) 101130) ((-176 . -1081) 101062) ((-176 . -111) 100973) ((-108 . -733) 100923) ((-220 . -662) 100873) ((-284 . -1125) T) ((-283 . -1125) T) ((-282 . -1125) T) ((-281 . -1125) T) ((-280 . -1125) T) ((-279 . -1125) T) ((-278 . -1125) T) ((-214 . -1125) T) ((-213 . -1125) T) ((-171 . -1230) 100851) ((-171 . -1227) 100829) ((-211 . -1125) T) ((-210 . -1125) T) ((-117 . -1074) T) ((-209 . -1125) T) ((-208 . -1125) T) ((-205 . -1125) T) ((-204 . -1125) T) ((-203 . -1125) T) ((-202 . -1125) T) ((-201 . -1125) T) ((-200 . -1125) T) ((-199 . -1125) T) ((-198 . -1125) T) ((-197 . -1125) T) ((-196 . -1125) T) ((-195 . -1125) T) ((-246 . -102) 100561) ((-171 . -35) 100539) ((-171 . -95) 100517) ((-670 . -1063) 100413) ((-495 . -1083) 100391) ((-1138 . -1125) 100143) ((-1167 . -34) T) ((-686 . -502) 100127) ((-73 . -1242) T) ((-105 . -626) 100109) ((-912 . -1242) T) ((-1316 . -626) 100091) ((-393 . -626) 100073) ((-351 . -629) 100025) ((-176 . -629) 99942) ((-1241 . -503) 99923) ((-747 . -38) 99772) ((-584 . -1230) T) ((-584 . -1227) T) ((-544 . -626) 99754) ((-533 . -320) 99692) ((-513 . -626) 99674) ((-513 . -627) 99656) ((-1241 . -626) 99622) ((-1192 . -1177) NIL) ((-215 . -1242) T) ((-1052 . -1096) 99591) ((-1052 . -1125) T) ((-1029 . -102) T) ((-996 . -102) T) ((-937 . -102) T) ((-912 . -1063) 99568) ((-1167 . -742) T) ((-1028 . -664) 99475) ((-489 . -1125) T) ((-476 . -1125) T) ((-599 . -23) T) ((-584 . -35) T) ((-584 . -95) T) ((-440 . -102) T) ((-1088 . -232) 99421) ((-1199 . -38) 99318) ((-1198 . -38) 99159) ((-944 . -868) T) ((-884 . -742) T) ((-787 . -868) T) ((-710 . -943) T) ((-688 . -868) T) ((-524 . -25) T) ((-520 . -21) T) ((-520 . -25) T) ((-1192 . -38) 98955) ((-351 . -1074) T) ((-145 . -1242) T) ((-1105 . -174) T) ((-176 . -1074) T) ((-1151 . -38) 98852) ((-728 . -47) 98829) ((-371 . -174) T) ((-365 . -174) T) ((-532 . -57) 98803) ((-510 . -57) 98753) ((-363 . -1311) 98730) ((-228 . -465) T) ((-330 . -301) 98681) ((-357 . -174) T) ((-176 . -249) T) ((-1255 . -865) 98580) ((-108 . -174) T) ((-890 . -1017) 98564) ((-674 . -1137) T) ((-594 . -375) T) ((-594 . -340) 98551) ((-531 . -340) 98528) ((-531 . -375) T) ((-327 . -318) 98507) ((-324 . -318) T) ((-615 . -865) 98486) ((-1138 . -733) 98428) ((-533 . -293) 98412) ((-674 . -23) T) ((-431 . -233) 98396) ((-431 . -273) 98380) ((-324 . -1047) NIL) ((-348 . -23) T) ((-103 . -1035) 98364) ((-651 . -380) T) ((-45 . -36) 98343) ((-625 . -1125) T) ((-363 . -380) T) ((-537 . -102) T) ((-508 . -27) T) ((-246 . -320) 98281) ((-1112 . -1137) T) ((-1315 . -664) 98255) ((-798 . -1137) T) ((-796 . -1137) T) ((-1203 . -424) 98239) ((-467 . -1137) T) ((-1087 . -465) T) ((-1176 . -1125) T) ((-975 . -465) 98190) ((-1140 . -1108) T) ((-110 . -1125) T) ((-1112 . -23) T) ((-1184 . -527) 97973) ((-833 . -1083) T) ((-798 . -23) T) ((-796 . -23) T) ((-494 . -465) 97924) ((-474 . -23) T) ((-393 . -394) 97903) ((-367 . -235) 97876) ((-364 . -235) 97849) ((-356 . -235) 97822) ((-467 . -23) T) ((-274 . -235) 97767) ((-259 . -915) 97634) ((-258 . -915) 97501) ((-96 . -1125) T) ((-728 . -1242) T) ((-686 . -297) 97478) ((-497 . -527) 97411) ((-1284 . -1076) 97294) ((-1284 . -656) 97191) ((-1277 . -656) 97032) ((-1277 . -1076) 96867) ((-1256 . -656) 96663) ((-1256 . -1076) 96453) ((-300 . -301) T) ((-1107 . -626) 96435) ((-560 . -868) T) ((-1107 . -627) 96416) ((-420 . -932) 96395) ((-1236 . -132) T) ((-50 . -1137) T) ((-1192 . -413) 96347) ((-1049 . -943) T) ((-1028 . -742) T) ((-859 . -664) 96320) ((-728 . -905) NIL) ((-609 . -1076) 96280) ((-594 . -1137) T) ((-531 . -1137) T) ((-608 . -1076) 96163) ((-1182 . -34) T) ((-1029 . -320) NIL) ((-831 . -502) 96147) ((-609 . -656) 96120) ((-366 . -943) T) ((-608 . -656) 96017) ((-933 . -235) 96004) ((-420 . -664) 95920) ((-50 . -23) T) ((-727 . -132) T) ((-728 . -1063) 95800) ((-594 . -23) T) ((-108 . -527) NIL) ((-531 . -23) T) ((-171 . -422) 95771) ((-1165 . -1125) T) ((-1307 . -1306) 95755) ((-747 . -923) 95732) ((-717 . -811) T) ((-717 . -808) T) ((-1145 . -318) T) ((-391 . -148) T) ((-291 . -626) 95714) ((-290 . -626) 95696) ((-1255 . -1017) 95666) ((-48 . -943) T) ((-691 . -502) 95650) ((-259 . -1299) 95620) ((-258 . -1299) 95590) ((-1113 . -238) T) ((-1201 . -865) T) ((-1145 . -1047) T) ((-1071 . -34) T) ((-852 . -148) 95569) ((-852 . -146) 95548) ((-753 . -107) 95532) ((-625 . -133) T) ((-1203 . -1083) T) ((-495 . -1125) 95284) ((-1199 . -923) 95197) ((-1198 . -923) 95103) ((-1192 . -923) 94864) ((-889 . -465) T) ((-85 . -1242) T) ((-142 . -107) 94846) ((-1151 . -923) 94830) ((-728 . -389) 94814) ((-849 . -629) 94682) ((-1315 . -742) T) ((-1304 . -1083) T) ((-1284 . -102) T) ((-1277 . -102) T) ((-1145 . -558) T) ((-592 . -102) T) ((-130 . -503) 94664) ((-1197 . -972) 94633) ((-403 . -1081) 94617) ((-1150 . -972) 94584) ((-44 . -297) 94561) ((-130 . -626) 94528) ((-52 . -626) 94510) ((-217 . -868) T) ((-669 . -424) 94494) ((-1256 . -102) T) ((-1183 . -527) NIL) ((-678 . -25) T) ((-634 . -1081) 94478) ((-678 . -21) T) ((-986 . -662) 94388) ((-751 . -662) 94333) ((-731 . -662) 94305) ((-403 . -111) 94284) ((-225 . -262) 94268) ((-1079 . -1078) 94208) ((-1079 . -1125) T) ((-1029 . -1177) T) ((-834 . -1125) T) ((-466 . -662) 94123) ((-648 . -664) 94107) ((-634 . -111) 94086) ((-620 . -664) 94070) ((-355 . -1246) T) ((-609 . -102) T) ((-322 . -503) 94051) ((-599 . -132) T) ((-608 . -102) T) ((-427 . -1125) T) ((-397 . -1125) T) ((-322 . -626) 94017) ((-230 . -1125) 93995) ((-663 . -527) 93928) ((-645 . -527) 93772) ((-849 . -1074) 93751) ((-660 . -152) 93735) ((-355 . -569) T) ((-728 . -921) 93678) ((-563 . -232) 93628) ((-1284 . -295) 93594) ((-1277 . -295) 93560) ((-1105 . -301) 93511) ((-577 . -868) T) ((-500 . -864) T) ((-226 . -1137) T) ((-1256 . -295) 93477) ((-1236 . -506) 93443) ((-1029 . -38) 93393) ((-220 . -864) T) ((-431 . -662) 93352) ((-937 . -38) 93304) ((-859 . -810) 93283) ((-859 . -807) 93262) ((-859 . -742) 93241) ((-371 . -301) T) ((-365 . -301) T) ((-357 . -301) T) ((-171 . -465) 93172) ((-440 . -38) 93156) ((-226 . -23) T) ((-108 . -301) T) ((-420 . -810) 93135) ((-420 . -807) 93114) ((-420 . -742) T) ((-513 . -299) 93089) ((-490 . -1081) 93054) ((-674 . -132) T) ((-634 . -629) 93023) ((-1138 . -527) 92956) ((-348 . -132) T) ((-171 . -415) 92935) ((-495 . -733) 92877) ((-831 . -297) 92854) ((-490 . -111) 92810) ((-669 . -1083) T) ((-655 . -23) T) ((-1197 . -915) 92713) ((-1150 . -915) 92695) ((-832 . -1076) 92538) ((-1303 . -1108) T) ((-1265 . -465) 92469) ((-832 . -656) 92318) ((-1302 . -1108) T) ((-1112 . -132) T) ((-1079 . -733) 92260) ((-1052 . -527) 92193) ((-798 . -132) T) ((-796 . -132) T) ((-715 . -868) T) ((-584 . -465) T) ((-634 . -1074) T) ((-605 . -1125) T) ((-546 . -175) T) ((-474 . -132) T) ((-467 . -132) T) ((-391 . -238) T) ((-1024 . -1242) T) ((-45 . -1125) T) ((-397 . -733) 92163) ((-833 . -1125) T) ((-489 . -527) 92096) ((-476 . -527) 92029) ((-1317 . -629) 92011) ((-466 . -379) 91981) ((-45 . -623) 91960) ((-412 . -1242) T) ((-327 . -313) T) ((-1292 . -868) 91939) ((-843 . -238) 91918) ((-490 . -629) 91868) ((-1256 . -320) 91753) ((-686 . -626) 91715) ((-59 . -865) 91694) ((-1029 . -413) 91676) ((-561 . -626) 91658) ((-815 . -662) 91617) ((-831 . -617) 91594) ((-529 . -865) 91573) ((-509 . -865) 91552) ((-1024 . -1063) 91448) ((-40 . -1246) T) ((-246 . -923) 91317) ((-50 . -132) T) ((-594 . -132) T) ((-531 . -132) T) ((-305 . -664) 91177) ((-355 . -340) 91154) ((-355 . -375) T) ((-333 . -334) 91131) ((-330 . -297) 91089) ((-40 . -569) T) ((-391 . -1227) T) ((-391 . -1230) T) ((-1060 . -1218) 91064) ((-1214 . -241) 91014) ((-1192 . -233) 90966) ((-1192 . -273) 90918) ((-341 . -1125) T) ((-391 . -95) T) ((-391 . -35) T) ((-1060 . -107) 90864) ((-490 . -1074) T) ((-1316 . -1081) 90848) ((-492 . -241) 90798) ((-1184 . -502) 90732) ((-1307 . -1076) 90716) ((-393 . -1081) 90700) ((-1307 . -656) 90670) ((-832 . -102) T) ((-490 . -249) T) ((-730 . -148) 90649) ((-730 . -146) 90628) ((-118 . -868) NIL) ((-497 . -502) 90612) ((-498 . -347) 90581) ((-525 . -1125) 90532) ((-1316 . -111) 90511) ((-1024 . -389) 90495) ((-426 . -102) T) ((-393 . -111) 90474) ((-1024 . -350) 90458) ((-289 . -1008) 90442) ((-288 . -1008) 90426) ((-1029 . -923) NIL) ((-1314 . -626) 90408) ((-1312 . -626) 90390) ((-110 . -527) NIL) ((-1197 . -1268) 90374) ((-872 . -870) 90358) ((-1203 . -1125) T) ((-103 . -1242) T) ((-975 . -972) 90319) ((-833 . -733) 90261) ((-1256 . -1177) NIL) ((-494 . -972) 90206) ((-1087 . -144) T) ((-60 . -102) 90156) ((-44 . -626) 90138) ((-78 . -626) 90120) ((-363 . -664) 90065) ((-1304 . -1125) T) ((-524 . -865) T) ((-300 . -297) 90044) ((-355 . -1137) T) ((-306 . -1125) T) ((-1024 . -921) 90003) ((-306 . -623) 89982) ((-1316 . -629) 89931) ((-1284 . -38) 89828) ((-1277 . -38) 89669) ((-1256 . -38) 89465) ((-500 . -1083) T) ((-393 . -629) 89449) ((-220 . -1083) T) ((-355 . -23) T) ((-153 . -626) 89431) ((-849 . -811) 89410) ((-849 . -808) 89389) ((-1241 . -629) 89370) ((-609 . -38) 89343) ((-608 . -38) 89240) ((-888 . -569) T) ((-226 . -132) T) ((-330 . -1027) 89206) ((-79 . -626) 89188) ((-728 . -318) 89167) ((-305 . -742) 89069) ((-840 . -102) T) ((-882 . -860) T) ((-305 . -486) 89048) ((-1307 . -102) T) ((-40 . -375) T) ((-890 . -148) 89027) ((-498 . -662) 89009) ((-890 . -146) 88988) ((-1183 . -502) 88970) ((-1316 . -1074) T) ((-495 . -527) 88903) ((-655 . -132) T) ((-1171 . -1242) T) ((-987 . -626) 88885) ((-663 . -502) 88869) ((-645 . -502) 88800) ((-831 . -626) 88493) ((-48 . -27) T) ((-1203 . -733) 88390) ((-975 . -915) 88369) ((-669 . -1125) T) ((-879 . -878) T) ((-449 . -376) 88343) ((-747 . -662) 88253) ((-494 . -915) 88228) ((-1127 . -102) T) ((-995 . -1125) T) ((-882 . -1125) T) ((-832 . -320) 88215) ((-546 . -540) T) ((-546 . -589) T) ((-1312 . -394) 88187) ((-710 . -868) T) ((-1079 . -527) 88120) ((-1184 . -297) 88096) ((-246 . -273) 88065) ((-246 . -233) 88034) ((-259 . -1076) 87935) ((-258 . -1076) 87836) ((-1304 . -733) 87806) ((-1191 . -93) T) ((-1019 . -93) T) ((-833 . -174) 87785) ((-259 . -656) 87707) ((-258 . -656) 87629) ((-1239 . -503) 87606) ((-591 . -1242) T) ((-230 . -527) 87539) ((-634 . -811) 87518) ((-634 . -808) 87497) ((-1239 . -626) 87409) ((-225 . -1242) T) ((-691 . -626) 87341) ((-1199 . -662) 87251) ((-1182 . -1035) 87235) ((-966 . -102) 87165) ((-363 . -742) T) ((-879 . -626) 87147) ((-1198 . -662) 87029) ((-1192 . -662) 86866) ((-1151 . -662) 86776) ((-1256 . -413) 86728) ((-1138 . -502) 86712) ((-60 . -320) 86650) ((-342 . -102) T) ((-1236 . -21) T) ((-1236 . -25) T) ((-40 . -1137) T) ((-727 . -21) T) ((-640 . -626) 86632) ((-528 . -334) 86611) ((-727 . -25) T) ((-452 . -102) T) ((-108 . -297) NIL) ((-944 . -1137) T) ((-40 . -23) T) ((-787 . -1137) T) ((-577 . -1246) T) ((-508 . -1246) T) ((-1029 . -273) 86593) ((-330 . -626) 86575) ((-1029 . -233) 86557) ((-171 . -167) 86541) ((-593 . -569) T) ((-577 . -569) T) ((-508 . -569) T) ((-787 . -23) T) ((-1276 . -148) 86520) ((-1276 . -146) 86499) ((-1184 . -617) 86475) ((-1255 . -146) 86400) ((-1052 . -502) 86384) ((-1249 . -1242) T) ((-1255 . -148) 86309) ((-1307 . -1313) 86288) ((-889 . -915) NIL) ((-489 . -502) 86272) ((-476 . -502) 86256) ((-536 . -34) T) ((-669 . -733) 86226) ((-1284 . -923) 86139) ((-1277 . -923) 86045) ((-1256 . -923) 85806) ((-112 . -992) T) ((-1203 . -174) 85757) ((-678 . -865) 85736) ((-377 . -102) T) ((-608 . -923) 85649) ((-246 . -244) 85628) ((-259 . -102) T) ((-258 . -102) T) ((-1265 . -972) 85597) ((-251 . -865) 85576) ((-1049 . -868) T) ((-832 . -38) 85425) ((-45 . -527) 85217) ((-1183 . -297) 85167) ((-216 . -1125) T) ((-1175 . -1125) T) ((-890 . -238) 85118) ((-1175 . -623) 85097) ((-599 . -25) T) ((-599 . -21) T) ((-1127 . -320) 85035) ((-986 . -424) 85019) ((-715 . -1246) T) ((-645 . -297) 84972) ((-1112 . -654) 84920) ((-928 . -1125) T) ((-798 . -654) 84868) ((-796 . -654) 84816) ((-355 . -132) T) ((-300 . -626) 84798) ((-888 . -1137) T) ((-715 . -569) T) ((-130 . -629) 84780) ((-467 . -654) 84728) ((-171 . -915) 84649) ((-928 . -926) 84633) ((-391 . -465) T) ((-500 . -1125) T) ((-966 . -320) 84571) ((-717 . -664) 84543) ((-562 . -860) T) ((-220 . -1125) T) ((-327 . -943) 84522) ((-324 . -943) T) ((-324 . -836) NIL) ((-403 . -736) T) ((-888 . -23) T) ((-117 . -664) 84509) ((-487 . -146) 84488) ((-431 . -424) 84472) ((-487 . -148) 84451) ((-110 . -502) 84433) ((-322 . -629) 84414) ((-2 . -626) 84396) ((-188 . -102) T) ((-1183 . -19) 84378) ((-1183 . -617) 84353) ((-674 . -21) T) ((-674 . -25) T) ((-606 . -1169) T) ((-1138 . -297) 84330) ((-348 . -25) T) ((-348 . -21) T) ((-908 . -1242) T) ((-904 . -1242) T) ((-1314 . -1081) 84314) ((-246 . -662) 84093) ((-508 . -375) T) ((-1312 . -1081) 84077) ((-1307 . -38) 84047) ((-1276 . -1227) 84013) ((-1276 . -1230) 83979) ((-1265 . -915) 83882) ((-1197 . -1076) 83705) ((-1167 . -1242) T) ((-1150 . -1076) 83548) ((-872 . -1076) 83532) ((-645 . -617) 83507) ((-1276 . -95) 83473) ((-1276 . -238) 83425) ((-1259 . -102) 83403) ((-1197 . -656) 83232) ((-1150 . -656) 83081) ((-872 . -656) 83051) ((-1256 . -233) 83003) ((-1112 . -25) T) ((-562 . -1125) T) ((-1112 . -21) T) ((-986 . -1083) T) ((-544 . -808) T) ((-544 . -811) T) ((-118 . -1246) T) ((-884 . -1242) T) ((-636 . -569) T) ((-798 . -25) T) ((-798 . -21) T) ((-796 . -21) T) ((-796 . -25) T) ((-751 . -1083) T) ((-731 . -1083) T) ((-686 . -1081) 82987) ((-530 . -1108) T) ((-474 . -25) T) ((-118 . -569) T) ((-474 . -21) T) ((-467 . -25) T) ((-467 . -21) T) ((-1256 . -273) 82939) ((-1176 . -93) T) ((-1167 . -1063) 82835) ((-833 . -301) 82814) ((-1255 . -1227) 82780) ((-839 . -1125) T) ((-989 . -992) T) ((-686 . -111) 82759) ((-630 . -1242) T) ((-306 . -527) 82551) ((-1255 . -1230) 82517) ((-1255 . -238) 82376) ((-1250 . -380) T) ((-259 . -320) 82314) ((-258 . -320) 82252) ((-1247 . -860) T) ((-1184 . -627) NIL) ((-1184 . -626) 82234) ((-1167 . -389) 82218) ((-1145 . -836) T) ((-1145 . -943) T) ((-96 . -93) T) ((-1138 . -617) 82195) ((-1105 . -627) 82179) ((-1105 . -626) 82161) ((-1029 . -662) 82111) ((-937 . -662) 82048) ((-831 . -299) 82025) ((-497 . -626) 81957) ((-621 . -152) 81904) ((-500 . -733) 81854) ((-431 . -1083) T) ((-495 . -502) 81838) ((-440 . -662) 81797) ((-338 . -865) 81776) ((-351 . -664) 81750) ((-50 . -21) T) ((-50 . -25) T) ((-220 . -733) 81700) ((-171 . -740) 81671) ((-176 . -664) 81603) ((-594 . -21) T) ((-594 . -25) T) ((-531 . -25) T) ((-531 . -21) T) ((-488 . -152) 81553) ((-1086 . -626) 81535) ((-1018 . -102) T) ((-880 . -102) T) ((-832 . -923) 81435) ((-815 . -424) 81398) ((-40 . -132) T) ((-715 . -375) T) ((-717 . -742) T) ((-717 . -810) T) ((-717 . -807) T) ((-214 . -916) T) ((-593 . -1137) T) ((-577 . -1137) T) ((-508 . -1137) T) ((-371 . -626) 81380) ((-365 . -626) 81362) ((-357 . -626) 81344) ((-66 . -409) T) ((-66 . -408) T) ((-108 . -627) 81274) ((-108 . -626) 81216) ((-213 . -916) T) ((-981 . -152) 81200) ((-787 . -132) T) ((-686 . -629) 81118) ((-135 . -742) T) ((-117 . -742) T) ((-1276 . -35) 81084) ((-1079 . -502) 81068) ((-593 . -23) T) ((-577 . -23) T) ((-508 . -23) T) ((-1255 . -95) 81034) ((-1255 . -35) 81000) ((-1197 . -102) T) ((-1150 . -102) T) ((-872 . -102) T) ((-230 . -502) 80984) ((-1314 . -111) 80963) ((-1312 . -111) 80942) ((-44 . -1081) 80926) ((-1315 . -1242) T) ((-1314 . -629) 80872) ((-1314 . -1074) T) ((-1312 . -629) 80801) ((-1312 . -1074) T) ((-1265 . -1268) 80785) ((-873 . -870) 80769) ((-1203 . -301) 80748) ((-1129 . -1242) T) ((-110 . -297) 80698) ((-1028 . -1242) T) ((-129 . -152) 80680) ((-1167 . -921) 80639) ((-44 . -111) 80618) ((-1247 . -1125) T) ((-1206 . -1287) T) ((-1192 . -864) NIL) ((-1191 . -503) 80599) ((-686 . -1074) T) ((-1191 . -626) 80565) ((-1183 . -626) 80547) ((-487 . -238) 80499) ((-1088 . -623) 80474) ((-1019 . -503) 80455) ((-74 . -454) T) ((-74 . -408) T) ((-1088 . -1125) T) ((-153 . -1081) 80439) ((-1019 . -626) 80405) ((-686 . -239) 80384) ((-584 . -567) 80368) ((-367 . -148) 80347) ((-367 . -146) 80298) ((-364 . -148) 80277) ((-364 . -146) 80228) ((-356 . -148) 80207) ((-356 . -146) 80158) ((-274 . -146) 80137) ((-274 . -148) 80116) ((-254 . -148) 80095) ((-118 . -375) T) ((-254 . -146) 80074) ((-1183 . -627) NIL) ((-153 . -111) 80053) ((-1028 . -1063) 79941) ((-1182 . -1242) T) ((-710 . -1246) T) ((-815 . -1083) T) ((-715 . -1137) T) ((-1028 . -389) 79918) ((-519 . -1242) T) ((-515 . -1242) T) ((-933 . -146) T) ((-933 . -148) 79900) ((-888 . -132) T) ((-831 . -1081) 79821) ((-715 . -23) T) ((-710 . -569) T) ((-228 . -1076) 79786) ((-663 . -626) 79718) ((-663 . -627) 79679) ((-645 . -627) NIL) ((-645 . -626) 79661) ((-500 . -174) T) ((-228 . -656) 79626) ((-220 . -174) T) ((-226 . -21) T) ((-226 . -25) T) ((-487 . -1230) 79592) ((-487 . -1227) 79558) ((-284 . -626) 79540) ((-283 . -626) 79522) ((-282 . -626) 79504) ((-281 . -626) 79486) ((-280 . -626) 79468) ((-513 . -667) 79450) ((-279 . -626) 79432) ((-351 . -742) T) ((-278 . -626) 79414) ((-110 . -19) 79396) ((-176 . -742) T) ((-513 . -385) 79378) ((-214 . -626) 79360) ((-533 . -1174) 79344) ((-513 . -124) T) ((-110 . -617) 79319) ((-213 . -626) 79301) ((-487 . -35) 79267) ((-487 . -95) 79233) ((-211 . -626) 79215) ((-210 . -626) 79197) ((-209 . -626) 79179) ((-208 . -626) 79161) ((-205 . -626) 79143) ((-204 . -626) 79125) ((-203 . -626) 79107) ((-202 . -626) 79089) ((-201 . -626) 79071) ((-200 . -626) 79053) ((-199 . -626) 79035) ((-549 . -1128) 78987) ((-198 . -626) 78969) ((-197 . -626) 78951) ((-45 . -502) 78888) ((-196 . -626) 78870) ((-195 . -626) 78852) ((-153 . -629) 78821) ((-1140 . -102) T) ((-831 . -111) 78737) ((-660 . -102) 78667) ((-655 . -21) T) ((-655 . -25) T) ((-495 . -297) 78644) ((-1315 . -1063) 78628) ((-1138 . -626) 78321) ((-1126 . -1125) T) ((-1071 . -1242) T) ((-1197 . -320) 78308) ((-1087 . -1076) 78295) ((-1160 . -1125) T) ((-975 . -1076) 78138) ((-1150 . -320) 78125) ((-1121 . -1108) T) ((-636 . -1137) T) ((-1087 . -656) 78112) ((-1115 . -1108) T) ((-975 . -656) 77961) ((-1112 . -235) 77906) ((-494 . -1076) 77749) ((-1098 . -1108) T) ((-1091 . -1108) T) ((-1061 . -1108) T) ((-1044 . -1108) T) ((-118 . -1137) T) ((-494 . -656) 77598) ((-798 . -235) 77585) ((-835 . -102) T) ((-639 . -1108) T) ((-636 . -23) T) ((-1175 . -527) 77377) ((-496 . -1108) T) ((-986 . -1125) T) ((-399 . -102) T) ((-335 . -102) T) ((-221 . -1108) T) ((-859 . -1242) T) ((-153 . -1074) T) ((-747 . -424) 77361) ((-118 . -23) T) ((-1028 . -921) 77313) ((-751 . -1125) T) ((-731 . -1125) T) ((-1284 . -662) 77223) ((-1277 . -662) 77105) ((-466 . -1125) T) ((-420 . -1242) T) ((-327 . -443) 77089) ((-605 . -93) T) ((-1052 . -627) 77050) ((-271 . -1242) T) ((-1049 . -1246) T) ((-228 . -102) T) ((-1052 . -626) 77012) ((-832 . -273) 76996) ((-832 . -233) 76980) ((-831 . -629) 76778) ((-1256 . -662) 76615) ((-1049 . -569) T) ((-849 . -664) 76588) ((-366 . -1246) T) ((-489 . -626) 76550) ((-489 . -627) 76511) ((-476 . -627) 76472) ((-476 . -626) 76434) ((-609 . -662) 76393) ((-420 . -903) 76377) ((-330 . -1081) 76212) ((-420 . -905) 76137) ((-608 . -662) 76047) ((-859 . -1063) 75943) ((-500 . -527) NIL) ((-495 . -617) 75920) ((-594 . -235) 75907) ((-366 . -569) T) ((-531 . -235) 75894) ((-220 . -527) NIL) ((-890 . -465) T) ((-431 . -1125) T) ((-420 . -1063) 75758) ((-330 . -111) 75579) ((-710 . -375) T) ((-228 . -295) T) ((-1239 . -629) 75556) ((-48 . -1246) T) ((-1197 . -1177) 75534) ((-1184 . -299) 75510) ((-1087 . -102) T) ((-975 . -102) T) ((-831 . -1074) 75488) ((-593 . -132) T) ((-577 . -132) T) ((-508 . -132) T) ((-367 . -238) 75467) ((-364 . -238) 75446) ((-356 . -238) 75425) ((-48 . -569) T) ((-889 . -1076) 75370) ((-274 . -238) 75321) ((-831 . -239) 75273) ((-327 . -27) 75252) ((-259 . -923) 75121) ((-258 . -923) 74990) ((-256 . -851) 74972) ((-189 . -851) 74954) ((-729 . -102) T) ((-306 . -502) 74891) ((-889 . -656) 74836) ((-494 . -102) T) ((-747 . -1083) T) ((-625 . -626) 74818) ((-625 . -627) 74679) ((-420 . -389) 74663) ((-420 . -350) 74647) ((-1197 . -38) 74476) ((-1150 . -38) 74325) ((-330 . -629) 74151) ((-933 . -238) T) ((-648 . -1242) T) ((-620 . -1242) T) ((-872 . -38) 74121) ((-403 . -664) 74105) ((-660 . -320) 74043) ((-1176 . -503) 74024) ((-1176 . -626) 73990) ((-986 . -733) 73887) ((-751 . -733) 73857) ((-634 . -664) 73831) ((-225 . -107) 73815) ((-45 . -297) 73715) ((-323 . -1125) T) ((-300 . -1081) 73702) ((-110 . -626) 73684) ((-110 . -627) 73666) ((-466 . -733) 73636) ((-832 . -261) 73575) ((-705 . -1125) 73553) ((-563 . -1125) T) ((-1199 . -1083) T) ((-1198 . -1083) T) ((-96 . -503) 73534) ((-1192 . -1083) T) ((-300 . -111) 73519) ((-1151 . -1083) T) ((-563 . -623) 73498) ((-96 . -626) 73464) ((-1029 . -864) T) ((-230 . -703) 73422) ((-710 . -1137) T) ((-1236 . -756) 73398) ((-1049 . -375) T) ((-854 . -851) 73380) ((-849 . -810) 73359) ((-420 . -921) 73318) ((-330 . -1074) T) ((-355 . -25) T) ((-355 . -21) T) ((-171 . -1076) 73228) ((-68 . -1242) T) ((-849 . -807) 73207) ((-431 . -733) 73181) ((-815 . -1125) T) ((-728 . -943) 73160) ((-715 . -132) T) ((-171 . -656) 72988) ((-710 . -23) T) ((-500 . -301) T) ((-849 . -742) 72967) ((-330 . -239) 72919) ((-330 . -249) 72898) ((-220 . -301) T) ((-130 . -380) T) ((-1276 . -465) 72877) ((-1255 . -465) 72856) ((-366 . -340) 72833) ((-366 . -375) T) ((-1165 . -626) 72815) ((-45 . -1280) 72765) ((-889 . -102) T) ((-660 . -293) 72749) ((-715 . -1085) T) ((-1303 . -102) T) ((-1302 . -102) T) ((-490 . -664) 72714) ((-481 . -1125) T) ((-45 . -617) 72639) ((-1183 . -299) 72614) ((-300 . -629) 72586) ((-40 . -654) 72525) ((-1265 . -1076) 72348) ((-873 . -1076) 72332) ((-48 . -375) T) ((-1131 . -626) 72314) ((-1265 . -656) 72143) ((-873 . -656) 72113) ((-645 . -299) 72088) ((-832 . -662) 71998) ((-584 . -1076) 71985) ((-495 . -626) 71678) ((-246 . -424) 71647) ((-1197 . -923) 71554) ((-1190 . -1125) T) ((-975 . -320) 71541) ((-584 . -656) 71528) ((-65 . -1242) T) ((-1158 . -1242) T) ((-1150 . -923) 71512) ((-1138 . -299) 71489) ((-1088 . -527) 71333) ((-687 . -1125) T) ((-636 . -132) T) ((-619 . -1125) T) ((-494 . -320) 71320) ((-559 . -102) T) ((-118 . -132) T) ((-300 . -1074) T) ((-182 . -1125) T) ((-162 . -1125) T) ((-157 . -1125) T) ((-155 . -1125) T) ((-466 . -777) T) ((-31 . -1108) T) ((-986 . -174) 71271) ((-1127 . -232) 71255) ((-995 . -93) T) ((-1105 . -1081) 71165) ((-1079 . -626) 71127) ((-634 . -742) T) ((-634 . -810) 71106) ((-606 . -1125) T) ((-634 . -807) 71085) ((-306 . -297) 71064) ((-305 . -1242) T) ((-1079 . -627) 71025) ((-1049 . -1137) T) ((-324 . -868) NIL) ((-171 . -102) T) ((-285 . -865) T) ((-1105 . -111) 70921) ((-834 . -626) 70903) ((-1049 . -23) T) ((-1028 . -318) T) ((-919 . -102) T) ((-815 . -733) 70887) ((-371 . -1081) 70839) ((-366 . -1137) T) ((-365 . -1081) 70791) ((-427 . -626) 70773) ((-397 . -626) 70755) ((-357 . -1081) 70707) ((-230 . -626) 70639) ((-857 . -102) T) ((-824 . -102) T) ((-108 . -1081) 70589) ((-785 . -102) T) ((-693 . -102) T) ((-115 . -868) T) ((-487 . -465) 70568) ((-431 . -174) T) ((-371 . -111) 70506) ((-365 . -111) 70444) ((-357 . -111) 70382) ((-259 . -273) 70351) ((-259 . -233) 70320) ((-258 . -273) 70289) ((-258 . -233) 70258) ((-366 . -23) T) ((-71 . -1242) T) ((-228 . -38) 70223) ((-108 . -111) 70157) ((-40 . -25) T) ((-40 . -21) T) ((-686 . -736) T) ((-171 . -295) 70135) ((-48 . -1137) T) ((-876 . -1242) T) ((-944 . -25) T) ((-787 . -25) T) ((-1316 . -664) 70109) ((-1175 . -502) 70046) ((-498 . -1125) T) ((-1307 . -662) 70005) ((-1265 . -102) T) ((-1087 . -1177) T) ((-873 . -102) T) ((-246 . -1083) 69983) ((-987 . -808) 69936) ((-987 . -811) 69889) ((-393 . -664) 69873) ((-48 . -23) T) ((-831 . -811) 69852) ((-831 . -808) 69831) ((-561 . -380) T) ((-306 . -617) 69810) ((-490 . -742) T) ((-584 . -102) T) ((-1105 . -629) 69628) ((-256 . -187) T) ((-189 . -187) T) ((-889 . -320) 69585) ((-669 . -297) 69564) ((-651 . -1242) T) ((-112 . -677) T) ((-363 . -1242) T) ((-371 . -629) 69501) ((-365 . -629) 69438) ((-357 . -629) 69375) ((-76 . -1242) T) ((-108 . -629) 69325) ((-112 . -113) T) ((-1087 . -38) 69312) ((-680 . -386) 69291) ((-975 . -38) 69140) ((-747 . -1125) T) ((-494 . -38) 68989) ((-86 . -1242) T) ((-605 . -503) 68970) ((-1256 . -864) NIL) ((-1199 . -1125) T) ((-584 . -295) T) ((-1198 . -1125) T) ((-605 . -626) 68936) ((-1192 . -1125) T) ((-1145 . -868) T) ((-1105 . -1074) T) ((-363 . -1063) 68913) ((-833 . -503) 68897) ((-1029 . -1083) T) ((-45 . -626) 68879) ((-45 . -627) NIL) ((-937 . -1083) T) ((-833 . -626) 68848) ((-1172 . -102) 68798) ((-1105 . -249) 68749) ((-440 . -1083) T) ((-371 . -1074) T) ((-365 . -1074) T) ((-377 . -376) 68726) ((-357 . -1074) T) ((-355 . -235) 68713) ((-259 . -244) 68692) ((-258 . -244) 68671) ((-1105 . -239) 68596) ((-1151 . -1125) T) ((-305 . -921) 68555) ((-108 . -1074) T) ((-710 . -132) T) ((-431 . -527) 68397) ((-371 . -239) 68376) ((-371 . -249) T) ((-44 . -736) T) ((-365 . -239) 68355) ((-365 . -249) T) ((-357 . -239) 68334) ((-357 . -249) T) ((-1191 . -629) 68315) ((-171 . -320) 68280) ((-108 . -249) T) ((-108 . -239) T) ((-1019 . -629) 68261) ((-330 . -808) T) ((-888 . -21) T) ((-888 . -25) T) ((-420 . -318) T) ((-513 . -34) T) ((-110 . -299) 68236) ((-1138 . -1081) 68157) ((-889 . -1177) NIL) ((-341 . -626) 68139) ((-420 . -1047) 68117) ((-1138 . -111) 68033) ((-707 . -1287) T) ((-449 . -1125) T) ((-257 . -1125) T) ((-1316 . -742) T) ((-63 . -626) 68015) ((-889 . -38) 67960) ((-615 . -152) 67944) ((-536 . -1242) T) ((-525 . -626) 67884) ((-1265 . -320) 67871) ((-747 . -733) 67720) ((-544 . -809) T) ((-544 . -810) T) ((-577 . -654) 67702) ((-508 . -654) 67662) ((-517 . -1242) T) ((-653 . -1299) 67646) ((-367 . -465) T) ((-364 . -465) T) ((-356 . -465) T) ((-274 . -465) 67597) ((-538 . -1125) T) ((-533 . -1125) 67547) ((-254 . -465) 67498) ((-1175 . -297) 67477) ((-1203 . -626) 67459) ((-705 . -527) 67392) ((-986 . -301) 67371) ((-563 . -527) 67163) ((-259 . -662) 67011) ((-258 . -662) 66846) ((-1304 . -626) 66815) ((-1304 . -503) 66799) ((-1199 . -733) 66696) ((-1197 . -273) 66680) ((-1197 . -233) 66664) ((-1138 . -629) 66462) ((-171 . -1177) 66441) ((-1198 . -733) 66282) ((-1192 . -733) 66078) ((-989 . -113) T) ((-911 . -102) T) ((-1182 . -690) 66062) ((-1151 . -733) 65959) ((-1049 . -132) T) ((-367 . -415) 65910) ((-364 . -415) 65861) ((-356 . -415) 65812) ((-987 . -380) 65765) ((-815 . -527) 65677) ((-306 . -627) NIL) ((-306 . -626) 65659) ((-933 . -465) T) ((-928 . -297) 65638) ((-831 . -380) 65617) ((-523 . -522) 65596) ((-521 . -522) 65575) ((-890 . -915) 65496) ((-500 . -297) NIL) ((-495 . -299) 65473) ((-431 . -301) T) ((-366 . -132) T) ((-220 . -297) NIL) ((-710 . -506) NIL) ((-99 . -1137) T) ((-40 . -235) 65404) ((-171 . -38) 65232) ((-975 . -923) 65213) ((-1276 . -998) 65175) ((-1255 . -998) 65144) ((-1172 . -320) 65082) ((-494 . -923) 65059) ((-1138 . -1074) 65037) ((-933 . -415) T) ((-653 . -522) 65009) ((-1278 . -569) T) ((-1175 . -617) 64988) ((-112 . -865) T) ((-1088 . -502) 64919) ((-593 . -21) T) ((-593 . -25) T) ((-577 . -21) T) ((-577 . -25) T) ((-508 . -25) T) ((-508 . -21) T) ((-1265 . -1177) 64897) ((-1138 . -239) 64849) ((-48 . -132) T) ((-1223 . -102) T) ((-246 . -1125) 64601) ((-889 . -413) 64578) ((-1113 . -102) T) ((-1101 . -102) T) ((-912 . -868) T) ((-621 . -102) T) ((-488 . -102) T) ((-1265 . -38) 64407) ((-873 . -38) 64377) ((-1059 . -1076) 64351) ((-747 . -174) 64262) ((-669 . -626) 64244) ((-661 . -1108) T) ((-1059 . -656) 64228) ((-584 . -38) 64215) ((-995 . -503) 64196) ((-995 . -626) 64162) ((-981 . -102) 64092) ((-882 . -626) 64074) ((-882 . -627) 63996) ((-606 . -527) NIL) ((-866 . -102) T) ((-1321 . -1137) T) ((-1284 . -1083) T) ((-1277 . -1083) T) ((-1276 . -915) 63900) ((-1256 . -1083) T) ((-1255 . -915) 63695) ((-1236 . -148) 63674) ((-333 . -1076) 63656) ((-1236 . -146) 63635) ((-1209 . -102) T) ((-1208 . -102) T) ((-1207 . -102) T) ((-1199 . -174) 63586) ((-333 . -656) 63568) ((-717 . -1242) T) ((-1198 . -174) 63499) ((-1192 . -174) 63430) ((-1176 . -629) 63411) ((-1151 . -174) 63362) ((-609 . -1083) T) ((-608 . -1083) T) ((-1029 . -1125) T) ((-996 . -1125) T) ((-391 . -1076) 63327) ((-135 . -1242) T) ((-117 . -1242) T) ((-937 . -1125) T) ((-889 . -923) NIL) ((-391 . -656) 63292) ((-145 . -868) T) ((-815 . -813) 63276) ((-715 . -25) T) ((-715 . -21) T) ((-118 . -654) 63253) ((-717 . -905) 63235) ((-440 . -1125) T) ((-327 . -1246) 63214) ((-324 . -1246) T) ((-171 . -413) 63198) ((-852 . -1076) 63168) ((-487 . -998) 63130) ((-129 . -102) T) ((-72 . -626) 63112) ((-131 . -102) T) ((-843 . -1076) 63096) ((-108 . -811) T) ((-108 . -808) T) ((-717 . -1063) 63078) ((-327 . -569) 63057) ((-324 . -569) T) ((-852 . -656) 63027) ((-843 . -656) 62997) ((-1321 . -23) T) ((-135 . -1063) 62979) ((-96 . -629) 62960) ((-1018 . -662) 62942) ((-495 . -1081) 62863) ((-45 . -299) 62788) ((-246 . -733) 62730) ((-530 . -102) T) ((-495 . -111) 62646) ((-1117 . -102) 62616) ((-1059 . -102) T) ((-1197 . -662) 62526) ((-1150 . -662) 62436) ((-872 . -662) 62395) ((-660 . -844) 62374) ((-747 . -527) 62317) ((-1079 . -1081) 62301) ((-171 . -923) 62224) ((-1160 . -93) T) ((-1088 . -297) 62199) ((-636 . -21) T) ((-636 . -25) T) ((-537 . -1125) T) ((-686 . -664) 62137) ((-373 . -102) T) ((-333 . -102) T) ((-397 . -1081) 62121) ((-1079 . -111) 62100) ((-832 . -424) 62084) ((-118 . -25) T) ((-89 . -626) 62066) ((-118 . -21) T) ((-621 . -320) 61861) ((-1175 . -627) NIL) ((-488 . -320) 61665) ((-351 . -1242) T) ((-176 . -1242) T) ((-397 . -111) 61644) ((-391 . -102) T) ((-216 . -626) 61626) ((-1175 . -626) 61608) ((-790 . -1242) T) ((-1192 . -527) 61377) ((-1029 . -733) 61327) ((-1151 . -527) 61297) ((-937 . -733) 61249) ((-495 . -629) 61047) ((-363 . -318) T) ((-1214 . -152) 60997) ((-487 . -915) 60878) ((-981 . -320) 60816) ((-852 . -102) T) ((-440 . -733) 60800) ((-228 . -844) T) ((-843 . -102) T) ((-841 . -102) T) ((-1314 . -664) 60774) ((-1276 . -1275) 60753) ((-492 . -152) 60703) ((-1276 . -1270) 60673) ((-1145 . -1246) T) ((-351 . -1063) 60640) ((-1276 . -1273) 60624) ((-1265 . -923) 60531) ((-1255 . -1254) 60510) ((-80 . -626) 60492) ((-928 . -626) 60474) ((-1255 . -1270) 60451) ((-1145 . -569) T) ((-944 . -865) T) ((-787 . -865) T) ((-688 . -865) T) ((-500 . -627) 60381) ((-500 . -626) 60322) ((-391 . -295) T) ((-1255 . -1252) 60306) ((-1278 . -1137) T) ((-220 . -627) 60236) ((-220 . -626) 60177) ((-1088 . -617) 60152) ((-834 . -629) 60136) ((-577 . -235) 60123) ((-529 . -152) 60107) ((-59 . -152) 60091) ((-509 . -152) 60075) ((-508 . -235) 60062) ((-371 . -1311) 60046) ((-365 . -1311) 60030) ((-357 . -1311) 60014) ((-327 . -375) 59993) ((-324 . -375) T) ((-495 . -1074) 59971) ((-710 . -654) 59953) ((-1312 . -664) 59927) ((-129 . -320) NIL) ((-1278 . -23) T) ((-705 . -502) 59911) ((-64 . -626) 59893) ((-1138 . -811) 59872) ((-1138 . -808) 59851) ((-563 . -502) 59788) ((-686 . -34) T) ((-495 . -239) 59740) ((-306 . -299) 59719) ((-832 . -1083) T) ((-44 . -664) 59677) ((-1105 . -380) 59628) ((-747 . -301) 59559) ((-533 . -527) 59492) ((-833 . -1081) 59443) ((-1112 . -146) 59422) ((-562 . -626) 59404) ((-371 . -380) 59383) ((-365 . -380) 59362) ((-357 . -380) 59341) ((-1112 . -148) 59320) ((-991 . -1242) T) ((-889 . -273) 59297) ((-889 . -233) 59274) ((-833 . -111) 59216) ((-798 . -146) 59195) ((-274 . -972) 59162) ((-254 . -972) 59107) ((-798 . -148) 59086) ((-796 . -146) 59065) ((-796 . -148) 59044) ((-153 . -664) 59018) ((-592 . -1125) T) ((-466 . -297) 58981) ((-467 . -148) 58960) ((-467 . -146) 58939) ((-686 . -742) T) ((-839 . -626) 58921) ((-1284 . -1125) T) ((-1277 . -1125) T) ((-1256 . -1125) T) ((-1236 . -1230) 58887) ((-1236 . -1227) 58853) ((-1199 . -301) 58832) ((-1198 . -301) 58783) ((-1192 . -301) 58734) ((-1151 . -301) 58713) ((-1029 . -174) T) ((-351 . -921) 58694) ((-937 . -174) T) ((-710 . -21) T) ((-710 . -25) T) ((-653 . -1076) 58678) ((-653 . -656) 58662) ((-228 . -662) 58612) ((-609 . -1125) T) ((-608 . -1125) T) ((-487 . -1273) 58596) ((-487 . -1270) 58566) ((-431 . -297) 58494) ((-560 . -865) T) ((-327 . -1137) 58343) ((-324 . -1137) T) ((-1236 . -35) 58309) ((-1236 . -95) 58275) ((-84 . -626) 58257) ((-91 . -102) 58207) ((-1321 . -132) T) ((-730 . -1076) 58177) ((-605 . -629) 58158) ((-594 . -146) T) ((-594 . -148) 58140) ((-531 . -148) 58122) ((-531 . -146) T) ((-730 . -656) 58092) ((-327 . -23) 57944) ((-40 . -354) 57918) ((-324 . -23) T) ((-833 . -629) 57832) ((-1183 . -667) 57814) ((-1307 . -1083) T) ((-1183 . -385) 57796) ((-1121 . -102) T) ((-831 . -664) 57629) ((-1115 . -102) T) ((-1098 . -102) T) ((-171 . -273) 57613) ((-171 . -233) 57597) ((-1091 . -102) T) ((-1061 . -102) T) ((-1044 . -102) T) ((-606 . -502) 57579) ((-639 . -102) T) ((-246 . -527) 57512) ((-496 . -102) T) ((-1314 . -742) T) ((-1312 . -742) T) ((-221 . -102) T) ((-1203 . -1081) 57395) ((-1304 . -111) 57360) ((-1304 . -1081) 57330) ((-1284 . -733) 57227) ((-1087 . -662) 57199) ((-1277 . -733) 57040) ((-975 . -662) 56950) ((-1265 . -273) 56934) ((-1203 . -111) 56803) ((-1059 . -38) 56787) ((-894 . -1108) T) ((-879 . -175) T) ((-494 . -662) 56697) ((-274 . -915) 56603) ((-254 . -915) 56578) ((-833 . -1074) T) ((-697 . -1108) T) ((-692 . -1108) T) ((-636 . -235) 56523) ((-528 . -102) T) ((-523 . -102) T) ((-48 . -654) 56483) ((-521 . -102) T) ((-491 . -1108) T) ((-118 . -235) NIL) ((-3 . -1242) T) ((-139 . -1108) T) ((-138 . -1108) T) ((-134 . -1108) T) ((-849 . -1242) T) ((-833 . -239) T) ((-833 . -249) 56462) ((-1265 . -233) 56446) ((-1256 . -733) 56242) ((-1024 . -868) 56221) ((-1247 . -626) 56203) ((-563 . -297) 56182) ((-1088 . -627) NIL) ((-1088 . -626) 56164) ((-619 . -93) T) ((-687 . -93) T) ((0 . -1242) T) ((-49 . -1242) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-217 . -865) T) ((-1028 . -943) T) ((-1203 . -629) 56017) ((-153 . -742) T) ((-1138 . -380) 55996) ((-653 . -102) T) ((-1049 . -25) T) ((-1029 . -527) NIL) ((-259 . -424) 55965) ((-258 . -424) 55934) ((-1049 . -21) T) ((-890 . -1076) 55886) ((-609 . -733) 55859) ((-608 . -733) 55756) ((-815 . -297) 55714) ((-127 . -102) 55664) ((-849 . -1063) 55560) ((-171 . -844) 55539) ((-330 . -664) 55436) ((-831 . -34) T) ((-730 . -102) T) ((-1145 . -1137) T) ((-1051 . -1242) T) ((-890 . -656) 55388) ((-391 . -38) 55353) ((-366 . -25) T) ((-366 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-256 . -102) T) ((-158 . -102) T) ((-367 . -1299) 55337) ((-364 . -1299) 55321) ((-356 . -1299) 55305) ((-171 . -361) 55284) ((-577 . -865) T) ((-1112 . -238) 55235) ((-1145 . -23) T) ((-87 . -626) 55217) ((-798 . -238) T) ((-717 . -318) T) ((-852 . -38) 55187) ((-843 . -38) 55157) ((-1304 . -629) 55099) ((-1278 . -132) T) ((-1175 . -299) 55078) ((-987 . -742) 54977) ((-987 . -809) 54930) ((-987 . -810) 54883) ((-117 . -318) T) ((-91 . -320) 54821) ((-691 . -34) T) ((-563 . -617) 54800) ((-48 . -25) T) ((-48 . -21) T) ((-831 . -810) 54779) ((-831 . -809) 54758) ((-717 . -1047) T) ((-669 . -1081) 54742) ((-889 . -662) 54672) ((-831 . -742) 54650) ((-403 . -1242) T) ((-987 . -486) 54603) ((-495 . -811) 54582) ((-495 . -808) 54561) ((-933 . -1299) 54548) ((-1203 . -1074) T) ((-634 . -1242) T) ((-669 . -111) 54527) ((-1203 . -337) 54504) ((-1228 . -102) 54454) ((-1126 . -626) 54436) ((-717 . -558) T) ((-832 . -1125) T) ((-594 . -238) T) ((-531 . -238) T) ((-1304 . -1074) T) ((-1160 . -503) 54417) ((-1248 . -102) T) ((-426 . -1125) T) ((-1160 . -626) 54383) ((-259 . -1083) 54361) ((-258 . -1083) 54339) ((-854 . -102) T) ((-300 . -664) 54326) ((-606 . -297) 54276) ((-705 . -703) 54234) ((-1317 . -1242) T) ((-1292 . -865) 54213) ((-986 . -626) 54195) ((-890 . -102) T) ((-751 . -626) 54177) ((-731 . -626) 54159) ((-1284 . -174) 54110) ((-1277 . -174) 54041) ((-1256 . -174) 53972) ((-715 . -865) T) ((-1029 . -301) T) ((-466 . -626) 53954) ((-640 . -742) T) ((-60 . -1125) 53932) ((-251 . -152) 53916) ((-1276 . -656) 53757) ((-937 . -301) T) ((-1049 . -1037) T) ((-640 . -486) T) ((-728 . -1246) 53736) ((-710 . -235) NIL) ((-669 . -629) 53654) ((-171 . -662) 53549) ((-1276 . -1076) 53384) ((-609 . -174) 53363) ((-608 . -174) 53314) ((-1255 . -656) 53128) ((-1255 . -1076) 52936) ((-1250 . -1242) T) ((-728 . -569) 52847) ((-420 . -836) 52826) ((-420 . -943) T) ((-330 . -810) T) ((-490 . -1242) T) ((-995 . -629) 52807) ((-330 . -742) T) ((-660 . -1174) 52791) ((-431 . -626) 52773) ((-431 . -627) 52680) ((-110 . -667) 52662) ((-327 . -132) 52533) ((-176 . -318) T) ((-127 . -320) 52471) ((-411 . -1242) T) ((-110 . -385) 52453) ((-324 . -132) T) ((-69 . -408) T) ((-110 . -124) T) ((-533 . -502) 52437) ((-670 . -1137) T) ((-606 . -19) 52419) ((-61 . -454) T) ((-61 . -408) T) ((-840 . -1125) T) ((-606 . -617) 52394) ((-490 . -1063) 52354) ((-669 . -1074) T) ((-670 . -23) T) ((-1307 . -1125) T) ((-31 . -102) T) ((-1265 . -662) 52264) ((-873 . -662) 52223) ((-832 . -733) 52072) ((-1294 . -1242) T) ((-590 . -878) T) ((-584 . -662) 52044) ((-118 . -865) NIL) ((-1197 . -424) 52028) ((-1150 . -424) 52012) ((-872 . -424) 51996) ((-891 . -102) 51947) ((-1276 . -102) T) ((-1256 . -527) 51716) ((-1255 . -102) T) ((-1228 . -320) 51654) ((-1199 . -297) 51619) ((-1198 . -297) 51577) ((-538 . -93) T) ((-1192 . -297) 51405) ((-323 . -626) 51387) ((-1127 . -1125) T) ((-1105 . -664) 51261) ((-727 . -465) T) ((-705 . -626) 51193) ((-300 . -742) T) ((-108 . -932) NIL) ((-705 . -627) 51154) ((-614 . -626) 51136) ((-590 . -626) 51118) ((-563 . -627) NIL) ((-563 . -626) 51100) ((-542 . -626) 51082) ((-524 . -522) 51061) ((-500 . -1081) 51011) ((-487 . -1076) 50846) ((-520 . -522) 50825) ((-487 . -656) 50666) ((-220 . -1081) 50616) ((-371 . -664) 50568) ((-365 . -664) 50520) ((-228 . -864) T) ((-357 . -664) 50472) ((-615 . -102) 50402) ((-500 . -111) 50336) ((-495 . -380) 50315) ((-108 . -664) 50265) ((-366 . -235) 50252) ((-246 . -502) 50236) ((-355 . -148) 50218) ((-355 . -146) T) ((-171 . -382) 50189) ((-966 . -1290) 50173) ((-105 . -1242) T) ((-220 . -111) 50107) ((-890 . -320) 50072) ((-966 . -1125) 50022) ((-815 . -627) 49983) ((-815 . -626) 49965) ((-734 . -102) T) ((-1316 . -1242) T) ((-393 . -1242) T) ((-342 . -1125) T) ((-216 . -629) 49942) ((-1145 . -132) T) ((-1307 . -733) 49912) ((-730 . -38) 49882) ((-327 . -506) 49861) ((-544 . -1242) T) ((-513 . -1242) T) ((-1276 . -295) 49827) ((-1255 . -295) 49793) ((-338 . -152) 49777) ((-452 . -1125) T) ((-1241 . -1242) T) ((-1088 . -299) 49752) ((-1249 . -868) T) ((-48 . -235) 49739) ((-1184 . -34) T) ((-1316 . -1063) 49716) ((-497 . -34) T) ((-481 . -626) 49698) ((-257 . -297) 49672) ((-393 . -1063) 49656) ((-1197 . -1083) T) ((-1150 . -1083) T) ((-872 . -1083) T) ((-1087 . -864) T) ((-500 . -629) 49606) ((-220 . -629) 49556) ((-832 . -174) 49467) ((-533 . -297) 49419) ((-1284 . -301) 49398) ((-1223 . -376) 49372) ((-1113 . -276) 49356) ((-687 . -503) 49337) ((-687 . -626) 49303) ((-619 . -503) 49284) ((-118 . -1017) 49261) ((-619 . -626) 49211) ((-487 . -102) T) ((-182 . -503) 49192) ((-182 . -626) 49158) ((-162 . -503) 49139) ((-162 . -626) 49105) ((-157 . -503) 49086) ((-155 . -503) 49067) ((-157 . -626) 49033) ((-377 . -1125) T) ((-259 . -1125) T) ((-258 . -1125) T) ((-155 . -626) 48999) ((-1277 . -301) 48950) ((-1256 . -301) 48901) ((-890 . -1177) 48879) ((-1199 . -1027) 48845) ((-621 . -376) 48785) ((-1198 . -1027) 48751) ((-621 . -232) 48698) ((-710 . -865) T) ((-606 . -626) 48680) ((-606 . -627) NIL) ((-488 . -232) 48630) ((-500 . -1074) T) ((-1192 . -1027) 48596) ((-88 . -453) T) ((-88 . -408) T) ((-220 . -1074) T) ((-1151 . -1027) 48562) ((-1105 . -742) T) ((-728 . -1137) T) ((-609 . -301) 48541) ((-608 . -301) 48520) ((-500 . -249) T) ((-500 . -239) T) ((-220 . -249) T) ((-220 . -239) T) ((-1190 . -626) 48502) ((-890 . -38) 48454) ((-371 . -742) T) ((-365 . -742) T) ((-357 . -742) T) ((-108 . -810) T) ((-108 . -807) T) ((-728 . -23) T) ((-108 . -742) T) ((-533 . -1280) 48438) ((-1321 . -25) T) ((-487 . -295) 48404) ((-1321 . -21) T) ((-1255 . -320) 48343) ((-1201 . -102) T) ((-40 . -146) 48315) ((-40 . -148) 48287) ((-533 . -617) 48264) ((-1138 . -664) 48097) ((-615 . -320) 48035) ((-45 . -667) 47985) ((-45 . -682) 47935) ((-45 . -385) 47885) ((-1183 . -34) T) ((-889 . -864) NIL) ((-670 . -132) T) ((-498 . -626) 47867) ((-246 . -297) 47844) ((-1107 . -1242) T) ((-188 . -1125) T) ((-1112 . -465) 47795) ((-832 . -527) 47669) ((-798 . -465) 47600) ((-680 . -1076) 47584) ((-663 . -34) T) ((-645 . -34) T) ((-680 . -656) 47568) ((-367 . -1076) 47520) ((-355 . -238) T) ((-364 . -1076) 47472) ((-356 . -1076) 47424) ((-274 . -1076) 47267) ((-254 . -1076) 47110) ((-796 . -465) 47061) ((-367 . -656) 47013) ((-364 . -656) 46965) ((-356 . -656) 46917) ((-274 . -656) 46766) ((-254 . -656) 46615) ((-467 . -465) 46566) ((-975 . -424) 46550) ((-747 . -626) 46532) ((-259 . -733) 46474) ((-258 . -733) 46416) ((-747 . -627) 46277) ((-494 . -424) 46261) ((-351 . -313) T) ((-537 . -93) T) ((-363 . -943) T) ((-1025 . -102) 46211) ((-933 . -1076) 46176) ((-1049 . -865) T) ((-60 . -527) 46109) ((-933 . -656) 46074) ((-1255 . -1177) 46026) ((-1029 . -297) NIL) ((-228 . -1083) T) ((-391 . -844) T) ((-1138 . -34) T) ((-594 . -465) T) ((-531 . -465) T) ((-1259 . -1118) 46010) ((-1259 . -1125) 45988) ((-246 . -617) 45965) ((-1259 . -1120) 45922) ((-1199 . -626) 45904) ((-1198 . -626) 45886) ((-1192 . -626) 45868) ((-1192 . -627) NIL) ((-1151 . -626) 45850) ((-890 . -413) 45834) ((-610 . -102) T) ((-598 . -102) T) ((-549 . -102) T) ((-1276 . -38) 45675) ((-1255 . -38) 45489) ((-130 . -1242) T) ((-52 . -1242) T) ((-888 . -148) T) ((-594 . -415) T) ((-531 . -415) T) ((-1288 . -102) T) ((-1278 . -21) T) ((-1278 . -25) T) ((-1214 . -102) T) ((-1138 . -810) 45468) ((-1138 . -809) 45447) ((-1018 . -1125) T) ((-1052 . -34) T) ((-880 . -1125) T) ((-1138 . -742) 45425) ((-680 . -102) T) ((-661 . -102) T) ((-563 . -299) 45404) ((-489 . -34) T) ((-476 . -34) T) ((-367 . -102) T) ((-364 . -102) T) ((-322 . -1242) T) ((-356 . -102) T) ((-274 . -102) T) ((-254 . -102) T) ((-490 . -318) T) ((-1087 . -1083) T) ((-975 . -1083) T) ((-327 . -654) 45310) ((-324 . -654) 45271) ((-1197 . -1125) T) ((-494 . -1083) T) ((-492 . -102) T) ((-449 . -626) 45253) ((-1150 . -1125) T) ((-257 . -626) 45235) ((-872 . -1125) T) ((-1166 . -102) T) ((-832 . -301) 45166) ((-986 . -1081) 45049) ((-490 . -1047) T) ((-890 . -923) 44972) ((-751 . -1081) 44942) ((-1059 . -662) 44901) ((-1172 . -1146) 44885) ((-466 . -1081) 44855) ((-1127 . -527) 44788) ((-986 . -111) 44657) ((-933 . -102) T) ((-40 . -238) 44594) ((-751 . -111) 44559) ((-538 . -503) 44540) ((-538 . -626) 44506) ((-59 . -102) 44436) ((-533 . -627) 44397) ((-533 . -626) 44309) ((-532 . -102) 44259) ((-529 . -102) 44189) ((-510 . -102) 44139) ((-509 . -102) 44069) ((-466 . -111) 44032) ((-333 . -662) 44014) ((-515 . -868) T) ((-431 . -1081) 43988) ((-1236 . -998) 43950) ((-1024 . -1137) T) ((-391 . -662) 43900) ((-1160 . -629) 43881) ((-966 . -527) 43814) ((-500 . -811) T) ((-487 . -38) 43655) ((-431 . -111) 43622) ((-500 . -808) T) ((-1025 . -320) 43560) ((-220 . -811) T) ((-220 . -808) T) ((-1024 . -23) T) ((-728 . -132) T) ((-1255 . -413) 43530) ((-852 . -662) 43475) ((-843 . -662) 43434) ((-327 . -25) 43286) ((-171 . -424) 43270) ((-327 . -21) 43141) ((-324 . -25) T) ((-324 . -21) T) ((-882 . -380) T) ((-986 . -629) 42994) ((-110 . -34) T) ((-751 . -629) 42950) ((-731 . -629) 42932) ((-495 . -664) 42765) ((-889 . -1083) T) ((-606 . -299) 42740) ((-593 . -148) T) ((-577 . -148) T) ((-508 . -148) T) ((-1197 . -733) 42569) ((-1082 . -102) 42547) ((-1150 . -733) 42396) ((-1145 . -654) 42378) ((-872 . -733) 42348) ((-686 . -1242) T) ((-1 . -102) T) ((-561 . -1242) T) ((-431 . -629) 42256) ((-246 . -626) 41949) ((-1140 . -1125) T) ((-1265 . -424) 41933) ((-1214 . -320) 41737) ((-986 . -1074) T) ((-751 . -1074) T) ((-731 . -1074) T) ((-660 . -1125) 41687) ((-1079 . -664) 41671) ((-873 . -424) 41655) ((-524 . -102) T) ((-520 . -102) T) ((-274 . -320) 41642) ((-254 . -320) 41629) ((-1276 . -923) 41535) ((-986 . -337) 41514) ((-1255 . -923) 41311) ((-397 . -664) 41295) ((-859 . -868) 41274) ((-686 . -1063) 41170) ((-492 . -320) 40974) ((-259 . -527) 40907) ((-258 . -527) 40840) ((-1166 . -320) 40766) ((-420 . -868) 40717) ((-1236 . -915) 40696) ((-835 . -1125) T) ((-815 . -1081) 40680) ((-1284 . -297) 40645) ((-1277 . -297) 40603) ((-1256 . -297) 40431) ((-399 . -1125) T) ((-335 . -1125) T) ((-431 . -1074) T) ((-171 . -1083) T) ((-59 . -320) 40369) ((-815 . -111) 40348) ((-608 . -297) 40313) ((-532 . -320) 40251) ((-529 . -320) 40189) ((-510 . -320) 40127) ((-509 . -320) 40065) ((-431 . -239) 40044) ((-495 . -34) T) ((-228 . -1125) T) ((-1029 . -627) 39974) ((-1029 . -626) 39934) ((-996 . -626) 39894) ((-937 . -626) 39876) ((-715 . -148) T) ((-1314 . -1242) T) ((-1312 . -1242) T) ((-717 . -943) T) ((-717 . -836) T) ((-440 . -626) 39858) ((-1145 . -21) T) ((-1145 . -25) T) ((-686 . -389) 39842) ((-117 . -943) T) ((-890 . -273) 39826) ((-890 . -233) 39810) ((-44 . -1242) T) ((-78 . -1242) T) ((-127 . -126) 39794) ((-1079 . -34) T) ((-1314 . -1063) 39768) ((-1312 . -1063) 39725) ((-1265 . -1083) T) ((-873 . -1083) T) ((-367 . -1177) 39704) ((-364 . -1177) 39683) ((-356 . -1177) 39662) ((-495 . -810) 39641) ((-495 . -809) 39620) ((-230 . -34) T) ((-495 . -742) 39598) ((-815 . -629) 39444) ((-678 . -1076) 39428) ((-60 . -502) 39412) ((-584 . -1083) T) ((-1197 . -174) 39303) ((-678 . -656) 39287) ((-487 . -923) 39193) ((-153 . -1242) T) ((-1150 . -174) 39104) ((-1087 . -1125) T) ((-1112 . -972) 39049) ((-975 . -1125) T) ((-833 . -664) 39000) ((-798 . -972) 38969) ((-729 . -1125) T) ((-796 . -972) 38936) ((-529 . -293) 38920) ((-686 . -921) 38879) ((-494 . -1125) T) ((-467 . -972) 38846) ((-79 . -1242) T) ((-367 . -38) 38811) ((-364 . -38) 38776) ((-356 . -38) 38741) ((-274 . -38) 38590) ((-254 . -38) 38439) ((-933 . -1177) T) ((-537 . -503) 38420) ((-636 . -148) 38399) ((-636 . -146) 38378) ((-537 . -626) 38344) ((-118 . -148) T) ((-118 . -146) NIL) ((-427 . -742) T) ((-815 . -1074) T) ((-577 . -238) T) ((-508 . -238) T) ((-355 . -465) T) ((-1284 . -1027) 38310) ((-1277 . -1027) 38276) ((-1256 . -1027) 38242) ((-933 . -38) 38207) ((-228 . -733) 38172) ((-1024 . -132) T) ((-653 . -662) 38141) ((-330 . -47) 38111) ((-40 . -422) 38083) ((-141 . -626) 38065) ((-987 . -1242) T) ((-831 . -1242) T) ((-176 . -943) T) ((-562 . -380) T) ((-730 . -662) 38010) ((-619 . -629) 37991) ((-355 . -415) T) ((-687 . -629) 37972) ((-324 . -235) NIL) ((-182 . -629) 37953) ((-162 . -629) 37934) ((-157 . -629) 37915) ((-155 . -629) 37896) ((-533 . -299) 37873) ((-1255 . -233) 37843) ((-1255 . -273) 37813) ((-1239 . -1242) 37791) ((-1203 . -664) 37716) ((-894 . -102) T) ((-831 . -1063) 37543) ((-45 . -34) T) ((-697 . -102) T) ((-692 . -102) T) ((-678 . -102) T) ((-670 . -21) T) ((-670 . -25) T) ((-1127 . -502) 37527) ((-691 . -1242) T) ((-491 . -102) T) ((-251 . -102) 37457) ((-559 . -860) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1112 . -915) 37352) ((-889 . -1125) T) ((-1197 . -527) 37299) ((-1087 . -733) 37286) ((-798 . -915) 37189) ((-747 . -1081) 37032) ((-796 . -915) 37014) ((-975 . -733) 36863) ((-1150 . -527) 36815) ((-1303 . -1125) T) ((-1302 . -1125) T) ((-467 . -915) 36790) ((-494 . -733) 36639) ((-67 . -626) 36621) ((-640 . -1242) T) ((-747 . -111) 36450) ((-966 . -502) 36434) ((-1304 . -664) 36394) ((-1199 . -1081) 36277) ((-833 . -742) T) ((-1198 . -1081) 36112) ((-1192 . -1081) 35902) ((-330 . -1242) T) ((-1151 . -1081) 35785) ((-1028 . -1246) T) ((-1119 . -102) 35763) ((-831 . -389) 35732) ((-592 . -626) 35714) ((-559 . -1125) T) ((-1028 . -569) T) ((-1199 . -111) 35583) ((-1198 . -111) 35404) ((-1192 . -111) 35173) ((-1151 . -111) 35042) ((-1130 . -1128) 35006) ((-391 . -864) T) ((-1284 . -626) 34988) ((-1277 . -626) 34970) ((-890 . -662) 34907) ((-1256 . -626) 34889) ((-1256 . -627) NIL) ((-246 . -299) 34866) ((-40 . -465) T) ((-228 . -174) T) ((-171 . -1125) T) ((-747 . -629) 34651) ((-710 . -148) T) ((-710 . -146) NIL) ((-609 . -626) 34633) ((-608 . -626) 34615) ((-1145 . -235) 34602) ((-919 . -1125) T) ((-857 . -1125) T) ((-824 . -1125) T) ((-274 . -923) 34512) ((-254 . -923) 34489) ((-785 . -1125) T) ((-693 . -1125) T) ((-674 . -870) 34473) ((-636 . -238) 34424) ((-831 . -921) 34356) ((-876 . -868) T) ((-1247 . -380) T) ((-40 . -415) NIL) ((-118 . -238) NIL) ((-1199 . -629) 34238) ((-1145 . -677) T) ((-889 . -733) 34183) ((-259 . -502) 34167) ((-258 . -502) 34151) ((-1198 . -629) 33894) ((-1192 . -629) 33689) ((-728 . -654) 33637) ((-669 . -664) 33611) ((-1151 . -629) 33493) ((-306 . -34) T) ((-1145 . -113) T) ((-747 . -1074) T) ((-594 . -1299) 33480) ((-531 . -1299) 33457) ((-1265 . -1125) T) ((-1197 . -301) 33368) ((-1150 . -301) 33299) ((-651 . -868) T) ((-1087 . -174) T) ((-300 . -1242) T) ((-873 . -1125) T) ((-975 . -174) 33210) ((-798 . -1268) 33194) ((-660 . -527) 33127) ((-77 . -626) 33109) ((-747 . -337) 33074) ((-1203 . -742) T) ((-584 . -1125) T) ((-494 . -174) 32985) ((-251 . -320) 32923) ((-1167 . -1137) T) ((-70 . -626) 32905) ((-1304 . -742) T) ((-1199 . -1074) T) ((-1198 . -1074) T) ((-1192 . -1074) T) ((-338 . -102) 32835) ((-1167 . -23) T) ((-2 . -1242) T) ((-1151 . -1074) T) ((-91 . -1146) 32819) ((-884 . -1137) T) ((-1199 . -239) 32778) ((-1198 . -249) 32757) ((-1198 . -239) 32709) ((-1192 . -239) 32596) ((-1192 . -249) 32575) ((-330 . -921) 32481) ((-884 . -23) T) ((-171 . -733) 32309) ((-420 . -1246) T) ((-1126 . -380) T) ((-1028 . -375) T) ((-888 . -465) T) ((-1049 . -148) T) ((-966 . -297) 32261) ((-324 . -865) NIL) ((-1276 . -662) 32143) ((-892 . -102) T) ((-1255 . -662) 31998) ((-728 . -25) T) ((-420 . -569) T) ((-728 . -21) T) ((-538 . -629) 31979) ((-366 . -148) 31961) ((-366 . -146) T) ((-1172 . -1125) 31939) ((-466 . -736) T) ((-75 . -626) 31921) ((-115 . -865) T) ((-251 . -293) 31905) ((-246 . -1081) 31826) ((-81 . -626) 31808) ((-751 . -380) 31761) ((-1201 . -844) T) ((-753 . -241) 31745) ((-1184 . -1242) T) ((-142 . -241) 31727) ((-246 . -111) 31643) ((-1265 . -733) 31472) ((-48 . -148) T) ((-889 . -174) T) ((-873 . -733) 31442) ((-497 . -1242) T) ((-975 . -527) 31389) ((-669 . -742) T) ((-584 . -733) 31376) ((-1059 . -1083) T) ((-710 . -238) NIL) ((-494 . -527) 31319) ((-966 . -19) 31303) ((-966 . -617) 31280) ((-1105 . -1242) T) ((-1086 . -1242) T) ((-1236 . -656) 31177) ((-832 . -627) NIL) ((-832 . -626) 31159) ((-1236 . -1076) 31042) ((-1105 . -1063) 30938) ((-1029 . -1081) 30888) ((-426 . -626) 30870) ((-259 . -297) 30847) ((-371 . -1242) T) ((-365 . -1242) T) ((-357 . -1242) T) ((-258 . -297) 30824) ((-500 . -932) NIL) ((-327 . -29) 30794) ((-108 . -1242) T) ((-1028 . -1137) T) ((-220 . -932) NIL) ((-937 . -1081) 30746) ((-655 . -1299) 30730) ((-1029 . -111) 30664) ((-1028 . -23) T) ((-727 . -1076) 30629) ((-937 . -111) 30567) ((-753 . -711) 30551) ((-727 . -656) 30516) ((-274 . -273) 30500) ((-274 . -233) 30484) ((-440 . -1081) 30468) ((-391 . -1083) T) ((-246 . -629) 30266) ((-710 . -1230) NIL) ((-500 . -664) 30216) ((-487 . -662) 30098) ((-108 . -903) 30080) ((-108 . -905) 30062) ((-710 . -1227) NIL) ((-220 . -664) 30012) ((-371 . -1063) 29996) ((-365 . -1063) 29980) ((-338 . -320) 29918) ((-357 . -1063) 29902) ((-228 . -301) T) ((-440 . -111) 29881) ((-60 . -626) 29813) ((-171 . -174) T) ((-1145 . -865) T) ((-108 . -1063) 29773) ((-911 . -1125) T) ((-852 . -1083) T) ((-843 . -1083) T) ((-710 . -35) NIL) ((-710 . -95) NIL) ((-324 . -1017) 29734) ((-185 . -102) T) ((-1315 . -1137) T) ((-1315 . -23) T) ((-593 . -465) T) ((-577 . -465) T) ((-508 . -465) T) ((-1307 . -626) 29716) ((-1265 . -174) 29607) ((-1236 . -102) T) ((-420 . -375) T) ((-1223 . -1125) T) ((-1214 . -232) 29557) ((-1208 . -860) T) ((-1207 . -860) T) ((-1191 . -1242) T) ((-246 . -1074) 29535) ((-1019 . -1242) T) ((-1175 . -34) T) ((-1192 . -808) NIL) ((-1192 . -811) NIL) ((-1183 . -1242) T) ((-490 . -943) T) ((-1024 . -654) 29483) ((-259 . -617) 29460) ((-258 . -617) 29437) ((-1167 . -132) T) ((-1127 . -627) 29398) ((-1105 . -389) 29382) ((-889 . -527) 29290) ((-246 . -239) 29242) ((-1127 . -626) 29224) ((-1113 . -1125) T) ((-1029 . -629) 29174) ((-1105 . -921) 29107) ((-937 . -629) 29044) ((-840 . -626) 29026) ((-1101 . -1125) T) ((-1087 . -301) T) ((-1029 . -249) T) ((-1029 . -239) T) ((-1029 . -1074) T) ((-981 . -1125) 28976) ((-975 . -301) 28907) ((-440 . -629) 28876) ((-108 . -389) 28858) ((-108 . -350) 28840) ((-937 . -1074) T) ((-937 . -249) T) ((-815 . -380) 28819) ((-727 . -102) T) ((-717 . -868) T) ((-663 . -1242) T) ((-645 . -1242) T) ((-621 . -1125) T) ((-621 . -623) 28795) ((-599 . -1076) 28770) ((-494 . -301) 28701) ((-584 . -174) T) ((-338 . -293) 28685) ((-366 . -238) T) ((-599 . -656) 28660) ((-367 . -361) 28639) ((-364 . -361) 28618) ((-356 . -361) 28597) ((-214 . -1242) T) ((-83 . -626) 28579) ((-213 . -1242) T) ((-211 . -1242) T) ((-210 . -1242) T) ((-209 . -1242) T) ((-208 . -1242) T) ((-205 . -1242) T) ((-204 . -1242) T) ((-203 . -1242) T) ((-202 . -1242) T) ((-488 . -1125) T) ((-201 . -1242) T) ((-274 . -261) 28541) ((-200 . -1242) T) ((-199 . -1242) T) ((-198 . -1242) T) ((-197 . -1242) T) ((-196 . -1242) T) ((-488 . -623) 28520) ((-195 . -1242) T) ((-284 . -1242) T) ((-283 . -1242) T) ((-282 . -1242) T) ((-281 . -1242) T) ((-492 . -232) 28470) ((-280 . -1242) T) ((-279 . -1242) T) ((-278 . -1242) T) ((-440 . -1074) T) ((-884 . -132) T) ((-859 . -1137) 28449) ((-48 . -238) T) ((-715 . -465) T) ((-108 . -921) NIL) ((-135 . -868) T) ((-1236 . -295) 28415) ((-1138 . -1242) T) ((-890 . -864) 28394) ((-1024 . -25) T) ((-928 . -742) T) ((-171 . -527) 28306) ((-1024 . -21) T) ((-928 . -486) T) ((-420 . -1137) T) ((-500 . -810) T) ((-500 . -807) T) ((-933 . -361) T) ((-500 . -742) T) ((-220 . -810) T) ((-220 . -807) T) ((-728 . -235) 28293) ((-220 . -742) T) ((-859 . -23) 28245) ((-1209 . -1125) T) ((-674 . -1076) 28229) ((-1208 . -1125) T) ((-537 . -629) 28210) ((-1207 . -1125) T) ((-330 . -318) 28189) ((-1060 . -241) 28135) ((-674 . -656) 28105) ((-420 . -23) T) ((-966 . -627) 28066) ((-966 . -626) 27978) ((-660 . -502) 27962) ((-45 . -1035) 27912) ((-1138 . -1063) 27739) ((-630 . -992) T) ((-504 . -102) T) ((-342 . -626) 27721) ((-1018 . -297) 27688) ((-606 . -667) 27670) ((-129 . -1125) T) ((-131 . -1125) T) ((-606 . -385) 27652) ((-355 . -1299) 27629) ((-452 . -626) 27611) ((-1265 . -527) 27558) ((-1112 . -1076) 27401) ((-1052 . -1242) T) ((-889 . -301) T) ((-1197 . -297) 27328) ((-1112 . -656) 27177) ((-1025 . -1020) 27161) ((-798 . -1076) 26984) ((-796 . -1076) 26827) ((-798 . -656) 26656) ((-796 . -656) 26505) ((-489 . -1242) T) ((-476 . -1242) T) ((-599 . -102) T) ((-474 . -1076) 26476) ((-467 . -1076) 26319) ((-680 . -662) 26288) ((-636 . -465) 26267) ((-474 . -656) 26238) ((-467 . -656) 26087) ((-367 . -662) 26024) ((-364 . -662) 25961) ((-356 . -662) 25898) ((-274 . -662) 25808) ((-254 . -662) 25718) ((-1307 . -394) 25690) ((-530 . -1125) T) ((-118 . -465) T) ((-1222 . -102) T) ((-1117 . -1125) 25660) ((-1059 . -1125) T) ((-1140 . -93) T) ((-912 . -865) T) ((-1284 . -111) 25529) ((-363 . -1246) T) ((-1284 . -1081) 25412) ((-1138 . -389) 25381) ((-1277 . -1081) 25216) ((-1256 . -1081) 25006) ((-1277 . -111) 24827) ((-1256 . -111) 24596) ((-1236 . -320) 24583) ((-1028 . -132) T) ((-933 . -662) 24533) ((-377 . -626) 24515) ((-363 . -569) T) ((-300 . -318) T) ((-609 . -1081) 24475) ((-608 . -1081) 24358) ((-594 . -1076) 24323) ((-531 . -1076) 24268) ((-373 . -1125) T) ((-333 . -1125) T) ((-259 . -626) 24229) ((-258 . -626) 24190) ((-594 . -656) 24155) ((-531 . -656) 24100) ((-710 . -422) 24067) ((-648 . -23) T) ((-620 . -23) T) ((-40 . -915) 23974) ((-674 . -102) T) ((-609 . -111) 23927) ((-608 . -111) 23796) ((-391 . -1125) T) ((-348 . -102) T) ((-171 . -301) 23707) ((-1255 . -864) 23660) ((-730 . -1083) T) ((-625 . -1242) T) ((-1172 . -527) 23593) ((-1215 . -851) 23577) ((-1138 . -921) 23509) ((-852 . -1125) T) ((-843 . -1125) T) ((-841 . -1125) T) ((-97 . -102) T) ((-145 . -865) T) ((-625 . -903) 23493) ((-1176 . -1242) T) ((-110 . -1242) T) ((-1112 . -102) T) ((-1088 . -34) T) ((-798 . -102) T) ((-796 . -102) T) ((-1284 . -629) 23375) ((-1277 . -629) 23118) ((-474 . -102) T) ((-467 . -102) T) ((-1256 . -629) 22913) ((-96 . -1242) T) ((-246 . -811) 22892) ((-246 . -808) 22871) ((-665 . -102) T) ((-609 . -629) 22829) ((-608 . -629) 22711) ((-1265 . -301) 22622) ((-680 . -647) 22606) ((-188 . -626) 22588) ((-660 . -297) 22540) ((-1059 . -733) 22524) ((-584 . -301) T) ((-986 . -664) 22449) ((-1315 . -132) T) ((-751 . -664) 22409) ((-731 . -664) 22396) ((-285 . -102) T) ((-466 . -664) 22326) ((-50 . -102) T) ((-594 . -102) T) ((-531 . -102) T) ((-1284 . -1074) T) ((-1277 . -1074) T) ((-1256 . -1074) T) ((-1165 . -1242) T) ((-520 . -662) 22308) ((-333 . -733) 22290) ((-1284 . -239) 22249) ((-1277 . -249) 22228) ((-1277 . -239) 22180) ((-1256 . -239) 22067) ((-1256 . -249) 22046) ((-1236 . -38) 21943) ((-609 . -1074) T) ((-608 . -1074) T) ((-1029 . -811) T) ((-1029 . -808) T) ((-996 . -811) T) ((-996 . -808) T) ((-890 . -1083) T) ((-109 . -626) 21925) ((-710 . -465) T) ((-391 . -733) 21890) ((-431 . -664) 21864) ((-888 . -887) 21848) ((-727 . -38) 21813) ((-608 . -239) 21772) ((-40 . -740) 21744) ((-363 . -340) 21721) ((-363 . -375) T) ((-1105 . -318) 21672) ((-305 . -1137) 21553) ((-1131 . -1242) T) ((-1024 . -235) 21498) ((-173 . -102) T) ((-1259 . -626) 21465) ((-859 . -132) 21417) ((-852 . -733) 21387) ((-660 . -1280) 21371) ((-843 . -733) 21341) ((-660 . -617) 21318) ((-495 . -1242) T) ((-371 . -318) T) ((-365 . -318) T) ((-357 . -318) T) ((-412 . -235) 21305) ((-420 . -132) T) ((-533 . -682) 21289) ((-108 . -318) T) ((-305 . -23) 21172) ((-533 . -667) 21156) ((-710 . -415) NIL) ((-533 . -385) 21140) ((-655 . -1076) 21124) ((-655 . -656) 21108) ((-302 . -626) 21090) ((-91 . -1125) 21068) ((-108 . -1047) T) ((-577 . -144) T) ((-1292 . -152) 21052) ((-495 . -1063) 20879) ((-1278 . -146) 20840) ((-1278 . -148) 20801) ((-1079 . -1242) T) ((-1303 . -93) T) ((-1018 . -626) 20783) ((-834 . -1242) T) ((-880 . -626) 20765) ((-832 . -1081) 20608) ((-1302 . -93) T) ((-1197 . -627) NIL) ((-1121 . -1125) T) ((-1115 . -1125) T) ((-1112 . -320) 20595) ((-427 . -1242) T) ((-397 . -1242) T) ((-1098 . -1125) T) ((-230 . -1242) T) ((-1091 . -1125) T) ((-1061 . -1125) T) ((-1044 . -1125) T) ((-798 . -320) 20582) ((-796 . -320) 20569) ((-1197 . -626) 20551) ((-832 . -111) 20380) ((-1150 . -626) 20362) ((-639 . -1125) T) ((-590 . -175) T) ((-542 . -175) T) ((-467 . -320) 20349) ((-496 . -1125) T) ((-1150 . -627) 20097) ((-1059 . -174) T) ((-966 . -299) 20074) ((-221 . -1125) T) ((-872 . -626) 20056) ((-621 . -527) 19839) ((-81 . -629) 19780) ((-834 . -1063) 19764) ((-488 . -527) 19556) ((-849 . -868) 19535) ((-986 . -742) T) ((-751 . -742) T) ((-731 . -742) T) ((-363 . -1137) T) ((-1204 . -626) 19517) ((-226 . -102) T) ((-495 . -389) 19486) ((-528 . -1125) T) ((-523 . -1125) T) ((-521 . -1125) T) ((-815 . -664) 19460) ((-1049 . -465) T) ((-981 . -527) 19393) ((-363 . -23) T) ((-648 . -132) T) ((-620 . -132) T) ((-366 . -465) T) ((-246 . -380) 19372) ((-391 . -174) T) ((-1276 . -1083) T) ((-1255 . -1083) T) ((-228 . -1027) T) ((-832 . -629) 19109) ((-715 . -400) T) ((-431 . -742) T) ((-717 . -1246) T) ((-1167 . -654) 19057) ((-653 . -1125) T) ((-655 . -102) T) ((-593 . -887) 19041) ((-1307 . -1081) 19025) ((-1184 . -1218) 19001) ((-717 . -569) T) ((-127 . -1125) 18979) ((-730 . -1125) T) ((-674 . -38) 18949) ((-495 . -921) 18881) ((-256 . -1125) T) ((-189 . -1125) T) ((-366 . -415) T) ((-327 . -148) 18860) ((-327 . -146) 18839) ((-117 . -569) T) ((-129 . -527) NIL) ((-324 . -148) 18795) ((-324 . -146) 18751) ((-48 . -465) T) ((-163 . -1125) T) ((-158 . -1125) T) ((-1184 . -107) 18698) ((-798 . -1177) 18676) ((-1307 . -111) 18655) ((-705 . -34) T) ((-605 . -1242) T) ((-563 . -34) T) ((-497 . -107) 18639) ((-259 . -299) 18616) ((-258 . -299) 18593) ((-1248 . -860) T) ((-889 . -297) 18544) ((-45 . -1242) T) ((-1236 . -923) 18525) ((-833 . -1242) T) ((-832 . -1074) T) ((-634 . -868) 18504) ((-678 . -662) 18473) ((-1203 . -47) 18450) ((-832 . -337) 18412) ((-1112 . -38) 18261) ((-832 . -239) 18240) ((-798 . -38) 18069) ((-796 . -38) 17918) ((-1140 . -503) 17899) ((-467 . -38) 17748) ((-1140 . -626) 17714) ((-1143 . -102) T) ((-660 . -627) 17675) ((-660 . -626) 17587) ((-594 . -1177) T) ((-531 . -1177) T) ((-1172 . -502) 17571) ((-355 . -1076) 17516) ((-1228 . -1125) 17494) ((-1167 . -25) T) ((-1167 . -21) T) ((-355 . -656) 17439) ((-1307 . -629) 17388) ((-341 . -1242) T) ((-487 . -1083) T) ((-1248 . -1125) T) ((-1256 . -808) NIL) ((-1256 . -811) NIL) ((-1024 . -865) 17367) ((-884 . -21) T) ((-854 . -1125) T) ((-835 . -626) 17349) ((-884 . -25) T) ((-815 . -742) T) ((-653 . -733) 17333) ((-176 . -1246) T) ((-594 . -38) 17298) ((-531 . -38) 17263) ((-399 . -626) 17245) ((-344 . -102) T) ((-335 . -626) 17227) ((-171 . -297) 17185) ((-1250 . -868) T) ((-63 . -1242) T) ((-112 . -102) T) ((-890 . -1125) T) ((-525 . -1242) T) ((-176 . -569) T) ((-730 . -733) 17155) ((-305 . -132) 17038) ((-228 . -626) 17020) ((-228 . -627) 16950) ((-1028 . -654) 16889) ((-1307 . -1074) T) ((-1203 . -1242) T) ((-1145 . -148) T) ((-645 . -1218) 16864) ((-747 . -932) 16843) ((-606 . -34) T) ((-663 . -107) 16827) ((-645 . -107) 16773) ((-1304 . -1242) T) ((-636 . -915) 16694) ((-1265 . -297) 16621) ((-747 . -664) 16510) ((-306 . -1242) T) ((-1203 . -1063) 16406) ((-966 . -631) 16383) ((-590 . -589) T) ((-590 . -540) T) ((-542 . -540) T) ((-118 . -915) NIL) ((-1192 . -932) NIL) ((-1087 . -627) 16298) ((-1087 . -626) 16280) ((-975 . -626) 16262) ((-729 . -503) 16212) ((-355 . -102) T) ((-259 . -1081) 16133) ((-258 . -1081) 16054) ((-407 . -102) T) ((-31 . -1125) T) ((-975 . -627) 15915) ((-729 . -626) 15850) ((-1305 . -1235) 15819) ((-494 . -626) 15801) ((-494 . -627) 15662) ((-274 . -424) 15646) ((-254 . -424) 15630) ((-324 . -238) NIL) ((-259 . -111) 15546) ((-258 . -111) 15462) ((-1199 . -664) 15387) ((-1198 . -664) 15284) ((-1192 . -664) 15136) ((-1151 . -664) 15061) ((-363 . -132) T) ((-82 . -454) T) ((-82 . -408) T) ((-1028 . -25) T) ((-1028 . -21) T) ((-891 . -1125) 15012) ((-40 . -1076) 14957) ((-890 . -733) 14909) ((-40 . -656) 14854) ((-391 . -301) T) ((-171 . -1027) 14805) ((-1112 . -923) 14704) ((-710 . -400) T) ((-1024 . -1022) 14688) ((-717 . -1137) T) ((-710 . -167) 14670) ((-798 . -923) 14577) ((-796 . -923) 14561) ((-1276 . -1125) T) ((-1255 . -1125) T) ((-1189 . -102) T) ((-327 . -1227) 14540) ((-327 . -1230) 14519) ((-467 . -923) 14496) ((-327 . -982) 14475) ((-135 . -1137) T) ((-117 . -1137) T) ((-995 . -1242) T) ((-882 . -1242) T) ((-717 . -23) T) ((-669 . -1242) T) ((-615 . -1290) 14459) ((-615 . -1125) 14409) ((-544 . -868) T) ((-513 . -868) T) ((-327 . -95) 14388) ((-91 . -527) 14321) ((-176 . -375) T) ((-259 . -629) 14119) ((-258 . -629) 13917) ((-327 . -35) 13896) ((-621 . -502) 13830) ((-135 . -23) T) ((-117 . -23) T) ((-989 . -102) T) ((-734 . -1125) T) ((-488 . -502) 13767) ((-420 . -654) 13715) ((-669 . -1063) 13611) ((-981 . -502) 13595) ((-367 . -1083) T) ((-364 . -1083) T) ((-356 . -1083) T) ((-274 . -1083) T) ((-254 . -1083) T) ((-889 . -627) NIL) ((-889 . -626) 13577) ((-1303 . -503) 13558) ((-1302 . -503) 13539) ((-1315 . -21) T) ((-1303 . -626) 13505) ((-1302 . -626) 13471) ((-584 . -1027) T) ((-747 . -742) T) ((-1315 . -25) T) ((-259 . -1074) 13449) ((-258 . -1074) 13427) ((-72 . -1242) T) ((-1167 . -235) 13372) ((-259 . -239) 13324) ((-258 . -239) 13276) ((-1145 . -238) T) ((-40 . -102) T) ((-933 . -1083) T) ((-710 . -915) NIL) ((-1206 . -102) T) ((-129 . -502) 13258) ((-1199 . -742) T) ((-1198 . -742) T) ((-1192 . -742) T) ((-1192 . -807) NIL) ((-1192 . -810) NIL) ((-977 . -102) T) ((-944 . -102) T) ((-888 . -1076) 13245) ((-1151 . -742) T) ((-787 . -102) T) ((-688 . -102) T) ((-888 . -656) 13232) ((-559 . -626) 13214) ((-487 . -1125) T) ((-351 . -1137) T) ((-176 . -1137) T) ((-330 . -943) 13193) ((-1276 . -733) 13034) ((-890 . -174) T) ((-1255 . -733) 12848) ((-859 . -21) 12800) ((-859 . -25) 12752) ((-251 . -1174) 12736) ((-127 . -527) 12669) ((-420 . -25) T) ((-420 . -21) T) ((-351 . -23) T) ((-171 . -627) 12435) ((-171 . -626) 12417) ((-176 . -23) T) ((-660 . -299) 12394) ((-533 . -34) T) ((-919 . -626) 12376) ((-89 . -1242) T) ((-857 . -626) 12358) ((-824 . -626) 12340) ((-785 . -626) 12322) ((-693 . -626) 12304) ((-246 . -664) 12137) ((-630 . -113) T) ((-1201 . -1125) T) ((-1197 . -1081) 11960) ((-216 . -1242) T) ((-1175 . -1242) T) ((-1150 . -1081) 11803) ((-872 . -1081) 11787) ((-1107 . -868) T) ((-1259 . -631) 11771) ((-1197 . -111) 11580) ((-1150 . -111) 11409) ((-872 . -111) 11388) ((-1249 . -865) T) ((-1265 . -627) NIL) ((-1265 . -626) 11370) ((-355 . -1177) T) ((-873 . -626) 11352) ((-1101 . -297) 11331) ((-1236 . -662) 11241) ((-80 . -1242) T) ((-928 . -1242) T) ((-1228 . -527) 11174) ((-1029 . -932) NIL) ((-1112 . -273) 11158) ((-621 . -297) 11134) ((-1112 . -233) 11118) ((-500 . -1242) T) ((-584 . -626) 11100) ((-488 . -297) 11079) ((-1029 . -664) 11029) ((-530 . -93) T) ((-1028 . -235) 10960) ((-220 . -1242) T) ((-981 . -297) 10912) ((-888 . -102) T) ((-300 . -943) T) ((-833 . -318) 10891) ((-798 . -273) 10875) ((-798 . -233) 10859) ((-937 . -664) 10811) ((-727 . -662) 10761) ((-710 . -740) 10728) ((-648 . -21) T) ((-648 . -25) T) ((-620 . -21) T) ((-560 . -102) T) ((-355 . -38) 10693) ((-500 . -903) 10675) ((-500 . -905) 10657) ((-487 . -733) 10498) ((-64 . -1242) T) ((-220 . -903) 10480) ((-220 . -905) 10462) ((-620 . -25) T) ((-440 . -664) 10436) ((-1197 . -629) 10205) ((-500 . -1063) 10165) ((-890 . -527) 10077) ((-1150 . -629) 9869) ((-872 . -629) 9787) ((-220 . -1063) 9747) ((-246 . -34) T) ((-1025 . -1125) 9725) ((-593 . -1076) 9712) ((-577 . -1076) 9699) ((-508 . -1076) 9664) ((-1276 . -174) 9595) ((-1255 . -174) 9526) ((-593 . -656) 9513) ((-577 . -656) 9500) ((-508 . -656) 9465) ((-728 . -146) 9444) ((-728 . -148) 9423) ((-130 . -868) T) ((-717 . -132) T) ((-562 . -1242) T) ((-137 . -478) 9400) ((-1172 . -626) 9332) ((-674 . -672) 9316) ((-129 . -297) 9266) ((-117 . -132) T) ((-490 . -1246) T) ((-621 . -617) 9242) ((-488 . -617) 9221) ((-610 . -1125) T) ((-348 . -347) 9190) ((-598 . -1125) T) ((-549 . -1125) T) ((-490 . -569) T) ((-1197 . -1074) T) ((-1150 . -1074) T) ((-872 . -1074) T) ((-839 . -1242) T) ((-246 . -810) 9169) ((-246 . -809) 9148) ((-1197 . -337) 9125) ((-246 . -742) 9103) ((-981 . -19) 9087) ((-500 . -389) 9069) ((-500 . -350) 9051) ((-1150 . -337) 9023) ((-366 . -1299) 9000) ((-220 . -389) 8982) ((-220 . -350) 8964) ((-981 . -617) 8941) ((-1197 . -239) T) ((-1288 . -1125) T) ((-1214 . -1125) T) ((-680 . -1125) T) ((-661 . -1125) T) ((-1112 . -261) 8878) ((-599 . -662) 8838) ((-367 . -1125) T) ((-364 . -1125) T) ((-356 . -1125) T) ((-274 . -1125) T) ((-254 . -1125) T) ((-84 . -1242) T) ((-217 . -102) T) ((-128 . -102) 8788) ((-122 . -102) 8738) ((-1255 . -527) 8598) ((-1214 . -623) 8577) ((-1166 . -1125) T) ((-1140 . -629) 8558) ((-1105 . -943) 8509) ((-492 . -1125) T) ((-1029 . -810) T) ((-1029 . -807) T) ((-492 . -623) 8488) ((-259 . -811) 8467) ((-259 . -808) 8446) ((-258 . -811) 8425) ((-40 . -1177) NIL) ((-258 . -808) 8404) ((-1029 . -742) T) ((-129 . -19) 8386) ((-996 . -810) T) ((-715 . -1076) 8351) ((-937 . -742) T) ((-933 . -1125) T) ((-911 . -626) 8333) ((-129 . -617) 8308) ((-715 . -656) 8273) ((-91 . -502) 8257) ((-500 . -921) NIL) ((-890 . -301) T) ((-228 . -1081) 8222) ((-852 . -297) 8201) ((-220 . -921) NIL) ((-849 . -1137) 8180) ((-59 . -1125) 8130) ((-532 . -1125) 8108) ((-529 . -1125) 8058) ((-510 . -1125) 8036) ((-509 . -1125) 7986) ((-593 . -102) T) ((-577 . -102) T) ((-508 . -102) T) ((-487 . -174) 7917) ((-371 . -943) T) ((-365 . -943) T) ((-357 . -943) T) ((-228 . -111) 7873) ((-849 . -23) 7825) ((-440 . -742) T) ((-108 . -943) T) ((-40 . -38) 7770) ((-108 . -836) T) ((-594 . -361) T) ((-531 . -361) T) ((-674 . -662) 7729) ((-327 . -465) 7708) ((-324 . -465) T) ((-615 . -527) 7641) ((-420 . -235) 7586) ((-351 . -132) T) ((-176 . -132) T) ((-305 . -25) 7450) ((-305 . -21) 7333) ((-45 . -1218) 7312) ((-66 . -626) 7294) ((-55 . -102) T) ((-348 . -662) 7276) ((-1293 . -102) T) ((-1292 . -102) 7206) ((-1284 . -664) 7131) ((-1277 . -664) 7028) ((-45 . -107) 6978) ((-835 . -629) 6962) ((-1256 . -664) 6814) ((-1256 . -932) NIL) ((-1247 . -1242) T) ((-1223 . -626) 6796) ((-1215 . -102) T) ((-1127 . -438) 6780) ((-1127 . -380) 6759) ((-399 . -629) 6743) ((-335 . -629) 6727) ((-1121 . -93) T) ((-1112 . -662) 6637) ((-1088 . -1242) T) ((-1087 . -1081) 6624) ((-1087 . -111) 6609) ((-975 . -111) 6438) ((-975 . -1081) 6281) ((-798 . -662) 6191) ((-796 . -662) 6101) ((-680 . -733) 6085) ((-636 . -1076) 6072) ((-636 . -656) 6059) ((-561 . -868) T) ((-494 . -1081) 5902) ((-490 . -375) T) ((-474 . -662) 5858) ((-467 . -662) 5768) ((-228 . -629) 5718) ((-367 . -733) 5670) ((-364 . -733) 5622) ((-118 . -1076) 5567) ((-356 . -733) 5519) ((-274 . -733) 5368) ((-254 . -733) 5217) ((-1115 . -93) T) ((-1098 . -93) T) ((-118 . -656) 5162) ((-1091 . -93) T) ((-966 . -667) 5146) ((-1082 . -1125) 5124) ((-494 . -111) 4953) ((-1061 . -93) T) ((-1044 . -93) T) ((-966 . -385) 4937) ((-255 . -102) T) ((-986 . -47) 4916) ((-74 . -626) 4898) ((-728 . -238) T) ((-726 . -102) T) ((-715 . -102) T) ((-1 . -1125) T) ((-634 . -1137) T) ((-1113 . -626) 4880) ((-639 . -93) T) ((-1101 . -626) 4862) ((-933 . -733) 4827) ((-127 . -502) 4811) ((-496 . -93) T) ((-634 . -23) T) ((-403 . -23) T) ((-87 . -1242) T) ((-221 . -93) T) ((-621 . -626) 4793) ((-621 . -627) NIL) ((-488 . -627) NIL) ((-488 . -626) 4775) ((-363 . -25) T) ((-363 . -21) T) ((-50 . -662) 4734) ((-524 . -1125) T) ((-520 . -1125) T) ((-122 . -320) 4672) ((-128 . -320) 4610) ((-609 . -664) 4584) ((-608 . -664) 4509) ((-594 . -662) 4459) ((-228 . -1074) T) ((-531 . -662) 4389) ((-1087 . -629) 4361) ((-391 . -1027) T) ((-228 . -249) T) ((-228 . -239) T) ((-866 . -503) 4345) ((-1087 . -631) 4326) ((-981 . -627) 4287) ((-981 . -626) 4199) ((-975 . -629) 3988) ((-866 . -626) 3936) ((-888 . -38) 3923) ((-729 . -629) 3873) ((-1276 . -301) 3824) ((-1255 . -301) 3775) ((-494 . -629) 3560) ((-1145 . -465) T) ((-515 . -865) T) ((-327 . -1164) 3539) ((-1126 . -1242) T) ((-1024 . -148) 3518) ((-1024 . -146) 3497) ((-508 . -320) 3484) ((-1209 . -626) 3466) ((-306 . -1218) 3445) ((-1208 . -626) 3427) ((-1160 . -1242) T) ((-1207 . -626) 3409) ((-889 . -1081) 3354) ((-490 . -1137) T) ((-140 . -851) 3336) ((-115 . -851) 3317) ((-1228 . -502) 3301) ((-1087 . -1074) T) ((-636 . -102) T) ((-986 . -1242) T) ((-975 . -1074) T) ((-259 . -380) 3280) ((-258 . -380) 3259) ((-889 . -111) 3188) ((-306 . -107) 3138) ((-131 . -626) 3120) ((-129 . -627) NIL) ((-129 . -626) 3064) ((-118 . -102) T) ((-751 . -1242) T) ((-731 . -1242) T) ((-490 . -23) T) ((-466 . -1242) T) ((-494 . -1074) T) ((-1087 . -239) T) ((-975 . -337) 3033) ((-40 . -923) 2942) ((-494 . -337) 2899) ((-367 . -174) T) ((-364 . -174) T) ((-356 . -174) T) ((-274 . -174) 2810) ((-254 . -174) 2721) ((-986 . -1063) 2617) ((-530 . -503) 2598) ((-751 . -1063) 2569) ((-530 . -626) 2535) ((-431 . -1242) T) ((-1130 . -102) T) ((-1117 . -626) 2494) ((-1059 . -626) 2476) ((-710 . -1076) 2426) ((-1305 . -152) 2410) ((-1303 . -629) 2391) ((-1302 . -629) 2372) ((-1297 . -626) 2354) ((-1284 . -742) T) ((-710 . -656) 2304) ((-1277 . -742) T) ((-1256 . -807) NIL) ((-1256 . -810) NIL) ((-171 . -1081) 2214) ((-933 . -174) T) ((-889 . -629) 2144) ((-1256 . -742) T) ((-1028 . -354) 2118) ((-226 . -662) 2070) ((-1025 . -527) 2003) ((-859 . -865) 1982) ((-577 . -1177) T) ((-487 . -301) 1933) ((-609 . -742) T) ((-373 . -626) 1915) ((-333 . -626) 1897) ((-431 . -1063) 1793) ((-608 . -742) T) ((-420 . -865) 1744) ((-171 . -111) 1640) ((-849 . -132) 1592) ((-1292 . -320) 1530) ((-753 . -152) 1514) ((-987 . -868) 1413) ((-831 . -868) 1364) ((-500 . -318) T) ((-391 . -626) 1331) ((-533 . -1035) 1315) ((-391 . -627) 1229) ((-220 . -318) T) ((-142 . -152) 1211) ((-730 . -297) 1190) ((-500 . -1047) T) ((-593 . -38) 1177) ((-577 . -38) 1164) ((-508 . -38) 1129) ((-655 . -662) 1098) ((-220 . -1047) T) ((-889 . -1074) T) ((-852 . -626) 1080) ((-843 . -626) 1062) ((-841 . -626) 1044) ((-832 . -932) 1023) ((-1316 . -1137) T) ((-323 . -1242) T) ((-1265 . -1081) 846) ((-873 . -1081) 830) ((-889 . -249) T) ((-889 . -239) NIL) ((-705 . -1242) T) ((-1316 . -23) T) ((-832 . -664) 719) ((-563 . -1242) T) ((-431 . -350) 703) ((-584 . -1081) 690) ((-1265 . -111) 499) ((-717 . -654) 481) ((-873 . -111) 460) ((-393 . -23) T) ((-171 . -629) 238) ((-1214 . -527) 30) ((-894 . -1125) T) ((-697 . -1125) T) ((-692 . -1125) T) ((-678 . -1125) T))
\ No newline at end of file +(((-491 . -1130) T) ((-274 . -527) 205623) ((-254 . -527) 205566) ((-251 . -1130) 205516) ((-584 . -111) 205501) ((-544 . -23) T) ((-139 . -1130) T) ((-138 . -1130) T) ((-118 . -320) 205458) ((-134 . -1130) T) ((-1029 . -238) 205409) ((-820 . -1247) T) ((-492 . -527) 205201) ((-698 . -634) 205185) ((-715 . -102) T) ((-1171 . -527) 205104) ((-412 . -238) T) ((-403 . -132) T) ((-1310 . -1006) 205073) ((-1054 . -1081) 205010) ((-330 . -873) T) ((-1054 . -661) 204947) ((-31 . -93) T) ((-615 . -502) 204931) ((-840 . -867) T) ((-639 . -132) T) ((-625 . -102) T) ((-536 . -57) 204881) ((-620 . -102) T) ((-532 . -527) 204814) ((-363 . -235) 204801) ((-366 . -1081) 204746) ((-59 . -527) 204679) ((-529 . -527) 204612) ((-431 . -926) 204571) ((-171 . -1079) T) ((-510 . -527) 204504) ((-509 . -527) 204437) ((-366 . -661) 204382) ((-820 . -1068) 204162) ((-1270 . -634) 203910) ((-720 . -38) 203875) ((-1124 . -1123) 203859) ((-355 . -361) T) ((-481 . -1247) T) ((-1124 . -1130) 203837) ((-878 . -634) 203734) ((-171 . -249) 203685) ((-171 . -239) 203636) ((-1124 . -1125) 203594) ((-895 . -297) 203552) ((-228 . -816) T) ((-228 . -813) T) ((-715 . -295) NIL) ((-584 . -634) 203524) ((-1180 . -1223) 203503) ((-420 . -1022) 203487) ((-48 . -1081) 203452) ((-722 . -21) T) ((-722 . -25) T) ((-48 . -661) 203417) ((-1312 . -669) 203391) ((-1270 . -337) 203368) ((-1180 . -107) 203318) ((-327 . -161) 203297) ((-327 . -144) 203276) ((-117 . -21) T) ((-40 . -233) 203253) ((-40 . -273) 203230) ((-135 . -25) T) ((-117 . -25) T) ((-1270 . -239) T) ((-1270 . -1079) T) ((-626 . -299) 203206) ((-878 . -1079) T) ((-618 . -1247) T) ((-820 . -350) 203190) ((-488 . -299) 203169) ((-692 . -1247) T) ((-182 . -1247) T) ((-162 . -1247) T) ((-157 . -1247) T) ((-155 . -1247) T) ((-140 . -187) T) ((-118 . -1182) NIL) ((-91 . -631) 203101) ((-490 . -132) T) ((-1195 . -1247) T) ((-1126 . -503) 203082) ((-1126 . -631) 203048) ((-1120 . -503) 203029) ((-1120 . -631) 202995) ((-606 . -1247) T) ((-1103 . -503) 202976) ((-584 . -1079) T) ((-1103 . -631) 202942) ((-683 . -738) 202926) ((-1096 . -503) 202907) ((-1096 . -631) 202873) ((-986 . -299) 202850) ((-60 . -34) T) ((-1092 . -816) T) ((-1092 . -813) T) ((-1066 . -503) 202831) ((-1049 . -503) 202812) ((-837 . -747) T) ((-752 . -47) 202777) ((-641 . -38) 202764) ((-367 . -301) T) ((-364 . -301) T) ((-356 . -301) T) ((-274 . -301) 202695) ((-254 . -301) 202626) ((-1066 . -631) 202592) ((-1054 . -102) T) ((-1049 . -631) 202558) ((-644 . -503) 202539) ((-426 . -747) T) ((-118 . -38) 202484) ((-496 . -503) 202465) ((-644 . -631) 202431) ((-426 . -486) T) ((-221 . -503) 202412) ((-496 . -631) 202378) ((-366 . -102) T) ((-221 . -631) 202344) ((-1241 . -1088) T) ((-355 . -667) 202274) ((-732 . -1088) T) ((-1204 . -47) 202251) ((-1203 . -47) 202221) ((-1197 . -47) 202198) ((-129 . -299) 202173) ((-1065 . -152) 202119) ((-938 . -301) T) ((-1156 . -47) 202091) ((-715 . -320) NIL) ((-528 . -631) 202073) ((-523 . -631) 202055) ((-521 . -631) 202037) ((-498 . -1247) T) ((-338 . -1130) 201987) ((-327 . -920) 201951) ((-324 . -920) NIL) ((-733 . -465) 201882) ((-48 . -102) T) ((-1281 . -297) 201840) ((-1260 . -297) 201740) ((-665 . -687) 201724) ((-665 . -672) 201708) ((-351 . -21) T) ((-351 . -25) T) ((-40 . -361) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-665 . -385) 201692) ((-658 . -631) 201674) ((-615 . -297) 201626) ((-401 . -102) T) ((-1150 . -144) T) ((-127 . -631) 201558) ((-897 . -1130) T) ((-679 . -424) 201542) ((-752 . -1247) T) ((-735 . -631) 201524) ((-256 . -631) 201491) ((-189 . -631) 201473) ((-163 . -631) 201455) ((-158 . -631) 201437) ((-1312 . -747) T) ((-1132 . -34) T) ((-894 . -816) NIL) ((-894 . -813) NIL) ((-881 . -870) T) ((-752 . -910) NIL) ((-1321 . -132) T) ((-393 . -132) T) ((-916 . -634) 201405) ((-932 . -102) T) ((-752 . -1068) 201281) ((-1204 . -1247) T) ((-1203 . -1247) T) ((-544 . -132) T) ((-1197 . -1247) T) ((-1117 . -424) 201265) ((-1030 . -502) 201249) ((-118 . -413) 201226) ((-1156 . -1247) T) ((-803 . -424) 201210) ((-801 . -424) 201194) ((-971 . -34) T) ((-715 . -1182) NIL) ((-259 . -669) 201014) ((-258 . -669) 200821) ((-838 . -948) 200800) ((-467 . -424) 200784) ((-656 . -870) T) ((-615 . -19) 200768) ((-1176 . -1240) 200737) ((-1197 . -910) NIL) ((-1197 . -908) 200689) ((-615 . -617) 200666) ((-108 . -873) T) ((-1233 . -631) 200598) ((-1205 . -631) 200580) ((-62 . -408) T) ((-1203 . -1068) 200515) ((-1197 . -1068) 200481) ((-715 . -38) 200431) ((-40 . -667) 200361) ((-487 . -297) 200319) ((-1253 . -631) 200301) ((-752 . -389) 200285) ((-859 . -631) 200267) ((-679 . -1088) T) ((-641 . -928) 200190) ((-1281 . -1032) 200156) ((-449 . -1247) T) ((-1260 . -1032) 200122) ((-257 . -1247) T) ((-1118 . -634) 200106) ((-1093 . -1223) 200081) ((-1106 . -634) 200058) ((-895 . -632) 199865) ((-895 . -631) 199847) ((-118 . -928) NIL) ((-722 . -235) 199834) ((-1219 . -502) 199771) ((-431 . -1052) 199749) ((-48 . -320) 199736) ((-1093 . -107) 199682) ((-492 . -502) 199619) ((-538 . -1247) T) ((-533 . -1247) T) ((-1197 . -350) 199571) ((-1171 . -502) 199542) ((-1197 . -389) 199494) ((-1117 . -1088) T) ((-450 . -102) T) ((-185 . -1130) T) ((-259 . -34) T) ((-258 . -34) T) ((-1188 . -873) T) ((-871 . -634) 199478) ((-803 . -1088) T) ((-801 . -1088) T) ((-752 . -926) 199455) ((-467 . -1088) T) ((-59 . -502) 199439) ((-1064 . -1086) 199413) ((-532 . -502) 199397) ((-529 . -502) 199381) ((-510 . -502) 199365) ((-509 . -502) 199349) ((-251 . -527) 199282) ((-1064 . -111) 199249) ((-1204 . -926) 199162) ((-1203 . -926) 199068) ((-691 . -1142) T) ((-1197 . -926) 198901) ((-666 . -93) T) ((-1156 . -926) 198885) ((-366 . -1182) T) ((-333 . -1086) 198867) ((-31 . -503) 198848) ((-259 . -815) 198827) ((-259 . -814) 198806) ((-258 . -815) 198785) ((-258 . -814) 198764) ((-31 . -631) 198730) ((-50 . -1088) T) ((-259 . -747) 198708) ((-258 . -747) 198686) ((-1241 . -1130) T) ((-691 . -23) T) ((-594 . -1088) T) ((-531 . -1088) T) ((-391 . -1086) 198651) ((-333 . -111) 198626) ((-73 . -395) T) ((-73 . -408) T) ((-1054 . -38) 198563) ((-715 . -413) 198545) ((-99 . -102) T) ((-1326 . -1081) 198532) ((-732 . -1130) T) ((-1143 . -873) 198483) ((-1033 . -146) 198455) ((-1033 . -148) 198427) ((-893 . -667) 198399) ((-391 . -111) 198355) ((-330 . -1251) 198334) ((-487 . -1032) 198300) ((-366 . -38) 198265) ((-40 . -382) 198237) ((-896 . -631) 198109) ((-128 . -126) 198093) ((-122 . -126) 198077) ((-857 . -1086) 198047) ((-854 . -21) 197999) ((-848 . -1086) 197983) ((-854 . -25) 197935) ((-330 . -569) 197886) ((-530 . -634) 197867) ((-577 . -849) T) ((-246 . -1247) T) ((-1064 . -634) 197836) ((-857 . -111) 197801) ((-848 . -111) 197780) ((-1281 . -631) 197762) ((-1260 . -631) 197744) ((-1260 . -632) 197415) ((-1202 . -937) 197394) ((-1155 . -937) 197373) ((-48 . -38) 197338) ((-1319 . -1142) T) ((-549 . -297) 197294) ((-615 . -631) 197206) ((-615 . -632) 197167) ((-1317 . -1142) T) ((-373 . -634) 197151) ((-333 . -634) 197135) ((-1172 . -238) 197086) ((-246 . -1068) 196913) ((-1202 . -669) 196802) ((-1155 . -669) 196691) ((-877 . -669) 196665) ((-739 . -631) 196647) ((-559 . -380) T) ((-1319 . -23) T) ((-715 . -928) NIL) ((-1317 . -23) T) ((-504 . -1130) T) ((-391 . -634) 196597) ((-391 . -636) 196579) ((-1064 . -1079) T) ((-888 . -102) T) ((-1219 . -297) 196558) ((-171 . -380) 196509) ((-1034 . -1247) T) ((-1001 . -1247) T) ((-942 . -1247) T) ((-857 . -634) 196463) ((-848 . -634) 196418) ((-44 . -23) T) ((-1326 . -102) T) ((-492 . -297) 196397) ((-599 . -1130) T) ((-1176 . -1139) 196366) ((-440 . -1247) T) ((-1134 . -1133) 196318) ((-403 . -21) T) ((-403 . -25) T) ((-153 . -1142) T) ((-1241 . -738) 196215) ((-1227 . -1130) T) ((-1034 . -908) 196197) ((-1034 . -910) 196179) ((-641 . -233) 196163) ((-641 . -273) 196147) ((-639 . -21) T) ((-300 . -569) T) ((-639 . -25) T) ((-1034 . -1068) 196107) ((-732 . -738) 196072) ((-246 . -389) 196041) ((-391 . -1079) T) ((-226 . -1088) T) ((-118 . -273) 196018) ((-118 . -233) 195995) ((-59 . -297) 195947) ((-153 . -23) T) ((-529 . -297) 195899) ((-338 . -527) 195832) ((-509 . -297) 195784) ((-391 . -249) T) ((-391 . -239) T) ((-857 . -1079) T) ((-848 . -1079) T) ((-733 . -977) 195753) ((-722 . -870) T) ((-630 . -873) T) ((-487 . -631) 195735) ((-1283 . -1081) 195640) ((-593 . -667) 195612) ((-577 . -667) 195584) ((-508 . -667) 195534) ((-848 . -239) 195513) ((-135 . -870) T) ((-1283 . -661) 195405) ((-679 . -1130) T) ((-1219 . -617) 195384) ((-563 . -1223) 195363) ((-348 . -1130) T) ((-330 . -375) 195342) ((-420 . -148) 195321) ((-420 . -146) 195300) ((-992 . -1142) 195199) ((-836 . -1142) 195177) ((-246 . -926) 195109) ((-675 . -875) 195093) ((-492 . -617) 195072) ((-110 . -873) T) ((-537 . -1247) T) ((-563 . -107) 195022) ((-1034 . -389) 195004) ((-1034 . -350) 194986) ((-1206 . -631) 194968) ((-97 . -1130) T) ((-992 . -23) 194779) ((-490 . -21) T) ((-490 . -25) T) ((-836 . -23) 194631) ((-1206 . -632) 194553) ((-59 . -19) 194537) ((-1202 . -747) T) ((-1155 . -747) T) ((-1117 . -1130) T) ((-529 . -19) 194521) ((-509 . -19) 194505) ((-59 . -617) 194482) ((-1033 . -238) 194419) ((-929 . -102) 194369) ((-877 . -747) T) ((-803 . -1130) T) ((-529 . -617) 194346) ((-509 . -617) 194323) ((-801 . -1130) T) ((-801 . -1095) 194290) ((-474 . -1130) T) ((-467 . -1130) T) ((-599 . -738) 194265) ((-670 . -1130) T) ((-1289 . -47) 194242) ((-1283 . -102) T) ((-1282 . -47) 194212) ((-1261 . -47) 194189) ((-1241 . -174) 194140) ((-1203 . -318) 194119) ((-1197 . -318) 194098) ((-1126 . -634) 194079) ((-1120 . -634) 194060) ((-1110 . -569) 194011) ((-1110 . -1251) 193962) ((-1103 . -634) 193943) ((-1034 . -926) NIL) ((-1096 . -634) 193924) ((-691 . -132) T) ((-645 . -1142) T) ((-1066 . -634) 193905) ((-1049 . -634) 193886) ((-735 . -1086) 193856) ((-733 . -920) 193759) ((-720 . -667) 193709) ((-285 . -1130) T) ((-85 . -454) T) ((-85 . -408) T) ((-732 . -174) T) ((-658 . -1086) 193693) ((-50 . -1130) T) ((-608 . -47) 193670) ((-228 . -669) 193635) ((-594 . -1130) T) ((-531 . -1130) T) ((-500 . -841) T) ((-500 . -948) T) ((-371 . -1251) T) ((-365 . -1251) T) ((-357 . -1251) T) ((-330 . -1142) T) ((-327 . -1081) 193545) ((-324 . -1081) 193474) ((-108 . -1251) T) ((-644 . -634) 193455) ((-371 . -569) T) ((-220 . -948) T) ((-220 . -841) T) ((-327 . -661) 193365) ((-324 . -661) 193294) ((-365 . -569) T) ((-357 . -569) T) ((-658 . -111) 193273) ((-496 . -634) 193254) ((-108 . -569) T) ((-1197 . -1052) NIL) ((-679 . -738) 193224) ((-495 . -873) 193175) ((-221 . -634) 193156) ((-330 . -23) T) ((-67 . -1247) T) ((-1030 . -631) 193088) ((-1326 . -1182) T) ((-715 . -273) 193070) ((-715 . -233) 193052) ((-1321 . -21) T) ((-735 . -111) 193017) ((-1321 . -25) T) ((-665 . -34) T) ((-251 . -502) 193001) ((-1319 . -132) T) ((-1317 . -132) T) ((-1310 . -102) T) ((-1293 . -631) 192967) ((-1132 . -1128) 192951) ((-173 . -1130) T) ((-1289 . -1247) T) ((-1282 . -1247) T) ((-1282 . -1068) 192886) ((-1261 . -1247) T) ((-1261 . -910) NIL) ((-980 . -937) 192865) ((-1261 . -908) 192817) ((-1261 . -1068) 192783) ((-1241 . -527) 192750) ((-528 . -634) 192734) ((-1219 . -632) NIL) ((-1219 . -631) 192716) ((-1172 . -1153) 192661) ((-494 . -937) 192640) ((-1117 . -738) 192489) ((-1092 . -669) 192461) ((-980 . -669) 192350) ((-839 . -873) T) ((-803 . -738) 192179) ((-610 . -503) 192160) ((-598 . -503) 192141) ((-610 . -631) 192107) ((-598 . -631) 192073) ((-549 . -631) 192055) ((-592 . -1247) T) ((-549 . -632) 192036) ((-801 . -738) 191885) ((-1107 . -102) T) ((-641 . -667) 191857) ((-393 . -25) T) ((-393 . -21) T) ((-494 . -669) 191746) ((-474 . -738) 191717) ((-467 . -738) 191566) ((-1017 . -102) T) ((-1076 . -1240) 191495) ((-929 . -320) 191433) ((-758 . -102) T) ((-658 . -634) 191410) ((-118 . -667) 191340) ((-899 . -93) T) ((-735 . -634) 191294) ((-702 . -93) T) ((-544 . -25) T) ((-697 . -93) T) ((-685 . -631) 191276) ((-666 . -503) 191257) ((-666 . -631) 191210) ((-142 . -102) T) ((-44 . -132) T) ((-609 . -1247) T) ((-608 . -1247) T) ((-355 . -1088) T) ((-300 . -1142) T) ((-491 . -93) T) ((-420 . -238) 191161) ((-367 . -631) 191143) ((-364 . -631) 191125) ((-356 . -631) 191107) ((-274 . -632) 190855) ((-274 . -631) 190837) ((-254 . -631) 190819) ((-254 . -632) 190680) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1171 . -631) 190662) ((-1150 . -661) 190649) ((-1150 . -1081) 190636) ((-840 . -747) T) ((-840 . -880) T) ((-615 . -299) 190613) ((-594 . -738) 190578) ((-492 . -632) NIL) ((-492 . -631) 190560) ((-531 . -738) 190505) ((-327 . -102) T) ((-324 . -102) T) ((-300 . -23) T) ((-153 . -132) T) ((-938 . -631) 190487) ((-938 . -632) 190469) ((-399 . -747) T) ((-895 . -1086) 190421) ((-895 . -111) 190359) ((-735 . -1079) T) ((-733 . -1273) 190343) ((-715 . -361) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-532 . -631) 190275) ((-391 . -816) T) ((-169 . -1247) T) ((-226 . -1130) T) ((-391 . -813) T) ((-59 . -632) 190236) ((-228 . -815) T) ((-228 . -812) T) ((-59 . -631) 190148) ((-228 . -747) T) ((-529 . -632) 190109) ((-529 . -631) 190021) ((-510 . -631) 189953) ((-509 . -632) 189914) ((-509 . -631) 189826) ((-1110 . -375) 189777) ((-40 . -424) 189754) ((-77 . -1247) T) ((-894 . -937) NIL) ((-371 . -340) 189738) ((-371 . -375) T) ((-365 . -340) 189722) ((-365 . -375) T) ((-357 . -340) 189706) ((-357 . -375) T) ((-327 . -295) 189685) ((-108 . -375) T) ((-70 . -1247) T) ((-660 . -1130) T) ((-1261 . -350) 189637) ((-894 . -669) 189582) ((-1261 . -389) 189534) ((-992 . -132) 189389) ((-836 . -132) 189260) ((-45 . -873) NIL) ((-986 . -672) 189244) ((-1117 . -174) 189155) ((-986 . -385) 189139) ((-1092 . -815) T) ((-1092 . -812) T) ((-895 . -634) 189037) ((-803 . -174) 188928) ((-801 . -174) 188839) ((-837 . -47) 188801) ((-1092 . -747) T) ((-338 . -502) 188785) ((-980 . -747) T) ((-1310 . -320) 188723) ((-1289 . -926) 188636) ((-467 . -174) 188547) ((-251 . -297) 188499) ((-1282 . -926) 188405) ((-1281 . -1086) 188240) ((-1261 . -926) 188073) ((-494 . -747) T) ((-1260 . -1086) 187881) ((-1241 . -301) 187860) ((-1216 . -1247) T) ((-1213 . -380) T) ((-1212 . -380) T) ((-1176 . -152) 187844) ((-1150 . -102) T) ((-1148 . -1130) T) ((-1110 . -23) T) ((-1110 . -1142) T) ((-1105 . -102) T) ((-1087 . -631) 187811) ((-1033 . -422) 187783) ((-955 . -983) T) ((-758 . -320) 187721) ((-75 . -1247) T) ((-685 . -394) 187693) ((-171 . -937) 187646) ((-30 . -983) T) ((-112 . -865) T) ((-1 . -631) 187628) ((-1029 . -920) 187549) ((-129 . -672) 187531) ((-50 . -638) 187515) ((-715 . -667) 187450) ((-608 . -926) 187363) ((-451 . -102) T) ((-129 . -385) 187345) ((-142 . -320) NIL) ((-895 . -1079) T) ((-854 . -870) 187324) ((-81 . -1247) T) ((-732 . -301) T) ((-40 . -1088) T) ((-594 . -174) T) ((-531 . -174) T) ((-524 . -631) 187306) ((-171 . -669) 187180) ((-520 . -631) 187162) ((-363 . -148) 187144) ((-363 . -146) T) ((-371 . -1142) T) ((-365 . -1142) T) ((-357 . -1142) T) ((-1034 . -318) T) ((-942 . -318) T) ((-895 . -249) T) ((-108 . -1142) T) ((-895 . -239) 187123) ((-1281 . -111) 186944) ((-1260 . -111) 186733) ((-251 . -1285) 186717) ((-577 . -869) T) ((-371 . -23) T) ((-366 . -361) T) ((-327 . -320) 186704) ((-324 . -320) 186645) ((-365 . -23) T) ((-330 . -132) T) ((-357 . -23) T) ((-1034 . -1052) T) ((-31 . -634) 186626) ((-108 . -23) T) ((-675 . -1081) 186610) ((-251 . -617) 186587) ((-660 . -738) 186571) ((-344 . -1130) T) ((-675 . -661) 186541) ((-1283 . -38) 186433) ((-1270 . -937) 186412) ((-112 . -1130) T) ((-837 . -1247) T) ((-426 . -1247) T) ((-1065 . -102) T) ((-1270 . -669) 186301) ((-894 . -815) NIL) ((-878 . -669) 186275) ((-894 . -812) NIL) ((-837 . -910) NIL) ((-894 . -747) T) ((-1117 . -527) 186148) ((-803 . -527) 186095) ((-801 . -527) 186047) ((-584 . -669) 186034) ((-837 . -1068) 185862) ((-467 . -527) 185805) ((-401 . -402) T) ((-1281 . -634) 185618) ((-1260 . -634) 185366) ((-60 . -1247) T) ((-639 . -870) 185345) ((-513 . -682) T) ((-1176 . -1006) 185314) ((-1054 . -667) 185251) ((-1033 . -465) T) ((-720 . -869) T) ((-523 . -813) T) ((-487 . -1086) 185086) ((-513 . -113) T) ((-355 . -1130) T) ((-324 . -1182) NIL) ((-300 . -132) T) ((-407 . -1130) T) ((-893 . -1088) T) ((-715 . -382) 185053) ((-366 . -667) 184983) ((-226 . -638) 184960) ((-338 . -297) 184912) ((-487 . -111) 184733) ((-1281 . -1079) T) ((-1260 . -1079) T) ((-837 . -389) 184717) ((-845 . -1247) T) ((-171 . -747) T) ((-1312 . -1247) T) ((-675 . -102) T) ((-1281 . -249) 184696) ((-1281 . -239) 184648) ((-1260 . -239) 184553) ((-1260 . -249) 184532) ((-1033 . -415) NIL) ((-691 . -659) 184480) ((-327 . -38) 184390) ((-324 . -38) 184319) ((-69 . -631) 184301) ((-330 . -506) 184267) ((-48 . -667) 184217) ((-1219 . -299) 184196) ((-1255 . -870) T) ((-1143 . -1142) 184174) ((-83 . -1247) T) ((-61 . -631) 184156) ((-887 . -873) T) ((-492 . -299) 184135) ((-1312 . -1068) 184112) ((-1194 . -1130) T) ((-1143 . -23) 183964) ((-837 . -926) 183900) ((-1270 . -747) T) ((-1132 . -1247) T) ((-487 . -634) 183726) ((-363 . -238) T) ((-1117 . -301) 183657) ((-994 . -1130) T) ((-917 . -102) T) ((-803 . -301) 183568) ((-338 . -19) 183552) ((-59 . -299) 183529) ((-801 . -301) 183460) ((-878 . -747) T) ((-118 . -869) NIL) ((-529 . -299) 183437) ((-338 . -617) 183414) ((-509 . -299) 183391) ((-467 . -301) 183322) ((-1065 . -320) 183173) ((-899 . -503) 183154) ((-899 . -631) 183120) ((-702 . -503) 183101) ((-584 . -747) T) ((-697 . -503) 183082) ((-702 . -631) 183032) ((-697 . -631) 182998) ((-683 . -631) 182980) ((-491 . -503) 182961) ((-491 . -631) 182927) ((-251 . -632) 182888) ((-251 . -503) 182865) ((-139 . -503) 182846) ((-138 . -503) 182827) ((-134 . -503) 182808) ((-251 . -631) 182700) ((-215 . -102) T) ((-139 . -631) 182666) ((-138 . -631) 182632) ((-134 . -631) 182598) ((-1177 . -34) T) ((-971 . -1247) T) ((-355 . -738) 182543) ((-691 . -25) T) ((-691 . -21) T) ((-1206 . -634) 182524) ((-342 . -1247) T) ((-487 . -1079) T) ((-653 . -430) 182489) ((-619 . -430) 182454) ((-1150 . -1182) T) ((-1282 . -318) 182433) ((-733 . -1081) 182256) ((-594 . -301) T) ((-531 . -301) T) ((-1261 . -318) 182235) ((-487 . -239) 182187) ((-487 . -249) 182166) ((-452 . -1247) T) ((-733 . -661) 181995) ((-1261 . -1052) NIL) ((-1110 . -132) T) ((-895 . -816) 181974) ((-145 . -102) T) ((-40 . -1130) T) ((-895 . -813) 181953) ((-665 . -1040) 181937) ((-593 . -1088) T) ((-577 . -1088) T) ((-508 . -1088) T) ((-420 . -465) T) ((-371 . -132) T) ((-327 . -413) 181921) ((-324 . -413) 181882) ((-365 . -132) T) ((-357 . -132) T) ((-1211 . -1130) T) ((-1150 . -38) 181869) ((-1124 . -631) 181836) ((-108 . -132) T) ((-982 . -1130) T) ((-949 . -1130) T) ((-792 . -1130) T) ((-693 . -1130) T) ((-722 . -148) T) ((-622 . -102) T) ((-117 . -148) T) ((-1319 . -21) T) ((-1319 . -25) T) ((-1317 . -21) T) ((-1317 . -25) T) ((-685 . -1086) 181820) ((-544 . -870) T) ((-513 . -870) T) ((-377 . -1247) T) ((-367 . -1086) 181772) ((-364 . -1086) 181724) ((-356 . -1086) 181676) ((-259 . -1247) T) ((-258 . -1247) T) ((-274 . -1086) 181519) ((-254 . -1086) 181362) ((-685 . -111) 181341) ((-838 . -1251) 181320) ((-560 . -865) T) ((-327 . -928) 181286) ((-367 . -111) 181224) ((-364 . -111) 181162) ((-356 . -111) 181100) ((-274 . -111) 180929) ((-254 . -111) 180758) ((-324 . -928) NIL) ((-641 . -424) 180742) ((-44 . -21) T) ((-44 . -25) T) ((-933 . -873) 180693) ((-130 . -682) T) ((-836 . -659) 180599) ((-838 . -569) 180578) ((-500 . -873) T) ((-259 . -1068) 180405) ((-258 . -1068) 180232) ((-127 . -120) 180216) ((-220 . -873) T) ((-938 . -1086) 180181) ((-733 . -102) T) ((-720 . -1088) T) ((-610 . -634) 180162) ((-598 . -634) 180143) ((-549 . -636) 180046) ((-355 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -631) 180028) ((-938 . -111) 179984) ((-40 . -738) 179929) ((-893 . -1130) T) ((-685 . -634) 179906) ((-666 . -634) 179887) ((-367 . -634) 179824) ((-364 . -634) 179761) ((-356 . -634) 179698) ((-560 . -1130) T) ((-338 . -632) 179659) ((-338 . -631) 179571) ((-274 . -634) 179324) ((-254 . -634) 179109) ((-188 . -1247) T) ((-1260 . -813) 179062) ((-1260 . -816) 179015) ((-259 . -389) 178984) ((-258 . -389) 178953) ((-562 . -873) T) ((-675 . -38) 178923) ((-626 . -34) T) ((-495 . -1142) 178901) ((-488 . -34) T) ((-1143 . -132) 178772) ((-992 . -25) 178583) ((-938 . -634) 178533) ((-897 . -631) 178515) ((-217 . -865) T) ((-992 . -21) 178470) ((-836 . -25) 178303) ((-836 . -21) 178214) ((-1253 . -380) T) ((-641 . -1088) T) ((-1208 . -569) 178193) ((-1202 . -47) 178170) ((-367 . -1079) T) ((-364 . -1079) T) ((-495 . -23) 178022) ((-356 . -1079) T) ((-274 . -1079) T) ((-254 . -1079) T) ((-1155 . -47) 177994) ((-118 . -1088) T) ((-1064 . -669) 177968) ((-986 . -34) T) ((-367 . -239) 177947) ((-367 . -249) T) ((-364 . -239) 177926) ((-364 . -249) T) ((-356 . -239) 177905) ((-356 . -249) T) ((-274 . -337) 177877) ((-254 . -337) 177834) ((-274 . -239) 177813) ((-1187 . -152) 177797) ((-259 . -926) 177729) ((-258 . -926) 177661) ((-1172 . -920) 177582) ((-1112 . -870) T) ((-1264 . -1247) 177560) ((-427 . -1142) T) ((-1241 . -1032) 177526) ((-1084 . -23) T) ((-1054 . -869) T) ((-938 . -1079) T) ((-333 . -669) 177508) ((-722 . -238) T) ((-691 . -235) 177453) ((-1203 . -948) 177432) ((-1197 . -948) 177411) ((-1197 . -841) NIL) ((-1029 . -1081) 177307) ((-995 . -1247) T) ((-938 . -249) T) ((-838 . -375) 177286) ((-217 . -1130) T) ((-397 . -23) T) ((-128 . -1130) 177264) ((-122 . -1130) 177242) ((-938 . -239) T) ((-129 . -34) T) ((-391 . -669) 177207) ((-1029 . -661) 177155) ((-893 . -738) 177142) ((-1326 . -667) 177114) ((-1076 . -152) 177079) ((-1023 . -1247) T) ((-885 . -1247) T) ((-40 . -174) T) ((-715 . -424) 177061) ((-733 . -320) 177048) ((-857 . -669) 177008) ((-848 . -669) 176982) ((-330 . -25) T) ((-330 . -21) T) ((-679 . -297) 176961) ((-593 . -1130) T) ((-577 . -1130) T) ((-508 . -1130) T) ((-1202 . -1247) T) ((-251 . -299) 176938) ((-1155 . -1247) T) ((-877 . -1247) T) ((-324 . -273) 176899) ((-324 . -233) 176860) ((-1252 . -873) T) ((-1202 . -910) NIL) ((-55 . -1130) T) ((-1155 . -910) 176719) ((-130 . -870) T) ((-1202 . -1068) 176599) ((-1155 . -1068) 176482) ((-185 . -631) 176464) ((-877 . -1068) 176360) ((-803 . -297) 176287) ((-838 . -1142) T) ((-1064 . -747) T) ((-1076 . -1006) 176216) ((-615 . -672) 176200) ((-1033 . -920) 176107) ((-1029 . -102) T) ((-838 . -23) T) ((-733 . -1182) 176085) ((-715 . -1088) T) ((-615 . -385) 176069) ((-363 . -465) T) ((-355 . -301) T) ((-1298 . -1130) T) ((-255 . -1130) T) ((-412 . -102) T) ((-300 . -21) T) ((-300 . -25) T) ((-373 . -747) T) ((-731 . -1130) T) ((-720 . -1130) T) ((-373 . -486) T) ((-1241 . -631) 176051) ((-1202 . -389) 176035) ((-1155 . -389) 176019) ((-1054 . -424) 175981) ((-142 . -232) 175963) ((-391 . -815) T) ((-391 . -812) T) ((-893 . -174) T) ((-391 . -747) T) ((-732 . -631) 175945) ((-733 . -38) 175774) ((-1297 . -1295) 175758) ((-363 . -415) T) ((-1297 . -1130) 175708) ((-1220 . -1130) T) ((-593 . -738) 175695) ((-577 . -738) 175682) ((-508 . -738) 175647) ((-1283 . -667) 175537) ((-327 . -647) 175516) ((-857 . -747) T) ((-848 . -747) T) ((-1145 . -1247) T) ((-665 . -1247) T) ((-1110 . -659) 175464) ((-1202 . -926) 175407) ((-1155 . -926) 175391) ((-836 . -235) 175282) ((-683 . -1086) 175266) ((-108 . -659) 175248) ((-495 . -132) 175119) ((-1208 . -1142) T) ((-840 . -1247) T) ((-980 . -47) 175088) ((-641 . -1130) T) ((-683 . -111) 175067) ((-504 . -631) 175033) ((-338 . -299) 175010) ((-399 . -1247) T) ((-335 . -1247) T) ((-494 . -47) 174967) ((-1208 . -23) T) ((-118 . -1130) T) ((-103 . -102) 174917) ((-1309 . -1142) T) ((-561 . -870) T) ((-228 . -1247) T) ((-1084 . -132) T) ((-1054 . -1088) T) ((-1309 . -23) T) ((-1227 . -631) 174899) ((-840 . -1068) 174883) ((-1150 . -849) T) ((-1033 . -745) 174855) ((-1135 . -1130) T) ((-720 . -738) 174820) ((-599 . -631) 174802) ((-399 . -1068) 174786) ((-366 . -1088) T) ((-397 . -132) T) ((-335 . -1068) 174770) ((-1110 . -21) T) ((-1110 . -25) T) ((-1034 . -841) T) ((-228 . -910) 174752) ((-1034 . -948) T) ((-91 . -34) T) ((-1029 . -320) 174717) ((-942 . -948) T) ((-899 . -634) 174698) ((-735 . -669) 174658) ((-500 . -1251) T) ((-702 . -634) 174639) ((-697 . -634) 174620) ((-658 . -669) 174604) ((-220 . -1251) T) ((-420 . -920) 174525) ((-228 . -1068) 174485) ((-40 . -301) T) ((-500 . -569) T) ((-491 . -634) 174466) ((-371 . -25) T) ((-327 . -667) 174121) ((-324 . -667) 174035) ((-371 . -21) T) ((-365 . -25) T) ((-365 . -21) T) ((-220 . -569) T) ((-357 . -25) T) ((-357 . -21) T) ((-330 . -235) 173981) ((-251 . -634) 173958) ((-139 . -634) 173939) ((-138 . -634) 173920) ((-134 . -634) 173901) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1088) T) ((-593 . -174) T) ((-577 . -174) T) ((-508 . -174) T) ((-1092 . -1247) T) ((-980 . -1247) T) ((-734 . -1247) T) ((-660 . -297) 173868) ((-679 . -631) 173850) ((-494 . -1247) T) ((-758 . -757) 173834) ((-348 . -631) 173816) ((-68 . -395) T) ((-68 . -408) T) ((-1132 . -107) 173800) ((-1092 . -910) 173782) ((-980 . -910) 173707) ((-674 . -1142) T) ((-641 . -738) 173694) ((-494 . -910) NIL) ((-1176 . -102) T) ((-1124 . -636) 173678) ((-1092 . -1068) 173660) ((-97 . -631) 173642) ((-490 . -148) T) ((-980 . -1068) 173522) ((-118 . -738) 173467) ((-733 . -928) 173374) ((-674 . -23) T) ((-494 . -1068) 173250) ((-1117 . -632) NIL) ((-1117 . -631) 173232) ((-803 . -632) NIL) ((-803 . -631) 173193) ((-801 . -632) 172827) ((-801 . -631) 172741) ((-1143 . -659) 172647) ((-820 . -873) 172626) ((-474 . -631) 172608) ((-467 . -631) 172590) ((-467 . -632) 172451) ((-1065 . -232) 172397) ((-895 . -937) 172376) ((-127 . -34) T) ((-838 . -132) T) ((-670 . -631) 172358) ((-591 . -102) T) ((-367 . -1316) 172342) ((-364 . -1316) 172326) ((-356 . -1316) 172310) ((-122 . -527) 172243) ((-128 . -527) 172176) ((-524 . -813) T) ((-524 . -816) T) ((-523 . -815) T) ((-103 . -320) 172114) ((-225 . -102) 172064) ((-720 . -174) T) ((-715 . -1130) T) ((-895 . -669) 171980) ((-65 . -396) T) ((-285 . -631) 171962) ((-65 . -408) T) ((-980 . -389) 171946) ((-893 . -301) T) ((-50 . -631) 171928) ((-1150 . -667) 171900) ((-1029 . -38) 171848) ((-625 . -1130) T) ((-620 . -1130) T) ((-594 . -631) 171830) ((-494 . -389) 171814) ((-594 . -632) 171796) ((-531 . -631) 171778) ((-938 . -1316) 171765) ((-894 . -1247) T) ((-722 . -465) T) ((-508 . -527) 171731) ((-1308 . -1247) T) ((-1307 . -1247) T) ((-500 . -375) T) ((-367 . -380) 171710) ((-364 . -380) 171689) ((-356 . -380) 171668) ((-735 . -747) T) ((-220 . -375) T) ((-117 . -465) T) ((-1320 . -1311) 171652) ((-894 . -908) 171629) ((-894 . -910) NIL) ((-992 . -870) 171528) ((-836 . -870) 171479) ((-1254 . -102) T) ((-675 . -677) 171463) ((-1233 . -34) T) ((-173 . -631) 171445) ((-1143 . -25) 171278) ((-1143 . -21) 171189) ((-894 . -1068) 171166) ((-980 . -926) 171147) ((-1270 . -47) 171124) ((-938 . -380) T) ((-606 . -873) T) ((-59 . -672) 171108) ((-529 . -672) 171092) ((-494 . -926) 171069) ((-71 . -454) T) ((-71 . -408) T) ((-509 . -672) 171053) ((-59 . -385) 171037) ((-641 . -174) T) ((-529 . -385) 171021) ((-509 . -385) 171005) ((-559 . -1247) T) ((-848 . -729) 170989) ((-1202 . -318) 170968) ((-1208 . -132) T) ((-1172 . -1081) 170952) ((-118 . -174) T) ((-1172 . -661) 170884) ((-1176 . -320) 170822) ((-171 . -1247) T) ((-1309 . -132) T) ((-1282 . -948) 170801) ((-1261 . -948) 170780) ((-1261 . -841) NIL) ((-889 . -1081) 170750) ((-653 . -765) 170734) ((-619 . -765) 170718) ((-1260 . -937) 170671) ((-1054 . -1130) T) ((-933 . -1142) T) ((-889 . -661) 170641) ((-715 . -738) 170591) ((-924 . -1247) T) ((-894 . -389) 170568) ((-894 . -350) 170545) ((-862 . -1247) T) ((-829 . -1247) T) ((-171 . -908) 170529) ((-171 . -910) 170454) ((-790 . -1247) T) ((-698 . -1247) T) ((-1297 . -527) 170387) ((-1281 . -669) 170284) ((-1110 . -235) 170157) ((-500 . -1142) T) ((-366 . -1130) T) ((-220 . -1142) T) ((-76 . -454) T) ((-76 . -408) T) ((-171 . -1068) 170053) ((-305 . -920) 170010) ((-330 . -870) T) ((-1260 . -669) 169818) ((-895 . -815) 169797) ((-895 . -812) 169776) ((-895 . -747) T) ((-500 . -23) T) ((-371 . -235) 169749) ((-365 . -235) 169722) ((-357 . -235) 169695) ((-176 . -465) T) ((-86 . -454) T) ((-225 . -320) 169633) ((-86 . -408) T) ((-226 . -631) 169615) ((-108 . -235) 169602) ((-220 . -23) T) ((-1321 . -1314) 169581) ((-698 . -1068) 169565) ((-593 . -301) T) ((-577 . -301) T) ((-508 . -301) T) ((-1270 . -1247) T) ((-137 . -483) 169520) ((-878 . -1247) T) ((-675 . -667) 169479) ((-48 . -1130) T) ((-733 . -273) 169463) ((-733 . -233) 169447) ((-894 . -926) NIL) ((-584 . -1247) T) ((-1270 . -910) NIL) ((-913 . -102) T) ((-909 . -102) T) ((-660 . -631) 169429) ((-401 . -1130) T) ((-171 . -389) 169413) ((-171 . -350) 169397) ((-1270 . -1068) 169277) ((-878 . -1068) 169173) ((-1172 . -102) T) ((-1029 . -928) 169096) ((-683 . -813) 169075) ((-674 . -132) T) ((-683 . -816) 169054) ((-118 . -527) 168962) ((-584 . -1068) 168944) ((-305 . -1304) 168914) ((-1197 . -873) NIL) ((-889 . -102) T) ((-991 . -569) 168893) ((-1241 . -1086) 168776) ((-1033 . -1081) 168721) ((-495 . -659) 168627) ((-932 . -1130) T) ((-1054 . -738) 168564) ((-732 . -1086) 168529) ((-1033 . -661) 168474) ((-635 . -102) T) ((-615 . -34) T) ((-1177 . -1247) T) ((-1241 . -111) 168343) ((-487 . -669) 168240) ((-366 . -738) 168185) ((-171 . -926) 168144) ((-720 . -301) T) ((-715 . -174) T) ((-732 . -111) 168100) ((-1326 . -1088) T) ((-1270 . -389) 168084) ((-431 . -1251) 168062) ((-1148 . -631) 168044) ((-324 . -869) NIL) ((-431 . -569) T) ((-228 . -318) T) ((-1260 . -812) 167997) ((-1260 . -815) 167950) ((-1281 . -747) T) ((-1260 . -747) T) ((-48 . -738) 167915) ((-228 . -1052) T) ((-1283 . -424) 167881) ((-1270 . -926) 167824) ((-363 . -1304) 167801) ((-1241 . -634) 167683) ((-739 . -747) T) ((-344 . -631) 167665) ((-533 . -873) 167644) ((-1143 . -235) 167535) ((-112 . -631) 167517) ((-112 . -632) 167499) ((-739 . -486) T) ((-732 . -634) 167449) ((-1320 . -1081) 167433) ((-495 . -25) 167266) ((-128 . -502) 167250) ((-122 . -502) 167234) ((-495 . -21) 167145) ((-1320 . -661) 167115) ((-641 . -301) T) ((-599 . -1086) 167090) ((-450 . -1130) T) ((-1092 . -318) T) ((-118 . -301) T) ((-1134 . -102) T) ((-1033 . -102) T) ((-599 . -111) 167058) ((-1241 . -1079) T) ((-1172 . -320) 166996) ((-1092 . -1052) T) ((-1084 . -25) T) ((-66 . -1247) T) ((-916 . -1247) T) ((-1084 . -21) T) ((-732 . -1079) T) ((-397 . -21) T) ((-397 . -25) T) ((-715 . -527) NIL) ((-1054 . -174) T) ((-732 . -249) T) ((-1092 . -558) T) ((-733 . -667) 166906) ((-519 . -102) T) ((-515 . -102) T) ((-366 . -174) T) ((-355 . -631) 166888) ((-420 . -1081) 166840) ((-407 . -631) 166822) ((-1150 . -869) T) ((-487 . -747) T) ((-916 . -1068) 166790) ((-420 . -661) 166742) ((-108 . -870) T) ((-679 . -1086) 166726) ((-500 . -132) T) ((-1283 . -1088) T) ((-220 . -132) T) ((-1187 . -102) 166676) ((-99 . -1130) T) ((-246 . -873) 166627) ((-251 . -687) 166611) ((-251 . -672) 166595) ((-679 . -111) 166574) ((-599 . -634) 166558) ((-327 . -424) 166542) ((-251 . -385) 166526) ((-1189 . -241) 166473) ((-1029 . -273) 166457) ((-1029 . -233) 166441) ((-74 . -1247) T) ((-48 . -174) T) ((-722 . -400) T) ((-722 . -144) T) ((-1320 . -102) T) ((-1228 . -1247) T) ((-1227 . -634) 166423) ((-1118 . -1247) T) ((-1117 . -1086) 166266) ((-1106 . -1247) T) ((-274 . -937) 166245) ((-254 . -937) 166224) ((-803 . -1086) 166047) ((-801 . -1086) 165890) ((-626 . -1247) T) ((-1194 . -631) 165872) ((-1117 . -111) 165701) ((-1076 . -102) T) ((-488 . -1247) T) ((-474 . -1086) 165672) ((-467 . -1086) 165515) ((-685 . -669) 165499) ((-894 . -318) T) ((-803 . -111) 165308) ((-801 . -111) 165137) ((-367 . -669) 165089) ((-364 . -669) 165041) ((-356 . -669) 164993) ((-274 . -669) 164882) ((-254 . -669) 164771) ((-1188 . -870) T) ((-1118 . -1068) 164755) ((-1106 . -1068) 164732) ((-1034 . -873) T) ((-1030 . -34) T) ((-474 . -111) 164693) ((-467 . -111) 164522) ((-1001 . -873) T) ((-994 . -631) 164504) ((-991 . -1142) T) ((-986 . -1247) T) ((-127 . -1040) 164488) ((-871 . -1247) T) ((-894 . -1052) NIL) ((-756 . -1142) T) ((-736 . -1142) T) ((-679 . -634) 164406) ((-1297 . -502) 164390) ((-1214 . -1247) T) ((-1213 . -1247) T) ((-1172 . -38) 164350) ((-991 . -23) T) ((-938 . -669) 164315) ((-888 . -1130) T) ((-864 . -102) T) ((-838 . -21) T) ((-653 . -1081) 164299) ((-619 . -1081) 164283) ((-838 . -25) T) ((-756 . -23) T) ((-736 . -23) T) ((-653 . -661) 164267) ((-110 . -682) T) ((-619 . -661) 164251) ((-594 . -1086) 164216) ((-531 . -1086) 164161) ((-230 . -57) 164119) ((-466 . -23) T) ((-420 . -102) T) ((-1212 . -1247) T) ((-271 . -102) T) ((-110 . -113) T) ((-715 . -301) T) ((-889 . -38) 164089) ((-1117 . -634) 163825) ((-594 . -111) 163781) ((-531 . -111) 163710) ((-431 . -1142) T) ((-327 . -1088) 163600) ((-324 . -1088) T) ((-129 . -1247) T) ((-131 . -1247) T) ((-803 . -634) 163348) ((-801 . -634) 163114) ((-679 . -1079) T) ((-1326 . -1130) T) ((-467 . -634) 162899) ((-171 . -318) 162830) ((-431 . -23) T) ((-40 . -631) 162812) ((-40 . -632) 162796) ((-108 . -1022) 162778) ((-117 . -892) 162762) ((-670 . -634) 162746) ((-48 . -527) 162712) ((-1233 . -1040) 162696) ((-1211 . -631) 162663) ((-1219 . -34) T) ((-982 . -631) 162629) ((-949 . -631) 162611) ((-1143 . -870) 162562) ((-792 . -631) 162544) ((-693 . -631) 162526) ((-530 . -1247) T) ((-1270 . -318) 162505) ((-1187 . -320) 162443) ((-1171 . -34) T) ((-492 . -34) T) ((-1122 . -1247) T) ((-490 . -465) T) ((-1064 . -1247) T) ((-1117 . -1079) T) ((-50 . -634) 162412) ((-803 . -1079) T) ((-801 . -1079) T) ((-668 . -241) 162396) ((-650 . -241) 162342) ((-1208 . -21) T) ((-594 . -634) 162292) ((-531 . -634) 162222) ((-495 . -235) 162113) ((-1208 . -25) T) ((-1117 . -337) 162074) ((-467 . -1079) T) ((-1117 . -239) 162053) ((-803 . -337) 162030) ((-803 . -239) T) ((-801 . -337) 162002) ((-752 . -1251) 161981) ((-532 . -34) T) ((-338 . -672) 161965) ((-529 . -34) T) ((-59 . -34) T) ((-510 . -34) T) ((-509 . -34) T) ((-467 . -337) 161944) ((-338 . -385) 161928) ((-373 . -1247) T) ((-333 . -1247) T) ((-1033 . -1182) NIL) ((-752 . -569) 161859) ((-653 . -102) T) ((-619 . -102) T) ((-367 . -747) T) ((-364 . -747) T) ((-356 . -747) T) ((-274 . -747) T) ((-254 . -747) T) ((-391 . -1247) T) ((-1309 . -21) T) ((-1076 . -320) 161767) ((-1309 . -25) T) ((-929 . -1130) 161745) ((-839 . -235) 161732) ((-50 . -1079) T) ((-1204 . -569) 161711) ((-1203 . -1251) 161690) ((-1203 . -569) 161641) ((-1197 . -1251) 161620) ((-1197 . -569) 161571) ((-1054 . -301) T) ((-594 . -1079) T) ((-531 . -1079) T) ((-1033 . -38) 161516) ((-373 . -1068) 161500) ((-333 . -1068) 161484) ((-1029 . -667) 161407) ((-391 . -910) 161389) ((-857 . -1247) T) ((-848 . -1247) T) ((-846 . -1247) T) ((-820 . -1142) T) ((-938 . -747) T) ((-594 . -249) T) ((-594 . -239) T) ((-531 . -239) T) ((-531 . -249) T) ((-1156 . -569) 161368) ((-366 . -301) T) ((-668 . -716) 161352) ((-391 . -1068) 161312) ((-305 . -1081) 161233) ((-351 . -920) 161212) ((-1150 . -1088) T) ((-103 . -126) 161196) ((-305 . -661) 161138) ((-820 . -23) T) ((-1319 . -1314) 161114) ((-1317 . -1314) 161093) ((-1297 . -297) 161045) ((-1283 . -1130) T) ((-420 . -320) 161010) ((-1172 . -928) 160933) ((-893 . -631) 160915) ((-857 . -1068) 160884) ((-660 . -1086) 160868) ((-205 . -808) T) ((-204 . -808) T) ((-203 . -808) T) ((-202 . -808) T) ((-201 . -808) T) ((-200 . -808) T) ((-199 . -808) T) ((-198 . -808) T) ((-197 . -808) T) ((-196 . -808) T) ((-560 . -631) 160850) ((-508 . -1032) T) ((-284 . -860) T) ((-283 . -860) T) ((-282 . -860) T) ((-281 . -860) T) ((-48 . -301) T) ((-280 . -860) T) ((-279 . -860) T) ((-278 . -860) T) ((-195 . -808) T) ((-660 . -111) 160829) ((-630 . -870) T) ((-675 . -424) 160813) ((-691 . -238) 160764) ((-226 . -634) 160726) ((-110 . -870) T) ((-674 . -21) T) ((-674 . -25) T) ((-1320 . -38) 160696) ((-118 . -297) 160647) ((-1297 . -19) 160631) ((-1261 . -873) NIL) ((-1297 . -617) 160608) ((-1310 . -1130) T) ((-363 . -1081) 160553) ((-1107 . -1130) T) ((-1017 . -1130) T) ((-991 . -132) T) ((-838 . -235) 160540) ((-758 . -1130) T) ((-363 . -661) 160485) ((-756 . -132) T) ((-736 . -132) T) ((-524 . -814) T) ((-524 . -815) T) ((-466 . -132) T) ((-420 . -1182) 160463) ((-226 . -1079) T) ((-305 . -102) 160245) ((-142 . -1130) T) ((-720 . -1032) T) ((-1135 . -297) 160201) ((-91 . -1247) T) ((-217 . -631) 160183) ((-128 . -631) 160115) ((-122 . -631) 160047) ((-1326 . -174) T) ((-1203 . -375) 160026) ((-1197 . -375) 160005) ((-327 . -1130) T) ((-431 . -132) T) ((-324 . -1130) T) ((-420 . -38) 159957) ((-1163 . -102) T) ((-1283 . -738) 159849) ((-1165 . -1292) T) ((-1126 . -1247) T) ((-1120 . -1247) T) ((-675 . -1088) T) ((-1103 . -1247) T) ((-1096 . -1247) T) ((-1066 . -1247) T) ((-1049 . -1247) T) ((-330 . -146) 159828) ((-330 . -148) 159807) ((-140 . -1130) T) ((-137 . -1130) T) ((-115 . -1130) T) ((-881 . -102) T) ((-644 . -1247) T) ((-496 . -1247) T) ((-593 . -631) 159789) ((-577 . -632) 159688) ((-577 . -631) 159670) ((-508 . -631) 159652) ((-508 . -632) 159597) ((-498 . -23) T) ((-221 . -1247) T) ((-495 . -870) 159548) ((-500 . -659) 159530) ((-993 . -631) 159512) ((-1033 . -928) 159421) ((-220 . -659) 159403) ((-228 . -417) T) ((-683 . -669) 159387) ((-55 . -631) 159369) ((-1202 . -948) 159348) ((-752 . -1142) T) ((-656 . -102) T) ((-528 . -1247) T) ((-523 . -1247) T) ((-521 . -1247) T) ((-363 . -102) T) ((-1246 . -1113) T) ((-1150 . -865) T) ((-839 . -870) T) ((-752 . -23) T) ((-355 . -1086) 159293) ((-1177 . -107) 159277) ((-1298 . -631) 159259) ((-1204 . -23) T) ((-1204 . -1142) T) ((-1203 . -1142) T) ((-658 . -1247) T) ((-1203 . -23) T) ((-1197 . -1142) T) ((-1197 . -23) T) ((-1172 . -273) 159243) ((-528 . -1068) 159227) ((-1172 . -233) 159211) ((-1156 . -1142) T) ((-355 . -111) 159140) ((-1034 . -1251) T) ((-127 . -1247) T) ((-942 . -1251) T) ((-1156 . -23) T) ((-1105 . -1130) T) ((-715 . -297) NIL) ((-735 . -1247) T) ((-1034 . -569) T) ((-942 . -569) T) ((-836 . -238) 159037) ((-624 . -682) T) ((-623 . -682) T) ((-256 . -1247) T) ((-189 . -1247) T) ((-163 . -1247) T) ((-158 . -1247) T) ((-255 . -631) 159019) ((-621 . -682) T) ((-820 . -132) T) ((-731 . -631) 159001) ((-327 . -738) 158911) ((-324 . -738) 158840) ((-720 . -631) 158822) ((-720 . -632) 158767) ((-420 . -413) 158751) ((-451 . -1130) T) ((-500 . -25) T) ((-500 . -21) T) ((-1150 . -1130) T) ((-220 . -25) T) ((-220 . -21) T) ((-733 . -424) 158735) ((-735 . -1068) 158704) ((-1297 . -631) 158616) ((-1297 . -632) 158577) ((-1283 . -174) T) ((-1220 . -631) 158559) ((-251 . -34) T) ((-355 . -634) 158489) ((-407 . -634) 158471) ((-954 . -1004) T) ((-1233 . -1247) T) ((-683 . -812) 158450) ((-683 . -815) 158429) ((-411 . -408) T) ((-536 . -102) 158379) ((-1253 . -1247) T) ((-1065 . -1130) T) ((-420 . -928) 158302) ((-225 . -1025) 158286) ((-859 . -1247) T) ((-517 . -102) T) ((-641 . -631) 158268) ((-45 . -870) NIL) ((-641 . -632) 158245) ((-1065 . -628) 158220) ((-929 . -527) 158153) ((-330 . -238) 158105) ((-355 . -1079) T) ((-118 . -632) NIL) ((-118 . -631) 158087) ((-895 . -1247) T) ((-691 . -430) 158071) ((-691 . -1153) 158016) ((-513 . -152) 157998) ((-355 . -239) T) ((-355 . -249) T) ((-40 . -1086) 157943) ((-895 . -908) 157927) ((-895 . -910) 157852) ((-733 . -1088) T) ((-715 . -1032) NIL) ((-1281 . -47) 157822) ((-1260 . -47) 157799) ((-1171 . -1040) 157770) ((-1150 . -738) 157757) ((-3 . |UnionCategory|) T) ((-1135 . -631) 157739) ((-1110 . -148) 157718) ((-1110 . -146) 157669) ((-1034 . -375) T) ((-994 . -634) 157653) ((-228 . -948) T) ((-40 . -111) 157582) ((-895 . -1068) 157446) ((-1033 . -233) 157423) ((-1033 . -273) 157400) ((-722 . -1081) 157387) ((-942 . -375) T) ((-722 . -661) 157374) ((-330 . -1235) 157340) ((-391 . -318) T) ((-330 . -1232) 157306) ((-327 . -174) 157285) ((-324 . -174) T) ((-626 . -1223) 157261) ((-594 . -1316) 157248) ((-531 . -1316) 157225) ((-117 . -1081) 157212) ((-371 . -148) 157191) ((-371 . -146) 157142) ((-365 . -148) 157121) ((-365 . -146) 157072) ((-357 . -148) 157051) ((-117 . -661) 157038) ((-357 . -146) 156989) ((-330 . -35) 156955) ((-488 . -1223) 156934) ((0 . |EnumerationCategory|) T) ((-330 . -95) 156900) ((-391 . -1052) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 156850) ((-675 . -1130) T) ((-626 . -107) 156797) ((-498 . -132) T) ((-488 . -107) 156747) ((-246 . -1142) 156725) ((-31 . -1247) T) ((-895 . -389) 156709) ((-895 . -350) 156693) ((-246 . -23) 156545) ((-40 . -634) 156475) ((-1310 . -527) 156408) ((-1092 . -948) T) ((-1092 . -841) T) ((-594 . -380) T) ((-531 . -380) T) ((-1289 . -569) 156387) ((-1282 . -1251) 156366) ((-1282 . -569) 156317) ((-1281 . -1247) T) ((-1261 . -1251) 156296) ((-363 . -1182) T) ((-338 . -34) T) ((-44 . -430) 156280) ((-1211 . -634) 156216) ((-896 . -1247) T) ((-403 . -765) 156200) ((-1261 . -569) 156151) ((-1260 . -1247) T) ((-1172 . -667) 156110) ((-752 . -132) T) ((-693 . -634) 156094) ((-1260 . -910) 155967) ((-1260 . -908) 155937) ((-1204 . -132) T) ((-1203 . -132) T) ((-1197 . -132) T) ((-1156 . -132) T) ((-322 . -1113) T) ((-1054 . -1032) T) ((-758 . -527) 155870) ((-1034 . -23) T) ((-1034 . -1142) T) ((-917 . -1130) T) ((-145 . -865) T) ((-1033 . -361) NIL) ((-712 . -631) 155852) ((-971 . -873) 155831) ((-536 . -320) 155769) ((-1001 . -23) T) ((-142 . -527) NIL) ((-889 . -667) 155714) ((-942 . -1142) T) ((-942 . -23) T) ((-895 . -926) 155673) ((-363 . -38) 155638) ((-893 . -1086) 155625) ((-342 . -873) T) ((-82 . -631) 155607) ((-40 . -1079) T) ((-893 . -111) 155592) ((-739 . -1247) T) ((-722 . -102) T) ((-715 . -631) 155574) ((-615 . -1247) T) ((-609 . -569) 155553) ((-440 . -1142) T) ((-351 . -1081) 155537) ((-215 . -1130) T) ((-176 . -1081) 155469) ((-487 . -47) 155439) ((-40 . -239) 155411) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-608 . -569) 155390) ((-351 . -661) 155374) ((-715 . -632) 155282) ((-327 . -527) 155248) ((-176 . -661) 155180) ((-324 . -527) 155072) ((-500 . -235) 155059) ((-1281 . -1068) 155043) ((-1260 . -1068) 154829) ((-1029 . -424) 154813) ((-220 . -235) 154800) ((-440 . -23) T) ((-1150 . -174) T) ((-625 . -503) 154767) ((-620 . -503) 154749) ((-625 . -631) 154701) ((-620 . -631) 154668) ((-1283 . -301) T) ((-675 . -738) 154638) ((-145 . -1130) T) ((-48 . -1032) T) ((-420 . -273) 154622) ((-420 . -233) 154606) ((-306 . -241) 154556) ((-894 . -948) T) ((-894 . -841) NIL) ((-893 . -634) 154528) ((-259 . -873) 154479) ((-258 . -873) 154430) ((-887 . -870) T) ((-622 . -1130) T) ((-1260 . -350) 154400) ((-1260 . -389) 154370) ((-1110 . -238) 154249) ((-225 . -1151) 154233) ((-305 . -928) 154192) ((-1297 . -299) 154169) ((-371 . -238) 154148) ((-365 . -238) 154127) ((-487 . -1247) T) ((-357 . -238) 154106) ((-108 . -238) T) ((-1241 . -669) 154031) ((-1033 . -667) 153961) ((-991 . -21) T) ((-991 . -25) T) ((-756 . -21) T) ((-756 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-732 . -669) 153926) ((-466 . -21) T) ((-466 . -25) T) ((-351 . -102) T) ((-176 . -102) T) ((-1029 . -1088) T) ((-893 . -1079) T) ((-795 . -102) T) ((-1282 . -375) 153905) ((-1281 . -926) 153811) ((-1261 . -375) 153790) ((-1260 . -926) 153641) ((-1206 . -1247) T) ((-1054 . -631) 153623) ((-420 . -849) 153576) ((-1204 . -506) 153542) ((-171 . -948) 153473) ((-1203 . -506) 153439) ((-1197 . -506) 153405) ((-733 . -1130) T) ((-1156 . -506) 153371) ((-593 . -1086) 153358) ((-577 . -1086) 153345) ((-508 . -1086) 153310) ((-327 . -301) 153289) ((-324 . -301) T) ((-366 . -631) 153271) ((-431 . -25) T) ((-431 . -21) T) ((-99 . -297) 153250) ((-593 . -111) 153235) ((-577 . -111) 153220) ((-508 . -111) 153176) ((-1206 . -910) 153143) ((-929 . -502) 153127) ((-48 . -631) 153109) ((-48 . -632) 153054) ((-246 . -132) 152925) ((-1320 . -667) 152884) ((-1270 . -948) 152863) ((-837 . -1251) 152842) ((-401 . -503) 152823) ((-1065 . -527) 152667) ((-401 . -631) 152633) ((-837 . -569) 152564) ((-599 . -669) 152539) ((-274 . -47) 152511) ((-254 . -47) 152468) ((-544 . -522) 152445) ((-593 . -634) 152417) ((-577 . -634) 152389) ((-508 . -634) 152322) ((-1104 . -1247) T) ((-1030 . -1247) T) ((-1289 . -23) T) ((-1289 . -1142) T) ((-1282 . -1142) T) ((-1282 . -23) T) ((-1261 . -1142) T) ((-720 . -1086) 152287) ((-1261 . -23) T) ((-1241 . -747) T) ((-1150 . -301) T) ((-1143 . -238) 152184) ((-1034 . -132) T) ((-1033 . -382) 152156) ((-112 . -380) T) ((-487 . -926) 152062) ((-1001 . -132) T) ((-932 . -631) 152044) ((-55 . -634) 152026) ((-91 . -107) 152010) ((-942 . -132) T) ((-933 . -870) 151961) ((-722 . -1182) T) ((-720 . -111) 151917) ((-864 . -667) 151834) ((-609 . -1142) T) ((-608 . -1142) T) ((-733 . -738) 151663) ((-732 . -747) T) ((-820 . -25) T) ((-820 . -21) T) ((-500 . -870) T) ((-610 . -1247) T) ((-609 . -23) T) ((-598 . -1247) T) ((-220 . -870) T) ((-420 . -667) 151600) ((-593 . -1079) T) ((-577 . -1079) T) ((-549 . -1247) T) ((-508 . -1079) T) ((-355 . -1316) 151577) ((-330 . -465) 151556) ((-351 . -320) 151543) ((-608 . -23) T) ((-440 . -132) T) ((-679 . -669) 151517) ((-251 . -1040) 151501) ((-895 . -318) T) ((-1321 . -1311) 151485) ((-792 . -813) T) ((-792 . -816) T) ((-722 . -38) 151472) ((-577 . -239) T) ((-508 . -249) T) ((-508 . -239) T) ((-1310 . -502) 151456) ((-1293 . -1247) T) ((-1180 . -241) 151406) ((-1117 . -937) 151385) ((-117 . -38) 151372) ((-211 . -821) T) ((-210 . -821) T) ((-209 . -821) T) ((-208 . -821) T) ((-895 . -1052) 151350) ((-685 . -1247) T) ((-666 . -1247) T) ((-803 . -937) 151329) ((-801 . -937) 151308) ((-1219 . -1247) T) ((-367 . -1247) T) ((-364 . -1247) T) ((-356 . -1247) T) ((-274 . -1247) T) ((-254 . -1247) T) ((-467 . -937) 151287) ((-758 . -502) 151271) ((-1117 . -669) 151160) ((-720 . -634) 151095) ((-803 . -669) 150984) ((-641 . -1086) 150971) ((-492 . -1247) T) ((-355 . -380) T) ((-142 . -502) 150953) ((-801 . -669) 150842) ((-1171 . -1247) T) ((-562 . -870) T) ((-474 . -669) 150813) ((-274 . -910) 150672) ((-254 . -910) NIL) ((-118 . -1086) 150617) ((-467 . -669) 150506) ((-685 . -1068) 150483) ((-641 . -111) 150468) ((-403 . -1081) 150452) ((-367 . -1068) 150436) ((-364 . -1068) 150420) ((-356 . -1068) 150404) ((-274 . -1068) 150248) ((-254 . -1068) 150124) ((-938 . -1247) T) ((-118 . -111) 150053) ((-59 . -1247) T) ((-403 . -661) 150037) ((-639 . -1081) 150021) ((-532 . -1247) T) ((-529 . -1247) T) ((-510 . -1247) T) ((-509 . -1247) T) ((-450 . -631) 150003) ((-447 . -631) 149985) ((-639 . -661) 149969) ((-3 . -102) T) ((-1057 . -1240) 149938) ((-854 . -102) T) ((-710 . -57) 149896) ((-720 . -1079) T) ((-653 . -667) 149865) ((-619 . -667) 149834) ((-50 . -669) 149808) ((-300 . -465) T) ((-489 . -1240) 149777) ((0 . -102) T) ((-594 . -669) 149742) ((-531 . -669) 149687) ((-49 . -102) T) ((-938 . -1068) 149674) ((-720 . -249) T) ((-1110 . -422) 149653) ((-752 . -659) 149601) ((-1029 . -1130) T) ((-733 . -174) 149492) ((-641 . -634) 149387) ((-500 . -1022) 149369) ((-431 . -235) 149314) ((-274 . -389) 149298) ((-254 . -389) 149282) ((-412 . -1130) T) ((-1056 . -102) 149260) ((-351 . -38) 149244) ((-220 . -1022) 149226) ((-118 . -634) 149156) ((-176 . -38) 149088) ((-1281 . -318) 149067) ((-1260 . -318) 149046) ((-679 . -747) T) ((-99 . -631) 149028) ((-490 . -1081) 148993) ((-1197 . -659) 148945) ((-490 . -661) 148910) ((-665 . -873) 148889) ((-498 . -25) T) ((-498 . -21) T) ((-1260 . -1052) 148841) ((-1087 . -1247) T) ((-1 . -1247) T) ((-641 . -1079) T) ((-391 . -417) T) ((-403 . -102) T) ((-1135 . -636) 148756) ((-274 . -926) 148702) ((-254 . -926) 148679) ((-118 . -1079) T) ((-1117 . -747) T) ((-837 . -1142) T) ((-840 . -873) T) ((-641 . -239) 148658) ((-639 . -102) T) ((-524 . -1247) T) ((-520 . -1247) T) ((-803 . -747) T) ((-801 . -747) T) ((-1252 . -870) T) ((-426 . -1142) T) ((-118 . -249) T) ((-40 . -380) NIL) ((-118 . -239) NIL) ((-399 . -873) 148637) ((-467 . -747) T) ((-837 . -23) T) ((-752 . -25) T) ((-752 . -21) T) ((-691 . -920) 148558) ((-1107 . -297) 148537) ((-78 . -409) T) ((-78 . -408) T) ((-546 . -788) 148519) ((-228 . -873) T) ((-715 . -1086) 148469) ((-1322 . -102) T) ((-1289 . -132) T) ((-1282 . -132) T) ((-1261 . -132) T) ((-1204 . -25) T) ((-1172 . -424) 148453) ((-653 . -379) 148385) ((-619 . -379) 148317) ((-1187 . -1179) 148301) ((-103 . -1130) 148279) ((-1204 . -21) T) ((-1203 . -21) T) ((-888 . -631) 148261) ((-1029 . -738) 148209) ((-226 . -669) 148176) ((-715 . -111) 148110) ((-50 . -747) T) ((-1203 . -25) T) ((-363 . -361) T) ((-1197 . -21) T) ((-1110 . -465) 148061) ((-1197 . -25) T) ((-733 . -527) 148008) ((-594 . -747) T) ((-531 . -747) T) ((-1156 . -21) T) ((-1156 . -25) T) ((-609 . -132) T) ((-608 . -132) T) ((-305 . -667) 147743) ((-495 . -238) 147640) ((-371 . -465) T) ((-365 . -465) T) ((-357 . -465) T) ((-487 . -318) 147619) ((-1255 . -102) T) ((-324 . -297) 147554) ((-108 . -465) T) ((-79 . -454) T) ((-79 . -408) T) ((-490 . -102) T) ((-712 . -634) 147538) ((-1326 . -631) 147520) ((-1326 . -632) 147502) ((-1110 . -415) 147481) ((-1065 . -502) 147412) ((-660 . -669) 147396) ((-137 . -297) 147373) ((-577 . -816) T) ((-577 . -813) T) ((-1093 . -241) 147319) ((-1092 . -873) T) ((-734 . -873) T) ((-371 . -415) 147270) ((-365 . -415) 147221) ((-357 . -415) 147172) ((-1312 . -1142) T) ((-1321 . -1081) 147156) ((-393 . -1081) 147140) ((-1321 . -661) 147110) ((-839 . -238) T) ((-393 . -661) 147080) ((-715 . -634) 147015) ((-1312 . -23) T) ((-625 . -634) 146982) ((-620 . -634) 146964) ((-1299 . -102) T) ((-351 . -928) 146945) ((-177 . -631) 146927) ((-1172 . -1088) T) ((-560 . -380) T) ((-691 . -765) 146911) ((-1208 . -146) 146890) ((-1208 . -148) 146869) ((-1176 . -1130) T) ((-1176 . -1101) 146838) ((-69 . -1247) T) ((-1054 . -1086) 146775) ((-363 . -667) 146705) ((-889 . -1088) T) ((-246 . -659) 146611) ((-715 . -1079) T) ((-366 . -1086) 146556) ((-61 . -1247) T) ((-1054 . -111) 146472) ((-929 . -631) 146383) ((-715 . -249) T) ((-715 . -239) NIL) ((-864 . -869) 146362) ((-720 . -816) T) ((-720 . -813) T) ((-1033 . -424) 146339) ((-366 . -111) 146268) ((-391 . -948) T) ((-420 . -869) 146247) ((-733 . -301) 146158) ((-226 . -747) T) ((-1289 . -506) 146124) ((-1282 . -506) 146090) ((-1261 . -506) 146056) ((-591 . -1130) T) ((-327 . -1032) 146035) ((-225 . -1130) 146013) ((-1254 . -865) T) ((-330 . -1003) 145975) ((-105 . -102) T) ((-48 . -1086) 145940) ((-894 . -873) NIL) ((-1321 . -102) T) ((-393 . -102) T) ((-1283 . -631) 145922) ((-1163 . -1164) 145906) ((-1034 . -659) 145888) ((-899 . -1247) T) ((-48 . -111) 145844) ((-702 . -1247) T) ((-697 . -1247) T) ((-683 . -1247) T) ((-836 . -920) 145711) ((-491 . -1247) T) ((-251 . -1247) T) ((-544 . -102) T) ((-513 . -102) T) ((-153 . -1304) 145695) ((-139 . -1247) T) ((-138 . -1247) T) ((-134 . -1247) T) ((-1246 . -102) T) ((-1054 . -634) 145632) ((-838 . -238) T) ((-1202 . -1251) 145611) ((-217 . -380) T) ((-366 . -634) 145541) ((-1155 . -1251) 145520) ((-246 . -25) 145353) ((-246 . -21) 145264) ((-128 . -120) 145248) ((-122 . -120) 145232) ((-44 . -765) 145216) ((-1202 . -569) 145127) ((-1155 . -569) 145058) ((-1254 . -1130) T) ((-559 . -873) T) ((-1065 . -297) 145033) ((-1196 . -1113) T) ((-1024 . -1113) T) ((-837 . -132) T) ((-118 . -816) NIL) ((-118 . -813) NIL) ((-367 . -318) T) ((-364 . -318) T) ((-356 . -318) T) ((-1124 . -1247) 145011) ((-259 . -1142) 144989) ((-258 . -1142) 144967) ((-1054 . -1079) T) ((-1033 . -1088) T) ((-48 . -634) 144900) ((-355 . -669) 144845) ((-1310 . -631) 144807) ((-1310 . -632) 144768) ((-639 . -38) 144752) ((-1204 . -235) 144705) ((-1203 . -235) 144651) ((-1107 . -631) 144633) ((-1054 . -249) T) ((-366 . -1079) T) ((-836 . -1304) 144603) ((-259 . -23) T) ((-258 . -23) T) ((-1017 . -631) 144585) ((-1197 . -235) 144402) ((-1189 . -152) 144349) ((-758 . -632) 144310) ((-758 . -631) 144292) ((-1034 . -25) T) ((-820 . -870) 144271) ((-1029 . -527) 144183) ((-698 . -873) T) ((-366 . -239) T) ((-366 . -249) T) ((-401 . -634) 144164) ((-938 . -318) T) ((-142 . -631) 144146) ((-142 . -632) 144105) ((-330 . -920) 144009) ((-1034 . -21) T) ((-1001 . -25) T) ((-942 . -21) T) ((-942 . -25) T) ((-440 . -21) T) ((-440 . -25) T) ((-864 . -424) 143993) ((-48 . -1079) T) ((-1319 . -1311) 143977) ((-1317 . -1311) 143961) ((-1065 . -617) 143936) ((-327 . -632) 143797) ((-327 . -631) 143779) ((-324 . -632) NIL) ((-324 . -631) 143761) ((-48 . -249) T) ((-48 . -239) T) ((-675 . -297) 143722) ((-563 . -241) 143672) ((-584 . -873) T) ((-140 . -631) 143639) ((-137 . -631) 143621) ((-115 . -631) 143603) ((-490 . -38) 143568) ((-1321 . -1318) 143547) ((-1312 . -132) T) ((-1320 . -1088) T) ((-1112 . -102) T) ((-88 . -1247) T) ((-513 . -320) NIL) ((-1030 . -107) 143531) ((-913 . -1130) T) ((-909 . -1130) T) ((-1297 . -672) 143515) ((-1297 . -385) 143499) ((-338 . -1247) T) ((-606 . -870) T) ((-1172 . -1130) T) ((-1172 . -1083) 143439) ((-103 . -527) 143372) ((-955 . -631) 143354) ((-355 . -747) T) ((-30 . -631) 143336) ((-889 . -1130) T) ((-864 . -1088) 143315) ((-40 . -669) 143222) ((-228 . -1251) T) ((-420 . -1088) T) ((-1188 . -152) 143204) ((-1029 . -301) 143155) ((-897 . -1247) T) ((-635 . -1130) T) ((-228 . -569) T) ((-330 . -1278) 143139) ((-330 . -1275) 143109) ((-722 . -667) 143081) ((-1219 . -1223) 143060) ((-1105 . -631) 143042) ((-1219 . -107) 142992) ((-668 . -152) 142976) ((-650 . -152) 142922) ((-117 . -667) 142894) ((-492 . -1223) 142873) ((-500 . -148) T) ((-500 . -146) NIL) ((-1150 . -632) 142788) ((-451 . -631) 142770) ((-220 . -148) T) ((-220 . -146) NIL) ((-1150 . -631) 142752) ((-130 . -102) T) ((-52 . -102) T) ((-1261 . -659) 142704) ((-492 . -107) 142654) ((-1023 . -23) T) ((-1321 . -38) 142624) ((-1202 . -1142) T) ((-1155 . -1142) T) ((-1092 . -1251) T) ((-246 . -235) 142515) ((-322 . -102) T) ((-877 . -1142) T) ((-980 . -1251) 142494) ((-494 . -1251) 142473) ((-1092 . -569) T) ((-980 . -569) 142404) ((-1202 . -23) T) ((-1181 . -1113) T) ((-1155 . -23) T) ((-877 . -23) T) ((-494 . -569) 142335) ((-1172 . -738) 142267) ((-691 . -1081) 142251) ((-1176 . -527) 142184) ((-691 . -661) 142168) ((-1065 . -632) NIL) ((-1065 . -631) 142150) ((-96 . -1113) T) ((-1326 . -1086) 142137) ((-889 . -738) 142107) ((-1326 . -111) 142092) ((-1241 . -47) 142061) ((-1197 . -870) NIL) ((-259 . -132) T) ((-258 . -132) T) ((-1134 . -1130) T) ((-1033 . -1130) T) ((-62 . -631) 142043) ((-1110 . -920) 141912) ((-1054 . -813) T) ((-1054 . -816) T) ((-1289 . -25) T) ((-1289 . -21) T) ((-1282 . -21) T) ((-1282 . -25) T) ((-893 . -669) 141899) ((-1261 . -21) T) ((-1261 . -25) T) ((-1057 . -152) 141883) ((-1034 . -235) 141870) ((-895 . -841) 141849) ((-895 . -948) T) ((-733 . -297) 141776) ((-609 . -21) T) ((-351 . -667) 141735) ((-108 . -920) NIL) ((-609 . -25) T) ((-608 . -21) T) ((-176 . -667) 141652) ((-40 . -747) T) ((-225 . -527) 141585) ((-608 . -25) T) ((-489 . -152) 141569) ((-476 . -152) 141553) ((-185 . -1247) T) ((-949 . -815) T) ((-949 . -747) T) ((-792 . -814) T) ((-792 . -815) T) ((-519 . -1130) T) ((-515 . -1130) T) ((-792 . -747) T) ((-228 . -375) T) ((-1319 . -1081) 141537) ((-1317 . -1081) 141521) ((-1319 . -661) 141491) ((-1187 . -1130) 141469) ((-894 . -1251) T) ((-1317 . -661) 141439) ((-1118 . -873) T) ((-675 . -631) 141421) ((-894 . -569) T) ((-715 . -380) NIL) ((-44 . -1081) 141405) ((-1326 . -634) 141387) ((-1320 . -1130) T) ((-691 . -102) T) ((-371 . -1304) 141371) ((-365 . -1304) 141355) ((-44 . -661) 141339) ((-357 . -1304) 141323) ((-561 . -102) T) ((-1241 . -1247) T) ((-533 . -870) 141302) ((-732 . -1247) T) ((-986 . -873) 141281) ((-871 . -873) T) ((-500 . -238) T) ((-220 . -238) T) ((-1076 . -1130) T) ((-838 . -465) 141260) ((-153 . -1081) 141244) ((-1076 . -1101) 141173) ((-1057 . -1006) 141142) ((-840 . -1142) T) ((-1033 . -738) 141087) ((-153 . -661) 141071) ((-399 . -1142) T) ((-489 . -1006) 141040) ((-476 . -1006) 141009) ((-1213 . -873) T) ((-110 . -152) 140991) ((-73 . -631) 140973) ((-917 . -631) 140955) ((-1212 . -873) T) ((-1110 . -745) 140934) ((-1326 . -1079) T) ((-837 . -659) 140882) ((-305 . -1088) 140824) ((-171 . -1251) 140729) ((-228 . -1142) T) ((-335 . -23) T) ((-1197 . -1022) 140681) ((-1283 . -1086) 140586) ((-864 . -1130) T) ((-129 . -873) T) ((-1156 . -761) 140565) ((-1281 . -948) 140544) ((-1260 . -948) 140523) ((-893 . -747) T) ((-171 . -569) 140434) ((-593 . -669) 140421) ((-577 . -669) 140393) ((-420 . -1130) T) ((-271 . -1130) T) ((-215 . -631) 140375) ((-508 . -669) 140325) ((-228 . -23) T) ((-1260 . -841) 140278) ((-1319 . -102) T) ((-504 . -1247) T) ((-366 . -1316) 140255) ((-1317 . -102) T) ((-1283 . -111) 140147) ((-1143 . -920) 140014) ((-836 . -1081) 139915) ((-836 . -661) 139837) ((-145 . -631) 139819) ((-1023 . -132) T) ((-44 . -102) T) ((-246 . -870) 139770) ((-599 . -1247) T) ((-1270 . -1251) 139749) ((-103 . -502) 139733) ((-1320 . -738) 139703) ((-1117 . -47) 139664) ((-1092 . -1142) T) ((-980 . -1142) T) ((-128 . -34) T) ((-122 . -34) T) ((-1270 . -569) 139575) ((-803 . -47) 139552) ((-801 . -47) 139524) ((-1227 . -1247) T) ((-1202 . -132) T) ((-366 . -380) T) ((-494 . -1142) T) ((-1155 . -132) T) ((-894 . -375) T) ((-467 . -47) 139503) ((-877 . -132) T) ((-333 . -873) 139482) ((-153 . -102) T) ((-1092 . -23) T) ((-980 . -23) T) ((-584 . -569) T) ((-837 . -25) T) ((-837 . -21) T) ((-1172 . -527) 139415) ((-622 . -631) 139382) ((-605 . -1113) T) ((-599 . -1068) 139366) ((-1283 . -634) 139240) ((-494 . -23) T) ((-363 . -1088) T) ((-391 . -873) T) ((-1241 . -926) 139221) ((-691 . -320) 139159) ((-1289 . -235) 139112) ((-1143 . -1304) 139082) ((-720 . -669) 139047) ((-1034 . -870) T) ((-1033 . -174) T) ((-991 . -146) 139026) ((-653 . -1130) T) ((-619 . -1130) T) ((-991 . -148) 139005) ((-756 . -148) 138984) ((-756 . -146) 138963) ((-679 . -1247) T) ((-1001 . -870) T) ((-1282 . -235) 138909) ((-1261 . -235) 138726) ((-854 . -667) 138643) ((-487 . -948) 138622) ((-348 . -1247) T) ((-330 . -1081) 138457) ((-327 . -1086) 138367) ((-324 . -1086) 138296) ((-1029 . -297) 138254) ((-420 . -738) 138206) ((-330 . -661) 138047) ((-608 . -235) 138000) ((-722 . -869) T) ((-1283 . -1079) T) ((-327 . -111) 137896) ((-324 . -111) 137809) ((-97 . -1247) T) ((-992 . -102) T) ((-836 . -102) 137541) ((-733 . -632) NIL) ((-733 . -631) 137523) ((-1283 . -337) 137467) ((-679 . -1068) 137363) ((-1117 . -1247) T) ((-1065 . -299) 137338) ((-593 . -747) T) ((-577 . -815) T) ((-171 . -375) 137289) ((-577 . -812) T) ((-577 . -747) T) ((-508 . -747) T) ((-803 . -1247) T) ((-801 . -1247) T) ((-1176 . -502) 137273) ((-474 . -1247) T) ((-467 . -1247) T) ((-1319 . -1318) 137249) ((-1117 . -910) NIL) ((-894 . -1142) T) ((-118 . -937) NIL) ((-1317 . -1318) 137228) ((-670 . -1247) T) ((-803 . -910) NIL) ((-801 . -910) 137087) ((-1312 . -25) T) ((-1312 . -21) T) ((-1244 . -102) 137065) ((-1136 . -408) T) ((-641 . -669) 137052) ((-467 . -910) NIL) ((-696 . -102) 137002) ((-1117 . -1068) 136829) ((-894 . -23) T) ((-803 . -1068) 136688) ((-801 . -1068) 136545) ((-118 . -669) 136490) ((-467 . -1068) 136366) ((-285 . -1247) T) ((-327 . -634) 135930) ((-324 . -634) 135813) ((-50 . -1247) T) ((-403 . -667) 135782) ((-670 . -1068) 135766) ((-645 . -102) T) ((-594 . -1247) T) ((-531 . -1247) T) ((-225 . -502) 135750) ((-1297 . -34) T) ((-639 . -667) 135709) ((-300 . -1081) 135696) ((-137 . -634) 135680) ((-300 . -661) 135667) ((-653 . -738) 135651) ((-619 . -738) 135635) ((-691 . -38) 135595) ((-330 . -102) T) ((-1150 . -1086) 135582) ((-85 . -631) 135564) ((-50 . -1068) 135548) ((-1117 . -389) 135532) ((-803 . -389) 135516) ((-720 . -747) T) ((-720 . -815) T) ((-720 . -812) T) ((-60 . -57) 135478) ((-594 . -1068) 135465) ((-531 . -1068) 135442) ((-173 . -1247) T) ((-335 . -132) T) ((-327 . -1079) 135332) ((-324 . -1079) T) ((-171 . -1142) T) ((-801 . -389) 135316) ((-45 . -152) 135266) ((-1034 . -1022) 135248) ((-467 . -389) 135232) ((-420 . -174) T) ((-327 . -249) 135211) ((-324 . -249) T) ((-324 . -239) NIL) ((-305 . -1130) 134993) ((-228 . -132) T) ((-1150 . -111) 134978) ((-171 . -23) T) ((-820 . -148) 134957) ((-820 . -146) 134936) ((-259 . -659) 134842) ((-258 . -659) 134748) ((-330 . -295) 134714) ((-1187 . -527) 134647) ((-490 . -667) 134597) ((-656 . -865) T) ((-495 . -920) 134464) ((-1163 . -1130) T) ((-228 . -1090) T) ((-836 . -320) 134402) ((-1117 . -926) 134337) ((-803 . -926) 134280) ((-801 . -926) 134264) ((-1319 . -38) 134234) ((-1317 . -38) 134204) ((-1270 . -1142) T) ((-878 . -1142) T) ((-467 . -926) 134181) ((-881 . -1130) T) ((-1270 . -23) T) ((-1150 . -634) 134153) ((-1092 . -132) T) ((-878 . -23) T) ((-584 . -1142) T) ((-641 . -747) T) ((-523 . -873) T) ((-367 . -948) T) ((-364 . -948) T) ((-300 . -102) T) ((-356 . -948) T) ((-1000 . -1113) T) ((-980 . -132) T) ((-837 . -235) 134098) ((-118 . -815) NIL) ((-118 . -812) NIL) ((-118 . -747) T) ((-1076 . -527) 133999) ((-715 . -937) NIL) ((-584 . -23) T) ((-494 . -132) T) ((-431 . -238) 133950) ((-696 . -320) 133888) ((-226 . -1247) T) ((-656 . -1130) T) ((-653 . -782) T) ((-619 . -782) T) ((-1261 . -870) NIL) ((-1110 . -1081) 133798) ((-1033 . -301) T) ((-715 . -669) 133748) ((-259 . -25) T) ((-363 . -1130) T) ((-259 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-153 . -38) 133732) ((-2 . -102) T) ((-938 . -948) T) ((-1110 . -661) 133600) ((-495 . -1304) 133570) ((-1150 . -1079) T) ((-732 . -318) T) ((-722 . -1088) T) ((-371 . -1081) 133522) ((-365 . -1081) 133474) ((-357 . -1081) 133426) ((-371 . -661) 133378) ((-226 . -1068) 133355) ((-365 . -661) 133307) ((-108 . -1081) 133257) ((-357 . -661) 133209) ((-305 . -738) 133151) ((-660 . -1247) T) ((-500 . -465) T) ((-420 . -527) 133063) ((-108 . -661) 133013) ((-220 . -465) T) ((-1150 . -239) T) ((-306 . -152) 132963) ((-1029 . -632) 132924) ((-1029 . -631) 132906) ((-1019 . -631) 132888) ((-117 . -1088) T) ((-675 . -1086) 132872) ((-228 . -506) T) ((-412 . -631) 132854) ((-412 . -632) 132831) ((-1084 . -1304) 132801) ((-675 . -111) 132780) ((-691 . -928) 132703) ((-1172 . -502) 132687) ((-1321 . -667) 132646) ((-393 . -667) 132615) ((-63 . -454) T) ((-63 . -408) T) ((-1189 . -102) T) ((-894 . -132) T) ((-497 . -102) 132565) ((-1148 . -1247) T) ((-1253 . -873) T) ((-1326 . -380) T) ((-1110 . -102) T) ((-1091 . -102) T) ((-363 . -738) 132510) ((-895 . -873) 132461) ((-752 . -148) 132440) ((-752 . -146) 132419) ((-675 . -634) 132337) ((-1054 . -669) 132274) ((-536 . -1130) 132252) ((-371 . -102) T) ((-365 . -102) T) ((-357 . -102) T) ((-108 . -102) T) ((-517 . -1130) T) ((-366 . -669) 132197) ((-1202 . -659) 132145) ((-1155 . -659) 132093) ((-397 . -522) 132072) ((-854 . -869) 132051) ((-715 . -747) T) ((-391 . -1251) T) ((-344 . -1247) T) ((-1261 . -1022) 132003) ((-351 . -1088) T) ((-112 . -1247) T) ((-176 . -1088) T) ((-103 . -631) 131935) ((-1204 . -146) 131914) ((-1204 . -148) 131893) ((-391 . -569) T) ((-1203 . -148) 131872) ((-1203 . -146) 131851) ((-1197 . -146) 131758) ((-420 . -301) T) ((-1197 . -148) 131665) ((-1156 . -148) 131644) ((-1156 . -146) 131623) ((-330 . -38) 131464) ((-171 . -132) T) ((-324 . -816) NIL) ((-324 . -813) NIL) ((-675 . -1079) T) ((-48 . -669) 131414) ((-1143 . -1081) 131315) ((-917 . -634) 131292) ((-1143 . -661) 131214) ((-1196 . -102) T) ((-1024 . -102) T) ((-1023 . -21) T) ((-128 . -1040) 131198) ((-122 . -1040) 131182) ((-1023 . -25) T) ((-929 . -120) 131166) ((-1188 . -102) T) ((-1270 . -132) T) ((-1260 . -873) 131065) ((-1202 . -25) T) ((-1202 . -21) T) ((-1189 . -320) 130860) ((-355 . -1247) T) ((-1155 . -25) T) ((-878 . -132) T) ((-407 . -1247) T) ((-1155 . -21) T) ((-877 . -25) T) ((-877 . -21) T) ((-803 . -318) 130839) ((-1187 . -502) 130823) ((-1180 . -152) 130773) ((-1176 . -631) 130735) ((-668 . -102) 130685) ((-650 . -102) T) ((-1176 . -632) 130646) ((-584 . -132) T) ((-639 . -869) 130625) ((-1054 . -812) T) ((-1054 . -815) T) ((-1054 . -747) T) ((-836 . -928) 130494) ((-733 . -1086) 130317) ((-615 . -873) 130296) ((-497 . -320) 130234) ((-466 . -430) 130204) ((-363 . -174) T) ((-300 . -38) 130191) ((-259 . -235) 130082) ((-258 . -235) 129973) ((-284 . -102) T) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-355 . -1068) 129950) ((-278 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-733 . -111) 129759) ((-366 . -747) T) ((-691 . -273) 129743) ((-691 . -233) 129727) ((-594 . -318) T) ((-531 . -318) T) ((-305 . -527) 129676) ((-1194 . -1247) T) ((-108 . -320) NIL) ((-72 . -408) T) ((-1143 . -102) 129408) ((-854 . -424) 129392) ((-1150 . -816) T) ((-1150 . -813) T) ((-722 . -1130) T) ((-591 . -631) 129374) ((-391 . -375) T) ((-171 . -506) 129352) ((-225 . -631) 129284) ((-135 . -1130) T) ((-117 . -1130) T) ((-994 . -1247) T) ((-48 . -747) T) ((-1076 . -502) 129249) ((-142 . -438) 129231) ((-142 . -380) T) ((-1057 . -102) T) ((-525 . -522) 129210) ((-733 . -634) 128966) ((-1254 . -631) 128948) ((-1211 . -1247) T) ((-1211 . -1068) 128884) ((-1204 . -238) 128843) ((-489 . -102) T) ((-476 . -102) T) ((-1203 . -238) 128795) ((-1197 . -238) 128618) ((-1064 . -1142) T) ((-330 . -928) 128524) ((-1206 . -873) T) ((-1204 . -35) 128490) ((-1204 . -95) 128456) ((-1204 . -1235) 128422) ((-1204 . -1232) 128388) ((-1203 . -1232) 128354) ((-1203 . -1235) 128320) ((-1203 . -95) 128286) ((-1203 . -35) 128252) ((-1197 . -1232) 128218) ((-1197 . -1235) 128184) ((-1188 . -320) NIL) ((-89 . -409) T) ((-89 . -408) T) ((-1110 . -1182) 128163) ((-40 . -1247) T) ((-1197 . -95) 128129) ((-1064 . -23) T) ((-1197 . -35) 128095) ((-584 . -506) T) ((-1156 . -35) 128061) ((-1156 . -95) 128027) ((-1156 . -1235) 127993) ((-1156 . -1232) 127959) ((-373 . -1142) T) ((-371 . -1182) 127938) ((-365 . -1182) 127917) ((-357 . -1182) 127896) ((-1134 . -297) 127852) ((-982 . -1247) T) ((-949 . -1247) T) ((-108 . -1182) T) ((-854 . -1088) 127831) ((-792 . -1247) T) ((-668 . -320) 127769) ((-650 . -320) 127620) ((-693 . -1247) T) ((-733 . -1079) T) ((-1092 . -659) 127602) ((-1110 . -38) 127470) ((-980 . -659) 127418) ((-1034 . -148) T) ((-1034 . -146) NIL) ((-391 . -1142) T) ((-335 . -25) T) ((-333 . -23) T) ((-971 . -870) 127397) ((-733 . -337) 127374) ((-494 . -659) 127322) ((-40 . -1068) 127210) ((-733 . -239) T) ((-722 . -738) 127197) ((-351 . -1130) T) ((-176 . -1130) T) ((-342 . -870) T) ((-431 . -465) 127147) ((-391 . -23) T) ((-371 . -38) 127112) ((-365 . -38) 127077) ((-357 . -38) 127042) ((-80 . -454) T) ((-80 . -408) T) ((-228 . -25) T) ((-228 . -21) T) ((-857 . -1142) T) ((-108 . -38) 126992) ((-848 . -1142) T) ((-795 . -1130) T) ((-117 . -738) 126979) ((-693 . -1068) 126963) ((-630 . -102) T) ((-857 . -23) T) ((-848 . -23) T) ((-1187 . -297) 126915) ((-1143 . -320) 126853) ((-495 . -1081) 126754) ((-1132 . -241) 126738) ((-64 . -409) T) ((-64 . -408) T) ((-1181 . -102) T) ((-110 . -102) T) ((-495 . -661) 126660) ((-40 . -389) 126637) ((-96 . -102) T) ((-674 . -875) 126621) ((-1202 . -235) 126608) ((-1165 . -1113) T) ((-1092 . -21) T) ((-1092 . -25) T) ((-1084 . -1081) 126592) ((-836 . -273) 126561) ((-836 . -233) 126530) ((-980 . -25) T) ((-980 . -21) T) ((-1150 . -380) T) ((-1084 . -661) 126472) ((-639 . -1088) T) ((-1057 . -320) 126410) ((-913 . -631) 126392) ((-691 . -667) 126351) ((-494 . -25) T) ((-494 . -21) T) ((-397 . -1081) 126335) ((-909 . -631) 126317) ((-893 . -1247) T) ((-536 . -527) 126250) ((-259 . -870) 126201) ((-258 . -870) 126152) ((-397 . -661) 126122) ((-894 . -659) 126099) ((-489 . -320) 126037) ((-560 . -1247) T) ((-476 . -320) 125975) ((-363 . -301) T) ((-1187 . -1285) 125959) ((-1172 . -631) 125921) ((-1172 . -632) 125882) ((-1170 . -102) T) ((-1029 . -1086) 125778) ((-40 . -926) 125730) ((-1187 . -617) 125707) ((-1326 . -669) 125694) ((-1093 . -152) 125640) ((-500 . -920) NIL) ((-889 . -503) 125617) ((-1029 . -111) 125499) ((-895 . -1251) T) ((-220 . -920) NIL) ((-351 . -738) 125483) ((-889 . -631) 125445) ((-176 . -738) 125377) ((-895 . -569) T) ((-420 . -297) 125335) ((-246 . -238) 125232) ((-108 . -413) 125214) ((-84 . -396) T) ((-84 . -408) T) ((-722 . -174) T) ((-635 . -631) 125196) ((-99 . -747) T) ((-495 . -102) 124928) ((-99 . -486) T) ((-117 . -174) T) ((-1319 . -667) 124887) ((-1317 . -667) 124846) ((-171 . -659) 124794) ((-1110 . -928) 124665) ((-1084 . -102) T) ((-1029 . -634) 124555) ((-894 . -25) T) ((-836 . -244) 124534) ((-894 . -21) T) ((-839 . -102) T) ((-1034 . -238) T) ((-44 . -667) 124477) ((-427 . -102) T) ((-397 . -102) T) ((-110 . -320) NIL) ((-230 . -102) 124427) ((-217 . -1247) T) ((-128 . -1247) T) ((-122 . -1247) T) ((-108 . -928) NIL) ((-838 . -1081) 124378) ((-59 . -873) 124357) ((-838 . -661) 124299) ((-529 . -873) 124278) ((-509 . -873) 124257) ((-1064 . -132) T) ((-691 . -379) 124241) ((-153 . -667) 124200) ((-1326 . -747) T) ((-653 . -297) 124158) ((-619 . -297) 124116) ((-1289 . -146) 124095) ((-1270 . -659) 124043) ((-1029 . -1079) T) ((-1134 . -631) 124025) ((-1033 . -631) 124007) ((-593 . -1247) T) ((-577 . -1247) T) ((-508 . -1247) T) ((-528 . -23) T) ((-523 . -23) T) ((-355 . -318) T) ((-521 . -23) T) ((-333 . -132) T) ((-3 . -1130) T) ((-1033 . -632) 123991) ((-1029 . -249) 123970) ((-1029 . -239) 123949) ((-1289 . -148) 123928) ((-1282 . -148) 123907) ((-854 . -1130) T) ((-1282 . -146) 123886) ((-1281 . -1251) 123865) ((-1261 . -146) 123772) ((-1261 . -148) 123679) ((-1260 . -1251) 123658) ((-391 . -132) T) ((-228 . -235) 123645) ((-176 . -174) T) ((-577 . -910) 123627) ((0 . -1130) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1247) T) ((-49 . -1130) T) ((-1283 . -669) 123532) ((-1281 . -569) 123483) ((-1260 . -569) 123434) ((-735 . -1142) T) ((-658 . -23) T) ((-577 . -1068) 123416) ((-608 . -148) 123395) ((-608 . -146) 123374) ((-508 . -1068) 123317) ((-1165 . -1167) T) ((-87 . -396) T) ((-87 . -408) T) ((-895 . -375) T) ((-857 . -132) T) ((-848 . -132) T) ((-992 . -667) 123261) ((-735 . -23) T) ((-519 . -631) 123211) ((-515 . -631) 123193) ((-836 . -667) 122972) ((-1321 . -1088) T) ((-391 . -1090) T) ((-1056 . -1130) 122950) ((-55 . -1068) 122932) ((-929 . -34) T) ((-495 . -320) 122870) ((-605 . -102) T) ((-1187 . -632) 122831) ((-1187 . -631) 122763) ((-1208 . -1081) 122646) ((-45 . -102) T) ((-838 . -102) T) ((-1208 . -661) 122543) ((-1298 . -1247) T) ((-1270 . -25) T) ((-1270 . -21) T) ((-1092 . -235) 122530) ((-878 . -25) T) ((-524 . -873) T) ((-255 . -1247) T) ((-44 . -379) 122514) ((-878 . -21) T) ((-752 . -465) 122465) ((-1320 . -631) 122447) ((-731 . -1247) T) ((-720 . -1247) T) ((-1309 . -1081) 122417) ((-1084 . -320) 122355) ((-692 . -1113) T) ((-618 . -1113) T) ((-403 . -1130) T) ((-584 . -25) T) ((-584 . -21) T) ((-182 . -1113) T) ((-162 . -1113) T) ((-157 . -1113) T) ((-155 . -1113) T) ((-1309 . -661) 122325) ((-639 . -1130) T) ((-720 . -910) 122307) ((-1297 . -1247) T) ((-230 . -320) 122245) ((-145 . -380) T) ((-1220 . -1247) T) ((-1076 . -632) 122187) ((-1076 . -631) 122130) ((-324 . -937) NIL) ((-1255 . -865) T) ((-1143 . -928) 121999) ((-720 . -1068) 121944) ((-732 . -948) T) ((-487 . -1251) 121923) ((-1203 . -465) 121902) ((-1197 . -465) 121881) ((-341 . -102) T) ((-895 . -1142) T) ((-330 . -667) 121763) ((-327 . -669) 121492) ((-324 . -669) 121421) ((-487 . -569) 121372) ((-351 . -527) 121338) ((-563 . -152) 121288) ((-40 . -318) T) ((-864 . -631) 121270) ((-722 . -301) T) ((-895 . -23) T) ((-391 . -506) T) ((-1110 . -273) 121240) ((-1110 . -233) 121210) ((-525 . -102) T) ((-420 . -632) 121017) ((-420 . -631) 120999) ((-271 . -631) 120981) ((-117 . -301) T) ((-1283 . -747) T) ((-641 . -1247) T) ((-1322 . -1130) T) ((-1281 . -375) 120960) ((-1260 . -375) 120939) ((-1310 . -34) T) ((-1255 . -1130) T) ((-118 . -1247) T) ((-108 . -273) 120921) ((-108 . -233) 120903) ((-1208 . -102) T) ((-490 . -1130) T) ((-536 . -502) 120887) ((-758 . -34) T) ((-674 . -1081) 120871) ((-674 . -661) 120841) ((-894 . -235) NIL) ((-142 . -34) T) ((-118 . -908) 120818) ((-118 . -910) NIL) ((-1309 . -102) T) ((-1289 . -238) 120777) ((-641 . -1068) 120660) ((-624 . -102) T) ((-623 . -102) T) ((-621 . -102) T) ((-665 . -870) 120639) ((-1282 . -238) 120591) ((-1261 . -238) 120414) ((-306 . -102) T) ((-733 . -380) 120393) ((-118 . -1068) 120370) ((-403 . -738) 120354) ((-608 . -238) 120313) ((-639 . -738) 120297) ((-1135 . -1247) T) ((-45 . -320) 120101) ((-837 . -146) 120080) ((-837 . -148) 120059) ((-300 . -667) 120031) ((-1320 . -394) 120010) ((-840 . -870) T) ((-1299 . -1130) T) ((-1189 . -232) 119957) ((-399 . -870) 119936) ((-1289 . -35) 119902) ((-1289 . -1235) 119868) ((-1289 . -1232) 119834) ((-1282 . -1232) 119800) ((-528 . -132) T) ((-1282 . -1235) 119766) ((-1261 . -1232) 119732) ((-1261 . -1235) 119698) ((-1289 . -95) 119664) ((-1282 . -95) 119630) ((-431 . -920) 119551) ((-653 . -631) 119520) ((-619 . -631) 119489) ((-228 . -870) T) ((-1282 . -35) 119455) ((-1281 . -1142) T) ((-1261 . -95) 119421) ((-1150 . -669) 119393) ((-1261 . -35) 119359) ((-1260 . -1142) T) ((-606 . -152) 119341) ((-1110 . -361) 119320) ((-176 . -301) T) ((-118 . -389) 119297) ((-118 . -350) 119274) ((-171 . -235) 119199) ((-893 . -318) T) ((-324 . -815) NIL) ((-324 . -812) NIL) ((-327 . -747) 119048) ((-324 . -747) T) ((-658 . -132) T) ((-487 . -375) 119027) ((-371 . -361) 119006) ((-365 . -361) 118985) ((-357 . -361) 118964) ((-327 . -486) 118943) ((-1281 . -23) T) ((-1260 . -23) T) ((-739 . -1142) T) ((-735 . -132) T) ((-674 . -102) T) ((-490 . -738) 118908) ((-683 . -873) 118887) ((-45 . -293) 118837) ((-105 . -1130) T) ((-68 . -631) 118819) ((-251 . -873) 118798) ((-1000 . -102) T) ((-887 . -102) T) ((-641 . -926) 118757) ((-1321 . -1130) T) ((-393 . -1130) T) ((-1270 . -235) 118744) ((-1246 . -1130) T) ((-82 . -1247) T) ((-1143 . -273) 118713) ((-1092 . -870) T) ((-118 . -926) NIL) ((-803 . -948) 118692) ((-734 . -870) T) ((-544 . -1130) T) ((-513 . -1130) T) ((-367 . -1251) T) ((-364 . -1251) T) ((-356 . -1251) T) ((-274 . -1251) 118671) ((-254 . -1251) 118650) ((-546 . -883) T) ((-1143 . -233) 118619) ((-1188 . -849) T) ((-1172 . -1086) 118603) ((-403 . -782) T) ((-715 . -1247) T) ((-712 . -1068) 118587) ((-367 . -569) T) ((-364 . -569) T) ((-356 . -569) T) ((-274 . -569) 118518) ((-254 . -569) 118449) ((-538 . -1113) T) ((-1172 . -111) 118428) ((-466 . -765) 118398) ((-889 . -1086) 118368) ((-838 . -38) 118310) ((-715 . -908) 118292) ((-625 . -1247) T) ((-620 . -1247) T) ((-715 . -910) 118274) ((-306 . -320) 118078) ((-1187 . -299) 118055) ((-938 . -1251) T) ((-1110 . -667) 117950) ((-1034 . -465) T) ((-691 . -424) 117934) ((-889 . -111) 117899) ((-942 . -465) T) ((-715 . -1068) 117844) ((-938 . -569) T) ((-546 . -631) 117826) ((-594 . -948) T) ((-500 . -1081) 117776) ((-487 . -1142) T) ((-531 . -948) T) ((-495 . -928) 117645) ((-65 . -631) 117627) ((-220 . -1081) 117577) ((-500 . -661) 117527) ((-371 . -667) 117464) ((-365 . -667) 117401) ((-357 . -667) 117338) ((-650 . -232) 117284) ((-220 . -661) 117234) ((-108 . -667) 117184) ((-487 . -23) T) ((-1150 . -815) T) ((-895 . -132) T) ((-1150 . -812) T) ((-1312 . -1314) 117163) ((-1150 . -747) T) ((-675 . -669) 117137) ((-305 . -631) 116878) ((-1172 . -634) 116796) ((-1065 . -34) T) ((-837 . -238) 116747) ((-593 . -318) T) ((-577 . -318) T) ((-508 . -318) T) ((-1321 . -738) 116717) ((-715 . -389) 116699) ((-715 . -350) 116681) ((-490 . -174) T) ((-393 . -738) 116651) ((-889 . -634) 116586) ((-894 . -870) NIL) ((-577 . -1052) T) ((-508 . -1052) T) ((-1163 . -631) 116568) ((-1143 . -244) 116547) ((-216 . -102) T) ((-1180 . -102) T) ((-71 . -631) 116529) ((-1054 . -1247) T) ((-1172 . -1079) T) ((-1208 . -38) 116426) ((-881 . -631) 116408) ((-577 . -558) T) ((-691 . -1088) T) ((-752 . -977) 116361) ((-1172 . -239) 116340) ((-366 . -1247) T) ((-1112 . -1130) T) ((-1064 . -25) T) ((-1064 . -21) T) ((-1033 . -1086) 116285) ((-338 . -873) 116264) ((-933 . -102) T) ((-889 . -1079) T) ((-715 . -926) NIL) ((-367 . -340) 116248) ((-367 . -375) T) ((-364 . -340) 116232) ((-364 . -375) T) ((-356 . -340) 116216) ((-356 . -375) T) ((-500 . -102) T) ((-1309 . -38) 116186) ((-559 . -870) T) ((-536 . -708) 116136) ((-220 . -102) T) ((-1054 . -1068) 116016) ((-1033 . -111) 115945) ((-656 . -631) 115927) ((-1204 . -1003) 115896) ((-1203 . -1003) 115858) ((-533 . -152) 115842) ((-1110 . -382) 115821) ((-363 . -631) 115803) ((-333 . -21) T) ((-366 . -1068) 115780) ((-333 . -25) T) ((-1197 . -1003) 115749) ((-48 . -1247) T) ((-76 . -631) 115731) ((-1156 . -1003) 115698) ((-720 . -318) T) ((-130 . -865) T) ((-938 . -375) T) ((-391 . -25) T) ((-391 . -21) T) ((-938 . -340) 115685) ((-86 . -631) 115667) ((-720 . -1052) T) ((-698 . -870) T) ((-401 . -1247) T) ((-1281 . -132) T) ((-1260 . -132) T) ((-929 . -1040) 115651) ((-857 . -21) T) ((-48 . -1068) 115594) ((-857 . -25) T) ((-848 . -25) T) ((-848 . -21) T) ((-1143 . -667) 115373) ((-1319 . -1088) T) ((-562 . -102) T) ((-1317 . -1088) T) ((-675 . -747) T) ((-1134 . -636) 115276) ((-1033 . -634) 115206) ((-1320 . -1086) 115190) ((-932 . -1247) T) ((-836 . -424) 115159) ((-103 . -120) 115143) ((-130 . -1130) T) ((-52 . -1130) T) ((-954 . -631) 115125) ((-894 . -1022) 115102) ((-844 . -102) T) ((-1320 . -111) 115081) ((-752 . -920) 115056) ((-674 . -38) 115026) ((-584 . -870) T) ((-367 . -1142) T) ((-364 . -1142) T) ((-356 . -1142) T) ((-274 . -1142) T) ((-254 . -1142) T) ((-1180 . -320) 114830) ((-1118 . -235) 114817) ((-641 . -318) 114796) ((-685 . -23) T) ((-537 . -1113) T) ((-322 . -1130) T) ((-495 . -273) 114765) ((-495 . -233) 114734) ((-153 . -1088) T) ((-367 . -23) T) ((-364 . -23) T) ((-356 . -23) T) ((-118 . -318) T) ((-274 . -23) T) ((-254 . -23) T) ((-1033 . -1079) T) ((-733 . -937) 114713) ((-1204 . -920) 114601) ((-1203 . -920) 114482) ((-1197 . -920) 114218) ((-1187 . -634) 114195) ((-1033 . -239) 114167) ((-1033 . -249) T) ((-1156 . -920) 114149) ((-118 . -1052) NIL) ((-938 . -1142) T) ((-1282 . -465) 114128) ((-1261 . -465) 114107) ((-536 . -631) 114039) ((-733 . -669) 113928) ((-420 . -1086) 113880) ((-517 . -631) 113862) ((-938 . -23) T) ((-500 . -320) NIL) ((-1320 . -634) 113818) ((-487 . -132) T) ((-220 . -320) NIL) ((-420 . -111) 113756) ((-836 . -1088) 113734) ((-758 . -1128) 113718) ((-1281 . -506) 113684) ((-1260 . -506) 113650) ((-450 . -1247) T) ((-561 . -865) T) ((-142 . -1128) 113632) ((-490 . -301) T) ((-1213 . -682) T) ((-1320 . -1079) T) ((-259 . -238) 113529) ((-258 . -238) 113426) ((-1252 . -102) T) ((-1093 . -102) T) ((-864 . -634) 113294) ((-513 . -527) NIL) ((-495 . -244) 113273) ((-420 . -634) 113171) ((-991 . -1081) 113054) ((-756 . -1081) 113024) ((-991 . -661) 112921) ((-1202 . -146) 112900) ((-756 . -661) 112870) ((-466 . -1081) 112840) ((-1202 . -148) 112819) ((-1155 . -148) 112798) ((-1155 . -146) 112777) ((-653 . -1086) 112761) ((-619 . -1086) 112745) ((-466 . -661) 112715) ((-1204 . -1288) 112699) ((-1204 . -1275) 112676) ((-1203 . -1280) 112637) ((-691 . -1130) T) ((-691 . -1083) 112577) ((-1203 . -1275) 112547) ((-561 . -1130) T) ((-500 . -1182) T) ((-1203 . -1278) 112531) ((-1197 . -1259) 112492) ((-839 . -276) 112476) ((-220 . -1182) T) ((-355 . -948) T) ((-99 . -1247) T) ((-653 . -111) 112455) ((-619 . -111) 112434) ((-1197 . -1275) 112411) ((-864 . -1079) 112390) ((-1197 . -1257) 112374) ((-528 . -25) T) ((-508 . -313) T) ((-524 . -23) T) ((-523 . -25) T) ((-521 . -25) T) ((-520 . -23) T) ((-431 . -1081) 112348) ((-420 . -1079) T) ((-330 . -1088) T) ((-715 . -318) T) ((-431 . -661) 112322) ((-108 . -869) T) ((-733 . -747) T) ((-420 . -249) T) ((-420 . -239) 112301) ((-391 . -235) 112288) ((-500 . -38) 112238) ((-220 . -38) 112188) ((-487 . -506) 112154) ((-658 . -21) T) ((-658 . -25) T) ((-1254 . -380) T) ((-1188 . -1174) T) ((-1131 . -102) T) ((-848 . -235) 112127) ((-722 . -631) 112109) ((-722 . -632) 112024) ((-735 . -21) T) ((-735 . -25) T) ((-1165 . -102) T) ((-495 . -667) 111803) ((-246 . -920) 111670) ((-135 . -631) 111652) ((-117 . -631) 111634) ((-158 . -25) T) ((-1319 . -1130) T) ((-895 . -659) 111582) ((-1317 . -1130) T) ((-888 . -1247) T) ((-991 . -102) T) ((-756 . -102) T) ((-736 . -102) T) ((-466 . -102) T) ((-837 . -465) 111533) ((-44 . -1130) T) ((-1118 . -870) T) ((-1093 . -320) 111384) ((-685 . -132) T) ((-1084 . -667) 111353) ((-691 . -738) 111337) ((-300 . -1088) T) ((-367 . -132) T) ((-364 . -132) T) ((-356 . -132) T) ((-274 . -132) T) ((-254 . -132) T) ((-397 . -667) 111306) ((-1326 . -1247) T) ((-431 . -102) T) ((-153 . -1130) T) ((-45 . -232) 111256) ((-1034 . -920) NIL) ((-820 . -1081) 111240) ((-986 . -870) 111219) ((-1029 . -669) 111121) ((-820 . -661) 111105) ((-246 . -1304) 111075) ((-1054 . -318) T) ((-305 . -1086) 110996) ((-938 . -132) T) ((-40 . -948) T) ((-500 . -413) 110978) ((-366 . -318) T) ((-220 . -413) 110960) ((-1110 . -424) 110944) ((-305 . -111) 110860) ((-1213 . -870) T) ((-1212 . -870) T) ((-895 . -25) T) ((-895 . -21) T) ((-1283 . -47) 110804) ((-351 . -631) 110786) ((-1202 . -238) T) ((-228 . -148) T) ((-176 . -631) 110768) ((-795 . -631) 110750) ((-129 . -870) T) ((-626 . -241) 110697) ((-488 . -241) 110647) ((-1319 . -738) 110617) ((-48 . -318) T) ((-1317 . -738) 110587) ((-65 . -634) 110516) ((-992 . -1130) T) ((-836 . -1130) 110268) ((-323 . -102) T) ((-929 . -1247) T) ((-48 . -1052) T) ((-1260 . -659) 110176) ((-710 . -102) 110126) ((-44 . -738) 110110) ((-563 . -102) T) ((-305 . -634) 110041) ((-67 . -395) T) ((-500 . -928) NIL) ((-67 . -408) T) ((-285 . -873) T) ((-220 . -928) NIL) ((-683 . -23) T) ((-838 . -667) 109977) ((-691 . -782) T) ((-1244 . -1130) 109955) ((-363 . -1086) 109900) ((-696 . -1130) 109878) ((-1092 . -148) T) ((-980 . -148) 109857) ((-980 . -146) 109836) ((-820 . -102) T) ((-153 . -738) 109820) ((-494 . -148) 109799) ((-494 . -146) 109778) ((-363 . -111) 109707) ((-1110 . -1088) T) ((-333 . -870) 109686) ((-1289 . -1003) 109655) ((-1283 . -1247) T) ((-645 . -1130) T) ((-1282 . -1003) 109617) ((-524 . -132) T) ((-520 . -132) T) ((-306 . -232) 109567) ((-371 . -1088) T) ((-365 . -1088) T) ((-357 . -1088) T) ((-305 . -1079) 109509) ((-1261 . -1003) 109478) ((-391 . -870) T) ((-108 . -1088) T) ((-1029 . -747) T) ((-893 . -948) T) ((-864 . -816) 109457) ((-864 . -813) 109436) ((-431 . -320) 109375) ((-481 . -102) T) ((-608 . -1003) 109344) ((-330 . -1130) T) ((-420 . -816) 109323) ((-420 . -813) 109302) ((-513 . -502) 109284) ((-1283 . -1068) 109250) ((-1281 . -21) T) ((-1281 . -25) T) ((-1260 . -21) T) ((-1260 . -25) T) ((-656 . -634) 109227) ((-836 . -738) 109169) ((-363 . -634) 109099) ((-720 . -417) T) ((-1310 . -1247) T) ((-1143 . -424) 109068) ((-1107 . -1247) T) ((-618 . -102) T) ((-1033 . -380) NIL) ((-1017 . -1247) T) ((-692 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1208 . -667) 108978) ((-758 . -1247) T) ((-752 . -1081) 108821) ((-44 . -782) T) ((-752 . -661) 108670) ((-606 . -102) T) ((-674 . -677) 108654) ((-77 . -409) T) ((-77 . -408) T) ((-142 . -1247) T) ((-894 . -148) T) ((-894 . -146) NIL) ((-1309 . -667) 108599) ((-1289 . -920) 108487) ((-1282 . -920) 108368) ((-1246 . -93) T) ((-363 . -1079) T) ((-228 . -238) T) ((-70 . -395) T) ((-70 . -408) T) ((-1195 . -102) T) ((-691 . -527) 108301) ((-1261 . -920) 108037) ((-1241 . -569) 108016) ((-710 . -320) 107954) ((-991 . -38) 107851) ((-1210 . -631) 107833) ((-756 . -38) 107803) ((-563 . -320) 107607) ((-1204 . -1081) 107490) ((-327 . -1247) T) ((-363 . -239) T) ((-363 . -249) T) ((-324 . -1247) T) ((-300 . -1130) T) ((-1203 . -1081) 107325) ((-1197 . -1081) 107115) ((-1156 . -1081) 106998) ((-1204 . -661) 106895) ((-1203 . -661) 106736) ((-732 . -1251) T) ((-1197 . -661) 106532) ((-1187 . -672) 106516) ((-1156 . -661) 106413) ((-840 . -398) 106397) ((-732 . -569) T) ((-608 . -920) 106308) ((-327 . -908) 106292) ((-327 . -910) 106217) ((-324 . -908) 106178) ((-140 . -1247) T) ((-137 . -1247) T) ((-115 . -1247) T) ((-324 . -910) NIL) ((-820 . -320) 106143) ((-330 . -738) 105984) ((-399 . -398) 105968) ((-335 . -334) 105945) ((-498 . -102) T) ((-487 . -25) T) ((-487 . -21) T) ((-431 . -38) 105919) ((-327 . -1068) 105582) ((-228 . -1232) T) ((-228 . -1235) T) ((-3 . -631) 105564) ((-324 . -1068) 105494) ((-895 . -235) 105439) ((-2 . -1130) T) ((-2 . |RecordCategory|) T) ((-1143 . -1088) 105417) ((-854 . -631) 105399) ((-1092 . -238) T) ((-593 . -948) T) ((-577 . -841) T) ((-577 . -948) T) ((-508 . -948) T) ((-137 . -1068) 105383) ((-228 . -95) T) ((-171 . -148) 105362) ((-75 . -454) T) ((0 . -631) 105344) ((-75 . -408) T) ((-171 . -146) 105295) ((-228 . -35) T) ((-49 . -631) 105277) ((-490 . -1088) T) ((-500 . -273) 105259) ((-500 . -233) 105241) ((-497 . -998) 105225) ((-220 . -273) 105207) ((-220 . -233) 105189) ((-81 . -454) T) ((-81 . -408) T) ((-1176 . -34) T) ((-752 . -102) T) ((-674 . -667) 105148) ((-1056 . -631) 105115) ((-513 . -297) 105065) ((-327 . -389) 105034) ((-324 . -389) 104995) ((-324 . -350) 104956) ((-1115 . -631) 104938) ((-837 . -977) 104885) ((-683 . -132) T) ((-1270 . -146) 104864) ((-1270 . -148) 104843) ((-1204 . -102) T) ((-1203 . -102) T) ((-1197 . -102) T) ((-1189 . -1130) T) ((-1156 . -102) T) ((-1105 . -1247) T) ((-225 . -34) T) ((-300 . -738) 104830) ((-1289 . -1288) 104814) ((-1189 . -628) 104790) ((-606 . -320) NIL) ((-1289 . -1275) 104767) ((-1180 . -232) 104717) ((-497 . -1130) 104695) ((-451 . -1247) T) ((-403 . -631) 104677) ((-523 . -870) T) ((-1150 . -1247) T) ((-1282 . -1280) 104638) ((-1282 . -1275) 104608) ((-1282 . -1278) 104592) ((-1261 . -1259) 104553) ((-1261 . -1275) 104530) ((-1261 . -1257) 104514) ((-1204 . -295) 104480) ((-639 . -631) 104462) ((-1203 . -295) 104428) ((-720 . -948) T) ((-1197 . -295) 104394) ((-1156 . -295) 104360) ((-1150 . -910) 104342) ((-1110 . -1130) T) ((-1091 . -1130) T) ((-48 . -313) T) ((-327 . -926) 104308) ((-324 . -926) NIL) ((-1091 . -1098) 104287) ((-820 . -38) 104271) ((-274 . -659) 104219) ((-112 . -873) T) ((-254 . -659) 104167) ((-722 . -1086) 104154) ((-608 . -1275) 104131) ((-1150 . -1068) 104113) ((-330 . -174) 104044) ((-371 . -1130) T) ((-365 . -1130) T) ((-357 . -1130) T) ((-513 . -19) 104026) ((-1132 . -152) 104010) ((-894 . -238) NIL) ((-108 . -1130) T) ((-117 . -1086) 103997) ((-732 . -375) T) ((-513 . -617) 103972) ((-722 . -111) 103957) ((-1322 . -631) 103923) ((-1322 . -503) 103904) ((-1281 . -235) 103850) ((-1260 . -235) 103703) ((-449 . -102) T) ((-899 . -1292) T) ((-257 . -102) T) ((-45 . -1179) 103653) ((-117 . -111) 103638) ((-1299 . -631) 103620) ((-1270 . -238) T) ((-1255 . -631) 103602) ((-1253 . -870) T) ((-653 . -741) T) ((-619 . -741) T) ((-1241 . -1142) T) ((-1241 . -23) T) ((-1202 . -465) 103533) ((-1197 . -320) 103418) ((-1196 . -1130) T) ((-836 . -527) 103351) ((-1065 . -1247) T) ((-246 . -1081) 103252) ((-1188 . -1130) T) ((-1172 . -669) 103190) ((-971 . -152) 103174) ((-1156 . -320) 103161) ((-1155 . -465) 103112) ((-246 . -661) 103034) ((-1117 . -569) 102965) ((-1117 . -1251) 102944) ((-1110 . -738) 102812) ((-538 . -102) T) ((-533 . -102) 102742) ((-1034 . -1081) 102692) ((-1024 . -1130) T) ((-837 . -920) 102588) ((-803 . -1251) 102567) ((-801 . -1251) 102546) ((-62 . -1247) T) ((-490 . -631) 102498) ((-490 . -632) 102420) ((-803 . -569) 102331) ((-801 . -569) 102262) ((-752 . -320) 102249) ((-722 . -634) 102221) ((-495 . -424) 102190) ((-641 . -948) 102169) ((-467 . -1251) 102148) ((-696 . -527) 102081) ((-685 . -25) T) ((-411 . -631) 102063) ((-685 . -21) T) ((-467 . -569) 101994) ((-431 . -928) 101917) ((-367 . -25) T) ((-367 . -21) T) ((-364 . -25) T) ((-118 . -948) T) ((-118 . -841) NIL) ((-364 . -21) T) ((-356 . -25) T) ((-356 . -21) T) ((-274 . -25) T) ((-274 . -21) T) ((-254 . -25) T) ((-254 . -21) T) ((-171 . -238) 101848) ((-83 . -396) T) ((-83 . -408) T) ((-135 . -634) 101830) ((-117 . -634) 101802) ((-1034 . -661) 101752) ((-971 . -1010) 101736) ((-942 . -661) 101688) ((-942 . -1081) 101640) ((-938 . -21) T) ((-938 . -25) T) ((-895 . -870) 101591) ((-889 . -669) 101551) ((-732 . -1142) T) ((-732 . -23) T) ((-722 . -1079) T) ((-722 . -239) T) ((-300 . -174) T) ((-675 . -1247) T) ((-322 . -93) T) ((-668 . -1130) 101529) ((-650 . -628) 101504) ((-650 . -1130) T) ((-594 . -1251) T) ((-594 . -569) T) ((-531 . -1251) T) ((-531 . -569) T) ((-500 . -667) 101454) ((-487 . -235) 101400) ((-440 . -1081) 101384) ((-440 . -661) 101368) ((-371 . -738) 101320) ((-365 . -738) 101272) ((-351 . -1086) 101256) ((-357 . -738) 101208) ((-351 . -111) 101187) ((-176 . -1086) 101119) ((-176 . -111) 101030) ((-108 . -738) 100980) ((-220 . -667) 100930) ((-284 . -1130) T) ((-283 . -1130) T) ((-282 . -1130) T) ((-281 . -1130) T) ((-280 . -1130) T) ((-279 . -1130) T) ((-278 . -1130) T) ((-214 . -1130) T) ((-213 . -1130) T) ((-171 . -1235) 100908) ((-171 . -1232) 100886) ((-211 . -1130) T) ((-210 . -1130) T) ((-117 . -1079) T) ((-209 . -1130) T) ((-208 . -1130) T) ((-205 . -1130) T) ((-204 . -1130) T) ((-203 . -1130) T) ((-202 . -1130) T) ((-201 . -1130) T) ((-200 . -1130) T) ((-199 . -1130) T) ((-198 . -1130) T) ((-197 . -1130) T) ((-196 . -1130) T) ((-195 . -1130) T) ((-246 . -102) 100618) ((-171 . -35) 100596) ((-171 . -95) 100574) ((-675 . -1068) 100470) ((-495 . -1088) 100448) ((-1143 . -1130) 100200) ((-1172 . -34) T) ((-691 . -502) 100184) ((-73 . -1247) T) ((-105 . -631) 100166) ((-917 . -1247) T) ((-1321 . -631) 100148) ((-393 . -631) 100130) ((-351 . -634) 100082) ((-176 . -634) 99999) ((-1246 . -503) 99980) ((-752 . -38) 99829) ((-584 . -1235) T) ((-584 . -1232) T) ((-544 . -631) 99811) ((-533 . -320) 99749) ((-513 . -631) 99731) ((-513 . -632) 99713) ((-1246 . -631) 99679) ((-1197 . -1182) NIL) ((-215 . -1247) T) ((-1057 . -1101) 99648) ((-1057 . -1130) T) ((-1034 . -102) T) ((-1001 . -102) T) ((-942 . -102) T) ((-917 . -1068) 99625) ((-1172 . -747) T) ((-1033 . -669) 99532) ((-489 . -1130) T) ((-476 . -1130) T) ((-599 . -23) T) ((-584 . -35) T) ((-584 . -95) T) ((-440 . -102) T) ((-1093 . -232) 99478) ((-1204 . -38) 99375) ((-1203 . -38) 99216) ((-949 . -873) T) ((-889 . -747) T) ((-792 . -873) T) ((-715 . -948) T) ((-693 . -873) T) ((-524 . -25) T) ((-520 . -21) T) ((-520 . -25) T) ((-1197 . -38) 99012) ((-351 . -1079) T) ((-145 . -1247) T) ((-1110 . -174) T) ((-176 . -1079) T) ((-1156 . -38) 98909) ((-733 . -47) 98886) ((-371 . -174) T) ((-365 . -174) T) ((-532 . -57) 98860) ((-510 . -57) 98810) ((-363 . -1316) 98787) ((-228 . -465) T) ((-330 . -301) 98738) ((-357 . -174) T) ((-176 . -249) T) ((-1260 . -870) 98637) ((-108 . -174) T) ((-895 . -1022) 98621) ((-679 . -1142) T) ((-594 . -375) T) ((-594 . -340) 98608) ((-531 . -340) 98585) ((-531 . -375) T) ((-327 . -318) 98564) ((-324 . -318) T) ((-615 . -870) 98543) ((-1143 . -738) 98485) ((-622 . -1247) T) ((-533 . -293) 98469) ((-679 . -23) T) ((-431 . -233) 98453) ((-431 . -273) 98437) ((-324 . -1052) NIL) ((-348 . -23) T) ((-103 . -1040) 98421) ((-656 . -380) T) ((-45 . -36) 98400) ((-630 . -1130) T) ((-363 . -380) T) ((-537 . -102) T) ((-508 . -27) T) ((-246 . -320) 98338) ((-1117 . -1142) T) ((-1320 . -669) 98312) ((-803 . -1142) T) ((-801 . -1142) T) ((-1208 . -424) 98296) ((-467 . -1142) T) ((-1092 . -465) T) ((-1181 . -1130) T) ((-980 . -465) 98247) ((-1145 . -1113) T) ((-110 . -1130) T) ((-1117 . -23) T) ((-1189 . -527) 98030) ((-838 . -1088) T) ((-803 . -23) T) ((-801 . -23) T) ((-494 . -465) 97981) ((-474 . -23) T) ((-393 . -394) 97960) ((-367 . -235) 97933) ((-364 . -235) 97906) ((-356 . -235) 97879) ((-467 . -23) T) ((-274 . -235) 97824) ((-259 . -920) 97691) ((-258 . -920) 97558) ((-96 . -1130) T) ((-733 . -1247) T) ((-691 . -297) 97535) ((-497 . -527) 97468) ((-1289 . -1081) 97351) ((-1289 . -661) 97248) ((-1282 . -661) 97089) ((-1282 . -1081) 96924) ((-1261 . -661) 96720) ((-1261 . -1081) 96510) ((-300 . -301) T) ((-1112 . -631) 96492) ((-560 . -873) T) ((-1112 . -632) 96473) ((-420 . -937) 96452) ((-1241 . -132) T) ((-50 . -1142) T) ((-1197 . -413) 96404) ((-1054 . -948) T) ((-1033 . -747) T) ((-864 . -669) 96377) ((-733 . -910) NIL) ((-609 . -1081) 96337) ((-594 . -1142) T) ((-531 . -1142) T) ((-608 . -1081) 96220) ((-1187 . -34) T) ((-1034 . -320) NIL) ((-836 . -502) 96204) ((-609 . -661) 96177) ((-366 . -948) T) ((-608 . -661) 96074) ((-938 . -235) 96061) ((-420 . -669) 95977) ((-50 . -23) T) ((-732 . -132) T) ((-733 . -1068) 95857) ((-594 . -23) T) ((-108 . -527) NIL) ((-531 . -23) T) ((-171 . -422) 95828) ((-1170 . -1130) T) ((-1312 . -1311) 95812) ((-752 . -928) 95789) ((-722 . -816) T) ((-722 . -813) T) ((-1150 . -318) T) ((-391 . -148) T) ((-291 . -631) 95771) ((-290 . -631) 95753) ((-1260 . -1022) 95723) ((-48 . -948) T) ((-696 . -502) 95707) ((-259 . -1304) 95677) ((-258 . -1304) 95647) ((-1118 . -238) T) ((-1206 . -870) T) ((-1150 . -1052) T) ((-1076 . -34) T) ((-857 . -148) 95626) ((-857 . -146) 95605) ((-758 . -107) 95589) ((-630 . -133) T) ((-1208 . -1088) T) ((-495 . -1130) 95341) ((-1204 . -928) 95254) ((-1203 . -928) 95160) ((-1197 . -928) 94921) ((-894 . -465) T) ((-85 . -1247) T) ((-142 . -107) 94903) ((-1156 . -928) 94887) ((-733 . -389) 94871) ((-854 . -634) 94739) ((-1320 . -747) T) ((-1309 . -1088) T) ((-1289 . -102) T) ((-1282 . -102) T) ((-1150 . -558) T) ((-592 . -102) T) ((-130 . -503) 94721) ((-1202 . -977) 94690) ((-403 . -1086) 94674) ((-1155 . -977) 94641) ((-44 . -297) 94618) ((-130 . -631) 94585) ((-52 . -631) 94567) ((-217 . -873) T) ((-674 . -424) 94551) ((-1261 . -102) T) ((-1188 . -527) NIL) ((-683 . -25) T) ((-639 . -1086) 94535) ((-683 . -21) T) ((-991 . -667) 94445) ((-756 . -667) 94390) ((-736 . -667) 94362) ((-403 . -111) 94341) ((-225 . -262) 94325) ((-1084 . -1083) 94265) ((-1084 . -1130) T) ((-1034 . -1182) T) ((-839 . -1130) T) ((-466 . -667) 94180) ((-653 . -669) 94164) ((-639 . -111) 94143) ((-619 . -669) 94127) ((-609 . -102) T) ((-355 . -1251) T) ((-322 . -503) 94108) ((-599 . -132) T) ((-608 . -102) T) ((-427 . -1130) T) ((-397 . -1130) T) ((-322 . -631) 94074) ((-230 . -1130) 94052) ((-668 . -527) 93985) ((-650 . -527) 93829) ((-854 . -1079) 93808) ((-665 . -152) 93792) ((-355 . -569) T) ((-733 . -926) 93735) ((-563 . -232) 93685) ((-1289 . -295) 93651) ((-1282 . -295) 93617) ((-1110 . -301) 93568) ((-577 . -873) T) ((-500 . -869) T) ((-226 . -1142) T) ((-1261 . -295) 93534) ((-1241 . -506) 93500) ((-1034 . -38) 93450) ((-220 . -869) T) ((-431 . -667) 93409) ((-942 . -38) 93361) ((-864 . -815) 93340) ((-864 . -812) 93319) ((-864 . -747) 93298) ((-371 . -301) T) ((-365 . -301) T) ((-357 . -301) T) ((-171 . -465) 93229) ((-440 . -38) 93213) ((-226 . -23) T) ((-108 . -301) T) ((-420 . -815) 93192) ((-420 . -812) 93171) ((-420 . -747) T) ((-513 . -299) 93146) ((-490 . -1086) 93111) ((-679 . -132) T) ((-639 . -634) 93080) ((-1143 . -527) 93013) ((-348 . -132) T) ((-171 . -415) 92992) ((-495 . -738) 92934) ((-836 . -297) 92911) ((-490 . -111) 92867) ((-674 . -1088) T) ((-660 . -23) T) ((-1202 . -920) 92770) ((-1155 . -920) 92752) ((-837 . -1081) 92595) ((-1308 . -1113) T) ((-1270 . -465) 92526) ((-837 . -661) 92375) ((-1307 . -1113) T) ((-1117 . -132) T) ((-1084 . -738) 92317) ((-1057 . -527) 92250) ((-803 . -132) T) ((-801 . -132) T) ((-720 . -873) T) ((-584 . -465) T) ((-639 . -1079) T) ((-605 . -1130) T) ((-546 . -175) T) ((-474 . -132) T) ((-467 . -132) T) ((-391 . -238) T) ((-1029 . -1247) T) ((-45 . -1130) T) ((-397 . -738) 92220) ((-838 . -1130) T) ((-489 . -527) 92153) ((-476 . -527) 92086) ((-1322 . -634) 92067) ((-466 . -379) 92037) ((-45 . -628) 92016) ((-412 . -1247) T) ((-327 . -313) T) ((-1297 . -873) 91995) ((-848 . -238) 91974) ((-490 . -634) 91924) ((-1261 . -320) 91809) ((-691 . -631) 91771) ((-59 . -870) 91750) ((-1034 . -413) 91732) ((-561 . -631) 91714) ((-820 . -667) 91673) ((-836 . -617) 91650) ((-529 . -870) 91629) ((-509 . -870) 91608) ((-1029 . -1068) 91504) ((-40 . -1251) T) ((-246 . -928) 91373) ((-50 . -132) T) ((-594 . -132) T) ((-531 . -132) T) ((-305 . -669) 91233) ((-355 . -340) 91210) ((-355 . -375) T) ((-333 . -334) 91187) ((-330 . -297) 91145) ((-40 . -569) T) ((-391 . -1232) T) ((-391 . -1235) T) ((-1065 . -1223) 91120) ((-1219 . -241) 91070) ((-1197 . -233) 91022) ((-1197 . -273) 90974) ((-341 . -1130) T) ((-391 . -95) T) ((-391 . -35) T) ((-1065 . -107) 90920) ((-490 . -1079) T) ((-1321 . -1086) 90904) ((-492 . -241) 90854) ((-1189 . -502) 90788) ((-1312 . -1081) 90772) ((-393 . -1086) 90756) ((-1312 . -661) 90726) ((-837 . -102) T) ((-490 . -249) T) ((-735 . -148) 90705) ((-735 . -146) 90684) ((-118 . -873) NIL) ((-497 . -502) 90668) ((-498 . -347) 90637) ((-525 . -1130) 90588) ((-1321 . -111) 90567) ((-1029 . -389) 90551) ((-426 . -102) T) ((-393 . -111) 90530) ((-1029 . -350) 90514) ((-289 . -1013) 90498) ((-288 . -1013) 90482) ((-1034 . -928) NIL) ((-1319 . -631) 90464) ((-1317 . -631) 90446) ((-110 . -527) NIL) ((-1202 . -1273) 90430) ((-877 . -875) 90414) ((-1208 . -1130) T) ((-103 . -1247) T) ((-980 . -977) 90375) ((-838 . -738) 90317) ((-1261 . -1182) NIL) ((-494 . -977) 90262) ((-1092 . -144) T) ((-60 . -102) 90212) ((-44 . -631) 90194) ((-78 . -631) 90176) ((-363 . -669) 90121) ((-624 . -1130) T) ((-623 . -1130) T) ((-621 . -1130) T) ((-1309 . -1130) T) ((-524 . -870) T) ((-300 . -297) 90100) ((-355 . -1142) T) ((-306 . -1130) T) ((-1029 . -926) 90059) ((-306 . -628) 90038) ((-1321 . -634) 89987) ((-1289 . -38) 89884) ((-1282 . -38) 89725) ((-1261 . -38) 89521) ((-500 . -1088) T) ((-393 . -634) 89505) ((-220 . -1088) T) ((-355 . -23) T) ((-153 . -631) 89487) ((-854 . -816) 89466) ((-854 . -813) 89445) ((-1246 . -634) 89426) ((-609 . -38) 89399) ((-608 . -38) 89296) ((-893 . -569) T) ((-226 . -132) T) ((-330 . -1032) 89262) ((-79 . -631) 89244) ((-733 . -318) 89223) ((-305 . -747) 89125) ((-845 . -102) T) ((-887 . -865) T) ((-305 . -486) 89104) ((-1312 . -102) T) ((-40 . -375) T) ((-895 . -148) 89083) ((-498 . -667) 89065) ((-895 . -146) 89044) ((-1188 . -502) 89026) ((-1321 . -1079) T) ((-495 . -527) 88959) ((-660 . -132) T) ((-1176 . -1247) T) ((-992 . -631) 88941) ((-668 . -502) 88925) ((-650 . -502) 88856) ((-836 . -631) 88549) ((-48 . -27) T) ((-1208 . -738) 88446) ((-980 . -920) 88425) ((-674 . -1130) T) ((-884 . -883) T) ((-449 . -376) 88399) ((-752 . -667) 88309) ((-494 . -920) 88284) ((-1132 . -102) T) ((-1000 . -1130) T) ((-887 . -1130) T) ((-837 . -320) 88271) ((-546 . -540) T) ((-546 . -589) T) ((-1317 . -394) 88243) ((-715 . -873) T) ((-1084 . -527) 88176) ((-1189 . -297) 88152) ((-246 . -273) 88121) ((-246 . -233) 88090) ((-259 . -1081) 87991) ((-258 . -1081) 87892) ((-1309 . -738) 87862) ((-1196 . -93) T) ((-1024 . -93) T) ((-838 . -174) 87841) ((-259 . -661) 87763) ((-258 . -661) 87685) ((-1244 . -503) 87662) ((-591 . -1247) T) ((-230 . -527) 87595) ((-639 . -816) 87574) ((-639 . -813) 87553) ((-1244 . -631) 87465) ((-225 . -1247) T) ((-696 . -631) 87397) ((-1204 . -667) 87307) ((-1187 . -1040) 87291) ((-971 . -102) 87221) ((-363 . -747) T) ((-884 . -631) 87203) ((-1203 . -667) 87085) ((-1197 . -667) 86922) ((-1156 . -667) 86832) ((-1261 . -413) 86784) ((-1143 . -502) 86768) ((-60 . -320) 86706) ((-342 . -102) T) ((-1241 . -21) T) ((-1241 . -25) T) ((-40 . -1142) T) ((-732 . -21) T) ((-645 . -631) 86688) ((-528 . -334) 86667) ((-732 . -25) T) ((-452 . -102) T) ((-108 . -297) NIL) ((-949 . -1142) T) ((-40 . -23) T) ((-792 . -1142) T) ((-577 . -1251) T) ((-508 . -1251) T) ((-1034 . -273) 86649) ((-330 . -631) 86631) ((-1034 . -233) 86613) ((-171 . -167) 86597) ((-593 . -569) T) ((-577 . -569) T) ((-508 . -569) T) ((-792 . -23) T) ((-1281 . -148) 86576) ((-1281 . -146) 86555) ((-1189 . -617) 86531) ((-1260 . -146) 86456) ((-1057 . -502) 86440) ((-1254 . -1247) T) ((-1260 . -148) 86365) ((-1312 . -1318) 86344) ((-894 . -920) NIL) ((-489 . -502) 86328) ((-476 . -502) 86312) ((-536 . -34) T) ((-674 . -738) 86282) ((-1289 . -928) 86195) ((-1282 . -928) 86101) ((-1261 . -928) 85862) ((-112 . -997) T) ((-1208 . -174) 85813) ((-683 . -870) 85792) ((-377 . -102) T) ((-608 . -928) 85705) ((-246 . -244) 85684) ((-259 . -102) T) ((-258 . -102) T) ((-1270 . -977) 85653) ((-251 . -870) 85632) ((-1054 . -873) T) ((-837 . -38) 85481) ((-45 . -527) 85273) ((-1188 . -297) 85223) ((-216 . -1130) T) ((-1180 . -1130) T) ((-895 . -238) 85174) ((-1180 . -628) 85153) ((-599 . -25) T) ((-599 . -21) T) ((-1132 . -320) 85091) ((-991 . -424) 85075) ((-720 . -1251) T) ((-650 . -297) 85028) ((-1117 . -659) 84976) ((-933 . -1130) T) ((-803 . -659) 84924) ((-801 . -659) 84872) ((-355 . -132) T) ((-300 . -631) 84854) ((-893 . -1142) T) ((-720 . -569) T) ((-130 . -634) 84836) ((-467 . -659) 84784) ((-171 . -920) 84705) ((-933 . -931) 84689) ((-391 . -465) T) ((-500 . -1130) T) ((-971 . -320) 84627) ((-722 . -669) 84599) ((-562 . -865) T) ((-220 . -1130) T) ((-327 . -948) 84578) ((-324 . -948) T) ((-324 . -841) NIL) ((-403 . -741) T) ((-893 . -23) T) ((-117 . -669) 84565) ((-487 . -146) 84544) ((-431 . -424) 84528) ((-487 . -148) 84507) ((-110 . -502) 84489) ((-322 . -634) 84470) ((-2 . -631) 84452) ((-188 . -102) T) ((-1188 . -19) 84434) ((-1188 . -617) 84409) ((-679 . -21) T) ((-679 . -25) T) ((-606 . -1174) T) ((-1143 . -297) 84386) ((-348 . -25) T) ((-348 . -21) T) ((-913 . -1247) T) ((-909 . -1247) T) ((-1319 . -1086) 84370) ((-246 . -667) 84149) ((-508 . -375) T) ((-1317 . -1086) 84133) ((-1312 . -38) 84103) ((-1281 . -1232) 84069) ((-1281 . -1235) 84035) ((-1270 . -920) 83938) ((-1202 . -1081) 83761) ((-1172 . -1247) T) ((-1155 . -1081) 83604) ((-877 . -1081) 83588) ((-650 . -617) 83563) ((-1281 . -95) 83529) ((-1281 . -238) 83481) ((-1264 . -102) 83459) ((-1202 . -661) 83288) ((-1155 . -661) 83137) ((-877 . -661) 83107) ((-1261 . -233) 83059) ((-1117 . -25) T) ((-562 . -1130) T) ((-1117 . -21) T) ((-991 . -1088) T) ((-544 . -813) T) ((-544 . -816) T) ((-118 . -1251) T) ((-889 . -1247) T) ((-641 . -569) T) ((-803 . -25) T) ((-803 . -21) T) ((-801 . -21) T) ((-801 . -25) T) ((-756 . -1088) T) ((-736 . -1088) T) ((-691 . -1086) 83043) ((-530 . -1113) T) ((-474 . -25) T) ((-118 . -569) T) ((-474 . -21) T) ((-467 . -25) T) ((-467 . -21) T) ((-1261 . -273) 82995) ((-1181 . -93) T) ((-1172 . -1068) 82891) ((-838 . -301) 82870) ((-1260 . -1232) 82836) ((-844 . -1130) T) ((-994 . -997) T) ((-691 . -111) 82815) ((-635 . -1247) T) ((-306 . -527) 82607) ((-1260 . -1235) 82573) ((-1260 . -238) 82432) ((-1255 . -380) T) ((-259 . -320) 82370) ((-258 . -320) 82308) ((-1252 . -865) T) ((-1189 . -632) NIL) ((-1189 . -631) 82290) ((-1172 . -389) 82274) ((-1150 . -841) T) ((-1150 . -948) T) ((-96 . -93) T) ((-1143 . -617) 82251) ((-1110 . -632) 82235) ((-1110 . -631) 82217) ((-1034 . -667) 82167) ((-942 . -667) 82104) ((-836 . -299) 82081) ((-497 . -631) 82013) ((-626 . -152) 81960) ((-500 . -738) 81910) ((-431 . -1088) T) ((-495 . -502) 81894) ((-440 . -667) 81853) ((-338 . -870) 81832) ((-351 . -669) 81806) ((-50 . -21) T) ((-50 . -25) T) ((-220 . -738) 81756) ((-171 . -745) 81727) ((-176 . -669) 81659) ((-594 . -21) T) ((-594 . -25) T) ((-531 . -25) T) ((-531 . -21) T) ((-488 . -152) 81609) ((-1091 . -631) 81591) ((-1023 . -102) T) ((-885 . -102) T) ((-837 . -928) 81491) ((-820 . -424) 81454) ((-40 . -132) T) ((-720 . -375) T) ((-722 . -747) T) ((-722 . -815) T) ((-722 . -812) T) ((-214 . -921) T) ((-593 . -1142) T) ((-577 . -1142) T) ((-508 . -1142) T) ((-371 . -631) 81436) ((-365 . -631) 81418) ((-357 . -631) 81400) ((-66 . -409) T) ((-66 . -408) T) ((-108 . -632) 81330) ((-108 . -631) 81272) ((-213 . -921) T) ((-986 . -152) 81256) ((-792 . -132) T) ((-691 . -634) 81174) ((-135 . -747) T) ((-117 . -747) T) ((-1281 . -35) 81140) ((-1084 . -502) 81124) ((-593 . -23) T) ((-577 . -23) T) ((-508 . -23) T) ((-1260 . -95) 81090) ((-1260 . -35) 81056) ((-1202 . -102) T) ((-1155 . -102) T) ((-877 . -102) T) ((-230 . -502) 81040) ((-1319 . -111) 81019) ((-1317 . -111) 80998) ((-44 . -1086) 80982) ((-1320 . -1247) T) ((-1319 . -634) 80928) ((-1319 . -1079) T) ((-1317 . -634) 80857) ((-1317 . -1079) T) ((-1270 . -1273) 80841) ((-878 . -875) 80825) ((-1208 . -301) 80804) ((-1134 . -1247) T) ((-110 . -297) 80754) ((-1033 . -1247) T) ((-129 . -152) 80736) ((-1172 . -926) 80695) ((-44 . -111) 80674) ((-1252 . -1130) T) ((-1211 . -1292) T) ((-1197 . -869) NIL) ((-1196 . -503) 80655) ((-691 . -1079) T) ((-1196 . -631) 80621) ((-1188 . -631) 80603) ((-487 . -238) 80555) ((-1093 . -628) 80530) ((-1024 . -503) 80511) ((-74 . -454) T) ((-74 . -408) T) ((-1093 . -1130) T) ((-153 . -1086) 80495) ((-1024 . -631) 80461) ((-691 . -239) 80440) ((-584 . -567) 80424) ((-367 . -148) 80403) ((-367 . -146) 80354) ((-364 . -148) 80333) ((-364 . -146) 80284) ((-356 . -148) 80263) ((-356 . -146) 80214) ((-274 . -146) 80193) ((-274 . -148) 80172) ((-254 . -148) 80151) ((-118 . -375) T) ((-254 . -146) 80130) ((-1188 . -632) NIL) ((-153 . -111) 80109) ((-1033 . -1068) 79997) ((-1187 . -1247) T) ((-715 . -1251) T) ((-820 . -1088) T) ((-720 . -1142) T) ((-1033 . -389) 79974) ((-519 . -1247) T) ((-515 . -1247) T) ((-938 . -146) T) ((-938 . -148) 79956) ((-893 . -132) T) ((-836 . -1086) 79877) ((-720 . -23) T) ((-715 . -569) T) ((-228 . -1081) 79842) ((-668 . -631) 79774) ((-668 . -632) 79735) ((-650 . -632) NIL) ((-650 . -631) 79717) ((-500 . -174) T) ((-228 . -661) 79682) ((-220 . -174) T) ((-226 . -21) T) ((-226 . -25) T) ((-487 . -1235) 79648) ((-487 . -1232) 79614) ((-284 . -631) 79596) ((-283 . -631) 79578) ((-282 . -631) 79560) ((-281 . -631) 79542) ((-280 . -631) 79524) ((-513 . -672) 79506) ((-279 . -631) 79488) ((-351 . -747) T) ((-278 . -631) 79470) ((-110 . -19) 79452) ((-176 . -747) T) ((-513 . -385) 79434) ((-214 . -631) 79416) ((-533 . -1179) 79400) ((-513 . -124) T) ((-110 . -617) 79375) ((-213 . -631) 79357) ((-487 . -35) 79323) ((-487 . -95) 79289) ((-211 . -631) 79271) ((-210 . -631) 79253) ((-209 . -631) 79235) ((-208 . -631) 79217) ((-205 . -631) 79199) ((-204 . -631) 79181) ((-203 . -631) 79163) ((-202 . -631) 79145) ((-201 . -631) 79127) ((-200 . -631) 79109) ((-199 . -631) 79091) ((-549 . -1133) 79043) ((-198 . -631) 79025) ((-197 . -631) 79007) ((-45 . -502) 78944) ((-196 . -631) 78926) ((-195 . -631) 78908) ((-153 . -634) 78877) ((-1145 . -102) T) ((-836 . -111) 78793) ((-665 . -102) 78723) ((-660 . -21) T) ((-660 . -25) T) ((-495 . -297) 78700) ((-1320 . -1068) 78684) ((-1143 . -631) 78377) ((-1131 . -1130) T) ((-1076 . -1247) T) ((-1202 . -320) 78364) ((-1092 . -1081) 78351) ((-1165 . -1130) T) ((-980 . -1081) 78194) ((-1155 . -320) 78181) ((-1126 . -1113) T) ((-641 . -1142) T) ((-1092 . -661) 78168) ((-1120 . -1113) T) ((-980 . -661) 78017) ((-1117 . -235) 77962) ((-494 . -1081) 77805) ((-1103 . -1113) T) ((-1096 . -1113) T) ((-1066 . -1113) T) ((-1049 . -1113) T) ((-118 . -1142) T) ((-494 . -661) 77654) ((-803 . -235) 77641) ((-840 . -102) T) ((-644 . -1113) T) ((-641 . -23) T) ((-1180 . -527) 77433) ((-496 . -1113) T) ((-991 . -1130) T) ((-399 . -102) T) ((-335 . -102) T) ((-221 . -1113) T) ((-864 . -1247) T) ((-153 . -1079) T) ((-752 . -424) 77417) ((-118 . -23) T) ((-1033 . -926) 77369) ((-756 . -1130) T) ((-736 . -1130) T) ((-1289 . -667) 77279) ((-1282 . -667) 77161) ((-466 . -1130) T) ((-420 . -1247) T) ((-327 . -443) 77145) ((-605 . -93) T) ((-1057 . -632) 77106) ((-271 . -1247) T) ((-1054 . -1251) T) ((-228 . -102) T) ((-1057 . -631) 77068) ((-837 . -273) 77052) ((-837 . -233) 77036) ((-836 . -634) 76834) ((-1261 . -667) 76671) ((-1054 . -569) T) ((-854 . -669) 76644) ((-366 . -1251) T) ((-489 . -631) 76606) ((-489 . -632) 76567) ((-476 . -632) 76528) ((-476 . -631) 76490) ((-609 . -667) 76449) ((-420 . -908) 76433) ((-330 . -1086) 76268) ((-420 . -910) 76193) ((-608 . -667) 76103) ((-864 . -1068) 75999) ((-500 . -527) NIL) ((-495 . -617) 75976) ((-594 . -235) 75963) ((-366 . -569) T) ((-531 . -235) 75950) ((-220 . -527) NIL) ((-895 . -465) T) ((-431 . -1130) T) ((-420 . -1068) 75814) ((-330 . -111) 75635) ((-715 . -375) T) ((-228 . -295) T) ((-1244 . -634) 75612) ((-48 . -1251) T) ((-1202 . -1182) 75590) ((-1189 . -299) 75566) ((-1092 . -102) T) ((-980 . -102) T) ((-836 . -1079) 75544) ((-593 . -132) T) ((-577 . -132) T) ((-508 . -132) T) ((-367 . -238) 75523) ((-364 . -238) 75502) ((-356 . -238) 75481) ((-48 . -569) T) ((-894 . -1081) 75426) ((-274 . -238) 75377) ((-836 . -239) 75329) ((-327 . -27) 75308) ((-259 . -928) 75177) ((-258 . -928) 75046) ((-256 . -856) 75028) ((-189 . -856) 75010) ((-734 . -102) T) ((-306 . -502) 74947) ((-894 . -661) 74892) ((-494 . -102) T) ((-752 . -1088) T) ((-630 . -631) 74874) ((-630 . -632) 74735) ((-420 . -389) 74719) ((-420 . -350) 74703) ((-1202 . -38) 74532) ((-1155 . -38) 74381) ((-330 . -634) 74207) ((-938 . -238) T) ((-653 . -1247) T) ((-619 . -1247) T) ((-877 . -38) 74177) ((-403 . -669) 74161) ((-665 . -320) 74099) ((-1181 . -503) 74080) ((-1181 . -631) 74046) ((-991 . -738) 73943) ((-756 . -738) 73913) ((-639 . -669) 73887) ((-225 . -107) 73871) ((-45 . -297) 73771) ((-323 . -1130) T) ((-300 . -1086) 73758) ((-110 . -631) 73740) ((-110 . -632) 73722) ((-466 . -738) 73692) ((-837 . -261) 73631) ((-710 . -1130) 73609) ((-563 . -1130) T) ((-1204 . -1088) T) ((-1203 . -1088) T) ((-96 . -503) 73590) ((-1197 . -1088) T) ((-300 . -111) 73575) ((-1156 . -1088) T) ((-563 . -628) 73554) ((-96 . -631) 73520) ((-1034 . -869) T) ((-230 . -708) 73478) ((-715 . -1142) T) ((-1241 . -761) 73454) ((-1054 . -375) T) ((-859 . -856) 73436) ((-854 . -815) 73415) ((-420 . -926) 73374) ((-330 . -1079) T) ((-355 . -25) T) ((-355 . -21) T) ((-171 . -1081) 73284) ((-68 . -1247) T) ((-854 . -812) 73263) ((-431 . -738) 73237) ((-820 . -1130) T) ((-733 . -948) 73216) ((-720 . -132) T) ((-171 . -661) 73044) ((-715 . -23) T) ((-500 . -301) T) ((-854 . -747) 73023) ((-330 . -239) 72975) ((-330 . -249) 72954) ((-220 . -301) T) ((-130 . -380) T) ((-1281 . -465) 72933) ((-1260 . -465) 72912) ((-366 . -340) 72889) ((-366 . -375) T) ((-1170 . -631) 72871) ((-45 . -1285) 72821) ((-894 . -102) T) ((-665 . -293) 72805) ((-720 . -1090) T) ((-1308 . -102) T) ((-1307 . -102) T) ((-490 . -669) 72770) ((-481 . -1130) T) ((-45 . -617) 72695) ((-1188 . -299) 72670) ((-300 . -634) 72642) ((-40 . -659) 72581) ((-1270 . -1081) 72404) ((-878 . -1081) 72388) ((-48 . -375) T) ((-1136 . -631) 72370) ((-1270 . -661) 72199) ((-878 . -661) 72169) ((-650 . -299) 72144) ((-837 . -667) 72054) ((-584 . -1081) 72041) ((-495 . -631) 71734) ((-246 . -424) 71703) ((-1202 . -928) 71610) ((-1195 . -1130) T) ((-980 . -320) 71597) ((-584 . -661) 71584) ((-65 . -1247) T) ((-1163 . -1247) T) ((-1155 . -928) 71568) ((-1143 . -299) 71545) ((-1093 . -527) 71389) ((-692 . -1130) T) ((-641 . -132) T) ((-618 . -1130) T) ((-494 . -320) 71376) ((-559 . -102) T) ((-118 . -132) T) ((-300 . -1079) T) ((-182 . -1130) T) ((-162 . -1130) T) ((-157 . -1130) T) ((-155 . -1130) T) ((-466 . -782) T) ((-31 . -1113) T) ((-991 . -174) 71327) ((-1132 . -232) 71311) ((-1000 . -93) T) ((-1110 . -1086) 71221) ((-1084 . -631) 71183) ((-639 . -747) T) ((-639 . -815) 71162) ((-606 . -1130) T) ((-639 . -812) 71141) ((-306 . -297) 71120) ((-305 . -1247) T) ((-1084 . -632) 71081) ((-1054 . -1142) T) ((-324 . -873) NIL) ((-171 . -102) T) ((-285 . -870) T) ((-1110 . -111) 70977) ((-839 . -631) 70959) ((-1054 . -23) T) ((-1033 . -318) T) ((-924 . -102) T) ((-820 . -738) 70943) ((-371 . -1086) 70895) ((-366 . -1142) T) ((-365 . -1086) 70847) ((-427 . -631) 70829) ((-397 . -631) 70811) ((-357 . -1086) 70763) ((-230 . -631) 70695) ((-862 . -102) T) ((-829 . -102) T) ((-108 . -1086) 70645) ((-790 . -102) T) ((-698 . -102) T) ((-115 . -873) T) ((-487 . -465) 70624) ((-431 . -174) T) ((-371 . -111) 70562) ((-365 . -111) 70500) ((-357 . -111) 70438) ((-259 . -273) 70407) ((-259 . -233) 70376) ((-258 . -273) 70345) ((-258 . -233) 70314) ((-366 . -23) T) ((-71 . -1247) T) ((-228 . -38) 70279) ((-108 . -111) 70213) ((-40 . -25) T) ((-40 . -21) T) ((-691 . -741) T) ((-171 . -295) 70191) ((-48 . -1142) T) ((-881 . -1247) T) ((-949 . -25) T) ((-792 . -25) T) ((-1321 . -669) 70165) ((-1180 . -502) 70102) ((-498 . -1130) T) ((-1312 . -667) 70061) ((-1270 . -102) T) ((-1092 . -1182) T) ((-878 . -102) T) ((-246 . -1088) 70039) ((-992 . -813) 69992) ((-992 . -816) 69945) ((-393 . -669) 69929) ((-48 . -23) T) ((-836 . -816) 69908) ((-836 . -813) 69887) ((-561 . -380) T) ((-306 . -617) 69866) ((-490 . -747) T) ((-584 . -102) T) ((-1110 . -634) 69684) ((-256 . -187) T) ((-189 . -187) T) ((-894 . -320) 69641) ((-674 . -297) 69620) ((-656 . -1247) T) ((-112 . -682) T) ((-363 . -1247) T) ((-371 . -634) 69557) ((-365 . -634) 69494) ((-357 . -634) 69431) ((-76 . -1247) T) ((-108 . -634) 69381) ((-112 . -113) T) ((-1092 . -38) 69368) ((-685 . -386) 69347) ((-980 . -38) 69196) ((-752 . -1130) T) ((-494 . -38) 69045) ((-86 . -1247) T) ((-605 . -503) 69026) ((-1261 . -869) NIL) ((-1204 . -1130) T) ((-584 . -295) T) ((-1203 . -1130) T) ((-605 . -631) 68992) ((-1197 . -1130) T) ((-1150 . -873) T) ((-1110 . -1079) T) ((-363 . -1068) 68969) ((-838 . -503) 68953) ((-1034 . -1088) T) ((-45 . -631) 68935) ((-45 . -632) NIL) ((-942 . -1088) T) ((-838 . -631) 68904) ((-1177 . -102) 68854) ((-1110 . -249) 68805) ((-440 . -1088) T) ((-371 . -1079) T) ((-365 . -1079) T) ((-377 . -376) 68782) ((-357 . -1079) T) ((-355 . -235) 68769) ((-259 . -244) 68748) ((-258 . -244) 68727) ((-1110 . -239) 68652) ((-1156 . -1130) T) ((-305 . -926) 68611) ((-108 . -1079) T) ((-715 . -132) T) ((-431 . -527) 68453) ((-371 . -239) 68432) ((-371 . -249) T) ((-44 . -741) T) ((-365 . -239) 68411) ((-365 . -249) T) ((-357 . -239) 68390) ((-357 . -249) T) ((-1196 . -634) 68371) ((-171 . -320) 68336) ((-108 . -249) T) ((-108 . -239) T) ((-1024 . -634) 68317) ((-330 . -813) T) ((-893 . -21) T) ((-893 . -25) T) ((-420 . -318) T) ((-513 . -34) T) ((-110 . -299) 68292) ((-1143 . -1086) 68213) ((-894 . -1182) NIL) ((-341 . -631) 68195) ((-420 . -1052) 68173) ((-1143 . -111) 68089) ((-712 . -1292) T) ((-449 . -1130) T) ((-257 . -1130) T) ((-1321 . -747) T) ((-63 . -631) 68071) ((-894 . -38) 68016) ((-615 . -152) 68000) ((-536 . -1247) T) ((-525 . -631) 67940) ((-1270 . -320) 67927) ((-752 . -738) 67776) ((-544 . -814) T) ((-544 . -815) T) ((-577 . -659) 67758) ((-508 . -659) 67718) ((-517 . -1247) T) ((-658 . -1304) 67702) ((-367 . -465) T) ((-364 . -465) T) ((-356 . -465) T) ((-274 . -465) 67653) ((-538 . -1130) T) ((-533 . -1130) 67603) ((-254 . -465) 67554) ((-1180 . -297) 67533) ((-1208 . -631) 67515) ((-710 . -527) 67448) ((-991 . -301) 67427) ((-563 . -527) 67219) ((-259 . -667) 67067) ((-258 . -667) 66902) ((-1309 . -631) 66871) ((-1309 . -503) 66855) ((-1204 . -738) 66752) ((-1203 . -738) 66593) ((-1202 . -273) 66577) ((-1202 . -233) 66561) ((-1197 . -738) 66357) ((-1187 . -695) 66341) ((-1143 . -634) 66139) ((-171 . -1182) 66118) ((-1156 . -738) 66015) ((-1054 . -132) T) ((-994 . -113) T) ((-916 . -102) T) ((-624 . -631) 65997) ((-623 . -631) 65979) ((-621 . -631) 65961) ((-367 . -415) 65912) ((-364 . -415) 65863) ((-356 . -415) 65814) ((-992 . -380) 65767) ((-820 . -527) 65679) ((-306 . -632) NIL) ((-306 . -631) 65661) ((-938 . -465) T) ((-933 . -297) 65640) ((-836 . -380) 65619) ((-523 . -522) 65598) ((-521 . -522) 65577) ((-895 . -920) 65498) ((-500 . -297) NIL) ((-495 . -299) 65475) ((-431 . -301) T) ((-366 . -132) T) ((-220 . -297) NIL) ((-715 . -506) NIL) ((-99 . -1142) T) ((-40 . -235) 65406) ((-171 . -38) 65234) ((-980 . -928) 65215) ((-1281 . -1003) 65177) ((-1260 . -1003) 65146) ((-1177 . -320) 65084) ((-494 . -928) 65061) ((-1143 . -1079) 65039) ((-938 . -415) T) ((-658 . -522) 65011) ((-1283 . -569) T) ((-1180 . -617) 64990) ((-112 . -870) T) ((-1093 . -502) 64921) ((-593 . -21) T) ((-593 . -25) T) ((-577 . -21) T) ((-577 . -25) T) ((-508 . -25) T) ((-508 . -21) T) ((-1270 . -1182) 64899) ((-1143 . -239) 64851) ((-48 . -132) T) ((-1228 . -102) T) ((-246 . -1130) 64603) ((-894 . -413) 64580) ((-1118 . -102) T) ((-1106 . -102) T) ((-917 . -873) T) ((-626 . -102) T) ((-488 . -102) T) ((-1270 . -38) 64409) ((-878 . -38) 64379) ((-1064 . -1081) 64353) ((-752 . -174) 64264) ((-674 . -631) 64246) ((-666 . -1113) T) ((-1064 . -661) 64230) ((-584 . -38) 64217) ((-1000 . -503) 64198) ((-1000 . -631) 64164) ((-986 . -102) 64094) ((-887 . -631) 64076) ((-887 . -632) 63998) ((-606 . -527) NIL) ((-871 . -102) T) ((-1326 . -1142) T) ((-1289 . -1088) T) ((-1282 . -1088) T) ((-1281 . -920) 63902) ((-1261 . -1088) T) ((-1260 . -920) 63697) ((-1241 . -148) 63676) ((-333 . -1081) 63658) ((-1241 . -146) 63637) ((-1214 . -102) T) ((-1213 . -102) T) ((-1212 . -102) T) ((-1204 . -174) 63588) ((-333 . -661) 63570) ((-722 . -1247) T) ((-1203 . -174) 63501) ((-1197 . -174) 63432) ((-1181 . -634) 63413) ((-1156 . -174) 63364) ((-609 . -1088) T) ((-608 . -1088) T) ((-1034 . -1130) T) ((-1001 . -1130) T) ((-391 . -1081) 63329) ((-135 . -1247) T) ((-117 . -1247) T) ((-942 . -1130) T) ((-894 . -928) NIL) ((-391 . -661) 63294) ((-145 . -873) T) ((-820 . -818) 63278) ((-720 . -25) T) ((-720 . -21) T) ((-118 . -659) 63255) ((-722 . -910) 63237) ((-440 . -1130) T) ((-327 . -1251) 63216) ((-324 . -1251) T) ((-171 . -413) 63200) ((-857 . -1081) 63170) ((-487 . -1003) 63132) ((-129 . -102) T) ((-72 . -631) 63114) ((-131 . -102) T) ((-848 . -1081) 63098) ((-108 . -816) T) ((-108 . -813) T) ((-722 . -1068) 63080) ((-327 . -569) 63059) ((-324 . -569) T) ((-857 . -661) 63029) ((-848 . -661) 62999) ((-1326 . -23) T) ((-135 . -1068) 62981) ((-96 . -634) 62962) ((-1023 . -667) 62944) ((-495 . -1086) 62865) ((-45 . -299) 62790) ((-246 . -738) 62732) ((-530 . -102) T) ((-495 . -111) 62648) ((-1122 . -102) 62618) ((-1064 . -102) T) ((-1202 . -667) 62528) ((-1155 . -667) 62438) ((-877 . -667) 62397) ((-665 . -849) 62376) ((-752 . -527) 62319) ((-1084 . -1086) 62303) ((-171 . -928) 62226) ((-1165 . -93) T) ((-1093 . -297) 62201) ((-641 . -21) T) ((-641 . -25) T) ((-537 . -1130) T) ((-691 . -669) 62139) ((-373 . -102) T) ((-333 . -102) T) ((-397 . -1086) 62123) ((-1084 . -111) 62102) ((-837 . -424) 62086) ((-118 . -25) T) ((-89 . -631) 62068) ((-118 . -21) T) ((-626 . -320) 61863) ((-1180 . -632) NIL) ((-488 . -320) 61667) ((-351 . -1247) T) ((-176 . -1247) T) ((-397 . -111) 61646) ((-391 . -102) T) ((-216 . -631) 61628) ((-1180 . -631) 61610) ((-795 . -1247) T) ((-1197 . -527) 61379) ((-1034 . -738) 61329) ((-1156 . -527) 61299) ((-942 . -738) 61251) ((-495 . -634) 61049) ((-363 . -318) T) ((-1219 . -152) 60999) ((-487 . -920) 60880) ((-986 . -320) 60818) ((-857 . -102) T) ((-440 . -738) 60802) ((-228 . -849) T) ((-848 . -102) T) ((-846 . -102) T) ((-1319 . -669) 60776) ((-1281 . -1280) 60755) ((-492 . -152) 60705) ((-1281 . -1275) 60675) ((-1150 . -1251) T) ((-351 . -1068) 60642) ((-1281 . -1278) 60626) ((-1270 . -928) 60533) ((-1260 . -1259) 60512) ((-80 . -631) 60494) ((-933 . -631) 60476) ((-1260 . -1275) 60453) ((-1150 . -569) T) ((-949 . -870) T) ((-792 . -870) T) ((-693 . -870) T) ((-500 . -632) 60383) ((-500 . -631) 60324) ((-391 . -295) T) ((-1260 . -1257) 60308) ((-1283 . -1142) T) ((-220 . -632) 60238) ((-220 . -631) 60179) ((-1093 . -617) 60154) ((-839 . -634) 60138) ((-577 . -235) 60125) ((-529 . -152) 60109) ((-59 . -152) 60093) ((-509 . -152) 60077) ((-508 . -235) 60064) ((-371 . -1316) 60048) ((-365 . -1316) 60032) ((-357 . -1316) 60016) ((-327 . -375) 59995) ((-324 . -375) T) ((-495 . -1079) 59973) ((-715 . -659) 59955) ((-1317 . -669) 59929) ((-129 . -320) NIL) ((-1283 . -23) T) ((-710 . -502) 59913) ((-64 . -631) 59895) ((-1143 . -816) 59874) ((-1143 . -813) 59853) ((-563 . -502) 59790) ((-691 . -34) T) ((-495 . -239) 59742) ((-306 . -299) 59721) ((-837 . -1088) T) ((-44 . -669) 59679) ((-1110 . -380) 59630) ((-752 . -301) 59561) ((-533 . -527) 59494) ((-838 . -1086) 59445) ((-1117 . -146) 59424) ((-562 . -631) 59406) ((-371 . -380) 59385) ((-365 . -380) 59364) ((-357 . -380) 59343) ((-1117 . -148) 59322) ((-996 . -1247) T) ((-894 . -273) 59299) ((-894 . -233) 59276) ((-838 . -111) 59218) ((-803 . -146) 59197) ((-274 . -977) 59164) ((-254 . -977) 59109) ((-803 . -148) 59088) ((-801 . -146) 59067) ((-801 . -148) 59046) ((-153 . -669) 59020) ((-592 . -1130) T) ((-466 . -297) 58983) ((-467 . -148) 58962) ((-467 . -146) 58941) ((-691 . -747) T) ((-844 . -631) 58923) ((-1289 . -1130) T) ((-1282 . -1130) T) ((-1261 . -1130) T) ((-1241 . -1235) 58889) ((-1241 . -1232) 58855) ((-1204 . -301) 58834) ((-1203 . -301) 58785) ((-1197 . -301) 58736) ((-1156 . -301) 58715) ((-1034 . -174) T) ((-351 . -926) 58696) ((-942 . -174) T) ((-715 . -21) T) ((-715 . -25) T) ((-658 . -1081) 58680) ((-658 . -661) 58664) ((-228 . -667) 58614) ((-609 . -1130) T) ((-608 . -1130) T) ((-487 . -1278) 58598) ((-487 . -1275) 58568) ((-431 . -297) 58496) ((-560 . -870) T) ((-327 . -1142) 58345) ((-324 . -1142) T) ((-1241 . -35) 58311) ((-1241 . -95) 58277) ((-84 . -631) 58259) ((-91 . -102) 58209) ((-1326 . -132) T) ((-735 . -1081) 58179) ((-605 . -634) 58160) ((-594 . -146) T) ((-594 . -148) 58142) ((-531 . -148) 58124) ((-531 . -146) T) ((-735 . -661) 58094) ((-327 . -23) 57946) ((-40 . -354) 57920) ((-324 . -23) T) ((-838 . -634) 57834) ((-1188 . -672) 57816) ((-1312 . -1088) T) ((-1188 . -385) 57798) ((-1126 . -102) T) ((-836 . -669) 57631) ((-1120 . -102) T) ((-1103 . -102) T) ((-171 . -273) 57615) ((-171 . -233) 57599) ((-1096 . -102) T) ((-1066 . -102) T) ((-1049 . -102) T) ((-606 . -502) 57581) ((-644 . -102) T) ((-246 . -527) 57514) ((-496 . -102) T) ((-1319 . -747) T) ((-1317 . -747) T) ((-221 . -102) T) ((-1208 . -1086) 57397) ((-1309 . -111) 57362) ((-1309 . -1086) 57332) ((-1289 . -738) 57229) ((-1092 . -667) 57201) ((-1282 . -738) 57042) ((-980 . -667) 56952) ((-1270 . -273) 56936) ((-1208 . -111) 56805) ((-1064 . -38) 56789) ((-899 . -1113) T) ((-884 . -175) T) ((-494 . -667) 56699) ((-274 . -920) 56605) ((-254 . -920) 56580) ((-838 . -1079) T) ((-702 . -1113) T) ((-697 . -1113) T) ((-641 . -235) 56525) ((-528 . -102) T) ((-523 . -102) T) ((-48 . -659) 56485) ((-521 . -102) T) ((-491 . -1113) T) ((-118 . -235) NIL) ((-3 . -1247) T) ((-139 . -1113) T) ((-138 . -1113) T) ((-134 . -1113) T) ((-854 . -1247) T) ((-838 . -239) T) ((-838 . -249) 56464) ((-1270 . -233) 56448) ((-1261 . -738) 56244) ((-1029 . -873) 56223) ((-1252 . -631) 56205) ((-563 . -297) 56184) ((-1093 . -632) NIL) ((-1093 . -631) 56166) ((-618 . -93) T) ((-692 . -93) T) ((0 . -1247) T) ((-49 . -1247) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-217 . -870) T) ((-1033 . -948) T) ((-1208 . -634) 56019) ((-153 . -747) T) ((-1143 . -380) 55998) ((-658 . -102) T) ((-1054 . -25) T) ((-1034 . -527) NIL) ((-259 . -424) 55967) ((-258 . -424) 55936) ((-1054 . -21) T) ((-895 . -1081) 55888) ((-609 . -738) 55861) ((-608 . -738) 55758) ((-820 . -297) 55716) ((-127 . -102) 55666) ((-854 . -1068) 55562) ((-171 . -849) 55541) ((-330 . -669) 55438) ((-836 . -34) T) ((-735 . -102) T) ((-1150 . -1142) T) ((-1056 . -1247) T) ((-895 . -661) 55390) ((-391 . -38) 55355) ((-366 . -25) T) ((-366 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-256 . -102) T) ((-158 . -102) T) ((-367 . -1304) 55339) ((-364 . -1304) 55323) ((-356 . -1304) 55307) ((-171 . -361) 55286) ((-577 . -870) T) ((-1117 . -238) 55237) ((-1150 . -23) T) ((-87 . -631) 55219) ((-803 . -238) T) ((-722 . -318) T) ((-857 . -38) 55189) ((-848 . -38) 55159) ((-1309 . -634) 55101) ((-1283 . -132) T) ((-1180 . -299) 55080) ((-992 . -747) 54979) ((-992 . -814) 54932) ((-992 . -815) 54885) ((-117 . -318) T) ((-91 . -320) 54823) ((-696 . -34) T) ((-563 . -617) 54802) ((-48 . -25) T) ((-48 . -21) T) ((-836 . -815) 54781) ((-836 . -814) 54760) ((-722 . -1052) T) ((-674 . -1086) 54744) ((-894 . -667) 54674) ((-836 . -747) 54652) ((-403 . -1247) T) ((-992 . -486) 54605) ((-495 . -816) 54584) ((-495 . -813) 54563) ((-938 . -1304) 54550) ((-1208 . -1079) T) ((-639 . -1247) T) ((-674 . -111) 54529) ((-1208 . -337) 54505) ((-1233 . -102) 54455) ((-1131 . -631) 54437) ((-722 . -558) T) ((-837 . -1130) T) ((-594 . -238) T) ((-531 . -238) T) ((-1309 . -1079) T) ((-1165 . -503) 54418) ((-1253 . -102) T) ((-426 . -1130) T) ((-1165 . -631) 54384) ((-259 . -1088) 54362) ((-258 . -1088) 54340) ((-859 . -102) T) ((-300 . -669) 54327) ((-606 . -297) 54277) ((-710 . -708) 54235) ((-1322 . -1247) T) ((-1297 . -870) 54214) ((-991 . -631) 54196) ((-895 . -102) T) ((-756 . -631) 54178) ((-736 . -631) 54160) ((-1289 . -174) 54111) ((-1282 . -174) 54042) ((-1261 . -174) 53973) ((-720 . -870) T) ((-1034 . -301) T) ((-466 . -631) 53955) ((-645 . -747) T) ((-60 . -1130) 53933) ((-251 . -152) 53917) ((-1281 . -661) 53758) ((-942 . -301) T) ((-1054 . -1042) T) ((-645 . -486) T) ((-733 . -1251) 53737) ((-715 . -235) NIL) ((-674 . -634) 53655) ((-171 . -667) 53550) ((-1281 . -1081) 53385) ((-609 . -174) 53364) ((-608 . -174) 53315) ((-1260 . -661) 53129) ((-1260 . -1081) 52937) ((-1255 . -1247) T) ((-733 . -569) 52848) ((-420 . -841) 52827) ((-420 . -948) T) ((-330 . -815) T) ((-490 . -1247) T) ((-1000 . -634) 52808) ((-330 . -747) T) ((-665 . -1179) 52792) ((-431 . -631) 52774) ((-431 . -632) 52681) ((-110 . -672) 52663) ((-327 . -132) 52534) ((-176 . -318) T) ((-127 . -320) 52472) ((-411 . -1247) T) ((-110 . -385) 52454) ((-324 . -132) T) ((-69 . -408) T) ((-110 . -124) T) ((-533 . -502) 52438) ((-675 . -1142) T) ((-606 . -19) 52420) ((-61 . -454) T) ((-61 . -408) T) ((-845 . -1130) T) ((-606 . -617) 52395) ((-490 . -1068) 52355) ((-674 . -1079) T) ((-675 . -23) T) ((-1312 . -1130) T) ((-31 . -102) T) ((-1270 . -667) 52265) ((-878 . -667) 52224) ((-837 . -738) 52073) ((-1299 . -1247) T) ((-590 . -883) T) ((-584 . -667) 52045) ((-118 . -870) NIL) ((-1202 . -424) 52029) ((-1155 . -424) 52013) ((-877 . -424) 51997) ((-896 . -102) 51948) ((-1281 . -102) T) ((-1261 . -527) 51717) ((-1260 . -102) T) ((-1233 . -320) 51655) ((-1204 . -297) 51620) ((-1203 . -297) 51578) ((-538 . -93) T) ((-1197 . -297) 51406) ((-323 . -631) 51388) ((-1132 . -1130) T) ((-1110 . -669) 51262) ((-732 . -465) T) ((-710 . -631) 51194) ((-300 . -747) T) ((-108 . -937) NIL) ((-710 . -632) 51155) ((-614 . -631) 51137) ((-590 . -631) 51119) ((-563 . -632) NIL) ((-563 . -631) 51101) ((-542 . -631) 51083) ((-524 . -522) 51062) ((-500 . -1086) 51012) ((-487 . -1081) 50847) ((-520 . -522) 50826) ((-487 . -661) 50667) ((-220 . -1086) 50617) ((-371 . -669) 50569) ((-365 . -669) 50521) ((-228 . -869) T) ((-357 . -669) 50473) ((-615 . -102) 50403) ((-500 . -111) 50337) ((-495 . -380) 50316) ((-108 . -669) 50266) ((-366 . -235) 50253) ((-246 . -502) 50237) ((-355 . -148) 50219) ((-355 . -146) T) ((-171 . -382) 50190) ((-971 . -1295) 50174) ((-105 . -1247) T) ((-220 . -111) 50108) ((-895 . -320) 50073) ((-971 . -1130) 50023) ((-820 . -632) 49984) ((-820 . -631) 49966) ((-739 . -102) T) ((-1321 . -1247) T) ((-393 . -1247) T) ((-342 . -1130) T) ((-216 . -634) 49943) ((-1150 . -132) T) ((-1312 . -738) 49913) ((-735 . -38) 49883) ((-327 . -506) 49862) ((-544 . -1247) T) ((-513 . -1247) T) ((-1281 . -295) 49828) ((-1260 . -295) 49794) ((-338 . -152) 49778) ((-452 . -1130) T) ((-1246 . -1247) T) ((-1093 . -299) 49753) ((-1254 . -873) T) ((-48 . -235) 49740) ((-1189 . -34) T) ((-1321 . -1068) 49717) ((-497 . -34) T) ((-481 . -631) 49699) ((-257 . -297) 49673) ((-393 . -1068) 49657) ((-1202 . -1088) T) ((-1155 . -1088) T) ((-877 . -1088) T) ((-1092 . -869) T) ((-500 . -634) 49607) ((-220 . -634) 49557) ((-837 . -174) 49468) ((-533 . -297) 49420) ((-1289 . -301) 49399) ((-1228 . -376) 49373) ((-1118 . -276) 49357) ((-692 . -503) 49338) ((-692 . -631) 49304) ((-618 . -503) 49285) ((-118 . -1022) 49262) ((-618 . -631) 49212) ((-487 . -102) T) ((-182 . -503) 49193) ((-182 . -631) 49159) ((-162 . -503) 49140) ((-162 . -631) 49106) ((-157 . -503) 49087) ((-155 . -503) 49068) ((-157 . -631) 49034) ((-377 . -1130) T) ((-259 . -1130) T) ((-258 . -1130) T) ((-155 . -631) 49000) ((-1282 . -301) 48951) ((-1261 . -301) 48902) ((-895 . -1182) 48880) ((-1204 . -1032) 48846) ((-626 . -376) 48786) ((-1203 . -1032) 48752) ((-626 . -232) 48699) ((-715 . -870) T) ((-606 . -631) 48681) ((-606 . -632) NIL) ((-488 . -232) 48631) ((-500 . -1079) T) ((-1197 . -1032) 48597) ((-88 . -453) T) ((-88 . -408) T) ((-220 . -1079) T) ((-1156 . -1032) 48563) ((-1110 . -747) T) ((-733 . -1142) T) ((-609 . -301) 48542) ((-608 . -301) 48521) ((-500 . -249) T) ((-500 . -239) T) ((-220 . -249) T) ((-220 . -239) T) ((-1195 . -631) 48503) ((-895 . -38) 48455) ((-371 . -747) T) ((-365 . -747) T) ((-357 . -747) T) ((-108 . -815) T) ((-108 . -812) T) ((-733 . -23) T) ((-108 . -747) T) ((-533 . -1285) 48439) ((-1326 . -25) T) ((-487 . -295) 48405) ((-1326 . -21) T) ((-1260 . -320) 48344) ((-1206 . -102) T) ((-40 . -146) 48316) ((-40 . -148) 48288) ((-533 . -617) 48265) ((-1143 . -669) 48098) ((-615 . -320) 48036) ((-45 . -672) 47986) ((-45 . -687) 47936) ((-45 . -385) 47886) ((-1188 . -34) T) ((-894 . -869) NIL) ((-675 . -132) T) ((-498 . -631) 47868) ((-246 . -297) 47845) ((-1112 . -1247) T) ((-188 . -1130) T) ((-1117 . -465) 47796) ((-837 . -527) 47670) ((-803 . -465) 47601) ((-685 . -1081) 47585) ((-668 . -34) T) ((-650 . -34) T) ((-685 . -661) 47569) ((-367 . -1081) 47521) ((-355 . -238) T) ((-364 . -1081) 47473) ((-356 . -1081) 47425) ((-274 . -1081) 47268) ((-254 . -1081) 47111) ((-801 . -465) 47062) ((-367 . -661) 47014) ((-364 . -661) 46966) ((-356 . -661) 46918) ((-274 . -661) 46767) ((-254 . -661) 46616) ((-467 . -465) 46567) ((-980 . -424) 46551) ((-752 . -631) 46533) ((-259 . -738) 46475) ((-258 . -738) 46417) ((-752 . -632) 46278) ((-494 . -424) 46262) ((-351 . -313) T) ((-537 . -93) T) ((-363 . -948) T) ((-1030 . -102) 46212) ((-938 . -1081) 46177) ((-1054 . -870) T) ((-60 . -527) 46110) ((-938 . -661) 46075) ((-1260 . -1182) 46027) ((-1034 . -297) NIL) ((-228 . -1088) T) ((-391 . -849) T) ((-1143 . -34) T) ((-594 . -465) T) ((-531 . -465) T) ((-1264 . -1123) 46011) ((-1264 . -1130) 45989) ((-246 . -617) 45966) ((-1264 . -1125) 45923) ((-1204 . -631) 45905) ((-1203 . -631) 45887) ((-1197 . -631) 45869) ((-1197 . -632) NIL) ((-1156 . -631) 45851) ((-895 . -413) 45835) ((-610 . -102) T) ((-598 . -102) T) ((-549 . -102) T) ((-1281 . -38) 45676) ((-1260 . -38) 45490) ((-130 . -1247) T) ((-52 . -1247) T) ((-893 . -148) T) ((-594 . -415) T) ((-531 . -415) T) ((-1293 . -102) T) ((-1283 . -21) T) ((-1283 . -25) T) ((-1219 . -102) T) ((-1143 . -815) 45469) ((-1143 . -814) 45448) ((-1023 . -1130) T) ((-1057 . -34) T) ((-885 . -1130) T) ((-1143 . -747) 45426) ((-685 . -102) T) ((-666 . -102) T) ((-563 . -299) 45405) ((-489 . -34) T) ((-476 . -34) T) ((-367 . -102) T) ((-364 . -102) T) ((-322 . -1247) T) ((-356 . -102) T) ((-274 . -102) T) ((-254 . -102) T) ((-490 . -318) T) ((-1092 . -1088) T) ((-980 . -1088) T) ((-327 . -659) 45311) ((-324 . -659) 45272) ((-1202 . -1130) T) ((-494 . -1088) T) ((-492 . -102) T) ((-449 . -631) 45254) ((-1155 . -1130) T) ((-257 . -631) 45236) ((-877 . -1130) T) ((-1171 . -102) T) ((-837 . -301) 45167) ((-991 . -1086) 45050) ((-490 . -1052) T) ((-895 . -928) 44973) ((-756 . -1086) 44943) ((-1064 . -667) 44902) ((-1177 . -1151) 44886) ((-466 . -1086) 44856) ((-1132 . -527) 44789) ((-991 . -111) 44658) ((-938 . -102) T) ((-40 . -238) 44595) ((-756 . -111) 44560) ((-538 . -503) 44541) ((-538 . -631) 44507) ((-59 . -102) 44437) ((-533 . -632) 44398) ((-533 . -631) 44310) ((-532 . -102) 44260) ((-529 . -102) 44190) ((-510 . -102) 44140) ((-509 . -102) 44070) ((-466 . -111) 44033) ((-333 . -667) 44015) ((-515 . -873) T) ((-431 . -1086) 43989) ((-1241 . -1003) 43951) ((-1029 . -1142) T) ((-391 . -667) 43901) ((-1165 . -634) 43882) ((-971 . -527) 43815) ((-500 . -816) T) ((-487 . -38) 43656) ((-431 . -111) 43623) ((-500 . -813) T) ((-1030 . -320) 43561) ((-220 . -816) T) ((-220 . -813) T) ((-1029 . -23) T) ((-733 . -132) T) ((-1260 . -413) 43531) ((-857 . -667) 43476) ((-848 . -667) 43435) ((-327 . -25) 43287) ((-171 . -424) 43271) ((-327 . -21) 43142) ((-324 . -25) T) ((-324 . -21) T) ((-887 . -380) T) ((-991 . -634) 42995) ((-110 . -34) T) ((-756 . -634) 42951) ((-736 . -634) 42933) ((-495 . -669) 42766) ((-894 . -1088) T) ((-606 . -299) 42741) ((-593 . -148) T) ((-577 . -148) T) ((-508 . -148) T) ((-1202 . -738) 42570) ((-1087 . -102) 42548) ((-1155 . -738) 42397) ((-1150 . -659) 42379) ((-877 . -738) 42349) ((-691 . -1247) T) ((-1 . -102) T) ((-561 . -1247) T) ((-431 . -634) 42257) ((-246 . -631) 41950) ((-1145 . -1130) T) ((-1270 . -424) 41934) ((-1219 . -320) 41738) ((-991 . -1079) T) ((-756 . -1079) T) ((-736 . -1079) T) ((-665 . -1130) 41688) ((-1084 . -669) 41672) ((-878 . -424) 41656) ((-524 . -102) T) ((-520 . -102) T) ((-274 . -320) 41643) ((-254 . -320) 41630) ((-1281 . -928) 41536) ((-991 . -337) 41515) ((-1260 . -928) 41312) ((-397 . -669) 41296) ((-864 . -873) 41275) ((-691 . -1068) 41171) ((-492 . -320) 40975) ((-259 . -527) 40908) ((-258 . -527) 40841) ((-1171 . -320) 40767) ((-420 . -873) 40718) ((-1241 . -920) 40697) ((-840 . -1130) T) ((-820 . -1086) 40681) ((-1289 . -297) 40646) ((-1282 . -297) 40604) ((-1261 . -297) 40432) ((-399 . -1130) T) ((-335 . -1130) T) ((-431 . -1079) T) ((-171 . -1088) T) ((-59 . -320) 40370) ((-820 . -111) 40349) ((-608 . -297) 40314) ((-532 . -320) 40252) ((-529 . -320) 40190) ((-510 . -320) 40128) ((-509 . -320) 40066) ((-431 . -239) 40045) ((-495 . -34) T) ((-228 . -1130) T) ((-1034 . -632) 39975) ((-1034 . -631) 39935) ((-1001 . -631) 39895) ((-942 . -631) 39877) ((-720 . -148) T) ((-1319 . -1247) T) ((-1317 . -1247) T) ((-722 . -948) T) ((-722 . -841) T) ((-440 . -631) 39859) ((-1150 . -21) T) ((-1150 . -25) T) ((-691 . -389) 39843) ((-117 . -948) T) ((-895 . -273) 39827) ((-895 . -233) 39811) ((-44 . -1247) T) ((-78 . -1247) T) ((-127 . -126) 39795) ((-1084 . -34) T) ((-1319 . -1068) 39769) ((-1317 . -1068) 39726) ((-1270 . -1088) T) ((-878 . -1088) T) ((-367 . -1182) 39705) ((-364 . -1182) 39684) ((-356 . -1182) 39663) ((-495 . -815) 39642) ((-495 . -814) 39621) ((-230 . -34) T) ((-495 . -747) 39599) ((-820 . -634) 39445) ((-683 . -1081) 39429) ((-60 . -502) 39413) ((-584 . -1088) T) ((-1202 . -174) 39304) ((-683 . -661) 39288) ((-487 . -928) 39194) ((-153 . -1247) T) ((-1155 . -174) 39105) ((-1092 . -1130) T) ((-1117 . -977) 39050) ((-980 . -1130) T) ((-838 . -669) 39001) ((-803 . -977) 38970) ((-734 . -1130) T) ((-801 . -977) 38937) ((-529 . -293) 38921) ((-691 . -926) 38880) ((-494 . -1130) T) ((-467 . -977) 38847) ((-79 . -1247) T) ((-367 . -38) 38812) ((-364 . -38) 38777) ((-356 . -38) 38742) ((-274 . -38) 38591) ((-254 . -38) 38440) ((-938 . -1182) T) ((-537 . -503) 38421) ((-641 . -148) 38400) ((-641 . -146) 38379) ((-537 . -631) 38345) ((-118 . -148) T) ((-118 . -146) NIL) ((-427 . -747) T) ((-820 . -1079) T) ((-577 . -238) T) ((-508 . -238) T) ((-355 . -465) T) ((-1289 . -1032) 38311) ((-1282 . -1032) 38277) ((-1261 . -1032) 38243) ((-938 . -38) 38208) ((-228 . -738) 38173) ((-1029 . -132) T) ((-658 . -667) 38142) ((-330 . -47) 38112) ((-40 . -422) 38084) ((-141 . -631) 38066) ((-992 . -1247) T) ((-836 . -1247) T) ((-176 . -948) T) ((-562 . -380) T) ((-735 . -667) 38011) ((-618 . -634) 37992) ((-355 . -415) T) ((-692 . -634) 37973) ((-324 . -235) NIL) ((-182 . -634) 37954) ((-162 . -634) 37935) ((-157 . -634) 37916) ((-155 . -634) 37897) ((-533 . -299) 37874) ((-1260 . -233) 37844) ((-1260 . -273) 37814) ((-1244 . -1247) 37792) ((-1208 . -669) 37717) ((-899 . -102) T) ((-836 . -1068) 37544) ((-45 . -34) T) ((-702 . -102) T) ((-697 . -102) T) ((-683 . -102) T) ((-675 . -21) T) ((-675 . -25) T) ((-1132 . -502) 37528) ((-696 . -1247) T) ((-491 . -102) T) ((-251 . -102) 37458) ((-559 . -865) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1117 . -920) 37353) ((-894 . -1130) T) ((-1202 . -527) 37300) ((-1092 . -738) 37287) ((-803 . -920) 37190) ((-752 . -1086) 37033) ((-801 . -920) 37015) ((-980 . -738) 36864) ((-1155 . -527) 36816) ((-1308 . -1130) T) ((-1307 . -1130) T) ((-467 . -920) 36791) ((-494 . -738) 36640) ((-67 . -631) 36622) ((-645 . -1247) T) ((-752 . -111) 36451) ((-971 . -502) 36435) ((-1309 . -669) 36395) ((-1204 . -1086) 36278) ((-838 . -747) T) ((-1203 . -1086) 36113) ((-1197 . -1086) 35903) ((-330 . -1247) T) ((-1156 . -1086) 35786) ((-1033 . -1251) T) ((-1124 . -102) 35764) ((-836 . -389) 35733) ((-592 . -631) 35715) ((-559 . -1130) T) ((-1033 . -569) T) ((-1204 . -111) 35584) ((-1203 . -111) 35405) ((-1197 . -111) 35174) ((-1156 . -111) 35043) ((-1135 . -1133) 35007) ((-391 . -869) T) ((-1289 . -631) 34989) ((-1282 . -631) 34971) ((-895 . -667) 34908) ((-1261 . -631) 34890) ((-1261 . -632) NIL) ((-246 . -299) 34867) ((-40 . -465) T) ((-228 . -174) T) ((-171 . -1130) T) ((-752 . -634) 34652) ((-715 . -148) T) ((-715 . -146) NIL) ((-609 . -631) 34634) ((-608 . -631) 34616) ((-1150 . -235) 34603) ((-924 . -1130) T) ((-862 . -1130) T) ((-829 . -1130) T) ((-274 . -928) 34513) ((-254 . -928) 34490) ((-790 . -1130) T) ((-698 . -1130) T) ((-679 . -875) 34474) ((-641 . -238) 34425) ((-836 . -926) 34357) ((-881 . -873) T) ((-1252 . -380) T) ((-40 . -415) NIL) ((-118 . -238) NIL) ((-1204 . -634) 34239) ((-1150 . -682) T) ((-894 . -738) 34184) ((-259 . -502) 34168) ((-258 . -502) 34152) ((-1203 . -634) 33895) ((-1197 . -634) 33690) ((-733 . -659) 33638) ((-674 . -669) 33612) ((-1156 . -634) 33494) ((-306 . -34) T) ((-1150 . -113) T) ((-752 . -1079) T) ((-594 . -1304) 33481) ((-531 . -1304) 33458) ((-1270 . -1130) T) ((-1202 . -301) 33369) ((-1155 . -301) 33300) ((-656 . -873) T) ((-1092 . -174) T) ((-300 . -1247) T) ((-878 . -1130) T) ((-980 . -174) 33211) ((-803 . -1273) 33195) ((-665 . -527) 33128) ((-77 . -631) 33110) ((-752 . -337) 33075) ((-1208 . -747) T) ((-584 . -1130) T) ((-494 . -174) 32986) ((-251 . -320) 32924) ((-1172 . -1142) T) ((-70 . -631) 32906) ((-1309 . -747) T) ((-1204 . -1079) T) ((-1203 . -1079) T) ((-1197 . -1079) T) ((-338 . -102) 32836) ((-1172 . -23) T) ((-2 . -1247) T) ((-1156 . -1079) T) ((-91 . -1151) 32820) ((-889 . -1142) T) ((-1204 . -239) 32779) ((-1203 . -249) 32758) ((-1203 . -239) 32710) ((-1197 . -239) 32597) ((-1197 . -249) 32576) ((-330 . -926) 32482) ((-889 . -23) T) ((-171 . -738) 32310) ((-420 . -1251) T) ((-1131 . -380) T) ((-1033 . -375) T) ((-893 . -465) T) ((-1054 . -148) T) ((-971 . -297) 32262) ((-324 . -870) NIL) ((-1281 . -667) 32144) ((-897 . -102) T) ((-1260 . -667) 31999) ((-733 . -25) T) ((-420 . -569) T) ((-733 . -21) T) ((-538 . -634) 31980) ((-366 . -148) 31962) ((-366 . -146) T) ((-1177 . -1130) 31940) ((-466 . -741) T) ((-75 . -631) 31922) ((-115 . -870) T) ((-251 . -293) 31906) ((-246 . -1086) 31827) ((-81 . -631) 31809) ((-756 . -380) 31762) ((-1206 . -849) T) ((-758 . -241) 31746) ((-1189 . -1247) T) ((-142 . -241) 31728) ((-246 . -111) 31644) ((-1270 . -738) 31473) ((-48 . -148) T) ((-894 . -174) T) ((-878 . -738) 31443) ((-497 . -1247) T) ((-980 . -527) 31390) ((-674 . -747) T) ((-584 . -738) 31377) ((-1064 . -1088) T) ((-715 . -238) NIL) ((-494 . -527) 31320) ((-971 . -19) 31304) ((-971 . -617) 31281) ((-1110 . -1247) T) ((-1091 . -1247) T) ((-1241 . -661) 31178) ((-837 . -632) NIL) ((-837 . -631) 31160) ((-1241 . -1081) 31043) ((-1110 . -1068) 30939) ((-1034 . -1086) 30889) ((-426 . -631) 30871) ((-259 . -297) 30848) ((-371 . -1247) T) ((-365 . -1247) T) ((-357 . -1247) T) ((-258 . -297) 30825) ((-500 . -937) NIL) ((-327 . -29) 30795) ((-108 . -1247) T) ((-1033 . -1142) T) ((-220 . -937) NIL) ((-942 . -1086) 30747) ((-660 . -1304) 30731) ((-1034 . -111) 30665) ((-1033 . -23) T) ((-732 . -1081) 30630) ((-942 . -111) 30568) ((-758 . -716) 30552) ((-732 . -661) 30517) ((-274 . -273) 30501) ((-274 . -233) 30485) ((-440 . -1086) 30469) ((-391 . -1088) T) ((-246 . -634) 30267) ((-715 . -1235) NIL) ((-500 . -669) 30217) ((-487 . -667) 30099) ((-108 . -908) 30081) ((-108 . -910) 30063) ((-715 . -1232) NIL) ((-220 . -669) 30013) ((-371 . -1068) 29997) ((-365 . -1068) 29981) ((-338 . -320) 29919) ((-357 . -1068) 29903) ((-228 . -301) T) ((-440 . -111) 29882) ((-60 . -631) 29814) ((-171 . -174) T) ((-1150 . -870) T) ((-108 . -1068) 29774) ((-916 . -1130) T) ((-857 . -1088) T) ((-848 . -1088) T) ((-715 . -35) NIL) ((-715 . -95) NIL) ((-324 . -1022) 29735) ((-185 . -102) T) ((-1320 . -1142) T) ((-1320 . -23) T) ((-593 . -465) T) ((-577 . -465) T) ((-508 . -465) T) ((-1312 . -631) 29717) ((-1270 . -174) 29608) ((-1241 . -102) T) ((-420 . -375) T) ((-1228 . -1130) T) ((-1219 . -232) 29558) ((-1213 . -865) T) ((-1212 . -865) T) ((-1196 . -1247) T) ((-246 . -1079) 29536) ((-1024 . -1247) T) ((-1180 . -34) T) ((-1197 . -813) NIL) ((-1197 . -816) NIL) ((-1188 . -1247) T) ((-490 . -948) T) ((-1029 . -659) 29484) ((-259 . -617) 29461) ((-258 . -617) 29438) ((-1172 . -132) T) ((-1132 . -632) 29399) ((-1110 . -389) 29383) ((-894 . -527) 29291) ((-246 . -239) 29243) ((-1132 . -631) 29225) ((-1118 . -1130) T) ((-1034 . -634) 29175) ((-1110 . -926) 29108) ((-942 . -634) 29045) ((-845 . -631) 29027) ((-1106 . -1130) T) ((-1092 . -301) T) ((-1034 . -249) T) ((-1034 . -239) T) ((-1034 . -1079) T) ((-986 . -1130) 28977) ((-980 . -301) 28908) ((-440 . -634) 28877) ((-108 . -389) 28859) ((-108 . -350) 28841) ((-942 . -1079) T) ((-942 . -249) T) ((-820 . -380) 28820) ((-732 . -102) T) ((-722 . -873) T) ((-668 . -1247) T) ((-650 . -1247) T) ((-626 . -1130) T) ((-626 . -628) 28796) ((-599 . -1081) 28771) ((-494 . -301) 28702) ((-584 . -174) T) ((-338 . -293) 28686) ((-366 . -238) T) ((-599 . -661) 28661) ((-367 . -361) 28640) ((-364 . -361) 28619) ((-356 . -361) 28598) ((-214 . -1247) T) ((-83 . -631) 28580) ((-213 . -1247) T) ((-211 . -1247) T) ((-210 . -1247) T) ((-209 . -1247) T) ((-208 . -1247) T) ((-205 . -1247) T) ((-204 . -1247) T) ((-203 . -1247) T) ((-202 . -1247) T) ((-488 . -1130) T) ((-201 . -1247) T) ((-274 . -261) 28542) ((-200 . -1247) T) ((-199 . -1247) T) ((-198 . -1247) T) ((-197 . -1247) T) ((-196 . -1247) T) ((-488 . -628) 28521) ((-195 . -1247) T) ((-284 . -1247) T) ((-283 . -1247) T) ((-282 . -1247) T) ((-281 . -1247) T) ((-492 . -232) 28471) ((-280 . -1247) T) ((-279 . -1247) T) ((-278 . -1247) T) ((-440 . -1079) T) ((-889 . -132) T) ((-864 . -1142) 28450) ((-48 . -238) T) ((-720 . -465) T) ((-108 . -926) NIL) ((-135 . -873) T) ((-1241 . -295) 28416) ((-1143 . -1247) T) ((-895 . -869) 28395) ((-1029 . -25) T) ((-933 . -747) T) ((-171 . -527) 28307) ((-1029 . -21) T) ((-933 . -486) T) ((-420 . -1142) T) ((-500 . -815) T) ((-500 . -812) T) ((-938 . -361) T) ((-500 . -747) T) ((-220 . -815) T) ((-220 . -812) T) ((-733 . -235) 28294) ((-220 . -747) T) ((-864 . -23) 28246) ((-1214 . -1130) T) ((-679 . -1081) 28230) ((-1213 . -1130) T) ((-537 . -634) 28211) ((-1212 . -1130) T) ((-330 . -318) 28190) ((-1065 . -241) 28136) ((-679 . -661) 28106) ((-420 . -23) T) ((-971 . -632) 28067) ((-971 . -631) 27979) ((-665 . -502) 27963) ((-45 . -1040) 27913) ((-1143 . -1068) 27740) ((-635 . -997) T) ((-504 . -102) T) ((-342 . -631) 27722) ((-1023 . -297) 27689) ((-606 . -672) 27671) ((-129 . -1130) T) ((-131 . -1130) T) ((-606 . -385) 27653) ((-355 . -1304) 27630) ((-452 . -631) 27612) ((-1270 . -527) 27559) ((-1117 . -1081) 27402) ((-1057 . -1247) T) ((-894 . -301) T) ((-1202 . -297) 27329) ((-1117 . -661) 27178) ((-1030 . -1025) 27162) ((-803 . -1081) 26985) ((-801 . -1081) 26828) ((-803 . -661) 26657) ((-801 . -661) 26506) ((-489 . -1247) T) ((-476 . -1247) T) ((-599 . -102) T) ((-474 . -1081) 26477) ((-467 . -1081) 26320) ((-685 . -667) 26289) ((-641 . -465) 26268) ((-474 . -661) 26239) ((-467 . -661) 26088) ((-367 . -667) 26025) ((-364 . -667) 25962) ((-356 . -667) 25899) ((-274 . -667) 25809) ((-254 . -667) 25719) ((-1312 . -394) 25691) ((-530 . -1130) T) ((-118 . -465) T) ((-1227 . -102) T) ((-1122 . -1130) 25661) ((-1064 . -1130) T) ((-1145 . -93) T) ((-917 . -870) T) ((-1289 . -111) 25530) ((-363 . -1251) T) ((-1289 . -1086) 25413) ((-1143 . -389) 25382) ((-1282 . -1086) 25217) ((-1261 . -1086) 25007) ((-1282 . -111) 24828) ((-1261 . -111) 24597) ((-1241 . -320) 24584) ((-1033 . -132) T) ((-938 . -667) 24534) ((-377 . -631) 24516) ((-363 . -569) T) ((-300 . -318) T) ((-609 . -1086) 24476) ((-608 . -1086) 24359) ((-594 . -1081) 24324) ((-531 . -1081) 24269) ((-373 . -1130) T) ((-333 . -1130) T) ((-259 . -631) 24230) ((-258 . -631) 24191) ((-594 . -661) 24156) ((-531 . -661) 24101) ((-715 . -422) 24068) ((-653 . -23) T) ((-619 . -23) T) ((-40 . -920) 23975) ((-679 . -102) T) ((-609 . -111) 23928) ((-608 . -111) 23797) ((-391 . -1130) T) ((-348 . -102) T) ((-171 . -301) 23708) ((-1260 . -869) 23661) ((-735 . -1088) T) ((-630 . -1247) T) ((-1177 . -527) 23594) ((-1220 . -856) 23578) ((-1143 . -926) 23510) ((-857 . -1130) T) ((-848 . -1130) T) ((-846 . -1130) T) ((-97 . -102) T) ((-145 . -870) T) ((-630 . -908) 23494) ((-1181 . -1247) T) ((-110 . -1247) T) ((-1117 . -102) T) ((-1093 . -34) T) ((-803 . -102) T) ((-801 . -102) T) ((-1289 . -634) 23376) ((-1282 . -634) 23119) ((-474 . -102) T) ((-467 . -102) T) ((-1261 . -634) 22914) ((-96 . -1247) T) ((-246 . -816) 22893) ((-246 . -813) 22872) ((-670 . -102) T) ((-609 . -634) 22830) ((-608 . -634) 22712) ((-1270 . -301) 22623) ((-685 . -652) 22607) ((-188 . -631) 22589) ((-665 . -297) 22541) ((-1064 . -738) 22525) ((-584 . -301) T) ((-991 . -669) 22450) ((-1320 . -132) T) ((-756 . -669) 22410) ((-736 . -669) 22397) ((-285 . -102) T) ((-466 . -669) 22327) ((-50 . -102) T) ((-594 . -102) T) ((-531 . -102) T) ((-1289 . -1079) T) ((-1282 . -1079) T) ((-1261 . -1079) T) ((-1170 . -1247) T) ((-520 . -667) 22309) ((-333 . -738) 22291) ((-1289 . -239) 22250) ((-1282 . -249) 22229) ((-1282 . -239) 22181) ((-1261 . -239) 22068) ((-1261 . -249) 22047) ((-1241 . -38) 21944) ((-609 . -1079) T) ((-608 . -1079) T) ((-1034 . -816) T) ((-1034 . -813) T) ((-1001 . -816) T) ((-1001 . -813) T) ((-895 . -1088) T) ((-109 . -631) 21926) ((-715 . -465) T) ((-391 . -738) 21891) ((-431 . -669) 21865) ((-893 . -892) 21849) ((-732 . -38) 21814) ((-608 . -239) 21773) ((-40 . -745) 21745) ((-363 . -340) 21722) ((-363 . -375) T) ((-1110 . -318) 21673) ((-305 . -1142) 21554) ((-1136 . -1247) T) ((-1029 . -235) 21499) ((-173 . -102) T) ((-1264 . -631) 21466) ((-864 . -132) 21418) ((-857 . -738) 21388) ((-665 . -1285) 21372) ((-848 . -738) 21342) ((-665 . -617) 21319) ((-495 . -1247) T) ((-371 . -318) T) ((-365 . -318) T) ((-357 . -318) T) ((-412 . -235) 21306) ((-420 . -132) T) ((-533 . -687) 21290) ((-108 . -318) T) ((-305 . -23) 21173) ((-533 . -672) 21157) ((-715 . -415) NIL) ((-533 . -385) 21141) ((-660 . -1081) 21125) ((-660 . -661) 21109) ((-302 . -631) 21091) ((-91 . -1130) 21069) ((-108 . -1052) T) ((-577 . -144) T) ((-1297 . -152) 21053) ((-495 . -1068) 20880) ((-1283 . -146) 20841) ((-1283 . -148) 20802) ((-1084 . -1247) T) ((-1308 . -93) T) ((-1023 . -631) 20784) ((-839 . -1247) T) ((-885 . -631) 20766) ((-837 . -1086) 20609) ((-1307 . -93) T) ((-1202 . -632) NIL) ((-1126 . -1130) T) ((-1120 . -1130) T) ((-1117 . -320) 20596) ((-427 . -1247) T) ((-397 . -1247) T) ((-1103 . -1130) T) ((-230 . -1247) T) ((-1096 . -1130) T) ((-1066 . -1130) T) ((-1049 . -1130) T) ((-803 . -320) 20583) ((-801 . -320) 20570) ((-1202 . -631) 20552) ((-837 . -111) 20381) ((-1155 . -631) 20363) ((-644 . -1130) T) ((-590 . -175) T) ((-542 . -175) T) ((-467 . -320) 20350) ((-496 . -1130) T) ((-1155 . -632) 20098) ((-1064 . -174) T) ((-971 . -299) 20075) ((-221 . -1130) T) ((-877 . -631) 20057) ((-626 . -527) 19840) ((-81 . -634) 19781) ((-839 . -1068) 19765) ((-488 . -527) 19557) ((-854 . -873) 19536) ((-991 . -747) T) ((-756 . -747) T) ((-736 . -747) T) ((-363 . -1142) T) ((-1209 . -631) 19518) ((-226 . -102) T) ((-495 . -389) 19487) ((-528 . -1130) T) ((-523 . -1130) T) ((-521 . -1130) T) ((-820 . -669) 19461) ((-1054 . -465) T) ((-986 . -527) 19394) ((-363 . -23) T) ((-653 . -132) T) ((-619 . -132) T) ((-366 . -465) T) ((-246 . -380) 19373) ((-391 . -174) T) ((-1281 . -1088) T) ((-1260 . -1088) T) ((-228 . -1032) T) ((-837 . -634) 19110) ((-720 . -400) T) ((-431 . -747) T) ((-722 . -1251) T) ((-1172 . -659) 19058) ((-658 . -1130) T) ((-660 . -102) T) ((-593 . -892) 19042) ((-1312 . -1086) 19026) ((-1189 . -1223) 19002) ((-722 . -569) T) ((-127 . -1130) 18980) ((-735 . -1130) T) ((-679 . -38) 18950) ((-495 . -926) 18882) ((-256 . -1130) T) ((-189 . -1130) T) ((-366 . -415) T) ((-327 . -148) 18861) ((-327 . -146) 18840) ((-117 . -569) T) ((-129 . -527) NIL) ((-324 . -148) 18796) ((-324 . -146) 18752) ((-48 . -465) T) ((-163 . -1130) T) ((-158 . -1130) T) ((-1189 . -107) 18699) ((-803 . -1182) 18677) ((-1312 . -111) 18656) ((-710 . -34) T) ((-605 . -1247) T) ((-563 . -34) T) ((-497 . -107) 18640) ((-259 . -299) 18617) ((-258 . -299) 18594) ((-1253 . -865) T) ((-894 . -297) 18545) ((-45 . -1247) T) ((-1241 . -928) 18526) ((-838 . -1247) T) ((-837 . -1079) T) ((-639 . -873) 18505) ((-683 . -667) 18474) ((-1208 . -47) 18450) ((-837 . -337) 18412) ((-1117 . -38) 18261) ((-837 . -239) 18240) ((-803 . -38) 18069) ((-801 . -38) 17918) ((-1145 . -503) 17899) ((-467 . -38) 17748) ((-1145 . -631) 17714) ((-1148 . -102) T) ((-665 . -632) 17675) ((-665 . -631) 17587) ((-594 . -1182) T) ((-531 . -1182) T) ((-1177 . -502) 17571) ((-355 . -1081) 17516) ((-1233 . -1130) 17494) ((-1172 . -25) T) ((-1172 . -21) T) ((-355 . -661) 17439) ((-1312 . -634) 17388) ((-341 . -1247) T) ((-487 . -1088) T) ((-1253 . -1130) T) ((-1261 . -813) NIL) ((-1261 . -816) NIL) ((-1029 . -870) 17367) ((-889 . -21) T) ((-859 . -1130) T) ((-840 . -631) 17349) ((-889 . -25) T) ((-820 . -747) T) ((-658 . -738) 17333) ((-176 . -1251) T) ((-594 . -38) 17298) ((-531 . -38) 17263) ((-399 . -631) 17245) ((-344 . -102) T) ((-335 . -631) 17227) ((-171 . -297) 17185) ((-1255 . -873) T) ((-63 . -1247) T) ((-112 . -102) T) ((-895 . -1130) T) ((-525 . -1247) T) ((-176 . -569) T) ((-735 . -738) 17155) ((-305 . -132) 17038) ((-228 . -631) 17020) ((-228 . -632) 16950) ((-1033 . -659) 16889) ((-1312 . -1079) T) ((-1208 . -1247) T) ((-1150 . -148) T) ((-650 . -1223) 16864) ((-752 . -937) 16843) ((-606 . -34) T) ((-668 . -107) 16827) ((-650 . -107) 16773) ((-624 . -1247) T) ((-623 . -1247) T) ((-621 . -1247) T) ((-1309 . -1247) T) ((-641 . -920) 16694) ((-1270 . -297) 16621) ((-752 . -669) 16510) ((-306 . -1247) T) ((-1208 . -1068) 16406) ((-971 . -636) 16383) ((-590 . -589) T) ((-590 . -540) T) ((-542 . -540) T) ((-118 . -920) NIL) ((-1197 . -937) NIL) ((-1092 . -632) 16298) ((-1092 . -631) 16280) ((-980 . -631) 16262) ((-734 . -503) 16212) ((-355 . -102) T) ((-259 . -1086) 16133) ((-258 . -1086) 16054) ((-407 . -102) T) ((-31 . -1130) T) ((-980 . -632) 15915) ((-734 . -631) 15850) ((-1310 . -1240) 15819) ((-494 . -631) 15801) ((-494 . -632) 15662) ((-274 . -424) 15646) ((-254 . -424) 15630) ((-324 . -238) NIL) ((-259 . -111) 15546) ((-258 . -111) 15462) ((-1204 . -669) 15387) ((-1203 . -669) 15284) ((-1197 . -669) 15136) ((-1156 . -669) 15061) ((-363 . -132) T) ((-82 . -454) T) ((-82 . -408) T) ((-1033 . -25) T) ((-1033 . -21) T) ((-896 . -1130) 15012) ((-40 . -1081) 14957) ((-895 . -738) 14909) ((-40 . -661) 14854) ((-391 . -301) T) ((-171 . -1032) 14805) ((-1117 . -928) 14704) ((-715 . -400) T) ((-1029 . -1027) 14688) ((-722 . -1142) T) ((-715 . -167) 14670) ((-803 . -928) 14577) ((-801 . -928) 14561) ((-1281 . -1130) T) ((-1260 . -1130) T) ((-1194 . -102) T) ((-327 . -1232) 14540) ((-327 . -1235) 14519) ((-467 . -928) 14496) ((-327 . -987) 14475) ((-135 . -1142) T) ((-117 . -1142) T) ((-1000 . -1247) T) ((-887 . -1247) T) ((-722 . -23) T) ((-674 . -1247) T) ((-615 . -1295) 14459) ((-615 . -1130) 14409) ((-544 . -873) T) ((-513 . -873) T) ((-327 . -95) 14388) ((-91 . -527) 14321) ((-176 . -375) T) ((-259 . -634) 14119) ((-258 . -634) 13917) ((-327 . -35) 13896) ((-626 . -502) 13830) ((-135 . -23) T) ((-117 . -23) T) ((-994 . -102) T) ((-739 . -1130) T) ((-488 . -502) 13767) ((-420 . -659) 13715) ((-674 . -1068) 13611) ((-986 . -502) 13595) ((-367 . -1088) T) ((-364 . -1088) T) ((-356 . -1088) T) ((-274 . -1088) T) ((-254 . -1088) T) ((-894 . -632) NIL) ((-894 . -631) 13577) ((-1308 . -503) 13558) ((-1307 . -503) 13539) ((-1320 . -21) T) ((-1308 . -631) 13505) ((-1307 . -631) 13471) ((-584 . -1032) T) ((-752 . -747) T) ((-1320 . -25) T) ((-259 . -1079) 13449) ((-258 . -1079) 13427) ((-72 . -1247) T) ((-1172 . -235) 13372) ((-259 . -239) 13324) ((-258 . -239) 13276) ((-1150 . -238) T) ((-40 . -102) T) ((-938 . -1088) T) ((-715 . -920) NIL) ((-1211 . -102) T) ((-129 . -502) 13258) ((-1204 . -747) T) ((-1203 . -747) T) ((-1197 . -747) T) ((-1197 . -812) NIL) ((-1197 . -815) NIL) ((-982 . -102) T) ((-949 . -102) T) ((-893 . -1081) 13245) ((-1156 . -747) T) ((-792 . -102) T) ((-693 . -102) T) ((-893 . -661) 13232) ((-559 . -631) 13214) ((-487 . -1130) T) ((-351 . -1142) T) ((-176 . -1142) T) ((-330 . -948) 13193) ((-1281 . -738) 13034) ((-895 . -174) T) ((-1260 . -738) 12848) ((-864 . -21) 12800) ((-864 . -25) 12752) ((-251 . -1179) 12736) ((-127 . -527) 12669) ((-420 . -25) T) ((-420 . -21) T) ((-351 . -23) T) ((-171 . -632) 12435) ((-171 . -631) 12417) ((-176 . -23) T) ((-665 . -299) 12394) ((-533 . -34) T) ((-924 . -631) 12376) ((-89 . -1247) T) ((-862 . -631) 12358) ((-829 . -631) 12340) ((-790 . -631) 12322) ((-698 . -631) 12304) ((-246 . -669) 12137) ((-635 . -113) T) ((-1206 . -1130) T) ((-1202 . -1086) 11960) ((-216 . -1247) T) ((-1180 . -1247) T) ((-1155 . -1086) 11803) ((-877 . -1086) 11787) ((-1112 . -873) T) ((-1264 . -636) 11771) ((-1202 . -111) 11580) ((-1155 . -111) 11409) ((-877 . -111) 11388) ((-1254 . -870) T) ((-1270 . -632) NIL) ((-1270 . -631) 11370) ((-355 . -1182) T) ((-878 . -631) 11352) ((-1106 . -297) 11331) ((-1241 . -667) 11241) ((-80 . -1247) T) ((-933 . -1247) T) ((-1233 . -527) 11174) ((-1034 . -937) NIL) ((-1117 . -273) 11158) ((-626 . -297) 11134) ((-1117 . -233) 11118) ((-500 . -1247) T) ((-584 . -631) 11100) ((-488 . -297) 11079) ((-1034 . -669) 11029) ((-530 . -93) T) ((-1033 . -235) 10960) ((-220 . -1247) T) ((-986 . -297) 10912) ((-893 . -102) T) ((-300 . -948) T) ((-838 . -318) 10891) ((-803 . -273) 10875) ((-803 . -233) 10859) ((-942 . -669) 10811) ((-732 . -667) 10761) ((-715 . -745) 10728) ((-653 . -21) T) ((-653 . -25) T) ((-619 . -21) T) ((-560 . -102) T) ((-355 . -38) 10693) ((-500 . -908) 10675) ((-500 . -910) 10657) ((-487 . -738) 10498) ((-64 . -1247) T) ((-220 . -908) 10480) ((-220 . -910) 10462) ((-619 . -25) T) ((-440 . -669) 10436) ((-1202 . -634) 10205) ((-500 . -1068) 10165) ((-895 . -527) 10077) ((-1155 . -634) 9869) ((-877 . -634) 9787) ((-220 . -1068) 9747) ((-246 . -34) T) ((-1030 . -1130) 9725) ((-593 . -1081) 9712) ((-577 . -1081) 9699) ((-508 . -1081) 9664) ((-1281 . -174) 9595) ((-1260 . -174) 9526) ((-593 . -661) 9513) ((-577 . -661) 9500) ((-508 . -661) 9465) ((-733 . -146) 9444) ((-733 . -148) 9423) ((-130 . -873) T) ((-722 . -132) T) ((-562 . -1247) T) ((-137 . -478) 9400) ((-1177 . -631) 9332) ((-679 . -677) 9316) ((-129 . -297) 9266) ((-117 . -132) T) ((-490 . -1251) T) ((-626 . -617) 9242) ((-488 . -617) 9221) ((-610 . -1130) T) ((-348 . -347) 9190) ((-598 . -1130) T) ((-549 . -1130) T) ((-490 . -569) T) ((-1202 . -1079) T) ((-1155 . -1079) T) ((-877 . -1079) T) ((-844 . -1247) T) ((-246 . -815) 9169) ((-246 . -814) 9148) ((-1202 . -337) 9125) ((-246 . -747) 9103) ((-986 . -19) 9087) ((-500 . -389) 9069) ((-500 . -350) 9051) ((-1155 . -337) 9023) ((-366 . -1304) 9000) ((-220 . -389) 8982) ((-220 . -350) 8964) ((-986 . -617) 8941) ((-1202 . -239) T) ((-1293 . -1130) T) ((-1219 . -1130) T) ((-685 . -1130) T) ((-666 . -1130) T) ((-1117 . -261) 8878) ((-599 . -667) 8838) ((-367 . -1130) T) ((-364 . -1130) T) ((-356 . -1130) T) ((-274 . -1130) T) ((-254 . -1130) T) ((-84 . -1247) T) ((-217 . -102) T) ((-128 . -102) 8788) ((-122 . -102) 8738) ((-1260 . -527) 8598) ((-1219 . -628) 8577) ((-1171 . -1130) T) ((-1145 . -634) 8558) ((-1110 . -948) 8509) ((-492 . -1130) T) ((-1034 . -815) T) ((-1034 . -812) T) ((-492 . -628) 8488) ((-259 . -816) 8467) ((-259 . -813) 8446) ((-258 . -816) 8425) ((-40 . -1182) NIL) ((-258 . -813) 8404) ((-1034 . -747) T) ((-129 . -19) 8386) ((-1001 . -815) T) ((-720 . -1081) 8351) ((-942 . -747) T) ((-938 . -1130) T) ((-916 . -631) 8333) ((-129 . -617) 8308) ((-720 . -661) 8273) ((-91 . -502) 8257) ((-500 . -926) NIL) ((-895 . -301) T) ((-228 . -1086) 8222) ((-857 . -297) 8201) ((-220 . -926) NIL) ((-854 . -1142) 8180) ((-59 . -1130) 8130) ((-532 . -1130) 8108) ((-529 . -1130) 8058) ((-510 . -1130) 8036) ((-509 . -1130) 7986) ((-593 . -102) T) ((-577 . -102) T) ((-508 . -102) T) ((-487 . -174) 7917) ((-371 . -948) T) ((-365 . -948) T) ((-357 . -948) T) ((-228 . -111) 7873) ((-854 . -23) 7825) ((-440 . -747) T) ((-108 . -948) T) ((-40 . -38) 7770) ((-108 . -841) T) ((-594 . -361) T) ((-531 . -361) T) ((-679 . -667) 7729) ((-327 . -465) 7708) ((-324 . -465) T) ((-615 . -527) 7641) ((-420 . -235) 7586) ((-351 . -132) T) ((-176 . -132) T) ((-305 . -25) 7450) ((-305 . -21) 7333) ((-45 . -1223) 7312) ((-66 . -631) 7294) ((-55 . -102) T) ((-348 . -667) 7276) ((-1298 . -102) T) ((-1297 . -102) 7206) ((-1289 . -669) 7131) ((-1282 . -669) 7028) ((-45 . -107) 6978) ((-840 . -634) 6962) ((-1261 . -669) 6814) ((-1261 . -937) NIL) ((-1252 . -1247) T) ((-1228 . -631) 6796) ((-1220 . -102) T) ((-1132 . -438) 6780) ((-1132 . -380) 6759) ((-399 . -634) 6743) ((-335 . -634) 6727) ((-1126 . -93) T) ((-1117 . -667) 6637) ((-1093 . -1247) T) ((-1092 . -1086) 6624) ((-1092 . -111) 6609) ((-980 . -111) 6438) ((-980 . -1086) 6281) ((-803 . -667) 6191) ((-801 . -667) 6101) ((-685 . -738) 6085) ((-641 . -1081) 6072) ((-641 . -661) 6059) ((-561 . -873) T) ((-494 . -1086) 5902) ((-490 . -375) T) ((-474 . -667) 5858) ((-467 . -667) 5768) ((-228 . -634) 5718) ((-367 . -738) 5670) ((-364 . -738) 5622) ((-118 . -1081) 5567) ((-356 . -738) 5519) ((-274 . -738) 5368) ((-254 . -738) 5217) ((-1120 . -93) T) ((-1103 . -93) T) ((-118 . -661) 5162) ((-1096 . -93) T) ((-971 . -672) 5146) ((-1087 . -1130) 5124) ((-494 . -111) 4953) ((-1066 . -93) T) ((-1049 . -93) T) ((-971 . -385) 4937) ((-255 . -102) T) ((-991 . -47) 4916) ((-74 . -631) 4898) ((-733 . -238) T) ((-731 . -102) T) ((-720 . -102) T) ((-1 . -1130) T) ((-639 . -1142) T) ((-1118 . -631) 4880) ((-644 . -93) T) ((-1106 . -631) 4862) ((-938 . -738) 4827) ((-127 . -502) 4811) ((-496 . -93) T) ((-639 . -23) T) ((-403 . -23) T) ((-87 . -1247) T) ((-221 . -93) T) ((-626 . -631) 4793) ((-626 . -632) NIL) ((-488 . -632) NIL) ((-488 . -631) 4775) ((-363 . -25) T) ((-363 . -21) T) ((-50 . -667) 4734) ((-524 . -1130) T) ((-520 . -1130) T) ((-122 . -320) 4672) ((-128 . -320) 4610) ((-609 . -669) 4584) ((-608 . -669) 4509) ((-594 . -667) 4459) ((-228 . -1079) T) ((-531 . -667) 4389) ((-1092 . -634) 4361) ((-391 . -1032) T) ((-228 . -249) T) ((-228 . -239) T) ((-871 . -503) 4345) ((-1092 . -636) 4326) ((-986 . -632) 4287) ((-986 . -631) 4199) ((-980 . -634) 3988) ((-871 . -631) 3936) ((-893 . -38) 3923) ((-734 . -634) 3873) ((-1281 . -301) 3824) ((-1260 . -301) 3775) ((-494 . -634) 3560) ((-1150 . -465) T) ((-515 . -870) T) ((-327 . -1169) 3539) ((-1131 . -1247) T) ((-1029 . -148) 3518) ((-1029 . -146) 3497) ((-508 . -320) 3484) ((-1214 . -631) 3466) ((-306 . -1223) 3445) ((-1213 . -631) 3427) ((-1165 . -1247) T) ((-1212 . -631) 3409) ((-894 . -1086) 3354) ((-490 . -1142) T) ((-140 . -856) 3336) ((-115 . -856) 3317) ((-1233 . -502) 3301) ((-1092 . -1079) T) ((-641 . -102) T) ((-991 . -1247) T) ((-980 . -1079) T) ((-259 . -380) 3280) ((-258 . -380) 3259) ((-894 . -111) 3188) ((-306 . -107) 3138) ((-131 . -631) 3120) ((-129 . -632) NIL) ((-129 . -631) 3064) ((-118 . -102) T) ((-756 . -1247) T) ((-736 . -1247) T) ((-490 . -23) T) ((-466 . -1247) T) ((-494 . -1079) T) ((-1092 . -239) T) ((-980 . -337) 3033) ((-40 . -928) 2942) ((-494 . -337) 2899) ((-367 . -174) T) ((-364 . -174) T) ((-356 . -174) T) ((-274 . -174) 2810) ((-254 . -174) 2721) ((-991 . -1068) 2617) ((-530 . -503) 2598) ((-756 . -1068) 2569) ((-530 . -631) 2535) ((-431 . -1247) T) ((-1135 . -102) T) ((-1122 . -631) 2494) ((-1064 . -631) 2476) ((-715 . -1081) 2426) ((-1310 . -152) 2410) ((-1308 . -634) 2391) ((-1307 . -634) 2372) ((-1302 . -631) 2354) ((-1289 . -747) T) ((-715 . -661) 2304) ((-1282 . -747) T) ((-1261 . -812) NIL) ((-1261 . -815) NIL) ((-171 . -1086) 2214) ((-938 . -174) T) ((-894 . -634) 2144) ((-1261 . -747) T) ((-1033 . -354) 2118) ((-226 . -667) 2070) ((-1030 . -527) 2003) ((-864 . -870) 1982) ((-577 . -1182) T) ((-487 . -301) 1933) ((-609 . -747) T) ((-373 . -631) 1915) ((-333 . -631) 1897) ((-431 . -1068) 1793) ((-608 . -747) T) ((-420 . -870) 1744) ((-171 . -111) 1640) ((-854 . -132) 1592) ((-1297 . -320) 1530) ((-758 . -152) 1514) ((-992 . -873) 1413) ((-836 . -873) 1364) ((-500 . -318) T) ((-391 . -631) 1331) ((-533 . -1040) 1315) ((-391 . -632) 1229) ((-220 . -318) T) ((-142 . -152) 1211) ((-735 . -297) 1190) ((-500 . -1052) T) ((-593 . -38) 1177) ((-577 . -38) 1164) ((-508 . -38) 1129) ((-660 . -667) 1098) ((-220 . -1052) T) ((-894 . -1079) T) ((-857 . -631) 1080) ((-848 . -631) 1062) ((-846 . -631) 1044) ((-837 . -937) 1023) ((-1321 . -1142) T) ((-323 . -1247) T) ((-1270 . -1086) 846) ((-878 . -1086) 830) ((-894 . -249) T) ((-894 . -239) NIL) ((-710 . -1247) T) ((-1321 . -23) T) ((-837 . -669) 719) ((-563 . -1247) T) ((-431 . -350) 703) ((-584 . -1086) 690) ((-1270 . -111) 499) ((-722 . -659) 481) ((-878 . -111) 460) ((-393 . -23) T) ((-171 . -634) 238) ((-1219 . -527) 30) ((-899 . -1130) T) ((-702 . -1130) T) ((-697 . -1130) T) ((-683 . -1130) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 86e1faab..80e66244 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3487991531) -(4473 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3488491114) +(4502 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -221,13 +221,15 @@ |InnerTaylorSeries| |InternalTypeForm| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| - |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| - |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| - |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom| - |KleeneTrivalentLogic| |ConvertibleFrom| |LeftAlgebra&| |LeftAlgebra| - |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| - |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst| - |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| + |JoinAst| |AssociatedJordanAlgebra| |JVMBytecode| |JVMClassFileAccess| + |JVMConstantTag| |JVMFieldAccess| |JVMMethodAccess| |JVMOpcode| + |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| + |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| + |CoercibleFrom| |KleeneTrivalentLogic| |ConvertibleFrom| + |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| + |LaurentPolynomial| |LazardSetSolvingPackage| + |LeadingCoefDetermination| |LetAst| |LieExponentials| + |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearBasis| |LinearDependence| @@ -488,663 +490,675 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |errorKind| |bat1| |conjugate| |dom| |iipow| |gensym| - UTS2UP |exprToGenUPS| |merge| |tree| |minimumExponent| |mainValue| - |recoverAfterFail| |startTableInvSet!| |bitLength| |inf| - |totalDifferential| |multiple?| |rootsOf| |upperCase| - |halfExtendedResultant1| |seed| |mapMatrixIfCan| |normDeriv2| |queue| - |rangePascalTriangle| |OMreadFile| |ref| |typeList| |string| - |cyclicParents| |c02agf| |cos2sec| |primintfldpoly| |lllip| |d03faf| - |restorePrecision| |integral?| |coerceS| |mainVariables| |superscript| - |boundOfCauchy| |scale| |times!| |powers| |fixedDivisor| - |viewWriteAvailable| |extendedEuclidean| |floor| |zeroMatrix| |arity| - |s21baf| |asinhIfCan| |exptMod| |adaptive3D?| |removeRedundantFactors| - |title| |firstUncouplingMatrix| |nthFlag| |symbolTableOf| |setUnion| - |simplifyLog| |modularGcdPrimitive| |companionBlocks| |scalarMatrix| - |fmecg| |increment| |OMputError| |constantIfCan| |acschIfCan| - |hypergeometric0F1| |midpoints| |s14aaf| |rewriteIdealWithRemainder| - |isMult| |algebraic?| |lexTriangular| |monomRDEsys| |nullSpace| - |iterationVar| |deepExpand| |genericLeftMinimalPolynomial| |predicate| - |basisOfCentroid| |setMinPoints| |seriesSolve| |fortranInteger| - |OMputAtp| |e| |cylindrical| |iisqrt3| |vark| |pile| |patternVariable| - |OMlistSymbols| |triangular?| |OMwrite| |stFunc2| |numberOfHues| - |e02def| |d01bbf| |Frobenius| |unitNormalize| |over| |stirling1| - |tube| |rootPower| |binaryFunction| |Lazard| |hexDigit| |sumOfSquares| - |tRange| |build| |product| |hash| |sPol| |monicModulo| |adaptive?| - |child?| |yellow| |double| |indiceSubResultant| |makeCos| - |leadingIdeal| |inverseIntegralMatrix| |lieAdmissible?| |count| - |halfExtendedResultant2| |nextItem| |matrixConcat3D| |argumentList!| - |max| |initiallyReduce| |removeZeroes| |constant?| - |createMultiplicationMatrix| |safetyMargin| ** |leftRank| |Nul| - |expandLog| |currentScope| |output| |connectTo| |satisfy?| |arbitrary| - |iteratedInitials| |redPo| |triangularSystems| |contours| - |splitNodeOf!| |top!| |interReduce| |subQuasiComponent?| |trim| - |groebner| |rowEchLocal| |elRow2!| |maxRowIndex| |selectfirst| - |setPrologue!| |selectPDERoutines| |exactQuotient!| |hostPlatform| - |putProperties| |getCode| |nothing| |rationalIfCan| |OMputEndAttr| - |rightGcd| |s18acf| |newTypeLists| |has?| - |tryFunctionalDecomposition?| |ScanArabic| - |ScanFloatIgnoreSpacesIfCan| |cAsinh| |csc2sin| |element?| - |setVariableOrder| |parameters| |curryRight| |curve?| - |fillPascalTriangle| |s19abf| |rischDEsys| |leftReducedSystem| - |palginfieldint| |dominantTerm| |d01alf| |e04gcf| |datalist| - |leviCivitaSymbol| |printTypes| |rarrow| |getSyntaxFormsFromFile| - |eigenMatrix| |declare!| |parents| |functionIsFracPolynomial?| - |getOrder| |exponent| |s21bdf| |getGoodPrime| |varList| - |stronglyReduced?| |controlPanel| |var2Steps| |c06gbf| - |expandTrigProducts| |setClipValue| |genericRightMinimalPolynomial| - |probablyZeroDim?| |list?| |c06fpf| |rightTrim| |linearAssociatedExp| - |clipSurface| |elaborateFile| |branchPoint?| - |zeroSetSplitIntoTriangularSystems| |signAround| |nextColeman| - |identification| |rspace| |laguerreL| |leftTrim| |wordInGenerators| - |characteristicSet| |s17dcf| |supRittWu?| |showTheIFTable| |modTree| - |clip| |useSingleFactorBound?| |OMbindTCP| |partialFraction| - |vectorise| |algint| |asimpson| |littleEndian| |cCosh| |zeroSetSplit| - |expint| |tableForDiscreteLogarithm| |plotPolar| |OMgetString| |cycle| - |roughBase?| |singularitiesOf| |iomode| |finiteBasis| |row| |UP2ifCan| - |lieAlgebra?| |localReal?| |rischDE| |PDESolve| |concat!| - |singleFactorBound| |besselI| |monomialIntPoly| |mainExpression| - |rroot| |digit?| |d02cjf| |factorials| |double?| |gradient| |mantissa| - |universe| |complement| |cross| |viewport2D| |generalTwoFactor| - |segment| |extendedint| |extractBottom!| |prinshINFO| |lintgcd| - |setMaxPoints3D| |factorsOfDegree| |rootRadius| |round| - |shanksDiscLogAlgorithm| |hasTopPredicate?| |move| - |cyclotomicDecomposition| |primextintfrac| |merge!| |getExplanations| - |cdr| |ruleset| |OMgetEndBVar| |binding| |iiacot| |badValues| - |setStatus!| |oblateSpheroidal| |recip| |writeByte!| |nodeOf?| - |f01bsf| |definingPolynomial| |alternating| |mat| |UnVectorise| - |myDegree| |rightRegularRepresentation| |iisinh| |atanIfCan| - |RemainderList| |compiledFunction| |permutationRepresentation| |apply| - |step| |upperCase?| |KrullNumber| |binary| |member?| |bipolar| - |rightPower| |bumptab| |rename| |unrankImproperPartitions1| |suchThat| - |first| |operators| |e02ajf| |linGenPos| |getCurve| |extractPoint| - |genericRightTrace| |inputBinaryFile| |disjunction| |numerators| - |meshPar1Var| |rest| |dual| |addiag| |digamma| |rotate| |OMgetEndAttr| - |solveLinearPolynomialEquationByRecursion| |plus| |s18aff| |OMputApp| - |e02aef| |f02aef| |createNormalPrimitivePoly| |OMgetError| - |mergeFactors| |coshIfCan| |thetaCoord| |conical| |getMatch| - |loopPoints| |basisOfRightNucleus| |lyndon?| |concat| |iisec| - |setrest!| |modulus| |closeComponent| |divisors| |permutationGroup| - |d02raf| |routines| |parabolic| |swap| |entry?| |delay| - |OMgetEndError| |readInt16!| |s20acf| |revert| |times| |root| - |factors| |linearPart| |rewriteSetByReducingWithParticularGenerators| - |cup| |isOp| |constDsolve| |lazyPquo| |ode1| |viewPhiDefault| - |optAttributes| |leastAffineMultiple| |thenBranch| - |intermediateResultsIF| |viewDefaults| |interactiveEnv| |dAndcExp| - |ParCondList| |nor| |c06gsf| |d02gaf| |rightUnits| |repeating?| - |repeating| |differentialVariables| |mainForm| |mainCoefficients| - |monicDecomposeIfCan| |changeBase| |relativeApprox| - |currentCategoryFrame| |overlabel| |skewSFunction| |multiEuclidean| - |setLabelValue| |setButtonValue| |open?| |monom| |bezoutResultant| - |primitiveElement| |rquo| |fracPart| |orthonormalBasis| |distribute| - |cSec| |stoseIntegralLastSubResultant| |countRealRootsMultiple| - |OMlistCDs| |leftUnits| |e02ddf| |palgintegrate| |bumprow| - |primPartElseUnitCanonical| |graphCurves| |basisOfRightNucloid| - |explicitEntries?| |setEmpty!| |directSum| |factorPolynomial| - |insertBottom!| |d01asf| |dfRange| |common| |smith| |pointLists| |sub| - |cyclePartition| |endOfFile?| |subtractIfCan| |s21bcf| |property| - |binomial| |status| |read!| |rightNorm| |fortranLogical| |compdegd| - |solveid| |internalIntegrate0| |parametric?| |Aleph| |bit?| |unravel| - |var1Steps| |outputSpacing| |linSolve| |pointColor| |taylorIfCan| - |setPoly| |inGroundField?| |weakBiRank| |processTemplate| |sin2csc| - |zoom| |genericPosition| |d02bhf| |OMsetEncoding| |deepestInitial| - |critMonD1| |fixedPointExquo| |kind| |stripCommentsAndBlanks| - |elaborate| |numFunEvals3D| |idealiser| |infieldint| |alphanumeric| - |cosSinInfo| |setLength!| |setOfMinN| |putProperty| |op| |bigEndian| - |number?| |alphanumeric?| |hexDigit?| |normalized?| |unaryFunction| - |more?| |diag| |linearMatrix| |tanSum| |powerAssociative?| - |outputFloating| |asechIfCan| |showRegion| |forLoop| |nodes| - |stiffnessAndStabilityFactor| |polarCoordinates| - |nextPrimitiveNormalPoly| |leadingExponent| |reorder| |readUInt16!| - |implies| |unrankImproperPartitions0| |cycleSplit!| - |componentUpperBound| |youngGroup| |pquo| |hasHi| |li| - |lastSubResultantEuclidean| |e04mbf| |cAcosh| |string?| |d02kef| |Is| - |updatF| |An| |e01daf| |internalSubQuasiComponent?| |makeYoungTableau| - SEGMENT |explimitedint| |subNodeOf?| |freeOf?| - |primPartElseUnitCanonical!| |explicitlyFinite?| |OMParseError?| - |rowEchelon| |qfactor| |primeFrobenius| |box| |romberg| |hconcat| - |selectIntegrationRoutines| |completeHermite| |rootBound| |union| - |computeCycleEntry| |dark| |FormatArabic| |numberOfFractionalTerms| - |modularFactor| |eof?| |d01akf| |low| |atoms| - |exprHasWeightCosWXorSinWX| |unparse| |zerosOf| |unknown| |blue| - |dihedral| |airyAi| |s19adf| |uniform| |makeResult| |df2fi| - |readByte!| |OMputEndBVar| |setelt| |stopTable!| |specialTrigs| - |limit| |pade| |allRootsOf| |OMgetBVar| |cTanh| |s18def| |generic| - |trivialIdeal?| |setErrorBound| |const| |denominators| |insertTop!| - |integerIfCan| |represents| |mulmod| |removeSinhSq| |copy| |swapRows!| - |rangeIsFinite| |coth2trigh| |tubePoints| |c06ecf| |characteristic| - |musserTrials| |eisensteinIrreducible?| |denomRicDE| |test| - |elliptic?| |ODESolve| |legendre| |trace2PowMod| |mindegTerm| - |factorList| |setleft!| |reverse!| |symmetricGroup| |rdregime| - |reopen!| |acosIfCan| |gcdcofactprim| |mainMonomials| |f04asf| |mvar| - |startTableGcd!| |fi2df| |iiacsc| |fortranCharacter| |maxdeg| - |arrayStack| |closed?| |linearAssociatedOrder| |coefChoose| |c06fuf| - |arguments| |OMgetType| |SturmHabichtSequence| |leftPower| - |bivariatePolynomials| |jokerMode| |cycles| |match?| |support| - |figureUnits| |integral| |moduloP| |charClass| |autoCoerce| |f01rdf| - |isExpt| |nlde| |factorial| |primextendedint| |close| |imagj| - |PollardSmallFactor| |bothWays| |showAllElements| |SFunction| - |monicLeftDivide| |nextIrreduciblePoly| |groebSolve| |scan| |colorDef| - |anticoord| |listOfMonoms| |hdmpToP| |infLex?| F |prefix| |extend| - |addMatch| |radicalEigenvector| |incrementKthElement| |subPolSet?| - |display| |setPredicates| |presub| |sinhIfCan| |duplicates?| - |univariateSolve| |lepol| |chineseRemainder| |setValue!| - |squareFreePart| |tower| |collectUnder| |iidsum| |isImplies| |module| - |eq| |getOperands| |firstSubsetGray| |square?| |numberOfMonomials| - |viewZoomDefault| |outputList| |trunc| |qinterval| |OMputSymbol| |mix| - |iter| |opeval| |lfinfieldint| |extractClosed| |coerceP| |innerSolve1| - |minset| |setColumn!| |resetBadValues| |cAsech| |mapUnivariate| - |vedf2vef| |normalize| |setImagSteps| |fullDisplay| |radicalRoots| - |split!| |viewport3D| |rst| |f04qaf| |OMgetEndApp| |complexElementary| - |hasoln| |outlineRender| |input| |basisOfLeftNucloid| |enterInCache| - |latex| |squareFreePrim| |call| |lastSubResultant| |maxrow| |iicsch| - |xn| |library| |complexNumeric| |e02ahf| |numericalIntegration| - |mathieu22| |shellSort| |cRationalPower| |complexNumericIfCan| - |continuedFraction| |e02adf| |imagK| |checkPrecision| |pointData| - |nextNormalPrimitivePoly| |chainSubResultants| |f01mcf| EQ |ddFact| - |hcrf| |expressIdealMember| |iiasin| |linear?| |kernels| |d01anf| - |npcoef| |removeRoughlyRedundantFactorsInContents| |algebraicOf| |exp| - |diagonal| |s15adf| |dimensions| |basisOfLeftNucleus| |divisor| - |operator| |uniform01| |pow| |LowTriBddDenomInv| |createRandomElement| - |level| |constantOpIfCan| |OMputInteger| |orbit| |reify| |quadratic?| - |set| |range| |indiceSubResultantEuclidean| |quasiMonicPolynomials| - |prod| |gethi| |resultantnaif| |multisect| - |combineFeatureCompatibility| |linearDependenceOverZ| |inrootof| - |simpsono| |headReduce| |bandedJacobian| |newReduc| |linkToFortran| - |credPol| |rootOfIrreduciblePoly| |internalLastSubResultant| - |wronskianMatrix| |basisOfCommutingElements| |simplifyPower| |f01qcf| - |getIdentifier| |compile| |irVar| |mappingMode| |cyclicGroup| |map| - |debug| |prevPrime| |nullary| |readInt8!| |expt| |secIfCan| - |component| |middle| |symmetricProduct| - |semiSubResultantGcdEuclidean2| |s01eaf| D |stoseInvertible?sqfreg| - |rootNormalize| |localIntegralBasis| |geometric| |numFunEvals| - |algebraicDecompose| |unitsColorDefault| |lookup| |screenResolution| - |showFortranOutputStack| |integers| |monomial?| |toseInvertible?| - |llprop| |partialDenominators| |fortranLiteralLine| |find| - |sylvesterSequence| |retract| |float?| |makeUnit| |f02fjf| |lhs| - |OMreceive| |definingEquations| |consnewpol| |showAll?| - |clearTheFTable| |stoseInternalLastSubResultant| |category| - |shiftLeft| |singRicDE| |henselFact| |lifting| |rhs| - |expenseOfEvaluationIF| |domainTemplate| |associates?| |infinite?| - |convert| |lex| |negative?| |critB| |mdeg| |domain| |prime?| - |halfExtendedSubResultantGcd1| |commutativeEquality| |f04faf| - |edf2efi| |index?| |multiEuclideanTree| |normalElement| |true| - |package| |upDateBranches| |width| |divideIfCan| |setnext!| |e02bbf| - |enterPointData| |pdf2ef| |symmetricRemainder| |show| - |radicalOfLeftTraceForm| |diff| |bat| |pop!| |approxSqrt| - |leftExtendedGcd| |argumentListOf| |imports| |sumOfDivisors| - |scripted?| |cCoth| |power| |LazardQuotient2| |rightAlternative?| - |zCoord| |makeMulti| |tubeRadiusDefault| |insert| |trace| - |raisePolynomial| |edf2df| |normFactors| |push!| |sayLength| - |exponentialOrder| |f02awf| |chiSquare1| |rk4qc| |print| - |antisymmetric?| |rightZero| |composite| |central?| |cyclicCopy| - |triangSolve| |select!| |resolve| |odd?| |s17dgf| |content| |log2| - |rightRemainder| |directory| |jacobi| |wrregime| |laurentIfCan| - |compound?| |heapSort| |changeVar| |host| |polygon?| - |generalizedContinuumHypothesisAssumed?| |stop| |makeViewport3D| - |cfirst| |refine| |divideIfCan!| |search| |initTable!| |janko2| - |resultantReduit| |associatedSystem| |drawComplex| |HenselLift| - |twist| |optional| |inconsistent?| |initial| |permutations| - |unvectorise| |realEigenvalues| |coHeight| - |removeRoughlyRedundantFactorsInPol| |aLinear| |addPointLast| - |decimal| |lprop| |genericRightDiscriminant| |quotedOperators| |isNot| - |degreeSubResultantEuclidean| |rectangularMatrix| |pToHdmp| |leaf?| - |any?| |iiasec| |moduleSum| |notelem| |radix| |e02gaf| - |coercePreimagesImages| |acscIfCan| |zeroSquareMatrix| |makeSeries| - |mapExpon| |numericIfCan| |irreducibleRepresentation| |OMgetAttr| - |e04ucf| |fortranDouble| |intPatternMatch| |mainMonomial| |iiperm| - |systemSizeIF| |s14baf| |chebyshevU| |pole?| |primitivePart| |exists?| - |horizConcat| |identitySquareMatrix| |sort| |graphStates| |iiacsch| - |totalGroebner| |scopes| |cAsec| |complexExpand| |e02dcf| |getGraph| - |getlo| |dec| |f02akf| |cot2trig| |f04adf| |deriv| |LyndonWordsList1| - |drawToScale| |reduceLODE| |isobaric?| |factorSquareFreePolynomial| - |physicalLength| |children| |invmultisect| |absolutelyIrreducible?| - |printingInfo?| |log10| |character?| |readUInt8!| |cCos| - |euclideanGroebner| |bringDown| |unknownEndian| |setFormula!| |Gamma| - |internalAugment| |listOfLists| |bitand| |conditionP| |branchIfCan| - |generalizedEigenvector| |random| |quoByVar| |edf2ef| |OMencodingSGML| - |bitior| |LiePolyIfCan| |associatedEquations| |create| |ceiling| - |rootSplit| |fortranLiteral| |exponential1| |pol| |degreeSubResultant| - |makeSketch| |getBadValues| |mapdiv| |iiacoth| |s17ahf| - |toseSquareFreePart| |axesColorDefault| |iflist2Result| |e01sff| - |subscript| |rightMult| |scanOneDimSubspaces| F2FG |cExp| |copy!| - |generalInfiniteProduct| |chebyshevT| |tab| |nextPartition| |dn| - |univariatePolynomialsGcds| |front| |matrixGcd| - |standardBasisOfCyclicSubmodule| |getProperty| |isAnd| |computePowers| - |SturmHabicht| |part?| |depth| |toseLastSubResultant| |iicos| |f04axf| - |point?| |numberOfOperations| |subset?| |clearFortranOutputStack| - |c06eaf| |quartic| |roughBasicSet| |comp| |attributeData| - |partialQuotients| |palgLODE0| |iisech| |OMgetAtp| |expIfCan| - |lfextlimint| |root?| |decrease| |perfectSqrt| |unary?| |minGbasis| - |numberOfDivisors| |mapmult| |erf| |red| |bernoulliB| |mathieu11| - |irreducible?| |fixPredicate| |groebnerFactorize| |rightLcm| - |numberOfNormalPoly| |lazyVariations| |say| |makeSUP| |reverse| - |members| |sizeLess?| |pushup| |mainCharacterization| |entry| |arg1| - |subHeight| |irCtor| |particularSolution| |f02xef| |f07fef| - |pmComplexintegrate| |option?| |noLinearFactor?| |hdmpToDmp| - |zeroVector| |pointColorPalette| |genericLeftTrace| |arg2| - |lazyEvaluate| |karatsubaDivide| |reset| |ricDsolve| |subMatrix| - |dilog| |integralMatrix| |s17aef| |integralBasis| |removeCoshSq| - |ramifiedAtInfinity?| Y |elaboration| |sequences| |denomLODE| - |stosePrepareSubResAlgo| |f04mbf| |inc| |sin| - |createLowComplexityTable| |writable?| |pseudoQuotient| |separant| - |quickSort| |write| |outputAsTex| |conditions| |clikeUniv| |pToDmp| - |lift| |rewriteSetWithReduction| |sqfree| |hasSolution?| |cos| - |iitanh| |splitConstant| |OMputVariable| |key?| |radPoly| |save| - |external?| |match| |overset?| |selectMultiDimensionalRoutines| - |dimensionOfIrreducibleRepresentation| |reduce| |prinpolINFO| |isList| - |tan| |repeatUntilLoop| |factorSquareFree| |mirror| |lazyResidueClass| - |definingInequation| |rootSimp| |decomposeFunc| |associator| |sup| - |oddInfiniteProduct| |cot| |rightExactQuotient| |integralCoordinates| - |head| |cotIfCan| |contains?| |conditionsForIdempotents| - |karatsubaOnce| |internalIntegrate| |elem?| |subResultantChain| |sec| - |nonQsign| |genus| |high| |label| |crest| |fill!| |orbits| - |nextsousResultant2| |relerror| |showScalarValues| |determinant| |csc| - |order| |readable?| |f02bbf| |weight| |dimensionsOf| |hyperelliptic| - |bandedHessian| |setIntersection| |complete| |copies| |asin| - |pushucoef| |ignore?| |discriminantEuclidean| |minimize| - |deleteProperty!| |hue| |primeFactor| |top| |mesh| |usingTable?| - |null?| |acos| |basis| |cSech| |numberOfComponents| |saturate| - |continue| |normalDenom| |fixedPoints| |yCoord| |torsionIfCan| - |aCubic| |roughSubIdeal?| |atan| |LyndonCoordinates| |normInvertible?| - |roughEqualIdeals?| |resetVariableOrder| |innerEigenvectors| - |palglimint| |interpolate| |argscript| |coth2tanh| |mightHaveRoots| - |acot| |OMopenFile| |recolor| |leftOne| FG2F |getMultiplicationTable| - |eigenvectors| |OMsupportsSymbol?| |divisorCascade| |tubePlot| - |s17agf| |asec| |iCompose| |trailingCoefficient| |pureLex| |reseed| - |Ci| |iroot| |c05nbf| |characteristicPolynomial| |addPoint| - |constructor| |check| |acsc| |voidMode| |useEisensteinCriterion?| - |OMcloseConn| |lighting| |constant| |sinh2csch| |lexico| UP2UTS - |conjugates| |sinIfCan| |block| |sinh| |divergence| |errorInfo| - |meatAxe| |option| |readBytes!| |byte| |exteriorDifferential| - |lambert| |showSummary| |e02baf| |lazyIrreducibleFactors| |upperCase!| - |generators| |delta| |cosh| |purelyAlgebraic?| |realElementary| - |coerceListOfPairs| |cyclicEntries| |semiResultantEuclidean1| |f2df| - |randomR| |mainVariable?| |sinhcosh| |encodingDirectory| |tanh| - |minimumDegree| |indicialEquationAtInfinity| |totalLex| |leader| - |eigenvector| |rationalPoint?| |wholeRadix| |rightTraceMatrix| - |primitivePart!| |showAttributes| |resultant| |graphs| |coth| - |corrPoly| |biRank| |cubic| |every?| |transpose| |identity| - |constantKernel| |adjoint| |newSubProgram| |physicalLength!| |sech| - |rename!| |name| |quotient| |asecIfCan| |makeEq| |fortran| |null| - |readLine!| |e01bef| |setEpilogue!| |leftTrace| - |regularRepresentation| |youngDiagram| |csch| |radicalSimplify| |body| - |internalDecompose| |fortranTypeOf| |maxPoints| |not| - |purelyAlgebraicLeadingMonomial?| |writeInt8!| |remainder| |zeroOf| - |OMputEndAtp| |subst| |empty| |asinh| |mkPrim| |enqueue!| - |inputOutputBinaryFile| |signature| |bracket| |and| |nthr| - |constantRight| |rationalPower| |createMultiplicationTable| |f01brf| - |knownInfBasis| BY |acosh| |mainSquareFreePart| |binarySearchTree| - |leftScalarTimes!| |imagI| |or| |complementaryBasis| |OMputBVar| - |bits| |ksec| |cAcsc| |int| |multiplyCoefficients| |lambda| |atanh| - |dflist| |optpair| |node?| |before?| |xor| |polyRDE| |coordinates| - |symFunc| |multMonom| |internalZeroSetSplit| |getRef| |acoth| |s20adf| - |matrixDimensions| |pseudoDivide| |permutation| |case| |polar| - |sortConstraints| |jordanAdmissible?| |subResultantsChain| - |inHallBasis?| |c02aff| |objects| |outputAsScript| |asech| - |var2StepsDefault| |fibonacci| |e01saf| |euclideanNormalForm| - |shallowExpand| |Zero| |critpOrder| |ideal| |createThreeSpace| - |stoseInvertibleSetreg| |qelt| |subspace| |e02daf| |base| - |extractIfCan| |integralRepresents| |rightScalarTimes!| |euler| |One| - |qsetelt| |associatorDependence| |transform| |region| |logGamma| - |solve| |iisin| |multiple| |edf2fi| |leastMonomial| |infinityNorm| - |internal?| |extendedIntegrate| |numer| |totolex| - |showIntensityFunctions| |retractIfCan| |clearDenominator| |prime| - |assert| |xRange| |linear| |swap!| |antiAssociative?| |applyQuote| - |port| |setClosed| |setAdaptive3D| |selectsecond| |denom| |pattern| - NOT |constantOperator| |removeZero| |exprToUPS| |contract| |elRow1!| - |yRange| |chvar| |brillhartTrials| |complexForm| |s17dlf| |reindex| OR - |integralMatrixAtInfinity| |pascalTriangle| |rowEch| |tensorProduct| - |zRange| |polynomial| |t| |tanh2coth| |point| |selectOrPolynomials| - |squareFreeFactors| |B1solve| |pi| AND |map!| |viewWriteDefault| - |rational?| |wholePart| |OMread| |commaSeparate| |drawCurves| - |imaginary| |leadingBasisTerm| |clipWithRanges| |infinity| |elt| - |localUnquote| |ScanFloatIgnoreSpaces| |qsetelt!| |subCase?| - |identityMatrix| |SturmHabichtMultiple| |iiatanh| |ratpart| |maxint| - |s17adf| |message| |ptree| |reducedSystem| |fglmIfCan| |Hausdorff| - |OMconnectTCP| |hermiteH| |cond| |empty?| |series| |pdct| |column| - |iiatan| |setOrder| |highCommonTerms| |possiblyNewVariety?| - |compactFraction| |cothIfCan| |uncouplingMatrices| |insertRoot!| - |stopTableGcd!| |kernel| |headReduced?| |reduction| |lowerBound| - |safeFloor| |findBinding| |copyInto!| |laplace| |isConnected?| - |selectODEIVPRoutines| |shift| |list| |iisqrt2| |OMgetVariable| - |clearCache| |extensionDegree| |rightExtendedGcd| |script| - |currentEnv| |elementary| |critT| |bytes| |draw| - |rightFactorCandidate| |bezoutDiscriminant| |s18aef| |optional?| - |btwFact| |acsch| |previous| |axes| |min| |s19aaf| |omError| - |unprotectedRemoveRedundantFactors| |tValues| |deref| |nand| |in?| - |cons| |untab| |startStats!| |s13adf| |coerceL| |slash| |externalList| - |deleteRoutine!| |tex| |sign| |prem| |stFunc1| |besselY| * |summation| - |quasiRegular?| |c06gqf| |midpoint| |purelyTranscendental?| - |generalPosition| |infRittWu?| |makeObject| |palgextint0| - |bezoutMatrix| |createPrimitiveElement| |lazyPremWithDefault| - |leftFactorIfCan| |leaves| |normal?| |setRow!| |numberOfComposites| - |algebraicVariables| |coef| |distFact| |e04fdf| |pmintegrate| - |singularAtInfinity?| |returnType!| |setlast!| |reciprocalPolynomial| - |curryLeft| = |rational| |lyndon| |minColIndex| |swapColumns!| - |s17akf| |plusInfinity| |normalizedDivide| - |removeRedundantFactorsInContents| |unitNormal| |weights| - |normalizeAtInfinity| |meshFun2Var| |simplifyExp| |source| |goodPoint| - |minusInfinity| |setchildren!| |magnitude| |d03eef| - |representationType| |e01baf| < |sdf2lst| |f02adf| - |characteristicSerie| |iicosh| |lowerCase| |extendedResultant| > - |structuralConstants| |just| |c06ebf| |numeric| |calcRanges| - |maxIndex| |brillhartIrreducible?| |deepestTail| |hostByteOrder| <= - |wordInStrongGenerators| |certainlySubVariety?| |iiabs| |radical| - |setTopPredicate| |ListOfTerms| |makeViewport2D| |dequeue| - |integralDerivationMatrix| |isPower| |char| |modularGcd| >= |connect| - |toScale| |complex?| |screenResolution3D| |sizePascalTriangle| |eq?| - |birth| |createNormalPoly| |expr| |quadraticNorm| |choosemon| - |ramified?| |target| |type| |elseBranch| |factorsOfCyclicGroupSize| - |cCsch| |closedCurve| |separateDegrees| |minPoints3D| |minPoints| - |inRadical?| |univariate| |getMultiplicationMatrix| |var1StepsDefault| - |prindINFO| |explicitlyEmpty?| |prolateSpheroidal| |kroneckerDelta| + - |fintegrate| |branchPointAtInfinity?| |commonDenominator| |back| - |totalDegree| |removeConstantTerm| |iExquo| |divide| |stirling2| - |makeFR| - |exprToXXP| |showTheRoutinesTable| |inverseColeman| |rules| - |bfEntry| |morphism| LODO2FUN |noValueMode| / |variable| - |fractionPart| |lazyPseudoDivide| |po| |factor| |bitTruth| - |homogeneous?| |Ei| |left| |plot| |extendIfCan| |tail| |readInt32!| - |polCase| |iterators| |zeroDimensional?| |float| |denominator| |sqrt| - |fractRadix| |Beta| |failed?| |pair?| |pleskenSplit| |right| - |meshPar2Var| |OMclose| |removeSuperfluousQuasiComponents| - |OMconnOutDevice| |real| |perfectSquare?| |seriesToOutputForm| - |rischNormalize| |makeSin| |indicialEquation| |cSinh| |e02akf| - |medialSet| |f02abf| |imag| |aspFilename| |iicot| |nthExponent| - |inverseLaplace| |sumSquares| |directProduct| |upperBound| - |rootDirectory| |safeCeiling| |OMReadError?| |superHeight| |OMputAttr| - |prefixRagits| |kovacic| |wordsForStrongGenerators| |lowerCase!| - |exponents| |makeprod| |whitePoint| |pushNewContour| |ord| |solve1| - |addBadValue| |OMencodingUnknown| |numerator| |removeSquaresIfCan| - |doubleComplex?| |s18adf| |s21bbf| |power!| |brace| |belong?| - |coleman| |patternMatchTimes| |acotIfCan| |difference| |complexRoots| - |tryFunctionalDecomposition| |hasPredicate?| |setref| |mapBivariate| - |destruct| |iifact| |linearElement| |getProperties| |simpleBounds?| - |selectPolynomials| |createPrimitivePoly| |mkIntegral| - |leftRegularRepresentation| |typeLists| |setScreenResolution3D| - |stFuncN| |value| |resultantEuclidean| |makingStats?| |increase| - |fortranCompilerName| |redpps| |neglist| |is?| GE |groebgen| |assign| - |approxNthRoot| |cLog| |sum| |numberOfIrreduciblePoly| |backOldPos| - |unexpand| |ellipticCylindrical| |id| GT |reduced?| |quasiRegular| - |c06gcf| |quatern| |iibinom| |extractSplittingLeaf| |baseRDEsys| - |s17acf| |vspace| |e04jaf| |lo| |sylvesterMatrix| |complexLimit| LE - |showClipRegion| |monomial| |cot2tan| |semiResultantEuclidean2| - |hspace| |quasiAlgebraicSet| |eulerPhi| - |rewriteIdealWithQuasiMonicGenerators| |leadingIndex| |symbol| |lp| - |distance| |laguerre| |mainDefiningPolynomial| LT |multivariate| - |exactQuotient| |color| |qroot| |univariatePolynomial| - |rowEchelonLocal| |basicSet| |expression| |deepCopy| - |exportedOperators| |createNormalElement| |setelt!| |variables| - |hermite| |squareMatrix| |monomRDE| |d02ejf| |setvalue!| |perspective| - |jacobiIdentity?| |integer| |mainKernel| |retractable?| - |stoseInvertible?reg| |tanhIfCan| |condition| |splitSquarefree| - |normalise| |fullPartialFraction| |antiCommutator| |escape| |nullity| - |leftFactor| |cardinality| |atrapezoidal| |terms| |changeWeightLevel| - |bag| |froot| |tablePow| |limitedint| |e02bdf| |real?| |macroExpand| - |nativeModuleExtension| |interpret| |algintegrate| |besselK| - |pushuconst| |selectOptimizationRoutines| |idealSimplify| - |evenlambert| |sort!| |bright| |powmod| |bumptab1| |elColumn2!| - |index| |makeRecord| |d01aqf| |rationalFunction| |space| |s19acf| - |OMputBind| |clearTheIFTable| |OMputObject| |splitLinear| |f2st| - |substitute| |open| |topPredicate| |overbar| |remove!| - |setScreenResolution| |taylor| |baseRDE| |reduceByQuasiMonic| |cn| - |less?| |eval| |debug3D| |updateStatus!| |s13acf| |schwerpunkt| - |curveColor| |Vectorise| |rdHack1| |laurent| |rightMinimalPolynomial| - |oddlambert| |spherical| |derivationCoordinates| |components| - |leftRankPolynomial| |pair| |removeDuplicates| |lflimitedint| - |enumerate| |radicalEigenvectors| |puiseux| |diagonalProduct| - |iFTable| |phiCoord| |tan2cot| |semiResultantEuclideannaif| - |printInfo!| |sn| |subresultantSequence| |cAtanh| |unitVector| - |nilFactor| |makeFloatFunction| |one?| |collectQuasiMonic| |error| - |positiveRemainder| |lists| |mkcomm| |computeCycleLength| |setleaves!| - |alphabetic?| |operations| |principal?| |normalizedAssociate| |inv| - |listLoops| |digit| |leftMinimalPolynomial| |algebraicSort| - |changeName| |isOpen?| |gcdPrimitive| |ran| |ground?| |anfactor| - |maxColIndex| |getPickedPoints| |FormatRoman| |readLineIfCan!| |split| - |gbasis| |stoseSquareFreePart| |d03edf| |comparison| |primlimitedint| - |equiv| |ground| |htrigs| |push| |invertibleElseSplit?| |collect| - |limitPlus| |generalLambert| |OMgetSymbol| |minPoly| |close!| |vector| - |d02gbf| |lazyIntegrate| |ScanRoman| |leadingMonomial| |optimize| - |generalSqFr| |OMreadStr| |fortranComplex| |isEquiv| |ffactor| - |createPrimitiveNormalPoly| |differentiate| |padecf| |symbol?| - |leadingCoefficient| |dot| |pomopo!| |gramschmidt| - |cyclotomicFactorization| |leftUnit| |invmod| |getDatabase| |size| - |numberOfFactors| |packageCall| |vconcat| |d01ajf| - |primitiveMonomials| |bipolarCylindrical| |twoFactor| - |irreducibleFactor| |doubleRank| |perfectNthRoot| |OMputEndBind| - |position!| |function| |exprex| |s17def| |substring?| |setCondition!| - |reductum| |traverse| |linearForm| |s18dcf| |invertibleSet| |linears| - |closedCurve?| |cyclic| |nextSubsetGray| |rootOf| |largest| - |OMgetEndBind| |rightRankPolynomial| |leftCharacteristicPolynomial| - |printHeader| |iiacosh| |suffix?| |bivariate?| |viewpoint| - |semicolonSeparate| |lquo| |readIfCan!| |isAtom| |adaptive| |lazyPrem| - |f01rcf| |badNum| |cCsc| |subResultantGcdEuclidean| |dualSignature| - |coefficient| |invertible?| |jordanAlgebra?| |BasicMethod| |initials| - |unit| |startTable!| |generator| |categories| |recur| |asinIfCan| - |prefix?| |iicsc| |RittWuCompare| |findCycle| |rem| |precision| - |positiveSolve| |extract!| |setright!| |f02aff| |octon| - |numberOfVariables| |critMTonD1| |indices| |wreath| |quo| |nil?| - |reducedContinuedFraction| |numberOfCycles| |numberOfComputedEntries| - |countable?| |digits| |reflect| |setfirst!| |modifyPointData| |init| - |curry| |rombergo| |pastel| |internalInfRittWu?| |overlap| - |OMgetObject| |tanintegrate| |subTriSet?| |genericLeftTraceForm| |div| - |heap| |conjunction| |symmetricDifference| |quotientByP| |node| - |leftRecip| |OMputEndObject| |nonLinearPart| |prepareSubResAlgo| - |cSin| |exquo| |createGenericMatrix| |socf2socdf| |viewPosDefault| - |getMeasure| |insertMatch| |isTimes| |reducedQPowers| |nextPrime| - |polyPart| |flatten| ~= |delete| |outputBinaryFile| |OMUnknownCD?| - |subNode?| |problemPoints| |setProperties| |monic?| |infix?| - |gcdcofact| |replaceKthElement| |compBound| |#| |gcdPolynomial| |rank| - |leftDiscriminant| |mathieu12| |completeEchelonBasis| |toroidal| |lcm| - |graphImage| |mask| |constantCoefficientRicDE| |polygamma| - |viewDeltaXDefault| |factorOfDegree| |mr| ~ |imagk| |cycleElt| - |semiDiscriminantEuclidean| |palgint0| |defineProperty| |abelianGroup| - |acothIfCan| |equality| |solid?| - |solveLinearPolynomialEquationByFractions| |measure2Result| - |binomThmExpt| |eyeDistance| |f01maf| |incr| |flexible?| |append| - |diagonal?| |setRealSteps| |e04dgf| |viewSizeDefault| |OMgetInteger| - |extractTop!| |genericLeftDiscriminant| |legendreP| |hi| |gcd| - |extractProperty| |complexNormalize| |appendPoint| |unit?| - |outputGeneral| |/\\| |e01bhf| |lazyGintegrate| |completeSmith| - |factor1| |univcase| |false| |wholeRagits| |drawStyle| - |subscriptedVariables| |\\/| |antisymmetricTensors| - |useEisensteinCriterion| |intChoose| |df2ef| |inverse| |mindeg| - |generalizedInverse| |permanent| |lfunc| |squareFreePolynomial| - |trapezoidal| |OMputString| |categoryFrame| |poisson| |whatInfinity| - |augment| |univariatePolynomials| |linearlyDependentOverZ?| - |solveLinearPolynomialEquation| |testModulus| |any| |binaryTree| - |nextNormalPoly| |outputFixed| |mergeDifference| |addmod| - |tubePointsDefault| |reducedDiscriminant| |outerProduct| |modifyPoint| - |closed| |transcendent?| |expintfldpoly| |intcompBasis| |predicates| - |basisOfRightAnnihilator| |inspect| |f01qef| |OMgetEndObject| |c06frf| - |presuper| |ode2| |equation| |coerce| |postfix| |infix| |nthExpon| - |rk4a| |leftRemainder| |supDimElseRittWu?| |functionIsOscillatory| - |f02bjf| |ravel| |coord| |construct| |GospersMethod| |degree| - |callForm?| |pr2dmp| |inR?| |collectUpper| |reshape| - |monicCompleteDecompose| |stiffnessAndStabilityOfODEIF| - |lfextendedint| |parabolicCylindrical| |qPot| |factorFraction| |exp1| - |df2st| |quasiComponent| |semiResultantReduitEuclidean| |alternative?| - |makeGraphImage| |exprHasLogarithmicWeights| |subSet| |sncndn| - |lowerCase?| |rightUnit| |trigs| |rule| |signatureAst| |declare| - |cAcoth| |fixedPoint| |ipow| |mathieu24| |OMserve| |headAst| - |fortranDoubleComplex| |lastSubResultantElseSplit| |rationalPoints| - |expextendedint| |f04mcf| |stoseInvertibleSetsqfreg| |idealiserMatrix| - |cPower| |cap| |removeRoughlyRedundantFactorsInPols| |ptFunc| - |returns| |generate| |leadingTerm| |imagi| |bfKeys| |findConstructor| - |psolve| |e04naf| |linearlyDependent?| |simpson| |cAcsch| |update| - |mapGen| |symmetricSquare| |listYoungTableaus| - |exprHasAlgebraicWeight| |weighted| |eulerE| |transcendenceDegree| - |partialNumerators| |s15aef| |multiplyExponents| |incrementBy| - |d01apf| |ReduceOrder| |halfExtendedSubResultantGcd2| |solid| - |interval| |sech2cosh| |setPosition| |e02bcf| |airyBi| |parts| - |loadNativeModule| |expand| |moebius| |rightRecip| |fractRagits| - |simplify| |removeDuplicates!| |nthFractionalTerm| - |resultantEuclideannaif| |extractIndex| |variable?| - |internalSubPolSet?| |filterWhile| |colorFunction| |alternatingGroup| - |expintegrate| |bernoulli| |padicFraction| |LyndonWordsList| - |startPolynomial| |perfectNthPower?| |powerSum| |multiset| |log| - |filterUntil| |listConjugateBases| |semiLastSubResultantEuclidean| - |submod| |moreAlgebraic?| |d01gbf| |realSolve| |redPol| |OMgetEndAtp| - |getButtonValue| |completeEval| |position| |typeForm| |select| - |OMencodingBinary| |lexGroebner| |nthFactor| |qualifier| |capacity| - |getOperator| |hitherPlane| |pointSizeDefault| |diagonals| |keys| - |properties| |normalDeriv| |cscIfCan| |rk4| |elements| |lifting1| - |evaluateInverse| |symbolTable| |rightCharacteristicPolynomial| - |dmpToHdmp| |s13aaf| |sturmSequence| |numberOfPrimitivePoly| - |linearPolynomials| |symmetric?| |viewDeltaYDefault| |translate| - |doubleDisc| |genericRightTraceForm| |result| |bsolve| |length| - |tableau| |binaryTournament| |changeNameToObjf| |goodnessOfFit| - |parent| |drawComplexVectorField| |userOrdered?| |degreePartition| - |pushFortranOutputStack| |testDim| |splitDenominator| |light| - |scripts| |iiasinh| |write!| |OMputEndError| |normal01| - |genericLeftNorm| |putColorInfo| |chiSquare| |popFortranOutputStack| - |setStatus| |radicalEigenvalues| |powern| |useNagFunctions| |logpart| - |integer?| |sample| |showTheFTable| |blankSeparate| - |leftExactQuotient| |outputAsFortran| |SturmHabichtCoefficients| - |nextPrimitivePoly| |stoseInvertibleSet| |sumOfKthPowerDivisors| - |intensity| |frst| |zero?| |iidprod| |critBonD| |polyred| - |primlimintfrac| |setLegalFortranSourceExtensions| |composites| - |sparsityIF| |BumInSepFFE| |minimalPolynomial| |f02ajf| |setFieldInfo| - |semiIndiceSubResultantEuclidean| |toseInvertibleSet| |bindings| - |discreteLog| |symmetricPower| |returnTypeOf| |ranges| - |solveLinearlyOverQ| |f04atf| |leadingCoefficientRicDE| |commutator| - |univariate?| |OMsend| |genericRightNorm| - |functionIsContinuousAtEndPoints| |f01ref| |cAcot| |rCoord| - |integralLastSubResultant| |zero| |nextSublist| |cyclic?| |isOr| - |squareFree| |LagrangeInterpolation| |outputMeasure| |delete!| - |clipPointsDefault| |tubeRadius| |realEigenvectors| |cAsin| |slex| - |basisOfLeftAnnihilator| |leftZero| |regime| |tracePowMod| |green| - |outputArgs| |addMatchRestricted| |OMgetBind| |And| |invertIfCan| - |cycleEntry| |OMgetApp| |oddintegers| |duplicates| |logical?| - |OMUnknownSymbol?| |even?| |normalForm| |Or| |polygon| - |topFortranOutputStack| |s14abf| |tanQ| |gcdprim| |f01qdf| |nthCoef| - |vertConcat| |sin?| |nsqfree| |listBranches| |Not| |cartesian| - |ldf2vmf| |cyclicSubmodule| |expPot| |OMputEndApp| |quoted?| - |bivariateSLPEBR| |doubleResultant| |hclf| |principalIdeal| - |trueEqual| |fTable| |prinb| |quasiMonic?| |shiftRight| |e02zaf| - |mathieu23| |unmakeSUP| |leftQuotient| |f07adf| |rightRank| |resize| - |balancedFactorisation| |cschIfCan| |byteBuffer| |lineColorDefault| - |torsion?| |schema| |sts2stst| |goto| |leftMult| |charthRoot| - |entries| |rubiksGroup| |isPlus| |csubst| |algDsolve| - |listRepresentation| |setsubMatrix!| |tanh2trigh| |bottom!| |leftGcd| - |functorData| |possiblyInfinite?| |remove| |variationOfParameters| - |numberOfChildren| |dmpToP| |stronglyReduce| |f04maf| - |monicRightDivide| |rightDiscriminant| |exponential| |pdf2df| - |aromberg| |ridHack1| |contractSolve| |att2Result| |tab1| |s17aff| - |stack| |diagonalMatrix| |lfintegrate| |epilogue| |makeTerm| - |dimension| |last| |reducedForm| |fortranCarriageReturn| - |trapezoidalo| |replace| |evenInfiniteProduct| |generateIrredPoly| - |palgLODE| |dihedralGroup| |innerSolve| |interpretString| |assoc| - |atanhIfCan| |changeThreshhold| |expenseOfEvaluation| |primintegrate| - |sec2cos| |truncate| |c06ekf| |e01bgf| |relationsIdeal| - |showTheSymbolTable| |rightQuotient| |curve| |rationalApproximation| - |showArrayValues| |LazardQuotient| |messagePrint| |c06fqf| - |transcendentalDecompose| |computeBasis| |f04arf| |setProperty| - |makeop| |noKaratsuba| |moebiusMu| |setDifference| |minordet| - |formula| |accuracyIF| |roman| GF2FG |rur| |dim| |minrank| |iiasech| - |irDef| |se2rfi| |sturmVariationsOf| |newLine| |mapUnivariateIfCan| - |f04jgf| |finite?| |linearAssociatedLog| |resultantReduitEuclidean| - |irForm| |algSplitSimple| |e04ycf| |f02wef| |d01gaf| |lllp| |ocf2ocdf| - |cTan| |iiacos| |expandPower| |LiePoly| |sqfrFactor| |polyRicDE| - |numberOfImproperPartitions| |generalizedEigenvectors| |categoryMode| - |lazyPseudoRemainder| |OMputFloat| |randnum| |compose| |droot| - |factorGroebnerBasis| |complexZeros| |e01sef| |norm| |nrows| |e02dff| - |shiftRoots| |supersub| |bombieriNorm| |sequence| |resetNew| - |laurentRep| |listexp| |addPoint2| |insertionSort!| |ncols| - |rootKerSimp| |f02axf| |divideExponents| |checkRur| |mainVariable| - |virtualDegree| |shufflein| |noncommutativeJordanAlgebra?| - |fortranReal| |create3Space| |separateFactors| - |semiSubResultantGcdEuclidean1| |roughUnitIdeal?| - |oneDimensionalArray| |localAbs| |cosh2sech| |mpsode| - |complexIntegrate| |sincos| |printStatement| |integerBound| - |generalizedContinuumHypothesisAssumed| |intersect| |basisOfCenter| - |primes| |rootProduct| |hessian| |iicoth| |iprint| |fprindINFO| - |nthRootIfCan| |leastPower| |prepareDecompose| |solveInField| - |setMaxPoints| |innerint| |rotatex| |conjug| |subResultantGcd| - |lookupFunction| |pushdterm| |bubbleSort!| |qqq| |realZeros| - |radicalSolve| |palgRDE0| |xCoord| |f07fdf| |partition| |putGraph| - |ratPoly| |minus!| |pushdown| |hMonic| |imagJ| |derivative| - |palgextint| |symmetricTensors| |clearTable!| |obj| |shrinkable| - |setAdaptive| |isAbsolutelyIrreducible?| |infiniteProduct| |realRoots| - |removeSinSq| |argument| |OMsupportsCD?| |countRealRoots| |aQuadratic| - |cache| |atom?| |nil| |padicallyExpand| |dequeue!| - |selectFiniteRoutines| |taylorRep| |multinomial| |withPredicates| - |applyRules| |writeUInt8!| |increasePrecision| |outputForm| |kmax| - |d02bbf| |nextLatticePermutation| |dioSolve| |monomialIntegrate| - |unitCanonical| |pseudoRemainder| |mapUp!| |completeHensel| - |coerceImages| |isQuotient| |stopTableInvSet!| |integrate| - |lSpaceBasis| |frobenius| |generic?| |zag| |cyclotomic| |second| - |updatD| |c05adf| |OMgetFloat| |preprocess| |doublyTransitive?| - |operation| |approximate| |mappingAst| |extendedSubResultantGcd| - |quadratic| |parametersOf| |tanIfCan| |third| |finiteBound| - |factorSquareFreeByRecursion| |coordinate| |logIfCan| - |sizeMultiplication| |void| |complex| |setprevious!| |ratDsolve| |sh| - |eigenvalues| |initializeGroupForWordProblem| |polynomialZeros| - |mainContent| |principalAncestors| |extension| |getStream| - |resetAttributeButtons| |euclideanSize| |alphabetic| |rk4f| - |groebnerIdeal| |primaryDecomp| |checkForZero| |squareTop| - |strongGenerators| |doubleFloatFormat| |leftAlternative?| - |systemCommand| |redmat| |s17dhf| |numericalOptimization| |height| - |Lazard2| |setTex!| |irreducibleFactors| |mesh?| |iilog| |ratDenom| - |rightOne| |printCode| |rotatez| |getVariableOrder| |maximumExponent| - |rewriteIdealWithHeadRemainder| |currentSubProgram| |rightFactorIfCan| - |trigs2explogs| |failed| |coefficients| |selectSumOfSquaresRoutines| - |csch2sinh| |clipParametric| |d01amf| |whileLoop| |rightTrace| - |pointPlot| |s17ajf| |randomLC| |useSingleFactorBound| |normal| RF2UTS - |exQuo| |table| |basisOfNucleus| |balancedBinaryTree| - |inverseIntegralMatrixAtInfinity| |taylorQuoByVar| |shape| |rotate!| - |leadingSupport| |f02agf| |separate| |semiDegreeSubResultantEuclidean| - |new| |rotatey| |diophantineSystem| |createZechTable| |lyndonIfCan| - |style| |tan2trig| |d01fcf| |crushedSet| |shallowCopy| - |initiallyReduced?| |stoseLastSubResultant| |pointColorDefault| - |constantToUnaryFunction| |rightDivide| |integralBasisAtInfinity| - |minIndex| |e02agf| |complexEigenvectors| |monomials| |cycleTail| - |commutative?| |firstDenom| |solveLinear| |graphState| |plus!| - |stoseInvertible?| |minRowIndex| |cyclicEqual?| |mapDown!| - |changeMeasure| |plenaryPower| |direction| |e02bef| |flexibleArray| - |ef2edf| |jacobian| |stopMusserTrials| |limitedIntegrate| |comment| - |basisOfMiddleNucleus| |reduceBasisAtInfinity| |leftLcm| |buildSyntax| - |quadraticForm| |shade| |center| |areEquivalent?| |prologue| - |fractionFreeGauss!| |gderiv| |cAcos| |maxPoints3D| |bitCoef| - |totalfract| |leftTraceMatrix| |monicDivide| |hex| |zeroDimPrime?| - |cycleLength| |viewThetaDefault| |computeInt| |dmp2rfi| |nthRoot| - |rootPoly| |palgRDE| |mapSolve| |car| |besselJ| |nonSingularModel| - |tanAn| |ip4Address| |monicRightFactorIfCan| |ldf2lst| |next| - |curveColorPalette| |OMunhandledSymbol| |child| |paren| |positive?| - |validExponential| |flagFactor| |laplacian| |partitions| |matrix| - |printInfo| |fortranLinkerArgs| |singular?| |setAttributeButtonStep| - |lazy?| |convergents| |df2mf| |decreasePrecision| |printStats!| - |iiGamma| |abs| |e01bff| |ParCond| |nary?| |maxrank| |key| - |lowerPolynomial| |zeroDimPrimary?| |yCoordinates| |firstNumer| - |charpol| |makeCrit| |mapCoef| |c05pbf| |imagE| |removeCosSq| - |environment| |scalarTypeOf| |getZechTable| |decompose| - |squareFreeLexTriangular| |iitan| |factorSFBRlcUnit| |weierstrass| - |indicialEquations| |removeIrreducibleRedundantFactors| |filename| - |insert!| |ode| |antiCommutative?| |UpTriBddDenomInv| |cycleRagits| - |selectNonFiniteRoutines| |nextsubResultant2| |solveRetract| - |autoReduced?| |getConstant| |createLowComplexityNormalBasis| |e01sbf| - |selectAndPolynomials| |iiexp| |patternMatch| |dictionary| |pack!| - |complexEigenvalues| |clearTheSymbolTable| |parse| |symbolIfCan| - |LyndonBasis| |evaluate| |surface| |explogs2trigs| |writeLine!| - |scaleRoots| |karatsuba| |mapExponents| |cosIfCan| |approximants| - |writeBytes!| |distdfact| |reverseLex| |readUInt32!| |someBasis| - |algebraicCoefficients?| |quote| |headRemainder| |infieldIntegrate| - |units| |super| |repSq| |acoshIfCan| |zeroDim?| |f07aef| |measure| - |parseString| |nullary?| |constantLeft| |complexSolve| |triangulate| - |cAtan| |mainPrimitivePart| |harmonic| |removeRedundantFactorsInPols| - |varselect| |primitive?| |size?| |elliptic| |createIrreduciblePoly| - |aQuartic| |mkAnswer| |shuffle| |f02aaf| |endSubProgram| |clipBoolean| - |Si| |OMmakeConn| |OMencodingXML| |minPol| |sechIfCan| |makeVariable| - |setMinPoints3D| |leftNorm| |leftDivide| |integralAtInfinity?| - |factorByRecursion| |cCot| |removeSuperfluousCases| |paraboloidal| - |subresultantVector| |groebner?| |palgint| |associative?| - |normalizeIfCan| |linearDependence| |factorAndSplit| |lagrange| |code| - |lazyPseudoQuotient| |traceMatrix| |beauzamyBound| |sorted?| - |factorset| |critM| |OMconnInDevice| |palglimint0| |graeffe| |tanNa| - |bounds| |points| |discriminant| |options| |HermiteIntegrate| - |OMopenString| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |viewpoint| |groebner| |coshIfCan| |pdct| + |linearElement| |collectUpper| |littleEndian| |linearPolynomials| + |lazyPseudoQuotient| |SFunction| |moreAlgebraic?| |putGraph| |center| + |insertRoot!| |exprHasAlgebraicWeight| |options| |mainMonomials| + |quasiRegular?| |high| |complexNormalize| |divisorCascade| + |character?| |dom| |cyclicParents| |infieldIntegrate| |rational?| + |diff| |exactQuotient!| |coth2trigh| |quasiComponent| |option?| + |dimensionsOf| |wholePart| |Ci| |OMgetBVar| |uniform01| |create| + |subspace| |getGraph| |shiftLeft| |brillhartTrials| |finiteBasis| + |enumerate| |imagi| |constantOperator| |monicModulo| + |invertibleElseSplit?| |string| |inverseIntegralMatrixAtInfinity| + |regime| |sort| |sin2csc| |viewPhiDefault| |f01brf| |unitVector| + |triangSolve| |rowEchelonLocal| |internalSubPolSet?| |palgRDE0| + |infix| |intcompBasis| |semiResultantEuclidean1| |complexNumericIfCan| + |leftZero| |inconsistent?| |internalZeroSetSplit| |showTheIFTable| + |normalized?| |semiIndiceSubResultantEuclidean| |vectorise| + |reducedForm| |monicLeftDivide| |OMgetEndAtp| |c06fpf| |d02raf| |tab| + |title| |ellipticCylindrical| |s19acf| |OMsupportsSymbol?| + |splitDenominator| |top!| |permutationGroup| |inHallBasis?| + |processTemplate| |constantKernel| |factorSquareFreeByRecursion| + |createNormalPrimitivePoly| |aspFilename| |algDsolve| |cRationalPower| + |partitions| |genericRightTraceForm| |random| |maxIndex| |isTimes| + |lifting| |filterUntil| |mvar| |getProperties| |s17ajf| |OMgetBind| + |rules| |removeCoshSq| |mapUnivariate| |modifyPoint| |rightUnits| + |laguerre| |showIntensityFunctions| |select| |e| |partialDenominators| + |BasicMethod| |startTableGcd!| |units| |ParCondList| + |lastSubResultantEuclidean| |belong?| |symmetricSquare| + |sortConstraints| |GospersMethod| |univariate?| |s18adf| |zeroDim?| + |column| |prem| |symbol?| |cup| |contours| |c06ekf| |rightNorm| + |subscript| |fortranLiteralLine| |linearAssociatedExp| + |jordanAdmissible?| |exp1| |palgextint0| |simplify| ** |hash| |rquo| + |logical?| |bezoutDiscriminant| |any?| |nary?| |dualSignature| + |tableau| |expandPower| |useNagFunctions| |bits| |count| |e02akf| + |eisensteinIrreducible?| |decimal| |seed| |iiGamma| |weakBiRank| + |support| |HermiteIntegrate| |zeroMatrix| |balancedFactorisation| + |totalGroebner| |B1solve| |read!| |makeResult| |compiledFunction| + |code| |whileLoop| |solve1| |listConjugateBases| |expintfldpoly| + |alternating| |subNode?| |readInt16!| |unknown| |over| |trivialIdeal?| + |UnVectorise| |reset| |padecf| |prevPrime| |f07fdf| |weierstrass| + |reflect| |f04mbf| |cubic| |updatD| |OMputAtp| |quasiRegular| + |nthExpon| |solveLinearlyOverQ| |e04ucf| |yCoord| |genericLeftTrace| + |algint| |setleft!| |numberOfComputedEntries| |imagK| |operators| + |write| |rewriteSetWithReduction| |taylorIfCan| |OMclose| + |mainCharacterization| |plotPolar| |OMgetEndError| |lexTriangular| + |notelem| |getSyntaxFormsFromFile| |newTypeLists| |save| + |removeConstantTerm| |f02bjf| |leadingExponent| |resultantReduit| + |sizeMultiplication| |powerAssociative?| |drawCurves| |addMatch| + |antisymmetricTensors| |moebius| |isOpen?| |LazardQuotient2| + |readByte!| |univariatePolynomialsGcds| |numberOfFactors| |baseRDE| + |f04maf| |dequeue| |leadingSupport| |lazyIrreducibleFactors| + |shiftRoots| |froot| |rightTrim| |intersect| |diagonalProduct| + |algSplitSimple| |e02dcf| |e01sef| |tubePoints| |lowerPolynomial| + |wordInGenerators| |f04faf| |rotate| |leftTrim| |sparsityIF| + |setCondition!| |abelianGroup| |fixedPoints| |minrank| + |lookupFunction| |bitTruth| |bivariateSLPEBR| + |stiffnessAndStabilityOfODEIF| |fortranCarriageReturn| + |exteriorDifferential| |interval| |genericRightNorm| |f04asf| + |fglmIfCan| |doubleRank| |permutationRepresentation| |pquo| + |countRealRootsMultiple| |maxdeg| |c06fuf| |degree| |f02wef| + |semiSubResultantGcdEuclidean1| |errorKind| |double?| |initials| + |roughUnitIdeal?| |iicsch| |strongGenerators| |basisOfCenter| + |leastPower| |getlo| |clipWithRanges| |OMconnInDevice| |makeop| + |composites| |mapCoef| |complexLimit| |monicDivide| |asec| |rename!| + |critBonD| |minPoints| |s18aff| |setPrologue!| |critT| + |jvmUTF8ConstantTag| |simplifyPower| |omError| |acsc| |mathieu11| + |argscript| |OMgetType| |linSolve| |asimpson| |OMgetEndBind| + |packageCall| |iiexp| |myDegree| |numFunEvals| |d01asf| |sinh| + |internalSubQuasiComponent?| |f02abf| |rank| |chainSubResultants| + |externalList| |f2df| |pdf2ef| |generateIrredPoly| + |selectSumOfSquaresRoutines| |cosh| |orbits| |pushucoef| |OMgetEndApp| + |eigenvectors| |open?| |jvmStringConstantTag| |pole?| + |pointColorPalette| |fortranInteger| |calcRanges| |cycleTail| |tanh| + |laguerreL| |step| |s21baf| |gbasis| |palgint0| |polynomialZeros| + |prindINFO| |pseudoRemainder| |OMopenString| |endSubProgram| |coth| + |isAnd| |headAst| |denominator| |setEmpty!| |conditionP| + |generalizedEigenvector| |mapBivariate| |cExp| |nothing| |redpps| + |sech| |mainVariables| |cAtan| |voidMode| |ParCond| |imaginary| + |finiteBound| |socf2socdf| |newReduc| |shellSort| |csch| + |jacobiIdentity?| |divideIfCan!| |multiEuclidean| |hasHi| + |cycleSplit!| |weights| |makeFR| |root?| |OMputError| |concat| |asinh| + |e02dff| |stiffnessAndStabilityFactor| |karatsubaOnce| |sn| |build| + |setLabelValue| |jvmNameAndTypeConstantTag| |callForm?| |d03eef| + |doubleDisc| |powmod| |acosh| |fortranLogical| |fortranComplex| + |lists| |inputOutputBinaryFile| |internalInfRittWu?| + |jvmMethodrefConstantTag| |OMputString| |f01rcf| |rk4f| |atrapezoidal| + |parametersOf| |atanh| |anticoord| |explicitlyEmpty?| + |generalPosition| |OMencodingUnknown| |upperCase!| |integerBound| + |tryFunctionalDecomposition| |curve?| |repeating?| |acoth| + |cyclicGroup| |gensym| |leftUnit| |removeSuperfluousQuasiComponents| + |jvmLongConstantTag| |OMputEndBVar| |droot| |cAcoth| |minimumExponent| + |topFortranOutputStack| |asech| |halfExtendedSubResultantGcd1| + |iitanh| |check| |in?| |purelyAlgebraic?| |jvmInterfaceConstantTag| + |s17dcf| |environment| |printingInfo?| |unitNormal| |aCubic| + |genericLeftTraceForm| |bothWays| |rightLcm| |imagj| + |OMunhandledSymbol| |irreducibleRepresentation| |maxRowIndex| + |inverse| |initiallyReduced?| |multiple| |nthFactor| |pseudoDivide| + |basisOfRightNucleus| |functionIsFracPolynomial?| |cyclicEntries| + |edf2ef| |jvmIntegerConstantTag| |size?| |makeUnit| + |prepareSubResAlgo| |setAttributeButtonStep| |applyQuote| |acotIfCan| + |compBound| |constantToUnaryFunction| |iiabs| |cycleRagits| + |jvmFloatConstantTag| |atom?| |parents| |tryFunctionalDecomposition?| + |sequence| |var2StepsDefault| |antiCommutator| |OMgetFloat| + |zeroSetSplit| |isPlus| |delta| |setLegalFortranSourceExtensions| + |perfectNthRoot| |OMputEndAttr| |iFTable| |subNodeOf?| |f02aef| + |whatInfinity| |asinhIfCan| |normal01| |iicoth| |ran| |perfectSqrt| + |e02bbf| |jvmFieldrefConstantTag| |s13aaf| |minus!| |dimensions| + |bitLength| |randomR| |ruleset| |fmecg| |isNot| |d02cjf| |separant| + |cCos| |qroot| |rubiksGroup| |roman| |parameters| |s18dcf| + |tubeRadiusDefault| |exprHasLogarithmicWeights| |saturate| + |palglimint0| |fortranDouble| |permutations| |critMTonD1| |s19adf| + |mainCoefficients| |quote| |nthr| |push!| |simplifyExp| + |binarySearchTree| |f01ref| |evenInfiniteProduct| |trueEqual| |cond| + |parent| |precision| |rootSimp| |jvmDoubleConstantTag| |rombergo| + |iiatan| |connect| |linearMatrix| |iicot| |acschIfCan| |suchThat| + |kind| |bumptab1| |llprop| |sqfrFactor| |integer?| |computePowers| + |extension| GF2FG |dioSolve| |s15aef| |nthRootIfCan| |op| |integrate| + |readInt32!| |useSingleFactorBound| |shuffle| |findCycle| + |extendedint| |getGoodPrime| |getMultiplicationMatrix| |OMencodingXML| + |errorInfo| |pleskenSplit| |lambda| |currentCategoryFrame| |just| + |second| |jvmClassConstantTag| |setAdaptive| |showTheRoutinesTable| + |retractable?| |LagrangeInterpolation| |airyAi| |safeFloor| |light| + |isOr| |third| |remove!| |basisOfRightNucloid| |clip| + |antiCommutative?| |splitSquarefree| |sech2cosh| |void| |isMult| + |rationalIfCan| |reduceBasisAtInfinity| |writeUInt8!| |cartesian| + |e02def| |setchildren!| |nextsubResultant2| |noKaratsuba| |c05pbf| + |groebnerIdeal| |OMputInteger| |resultantEuclideannaif| |firstDenom| + SEGMENT |euclideanNormalForm| |cAcsch| |indicialEquations| + |lieAlgebra?| |certainlySubVariety?| |readable?| |iicos| |mapExpon| + |cycles| |reverseLex| |coerceListOfPairs| |rightFactorCandidate| + |var2Steps| |singular?| |directSum| |union| |setPoly| + |exportedOperators| |extendedEuclidean| |swap!| |logIfCan| |unary?| + |moduloP| |lazyEvaluate| |rootOf| |recolor| |ratDsolve| |outputFixed| + |lllp| |OMopenFile| |subHeight| |rootNormalize| |clearCache| + |hitherPlane| |basisOfCommutingElements| |leftFactor| + |generalInfiniteProduct| |nextPrime| |readUInt8!| |invertibleSet| + |cap| |setelt| |cAcsc| |selectsecond| |modularFactor| |integral| + |ddFact| |internalAugment| |algebraicOf| |mindegTerm| |lexico| + |degreePartition| |setlast!| |setColumn!| |pr2dmp| |cyclotomic| + |cscIfCan| |fillPascalTriangle| |overbar| |nativeModuleExtension| + |expenseOfEvaluation| |copy| |palgLODE0| |f2st| |makeMulti| + |constantRight| |rightMult| |firstUncouplingMatrix| |subCase?| + |vspace| |any| |s13adf| |partition| |mapmult| |primaryDecomp| + |ScanFloatIgnoreSpaces| |functorData| |realElementary| + |realEigenvectors| |edf2fi| |curry| |genericLeftNorm| |resetBadValues| + |fibonacci| |rspace| |addPoint2| |setMaxPoints| |lazyVariations| + |nextItem| |OMgetError| |primPartElseUnitCanonical| |imagE| + |solveLinearPolynomialEquation| |cSec| |horizConcat| + |fortranCompilerName| |opeval| |declare| |reorder| |sturmSequence| + |ratDenom| |style| |solveLinearPolynomialEquationByFractions| + |stoseInvertible?reg| |rightAlternative?| |normalDenom| |tanh2trigh| + |cotIfCan| |setleaves!| |point?| |getVariableOrder| + |nextsousResultant2| |match?| |scaleRoots| |curryRight| + |setProperties| |associator| |numberOfComposites| |HenselLift| + |autoCoerce| |reciprocalPolynomial| |df2fi| |lintgcd| |readIfCan!| + |close| |has?| |prefixRagits| |nodeOf?| |rightUnit| |polyPart| + |intChoose| |lift| |removeRedundantFactorsInPols| |part?| |write!| + |leadingIndex| |nullary?| |changeNameToObjf| |figureUnits| + |infieldint| |kmax| F |prime| |scopes| |reduce| + |tableForDiscreteLogarithm| |discriminantEuclidean| |pushup| |display| + |charpol| |algebraic?| |completeHermite| |f02agf| |hconcat| + |normalForm| |argumentList!| |terms| |lazyPseudoDivide| + |monicCompleteDecompose| |supDimElseRittWu?| |baseRDEsys| |sinIfCan| + |updatF| |symbolTableOf| |addMatchRestricted| |alphanumeric| + |writeInt8!| |factorPolynomial| |groebnerFactorize| |endOfFile?| + |fTable| |extractIfCan| |physicalLength| |wrregime| + |sumOfKthPowerDivisors| |li| |variable?| |rightZero| |prinshINFO| + |radicalEigenvectors| |appendPoint| + |rewriteSetByReducingWithParticularGenerators| |groebner?| + |divergence| |reverse| |standardBasisOfCyclicSubmodule| |monomials| + |nextPartition| |basis| |depth| |distribute| |sts2stst| |binding| + |refine| |increasePrecision| |s18acf| |arguments| |separateDegrees| + |leftMinimalPolynomial| |e02bef| |insertMatch| |arg1| |parts| + |pointColor| |infinityNorm| |fprindINFO| |input| |lexGroebner| + |upperCase?| |updateStatus!| |sub| |factors| |OMsetEncoding| + |selectPDERoutines| EQ |arg2| |systemSizeIF| + |conditionsForIdempotents| |cAsec| |library| |trapezoidal| |f02akf| + |collectQuasiMonic| |seriesToOutputForm| |s21bbf| |setEpilogue!| + |FormatRoman| |inc| |f02aff| UTS2UP |reduceLODE| |iterationVar| + |direction| |idealSimplify| |setFieldInfo| |elRow2!| |members| + |tanSum| |conditions| |digit?| |typeForm| |clearTheSymbolTable| + |aQuadratic| |tubePointsDefault| |inputBinaryFile| + |oddInfiniteProduct| |composite| |weight| |generators| |rootRadius| + |match| |basisOfLeftNucloid| |leftLcm| |computeInt| |imagk| + |sumOfDivisors| |squareFreeLexTriangular| |cAsinh| |writable?| + |xCoord| |limit| |yellow| |duplicates?| |isAtom| |fortranReal| |set| + |host| |tanintegrate| |leftMult| |Lazard| |powers| |jordanAlgebra?| + |jvmSuper| |byte| |copy!| |binaryFunction| |setelt!| |multisect| + |vedf2vef| |toseInvertibleSet| |bindings| |s13acf| |factorials| + |pmintegrate| |bombieriNorm| |leftCharacteristicPolynomial| + |insertBottom!| |quotient| |e02bcf| |solve| |areEquivalent?| + |selectOptimizationRoutines| |elaborateFile| |writeBytes!| + |degreeSubResultantEuclidean| |palgLODE| |gethi| |primitiveElement| + |deepCopy| |abs| |viewThetaDefault| |extractIndex| |getCurve| + |hasSolution?| |d01amf| |triangular?| |exponential1| |putColorInfo| + |ScanArabic| |copies| |integerIfCan| |bezoutMatrix| |iisec| |irDef| + |call| |findBinding| |cn| |indices| |jvmInterface| + |removeRoughlyRedundantFactorsInContents| |condition| |acoshIfCan| + |besselK| |OMputBVar| |factorByRecursion| |clearTheFTable| + |complexEigenvectors| |pow| |rectangularMatrix| |sinh2csch| + |showTheSymbolTable| |dAndcExp| |psolve| |disjunction| |dmpToHdmp| + |lazyPquo| |uniform| |f04qaf| |presub| |pade| |child?| |interpret| + |radicalSimplify| |algebraicCoefficients?| |complexSolve| + |unitCanonical| |representationType| |category| |musserTrials| + |tValues| |roughSubIdeal?| |mathieu22| |pop!| |int| + |createLowComplexityNormalBasis| |postfix| |critpOrder| + |numberOfCycles| |associatorDependence| |bezoutResultant| + |leftRankPolynomial| |domain| |sechIfCan| |expextendedint| + |mainContent| |eq| |coerceP| |setfirst!| |summation| + |incrementKthElement| |setTopPredicate| |package| |true| + |roughEqualIdeals?| |acosIfCan| |univcase| |removeSuperfluousCases| + |e01daf| |iter| |s01eaf| |OMlistSymbols| |patternVariable| + |OMputEndAtp| |show| |principalAncestors| |interReduce| + |deleteRoutine!| |mapMatrixIfCan| |slash| |sample| |setFormula!| + |chebyshevT| |computeCycleEntry| |tan2trig| |odd?| |cross| + |quotientByP| |car| |makeCrit| |solid?| |cLog| |insert| |trace| + |rightFactorIfCan| |mpsode| |iteratedInitials| |bottom!| |e01baf| + |selectPolynomials| |basisOfLeftNucleus| |laplacian| |surface| + |exponent| |printStats!| |lllip| |randomLC| |completeHensel| + |algebraicSort| |interactiveEnv| |iiasec| |readUInt32!| |enterInCache| + |copyInto!| |checkPrecision| |OMputEndApp| |inrootof| |nonLinearPart| + |generator| |bivariate?| |nil?| |minimalPolynomial| |pseudoQuotient| + |ffactor| |taylorRep| |orbit| |mergeDifference| |outputArgs| |tRange| + |unexpand| |exp| |associatedEquations| |leader| + |useSingleFactorBound?| |search| |changeName| |root| |bumptab| + |revert| |mkcomm| |nextIrreduciblePoly| |mainValue| |formula| + |complexExpand| |generic?| |zeroOf| |drawStyle| |fortranTypeOf| + |basisOfRightAnnihilator| |matrix| |singularAtInfinity?| |d01bbf| + |mightHaveRoots| |debug| |rewriteIdealWithRemainder| + |removeSquaresIfCan| |permutation| |makeFloatFunction| |central?| + |c06fqf| |represents| |pToHdmp| |localIntegralBasis| |curveColor| D + |deref| |createZechTable| |head| |lazyGintegrate| |s17akf| + |findConstructor| |listexp| |toroidal| |compile| |mapGen| + |OMconnectTCP| |primeFactor| |c05nbf| |thenBranch| |lhs| + |OMgetInteger| |monicDecomposeIfCan| |content| |nrows| |distance| + |structuralConstants| |graphState| |colorDef| |atoms| |twoFactor| + |testDim| |rhs| |numer| |lambert| |OMlistCDs| |ncols| |quadraticNorm| + |squareTop| |forLoop| |twist| |patternMatch| |cPower| + |genericLeftMinimalPolynomial| |OMgetEndObject| |denom| + |clipParametric| |ceiling| |toseSquareFreePart| |e04gcf| + |createGenericMatrix| |equality| |stoseInternalLastSubResultant| + |width| |OMUnknownSymbol?| |acothIfCan| |innerint| |e04mbf| |lprop| + |init| |transpose| |log10| |matrixDimensions| |integers| + |generalizedContinuumHypothesisAssumed?| |addmod| |pi| |cdr| |lfunc| + |rk4| |upperBound| |torsionIfCan| |constant?| |nsqfree| |bitand| + |ideal| |cAsin| |infinity| |definingInequation| |adaptive?| + |makeRecord| |minPoly| |clikeUniv| |cCsch| |makeYoungTableau| |bitior| + |numFunEvals3D| |radicalEigenvalues| |resultantEuclidean| + |stoseInvertible?| |applyRules| |generate| |showFortranOutputStack| + |initiallyReduce| |subtractIfCan| |e01bef| |linear| + |symmetricDifference| |iisqrt3| |derivative| |var1Steps| |directory| + |commutator| |isImplies| |invmultisect| |listBranches| |seriesSolve| + |arrayStack| |accuracyIF| |lowerBound| |algebraicVariables| + |sizeLess?| |totolex| |linGenPos| |polynomial| |stoseInvertibleSet| + |highCommonTerms| |rightDiscriminant| |leftRemainder| |sinhIfCan| + |partialQuotients| |hclf| |checkRur| |isQuotient| |thetaCoord| + |currentEnv| |plenaryPower| |lquo| |makeVariable| |unitNormalize| + |mapUnivariateIfCan| |predicates| |optional| |trigs2explogs| |se2rfi| + |remainder| |iiatanh| |skewSFunction| |s17aff| |OMmakeConn| |points| + |ksec| |univariatePolynomials| |plus!| |primitivePart!| |quadratic?| + |randnum| |setnext!| |elem?| |degreeSubResultant| |f02aaf| + |ListOfTerms| |sdf2lst| |createIrreduciblePoly| |unit?| + |normalizedAssociate| |permanent| |irreducibleFactors| |epilogue| + |solid| |initial| |innerEigenvectors| |divisors| |isExpt| + |setProperty| |mapSolve| |find| |binary| |goto| |height| |cycleEntry| + |removeCosSq| |monicRightFactorIfCan| |lSpaceBasis| |pushdown| + |useEisensteinCriterion| |pmComplexintegrate| |fill!| |concat!| + |euclideanGroebner| |setScreenResolution| |deepExpand| + |compactFraction| |rangePascalTriangle| |extend| |cCot| |c06ecf| + |edf2efi| |bytes| Y |fixedPoint| |enterPointData| |binomThmExpt| + |primextintfrac| |sign| |leastAffineMultiple| |curryLeft| + |OMcloseConn| |topPredicate| |fixPredicate| |s18def| |debug3D| + |primintegrate| |padicFraction| |halfExtendedResultant2| |iiperm| + |lifting1| |complementaryBasis| |readLine!| |dec| |explimitedint| + |cosh2sech| |fortranLiteral| |prepareDecompose| |bipolar| + |stripCommentsAndBlanks| |ramified?| |rk4a| |approxSqrt| |f02awf| + |denominators| |startTable!| |localAbs| |minordet| |ldf2lst| + |reverse!| |d01gaf| |symFunc| |squareFreePart| |enqueue!| |weighted| + |next| FG2F |midpoints| |cyclePartition| |stopTableGcd!| |linearForm| + |numericIfCan| |interpretString| |printInfo| |label| |cyclic?| + |putProperties| |bat1| |rationalPoints| |sort!| |computeBasis| + |printInfo!| |returnType!| |linearDependence| |complexRoots| + |viewport2D| |basisOfMiddleNucleus| |someBasis| |adaptive| |kovacic| + |newSubProgram| |scale| |measure2Result| |before?| |harmonic| + |OMreceive| |isPower| |stronglyReduced?| |distdfact| |negative?| + |external?| UP2UTS |makeprod| |s17dhf| |OMgetObject| |middle| |output| + |perfectNthPower?| |integralLastSubResultant| |redPol| |subMatrix| + |raisePolynomial| |numberOfMonomials| |linearlyDependent?| |numeric| + |setLength!| |readUInt16!| |mainDefiningPolynomial| |clearDenominator| + |resize| |separateFactors| |square?| |s18aef| |zCoord| |radical| + |e02agf| |cCosh| |hMonic| |e01bgf| |reducedContinuedFraction| |nodes| + |f07fef| |monic?| |stosePrepareSubResAlgo| |status| + |intermediateResultsIF| |lookup| |empty?| |tail| |perspective| + |exists?| |maximumExponent| |basisOfLeftAnnihilator| |jokerMode| + |OMputSymbol| |constructor| |monomial?| |removeDuplicates!| + |palglimint| |setRow!| |innerSolve1| |sqfree| |generalSqFr| |times!| + |setrest!| |OMReadError?| |orthonormalBasis| |erf| |charthRoot| + |option| |subset?| |explicitEntries?| |meshPar1Var| |polCase| |mirror| + |showSummary| |An| |selectMultiDimensionalRoutines| |bfKeys| |d01aqf| + |OMUnknownCD?| |outputSpacing| |hypergeometric0F1| |separate| |d01ajf| + |bsolve| |irreducible?| |entry| |nthFlag| |wronskianMatrix| |say| + |hyperelliptic| |lieAdmissible?| |rst| |e01sbf| |rdHack1| |untab| + |cycleLength| |properties| |rotatex| |showAttributes| |cAcosh| + |f04mcf| |expint| |dilog| |setMaxPoints3D| |OMgetEndAttr| |tanhIfCan| + |nlde| |validExponential| |elaboration| |translate| |f01maf| + |quasiAlgebraicSet| |paren| |viewWriteDefault| |flexibleArray| |sin| + |name| |result| |zeroDimensional?| |rightExactQuotient| |duplicates| + |rightRemainder| |null| |subSet| |shrinkable| |getStream| |addPoint| + |leftScalarTimes!| BY |exptMod| |cos| |body| |meshPar2Var| |linear?| + |stopTableInvSet!| |internalDecompose| |s20adf| |not| |wholeRadix| + |internalLastSubResultant| |ignore?| |lagrange| |s20acf| |tan| + |inspect| |integralBasis| |getCode| |inGroundField?| |and| |cycle| + |factorGroebnerBasis| |rightDivide| |norm| |subResultantChain| + |primitivePart| |cot| |integral?| |leftNorm| |extractSplittingLeaf| + |product| |or| |viewDefaults| |consnewpol| |bernoulli| |nthCoef| + |lepol| |d01akf| |sec| |jacobi| |e02zaf| |dual| |qqq| |xor| |split!| + |mkIntegral| |supRittWu?| |coord| |quasiMonicPolynomials| |even?| + |csc| |Aleph| |close!| |tubeRadius| |SturmHabichtCoefficients| + |sumSquares| |case| |super| |qfactor| |besselY| |doubleFloatFormat| + |bat| |empty| |asin| |problemPoints| |finite?| |e02ajf| + |reducedDiscriminant| |Zero| |componentUpperBound| |top| + |headRemainder| |digamma| |e02gaf| |mainForm| |stFunc1| |acos| + |outputFloating| |LyndonWordsList1| |mappingAst| |e02daf| |infRittWu?| + |One| NOT |continue| |removeRedundantFactors| |bumprow| + |cyclotomicDecomposition| |OMputFloat| |numericalIntegration| |atan| + |rangeIsFinite| |trailingCoefficient| |f04atf| |eyeDistance| + |setStatus| OR |assert| |addBadValue| |diagonals| |doubleResultant| + |generic| |headReduced?| |acot| |doublyTransitive?| |port| + |setprevious!| |pattern| |stoseSquareFreePart| |outputForm| + |limitedIntegrate| AND |d01alf| |bounds| |physicalLength!| + |generalLambert| |nthExponent| |e02baf| |routines| |getOperator| + |ScanRoman| |aLinear| |stop| |generalizedInverse| |alternatingGroup| + |mkPrim| |evenlambert| |modularGcdPrimitive| |t| |SturmHabicht| + |traceMatrix| |mathieu24| |normDeriv2| |assign| |listOfLists| + |userOrdered?| |box| |pascalTriangle| |jacobian| + |selectIntegrationRoutines| |s21bcf| |coleman| |isConnected?| |hasoln| + |leftExactQuotient| |elt| |macroExpand| |genus| |rur| + |numberOfChildren| |linearDependenceOverZ| |qualifier| |bfEntry| + |rischNormalize| |e01sff| |message| |UP2ifCan| |gradient| |element?| + |max| |anfactor| |characteristicPolynomial| |nor| |f07adf| |basicSet| + |double| |setValue!| |simpsono| |autoReduced?| |symmetricRemainder| + |OMParseError?| |normalise| |leastMonomial| |leadingBasisTerm| + |iExquo| |ocf2ocdf| |selectOrPolynomials| |rootProduct| |flexible?| + |constantIfCan| |collect| |getConstant| |RemainderList| + |genericRightMinimalPolynomial| |legendre| |setsubMatrix!| + |selectfirst| |blankSeparate| |removeRedundantFactorsInContents| + |internalIntegrate| |goodnessOfFit| |leftRegularRepresentation| + |d02kef| |factorial| |chineseRemainder| |leftAlternative?| |asecIfCan| + |bipolarCylindrical| |squareFreePolynomial| |semiResultantEuclidean2| + |expandTrigProducts| |overlabel| |inverseColeman| |denomRicDE| + |minIndex| |substring?| |listRepresentation| |signature| + |continuedFraction| |rename| |sinhcosh| * |normalDeriv| + |createNormalElement| |bandedHessian| |cons| |csc2sin| |rotatez| + |e02adf| |binomial| |numberOfImproperPartitions| |unravel| |LiePoly| + |predicate| |reseed| |pushNewContour| |chvar| |mainKernel| + |integralMatrix| |suffix?| |substitute| |expressIdealMember| |d02bbf| + |OMgetString| |size| |lazyIntegrate| |capacity| |dflist| |rightTrace| + |commaSeparate| |e02ahf| |Beta| |OMputBind| |midpoint| |declare!| + |elColumn2!| |UpTriBddDenomInv| = |factorset| |purelyTranscendental?| + |f04arf| |lex| |nextPrimitiveNormalPoly| |categories| |prefix?| + |besselI| |viewSizeDefault| |transcendent?| |df2st| |matrixGcd| + |const| |rk4qc| |probablyZeroDim?| |fortranLinkerArgs| |Is| + |lastSubResultantElseSplit| |cAcos| |discreteLog| + |removeIrreducibleRedundantFactors| |perfectSquare?| + |replaceKthElement| < |distFact| |interpolate| |algebraicDecompose| + |digits| |solveInField| |solveid| |plusInfinity| |critMonD1| |gderiv| + |setDifference| |rroot| > |cAtanh| |f01rdf| |returnTypeOf| + |fixedDivisor| |source| |selectNonFiniteRoutines| |minusInfinity| + |zoom| |specialTrigs| |changeThreshhold| |secIfCan| + |nextLatticePermutation| <= |backOldPos| |rationalPower| |leftGcd| + |schema| |f01mcf| |transcendenceDegree| |OMsend| |lineColorDefault| + |collectUnder| |startStats!| >= |mantissa| + |rewriteIdealWithHeadRemainder| |stoseInvertible?sqfreg| |presuper| + |semiDegreeSubResultantEuclidean| |polar| |getButtonValue| |toScale| + |triangulate| |explogs2trigs| |principalIdeal| |quickSort| + |rightScalarTimes!| |qinterval| |usingTable?| |infix?| + |genericRightDiscriminant| |segment| |ode1| |selectFiniteRoutines| + |lazyResidueClass| |char| |blue| |changeMeasure| |hostByteOrder| + |cyclicEqual?| |irCtor| |mask| |subResultantsChain| |node| + |indiceSubResultantEuclidean| |lowerCase| |tanIfCan| |LiePolyIfCan| + |datalist| + |rootKerSimp| |block| |target| |oddintegers| + |showClipRegion| |type| |ptFunc| |real?| |nextSublist| |extractClosed| + |ptree| |vconcat| |stopTable!| - |tube| |var1StepsDefault| |flatten| + |invertible?| |closedCurve| |failed?| |LyndonWordsList| |setImagSteps| + |clipBoolean| |expand| / |lyndon| |resetVariableOrder| |extractTop!| + |clearTheIFTable| |zeroDimPrime?| |removeZero| |insertTop!| |pureLex| + |extendedResultant| |filterWhile| |leftFactorIfCan| |nextNormalPoly| + |region| |approxNthRoot| |monomRDEsys| |OMserve| |primlimintfrac| + |OMputApp| |replace| |point| |startPolynomial| |ldf2vmf| |prinb| + |leftReducedSystem| |toseLastSubResultant| |difference| |s17acf| + |recip| |tablePow| |pushdterm| |universe| |sylvesterSequence| |float| + |property| |unrankImproperPartitions0| |npcoef| |e04ycf| |expPot| + |rischDE| |rootSplit| |associatedSystem| |graphImage| + |semiSubResultantGcdEuclidean2| |front| |characteristicSerie| + |operation| |viewZoomDefault| |reducedSystem| |leaf?| + |mainSquareFreePart| |series| |yCoordinates| |maxint| |btwFact| + |lazyPseudoRemainder| |string?| |leaves| |SturmHabichtSequence| + |arbitrary| |numberOfDivisors| |linearAssociatedOrder| |coerceS| + |lazy?| |firstNumer| |exponents| |extract!| |squareFree| |iisinh| + |hermiteH| |iicosh| |fintegrate| |antiAssociative?| |extractProperty| + |totalLex| |rightRegularRepresentation| |positiveRemainder| |implies| + |children| |iiasinh| |freeOf?| |OMgetVariable| |plus| |corrPoly| + |table| |leftExtendedGcd| |parse| |clearTable!| |setRealSteps| + |idealiserMatrix| |categoryFrame| |completeEval| |outerProduct| + |minColIndex| |stoseIntegralLastSubResultant| |hermite| |latex| |new| + |min| |f02bbf| |removeSinhSq| |gcdcofact| |positiveSolve| + |expenseOfEvaluationIF| |bernoulliB| |divideIfCan| |ridHack1| |f02xef| + |readLineIfCan!| |pile| |initializeGroupForWordProblem| + |cyclotomicFactorization| |categoryMode| |rightRecip| |c02agf| |value| + |integralAtInfinity?| |times| |setOfMinN| |removeZeroes| |mathieu12| + |round| GE |d02gaf| |cosSinInfo| |iiacot| |setPredicates| + |beauzamyBound| |dn| |printCode| |wholeRagits| + |genericLeftDiscriminant| |mdeg| GT |unit| |sPol| |primitive?| + |decomposeFunc| |axes| |printHeader| |sorted?| |rowEchelon| + |setMinPoints| |list?| LE |edf2df| |hspace| |c02aff| |s19abf| + |isobaric?| |showTheFTable| |sequences| |f07aef| |rule| |moebiusMu| + |OMputEndBind| |expr| LT |makeSketch| |cTan| |frobenius| |crushedSet| + |f01qef| |e04dgf| |subTriSet?| |extractPoint| |monom| |hessian| + |s14abf| |ranges| |limitPlus| |coerceImages| |removeSinSq| + |safetyMargin| |subscriptedVariables| |e01bhf| |float?| + |halfExtendedResultant1| |OMgetSymbol| |nextSubsetGray| |parseString| + |countable?| |eof?| |radix| |setScreenResolution3D| |critB| + |completeSmith| |unparse| |OMputVariable| |biRank| |resultantnaif| + |OMputEndError| |characteristic| |factorSquareFree| |common| |laplace| + |inR?| |ricDsolve| |left| |stirling1| |janko2| |iiacsc| |variable| + |iidprod| |commutativeEquality| |unvectorise| |sec2cos| |f02adf| + |decrease| |bright| |elaborate| |changeBase| |modulus| |right| + |dfRange| |index| |red| |iterators| |one?| |f01bsf| |byteBuffer| + |irreducibleFactor| |conjunction| |simpleBounds?| |medialSet| |mesh| + |outlineRender| |algintegrate| |comp| |nthRoot| |setVariableOrder| + |linearPart| |maxColIndex| |divide| |eval| |elliptic?| |c06frf| + |OMputAttr| |getMatch| |solveLinearPolynomialEquationByRecursion| + |totalfract| |exactQuotient| |tubePlot| |partialFraction| + |buildSyntax| |clearFortranOutputStack| |cyclicCopy| |cfirst| |pair| + |removeRoughlyRedundantFactorsInPol| |superscript| |rootsOf| + |attributeData| |phiCoord| |isAbsolutelyIrreducible?| + |unitsColorDefault| |lazyPremWithDefault| |evaluateInverse| |color| + |ratpart| |e04naf| |binaryTree| |delay| |iroot| |power| + |defineProperty| |error| |optAttributes| |BumInSepFFE| |palgRDE| + |fractionFreeGauss!| |id| |mathieu23| |exprToGenUPS| |factorList| + |henselFact| |bivariatePolynomials| |currentSubProgram| + |extensionDegree| |iisin| |firstSubsetGray| |c06gbf| |lazyPrem| + |determinant| |lo| |iibinom| |LyndonCoordinates| |upDateBranches| + |rightExtendedGcd| |OMencodingBinary| |normalizeIfCan| |eulerPhi| + |scalarTypeOf| |shufflein| |range| |PollardSmallFactor| |complement| + |diag| |factorSFBRlcUnit| |less?| |symmetricTensors| |mapDown!| + |domainTemplate| |iprint| |c06ebf| |cyclicSubmodule| |symbolTable| + |every?| |palgint| |conjug| |optimize| |largest| |convergents| |sum| + |partialNumerators| |innerSolve| |makeSeries| |tanQ| + |createNormalPoly| |d03faf| |infinite?| |trace2PowMod| + |subResultantGcdEuclidean| |d02gbf| |sumOfSquares| |nilFactor| + |symbol| |outputAsScript| |linearAssociatedLog| |exprToXXP| + |pushFortranOutputStack| |dictionary| |expandLog| |ODESolve| + |subResultantGcd| |cycleElt| |createPrimitiveElement| |OMbindTCP| + |expression| |tanNa| |cTanh| |nullity| |popFortranOutputStack| |lp| + |function| |rightRank| |internal?| |singularitiesOf| |supersub| + |leftOne| |localUnquote| |writeLine!| |indicialEquation| |integer| + |vark| |rightGcd| |outputAsFortran| |newLine| |FormatArabic| + |eigenvalues| |youngGroup| |f02axf| |iiacos| |screenResolution3D| + |triangularSystems| |ref| |compound?| |nonSingularModel| + |companionBlocks| |df2ef| |symbolIfCan| |listYoungTableaus| |radPoly| + |factor1| |f02fjf| |unknownEndian| |oddlambert| |s17def| |aQuartic| + |low| |member?| |conical| |normalizedDivide| |f04jgf| |setTex!| + |normal?| |f04adf| |exprex| |unmakeSUP| |schwerpunkt| |identity| + |reduction| |rem| |rootOfIrreduciblePoly| |powern| |coHeight| + |leftRecip| |optional?| |knownInfBasis| |numberOfOperations| + |makeGraphImage| |subresultantVector| |quo| |closeComponent| |f04axf| + |f01qcf| |fixedPointExquo| |createMultiplicationMatrix| |maxrow| + |open| |balancedBinaryTree| |semiLastSubResultantEuclidean| |nand| + |att2Result| |s14baf| |univariatePolynomial| |denomLODE| |fractRadix| + |getMultiplicationTable| |LyndonBasis| |inRadical?| |printTypes| + |s17agf| |redmat| |div| |plot| |leftTrace| |prod| |prime?| + |localReal?| |subPolSet?| |drawComplex| |pToDmp| |OMread| + |shallowCopy| |exquo| |quoByVar| |addPointLast| |multiEuclideanTree| + |controlPanel| |credPol| |toseInvertible?| |iomode| |c06eaf| + |polyRicDE| |hdmpToP| |elliptic| ~= |delete| |infLex?| + |removeDuplicates| |rootBound| |log2| |zag| |operations| + |printStatement| |numberOfVariables| |subQuasiComponent?| |stack| + |csch2sinh| |nonQsign| |#| |fullPartialFraction| |identification| + |numberOfComponents| |integralBasisAtInfinity| |setOrder| |lcm| + |constDsolve| |numerator| |createMultiplicationTable| |truncate| ~ + |OMputObject| |tower| |wordInStrongGenerators| |geometric| + |LowTriBddDenomInv| |rationalPoint?| |linears| |SturmHabichtMultiple| + |outputAsTex| |reindex| |arity| |prologue| |adaptive3D?| |quartic| + |divideExponents| |mappingMode| |rarrow| |vector| |append| + |setPosition| |commonDenominator| |oblateSpheroidal| + |branchPointAtInfinity?| |reify| |s19aaf| |e02ddf| |deepestInitial| + |safeCeiling| |changeVar| |differentiate| |gcd| + |functionIsContinuousAtEndPoints| |padicallyExpand| |cSin| + |bubbleSort!| |/\\| |scanOneDimSubspaces| |leadingTerm| + |diagonalMatrix| |dim| |countRealRoots| |pointPlot| |atanhIfCan| + |false| |argument| |pointColorDefault| |maxPoints3D| |squareMatrix| + |\\/| |explicitlyFinite?| |queue| |normFactors| |crest| |optpair| + |cos2sec| |rewriteIdealWithQuasiMonicGenerators| |realZeros| |cAsech| + |c06gsf| |tan2cot| |increase| |tensorProduct| |swapRows!| + |complexNumeric| |iidsum| RF2UTS |associative?| |getOrder| |OMgetAtp| + |euler| |iiacoth| |principal?| |mat| |setIntersection| |repSq| + |argumentListOf| |s17dlf| |leadingCoefficientRicDE| |e04jaf| |csubst| + |mainVariable?| |kernels| |complexForm| |relerror| LODO2FUN + |reducedQPowers| |d02ejf| |fullDisplay| |exponential| |eq?| + |absolutelyIrreducible?| |cosIfCan| |basisOfNucleus| + |generalizedContinuumHypothesisAssumed| |operator| |badValues| + |superHeight| |coerce| |integralRepresents| |power!| |rightPower| + |setref| |level| |elements| |graeffe| |addiag| + |factorsOfCyclicGroupSize| |exprToUPS| |multiplyExponents| |f01qdf| + |construct| |roughBase?| |splitNodeOf!| |getBadValues| |equiv| + |numberOfFractionalTerms| |diophantineSystem| |axesColorDefault| + |select!| |cCsc| |univariate| |commutative?| |taylorQuoByVar| |swap| + |legendreP| |comparison| |monomialIntPoly| |getMeasure| + |primintfldpoly| |varselect| |createRandomElement| |dihedral| + |leftPower| |getZechTable| |transcendentalDecompose| + |rightMinimalPolynomial| |OMgetAttr| |leftDiscriminant| + |fortranDoubleComplex| |exQuo| |rationalFunction| |roughBasicSet| + |noLinearFactor?| |choosemon| |useEisensteinCriterion?| |rightOne| + |coefChoose| |factor| |outputBinaryFile| |pdf2df| |coordinates| + |rCoord| |leftTraceMatrix| |kroneckerDelta| |numericalOptimization| + |hexDigit| |increment| |rightRankPolynomial| |sqrt| |merge| + |readInt8!| |selectAndPolynomials| |polyred| |lfextendedint| + |leadingIdeal| |extendedSubResultantGcd| |ef2edf| + |oneDimensionalArray| |eigenvector| |loadNativeModule| |real| + |retract| |solveRetract| |combineFeatureCompatibility| |s17ahf| + |elseBranch| |trim| |mr| |bit?| |iilog| |overlap| |OMconnOutDevice| + |imag| |nextNormalPrimitivePoly| |shiftRight| |df2mf| + |polarCoordinates| |mapdiv| |stronglyReduce| |shape| |Gamma| + |multiset| |cot2trig| |directProduct| |s17adf| |hue| |setStatus!| + |splitLinear| |hex| |overset?| |iipow| |vertConcat| |poisson| + |functionIsOscillatory| |gcdPrimitive| |heap| |KrullNumber| |reopen!| + |rightTraceMatrix| |radicalEigenvector| |intPatternMatch| |brace| + |makeTerm| |log| |lfextlimint| |complexIntegrate| |iCompose| + |parabolicCylindrical| |dmpToP| |component| |s15adf| |destruct| + |Vectorise| |repeating| |merge!| |alphabetic| |monomialIntegrate| + |initTable!| |ip4Address| |sin?| |stoseInvertibleSetsqfreg| |ravel| + |contains?| |mix| |discriminant| |inf| |matrixConcat3D| |tanAn| |expt| + |deleteProperty!| |nullary| |reshape| |trapezoidalo| |dequeue!| + |quasiMonic?| |viewPosDefault| |compdegd| |spherical| |drawToScale| + |heapSort| |more?| |fractRagits| |lflimitedint| |selectODEIVPRoutines| + |modTree| |goodPoint| |resultant| |setClipValue| |colorFunction| + |radicalSolve| |monomial| |returns| |conjugates| |univariateSolve| + |homogeneous?| |digit| |insertionSort!| |alphabetic?| + |semiDiscriminantEuclidean| |headReduce| |multivariate| |fracPart| + |iifact| |imagI| |bag| |complex?| |bitCoef| |curve| |upperCase| + |variables| |d01fcf| |entry?| |reduced?| |child| |uncouplingMatrices| + |leviCivitaSymbol| |symmetricProduct| |identityMatrix| |showRegion| + |update| |makeViewport3D| |wreath| |viewDeltaXDefault| |graphCurves| + |clipSurface| |rootPower| |quadraticForm| |irForm| |expintegrate| + |outputGeneral| |dimensionOfIrreducibleRepresentation| + |restorePrecision| |Hausdorff| |palgextint| + |noncommutativeJordanAlgebra?| |imports| |ratPoly| |singRicDE| + |prolateSpheroidal| |regularRepresentation| |minPol| |besselJ| + |d02bhf| |mapUp!| |cot2tan| |qPot| |leftQuotient| |acscIfCan| + |testModulus| |magnitude| |bringDown| |logGamma| |s14aaf| + |integralCoordinates| |sizePascalTriangle| |sincos| |taylor| + |parabolic| |s17aef| |floor| |evaluate| |d03edf| |parametric?| + |gcdPolynomial| |mainVariable| |reduceByQuasiMonic| |position| + |laurent| |palginfieldint| |mkAnswer| |infiniteProduct| |lfinfieldint| + |jvmSynchronized| |constantOpIfCan| |multiplyCoefficients| + |lfintegrate| |messagePrint| |removeRoughlyRedundantFactorsInPols| + |puiseux| |sh| |satisfy?| |maxPoints| |cothIfCan| + |generalizedEigenvectors| |linearlyDependentOverZ?| |Si| |typeList| + |cyclic| |writeByte!| |rootDirectory| |index?| |polygon?| + |binaryTournament| |jvmStrict| |pack!| |node?| |invertIfCan| + |PDESolve| |factorFraction| |inv| |groebSolve| |factorAndSplit| |move| + |curveColorPalette| |jvmStatic| |primeFrobenius| |ground?| + |pushuconst| |birth| |cCoth| |leftDivide| |back| + |brillhartIrreducible?| |elementary| |nextColeman| |setErrorBound| + |zeroVector| |ground| |listOfMonoms| |keys| |submod| |tab1| |remove| + |purelyAlgebraicLeadingMonomial?| |zerosOf| |realRoots| |extendIfCan| + |exprHasWeightCosWXorSinWX| |flagFactor| |gcdprim| |OMputEndObject| + |OMgetApp| |leadingMonomial| |zeroSetSplitIntoTriangularSystems| + |frst| |showAll?| |putProperty| |jvmPublic| |inverseLaplace| + |rightQuotient| |rowEch| |components| |htrigs| |leadingCoefficient| + |last| |createLowComplexityTable| |elRow1!| |OMreadStr| |order| + |jvmProtected| |singleFactorBound| |isEquiv| |badNum| |rational| + |laurentIfCan| |primitiveMonomials| |assoc| |stoseInvertibleSetreg| + |derivationCoordinates| |d01gbf| |normalizeAtInfinity| |idealiser| + |d01anf| |lastSubResultant| |chiSquare| |dot| |reductum| |e01bff| + |connectTo| |minRowIndex| |Ei| |viewDeltaYDefault| |quotedOperators| + |karatsuba| |cSech| |hasPredicate?| |factorSquareFreePolynomial| + |entries| |viewport3D| |iisqrt2| |patternMatchTimes| + |drawComplexVectorField| |branchPoint?| |key?| |whitePoint| + |possiblyNewVariety?| |delete!| |primPartElseUnitCanonical!| |po| + |iitan| |prinpolINFO| |getDatabase| |readBytes!| |meshFun2Var| + |pointSizeDefault| |charClass| |relativeApprox| |virtualDegree| + |jvmPrivate| |euclideanSize| |ScanFloatIgnoreSpacesIfCan| |pointData| + |zero| |eulerE| |symmetricGroup| |youngDiagram| |computeCycleLength| + |airyBi| |mainExpression| |polyRDE| |setButtonValue| |OMencodingSGML| + |stopMusserTrials| |branchIfCan| |bigEndian| |invmod| |mulmod| + |encodingDirectory| |LazardQuotient| |diagonal?| |mainPrimitivePart| + |And| |semicolonSeparate| |showAllElements| |cschIfCan| |rootPoly| + |maxrank| |getPickedPoints| |jvmNative| |getOperands| |primes| |zero?| + |Or| |basisOfCentroid| |signatureAst| |tree| |radicalOfLeftTraceForm| + |squareFreeFactors| |makeSUP| |relationsIdeal| |jvmFinal| + |exponentialOrder| |associates?| |Not| |simplifyLog| |c05adf| + |intensity| |stirling2| |numerators| |rischDEsys| |laurentRep| |test| + |listLoops| |position!| |OMwrite| |bandedJacobian| |withPredicates| + |closed| |symmetric?| |null?| |morphism| |module| |primlimitedint| + |lighting| |alternative?| |startTableInvSet!| |doubleComplex?| |irVar| + |dihedralGroup| |hostPlatform| |xn| |jvmAbstract| |showScalarValues| + |resultantReduitEuclidean| |stFunc2| |divisor| |minimize| + |screenResolution| |sayLength| |rotatey| |modifyPointData| + |identitySquareMatrix| |e01saf| |complete| |length| + |particularSolution| |leftUnits| |polygon| |incrementBy| |coefficient| + |polygamma| |Frobenius| |torsion?| |genericRightTrace| |totalDegree| + |scripts| |halfExtendedSubResultantGcd2| |escape| |gramschmidt| |pol| + |numberOfPrimitivePoly| |shade| |sylvesterMatrix| |nil| |makeEq| + |multMonom| |characteristicSet| |showArrayValues| |realSolve| + |realEigenvalues| |prefix| |factorOfDegree| |dark| + |createPrimitiveNormalPoly| |isList| |augment| |compose| + |resetAttributeButtons| |coordinate| |inverseIntegralMatrix| + |nullSpace| |mainMonomial| |redPo| |solveLinear| |paraboloidal| + |iisech| |sup| |viewWriteAvailable| |transform| |unaryFunction| + |constant| |monicRightDivide| |unprotectedRemoveRedundantFactors| + |approximate| |shanksDiscLogAlgorithm| |deepestTail| + |completeEchelonBasis| |deriv| |equation| |minset| |quoted?| |coerceL| + |ReduceOrder| |complex| |create3Space| |s17dgf| |constantLeft| + |indicialEquationAtInfinity| |leftRank| |mesh?| |coth2tanh| |logpart| + |lowerCase!| |normalElement| |possiblyInfinite?| |normalize| + |traverse| |indiceSubResultant| |makeViewport2D| |is?| + |rightCharacteristicPolynomial| |OMgetEndBVar| |tracePowMod| + |outputMeasure| |multiple?| |conjugate| |modularGcd| |trunc| + |alphanumeric?| |makingStats?| |fortran| |internalIntegrate0| + |outputList| |symmetricPower| |scan| |setright!| |rotate!| |critM| + |c06gqf| |trigs| |failed| |definingPolynomial| |scripted?| + |numberOfIrreduciblePoly| |asinIfCan| |decompose| |complexElementary| + |totalDifferential| |lyndonIfCan| |OMsupportsCD?| |ipow| + |nextPrimitivePoly| |octon| |romberg| |e04fdf| |pair?| |powerSum| + |createThreeSpace| |semiResultantEuclideannaif| |eigenMatrix| + |generalTwoFactor| |approximants| |iiacosh| |minGbasis| |push| + |factorsOfDegree| |boundOfCauchy| |getIdentifier| |aromberg| + |rowEchLocal| |iflist2Result| |diagonal| |varList| |cAcot| |getRef| + |integralMatrixAtInfinity| |mergeFactors| |setClosed| |quatern| + |cSinh| |getExplanations| |recur| |pastel| |squareFreePrim| |makeSin| + |smith| |changeWeightLevel| |c06gcf| |rdregime| |cylindrical| + |expIfCan| |subst| |obj| |definingEquations| |scalarMatrix| + |variationOfParameters| |setUnion| |semiResultantReduitEuclidean| + |iiasech| |groebgen| |currentScope| |complexZeros| |cache| + |graphStates| |decreasePrecision| |iiasin| |ode2| |mapExponents| + |fortranCharacter| |allRootsOf| |e02bdf| |nthFractionalTerm| + |palgintegrate| |retractIfCan| |zeroDimPrimary?| |slex| + |ramifiedAtInfinity?| |positive?| |minimumDegree| |setMinPoints3D| + |radicalRoots| |coefficients| |coercePreimagesImages| |quadratic| + |objects| |stFuncN| |integralDerivationMatrix| F2FG |hcrf| |space| + |dominantTerm| |qelt| |atanIfCan| |resetNew| |base| + |unrankImproperPartitions1| |script| |numberOfNormalPoly| |contract| + |hdmpToDmp| |iicsc| |hasTopPredicate?| |qsetelt| |pomopo!| |dimension| + |closed?| |d01apf| |monomRDE| |hexDigit?| |chiSquare1| |closedCurve?| + |iiacsch| |xRange| |insert!| |key| |noValueMode| |fractionPart| + |recoverAfterFail| |loopPoints| |checkForZero| |apply| |yRange| + |wordsForStrongGenerators| |extractBottom!| |neglist| |shift| |ode| + |tex| |createPrimitivePoly| |fi2df| |filename| |print| |contractSolve| + |linkToFortran| |zRange| |first| |bracket| |kernel| |green| |meatAxe| + |RittWuCompare| |pointLists| |getProperty| |resolve| |systemCommand| + |f02ajf| |cardinality| |map!| |rest| |simpson| |rationalApproximation| + |asechIfCan| |stoseLastSubResultant| |list| |e02aef| |map| + |shallowExpand| |graphs| |qsetelt!| |draw| |s21bdf| |measure| + |dmp2rfi| |primextendedint| |jvmVolatile| |extendedIntegrate| + |minPoints3D| |numberOfHues| |makeCos| |chebyshevU| |ord| |preprocess| + |differentialVariables| |jvmTransient| |moduleSum| |normal| + |constantCoefficientRicDE| |clipPointsDefault| |adjoint| + |zeroSquareMatrix| |setAdaptive3D| |tanh2coth| |antisymmetric?| + |gcdcofactprim| |limitedint| |complexEigenvalues| |row| |incr| + |setvalue!| |multinomial| |split| |Nul| |repeatUntilLoop| |typeLists| + |normInvertible?| |hi| |lowerCase?| |swapColumns!| |makeObject| + |mindeg| |karatsubaDivide| |convert| |lyndon?| |OMreadFile| |sncndn| + |sturmVariationsOf| |acsch| |previous| |genericPosition| |Lazard2| + |subresultantSequence| |coef| |splitConstant| |isOp| |imagJ| |number?| + |signAround| |comment| |nil| |infinite| |arbitraryExponent| + |approximate| |complex| |shallowMutable| |canonical| |noetherian| + |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| + |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 2c306fd0..fa116f7c 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5460 +1,5480 @@ -(3465707 . 3487991557) -((-4438 (((-112) (-1 (-112) |#2| |#2|) $) 86 T ELT) (((-112) $) NIL T ELT)) (-3246 (($ (-1 (-112) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-1895 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-1259 (-577)) |#2|) 44 T ELT)) (-1932 (($ $) 80 T ELT)) (-2498 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3728 (((-577) (-1 (-112) |#2|) $) 27 T ELT) (((-577) |#2| $) NIL T ELT) (((-577) |#2| $ (-577)) 96 T ELT)) (-3692 (((-660 |#2|) $) 13 T ELT)) (-1334 (($ (-1 (-112) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2826 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2218 (($ |#2| $ (-577)) NIL T ELT) (($ $ $ (-577)) 67 T ELT)) (-2153 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29 T ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-2837 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) 66 T ELT)) (-3490 (($ $ (-577)) 76 T ELT) (($ $ (-1259 (-577))) 75 T ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) 34 T ELT) (((-787) |#2| $) NIL T ELT)) (-2875 (($ $ $ (-577)) 69 T ELT)) (-1914 (($ $) 68 T ELT)) (-3614 (($ (-660 |#2|)) 73 T ELT)) (-1685 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-660 $)) 85 T ELT)) (-3603 (((-880) $) 92 T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 22 T ELT)) (-2949 (((-112) $ $) 95 T ELT)) (-2971 (((-112) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1932 (|#1| |#1|)) (-15 -2875 (|#1| |#1| |#1| (-577))) (-15 -4438 ((-112) |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -3728 ((-577) |#2| |#1| (-577))) (-15 -3728 ((-577) |#2| |#1|)) (-15 -3728 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4438 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1334 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1895 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -3490 (|#1| |#1| (-1259 (-577)))) (-15 -3490 (|#1| |#1| (-577))) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -3614 (|#1| (-660 |#2|))) (-15 -2153 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2837 (|#2| |#1| (-577))) (-15 -2837 (|#2| |#1| (-577) |#2|)) (-15 -1895 (|#2| |#1| (-577) |#2|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -3692 ((-660 |#2|) |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1914 (|#1| |#1|))) (-19 |#2|) (-1242)) (T -18)) +(3471143 . 3488491140) +((-3279 (((-112) (-1 (-112) |#2| |#2|) $) 86 T ELT) (((-112) $) NIL T ELT)) (-2629 (($ (-1 (-112) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-1957 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-1264 (-577)) |#2|) 44 T ELT)) (-2609 (($ $) 80 T ELT)) (-2060 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3948 (((-577) (-1 (-112) |#2|) $) 27 T ELT) (((-577) |#2| $) NIL T ELT) (((-577) |#2| $ (-577)) 96 T ELT)) (-2118 (((-665 |#2|) $) 13 T ELT)) (-3771 (($ (-1 (-112) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-4409 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2317 (($ |#2| $ (-577)) NIL T ELT) (($ $ $ (-577)) 67 T ELT)) (-2550 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29 T ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-2916 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) 66 T ELT)) (-3587 (($ $ (-577)) 76 T ELT) (($ $ (-1264 (-577))) 75 T ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) 34 T ELT) (((-792) |#2| $) NIL T ELT)) (-2338 (($ $ $ (-577)) 69 T ELT)) (-1977 (($ $) 68 T ELT)) (-3722 (($ (-665 |#2|)) 73 T ELT)) (-1702 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-665 $)) 85 T ELT)) (-3709 (((-885) $) 92 T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 22 T ELT)) (-3018 (((-112) $ $) 95 T ELT)) (-3042 (((-112) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2629 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -2338 (|#1| |#1| |#1| (-577))) (-15 -3279 ((-112) |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3948 ((-577) |#2| |#1| (-577))) (-15 -3948 ((-577) |#2| |#1|)) (-15 -3948 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3279 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3771 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1957 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -3587 (|#1| |#1| (-1264 (-577)))) (-15 -3587 (|#1| |#1| (-577))) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#2|)) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -3722 (|#1| (-665 |#2|))) (-15 -2550 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2916 (|#2| |#1| (-577))) (-15 -2916 (|#2| |#1| (-577) |#2|)) (-15 -1957 (|#2| |#1| (-577) |#2|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -2118 ((-665 |#2|) |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1977 (|#1| |#1|))) (-19 |#2|) (-1247)) (T -18)) NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1932 (|#1| |#1|)) (-15 -2875 (|#1| |#1| |#1| (-577))) (-15 -4438 ((-112) |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -3728 ((-577) |#2| |#1| (-577))) (-15 -3728 ((-577) |#2| |#1|)) (-15 -3728 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4438 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1334 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1895 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -3490 (|#1| |#1| (-1259 (-577)))) (-15 -3490 (|#1| |#1| (-577))) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -3614 (|#1| (-660 |#2|))) (-15 -2153 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2837 (|#2| |#1| (-577))) (-15 -2837 (|#2| |#1| (-577) |#2|)) (-15 -1895 (|#2| |#1| (-577) |#2|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -3692 ((-660 |#2|) |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1914 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471)) ELT) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-1932 (($ $) 93 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 103 T ELT)) (-3289 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 52 T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) 70 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 85 (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 86 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 43 (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2529 (($ $ |#1|) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1259 (-577))) 71 T ELT)) (-3490 (($ $ (-577)) 64 T ELT) (($ $ (-1259 (-577))) 63 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2875 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 81 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 72 T ELT)) (-1685 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-660 $)) 66 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) 87 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 89 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) 88 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 90 (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-19 |#1|) (-141) (-1242)) (T -19)) +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2629 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -2338 (|#1| |#1| |#1| (-577))) (-15 -3279 ((-112) |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3948 ((-577) |#2| |#1| (-577))) (-15 -3948 ((-577) |#2| |#1|)) (-15 -3948 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3279 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3771 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1957 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -3587 (|#1| |#1| (-1264 (-577)))) (-15 -3587 (|#1| |#1| (-577))) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#2|)) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -3722 (|#1| (-665 |#2|))) (-15 -2550 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2916 (|#2| |#1| (-577))) (-15 -2916 (|#2| |#1| (-577) |#2|)) (-15 -1957 (|#2| |#1| (-577) |#2|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -2118 ((-665 |#2|) |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1977 (|#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2609 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 103 T ELT)) (-3589 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 52 T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) 70 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2561 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-3587 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2338 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 72 T ELT)) (-1702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-19 |#1|) (-141) (-1247)) (T -19)) NIL -(-13 (-385 |t#1|) (-10 -7 (-6 -4471))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T)) -((-1771 (((-3 $ "failed") $ $) 12 T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 26 T ELT))) -(((-20 |#1|) (-10 -8 (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -1771 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-21)) (T -20)) +(-13 (-385 |t#1|) (-10 -7 (-6 -4500))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T)) +((-2478 (((-3 $ "failed") $ $) 12 T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 26 T ELT))) +(((-20 |#1|) (-10 -8 (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -1771 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT))) +(-10 -8 (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT))) (((-21) (-141)) (T -21)) -((-3042 (*1 *1 *1) (-4 *1 (-21))) (-3042 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-662 (-577)) (-10 -8 (-15 -3042 ($ $)) (-15 -3042 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1125) . T) ((-1242) . T)) -((-3801 (((-112) $) 10 T ELT)) (-3790 (($) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 19 T ELT))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-787) |#1|)) (-15 -3801 ((-112) |#1|)) (-15 -3790 (|#1|)) (-15 * (|#1| (-944) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-787) |#1|)) (-15 -3801 ((-112) |#1|)) (-15 -3790 (|#1|)) (-15 * (|#1| (-944) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT))) +((-3128 (*1 *1 *1) (-4 *1 (-21))) (-3128 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-667 (-577)) (-10 -8 (-15 -3128 ($ $)) (-15 -3128 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1130) . T) ((-1247) . T)) +((-4113 (((-112) $) 10 T ELT)) (-2305 (($) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 19 T ELT))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-792) |#1|)) (-15 -4113 ((-112) |#1|)) (-15 -2305 (|#1|)) (-15 * (|#1| (-949) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-792) |#1|)) (-15 -4113 ((-112) |#1|)) (-15 -2305 (|#1|)) (-15 * (|#1| (-949) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) (((-23) (-141)) (T -23)) -((-2754 (*1 *1) (-4 *1 (-23))) (-3790 (*1 *1) (-4 *1 (-23))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-787))))) -(-13 (-25) (-10 -8 (-15 (-2754) ($) -2609) (-15 -3790 ($) -2609) (-15 -3801 ((-112) $)) (-15 * ($ (-787) $)))) -(((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((* (($ (-944) $) 10 T ELT))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-944) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-944) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT))) +((-2839 (*1 *1) (-4 *1 (-23))) (-2305 (*1 *1) (-4 *1 (-23))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-792))))) +(-13 (-25) (-10 -8 (-15 (-2839) ($) -4212) (-15 -2305 ($) -4212) (-15 -4113 ((-112) $)) (-15 * ($ (-792) $)))) +(((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((* (($ (-949) $) 10 T ELT))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-949) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-949) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT))) (((-25) (-141)) (T -25)) -((-3031 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-944))))) -(-13 (-1125) (-10 -8 (-15 -3031 ($ $ $)) (-15 * ($ (-944) $)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-1884 (((-660 $) (-975 $)) 32 T ELT) (((-660 $) (-1197 $)) 16 T ELT) (((-660 $) (-1197 $) (-1201)) 20 T ELT)) (-2690 (($ (-975 $)) 30 T ELT) (($ (-1197 $)) 11 T ELT) (($ (-1197 $) (-1201)) 60 T ELT)) (-1344 (((-660 $) (-975 $)) 33 T ELT) (((-660 $) (-1197 $)) 18 T ELT) (((-660 $) (-1197 $) (-1201)) 19 T ELT)) (-3400 (($ (-975 $)) 31 T ELT) (($ (-1197 $)) 13 T ELT) (($ (-1197 $) (-1201)) NIL T ELT))) -(((-26 |#1|) (-10 -8 (-15 -1884 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1884 ((-660 |#1|) (-1197 |#1|))) (-15 -1884 ((-660 |#1|) (-975 |#1|))) (-15 -2690 (|#1| (-1197 |#1|) (-1201))) (-15 -2690 (|#1| (-1197 |#1|))) (-15 -2690 (|#1| (-975 |#1|))) (-15 -1344 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1344 ((-660 |#1|) (-1197 |#1|))) (-15 -1344 ((-660 |#1|) (-975 |#1|))) (-15 -3400 (|#1| (-1197 |#1|) (-1201))) (-15 -3400 (|#1| (-1197 |#1|))) (-15 -3400 (|#1| (-975 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1884 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1884 ((-660 |#1|) (-1197 |#1|))) (-15 -1884 ((-660 |#1|) (-975 |#1|))) (-15 -2690 (|#1| (-1197 |#1|) (-1201))) (-15 -2690 (|#1| (-1197 |#1|))) (-15 -2690 (|#1| (-975 |#1|))) (-15 -1344 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1344 ((-660 |#1|) (-1197 |#1|))) (-15 -1344 ((-660 |#1|) (-975 |#1|))) (-15 -3400 (|#1| (-1197 |#1|) (-1201))) (-15 -3400 (|#1| (-1197 |#1|))) (-15 -3400 (|#1| (-975 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-1884 (((-660 $) (-975 $)) 88 T ELT) (((-660 $) (-1197 $)) 87 T ELT) (((-660 $) (-1197 $) (-1201)) 86 T ELT)) (-2690 (($ (-975 $)) 91 T ELT) (($ (-1197 $)) 90 T ELT) (($ (-1197 $) (-1201)) 89 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-3070 (($ $) 100 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3790 (($) 18 T CONST)) (-1344 (((-660 $) (-975 $)) 94 T ELT) (((-660 $) (-1197 $)) 93 T ELT) (((-660 $) (-1197 $) (-1201)) 92 T ELT)) (-3400 (($ (-975 $)) 97 T ELT) (($ (-1197 $)) 96 T ELT) (($ (-1197 $) (-1201)) 95 T ELT)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 99 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 73 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 98 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) +((-3114 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-949))))) +(-13 (-1130) (-10 -8 (-15 -3114 ($ $ $)) (-15 * ($ (-949) $)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-4006 (((-665 $) (-980 $)) 32 T ELT) (((-665 $) (-1202 $)) 16 T ELT) (((-665 $) (-1202 $) (-1206)) 20 T ELT)) (-2370 (($ (-980 $)) 30 T ELT) (($ (-1202 $)) 11 T ELT) (($ (-1202 $) (-1206)) 60 T ELT)) (-3390 (((-665 $) (-980 $)) 33 T ELT) (((-665 $) (-1202 $)) 18 T ELT) (((-665 $) (-1202 $) (-1206)) 19 T ELT)) (-1940 (($ (-980 $)) 31 T ELT) (($ (-1202 $)) 13 T ELT) (($ (-1202 $) (-1206)) NIL T ELT))) +(((-26 |#1|) (-10 -8 (-15 -4006 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -4006 ((-665 |#1|) (-1202 |#1|))) (-15 -4006 ((-665 |#1|) (-980 |#1|))) (-15 -2370 (|#1| (-1202 |#1|) (-1206))) (-15 -2370 (|#1| (-1202 |#1|))) (-15 -2370 (|#1| (-980 |#1|))) (-15 -3390 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -3390 ((-665 |#1|) (-1202 |#1|))) (-15 -3390 ((-665 |#1|) (-980 |#1|))) (-15 -1940 (|#1| (-1202 |#1|) (-1206))) (-15 -1940 (|#1| (-1202 |#1|))) (-15 -1940 (|#1| (-980 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -4006 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -4006 ((-665 |#1|) (-1202 |#1|))) (-15 -4006 ((-665 |#1|) (-980 |#1|))) (-15 -2370 (|#1| (-1202 |#1|) (-1206))) (-15 -2370 (|#1| (-1202 |#1|))) (-15 -2370 (|#1| (-980 |#1|))) (-15 -3390 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -3390 ((-665 |#1|) (-1202 |#1|))) (-15 -3390 ((-665 |#1|) (-980 |#1|))) (-15 -1940 (|#1| (-1202 |#1|) (-1206))) (-15 -1940 (|#1| (-1202 |#1|))) (-15 -1940 (|#1| (-980 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4006 (((-665 $) (-980 $)) 88 T ELT) (((-665 $) (-1202 $)) 87 T ELT) (((-665 $) (-1202 $) (-1206)) 86 T ELT)) (-2370 (($ (-980 $)) 91 T ELT) (($ (-1202 $)) 90 T ELT) (($ (-1202 $) (-1206)) 89 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-3770 (($ $) 100 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2305 (($) 18 T CONST)) (-3390 (((-665 $) (-980 $)) 94 T ELT) (((-665 $) (-1202 $)) 93 T ELT) (((-665 $) (-1202 $) (-1206)) 92 T ELT)) (-1940 (($ (-980 $)) 97 T ELT) (($ (-1202 $)) 96 T ELT) (($ (-1202 $) (-1206)) 95 T ELT)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 99 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 73 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 98 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) (((-27) (-141)) (T -27)) -((-3400 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-3400 (*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) (-3400 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1344 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-2690 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-2690 (*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) (-2690 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) (-5 *2 (-660 *1))))) -(-13 (-375) (-1027) (-10 -8 (-15 -3400 ($ (-975 $))) (-15 -3400 ($ (-1197 $))) (-15 -3400 ($ (-1197 $) (-1201))) (-15 -1344 ((-660 $) (-975 $))) (-15 -1344 ((-660 $) (-1197 $))) (-15 -1344 ((-660 $) (-1197 $) (-1201))) (-15 -2690 ($ (-975 $))) (-15 -2690 ($ (-1197 $))) (-15 -2690 ($ (-1197 $) (-1201))) (-15 -1884 ((-660 $) (-975 $))) (-15 -1884 ((-660 $) (-1197 $))) (-15 -1884 ((-660 $) (-1197 $) (-1201))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1027) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-1884 (((-660 $) (-975 $)) NIL T ELT) (((-660 $) (-1197 $)) NIL T ELT) (((-660 $) (-1197 $) (-1201)) 55 T ELT) (((-660 $) $) 22 T ELT) (((-660 $) $ (-1201)) 46 T ELT)) (-2690 (($ (-975 $)) NIL T ELT) (($ (-1197 $)) NIL T ELT) (($ (-1197 $) (-1201)) 57 T ELT) (($ $) 20 T ELT) (($ $ (-1201)) 40 T ELT)) (-1344 (((-660 $) (-975 $)) NIL T ELT) (((-660 $) (-1197 $)) NIL T ELT) (((-660 $) (-1197 $) (-1201)) 53 T ELT) (((-660 $) $) 18 T ELT) (((-660 $) $ (-1201)) 48 T ELT)) (-3400 (($ (-975 $)) NIL T ELT) (($ (-1197 $)) NIL T ELT) (($ (-1197 $) (-1201)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1201)) 42 T ELT))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1884 ((-660 |#1|) |#1| (-1201))) (-15 -2690 (|#1| |#1| (-1201))) (-15 -1884 ((-660 |#1|) |#1|)) (-15 -2690 (|#1| |#1|)) (-15 -1344 ((-660 |#1|) |#1| (-1201))) (-15 -3400 (|#1| |#1| (-1201))) (-15 -1344 ((-660 |#1|) |#1|)) (-15 -3400 (|#1| |#1|)) (-15 -1884 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1884 ((-660 |#1|) (-1197 |#1|))) (-15 -1884 ((-660 |#1|) (-975 |#1|))) (-15 -2690 (|#1| (-1197 |#1|) (-1201))) (-15 -2690 (|#1| (-1197 |#1|))) (-15 -2690 (|#1| (-975 |#1|))) (-15 -1344 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1344 ((-660 |#1|) (-1197 |#1|))) (-15 -1344 ((-660 |#1|) (-975 |#1|))) (-15 -3400 (|#1| (-1197 |#1|) (-1201))) (-15 -3400 (|#1| (-1197 |#1|))) (-15 -3400 (|#1| (-975 |#1|)))) (-29 |#2|) (-569)) (T -28)) -NIL -(-10 -8 (-15 -1884 ((-660 |#1|) |#1| (-1201))) (-15 -2690 (|#1| |#1| (-1201))) (-15 -1884 ((-660 |#1|) |#1|)) (-15 -2690 (|#1| |#1|)) (-15 -1344 ((-660 |#1|) |#1| (-1201))) (-15 -3400 (|#1| |#1| (-1201))) (-15 -1344 ((-660 |#1|) |#1|)) (-15 -3400 (|#1| |#1|)) (-15 -1884 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1884 ((-660 |#1|) (-1197 |#1|))) (-15 -1884 ((-660 |#1|) (-975 |#1|))) (-15 -2690 (|#1| (-1197 |#1|) (-1201))) (-15 -2690 (|#1| (-1197 |#1|))) (-15 -2690 (|#1| (-975 |#1|))) (-15 -1344 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -1344 ((-660 |#1|) (-1197 |#1|))) (-15 -1344 ((-660 |#1|) (-975 |#1|))) (-15 -3400 (|#1| (-1197 |#1|) (-1201))) (-15 -3400 (|#1| (-1197 |#1|))) (-15 -3400 (|#1| (-975 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-1884 (((-660 $) (-975 $)) 88 T ELT) (((-660 $) (-1197 $)) 87 T ELT) (((-660 $) (-1197 $) (-1201)) 86 T ELT) (((-660 $) $) 138 T ELT) (((-660 $) $ (-1201)) 136 T ELT)) (-2690 (($ (-975 $)) 91 T ELT) (($ (-1197 $)) 90 T ELT) (($ (-1197 $) (-1201)) 89 T ELT) (($ $) 139 T ELT) (($ $ (-1201)) 137 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 (-1201)) $) 207 T ELT)) (-3024 (((-420 (-1197 $)) $ (-625 $)) 239 (|has| |#1| (-569)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-2002 (((-660 (-625 $)) $) 170 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2692 (($ $ (-660 (-625 $)) (-660 $)) 160 T ELT) (($ $ (-660 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-3070 (($ $) 100 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3790 (($) 18 T CONST)) (-1344 (((-660 $) (-975 $)) 94 T ELT) (((-660 $) (-1197 $)) 93 T ELT) (((-660 $) (-1197 $) (-1201)) 92 T ELT) (((-660 $) $) 142 T ELT) (((-660 $) $ (-1201)) 140 T ELT)) (-3400 (($ (-975 $)) 97 T ELT) (($ (-1197 $)) 96 T ELT) (($ (-1197 $) (-1201)) 95 T ELT) (($ $) 143 T ELT) (($ $ (-1201)) 141 T ELT)) (-2784 (((-3 (-975 |#1|) "failed") $) 258 (|has| |#1| (-1074)) ELT) (((-3 (-420 (-975 |#1|)) "failed") $) 241 (|has| |#1| (-569)) ELT) (((-3 |#1| "failed") $) 203 T ELT) (((-3 (-577) "failed") $) 200 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-1201) "failed") $) 194 T ELT) (((-3 (-625 $) "failed") $) 145 T ELT) (((-3 (-420 (-577)) "failed") $) 133 (-2811 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-2155 (((-975 |#1|) $) 257 (|has| |#1| (-1074)) ELT) (((-420 (-975 |#1|)) $) 240 (|has| |#1| (-569)) ELT) ((|#1| $) 202 T ELT) (((-577) $) 201 (|has| |#1| (-1063 (-577))) ELT) (((-1201) $) 193 T ELT) (((-625 $) $) 144 T ELT) (((-420 (-577)) $) 134 (-2811 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3436 (($ $ $) 61 T ELT)) (-2850 (((-705 |#1|) (-705 $)) 246 (|has| |#1| (-1074)) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 245 (|has| |#1| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 132 (-2811 (-2700 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT) (((-705 (-577)) (-705 $)) 131 (-2811 (-2700 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 199 (|has| |#1| (-905 (-391))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 198 (|has| |#1| (-905 (-577))) ELT)) (-4301 (($ (-660 $)) 164 T ELT) (($ $) 163 T ELT)) (-1653 (((-660 (-115)) $) 171 T ELT)) (-2085 (((-115) (-115)) 172 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2238 (((-112) $) 192 (|has| $ (-1063 (-577))) ELT)) (-3116 (($ $) 224 (|has| |#1| (-1074)) ELT)) (-2781 (((-1150 |#1| (-625 $)) $) 223 (|has| |#1| (-1074)) ELT)) (-4286 (($ $ (-577)) 99 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-3348 (((-1197 $) (-625 $)) 189 (|has| $ (-1074)) ELT)) (-2124 (($ (-1 $ $) (-625 $)) 178 T ELT)) (-3215 (((-3 (-625 $) "failed") $) 168 T ELT)) (-1512 (((-705 |#1|) (-1292 $)) 248 (|has| |#1| (-1074)) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 247 (|has| |#1| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 130 (-2811 (-2700 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT) (((-705 (-577)) (-1292 $)) 129 (-2811 (-2700 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2074 (((-660 (-625 $)) $) 169 T ELT)) (-2869 (($ (-115) (-660 $)) 177 T ELT) (($ (-115) $) 176 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 218 (|has| |#1| (-1137)) ELT)) (-2998 (((-3 (-2 (|:| |val| $) (|:| -1527 (-577))) "failed") $) 227 (|has| |#1| (-1074)) ELT)) (-3910 (((-3 (-660 $) "failed") $) 220 (|has| |#1| (-25)) ELT)) (-1400 (((-3 (-2 (|:| -2940 (-577)) (|:| |var| (-625 $))) "failed") $) 221 (|has| |#1| (-25)) ELT)) (-1966 (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-1201)) 226 (|has| |#1| (-1074)) ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-115)) 225 (|has| |#1| (-1074)) ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $) 219 (|has| |#1| (-1137)) ELT)) (-3152 (((-112) $ (-1201)) 175 T ELT) (((-112) $ (-115)) 174 T ELT)) (-3318 (($ $) 78 T ELT)) (-4181 (((-787) $) 167 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3327 (((-112) $) 205 T ELT)) (-3340 ((|#1| $) 206 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-1859 (((-112) $ (-1201)) 180 T ELT) (((-112) $ $) 179 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-3861 (((-112) $) 191 (|has| $ (-1063 (-577))) ELT)) (-3273 (($ $ (-1201) (-787) (-1 $ $)) 231 (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787) (-1 $ (-660 $))) 230 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) 229 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) 228 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-115)) (-660 $) (-1201)) 217 (|has| |#1| (-627 (-549))) ELT) (($ $ (-115) $ (-1201)) 216 (|has| |#1| (-627 (-549))) ELT) (($ $) 215 (|has| |#1| (-627 (-549))) ELT) (($ $ (-660 (-1201))) 214 (|has| |#1| (-627 (-549))) ELT) (($ $ (-1201)) 213 (|has| |#1| (-627 (-549))) ELT) (($ $ (-115) (-1 $ $)) 188 T ELT) (($ $ (-115) (-1 $ (-660 $))) 187 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 186 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 185 T ELT) (($ $ (-1201) (-1 $ $)) 184 T ELT) (($ $ (-1201) (-1 $ (-660 $))) 183 T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 182 T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 181 T ELT) (($ $ (-660 $) (-660 $)) 152 T ELT) (($ $ $ $) 151 T ELT) (($ $ (-305 $)) 150 T ELT) (($ $ (-660 (-305 $))) 149 T ELT) (($ $ (-660 (-625 $)) (-660 $)) 148 T ELT) (($ $ (-625 $) $) 147 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-2837 (($ (-115) (-660 $)) 157 T ELT) (($ (-115) $ $ $ $) 156 T ELT) (($ (-115) $ $ $) 155 T ELT) (($ (-115) $ $) 154 T ELT) (($ (-115) $) 153 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-1746 (($ $ $) 166 T ELT) (($ $) 165 T ELT)) (-3362 (($ $ (-660 (-1201)) (-660 (-787))) 253 (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787)) 252 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201))) 251 (|has| |#1| (-1074)) ELT) (($ $ (-1201)) 249 (|has| |#1| (-1074)) ELT)) (-3069 (($ $) 234 (|has| |#1| (-569)) ELT)) (-2797 (((-1150 |#1| (-625 $)) $) 233 (|has| |#1| (-569)) ELT)) (-1629 (($ $) 190 (|has| $ (-1074)) ELT)) (-2176 (((-549) $) 262 (|has| |#1| (-627 (-549))) ELT) (($ (-431 $)) 232 (|has| |#1| (-569)) ELT) (((-911 (-391)) $) 197 (|has| |#1| (-627 (-911 (-391)))) ELT) (((-911 (-577)) $) 196 (|has| |#1| (-627 (-911 (-577)))) ELT)) (-1328 (($ $ $) 261 (|has| |#1| (-486)) ELT)) (-3823 (($ $ $) 260 (|has| |#1| (-486)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-975 |#1|)) 259 (|has| |#1| (-1074)) ELT) (($ (-420 (-975 |#1|))) 242 (|has| |#1| (-569)) ELT) (($ (-420 (-975 (-420 |#1|)))) 238 (|has| |#1| (-569)) ELT) (($ (-975 (-420 |#1|))) 237 (|has| |#1| (-569)) ELT) (($ (-420 |#1|)) 236 (|has| |#1| (-569)) ELT) (($ (-1150 |#1| (-625 $))) 222 (|has| |#1| (-1074)) ELT) (($ |#1|) 204 T ELT) (($ (-1201)) 195 T ELT) (($ (-625 $)) 146 T ELT)) (-3907 (((-3 $ "failed") $) 244 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-1866 (($ (-660 $)) 162 T ELT) (($ $) 161 T ELT)) (-3123 (((-112) (-115)) 173 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2792 (($ (-1201) (-660 $)) 212 T ELT) (($ (-1201) $ $ $ $) 211 T ELT) (($ (-1201) $ $ $) 210 T ELT) (($ (-1201) $ $) 209 T ELT) (($ (-1201) $) 208 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-660 (-1201)) (-660 (-787))) 256 (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787)) 255 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201))) 254 (|has| |#1| (-1074)) ELT) (($ $ (-1201)) 250 (|has| |#1| (-1074)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 73 T ELT) (($ (-1150 |#1| (-625 $)) (-1150 |#1| (-625 $))) 235 (|has| |#1| (-569)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 98 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 243 (|has| |#1| (-174)) ELT) (($ |#1| $) 135 (|has| |#1| (-1074)) ELT))) +((-1940 (*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) (-1940 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) (-2370 (*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) (-2370 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) (-5 *2 (-665 *1))))) +(-13 (-375) (-1032) (-10 -8 (-15 -1940 ($ (-980 $))) (-15 -1940 ($ (-1202 $))) (-15 -1940 ($ (-1202 $) (-1206))) (-15 -3390 ((-665 $) (-980 $))) (-15 -3390 ((-665 $) (-1202 $))) (-15 -3390 ((-665 $) (-1202 $) (-1206))) (-15 -2370 ($ (-980 $))) (-15 -2370 ($ (-1202 $))) (-15 -2370 ($ (-1202 $) (-1206))) (-15 -4006 ((-665 $) (-980 $))) (-15 -4006 ((-665 $) (-1202 $))) (-15 -4006 ((-665 $) (-1202 $) (-1206))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1032) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-4006 (((-665 $) (-980 $)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-1202 $) (-1206)) 55 T ELT) (((-665 $) $) 22 T ELT) (((-665 $) $ (-1206)) 46 T ELT)) (-2370 (($ (-980 $)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-1202 $) (-1206)) 57 T ELT) (($ $) 20 T ELT) (($ $ (-1206)) 40 T ELT)) (-3390 (((-665 $) (-980 $)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-1202 $) (-1206)) 53 T ELT) (((-665 $) $) 18 T ELT) (((-665 $) $ (-1206)) 48 T ELT)) (-1940 (($ (-980 $)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-1202 $) (-1206)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1206)) 42 T ELT))) +(((-28 |#1| |#2|) (-10 -8 (-15 -4006 ((-665 |#1|) |#1| (-1206))) (-15 -2370 (|#1| |#1| (-1206))) (-15 -4006 ((-665 |#1|) |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -3390 ((-665 |#1|) |#1| (-1206))) (-15 -1940 (|#1| |#1| (-1206))) (-15 -3390 ((-665 |#1|) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -4006 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -4006 ((-665 |#1|) (-1202 |#1|))) (-15 -4006 ((-665 |#1|) (-980 |#1|))) (-15 -2370 (|#1| (-1202 |#1|) (-1206))) (-15 -2370 (|#1| (-1202 |#1|))) (-15 -2370 (|#1| (-980 |#1|))) (-15 -3390 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -3390 ((-665 |#1|) (-1202 |#1|))) (-15 -3390 ((-665 |#1|) (-980 |#1|))) (-15 -1940 (|#1| (-1202 |#1|) (-1206))) (-15 -1940 (|#1| (-1202 |#1|))) (-15 -1940 (|#1| (-980 |#1|)))) (-29 |#2|) (-569)) (T -28)) +NIL +(-10 -8 (-15 -4006 ((-665 |#1|) |#1| (-1206))) (-15 -2370 (|#1| |#1| (-1206))) (-15 -4006 ((-665 |#1|) |#1|)) (-15 -2370 (|#1| |#1|)) (-15 -3390 ((-665 |#1|) |#1| (-1206))) (-15 -1940 (|#1| |#1| (-1206))) (-15 -3390 ((-665 |#1|) |#1|)) (-15 -1940 (|#1| |#1|)) (-15 -4006 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -4006 ((-665 |#1|) (-1202 |#1|))) (-15 -4006 ((-665 |#1|) (-980 |#1|))) (-15 -2370 (|#1| (-1202 |#1|) (-1206))) (-15 -2370 (|#1| (-1202 |#1|))) (-15 -2370 (|#1| (-980 |#1|))) (-15 -3390 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -3390 ((-665 |#1|) (-1202 |#1|))) (-15 -3390 ((-665 |#1|) (-980 |#1|))) (-15 -1940 (|#1| (-1202 |#1|) (-1206))) (-15 -1940 (|#1| (-1202 |#1|))) (-15 -1940 (|#1| (-980 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4006 (((-665 $) (-980 $)) 88 T ELT) (((-665 $) (-1202 $)) 87 T ELT) (((-665 $) (-1202 $) (-1206)) 86 T ELT) (((-665 $) $) 138 T ELT) (((-665 $) $ (-1206)) 136 T ELT)) (-2370 (($ (-980 $)) 91 T ELT) (($ (-1202 $)) 90 T ELT) (($ (-1202 $) (-1206)) 89 T ELT) (($ $) 139 T ELT) (($ $ (-1206)) 137 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 (-1206)) $) 207 T ELT)) (-3732 (((-420 (-1202 $)) $ (-630 $)) 239 (|has| |#1| (-569)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-3613 (((-665 (-630 $)) $) 170 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-4313 (($ $ (-665 (-630 $)) (-665 $)) 160 T ELT) (($ $ (-665 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-3770 (($ $) 100 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2305 (($) 18 T CONST)) (-3390 (((-665 $) (-980 $)) 94 T ELT) (((-665 $) (-1202 $)) 93 T ELT) (((-665 $) (-1202 $) (-1206)) 92 T ELT) (((-665 $) $) 142 T ELT) (((-665 $) $ (-1206)) 140 T ELT)) (-1940 (($ (-980 $)) 97 T ELT) (($ (-1202 $)) 96 T ELT) (($ (-1202 $) (-1206)) 95 T ELT) (($ $) 143 T ELT) (($ $ (-1206)) 141 T ELT)) (-4335 (((-3 (-980 |#1|) "failed") $) 258 (|has| |#1| (-1079)) ELT) (((-3 (-420 (-980 |#1|)) "failed") $) 241 (|has| |#1| (-569)) ELT) (((-3 |#1| "failed") $) 203 T ELT) (((-3 (-577) "failed") $) 200 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1206) "failed") $) 194 T ELT) (((-3 (-630 $) "failed") $) 145 T ELT) (((-3 (-420 (-577)) "failed") $) 133 (-2867 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3783 (((-980 |#1|) $) 257 (|has| |#1| (-1079)) ELT) (((-420 (-980 |#1|)) $) 240 (|has| |#1| (-569)) ELT) ((|#1| $) 202 T ELT) (((-577) $) 201 (|has| |#1| (-1068 (-577))) ELT) (((-1206) $) 193 T ELT) (((-630 $) $) 144 T ELT) (((-420 (-577)) $) 134 (-2867 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3531 (($ $ $) 61 T ELT)) (-3187 (((-710 |#1|) (-710 $)) 246 (|has| |#1| (-1079)) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 245 (|has| |#1| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 132 (-2867 (-2790 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (((-710 (-577)) (-710 $)) 131 (-2867 (-2790 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 199 (|has| |#1| (-910 (-391))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 198 (|has| |#1| (-910 (-577))) ELT)) (-2754 (($ (-665 $)) 164 T ELT) (($ $) 163 T ELT)) (-1529 (((-665 (-115)) $) 171 T ELT)) (-3706 (((-115) (-115)) 172 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2310 (((-112) $) 192 (|has| $ (-1068 (-577))) ELT)) (-3608 (($ $) 224 (|has| |#1| (-1079)) ELT)) (-2417 (((-1155 |#1| (-630 $)) $) 223 (|has| |#1| (-1079)) ELT)) (-3368 (($ $ (-577)) 99 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2465 (((-1202 $) (-630 $)) 189 (|has| $ (-1079)) ELT)) (-4417 (($ (-1 $ $) (-630 $)) 178 T ELT)) (-2998 (((-3 (-630 $) "failed") $) 168 T ELT)) (-3163 (((-710 |#1|) (-1297 $)) 248 (|has| |#1| (-1079)) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 247 (|has| |#1| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 130 (-2867 (-2790 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (((-710 (-577)) (-1297 $)) 129 (-2867 (-2790 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3693 (((-665 (-630 $)) $) 169 T ELT)) (-4399 (($ (-115) (-665 $)) 177 T ELT) (($ (-115) $) 176 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 218 (|has| |#1| (-1142)) ELT)) (-2646 (((-3 (-2 (|:| |val| $) (|:| -2328 (-577))) "failed") $) 227 (|has| |#1| (-1079)) ELT)) (-1796 (((-3 (-665 $) "failed") $) 220 (|has| |#1| (-25)) ELT)) (-1901 (((-3 (-2 (|:| -4473 (-577)) (|:| |var| (-630 $))) "failed") $) 221 (|has| |#1| (-25)) ELT)) (-2547 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-1206)) 226 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-115)) 225 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $) 219 (|has| |#1| (-1142)) ELT)) (-4241 (((-112) $ (-1206)) 175 T ELT) (((-112) $ (-115)) 174 T ELT)) (-3981 (($ $) 78 T ELT)) (-2553 (((-792) $) 167 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3988 (((-112) $) 205 T ELT)) (-3999 ((|#1| $) 206 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3219 (((-112) $ (-1206)) 180 T ELT) (((-112) $ $) 179 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2820 (((-112) $) 191 (|has| $ (-1068 (-577))) ELT)) (-3373 (($ $ (-1206) (-792) (-1 $ $)) 231 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) 230 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) 229 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) 228 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 217 (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) $ (-1206)) 216 (|has| |#1| (-632 (-549))) ELT) (($ $) 215 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206))) 214 (|has| |#1| (-632 (-549))) ELT) (($ $ (-1206)) 213 (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) (-1 $ $)) 188 T ELT) (($ $ (-115) (-1 $ (-665 $))) 187 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 186 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 185 T ELT) (($ $ (-1206) (-1 $ $)) 184 T ELT) (($ $ (-1206) (-1 $ (-665 $))) 183 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 182 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 181 T ELT) (($ $ (-665 $) (-665 $)) 152 T ELT) (($ $ $ $) 151 T ELT) (($ $ (-305 $)) 150 T ELT) (($ $ (-665 (-305 $))) 149 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 148 T ELT) (($ $ (-630 $) $) 147 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-2916 (($ (-115) (-665 $)) 157 T ELT) (($ (-115) $ $ $ $) 156 T ELT) (($ (-115) $ $ $) 155 T ELT) (($ (-115) $ $) 154 T ELT) (($ (-115) $) 153 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-2106 (($ $ $) 166 T ELT) (($ $) 165 T ELT)) (-3641 (($ $ (-665 (-1206)) (-665 (-792))) 253 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 252 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 251 (|has| |#1| (-1079)) ELT) (($ $ (-1206)) 249 (|has| |#1| (-1079)) ELT)) (-1674 (($ $) 234 (|has| |#1| (-569)) ELT)) (-2429 (((-1155 |#1| (-630 $)) $) 233 (|has| |#1| (-569)) ELT)) (-4263 (($ $) 190 (|has| $ (-1079)) ELT)) (-4463 (((-549) $) 262 (|has| |#1| (-632 (-549))) ELT) (($ (-431 $)) 232 (|has| |#1| (-569)) ELT) (((-916 (-391)) $) 197 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-916 (-577)) $) 196 (|has| |#1| (-632 (-916 (-577)))) ELT)) (-4247 (($ $ $) 261 (|has| |#1| (-486)) ELT)) (-2486 (($ $ $) 260 (|has| |#1| (-486)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-980 |#1|)) 259 (|has| |#1| (-1079)) ELT) (($ (-420 (-980 |#1|))) 242 (|has| |#1| (-569)) ELT) (($ (-420 (-980 (-420 |#1|)))) 238 (|has| |#1| (-569)) ELT) (($ (-980 (-420 |#1|))) 237 (|has| |#1| (-569)) ELT) (($ (-420 |#1|)) 236 (|has| |#1| (-569)) ELT) (($ (-1155 |#1| (-630 $))) 222 (|has| |#1| (-1079)) ELT) (($ |#1|) 204 T ELT) (($ (-1206)) 195 T ELT) (($ (-630 $)) 146 T ELT)) (-2708 (((-3 $ "failed") $) 244 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2907 (($ (-665 $)) 162 T ELT) (($ $) 161 T ELT)) (-1448 (((-112) (-115)) 173 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-1781 (($ (-1206) (-665 $)) 212 T ELT) (($ (-1206) $ $ $ $) 211 T ELT) (($ (-1206) $ $ $) 210 T ELT) (($ (-1206) $ $) 209 T ELT) (($ (-1206) $) 208 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-665 (-1206)) (-665 (-792))) 256 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 255 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 254 (|has| |#1| (-1079)) ELT) (($ $ (-1206)) 250 (|has| |#1| (-1079)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 73 T ELT) (($ (-1155 |#1| (-630 $)) (-1155 |#1| (-630 $))) 235 (|has| |#1| (-569)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 98 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 243 (|has| |#1| (-174)) ELT) (($ |#1| $) 135 (|has| |#1| (-1079)) ELT))) (((-29 |#1|) (-141) (-569)) (T -29)) -((-3400 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1344 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) (-3400 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1344 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4)))) (-2690 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1884 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) (-2690 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1884 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-443 |t#1|) (-10 -8 (-15 -3400 ($ $)) (-15 -1344 ((-660 $) $)) (-15 -3400 ($ $ (-1201))) (-15 -1344 ((-660 $) $ (-1201))) (-15 -2690 ($ $)) (-15 -1884 ((-660 $) $)) (-15 -2690 ($ $ (-1201))) (-15 -1884 ((-660 $) $ (-1201))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 #1=(-420 (-975 |#1|))) |has| |#1| (-569)) ((-629 (-577)) . T) ((-629 #2=(-625 $)) . T) ((-629 #3=(-975 |#1|)) |has| |#1| (-1074)) ((-629 #4=(-1201)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-249) . T) ((-301) . T) ((-318) . T) ((-320 $) . T) ((-313) . T) ((-375) . T) ((-389 |#1|) |has| |#1| (-1074)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-443 |#1|) . T) ((-465) . T) ((-486) |has| |#1| (-486)) ((-527 (-625 $) $) . T) ((-527 $ $) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) -2811 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-662 $) . T) ((-664 #0#) . T) ((-664 #5=(-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-664 |#1|) -2811 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) . T) ((-654 #5#) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-654 |#1|) |has| |#1| (-1074)) ((-733 #0#) . T) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) . T) ((-742) . T) ((-915 $ #6=(-1201)) |has| |#1| (-1074)) ((-921 #6#) |has| |#1| (-1074)) ((-923 #6#) |has| |#1| (-1074)) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-943) . T) ((-1027) . T) ((-1063 (-420 (-577))) -2811 (|has| |#1| (-1063 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))))) ((-1063 #1#) |has| |#1| (-569)) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #2#) . T) ((-1063 #3#) |has| |#1| (-1074)) ((-1063 #4#) . T) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) |has| |#1| (-174)) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-2805 (((-1119 (-228)) $) NIL T ELT)) (-2788 (((-1119 (-228)) $) NIL T ELT)) (-2256 (($ $ (-228)) 164 T ELT)) (-2366 (($ (-975 (-577)) (-1201) (-1201) (-1119 (-420 (-577))) (-1119 (-420 (-577)))) 104 T ELT)) (-3874 (((-660 (-660 (-966 (-228)))) $) 180 T ELT)) (-3603 (((-880) $) 194 T ELT))) -(((-30) (-13 (-978) (-10 -8 (-15 -2366 ($ (-975 (-577)) (-1201) (-1201) (-1119 (-420 (-577))) (-1119 (-420 (-577))))) (-15 -2256 ($ $ (-228)))))) (T -30)) -((-2366 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-975 (-577))) (-5 *3 (-1201)) (-5 *4 (-1119 (-420 (-577)))) (-5 *1 (-30)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30))))) -(-13 (-978) (-10 -8 (-15 -2366 ($ (-975 (-577)) (-1201) (-1201) (-1119 (-420 (-577))) (-1119 (-420 (-577))))) (-15 -2256 ($ $ (-228))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 17 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-1160) $) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (((-1160) $) 9 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-31) (-13 (-1108) (-10 -8 (-15 -2762 ((-1160) $)) (-15 -2682 ((-1160) $))))) (T -31)) -((-2762 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31))))) -(-13 (-1108) (-10 -8 (-15 -2762 ((-1160) $)) (-15 -2682 ((-1160) $)))) -((-3400 ((|#2| (-1197 |#2|) (-1201)) 41 T ELT)) (-2085 (((-115) (-115)) 55 T ELT)) (-3348 (((-1197 |#2|) (-625 |#2|)) 149 (|has| |#1| (-1063 (-577))) ELT)) (-2598 ((|#2| |#1| (-577)) 137 (|has| |#1| (-1063 (-577))) ELT)) (-2106 ((|#2| (-1197 |#2|) |#2|) 29 T ELT)) (-4017 (((-880) (-660 |#2|)) 86 T ELT)) (-1629 ((|#2| |#2|) 144 (|has| |#1| (-1063 (-577))) ELT)) (-3123 (((-112) (-115)) 17 T ELT)) (** ((|#2| |#2| (-420 (-577))) 103 (|has| |#1| (-1063 (-577))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3400 (|#2| (-1197 |#2|) (-1201))) (-15 -2085 ((-115) (-115))) (-15 -3123 ((-112) (-115))) (-15 -2106 (|#2| (-1197 |#2|) |#2|)) (-15 -4017 ((-880) (-660 |#2|))) (IF (|has| |#1| (-1063 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -3348 ((-1197 |#2|) (-625 |#2|))) (-15 -1629 (|#2| |#2|)) (-15 -2598 (|#2| |#1| (-577)))) |%noBranch|)) (-569) (-443 |#1|)) (T -32)) -((-2598 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1063 *4)) (-4 *3 (-569)))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-1063 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-443 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1063 (-577))) (-4 *4 (-569)) (-5 *2 (-1197 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1063 (-577))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-443 *4)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) (-5 *2 (-880)) (-5 *1 (-32 *4 *5)))) (-2106 (*1 *2 *3 *2) (-12 (-5 *3 (-1197 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-443 *4)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-443 *3)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *2)) (-5 *4 (-1201)) (-4 *2 (-443 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569))))) -(-10 -7 (-15 -3400 (|#2| (-1197 |#2|) (-1201))) (-15 -2085 ((-115) (-115))) (-15 -3123 ((-112) (-115))) (-15 -2106 (|#2| (-1197 |#2|) |#2|)) (-15 -4017 ((-880) (-660 |#2|))) (IF (|has| |#1| (-1063 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -3348 ((-1197 |#2|) (-625 |#2|))) (-15 -1629 (|#2| |#2|)) (-15 -2598 (|#2| |#1| (-577)))) |%noBranch|)) -((-4403 (((-112) $ (-787)) 20 T ELT)) (-3790 (($) 10 T ELT)) (-1821 (((-112) $ (-787)) 19 T ELT)) (-3272 (((-112) $ (-787)) 17 T ELT)) (-3007 (((-112) $ $) 8 T ELT)) (-2856 (((-112) $) 15 T ELT))) -(((-33 |#1|) (-10 -8 (-15 -3790 (|#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787))) (-15 -2856 ((-112) |#1|)) (-15 -3007 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3790 (|#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787))) (-15 -2856 ((-112) |#1|)) (-15 -3007 ((-112) |#1| |#1|))) -((-4403 (((-112) $ (-787)) 8 T ELT)) (-3790 (($) 7 T CONST)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-1914 (($ $) 13 T ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) +((-1940 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-3390 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-3390 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *4)))) (-2370 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-4006 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3)))) (-2370 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-4006 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-443 |t#1|) (-10 -8 (-15 -1940 ($ $)) (-15 -3390 ((-665 $) $)) (-15 -1940 ($ $ (-1206))) (-15 -3390 ((-665 $) $ (-1206))) (-15 -2370 ($ $)) (-15 -4006 ((-665 $) $)) (-15 -2370 ($ $ (-1206))) (-15 -4006 ((-665 $) $ (-1206))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 #1=(-420 (-980 |#1|))) |has| |#1| (-569)) ((-634 (-577)) . T) ((-634 #2=(-630 $)) . T) ((-634 #3=(-980 |#1|)) |has| |#1| (-1079)) ((-634 #4=(-1206)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-249) . T) ((-301) . T) ((-318) . T) ((-320 $) . T) ((-313) . T) ((-375) . T) ((-389 |#1|) |has| |#1| (-1079)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-443 |#1|) . T) ((-465) . T) ((-486) |has| |#1| (-486)) ((-527 (-630 $) $) . T) ((-527 $ $) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) -2867 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-667 $) . T) ((-669 #0#) . T) ((-669 #5=(-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-669 |#1|) -2867 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) . T) ((-659 #5#) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-659 |#1|) |has| |#1| (-1079)) ((-738 #0#) . T) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) . T) ((-747) . T) ((-920 $ #6=(-1206)) |has| |#1| (-1079)) ((-926 #6#) |has| |#1| (-1079)) ((-928 #6#) |has| |#1| (-1079)) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-948) . T) ((-1032) . T) ((-1068 (-420 (-577))) -2867 (|has| |#1| (-1068 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577))))) ((-1068 #1#) |has| |#1| (-569)) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #2#) . T) ((-1068 #3#) |has| |#1| (-1079)) ((-1068 #4#) . T) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) |has| |#1| (-174)) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-4383 (((-1124 (-228)) $) NIL T ELT)) (-4374 (((-1124 (-228)) $) NIL T ELT)) (-2109 (($ $ (-228)) 164 T ELT)) (-3297 (($ (-980 (-577)) (-1206) (-1206) (-1124 (-420 (-577))) (-1124 (-420 (-577)))) 104 T ELT)) (-2489 (((-665 (-665 (-971 (-228)))) $) 180 T ELT)) (-3709 (((-885) $) 194 T ELT))) +(((-30) (-13 (-983) (-10 -8 (-15 -3297 ($ (-980 (-577)) (-1206) (-1206) (-1124 (-420 (-577))) (-1124 (-420 (-577))))) (-15 -2109 ($ $ (-228)))))) (T -30)) +((-3297 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-980 (-577))) (-5 *3 (-1206)) (-5 *4 (-1124 (-420 (-577)))) (-5 *1 (-30)))) (-2109 (*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30))))) +(-13 (-983) (-10 -8 (-15 -3297 ($ (-980 (-577)) (-1206) (-1206) (-1124 (-420 (-577))) (-1124 (-420 (-577))))) (-15 -2109 ($ $ (-228))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-1165) $) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (((-1165) $) 9 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-31) (-13 (-1113) (-10 -8 (-15 -4356 ((-1165) $)) (-15 -2773 ((-1165) $))))) (T -31)) +((-4356 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31))))) +(-13 (-1113) (-10 -8 (-15 -4356 ((-1165) $)) (-15 -2773 ((-1165) $)))) +((-1940 ((|#2| (-1202 |#2|) (-1206)) 41 T ELT)) (-3706 (((-115) (-115)) 55 T ELT)) (-2465 (((-1202 |#2|) (-630 |#2|)) 149 (|has| |#1| (-1068 (-577))) ELT)) (-3402 ((|#2| |#1| (-577)) 137 (|has| |#1| (-1068 (-577))) ELT)) (-2341 ((|#2| (-1202 |#2|) |#2|) 29 T ELT)) (-1744 (((-885) (-665 |#2|)) 86 T ELT)) (-4263 ((|#2| |#2|) 144 (|has| |#1| (-1068 (-577))) ELT)) (-1448 (((-112) (-115)) 17 T ELT)) (** ((|#2| |#2| (-420 (-577))) 103 (|has| |#1| (-1068 (-577))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1940 (|#2| (-1202 |#2|) (-1206))) (-15 -3706 ((-115) (-115))) (-15 -1448 ((-112) (-115))) (-15 -2341 (|#2| (-1202 |#2|) |#2|)) (-15 -1744 ((-885) (-665 |#2|))) (IF (|has| |#1| (-1068 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -2465 ((-1202 |#2|) (-630 |#2|))) (-15 -4263 (|#2| |#2|)) (-15 -3402 (|#2| |#1| (-577)))) |%noBranch|)) (-569) (-443 |#1|)) (T -32)) +((-3402 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1068 *4)) (-4 *3 (-569)))) (-4263 (*1 *2 *2) (-12 (-4 *3 (-1068 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-443 *3)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1068 (-577))) (-4 *4 (-569)) (-5 *2 (-1202 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1068 (-577))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-443 *4)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) (-5 *2 (-885)) (-5 *1 (-32 *4 *5)))) (-2341 (*1 *2 *3 *2) (-12 (-5 *3 (-1202 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-443 *4)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-443 *3)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *2)) (-5 *4 (-1206)) (-4 *2 (-443 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569))))) +(-10 -7 (-15 -1940 (|#2| (-1202 |#2|) (-1206))) (-15 -3706 ((-115) (-115))) (-15 -1448 ((-112) (-115))) (-15 -2341 (|#2| (-1202 |#2|) |#2|)) (-15 -1744 ((-885) (-665 |#2|))) (IF (|has| |#1| (-1068 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -2465 ((-1202 |#2|) (-630 |#2|))) (-15 -4263 (|#2| |#2|)) (-15 -3402 (|#2| |#1| (-577)))) |%noBranch|)) +((-1777 (((-112) $ (-792)) 20 T ELT)) (-2305 (($) 10 T ELT)) (-3862 (((-112) $ (-792)) 19 T ELT)) (-3438 (((-112) $ (-792)) 17 T ELT)) (-3701 (((-112) $ $) 8 T ELT)) (-2687 (((-112) $) 15 T ELT))) +(((-33 |#1|) (-10 -8 (-15 -2305 (|#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792))) (-15 -2687 ((-112) |#1|)) (-15 -3701 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -2305 (|#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792))) (-15 -2687 ((-112) |#1|)) (-15 -3701 ((-112) |#1| |#1|))) +((-1777 (((-112) $ (-792)) 8 T ELT)) (-2305 (($) 7 T CONST)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-1977 (($ $) 13 T ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) (((-34) (-141)) (T -34)) -((-3007 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1914 (*1 *1 *1) (-4 *1 (-34))) (-2693 (*1 *1) (-4 *1 (-34))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3272 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) (-1821 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) (-4403 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) (-3790 (*1 *1) (-4 *1 (-34))) (-3501 (*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-34)) (-5 *2 (-787))))) -(-13 (-1242) (-10 -8 (-15 -3007 ((-112) $ $)) (-15 -1914 ($ $)) (-15 -2693 ($)) (-15 -2856 ((-112) $)) (-15 -3272 ((-112) $ (-787))) (-15 -1821 ((-112) $ (-787))) (-15 -4403 ((-112) $ (-787))) (-15 -3790 ($) -2609) (IF (|has| $ (-6 -4470)) (-15 -3501 ((-787) $)) |%noBranch|))) -(((-1242) . T)) -((-2722 (($ $) 11 T ELT)) (-2694 (($ $) 10 T ELT)) (-2748 (($ $) 9 T ELT)) (-2897 (($ $) 8 T ELT)) (-2734 (($ $) 7 T ELT)) (-2708 (($ $) 6 T ELT))) +((-3701 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1977 (*1 *1 *1) (-4 *1 (-34))) (-2833 (*1 *1) (-4 *1 (-34))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3438 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) (-3862 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) (-1777 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) (-2305 (*1 *1) (-4 *1 (-34))) (-3600 (*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-34)) (-5 *2 (-792))))) +(-13 (-1247) (-10 -8 (-15 -3701 ((-112) $ $)) (-15 -1977 ($ $)) (-15 -2833 ($)) (-15 -2687 ((-112) $)) (-15 -3438 ((-112) $ (-792))) (-15 -3862 ((-112) $ (-792))) (-15 -1777 ((-112) $ (-792))) (-15 -2305 ($) -4212) (IF (|has| $ (-6 -4499)) (-15 -3600 ((-792) $)) |%noBranch|))) +(((-1247) . T)) +((-1727 (($ $) 11 T ELT)) (-1703 (($ $) 10 T ELT)) (-1748 (($ $) 9 T ELT)) (-4468 (($ $) 8 T ELT)) (-1737 (($ $) 7 T ELT)) (-1715 (($ $) 6 T ELT))) (((-35) (-141)) (T -35)) -((-2722 (*1 *1 *1) (-4 *1 (-35))) (-2694 (*1 *1 *1) (-4 *1 (-35))) (-2748 (*1 *1 *1) (-4 *1 (-35))) (-2897 (*1 *1 *1) (-4 *1 (-35))) (-2734 (*1 *1 *1) (-4 *1 (-35))) (-2708 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2708 ($ $)) (-15 -2734 ($ $)) (-15 -2897 ($ $)) (-15 -2748 ($ $)) (-15 -2694 ($ $)) (-15 -2722 ($ $)))) -((-3489 (((-112) $ $) 20 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ELT)) (-3145 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 127 T ELT)) (-4148 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 150 T ELT)) (-3063 (($ $) 148 T ELT)) (-4212 (($) 73 T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 72 T ELT)) (-2790 (((-1297) $ |#1| |#1|) 100 (|has| $ (-6 -4471)) ELT) (((-1297) $ (-577) (-577)) 180 (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) 161 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 211 T ELT) (((-112) $) 205 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-3246 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 202 (|has| $ (-6 -4471)) ELT) (($ $) 201 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) (|has| $ (-6 -4471))) ELT)) (-2312 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 212 T ELT) (($ $) 206 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 136 (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 157 (|has| $ (-6 -4471)) ELT)) (-2946 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 159 (|has| $ (-6 -4471)) ELT)) (-3455 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 155 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#2| $ |#1| |#2|) 74 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 191 (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-1259 (-577)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 162 (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "last" (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 160 (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) 158 (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "first" (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 156 (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "value" (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 135 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 134 (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 46 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 218 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 56 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 177 (|has| $ (-6 -4470)) ELT)) (-4135 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 149 T ELT)) (-2258 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3790 (($) 7 T CONST)) (-1932 (($ $) 203 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 213 T ELT)) (-1663 (($ $ (-787)) 144 T ELT) (($ $) 142 T ELT)) (-3699 (($ $) 216 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-3289 (($ $) 59 (-2811 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470)))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 47 (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 222 T ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 217 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 55 (|has| $ (-6 -4470)) ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 176 (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 57 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 54 (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 53 (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 178 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 175 (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 174 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 192 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) 89 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) 190 T ELT)) (-3919 (((-112) $) 194 T ELT)) (-3728 (((-577) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 210 T ELT) (((-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 209 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT) (((-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) 208 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 31 (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) 80 (|has| $ (-6 -4470)) ELT) (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 116 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 125 T ELT)) (-2725 (((-112) $ $) 133 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-4223 (($ (-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 170 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 ((|#1| $) 97 (|has| |#1| (-865)) ELT) (((-577) $) 182 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 195 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-1615 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ $) 219 T ELT) (($ $ $) 215 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-1334 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ $) 214 T ELT) (($ $ $) 207 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 30 (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) 81 (|has| $ (-6 -4470)) ELT) (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 117 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT) (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 ((|#1| $) 96 (|has| |#1| (-865)) ELT) (((-577) $) 183 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 196 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 35 (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4471)) ELT) (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 112 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT) (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ $) 167 T ELT) (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 111 T ELT)) (-2880 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 227 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2935 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 130 T ELT)) (-2284 (((-112) $) 126 T ELT)) (-2045 (((-1183) $) 23 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3942 (($ $ (-787)) 147 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 145 T ELT)) (-3740 (((-660 |#1|) $) 64 T ELT)) (-2490 (((-112) |#1| $) 65 T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 40 T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 41 T ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) 221 T ELT) (($ $ $ (-577)) 220 T ELT)) (-2218 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) 164 T ELT) (($ $ $ (-577)) 163 T ELT)) (-3445 (((-660 |#1|) $) 94 T ELT) (((-660 (-577)) $) 185 T ELT)) (-2187 (((-112) |#1| $) 93 T ELT) (((-112) (-577) $) 186 T ELT)) (-1440 (((-1145) $) 22 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-1652 ((|#2| $) 98 (|has| |#1| (-865)) ELT) (($ $ (-787)) 141 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 139 T ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 52 T ELT) (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 173 T ELT)) (-2529 (($ $ |#2|) 99 (|has| $ (-6 -4471)) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 181 (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 42 T ELT)) (-1861 (((-112) $) 193 T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 33 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 114 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) 27 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 26 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 25 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 24 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 123 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 122 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 121 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) 120 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 184 (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3908 (((-660 |#2|) $) 92 T ELT) (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 187 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 189 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) 188 T ELT) (($ $ (-1259 (-577))) 171 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "last") 146 T ELT) (($ $ "rest") 143 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "first") 140 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "value") 128 T ELT)) (-3190 (((-577) $ $) 131 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 49 T ELT)) (-3839 (($ $ (-577)) 224 T ELT) (($ $ (-1259 (-577))) 223 T ELT)) (-3490 (($ $ (-577)) 166 T ELT) (($ $ (-1259 (-577))) 165 T ELT)) (-3834 (((-112) $) 129 T ELT)) (-4243 (($ $) 153 T ELT)) (-1839 (($ $) 154 (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) 152 T ELT)) (-3855 (($ $) 151 T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) |#2| $) 82 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 115 (|has| $ (-6 -4470)) ELT)) (-2875 (($ $ $ (-577)) 204 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549)))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 51 T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 172 T ELT)) (-1584 (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 226 T ELT) (($ $ $) 225 T ELT)) (-1685 (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 169 T ELT) (($ (-660 $)) 168 T ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 138 T ELT) (($ $ $) 137 T ELT)) (-3603 (((-880) $) 18 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880)))) ELT)) (-2333 (((-660 $) $) 124 T ELT)) (-1444 (((-112) $ $) 132 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-2726 (((-112) $ $) 21 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 43 T ELT)) (-3953 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") |#1| $) 110 T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 34 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 113 (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) 197 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2978 (((-112) $ $) 199 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2949 (((-112) $ $) 19 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ELT)) (-2988 (((-112) $ $) 198 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2971 (((-112) $ $) 200 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-36 |#1| |#2|) (-141) (-1125) (-1125)) (T -36)) -((-3953 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| -4323 *3) (|:| -2438 *4)))))) -(-13 (-1218 |t#1| |t#2|) (-682 (-2 (|:| -4323 |t#1|) (|:| -2438 |t#2|))) (-10 -8 (-15 -3953 ((-3 (-2 (|:| -4323 |t#1|) (|:| -2438 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) ((-102) -2811 (|has| |#2| (-1125)) (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ((-626 (-880)) -2811 (|has| |#2| (-1125)) (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880)))) ((-152 #1=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) ((-627 (-549)) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 #2=(-577) #1#) . T) ((-297 (-1259 (-577)) $) . T) ((-297 |#1| |#2|) . T) ((-299 #2# #1#) . T) ((-299 |#1| |#2|) . T) ((-320 #1#) -12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-293 #1#) . T) ((-385 #1#) . T) ((-502 #1#) . T) ((-502 |#2|) . T) ((-617 #2# #1#) . T) ((-617 |#1| |#2|) . T) ((-527 #1# #1#) -12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-623 |#1| |#2|) . T) ((-667 #1#) . T) ((-682 #1#) . T) ((-865) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ((-868) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ((-1035 #1#) . T) ((-1125) -2811 (|has| |#2| (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865))) ((-1174 #1#) . T) ((-1218 |#1| |#2|) . T) ((-1242) . T) ((-1280 #1#) . T)) -((-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -8 (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +((-1727 (*1 *1 *1) (-4 *1 (-35))) (-1703 (*1 *1 *1) (-4 *1 (-35))) (-1748 (*1 *1 *1) (-4 *1 (-35))) (-4468 (*1 *1 *1) (-4 *1 (-35))) (-1737 (*1 *1 *1) (-4 *1 (-35))) (-1715 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -1715 ($ $)) (-15 -1737 ($ $)) (-15 -4468 ($ $)) (-15 -1748 ($ $)) (-15 -1703 ($ $)) (-15 -1727 ($ $)))) +((-3586 (((-112) $ $) 20 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ELT)) (-3254 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 127 T ELT)) (-1893 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 150 T ELT)) (-2688 (($ $) 148 T ELT)) (-3223 (($) 73 T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 72 T ELT)) (-1935 (((-1302) $ |#1| |#1|) 100 (|has| $ (-6 -4500)) ELT) (((-1302) $ (-577) (-577)) 180 (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) 161 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 211 T ELT) (((-112) $) 205 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-2629 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 202 (|has| $ (-6 -4500)) ELT) (($ $) 201 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) (|has| $ (-6 -4500))) ELT)) (-1381 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 212 T ELT) (($ $) 206 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 136 (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 157 (|has| $ (-6 -4500)) ELT)) (-1968 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 159 (|has| $ (-6 -4500)) ELT)) (-2283 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 155 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#2| $ |#1| |#2|) 74 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 191 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-1264 (-577)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 162 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "last" (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 160 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 158 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "first" (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 156 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "value" (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 135 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 134 (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 46 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 218 T ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 56 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 177 (|has| $ (-6 -4499)) ELT)) (-1883 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 149 T ELT)) (-2359 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2305 (($) 7 T CONST)) (-2609 (($ $) 203 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 213 T ELT)) (-4410 (($ $ (-792)) 144 T ELT) (($ $) 142 T ELT)) (-2697 (($ $) 216 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-3589 (($ $) 59 (-2867 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499)))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 47 (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 222 T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 217 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 55 (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 176 (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 57 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 54 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 53 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 178 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 175 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 174 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 192 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) 89 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) 190 T ELT)) (-4236 (((-112) $) 194 T ELT)) (-3948 (((-577) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 210 T ELT) (((-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 209 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT) (((-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) 208 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 31 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 80 (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 116 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 125 T ELT)) (-3977 (((-112) $ $) 133 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-3236 (($ (-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 170 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 ((|#1| $) 97 (|has| |#1| (-870)) ELT) (((-577) $) 182 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 195 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3836 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ $) 219 T ELT) (($ $ $) 215 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3771 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ $) 214 T ELT) (($ $ $) 207 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 30 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 81 (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 117 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT) (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 ((|#1| $) 96 (|has| |#1| (-870)) ELT) (((-577) $) 183 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 196 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 35 (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4500)) ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 112 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ $) 167 T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 111 T ELT)) (-4415 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 227 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3196 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 130 T ELT)) (-3188 (((-112) $) 126 T ELT)) (-3235 (((-1188) $) 23 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-4026 (($ $ (-792)) 147 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 145 T ELT)) (-4001 (((-665 |#1|) $) 64 T ELT)) (-4065 (((-112) |#1| $) 65 T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 40 T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 41 T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) 221 T ELT) (($ $ $ (-577)) 220 T ELT)) (-2317 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) 164 T ELT) (($ $ $ (-577)) 163 T ELT)) (-2233 (((-665 |#1|) $) 94 T ELT) (((-665 (-577)) $) 185 T ELT)) (-3972 (((-112) |#1| $) 93 T ELT) (((-112) (-577) $) 186 T ELT)) (-1470 (((-1150) $) 22 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-4397 ((|#2| $) 98 (|has| |#1| (-870)) ELT) (($ $ (-792)) 141 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 139 T ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 52 T ELT) (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 173 T ELT)) (-2561 (($ $ |#2|) 99 (|has| $ (-6 -4500)) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 181 (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 42 T ELT)) (-3661 (((-112) $) 193 T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 33 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 114 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) 27 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 26 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 25 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 24 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 123 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 122 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 121 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) 120 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 184 (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-4059 (((-665 |#2|) $) 92 T ELT) (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 187 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 189 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) 188 T ELT) (($ $ (-1264 (-577))) 171 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "last") 146 T ELT) (($ $ "rest") 143 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "first") 140 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "value") 128 T ELT)) (-2409 (((-577) $ $) 131 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 49 T ELT)) (-4068 (($ $ (-577)) 224 T ELT) (($ $ (-1264 (-577))) 223 T ELT)) (-3587 (($ $ (-577)) 166 T ELT) (($ $ (-1264 (-577))) 165 T ELT)) (-2625 (((-112) $) 129 T ELT)) (-1659 (($ $) 153 T ELT)) (-1697 (($ $) 154 (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) 152 T ELT)) (-2554 (($ $) 151 T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) |#2| $) 82 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 115 (|has| $ (-6 -4499)) ELT)) (-2338 (($ $ $ (-577)) 204 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549)))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 51 T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 172 T ELT)) (-2562 (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 226 T ELT) (($ $ $) 225 T ELT)) (-1702 (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 169 T ELT) (($ (-665 $)) 168 T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 138 T ELT) (($ $ $) 137 T ELT)) (-3709 (((-885) $) 18 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885)))) ELT)) (-3217 (((-665 $) $) 124 T ELT)) (-2256 (((-112) $ $) 132 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-2643 (((-112) $ $) 21 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 43 T ELT)) (-4038 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") |#1| $) 110 T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 34 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 113 (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) 197 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3054 (((-112) $ $) 199 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3018 (((-112) $ $) 19 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ELT)) (-3067 (((-112) $ $) 198 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3042 (((-112) $ $) 200 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-36 |#1| |#2|) (-141) (-1130) (-1130)) (T -36)) +((-4038 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| -4376 *3) (|:| -2727 *4)))))) +(-13 (-1223 |t#1| |t#2|) (-687 (-2 (|:| -4376 |t#1|) (|:| -2727 |t#2|))) (-10 -8 (-15 -4038 ((-3 (-2 (|:| -4376 |t#1|) (|:| -2727 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) ((-102) -2867 (|has| |#2| (-1130)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ((-631 (-885)) -2867 (|has| |#2| (-1130)) (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885)))) ((-152 #1=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) ((-632 (-549)) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 #2=(-577) #1#) . T) ((-297 (-1264 (-577)) $) . T) ((-297 |#1| |#2|) . T) ((-299 #2# #1#) . T) ((-299 |#1| |#2|) . T) ((-320 #1#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-293 #1#) . T) ((-385 #1#) . T) ((-502 #1#) . T) ((-502 |#2|) . T) ((-617 #2# #1#) . T) ((-617 |#1| |#2|) . T) ((-527 #1# #1#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-628 |#1| |#2|) . T) ((-672 #1#) . T) ((-687 #1#) . T) ((-870) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ((-873) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ((-1040 #1#) . T) ((-1130) -2867 (|has| |#2| (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870))) ((-1179 #1#) . T) ((-1223 |#1| |#2|) . T) ((-1247) . T) ((-1285 #1#) . T)) +((-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1074) (-733 |t#1|) (-629 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3333 (((-431 |#1|) |#1|) 41 T ELT)) (-3056 (((-431 |#1|) |#1|) 30 T ELT) (((-431 |#1|) |#1| (-660 (-48))) 33 T ELT)) (-4140 (((-112) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3056 ((-431 |#1|) |#1| (-660 (-48)))) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3333 ((-431 |#1|) |#1|)) (-15 -4140 ((-112) |#1|))) (-1268 (-48))) (T -39)) -((-4140 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) (-3333 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48)))))) -(-10 -7 (-15 -3056 ((-431 |#1|) |#1| (-660 (-48)))) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3333 ((-431 |#1|) |#1|)) (-15 -4140 ((-112) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-4326 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4122 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3547 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4436 (((-705 (-420 |#2|)) (-1292 $)) NIL T ELT) (((-705 (-420 |#2|))) NIL T ELT)) (-2219 (((-420 |#2|) $) NIL T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2435 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3373 (((-787)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2944 (((-112)) NIL T ELT)) (-4310 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| (-420 |#2|) (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577)))) ELT) (((-420 |#2|) $) NIL T ELT)) (-1911 (($ (-1292 (-420 |#2|)) (-1292 $)) NIL T ELT) (($ (-1292 (-420 |#2|))) 61 T ELT) (($ (-1292 |#2|) |#2|) 131 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3436 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2678 (((-705 (-420 |#2|)) $ (-1292 $)) NIL T ELT) (((-705 (-420 |#2|)) $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-420 |#2|)) (-705 $)) NIL T ELT)) (-4264 (((-1292 $) (-1292 $)) NIL T ELT)) (-2498 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3651 (((-660 (-660 |#1|))) NIL (|has| |#1| (-380)) ELT)) (-2648 (((-112) |#1| |#1|) NIL T ELT)) (-3503 (((-944)) NIL T ELT)) (-2352 (($) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2463 (((-112)) NIL T ELT)) (-3013 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-3447 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2308 (($ $) NIL T ELT)) (-1742 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-4402 (((-112) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1865 (($ $ (-787)) NIL (|has| (-420 |#2|) (-361)) ELT) (($ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2182 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2536 (((-944) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-849 (-944)) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2561 (((-787)) NIL T ELT)) (-2960 (((-1292 $) (-1292 $)) 106 T ELT)) (-4021 (((-420 |#2|) $) NIL T ELT)) (-4292 (((-660 (-975 |#1|)) (-1201)) NIL (|has| |#1| (-375)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3810 ((|#3| $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2144 (((-944) $) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2482 ((|#3| $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-1292 $) $) NIL T ELT) (((-705 (-420 |#2|)) (-1292 $)) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2706 (((-1297) (-787)) 84 T ELT)) (-4215 (((-705 (-420 |#2|))) 56 T ELT)) (-1450 (((-705 (-420 |#2|))) 49 T ELT)) (-3318 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2764 (($ (-1292 |#2|) |#2|) 132 T ELT)) (-2812 (((-705 (-420 |#2|))) 50 T ELT)) (-2459 (((-705 (-420 |#2|))) 48 T ELT)) (-2997 (((-2 (|:| |num| (-705 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-2514 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-4238 (((-1292 $)) 47 T ELT)) (-2461 (((-1292 $)) 46 T ELT)) (-4421 (((-112) $) NIL T ELT)) (-1363 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-3457 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-3251 (($ (-944)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2541 (((-3 |#2| "failed")) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2525 (((-787)) NIL T ELT)) (-3428 (($) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3056 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4167 (((-787) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2837 ((|#1| $ |#1| |#1|) NIL T ELT)) (-4404 (((-3 |#2| "failed")) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4447 (((-420 |#2|) (-1292 $)) NIL T ELT) (((-420 |#2|)) 44 T ELT)) (-3816 (((-787) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 (-787) "failed") $ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3362 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-3285 (((-705 (-420 |#2|)) (-1292 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1629 ((|#3|) 55 T ELT)) (-2932 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2729 (((-1292 (-420 |#2|)) $ (-1292 $)) NIL T ELT) (((-705 (-420 |#2|)) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 (-420 |#2|)) $) 62 T ELT) (((-705 (-420 |#2|)) (-1292 $)) 107 T ELT)) (-2176 (((-1292 (-420 |#2|)) $) NIL T ELT) (($ (-1292 (-420 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2714 (((-1292 $) (-1292 $)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 |#2|)) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| (-420 |#2|) (-1063 (-420 (-577)))) (|has| (-420 |#2|) (-375))) ELT) (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3907 (($ $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)) ELT)) (-2600 ((|#3| $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-3033 (((-112)) 42 T ELT)) (-1545 (((-112) |#1|) 54 T ELT) (((-112) |#2|) 138 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3998 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-2335 (((-112)) NIL T ELT)) (-2754 (($) 17 T CONST)) (-2767 (($) 27 T CONST)) (-2136 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 |#2|)) NIL T ELT) (($ (-420 |#2|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-1297) (-787))))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) |#3|) (T -40)) -((-2706 (*1 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *2 (-1297)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1268 (-420 *5))) (-14 *7 *6)))) -(-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-1297) (-787))))) -((-2361 ((|#2| |#2|) 47 T ELT)) (-2507 ((|#2| |#2|) 139 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))) ELT)) (-4059 ((|#2| |#2|) 100 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))) ELT)) (-1432 ((|#2| |#2|) 101 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))) ELT)) (-4034 ((|#2| (-115) |#2| (-787)) 135 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))) ELT)) (-4084 (((-1197 |#2|) |#2|) 44 T ELT)) (-4187 ((|#2| |#2| (-660 (-625 |#2|))) 18 T ELT) ((|#2| |#2| (-660 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2361 (|#2| |#2|)) (-15 -4187 (|#2| |#2|)) (-15 -4187 (|#2| |#2| |#2|)) (-15 -4187 (|#2| |#2| (-660 |#2|))) (-15 -4187 (|#2| |#2| (-660 (-625 |#2|)))) (-15 -4084 ((-1197 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1063 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -1432 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -4034 (|#2| (-115) |#2| (-787)))) |%noBranch|) |%noBranch|)) (-569) (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 |#1| (-625 $)) $)) (-15 -2797 ((-1150 |#1| (-625 $)) $)) (-15 -3603 ($ (-1150 |#1| (-625 $))))))) (T -41)) -((-4034 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-787)) (-4 *5 (-13 (-465) (-1063 (-577)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *5 (-625 $)) $)) (-15 -2797 ((-1150 *5 (-625 $)) $)) (-15 -3603 ($ (-1150 *5 (-625 $))))))))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) (-15 -2797 ((-1150 *3 (-625 $)) $)) (-15 -3603 ($ (-1150 *3 (-625 $))))))))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) (-15 -2797 ((-1150 *3 (-625 $)) $)) (-15 -3603 ($ (-1150 *3 (-625 $))))))))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) (-15 -2797 ((-1150 *3 (-625 $)) $)) (-15 -3603 ($ (-1150 *3 (-625 $))))))))) (-4084 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1197 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *4 (-625 $)) $)) (-15 -2797 ((-1150 *4 (-625 $)) $)) (-15 -3603 ($ (-1150 *4 (-625 $))))))))) (-4187 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-625 *2))) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *4 (-625 $)) $)) (-15 -2797 ((-1150 *4 (-625 $)) $)) (-15 -3603 ($ (-1150 *4 (-625 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-4187 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *4 (-625 $)) $)) (-15 -2797 ((-1150 *4 (-625 $)) $)) (-15 -3603 ($ (-1150 *4 (-625 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-4187 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) (-15 -2797 ((-1150 *3 (-625 $)) $)) (-15 -3603 ($ (-1150 *3 (-625 $))))))))) (-4187 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) (-15 -2797 ((-1150 *3 (-625 $)) $)) (-15 -3603 ($ (-1150 *3 (-625 $))))))))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) (-15 -2797 ((-1150 *3 (-625 $)) $)) (-15 -3603 ($ (-1150 *3 (-625 $)))))))))) -(-10 -7 (-15 -2361 (|#2| |#2|)) (-15 -4187 (|#2| |#2|)) (-15 -4187 (|#2| |#2| |#2|)) (-15 -4187 (|#2| |#2| (-660 |#2|))) (-15 -4187 (|#2| |#2| (-660 (-625 |#2|)))) (-15 -4084 ((-1197 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1063 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -1432 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -4034 (|#2| (-115) |#2| (-787)))) |%noBranch|) |%noBranch|)) -((-3056 (((-431 (-1197 |#3|)) (-1197 |#3|) (-660 (-48))) 23 T ELT) (((-431 |#3|) |#3| (-660 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3056 ((-431 |#3|) |#3| (-660 (-48)))) (-15 -3056 ((-431 (-1197 |#3|)) (-1197 |#3|) (-660 (-48))))) (-865) (-809) (-972 (-48) |#2| |#1|)) (T -42)) -((-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *7 (-972 (-48) *6 *5)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-972 (-48) *6 *5))))) -(-10 -7 (-15 -3056 ((-431 |#3|) |#3| (-660 (-48)))) (-15 -3056 ((-431 (-1197 |#3|)) (-1197 |#3|) (-660 (-48))))) -((-1793 (((-787) |#2|) 70 T ELT)) (-3896 (((-787) |#2|) 74 T ELT)) (-2201 (((-660 |#2|)) 37 T ELT)) (-1464 (((-787) |#2|) 73 T ELT)) (-3382 (((-787) |#2|) 69 T ELT)) (-2657 (((-787) |#2|) 72 T ELT)) (-1757 (((-660 (-705 |#1|))) 65 T ELT)) (-1683 (((-660 |#2|)) 60 T ELT)) (-3595 (((-660 |#2|) |#2|) 48 T ELT)) (-4213 (((-660 |#2|)) 62 T ELT)) (-4263 (((-660 |#2|)) 61 T ELT)) (-2043 (((-660 (-705 |#1|))) 53 T ELT)) (-2083 (((-660 |#2|)) 59 T ELT)) (-3845 (((-660 |#2|) |#2|) 47 T ELT)) (-2116 (((-660 |#2|)) 55 T ELT)) (-1409 (((-660 (-705 |#1|))) 66 T ELT)) (-4057 (((-660 |#2|)) 64 T ELT)) (-2559 (((-1292 |#2|) (-1292 |#2|)) 99 (|has| |#1| (-318)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1464 ((-787) |#2|)) (-15 -3896 ((-787) |#2|)) (-15 -3382 ((-787) |#2|)) (-15 -1793 ((-787) |#2|)) (-15 -2657 ((-787) |#2|)) (-15 -2116 ((-660 |#2|))) (-15 -3845 ((-660 |#2|) |#2|)) (-15 -3595 ((-660 |#2|) |#2|)) (-15 -2083 ((-660 |#2|))) (-15 -1683 ((-660 |#2|))) (-15 -4263 ((-660 |#2|))) (-15 -4213 ((-660 |#2|))) (-15 -4057 ((-660 |#2|))) (-15 -2043 ((-660 (-705 |#1|)))) (-15 -1757 ((-660 (-705 |#1|)))) (-15 -1409 ((-660 (-705 |#1|)))) (-15 -2201 ((-660 |#2|))) (IF (|has| |#1| (-318)) (-15 -2559 ((-1292 |#2|) (-1292 |#2|))) |%noBranch|)) (-569) (-430 |#1|)) (T -43)) -((-2559 (*1 *2 *2) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) (-2201 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1409 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1757 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2043 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-4057 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-4213 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-4263 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1683 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2083 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3595 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-2116 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2657 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3382 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1464 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) -(-10 -7 (-15 -1464 ((-787) |#2|)) (-15 -3896 ((-787) |#2|)) (-15 -3382 ((-787) |#2|)) (-15 -1793 ((-787) |#2|)) (-15 -2657 ((-787) |#2|)) (-15 -2116 ((-660 |#2|))) (-15 -3845 ((-660 |#2|) |#2|)) (-15 -3595 ((-660 |#2|) |#2|)) (-15 -2083 ((-660 |#2|))) (-15 -1683 ((-660 |#2|))) (-15 -4263 ((-660 |#2|))) (-15 -4213 ((-660 |#2|))) (-15 -4057 ((-660 |#2|))) (-15 -2043 ((-660 (-705 |#1|)))) (-15 -1757 ((-660 (-705 |#1|)))) (-15 -1409 ((-660 (-705 |#1|)))) (-15 -2201 ((-660 |#2|))) (IF (|has| |#1| (-318)) (-15 -2559 ((-1292 |#2|) (-1292 |#2|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3426 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2979 (((-1292 (-705 |#1|)) (-1292 $)) NIL T ELT) (((-1292 (-705 |#1|))) 24 T ELT)) (-4380 (((-1292 $)) 52 T ELT)) (-3790 (($) NIL T CONST)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (|has| |#1| (-569)) ELT)) (-3638 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-2650 (((-705 |#1|) (-1292 $)) NIL T ELT) (((-705 |#1|)) NIL T ELT)) (-4204 ((|#1| $) NIL T ELT)) (-1634 (((-705 |#1|) $ (-1292 $)) NIL T ELT) (((-705 |#1|) $) NIL T ELT)) (-3696 (((-3 $ "failed") $) NIL (|has| |#1| (-569)) ELT)) (-3403 (((-1197 (-975 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-1647 (($ $ (-944)) NIL T ELT)) (-1777 ((|#1| $) NIL T ELT)) (-3282 (((-1197 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-3927 ((|#1| (-1292 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3749 (((-1197 |#1|) $) NIL T ELT)) (-2214 (((-112)) 99 T ELT)) (-1911 (($ (-1292 |#1|) (-1292 $)) NIL T ELT) (($ (-1292 |#1|)) NIL T ELT)) (-1625 (((-3 $ "failed") $) 14 (|has| |#1| (-569)) ELT)) (-3503 (((-944)) 53 T ELT)) (-1825 (((-112)) NIL T ELT)) (-4254 (($ $ (-944)) NIL T ELT)) (-4041 (((-112)) NIL T ELT)) (-1580 (((-112)) NIL T ELT)) (-1451 (((-112)) 101 T ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (|has| |#1| (-569)) ELT)) (-3370 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-4278 (((-705 |#1|) (-1292 $)) NIL T ELT) (((-705 |#1|)) NIL T ELT)) (-2677 ((|#1| $) NIL T ELT)) (-3141 (((-705 |#1|) $ (-1292 $)) NIL T ELT) (((-705 |#1|) $) NIL T ELT)) (-3473 (((-3 $ "failed") $) NIL (|has| |#1| (-569)) ELT)) (-3287 (((-1197 (-975 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-1954 (($ $ (-944)) NIL T ELT)) (-4419 ((|#1| $) NIL T ELT)) (-3321 (((-1197 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-3504 ((|#1| (-1292 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3404 (((-1197 |#1|) $) NIL T ELT)) (-4176 (((-112)) 98 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3423 (((-112)) 106 T ELT)) (-2742 (((-112)) 105 T ELT)) (-3213 (((-112)) 107 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3532 (((-112)) 100 T ELT)) (-2837 ((|#1| $ (-577)) 55 T ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 48 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 |#1|) $) 28 T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2176 (((-1292 |#1|) $) NIL T ELT) (($ (-1292 |#1|)) NIL T ELT)) (-2518 (((-660 (-975 |#1|)) (-1292 $)) NIL T ELT) (((-660 (-975 |#1|))) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-4244 (((-112)) 95 T ELT)) (-3603 (((-880) $) 71 T ELT) (($ (-1292 |#1|)) 22 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) 51 T ELT)) (-2769 (((-660 (-1292 |#1|))) NIL (|has| |#1| (-569)) ELT)) (-2509 (($ $ $ $) NIL T ELT)) (-4429 (((-112)) 91 T ELT)) (-1640 (($ (-705 |#1|) $) 18 T ELT)) (-3223 (($ $ $) NIL T ELT)) (-4347 (((-112)) 97 T ELT)) (-2791 (((-112)) 92 T ELT)) (-3632 (((-112)) 90 T ELT)) (-2754 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1167 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-664 (-1167 |#2| |#1|)) (-10 -8 (-15 -3603 ($ (-1292 |#1|))))) (-375) (-944) (-660 (-1201)) (-1292 (-705 |#1|))) (T -44)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-14 *6 (-1292 (-705 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-944)) (-14 *5 (-660 (-1201)))))) -(-13 (-430 |#1|) (-664 (-1167 |#2| |#1|)) (-10 -8 (-15 -3603 ($ (-1292 |#1|))))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3145 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4148 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3063 (($ $) NIL T ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2790 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)) ELT) (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (((-112) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-3246 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865))) ELT)) (-2312 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 33 (|has| $ (-6 -4471)) ELT)) (-2946 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT)) (-3455 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 35 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-1259 (-577)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "last" (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "first" (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "value" (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-4135 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-2258 (((-3 |#2| "failed") |#1| $) 43 T ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-1663 (($ $ (-787)) NIL T ELT) (($ $) 29 T ELT)) (-3699 (($ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) 56 T ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) NIL T ELT)) (-3919 (((-112) $) NIL T ELT)) (-3728 (((-577) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (((-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT) (((-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 20 (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 20 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-4223 (($ (-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 ((|#1| $) NIL (|has| |#1| (-865)) ELT) (((-577) $) 38 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-1615 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-1334 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-2984 ((|#1| $) NIL (|has| |#1| (-865)) ELT) (((-577) $) 40 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2880 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2935 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2284 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) 49 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-3942 (($ $ (-787)) NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3740 (((-660 |#1|) $) 22 T ELT)) (-2490 (((-112) |#1| $) NIL T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2218 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 |#1|) $) NIL T ELT) (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) |#1| $) NIL T ELT) (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#2| $) NIL (|has| |#1| (-865)) ELT) (($ $ (-787)) NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 27 T ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-1861 (((-112) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT) (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 19 T ELT)) (-2856 (((-112) $) 18 T ELT)) (-2693 (($) 14 T ELT)) (-2837 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "last") NIL T ELT) (($ $ "rest") NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "first") NIL T ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $ "value") NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-4360 (($) 13 T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3839 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3834 (((-112) $) NIL T ELT)) (-4243 (($ $) NIL T ELT)) (-1839 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) NIL T ELT)) (-3855 (($ $) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-1584 (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-1685 (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL T ELT) (($ (-660 $)) NIL T ELT) (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3953 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") |#1| $) 51 T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2988 (((-112) $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-865)) ELT)) (-3501 (((-787) $) 25 (|has| $ (-6 -4470)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1125) (-1125)) (T -45)) +(-13 (-1079) (-738 |t#1|) (-634 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4452 (((-431 |#1|) |#1|) 41 T ELT)) (-3759 (((-431 |#1|) |#1|) 30 T ELT) (((-431 |#1|) |#1| (-665 (-48))) 33 T ELT)) (-2875 (((-112) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3759 ((-431 |#1|) |#1| (-665 (-48)))) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -4452 ((-431 |#1|) |#1|)) (-15 -2875 ((-112) |#1|))) (-1273 (-48))) (T -39)) +((-2875 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-4452 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))) +(-10 -7 (-15 -3759 ((-431 |#1|) |#1| (-665 (-48)))) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -4452 ((-431 |#1|) |#1|)) (-15 -2875 ((-112) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3191 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2261 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2538 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2901 (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|))) NIL T ELT)) (-2318 (((-420 |#2|) $) NIL T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2495 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3005 (((-792)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2375 (((-112)) NIL T ELT)) (-1929 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-420 |#2|) $) NIL T ELT)) (-2385 (($ (-1297 (-420 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-420 |#2|))) 61 T ELT) (($ (-1297 |#2|) |#2|) 131 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3531 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3921 (((-710 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-710 $)) NIL T ELT)) (-1903 (((-1297 $) (-1297 $)) NIL T ELT)) (-2060 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2628 (((-665 (-665 |#1|))) NIL (|has| |#1| (-380)) ELT)) (-3617 (((-112) |#1| |#1|) NIL T ELT)) (-1641 (((-949)) NIL T ELT)) (-1424 (($) NIL (|has| (-420 |#2|) (-380)) ELT)) (-4338 (((-112)) NIL T ELT)) (-2600 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-3541 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2796 (($ $) NIL T ELT)) (-2213 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3275 (((-112) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3987 (($ $ (-792)) NIL (|has| (-420 |#2|) (-361)) ELT) (($ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3567 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4030 (((-949) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-854 (-949)) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3603 (((-792)) NIL T ELT)) (-4042 (((-1297 $) (-1297 $)) 106 T ELT)) (-2794 (((-420 |#2|) $) NIL T ELT)) (-3506 (((-665 (-980 |#1|)) (-1206)) NIL (|has| |#1| (-375)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2346 ((|#3| $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2686 (((-949) $) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2047 ((|#3| $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-1297 $) $) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3537 (((-1302) (-792)) 84 T ELT)) (-1379 (((-710 (-420 |#2|))) 56 T ELT)) (-4201 (((-710 (-420 |#2|))) 49 T ELT)) (-3981 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3710 (($ (-1297 |#2|) |#2|) 132 T ELT)) (-4297 (((-710 (-420 |#2|))) 50 T ELT)) (-2999 (((-710 (-420 |#2|))) 48 T ELT)) (-4348 (((-2 (|:| |num| (-710 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-3935 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-3604 (((-1297 $)) 47 T ELT)) (-2787 (((-1297 $)) 46 T ELT)) (-3255 (((-112) $) NIL T ELT)) (-2798 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-2443 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-3354 (($ (-949)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2731 (((-3 |#2| "failed")) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2918 (((-792)) NIL T ELT)) (-2343 (($) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3759 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4081 (((-792) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2916 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3585 (((-3 |#2| "failed")) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3846 (((-420 |#2|) (-1297 $)) NIL T ELT) (((-420 |#2|)) 44 T ELT)) (-3038 (((-792) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3641 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-4040 (((-710 (-420 |#2|)) (-1297 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4263 ((|#3|) 55 T ELT)) (-3475 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3762 (((-1297 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-420 |#2|)) $) 62 T ELT) (((-710 (-420 |#2|)) (-1297 $)) 107 T ELT)) (-4463 (((-1297 (-420 |#2|)) $) NIL T ELT) (($ (-1297 (-420 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2591 (((-1297 $) (-1297 $)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 |#2|)) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| (-420 |#2|) (-1068 (-420 (-577)))) (|has| (-420 |#2|) (-375))) ELT) (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2708 (($ $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)) ELT)) (-2932 ((|#3| $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-3634 (((-112)) 42 T ELT)) (-4064 (((-112) |#1|) 54 T ELT) (((-112) |#2|) 138 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1567 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-3702 (((-112)) NIL T ELT)) (-2839 (($) 17 T CONST)) (-2853 (($) 27 T CONST)) (-2389 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 |#2|)) NIL T ELT) (($ (-420 |#2|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -3537 ((-1302) (-792))))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) |#3|) (T -40)) +((-3537 (*1 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *2 (-1302)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-420 *5))) (-14 *7 *6)))) +(-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -3537 ((-1302) (-792))))) +((-3179 ((|#2| |#2|) 47 T ELT)) (-1848 ((|#2| |#2|) 139 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-2948 ((|#2| |#2|) 100 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-3907 ((|#2| |#2|) 101 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-3115 ((|#2| (-115) |#2| (-792)) 135 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-3918 (((-1202 |#2|) |#2|) 44 T ELT)) (-2016 ((|#2| |#2| (-665 (-630 |#2|))) 18 T ELT) ((|#2| |#2| (-665 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3179 (|#2| |#2|)) (-15 -2016 (|#2| |#2|)) (-15 -2016 (|#2| |#2| |#2|)) (-15 -2016 (|#2| |#2| (-665 |#2|))) (-15 -2016 (|#2| |#2| (-665 (-630 |#2|)))) (-15 -3918 ((-1202 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1068 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -3907 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -3115 (|#2| (-115) |#2| (-792)))) |%noBranch|) |%noBranch|)) (-569) (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 |#1| (-630 $)) $)) (-15 -2429 ((-1155 |#1| (-630 $)) $)) (-15 -3709 ($ (-1155 |#1| (-630 $))))))) (T -41)) +((-3115 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-792)) (-4 *5 (-13 (-465) (-1068 (-577)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *5 (-630 $)) $)) (-15 -2429 ((-1155 *5 (-630 $)) $)) (-15 -3709 ($ (-1155 *5 (-630 $))))))))) (-1848 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) (-15 -2429 ((-1155 *3 (-630 $)) $)) (-15 -3709 ($ (-1155 *3 (-630 $))))))))) (-2948 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) (-15 -2429 ((-1155 *3 (-630 $)) $)) (-15 -3709 ($ (-1155 *3 (-630 $))))))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) (-15 -2429 ((-1155 *3 (-630 $)) $)) (-15 -3709 ($ (-1155 *3 (-630 $))))))))) (-3918 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1202 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *4 (-630 $)) $)) (-15 -2429 ((-1155 *4 (-630 $)) $)) (-15 -3709 ($ (-1155 *4 (-630 $))))))))) (-2016 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-630 *2))) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *4 (-630 $)) $)) (-15 -2429 ((-1155 *4 (-630 $)) $)) (-15 -3709 ($ (-1155 *4 (-630 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-2016 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *4 (-630 $)) $)) (-15 -2429 ((-1155 *4 (-630 $)) $)) (-15 -3709 ($ (-1155 *4 (-630 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-2016 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) (-15 -2429 ((-1155 *3 (-630 $)) $)) (-15 -3709 ($ (-1155 *3 (-630 $))))))))) (-2016 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) (-15 -2429 ((-1155 *3 (-630 $)) $)) (-15 -3709 ($ (-1155 *3 (-630 $))))))))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) (-15 -2429 ((-1155 *3 (-630 $)) $)) (-15 -3709 ($ (-1155 *3 (-630 $)))))))))) +(-10 -7 (-15 -3179 (|#2| |#2|)) (-15 -2016 (|#2| |#2|)) (-15 -2016 (|#2| |#2| |#2|)) (-15 -2016 (|#2| |#2| (-665 |#2|))) (-15 -2016 (|#2| |#2| (-665 (-630 |#2|)))) (-15 -3918 ((-1202 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1068 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -3907 (|#2| |#2|)) (-15 -2948 (|#2| |#2|)) (-15 -1848 (|#2| |#2|)) (-15 -3115 (|#2| (-115) |#2| (-792)))) |%noBranch|) |%noBranch|)) +((-3759 (((-431 (-1202 |#3|)) (-1202 |#3|) (-665 (-48))) 23 T ELT) (((-431 |#3|) |#3| (-665 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3759 ((-431 |#3|) |#3| (-665 (-48)))) (-15 -3759 ((-431 (-1202 |#3|)) (-1202 |#3|) (-665 (-48))))) (-870) (-814) (-977 (-48) |#2| |#1|)) (T -42)) +((-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *7 (-977 (-48) *6 *5)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-977 (-48) *6 *5))))) +(-10 -7 (-15 -3759 ((-431 |#3|) |#3| (-665 (-48)))) (-15 -3759 ((-431 (-1202 |#3|)) (-1202 |#3|) (-665 (-48))))) +((-1487 (((-792) |#2|) 70 T ELT)) (-3484 (((-792) |#2|) 74 T ELT)) (-4118 (((-665 |#2|)) 37 T ELT)) (-4230 (((-792) |#2|) 73 T ELT)) (-1591 (((-792) |#2|) 69 T ELT)) (-3328 (((-792) |#2|) 72 T ELT)) (-1895 (((-665 (-710 |#1|))) 65 T ELT)) (-1772 (((-665 |#2|)) 60 T ELT)) (-2373 (((-665 |#2|) |#2|) 48 T ELT)) (-3704 (((-665 |#2|)) 62 T ELT)) (-2636 (((-665 |#2|)) 61 T ELT)) (-2167 (((-665 (-710 |#1|))) 53 T ELT)) (-2325 (((-665 |#2|)) 59 T ELT)) (-2692 (((-665 |#2|) |#2|) 47 T ELT)) (-1950 (((-665 |#2|)) 55 T ELT)) (-4115 (((-665 (-710 |#1|))) 66 T ELT)) (-1606 (((-665 |#2|)) 64 T ELT)) (-2104 (((-1297 |#2|) (-1297 |#2|)) 99 (|has| |#1| (-318)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -4230 ((-792) |#2|)) (-15 -3484 ((-792) |#2|)) (-15 -1591 ((-792) |#2|)) (-15 -1487 ((-792) |#2|)) (-15 -3328 ((-792) |#2|)) (-15 -1950 ((-665 |#2|))) (-15 -2692 ((-665 |#2|) |#2|)) (-15 -2373 ((-665 |#2|) |#2|)) (-15 -2325 ((-665 |#2|))) (-15 -1772 ((-665 |#2|))) (-15 -2636 ((-665 |#2|))) (-15 -3704 ((-665 |#2|))) (-15 -1606 ((-665 |#2|))) (-15 -2167 ((-665 (-710 |#1|)))) (-15 -1895 ((-665 (-710 |#1|)))) (-15 -4115 ((-665 (-710 |#1|)))) (-15 -4118 ((-665 |#2|))) (IF (|has| |#1| (-318)) (-15 -2104 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) (-569) (-430 |#1|)) (T -43)) +((-2104 (*1 *2 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) (-4118 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-4115 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1895 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2167 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1606 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3704 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2636 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1772 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2325 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2373 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1950 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1487 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1591 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-4230 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) +(-10 -7 (-15 -4230 ((-792) |#2|)) (-15 -3484 ((-792) |#2|)) (-15 -1591 ((-792) |#2|)) (-15 -1487 ((-792) |#2|)) (-15 -3328 ((-792) |#2|)) (-15 -1950 ((-665 |#2|))) (-15 -2692 ((-665 |#2|) |#2|)) (-15 -2373 ((-665 |#2|) |#2|)) (-15 -2325 ((-665 |#2|))) (-15 -1772 ((-665 |#2|))) (-15 -2636 ((-665 |#2|))) (-15 -3704 ((-665 |#2|))) (-15 -1606 ((-665 |#2|))) (-15 -2167 ((-665 (-710 |#1|)))) (-15 -1895 ((-665 (-710 |#1|)))) (-15 -4115 ((-665 (-710 |#1|)))) (-15 -4118 ((-665 |#2|))) (IF (|has| |#1| (-318)) (-15 -2104 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3273 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2410 (((-1297 (-710 |#1|)) (-1297 $)) NIL T ELT) (((-1297 (-710 |#1|))) 24 T ELT)) (-2637 (((-1297 $)) 52 T ELT)) (-2305 (($) NIL T CONST)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (|has| |#1| (-569)) ELT)) (-2044 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-3820 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) NIL T ELT)) (-3009 ((|#1| $) NIL T ELT)) (-3214 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-3252 (((-3 $ "failed") $) NIL (|has| |#1| (-569)) ELT)) (-3769 (((-1202 (-980 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-3712 (($ $ (-949)) NIL T ELT)) (-1461 ((|#1| $) NIL T ELT)) (-3747 (((-1202 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-2501 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-4242 (((-1202 |#1|) $) NIL T ELT)) (-2020 (((-112)) 99 T ELT)) (-2385 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-3167 (((-3 $ "failed") $) 14 (|has| |#1| (-569)) ELT)) (-1641 (((-949)) 53 T ELT)) (-1547 (((-112)) NIL T ELT)) (-2510 (($ $ (-949)) NIL T ELT)) (-3916 (((-112)) NIL T ELT)) (-1919 (((-112)) NIL T ELT)) (-2732 (((-112)) 101 T ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (|has| |#1| (-569)) ELT)) (-1740 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-3764 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) NIL T ELT)) (-3565 ((|#1| $) NIL T ELT)) (-2962 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-3535 (((-3 $ "failed") $) NIL (|has| |#1| (-569)) ELT)) (-2276 (((-1202 (-980 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-3744 (($ $ (-949)) NIL T ELT)) (-2799 ((|#1| $) NIL T ELT)) (-2114 (((-1202 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-3749 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-2201 (((-1202 |#1|) $) NIL T ELT)) (-2966 (((-112)) 98 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2187 (((-112)) 106 T ELT)) (-1465 (((-112)) 105 T ELT)) (-1693 (((-112)) 107 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2949 (((-112)) 100 T ELT)) (-2916 ((|#1| $ (-577)) 55 T ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 48 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 28 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4463 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-2133 (((-665 (-980 |#1|)) (-1297 $)) NIL T ELT) (((-665 (-980 |#1|))) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3733 (((-112)) 95 T ELT)) (-3709 (((-885) $) 71 T ELT) (($ (-1297 |#1|)) 22 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) 51 T ELT)) (-2274 (((-665 (-1297 |#1|))) NIL (|has| |#1| (-569)) ELT)) (-2032 (($ $ $ $) NIL T ELT)) (-3678 (((-112)) 91 T ELT)) (-4382 (($ (-710 |#1|) $) 18 T ELT)) (-1793 (($ $ $) NIL T ELT)) (-1897 (((-112)) 97 T ELT)) (-3211 (((-112)) 92 T ELT)) (-4146 (((-112)) 90 T ELT)) (-2839 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1172 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-669 (-1172 |#2| |#1|)) (-10 -8 (-15 -3709 ($ (-1297 |#1|))))) (-375) (-949) (-665 (-1206)) (-1297 (-710 |#1|))) (T -44)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-14 *6 (-1297 (-710 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-665 (-1206)))))) +(-13 (-430 |#1|) (-669 (-1172 |#2| |#1|)) (-10 -8 (-15 -3709 ($ (-1297 |#1|))))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3254 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-1893 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2688 (($ $) NIL T ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1935 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT) (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (((-112) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-2629 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870))) ELT)) (-1381 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 33 (|has| $ (-6 -4500)) ELT)) (-1968 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-2283 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 35 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-1264 (-577)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "last" (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "first" (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "value" (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1883 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2359 (((-3 |#2| "failed") |#1| $) 43 T ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-4410 (($ $ (-792)) NIL T ELT) (($ $) 29 T ELT)) (-2697 (($ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 56 T ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) NIL T ELT)) (-4236 (((-112) $) NIL T ELT)) (-3948 (((-577) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (((-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT) (((-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 20 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 20 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-3236 (($ (-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 ((|#1| $) NIL (|has| |#1| (-870)) ELT) (((-577) $) 38 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3836 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3771 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1425 ((|#1| $) NIL (|has| |#1| (-870)) ELT) (((-577) $) 40 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-4415 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3196 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-3188 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) 49 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4026 (($ $ (-792)) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4001 (((-665 |#1|) $) 22 T ELT)) (-4065 (((-112) |#1| $) NIL T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2317 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 |#1|) $) NIL T ELT) (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) |#1| $) NIL T ELT) (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#2| $) NIL (|has| |#1| (-870)) ELT) (($ $ (-792)) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 27 T ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-3661 (((-112) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT) (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 19 T ELT)) (-2687 (((-112) $) 18 T ELT)) (-2833 (($) 14 T ELT)) (-2916 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "last") NIL T ELT) (($ $ "rest") NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "first") NIL T ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $ "value") NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-3470 (($) 13 T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-4068 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1659 (($ $) NIL T ELT)) (-1697 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) NIL T ELT)) (-2554 (($ $) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-2562 (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-1702 (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL T ELT) (($ (-665 $)) NIL T ELT) (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-4038 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") |#1| $) 51 T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3067 (((-112) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-870)) ELT)) (-3600 (((-792) $) 25 (|has| $ (-6 -4499)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1130) (-1130)) (T -45)) NIL (-36 |#1| |#2|) -((-2148 (((-112) $) 12 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-420 (-577)) $) 25 T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2148 ((-112) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-47 |#2| |#3|) (-1074) (-808)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2148 ((-112) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| |#2|) 73 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3616 ((|#2| $) 76 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-3421 ((|#1| $ |#2|) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-47 |#1| |#2|) (-141) (-1074) (-808)) (T -47)) -((-3365 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-3354 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-112)))) (-3180 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-3421 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *2 (-375))))) -(-13 (-1074) (-111 |t#1| |t#1|) (-10 -8 (-15 -3365 (|t#1| $)) (-15 -3354 ($ $)) (-15 -3616 (|t#2| $)) (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (-15 -2148 ((-112) $)) (-15 -3180 ($ |t#1| |t#2|)) (-15 -3391 ($ $)) (-15 -3421 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-375)) (-15 -3051 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-569)) (-6 (-569)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-6 (-38 (-420 (-577)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-1884 (((-660 $) (-1197 $) (-1201)) NIL T ELT) (((-660 $) (-1197 $)) NIL T ELT) (((-660 $) (-975 $)) NIL T ELT)) (-2690 (($ (-1197 $) (-1201)) NIL T ELT) (($ (-1197 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-3801 (((-112) $) 9 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-2002 (((-660 (-625 $)) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2692 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3070 (($ $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1344 (((-660 $) (-1197 $) (-1201)) NIL T ELT) (((-660 $) (-1197 $)) NIL T ELT) (((-660 $) (-975 $)) NIL T ELT)) (-3400 (($ (-1197 $) (-1201)) NIL T ELT) (($ (-1197 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2784 (((-3 (-625 $) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2155 (((-625 $) $) NIL T ELT) (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-420 (-577))) (-705 $)) NIL T ELT)) (-2498 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4301 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1653 (((-660 (-115)) $) NIL T ELT)) (-2085 (((-115) (-115)) NIL T ELT)) (-3306 (((-112) $) 11 T ELT)) (-2238 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-2781 (((-1150 (-577) (-625 $)) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL T ELT)) (-4021 (((-1197 $) (-1197 $) (-625 $)) NIL T ELT) (((-1197 $) (-1197 $) (-660 (-625 $))) NIL T ELT) (($ $ (-625 $)) NIL T ELT) (($ $ (-660 (-625 $))) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3348 (((-1197 $) (-625 $)) NIL (|has| $ (-1074)) ELT)) (-2124 (($ (-1 $ $) (-625 $)) NIL T ELT)) (-3215 (((-3 (-625 $) "failed") $) NIL T ELT)) (-1512 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-1292 $) $) NIL T ELT) (((-705 (-420 (-577))) (-1292 $)) NIL T ELT)) (-3508 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2074 (((-660 (-625 $)) $) NIL T ELT)) (-2869 (($ (-115) $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3152 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1201)) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-4181 (((-787) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1859 (((-112) $ $) NIL T ELT) (((-112) $ (-1201)) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3861 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-3273 (($ $ (-625 $) $) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1201) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1201) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3362 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2797 (((-1150 (-577) (-625 $)) $) NIL T ELT)) (-1629 (($ $) NIL (|has| $ (-1074)) ELT)) (-2176 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-625 $)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1150 (-577) (-625 $))) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-1866 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3123 (((-112) (-115)) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) 6 T CONST)) (-2767 (($) 10 T CONST)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2949 (((-112) $ $) 13 T ELT)) (-3051 (($ $ $) NIL T ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-420 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-944) $) NIL T ELT))) -(((-48) (-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3603 ($ (-1150 (-577) (-625 $)))) (-15 -2781 ((-1150 (-577) (-625 $)) $)) (-15 -2797 ((-1150 (-577) (-625 $)) $)) (-15 -2498 ($ $)) (-15 -4021 ((-1197 $) (-1197 $) (-625 $))) (-15 -4021 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4021 ($ $ (-625 $))) (-15 -4021 ($ $ (-660 (-625 $))))))) (T -48)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) (-2498 (*1 *1 *1) (-5 *1 (-48))) (-4021 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-625 (-48))) (-5 *1 (-48)))) (-4021 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-660 (-625 (-48)))) (-5 *1 (-48)))) (-4021 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-48))) (-5 *1 (-48)))) (-4021 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-48)))) (-5 *1 (-48))))) -(-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3603 ($ (-1150 (-577) (-625 $)))) (-15 -2781 ((-1150 (-577) (-625 $)) $)) (-15 -2797 ((-1150 (-577) (-625 $)) $)) (-15 -2498 ($ $)) (-15 -4021 ((-1197 $) (-1197 $) (-625 $))) (-15 -4021 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4021 ($ $ (-625 $))) (-15 -4021 ($ $ (-660 (-625 $)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1506 (((-660 (-519)) $) 17 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 7 T ELT)) (-2682 (((-1206) $) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-49) (-13 (-1125) (-10 -8 (-15 -1506 ((-660 (-519)) $)) (-15 -2682 ((-1206) $))))) (T -49)) -((-1506 (*1 *2 *1) (-12 (-5 *2 (-660 (-519))) (-5 *1 (-49)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-49))))) -(-13 (-1125) (-10 -8 (-15 -1506 ((-660 (-519)) $)) (-15 -2682 ((-1206) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 85 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3216 (((-112) $) 30 T ELT)) (-2784 (((-3 |#1| "failed") $) 33 T ELT)) (-2155 ((|#1| $) 34 T ELT)) (-3391 (($ $) 40 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3365 ((|#1| $) 31 T ELT)) (-2834 (($ $) 74 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3058 (((-112) $) 43 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($ (-787)) 72 T ELT)) (-2079 (($ (-660 (-577))) 73 T ELT)) (-3616 (((-787) $) 44 T ELT)) (-3603 (((-880) $) 91 T ELT) (($ (-577)) 69 T ELT) (($ |#1|) 67 T ELT)) (-3421 ((|#1| $ $) 28 T ELT)) (-1920 (((-787)) 71 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 45 T CONST)) (-2767 (($) 17 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 64 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) -(((-50 |#1| |#2|) (-13 (-633 |#1|) (-1063 |#1|) (-10 -8 (-15 -3365 (|#1| $)) (-15 -2834 ($ $)) (-15 -3391 ($ $)) (-15 -3421 (|#1| $ $)) (-15 -3428 ($ (-787))) (-15 -2079 ($ (-660 (-577)))) (-15 -3058 ((-112) $)) (-15 -3216 ((-112) $)) (-15 -3616 ((-787) $)) (-15 -2124 ($ (-1 |#1| |#1|) $)))) (-1074) (-660 (-1201))) (T -50)) -((-3365 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) (-2834 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) (-3391 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) (-3421 (*1 *2 *1 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-2079 (*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-50 *3 *4)) (-14 *4 (-660 (-1201)))))) -(-13 (-633 |#1|) (-1063 |#1|) (-10 -8 (-15 -3365 (|#1| $)) (-15 -2834 ($ $)) (-15 -3391 ($ $)) (-15 -3421 (|#1| $ $)) (-15 -3428 ($ (-787))) (-15 -2079 ($ (-660 (-577)))) (-15 -3058 ((-112) $)) (-15 -3216 ((-112) $)) (-15 -3616 ((-787) $)) (-15 -2124 ($ (-1 |#1| |#1|) $)))) -((-3216 (((-112) (-52)) 18 T ELT)) (-2784 (((-3 |#1| "failed") (-52)) 20 T ELT)) (-2155 ((|#1| (-52)) 21 T ELT)) (-3603 (((-52) |#1|) 14 T ELT))) -(((-51 |#1|) (-10 -7 (-15 -3603 ((-52) |#1|)) (-15 -2784 ((-3 |#1| "failed") (-52))) (-15 -3216 ((-112) (-52))) (-15 -2155 (|#1| (-52)))) (-1242)) (T -51)) -((-2155 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1242)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) (-3603 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1242))))) -(-10 -7 (-15 -3603 ((-52) |#1|)) (-15 -2784 ((-3 |#1| "failed") (-52))) (-15 -3216 ((-112) (-52))) (-15 -2155 (|#1| (-52)))) -((-3489 (((-112) $ $) NIL T ELT)) (-4093 (((-790) $) 8 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1329 (((-1129) $) 10 T ELT)) (-3603 (((-880) $) 15 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3580 (($ (-1129) (-790)) 16 T ELT)) (-2949 (((-112) $ $) 12 T ELT))) -(((-52) (-13 (-1125) (-10 -8 (-15 -3580 ($ (-1129) (-790))) (-15 -1329 ((-1129) $)) (-15 -4093 ((-790) $))))) (T -52)) -((-3580 (*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-790)) (-5 *1 (-52)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-52)))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-52))))) -(-13 (-1125) (-10 -8 (-15 -3580 ($ (-1129) (-790))) (-15 -1329 ((-1129) $)) (-15 -4093 ((-790) $)))) -((-1640 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1640 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1074) (-664 |#1|) (-870 |#1|)) (T -53)) -((-1640 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-664 *5)) (-4 *5 (-1074)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-870 *5))))) -(-10 -7 (-15 -1640 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2838 ((|#3| |#3| (-660 (-1201))) 44 T ELT)) (-4113 ((|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3| (-944)) 32 T ELT) ((|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4113 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3|)) (-15 -4113 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3| (-944))) (-15 -2838 (|#3| |#3| (-660 (-1201))))) (-1125) (-13 (-1074) (-905 |#1|) (-627 (-911 |#1|))) (-13 (-443 |#2|) (-905 |#1|) (-627 (-911 |#1|)))) (T -54)) -((-2838 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) (-4113 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-660 (-1101 *5 *6 *2))) (-5 *4 (-944)) (-4 *5 (-1125)) (-4 *6 (-13 (-1074) (-905 *5) (-627 (-911 *5)))) (-4 *2 (-13 (-443 *6) (-905 *5) (-627 (-911 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4113 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-1101 *4 *5 *2))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4113 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3|)) (-15 -4113 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3| (-944))) (-15 -2838 (|#3| |#3| (-660 (-1201))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 14 T ELT)) (-2784 (((-3 (-787) "failed") $) 34 T ELT)) (-2155 (((-787) $) NIL T ELT)) (-3306 (((-112) $) 16 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) 18 T ELT)) (-3603 (((-880) $) 23 T ELT) (($ (-787)) 29 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1471 (($) 11 T CONST)) (-2949 (((-112) $ $) 20 T ELT))) -(((-55) (-13 (-1125) (-1063 (-787)) (-10 -8 (-15 -1471 ($) -2609) (-15 -3801 ((-112) $)) (-15 -3306 ((-112) $))))) (T -55)) -((-1471 (*1 *1) (-5 *1 (-55))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1125) (-1063 (-787)) (-10 -8 (-15 -1471 ($) -2609) (-15 -3801 ((-112) $)) (-15 -3306 ((-112) $)))) -((-4403 (((-112) $ (-787)) 27 T ELT)) (-2937 (($ $ (-577) |#3|) 66 T ELT)) (-2025 (($ $ (-577) |#4|) 70 T ELT)) (-1578 ((|#3| $ (-577)) 79 T ELT)) (-3692 (((-660 |#2|) $) 47 T ELT)) (-1821 (((-112) $ (-787)) 31 T ELT)) (-1645 (((-112) |#2| $) 74 T ELT)) (-2826 (($ (-1 |#2| |#2|) $) 55 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 54 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 58 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62 T ELT)) (-3272 (((-112) $ (-787)) 29 T ELT)) (-2529 (($ $ |#2|) 52 T ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-2837 ((|#2| $ (-577) (-577)) NIL T ELT) ((|#2| $ (-577) (-577) |#2|) 35 T ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) 41 T ELT) (((-787) |#2| $) 76 T ELT)) (-1914 (($ $) 51 T ELT)) (-2859 ((|#4| $ (-577)) 82 T ELT)) (-3603 (((-880) $) 88 T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 20 T ELT)) (-2949 (((-112) $ $) 73 T ELT)) (-3501 (((-787) $) 32 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2025 (|#1| |#1| (-577) |#4|)) (-15 -2937 (|#1| |#1| (-577) |#3|)) (-15 -3692 ((-660 |#2|) |#1|)) (-15 -2859 (|#4| |#1| (-577))) (-15 -1578 (|#3| |#1| (-577))) (-15 -2837 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) (-577))) (-15 -2529 (|#1| |#1| |#2|)) (-15 -1645 ((-112) |#2| |#1|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787))) (-15 -1914 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1242) (-385 |#2|) (-385 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2025 (|#1| |#1| (-577) |#4|)) (-15 -2937 (|#1| |#1| (-577) |#3|)) (-15 -3692 ((-660 |#2|) |#1|)) (-15 -2859 (|#4| |#1| (-577))) (-15 -1578 (|#3| |#1| (-577))) (-15 -2837 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) (-577))) (-15 -2529 (|#1| |#1| |#2|)) (-15 -1645 ((-112) |#2| |#1|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787))) (-15 -1914 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) 45 T ELT)) (-2937 (($ $ (-577) |#2|) 43 T ELT)) (-2025 (($ $ (-577) |#3|) 42 T ELT)) (-3790 (($) 7 T CONST)) (-1578 ((|#2| $ (-577)) 47 T ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) 44 T ELT)) (-2759 ((|#1| $ (-577) (-577)) 49 T ELT)) (-3692 (((-660 |#1|) $) 31 T ELT)) (-4022 (((-787) $) 52 T ELT)) (-4223 (($ (-787) (-787) |#1|) 58 T ELT)) (-4033 (((-787) $) 51 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4250 (((-577) $) 56 T ELT)) (-2952 (((-577) $) 54 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1484 (((-577) $) 55 T ELT)) (-3329 (((-577) $) 53 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) 57 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) (-577)) 50 T ELT) ((|#1| $ (-577) (-577) |#1|) 48 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2859 ((|#3| $ (-577)) 46 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-57 |#1| |#2| |#3|) (-141) (-1242) (-385 |t#1|) (-385 |t#1|)) (T -57)) -((-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4223 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-787)) (-4 *3 (-1242)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2529 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-787)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-787)))) (-2837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1242)))) (-2759 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1242)))) (-2837 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1578 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1242)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-2859 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1242)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-660 *3)))) (-1895 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-2840 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-2937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-2025 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1242)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-2826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2124 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2124 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(-13 (-502 |t#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -4223 ($ (-787) (-787) |t#1|)) (-15 -2529 ($ $ |t#1|)) (-15 -4250 ((-577) $)) (-15 -1484 ((-577) $)) (-15 -2952 ((-577) $)) (-15 -3329 ((-577) $)) (-15 -4022 ((-787) $)) (-15 -4033 ((-787) $)) (-15 -2837 (|t#1| $ (-577) (-577))) (-15 -2759 (|t#1| $ (-577) (-577))) (-15 -2837 (|t#1| $ (-577) (-577) |t#1|)) (-15 -1578 (|t#2| $ (-577))) (-15 -2859 (|t#3| $ (-577))) (-15 -3692 ((-660 |t#1|) $)) (-15 -1895 (|t#1| $ (-577) (-577) |t#1|)) (-15 -2840 (|t#1| $ (-577) (-577) |t#1|)) (-15 -2937 ($ $ (-577) |t#2|)) (-15 -2025 ($ $ (-577) |t#3|)) (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (-15 -2826 ($ (-1 |t#1| |t#1|) $)) (-15 -2124 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2124 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-1979 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16 T ELT)) (-2498 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18 T ELT)) (-2124 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13 T ELT))) -(((-58 |#1| |#2|) (-10 -7 (-15 -1979 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2124 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1242) (-1242)) (T -58)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-58 *5 *2)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -1979 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2124 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4047 (($ (-660 |#1|)) 11 T ELT) (($ (-787) |#1|) 14 T ELT)) (-4223 (($ (-787) |#1|) 13 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 10 T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4047 ($ (-660 |#1|))) (-15 -4047 ($ (-787) |#1|)))) (-1242)) (T -59)) -((-4047 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-59 *3)))) (-4047 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-59 *3)) (-4 *3 (-1242))))) -(-13 (-19 |#1|) (-10 -8 (-15 -4047 ($ (-660 |#1|))) (-15 -4047 ($ (-787) |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2937 (($ $ (-577) (-59 |#1|)) NIL T ELT)) (-2025 (($ $ (-577) (-59 |#1|)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1578 (((-59 |#1|) $ (-577)) NIL T ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2759 ((|#1| $ (-577) (-577)) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL T ELT)) (-4022 (((-787) $) NIL T ELT)) (-4223 (($ (-787) (-787) |#1|) NIL T ELT)) (-4033 (((-787) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4250 (((-577) $) NIL T ELT)) (-2952 (((-577) $) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1484 (((-577) $) NIL T ELT)) (-3329 (((-577) $) NIL T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2859 (((-59 |#1|) $ (-577)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4471))) (-1242)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4471))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 74 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 63 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 94 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 84 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 52 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 39 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 70 T ELT) (($ (-1292 (-327 (-577)))) 59 T ELT) (($ (-1292 (-975 (-391)))) 90 T ELT) (($ (-1292 (-975 (-577)))) 80 T ELT) (($ (-1292 (-420 (-975 (-391))))) 48 T ELT) (($ (-1292 (-420 (-975 (-577))))) 32 T ELT)) (-3794 (((-1297) $) 124 T ELT)) (-3603 (((-880) $) 118 T ELT) (($ (-660 (-341))) 103 T ELT) (($ (-341)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 101 T ELT) (($ (-1292 (-351 (-3614 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3614) (-715)))) 31 T ELT))) -(((-61 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3614) (-715))))))) (-1201)) (T -61)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3614) (-715)))) (-5 *1 (-61 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3614) (-715))))))) -((-3794 (((-1297) $) 54 T ELT) (((-1297)) 55 T ELT)) (-3603 (((-880) $) 51 T ELT))) -(((-62 |#1|) (-13 (-408) (-10 -7 (-15 -3794 ((-1297))))) (-1201)) (T -62)) -((-3794 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-62 *3)) (-14 *3 (-1201))))) -(-13 (-408) (-10 -7 (-15 -3794 ((-1297))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 150 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 140 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 170 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 160 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 129 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 117 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 146 T ELT) (($ (-1292 (-327 (-577)))) 136 T ELT) (($ (-1292 (-975 (-391)))) 166 T ELT) (($ (-1292 (-975 (-577)))) 156 T ELT) (($ (-1292 (-420 (-975 (-391))))) 125 T ELT) (($ (-1292 (-420 (-975 (-577))))) 110 T ELT)) (-3794 (((-1297) $) 103 T ELT)) (-3603 (((-880) $) 97 T ELT) (($ (-660 (-341))) 30 T ELT) (($ (-341)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 33 T ELT) (($ (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715)))) 95 T ELT))) -(((-63 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715))))))) (-1201)) (T -63)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715)))) (-5 *1 (-63 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715))))))) -((-2784 (((-3 $ "failed") (-327 (-391))) 41 T ELT) (((-3 $ "failed") (-327 (-577))) 46 T ELT) (((-3 $ "failed") (-975 (-391))) 50 T ELT) (((-3 $ "failed") (-975 (-577))) 54 T ELT) (((-3 $ "failed") (-420 (-975 (-391)))) 36 T ELT) (((-3 $ "failed") (-420 (-975 (-577)))) 29 T ELT)) (-2155 (($ (-327 (-391))) 39 T ELT) (($ (-327 (-577))) 44 T ELT) (($ (-975 (-391))) 48 T ELT) (($ (-975 (-577))) 52 T ELT) (($ (-420 (-975 (-391)))) 34 T ELT) (($ (-420 (-975 (-577)))) 26 T ELT)) (-3794 (((-1297) $) 76 T ELT)) (-3603 (((-880) $) 69 T ELT) (($ (-660 (-341))) 61 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 64 T ELT) (($ (-351 (-3614 (QUOTE X)) (-3614) (-715))) 25 T ELT))) -(((-64 |#1|) (-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614 (QUOTE X)) (-3614) (-715)))))) (-1201)) (T -64)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-351 (-3614 (QUOTE X)) (-3614) (-715))) (-5 *1 (-64 *3)) (-14 *3 (-1201))))) -(-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614 (QUOTE X)) (-3614) (-715)))))) -((-2784 (((-3 $ "failed") (-705 (-327 (-391)))) 111 T ELT) (((-3 $ "failed") (-705 (-327 (-577)))) 99 T ELT) (((-3 $ "failed") (-705 (-975 (-391)))) 133 T ELT) (((-3 $ "failed") (-705 (-975 (-577)))) 122 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 87 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 73 T ELT)) (-2155 (($ (-705 (-327 (-391)))) 107 T ELT) (($ (-705 (-327 (-577)))) 95 T ELT) (($ (-705 (-975 (-391)))) 129 T ELT) (($ (-705 (-975 (-577)))) 118 T ELT) (($ (-705 (-420 (-975 (-391))))) 83 T ELT) (($ (-705 (-420 (-975 (-577))))) 66 T ELT)) (-3794 (((-1297) $) 141 T ELT)) (-3603 (((-880) $) 135 T ELT) (($ (-660 (-341))) 29 T ELT) (($ (-341)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 32 T ELT) (($ (-705 (-351 (-3614) (-3614 (QUOTE X) (QUOTE HESS)) (-715)))) 56 T ELT))) -(((-65 |#1|) (-13 (-396) (-629 (-705 (-351 (-3614) (-3614 (QUOTE X) (QUOTE HESS)) (-715))))) (-1201)) (T -65)) -NIL -(-13 (-396) (-629 (-705 (-351 (-3614) (-3614 (QUOTE X) (QUOTE HESS)) (-715))))) -((-2784 (((-3 $ "failed") (-327 (-391))) 60 T ELT) (((-3 $ "failed") (-327 (-577))) 65 T ELT) (((-3 $ "failed") (-975 (-391))) 69 T ELT) (((-3 $ "failed") (-975 (-577))) 73 T ELT) (((-3 $ "failed") (-420 (-975 (-391)))) 55 T ELT) (((-3 $ "failed") (-420 (-975 (-577)))) 48 T ELT)) (-2155 (($ (-327 (-391))) 58 T ELT) (($ (-327 (-577))) 63 T ELT) (($ (-975 (-391))) 67 T ELT) (($ (-975 (-577))) 71 T ELT) (($ (-420 (-975 (-391)))) 53 T ELT) (($ (-420 (-975 (-577)))) 45 T ELT)) (-3794 (((-1297) $) 82 T ELT)) (-3603 (((-880) $) 76 T ELT) (($ (-660 (-341))) 29 T ELT) (($ (-341)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 32 T ELT) (($ (-351 (-3614) (-3614 (QUOTE XC)) (-715))) 40 T ELT))) -(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614) (-3614 (QUOTE XC)) (-715)))))) (-1201)) (T -66)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-351 (-3614) (-3614 (QUOTE XC)) (-715))) (-5 *1 (-66 *3)) (-14 *3 (-1201))))) -(-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614) (-3614 (QUOTE XC)) (-715)))))) -((-3794 (((-1297) $) 65 T ELT)) (-3603 (((-880) $) 59 T ELT) (($ (-705 (-715))) 51 T ELT) (($ (-660 (-341))) 50 T ELT) (($ (-341)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 55 T ELT))) -(((-67 |#1|) (-395) (-1201)) (T -67)) +((-2696 (((-112) $) 12 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-420 (-577)) $) 25 T ELT) (($ $ (-420 (-577))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-47 |#2| |#3|) (-1079) (-813)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2696 ((-112) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| |#2|) 73 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-1597 ((|#2| $) 76 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-4171 ((|#1| $ |#2|) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-47 |#1| |#2|) (-141) (-1079) (-813)) (T -47)) +((-4025 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-4014 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-112)))) (-3872 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-4171 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-375))))) +(-13 (-1079) (-111 |t#1| |t#1|) (-10 -8 (-15 -4025 (|t#1| $)) (-15 -4014 ($ $)) (-15 -1597 (|t#2| $)) (-15 -4417 ($ (-1 |t#1| |t#1|) $)) (-15 -2696 ((-112) $)) (-15 -3872 ($ |t#1| |t#2|)) (-15 -4048 ($ $)) (-15 -4171 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-375)) (-15 -3139 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-569)) (-6 (-569)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-6 (-38 (-420 (-577)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4006 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-2370 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-4113 (((-112) $) 9 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3613 (((-665 (-630 $)) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4313 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3390 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-1940 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-4335 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3783 (((-630 $) $) NIL T ELT) (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 (-577))) (-710 $)) NIL T ELT)) (-2060 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-2754 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1529 (((-665 (-115)) $) NIL T ELT)) (-3706 (((-115) (-115)) NIL T ELT)) (-3357 (((-112) $) 11 T ELT)) (-2310 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-2417 (((-1155 (-577) (-630 $)) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL T ELT)) (-2794 (((-1202 $) (-1202 $) (-630 $)) NIL T ELT) (((-1202 $) (-1202 $) (-665 (-630 $))) NIL T ELT) (($ $ (-630 $)) NIL T ELT) (($ $ (-665 (-630 $))) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2465 (((-1202 $) (-630 $)) NIL (|has| $ (-1079)) ELT)) (-4417 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-2998 (((-3 (-630 $) "failed") $) NIL T ELT)) (-3163 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-1297 $) $) NIL T ELT) (((-710 (-420 (-577))) (-1297 $)) NIL T ELT)) (-3606 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3693 (((-665 (-630 $)) $) NIL T ELT)) (-4399 (($ (-115) $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4241 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2553 (((-792) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3219 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2820 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3373 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-2106 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3641 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2429 (((-1155 (-577) (-630 $)) $) NIL T ELT)) (-4263 (($ $) NIL (|has| $ (-1079)) ELT)) (-4463 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1155 (-577) (-630 $))) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2907 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1448 (((-112) (-115)) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) 6 T CONST)) (-2853 (($) 10 T CONST)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3018 (((-112) $ $) 13 T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-420 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) +(((-48) (-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -3709 ($ (-1155 (-577) (-630 $)))) (-15 -2417 ((-1155 (-577) (-630 $)) $)) (-15 -2429 ((-1155 (-577) (-630 $)) $)) (-15 -2060 ($ $)) (-15 -2794 ((-1202 $) (-1202 $) (-630 $))) (-15 -2794 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2794 ($ $ (-630 $))) (-15 -2794 ($ $ (-665 (-630 $))))))) (T -48)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) (-2060 (*1 *1 *1) (-5 *1 (-48))) (-2794 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-665 (-630 (-48)))) (-5 *1 (-48)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-48)))) (-5 *1 (-48))))) +(-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -3709 ($ (-1155 (-577) (-630 $)))) (-15 -2417 ((-1155 (-577) (-630 $)) $)) (-15 -2429 ((-1155 (-577) (-630 $)) $)) (-15 -2060 ($ $)) (-15 -2794 ((-1202 $) (-1202 $) (-630 $))) (-15 -2794 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2794 ($ $ (-630 $))) (-15 -2794 ($ $ (-665 (-630 $)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-1826 (((-665 (-519)) $) 17 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 7 T ELT)) (-2773 (((-1211) $) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-49) (-13 (-1130) (-10 -8 (-15 -1826 ((-665 (-519)) $)) (-15 -2773 ((-1211) $))))) (T -49)) +((-1826 (*1 *2 *1) (-12 (-5 *2 (-665 (-519))) (-5 *1 (-49)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-49))))) +(-13 (-1130) (-10 -8 (-15 -1826 ((-665 (-519)) $)) (-15 -2773 ((-1211) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 85 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1887 (((-112) $) 30 T ELT)) (-4335 (((-3 |#1| "failed") $) 33 T ELT)) (-3783 ((|#1| $) 34 T ELT)) (-4048 (($ $) 40 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4025 ((|#1| $) 31 T ELT)) (-2944 (($ $) 74 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3876 (((-112) $) 43 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($ (-792)) 72 T ELT)) (-2355 (($ (-665 (-577))) 73 T ELT)) (-1597 (((-792) $) 44 T ELT)) (-3709 (((-885) $) 91 T ELT) (($ (-577)) 69 T ELT) (($ |#1|) 67 T ELT)) (-4171 ((|#1| $ $) 28 T ELT)) (-3331 (((-792)) 71 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 45 T CONST)) (-2853 (($) 17 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 64 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) +(((-50 |#1| |#2|) (-13 (-638 |#1|) (-1068 |#1|) (-10 -8 (-15 -4025 (|#1| $)) (-15 -2944 ($ $)) (-15 -4048 ($ $)) (-15 -4171 (|#1| $ $)) (-15 -2343 ($ (-792))) (-15 -2355 ($ (-665 (-577)))) (-15 -3876 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1597 ((-792) $)) (-15 -4417 ($ (-1 |#1| |#1|) $)))) (-1079) (-665 (-1206))) (T -50)) +((-4025 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) (-2944 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) (-4048 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) (-4171 (*1 *2 *1 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-50 *3 *4)) (-14 *4 (-665 (-1206)))))) +(-13 (-638 |#1|) (-1068 |#1|) (-10 -8 (-15 -4025 (|#1| $)) (-15 -2944 ($ $)) (-15 -4048 ($ $)) (-15 -4171 (|#1| $ $)) (-15 -2343 ($ (-792))) (-15 -2355 ($ (-665 (-577)))) (-15 -3876 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1597 ((-792) $)) (-15 -4417 ($ (-1 |#1| |#1|) $)))) +((-1887 (((-112) (-52)) 18 T ELT)) (-4335 (((-3 |#1| "failed") (-52)) 20 T ELT)) (-3783 ((|#1| (-52)) 21 T ELT)) (-3709 (((-52) |#1|) 14 T ELT))) +(((-51 |#1|) (-10 -7 (-15 -3709 ((-52) |#1|)) (-15 -4335 ((-3 |#1| "failed") (-52))) (-15 -1887 ((-112) (-52))) (-15 -3783 (|#1| (-52)))) (-1247)) (T -51)) +((-3783 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1247)))) (-4335 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1247))))) +(-10 -7 (-15 -3709 ((-52) |#1|)) (-15 -4335 ((-3 |#1| "failed") (-52))) (-15 -1887 ((-112) (-52))) (-15 -3783 (|#1| (-52)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4314 (((-795) $) 8 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1353 (((-1134) $) 10 T ELT)) (-3709 (((-885) $) 15 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1986 (($ (-1134) (-795)) 16 T ELT)) (-3018 (((-112) $ $) 12 T ELT))) +(((-52) (-13 (-1130) (-10 -8 (-15 -1986 ($ (-1134) (-795))) (-15 -1353 ((-1134) $)) (-15 -4314 ((-795) $))))) (T -52)) +((-1986 (*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-52)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-52)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-52))))) +(-13 (-1130) (-10 -8 (-15 -1986 ($ (-1134) (-795))) (-15 -1353 ((-1134) $)) (-15 -4314 ((-795) $)))) +((-4382 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4382 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1079) (-669 |#1|) (-875 |#1|)) (T -53)) +((-4382 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-669 *5)) (-4 *5 (-1079)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-875 *5))))) +(-10 -7 (-15 -4382 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3489 ((|#3| |#3| (-665 (-1206))) 44 T ELT)) (-2474 ((|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3| (-949)) 32 T ELT) ((|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2474 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -2474 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3| (-949))) (-15 -3489 (|#3| |#3| (-665 (-1206))))) (-1130) (-13 (-1079) (-910 |#1|) (-632 (-916 |#1|))) (-13 (-443 |#2|) (-910 |#1|) (-632 (-916 |#1|)))) (T -54)) +((-3489 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) (-2474 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 (-1106 *5 *6 *2))) (-5 *4 (-949)) (-4 *5 (-1130)) (-4 *6 (-13 (-1079) (-910 *5) (-632 (-916 *5)))) (-4 *2 (-13 (-443 *6) (-910 *5) (-632 (-916 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2474 (*1 *2 *3 *2) (-12 (-5 *3 (-665 (-1106 *4 *5 *2))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2474 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -2474 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3| (-949))) (-15 -3489 (|#3| |#3| (-665 (-1206))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 14 T ELT)) (-4335 (((-3 (-792) "failed") $) 34 T ELT)) (-3783 (((-792) $) NIL T ELT)) (-3357 (((-112) $) 16 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) 18 T ELT)) (-3709 (((-885) $) 23 T ELT) (($ (-792)) 29 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3198 (($) 11 T CONST)) (-3018 (((-112) $ $) 20 T ELT))) +(((-55) (-13 (-1130) (-1068 (-792)) (-10 -8 (-15 -3198 ($) -4212) (-15 -4113 ((-112) $)) (-15 -3357 ((-112) $))))) (T -55)) +((-3198 (*1 *1) (-5 *1 (-55))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1130) (-1068 (-792)) (-10 -8 (-15 -3198 ($) -4212) (-15 -4113 ((-112) $)) (-15 -3357 ((-112) $)))) +((-1777 (((-112) $ (-792)) 27 T ELT)) (-2699 (($ $ (-577) |#3|) 66 T ELT)) (-1969 (($ $ (-577) |#4|) 70 T ELT)) (-4448 ((|#3| $ (-577)) 79 T ELT)) (-2118 (((-665 |#2|) $) 47 T ELT)) (-3862 (((-112) $ (-792)) 31 T ELT)) (-3519 (((-112) |#2| $) 74 T ELT)) (-4409 (($ (-1 |#2| |#2|) $) 55 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 54 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 58 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62 T ELT)) (-3438 (((-112) $ (-792)) 29 T ELT)) (-2561 (($ $ |#2|) 52 T ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-2916 ((|#2| $ (-577) (-577)) NIL T ELT) ((|#2| $ (-577) (-577) |#2|) 35 T ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) 41 T ELT) (((-792) |#2| $) 76 T ELT)) (-1977 (($ $) 51 T ELT)) (-1455 ((|#4| $ (-577)) 82 T ELT)) (-3709 (((-885) $) 88 T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 20 T ELT)) (-3018 (((-112) $ $) 73 T ELT)) (-3600 (((-792) $) 32 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1969 (|#1| |#1| (-577) |#4|)) (-15 -2699 (|#1| |#1| (-577) |#3|)) (-15 -2118 ((-665 |#2|) |#1|)) (-15 -1455 (|#4| |#1| (-577))) (-15 -4448 (|#3| |#1| (-577))) (-15 -2916 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) (-577))) (-15 -2561 (|#1| |#1| |#2|)) (-15 -3519 ((-112) |#2| |#1|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792))) (-15 -1977 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1247) (-385 |#2|) (-385 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1969 (|#1| |#1| (-577) |#4|)) (-15 -2699 (|#1| |#1| (-577) |#3|)) (-15 -2118 ((-665 |#2|) |#1|)) (-15 -1455 (|#4| |#1| (-577))) (-15 -4448 (|#3| |#1| (-577))) (-15 -2916 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) (-577))) (-15 -2561 (|#1| |#1| |#2|)) (-15 -3519 ((-112) |#2| |#1|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792))) (-15 -1977 (|#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) 45 T ELT)) (-2699 (($ $ (-577) |#2|) 43 T ELT)) (-1969 (($ $ (-577) |#3|) 42 T ELT)) (-2305 (($) 7 T CONST)) (-4448 ((|#2| $ (-577)) 47 T ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) 44 T ELT)) (-4353 ((|#1| $ (-577) (-577)) 49 T ELT)) (-2118 (((-665 |#1|) $) 31 T ELT)) (-2408 (((-792) $) 52 T ELT)) (-3236 (($ (-792) (-792) |#1|) 58 T ELT)) (-2420 (((-792) $) 51 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-4051 (((-577) $) 56 T ELT)) (-3232 (((-577) $) 54 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1766 (((-577) $) 55 T ELT)) (-3371 (((-577) $) 53 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) 57 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) (-577)) 50 T ELT) ((|#1| $ (-577) (-577) |#1|) 48 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-1455 ((|#3| $ (-577)) 46 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-57 |#1| |#2| |#3|) (-141) (-1247) (-385 |t#1|) (-385 |t#1|)) (T -57)) +((-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3236 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-792)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2561 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-792)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-792)))) (-2916 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-4353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-2916 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-4448 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-1455 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-665 *3)))) (-1957 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-4420 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-2699 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-1969 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-4409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4417 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4417 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(-13 (-502 |t#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -3236 ($ (-792) (-792) |t#1|)) (-15 -2561 ($ $ |t#1|)) (-15 -4051 ((-577) $)) (-15 -1766 ((-577) $)) (-15 -3232 ((-577) $)) (-15 -3371 ((-577) $)) (-15 -2408 ((-792) $)) (-15 -2420 ((-792) $)) (-15 -2916 (|t#1| $ (-577) (-577))) (-15 -4353 (|t#1| $ (-577) (-577))) (-15 -2916 (|t#1| $ (-577) (-577) |t#1|)) (-15 -4448 (|t#2| $ (-577))) (-15 -1455 (|t#3| $ (-577))) (-15 -2118 ((-665 |t#1|) $)) (-15 -1957 (|t#1| $ (-577) (-577) |t#1|)) (-15 -4420 (|t#1| $ (-577) (-577) |t#1|)) (-15 -2699 ($ $ (-577) |t#2|)) (-15 -1969 ($ $ (-577) |t#3|)) (-15 -4417 ($ (-1 |t#1| |t#1|) $)) (-15 -4409 ($ (-1 |t#1| |t#1|) $)) (-15 -4417 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4417 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-4256 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16 T ELT)) (-2060 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18 T ELT)) (-4417 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13 T ELT))) +(((-58 |#1| |#2|) (-10 -7 (-15 -4256 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4417 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1247) (-1247)) (T -58)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-58 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -4256 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4417 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3779 (($ (-665 |#1|)) 11 T ELT) (($ (-792) |#1|) 14 T ELT)) (-3236 (($ (-792) |#1|) 13 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 10 T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3779 ($ (-665 |#1|))) (-15 -3779 ($ (-792) |#1|)))) (-1247)) (T -59)) +((-3779 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-59 *3)))) (-3779 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-59 *3)) (-4 *3 (-1247))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3779 ($ (-665 |#1|))) (-15 -3779 ($ (-792) |#1|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2699 (($ $ (-577) (-59 |#1|)) NIL T ELT)) (-1969 (($ $ (-577) (-59 |#1|)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4448 (((-59 |#1|) $ (-577)) NIL T ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-4353 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL T ELT)) (-2408 (((-792) $) NIL T ELT)) (-3236 (($ (-792) (-792) |#1|) NIL T ELT)) (-2420 (((-792) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-4051 (((-577) $) NIL T ELT)) (-3232 (((-577) $) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1766 (((-577) $) NIL T ELT)) (-3371 (((-577) $) NIL T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-1455 (((-59 |#1|) $ (-577)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4500))) (-1247)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4500))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 74 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 63 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 94 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 84 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 52 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 39 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 70 T ELT) (($ (-1297 (-327 (-577)))) 59 T ELT) (($ (-1297 (-980 (-391)))) 90 T ELT) (($ (-1297 (-980 (-577)))) 80 T ELT) (($ (-1297 (-420 (-980 (-391))))) 48 T ELT) (($ (-1297 (-420 (-980 (-577))))) 32 T ELT)) (-3495 (((-1302) $) 124 T ELT)) (-3709 (((-885) $) 118 T ELT) (($ (-665 (-341))) 103 T ELT) (($ (-341)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 101 T ELT) (($ (-1297 (-351 (-3722 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3722) (-720)))) 31 T ELT))) +(((-61 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3722) (-720))))))) (-1206)) (T -61)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3722) (-720)))) (-5 *1 (-61 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3722) (-720))))))) +((-3495 (((-1302) $) 54 T ELT) (((-1302)) 55 T ELT)) (-3709 (((-885) $) 51 T ELT))) +(((-62 |#1|) (-13 (-408) (-10 -7 (-15 -3495 ((-1302))))) (-1206)) (T -62)) +((-3495 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-62 *3)) (-14 *3 (-1206))))) +(-13 (-408) (-10 -7 (-15 -3495 ((-1302))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 150 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 140 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 170 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 160 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 129 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 117 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 146 T ELT) (($ (-1297 (-327 (-577)))) 136 T ELT) (($ (-1297 (-980 (-391)))) 166 T ELT) (($ (-1297 (-980 (-577)))) 156 T ELT) (($ (-1297 (-420 (-980 (-391))))) 125 T ELT) (($ (-1297 (-420 (-980 (-577))))) 110 T ELT)) (-3495 (((-1302) $) 103 T ELT)) (-3709 (((-885) $) 97 T ELT) (($ (-665 (-341))) 30 T ELT) (($ (-341)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 33 T ELT) (($ (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720)))) 95 T ELT))) +(((-63 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720))))))) (-1206)) (T -63)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720)))) (-5 *1 (-63 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720))))))) +((-4335 (((-3 $ "failed") (-327 (-391))) 41 T ELT) (((-3 $ "failed") (-327 (-577))) 46 T ELT) (((-3 $ "failed") (-980 (-391))) 50 T ELT) (((-3 $ "failed") (-980 (-577))) 54 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 36 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 29 T ELT)) (-3783 (($ (-327 (-391))) 39 T ELT) (($ (-327 (-577))) 44 T ELT) (($ (-980 (-391))) 48 T ELT) (($ (-980 (-577))) 52 T ELT) (($ (-420 (-980 (-391)))) 34 T ELT) (($ (-420 (-980 (-577)))) 26 T ELT)) (-3495 (((-1302) $) 76 T ELT)) (-3709 (((-885) $) 69 T ELT) (($ (-665 (-341))) 61 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 64 T ELT) (($ (-351 (-3722 (QUOTE X)) (-3722) (-720))) 25 T ELT))) +(((-64 |#1|) (-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722 (QUOTE X)) (-3722) (-720)))))) (-1206)) (T -64)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-351 (-3722 (QUOTE X)) (-3722) (-720))) (-5 *1 (-64 *3)) (-14 *3 (-1206))))) +(-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722 (QUOTE X)) (-3722) (-720)))))) +((-4335 (((-3 $ "failed") (-710 (-327 (-391)))) 111 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 99 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 133 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 122 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 87 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 73 T ELT)) (-3783 (($ (-710 (-327 (-391)))) 107 T ELT) (($ (-710 (-327 (-577)))) 95 T ELT) (($ (-710 (-980 (-391)))) 129 T ELT) (($ (-710 (-980 (-577)))) 118 T ELT) (($ (-710 (-420 (-980 (-391))))) 83 T ELT) (($ (-710 (-420 (-980 (-577))))) 66 T ELT)) (-3495 (((-1302) $) 141 T ELT)) (-3709 (((-885) $) 135 T ELT) (($ (-665 (-341))) 29 T ELT) (($ (-341)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 32 T ELT) (($ (-710 (-351 (-3722) (-3722 (QUOTE X) (QUOTE HESS)) (-720)))) 56 T ELT))) +(((-65 |#1|) (-13 (-396) (-634 (-710 (-351 (-3722) (-3722 (QUOTE X) (QUOTE HESS)) (-720))))) (-1206)) (T -65)) +NIL +(-13 (-396) (-634 (-710 (-351 (-3722) (-3722 (QUOTE X) (QUOTE HESS)) (-720))))) +((-4335 (((-3 $ "failed") (-327 (-391))) 60 T ELT) (((-3 $ "failed") (-327 (-577))) 65 T ELT) (((-3 $ "failed") (-980 (-391))) 69 T ELT) (((-3 $ "failed") (-980 (-577))) 73 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 55 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 48 T ELT)) (-3783 (($ (-327 (-391))) 58 T ELT) (($ (-327 (-577))) 63 T ELT) (($ (-980 (-391))) 67 T ELT) (($ (-980 (-577))) 71 T ELT) (($ (-420 (-980 (-391)))) 53 T ELT) (($ (-420 (-980 (-577)))) 45 T ELT)) (-3495 (((-1302) $) 82 T ELT)) (-3709 (((-885) $) 76 T ELT) (($ (-665 (-341))) 29 T ELT) (($ (-341)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 32 T ELT) (($ (-351 (-3722) (-3722 (QUOTE XC)) (-720))) 40 T ELT))) +(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722) (-3722 (QUOTE XC)) (-720)))))) (-1206)) (T -66)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-351 (-3722) (-3722 (QUOTE XC)) (-720))) (-5 *1 (-66 *3)) (-14 *3 (-1206))))) +(-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722) (-3722 (QUOTE XC)) (-720)))))) +((-3495 (((-1302) $) 65 T ELT)) (-3709 (((-885) $) 59 T ELT) (($ (-710 (-720))) 51 T ELT) (($ (-665 (-341))) 50 T ELT) (($ (-341)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 55 T ELT))) +(((-67 |#1|) (-395) (-1206)) (T -67)) NIL (-395) -((-3794 (((-1297) $) 66 T ELT)) (-3603 (((-880) $) 60 T ELT) (($ (-705 (-715))) 52 T ELT) (($ (-660 (-341))) 51 T ELT) (($ (-341)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 57 T ELT))) -(((-68 |#1|) (-395) (-1201)) (T -68)) +((-3495 (((-1302) $) 66 T ELT)) (-3709 (((-885) $) 60 T ELT) (($ (-710 (-720))) 52 T ELT) (($ (-665 (-341))) 51 T ELT) (($ (-341)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 57 T ELT))) +(((-68 |#1|) (-395) (-1206)) (T -68)) NIL (-395) -((-3794 (((-1297) $) NIL T ELT) (((-1297)) 33 T ELT)) (-3603 (((-880) $) NIL T ELT))) -(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -3794 ((-1297))))) (-1201)) (T -69)) -((-3794 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-69 *3)) (-14 *3 (-1201))))) -(-13 (-408) (-10 -7 (-15 -3794 ((-1297))))) -((-3794 (((-1297) $) 75 T ELT)) (-3603 (((-880) $) 69 T ELT) (($ (-705 (-715))) 61 T ELT) (($ (-660 (-341))) 63 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 60 T ELT))) -(((-70 |#1|) (-395) (-1201)) (T -70)) +((-3495 (((-1302) $) NIL T ELT) (((-1302)) 33 T ELT)) (-3709 (((-885) $) NIL T ELT))) +(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -3495 ((-1302))))) (-1206)) (T -69)) +((-3495 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-69 *3)) (-14 *3 (-1206))))) +(-13 (-408) (-10 -7 (-15 -3495 ((-1302))))) +((-3495 (((-1302) $) 75 T ELT)) (-3709 (((-885) $) 69 T ELT) (($ (-710 (-720))) 61 T ELT) (($ (-665 (-341))) 63 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 60 T ELT))) +(((-70 |#1|) (-395) (-1206)) (T -70)) NIL (-395) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 109 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 98 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 129 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 119 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 87 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 74 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 105 T ELT) (($ (-1292 (-327 (-577)))) 94 T ELT) (($ (-1292 (-975 (-391)))) 125 T ELT) (($ (-1292 (-975 (-577)))) 115 T ELT) (($ (-1292 (-420 (-975 (-391))))) 83 T ELT) (($ (-1292 (-420 (-975 (-577))))) 67 T ELT)) (-3794 (((-1297) $) 142 T ELT)) (-3603 (((-880) $) 136 T ELT) (($ (-660 (-341))) 131 T ELT) (($ (-341)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 59 T ELT) (($ (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715)))) 60 T ELT))) -(((-71 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715))))))) (-1201)) (T -71)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715)))) (-5 *1 (-71 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715))))))) -((-3794 (((-1297) $) 33 T ELT) (((-1297)) 32 T ELT)) (-3603 (((-880) $) 36 T ELT))) -(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -3794 ((-1297))))) (-1201)) (T -72)) -((-3794 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-72 *3)) (-14 *3 (-1201))))) -(-13 (-408) (-10 -7 (-15 -3794 ((-1297))))) -((-3794 (((-1297) $) 65 T ELT)) (-3603 (((-880) $) 59 T ELT) (($ (-705 (-715))) 51 T ELT) (($ (-660 (-341))) 53 T ELT) (($ (-341)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 50 T ELT))) -(((-73 |#1|) (-395) (-1201)) (T -73)) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 109 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 98 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 129 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 119 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 87 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 74 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 105 T ELT) (($ (-1297 (-327 (-577)))) 94 T ELT) (($ (-1297 (-980 (-391)))) 125 T ELT) (($ (-1297 (-980 (-577)))) 115 T ELT) (($ (-1297 (-420 (-980 (-391))))) 83 T ELT) (($ (-1297 (-420 (-980 (-577))))) 67 T ELT)) (-3495 (((-1302) $) 142 T ELT)) (-3709 (((-885) $) 136 T ELT) (($ (-665 (-341))) 131 T ELT) (($ (-341)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 59 T ELT) (($ (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720)))) 60 T ELT))) +(((-71 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720))))))) (-1206)) (T -71)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720)))) (-5 *1 (-71 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720))))))) +((-3495 (((-1302) $) 33 T ELT) (((-1302)) 32 T ELT)) (-3709 (((-885) $) 36 T ELT))) +(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -3495 ((-1302))))) (-1206)) (T -72)) +((-3495 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-72 *3)) (-14 *3 (-1206))))) +(-13 (-408) (-10 -7 (-15 -3495 ((-1302))))) +((-3495 (((-1302) $) 65 T ELT)) (-3709 (((-885) $) 59 T ELT) (($ (-710 (-720))) 51 T ELT) (($ (-665 (-341))) 53 T ELT) (($ (-341)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 50 T ELT))) +(((-73 |#1|) (-395) (-1206)) (T -73)) NIL (-395) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 127 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 117 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 147 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 137 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 107 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 95 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 123 T ELT) (($ (-1292 (-327 (-577)))) 113 T ELT) (($ (-1292 (-975 (-391)))) 143 T ELT) (($ (-1292 (-975 (-577)))) 133 T ELT) (($ (-1292 (-420 (-975 (-391))))) 103 T ELT) (($ (-1292 (-420 (-975 (-577))))) 88 T ELT)) (-3794 (((-1297) $) 80 T ELT)) (-3603 (((-880) $) 28 T ELT) (($ (-660 (-341))) 70 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 73 T ELT) (($ (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715)))) 67 T ELT))) -(((-74 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715))))))) (-1201)) (T -74)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715)))) (-5 *1 (-74 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715))))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 132 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 121 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 152 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 142 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 110 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 97 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 128 T ELT) (($ (-1292 (-327 (-577)))) 117 T ELT) (($ (-1292 (-975 (-391)))) 148 T ELT) (($ (-1292 (-975 (-577)))) 138 T ELT) (($ (-1292 (-420 (-975 (-391))))) 106 T ELT) (($ (-1292 (-420 (-975 (-577))))) 90 T ELT)) (-3794 (((-1297) $) 82 T ELT)) (-3603 (((-880) $) 74 T ELT) (($ (-660 (-341))) NIL T ELT) (($ (-341)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) NIL T ELT) (($ (-1292 (-351 (-3614 (QUOTE X) (QUOTE EPS)) (-3614 (QUOTE -2464)) (-715)))) 69 T ELT))) -(((-75 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X) (QUOTE EPS)) (-3614 (QUOTE -2464)) (-715))))))) (-1201) (-1201) (-1201)) (T -75)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614 (QUOTE X) (QUOTE EPS)) (-3614 (QUOTE -2464)) (-715)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) (-14 *5 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X) (QUOTE EPS)) (-3614 (QUOTE -2464)) (-715))))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 138 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 127 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 158 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 148 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 116 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 103 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 134 T ELT) (($ (-1292 (-327 (-577)))) 123 T ELT) (($ (-1292 (-975 (-391)))) 154 T ELT) (($ (-1292 (-975 (-577)))) 144 T ELT) (($ (-1292 (-420 (-975 (-391))))) 112 T ELT) (($ (-1292 (-420 (-975 (-577))))) 96 T ELT)) (-3794 (((-1297) $) 88 T ELT)) (-3603 (((-880) $) 80 T ELT) (($ (-660 (-341))) NIL T ELT) (($ (-341)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) NIL T ELT) (($ (-1292 (-351 (-3614 (QUOTE EPS)) (-3614 (QUOTE YA) (QUOTE YB)) (-715)))) 75 T ELT))) -(((-76 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE EPS)) (-3614 (QUOTE YA) (QUOTE YB)) (-715))))))) (-1201) (-1201) (-1201)) (T -76)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614 (QUOTE EPS)) (-3614 (QUOTE YA) (QUOTE YB)) (-715)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) (-14 *5 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE EPS)) (-3614 (QUOTE YA) (QUOTE YB)) (-715))))))) -((-2784 (((-3 $ "failed") (-327 (-391))) 83 T ELT) (((-3 $ "failed") (-327 (-577))) 88 T ELT) (((-3 $ "failed") (-975 (-391))) 92 T ELT) (((-3 $ "failed") (-975 (-577))) 96 T ELT) (((-3 $ "failed") (-420 (-975 (-391)))) 78 T ELT) (((-3 $ "failed") (-420 (-975 (-577)))) 71 T ELT)) (-2155 (($ (-327 (-391))) 81 T ELT) (($ (-327 (-577))) 86 T ELT) (($ (-975 (-391))) 90 T ELT) (($ (-975 (-577))) 94 T ELT) (($ (-420 (-975 (-391)))) 76 T ELT) (($ (-420 (-975 (-577)))) 68 T ELT)) (-3794 (((-1297) $) 63 T ELT)) (-3603 (((-880) $) 51 T ELT) (($ (-660 (-341))) 47 T ELT) (($ (-341)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 55 T ELT) (($ (-351 (-3614) (-3614 (QUOTE X)) (-715))) 48 T ELT))) -(((-77 |#1|) (-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614) (-3614 (QUOTE X)) (-715)))))) (-1201)) (T -77)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-351 (-3614) (-3614 (QUOTE X)) (-715))) (-5 *1 (-77 *3)) (-14 *3 (-1201))))) -(-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614) (-3614 (QUOTE X)) (-715)))))) -((-2784 (((-3 $ "failed") (-327 (-391))) 47 T ELT) (((-3 $ "failed") (-327 (-577))) 52 T ELT) (((-3 $ "failed") (-975 (-391))) 56 T ELT) (((-3 $ "failed") (-975 (-577))) 60 T ELT) (((-3 $ "failed") (-420 (-975 (-391)))) 42 T ELT) (((-3 $ "failed") (-420 (-975 (-577)))) 35 T ELT)) (-2155 (($ (-327 (-391))) 45 T ELT) (($ (-327 (-577))) 50 T ELT) (($ (-975 (-391))) 54 T ELT) (($ (-975 (-577))) 58 T ELT) (($ (-420 (-975 (-391)))) 40 T ELT) (($ (-420 (-975 (-577)))) 32 T ELT)) (-3794 (((-1297) $) 81 T ELT)) (-3603 (((-880) $) 75 T ELT) (($ (-660 (-341))) 67 T ELT) (($ (-341)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 70 T ELT) (($ (-351 (-3614) (-3614 (QUOTE X)) (-715))) 31 T ELT))) -(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614) (-3614 (QUOTE X)) (-715)))))) (-1201)) (T -78)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-351 (-3614) (-3614 (QUOTE X)) (-715))) (-5 *1 (-78 *3)) (-14 *3 (-1201))))) -(-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614) (-3614 (QUOTE X)) (-715)))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 90 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 79 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 110 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 100 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 68 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 55 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 86 T ELT) (($ (-1292 (-327 (-577)))) 75 T ELT) (($ (-1292 (-975 (-391)))) 106 T ELT) (($ (-1292 (-975 (-577)))) 96 T ELT) (($ (-1292 (-420 (-975 (-391))))) 64 T ELT) (($ (-1292 (-420 (-975 (-577))))) 48 T ELT)) (-3794 (((-1297) $) 126 T ELT)) (-3603 (((-880) $) 120 T ELT) (($ (-660 (-341))) 113 T ELT) (($ (-341)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 116 T ELT) (($ (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715)))) 39 T ELT))) -(((-79 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715))))))) (-1201)) (T -79)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715)))) (-5 *1 (-79 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE XC)) (-715))))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 151 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 141 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 171 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 161 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 131 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 119 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 147 T ELT) (($ (-1292 (-327 (-577)))) 137 T ELT) (($ (-1292 (-975 (-391)))) 167 T ELT) (($ (-1292 (-975 (-577)))) 157 T ELT) (($ (-1292 (-420 (-975 (-391))))) 127 T ELT) (($ (-1292 (-420 (-975 (-577))))) 112 T ELT)) (-3794 (((-1297) $) 105 T ELT)) (-3603 (((-880) $) 99 T ELT) (($ (-660 (-341))) 90 T ELT) (($ (-341)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 95 T ELT) (($ (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715)))) 91 T ELT))) -(((-80 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715))))))) (-1201)) (T -80)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715)))) (-5 *1 (-80 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715))))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 79 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 68 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 99 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 89 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 57 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 44 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 75 T ELT) (($ (-1292 (-327 (-577)))) 64 T ELT) (($ (-1292 (-975 (-391)))) 95 T ELT) (($ (-1292 (-975 (-577)))) 85 T ELT) (($ (-1292 (-420 (-975 (-391))))) 53 T ELT) (($ (-1292 (-420 (-975 (-577))))) 37 T ELT)) (-3794 (((-1297) $) 125 T ELT)) (-3603 (((-880) $) 119 T ELT) (($ (-660 (-341))) 110 T ELT) (($ (-341)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 114 T ELT) (($ (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715)))) 36 T ELT))) -(((-81 |#1|) (-13 (-454) (-629 (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715))))) (-1201)) (T -81)) -NIL -(-13 (-454) (-629 (-1292 (-351 (-3614) (-3614 (QUOTE X)) (-715))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 98 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 87 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 118 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 108 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 76 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 63 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 94 T ELT) (($ (-1292 (-327 (-577)))) 83 T ELT) (($ (-1292 (-975 (-391)))) 114 T ELT) (($ (-1292 (-975 (-577)))) 104 T ELT) (($ (-1292 (-420 (-975 (-391))))) 72 T ELT) (($ (-1292 (-420 (-975 (-577))))) 56 T ELT)) (-3794 (((-1297) $) 48 T ELT)) (-3603 (((-880) $) 42 T ELT) (($ (-660 (-341))) 32 T ELT) (($ (-341)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 38 T ELT) (($ (-1292 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715)))) 33 T ELT))) -(((-82 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715))))))) (-1201)) (T -82)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715)))) (-5 *1 (-82 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715))))))) -((-2784 (((-3 $ "failed") (-705 (-327 (-391)))) 118 T ELT) (((-3 $ "failed") (-705 (-327 (-577)))) 107 T ELT) (((-3 $ "failed") (-705 (-975 (-391)))) 140 T ELT) (((-3 $ "failed") (-705 (-975 (-577)))) 129 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 96 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 83 T ELT)) (-2155 (($ (-705 (-327 (-391)))) 114 T ELT) (($ (-705 (-327 (-577)))) 103 T ELT) (($ (-705 (-975 (-391)))) 136 T ELT) (($ (-705 (-975 (-577)))) 125 T ELT) (($ (-705 (-420 (-975 (-391))))) 92 T ELT) (($ (-705 (-420 (-975 (-577))))) 76 T ELT)) (-3794 (((-1297) $) 66 T ELT)) (-3603 (((-880) $) 53 T ELT) (($ (-660 (-341))) 60 T ELT) (($ (-341)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 58 T ELT) (($ (-705 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715)))) 50 T ELT))) -(((-83 |#1|) (-13 (-396) (-10 -8 (-15 -3603 ($ (-705 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715))))))) (-1201)) (T -83)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-705 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715)))) (-5 *1 (-83 *3)) (-14 *3 (-1201))))) -(-13 (-396) (-10 -8 (-15 -3603 ($ (-705 (-351 (-3614 (QUOTE X) (QUOTE -2464)) (-3614) (-715))))))) -((-2784 (((-3 $ "failed") (-705 (-327 (-391)))) 113 T ELT) (((-3 $ "failed") (-705 (-327 (-577)))) 101 T ELT) (((-3 $ "failed") (-705 (-975 (-391)))) 135 T ELT) (((-3 $ "failed") (-705 (-975 (-577)))) 124 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 89 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 75 T ELT)) (-2155 (($ (-705 (-327 (-391)))) 109 T ELT) (($ (-705 (-327 (-577)))) 97 T ELT) (($ (-705 (-975 (-391)))) 131 T ELT) (($ (-705 (-975 (-577)))) 120 T ELT) (($ (-705 (-420 (-975 (-391))))) 85 T ELT) (($ (-705 (-420 (-975 (-577))))) 68 T ELT)) (-3794 (((-1297) $) 60 T ELT)) (-3603 (((-880) $) 54 T ELT) (($ (-660 (-341))) 48 T ELT) (($ (-341)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 45 T ELT) (($ (-705 (-351 (-3614 (QUOTE X)) (-3614) (-715)))) 46 T ELT))) -(((-84 |#1|) (-13 (-396) (-10 -8 (-15 -3603 ($ (-705 (-351 (-3614 (QUOTE X)) (-3614) (-715))))))) (-1201)) (T -84)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-705 (-351 (-3614 (QUOTE X)) (-3614) (-715)))) (-5 *1 (-84 *3)) (-14 *3 (-1201))))) -(-13 (-396) (-10 -8 (-15 -3603 ($ (-705 (-351 (-3614 (QUOTE X)) (-3614) (-715))))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 105 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 94 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 125 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 115 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 83 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 70 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 101 T ELT) (($ (-1292 (-327 (-577)))) 90 T ELT) (($ (-1292 (-975 (-391)))) 121 T ELT) (($ (-1292 (-975 (-577)))) 111 T ELT) (($ (-1292 (-420 (-975 (-391))))) 79 T ELT) (($ (-1292 (-420 (-975 (-577))))) 63 T ELT)) (-3794 (((-1297) $) 47 T ELT)) (-3603 (((-880) $) 41 T ELT) (($ (-660 (-341))) 50 T ELT) (($ (-341)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 53 T ELT) (($ (-1292 (-351 (-3614 (QUOTE X)) (-3614) (-715)))) 38 T ELT))) -(((-85 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X)) (-3614) (-715))))))) (-1201)) (T -85)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614 (QUOTE X)) (-3614) (-715)))) (-5 *1 (-85 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X)) (-3614) (-715))))))) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 80 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 69 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 100 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 90 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 58 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 45 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 76 T ELT) (($ (-1292 (-327 (-577)))) 65 T ELT) (($ (-1292 (-975 (-391)))) 96 T ELT) (($ (-1292 (-975 (-577)))) 86 T ELT) (($ (-1292 (-420 (-975 (-391))))) 54 T ELT) (($ (-1292 (-420 (-975 (-577))))) 38 T ELT)) (-3794 (((-1297) $) 126 T ELT)) (-3603 (((-880) $) 120 T ELT) (($ (-660 (-341))) 111 T ELT) (($ (-341)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 115 T ELT) (($ (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715)))) 37 T ELT))) -(((-86 |#1|) (-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715))))))) (-1201)) (T -86)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715)))) (-5 *1 (-86 *3)) (-14 *3 (-1201))))) -(-13 (-454) (-10 -8 (-15 -3603 ($ (-1292 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715))))))) -((-2784 (((-3 $ "failed") (-705 (-327 (-391)))) 117 T ELT) (((-3 $ "failed") (-705 (-327 (-577)))) 105 T ELT) (((-3 $ "failed") (-705 (-975 (-391)))) 139 T ELT) (((-3 $ "failed") (-705 (-975 (-577)))) 128 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 93 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 79 T ELT)) (-2155 (($ (-705 (-327 (-391)))) 113 T ELT) (($ (-705 (-327 (-577)))) 101 T ELT) (($ (-705 (-975 (-391)))) 135 T ELT) (($ (-705 (-975 (-577)))) 124 T ELT) (($ (-705 (-420 (-975 (-391))))) 89 T ELT) (($ (-705 (-420 (-975 (-577))))) 72 T ELT)) (-3794 (((-1297) $) 63 T ELT)) (-3603 (((-880) $) 57 T ELT) (($ (-660 (-341))) 47 T ELT) (($ (-341)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 52 T ELT) (($ (-705 (-351 (-3614 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3614) (-715)))) 48 T ELT))) -(((-87 |#1|) (-13 (-396) (-10 -8 (-15 -3603 ($ (-705 (-351 (-3614 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3614) (-715))))))) (-1201)) (T -87)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-705 (-351 (-3614 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3614) (-715)))) (-5 *1 (-87 *3)) (-14 *3 (-1201))))) -(-13 (-396) (-10 -8 (-15 -3603 ($ (-705 (-351 (-3614 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3614) (-715))))))) -((-3794 (((-1297) $) 45 T ELT)) (-3603 (((-880) $) 39 T ELT) (($ (-1292 (-715))) 100 T ELT) (($ (-660 (-341))) 31 T ELT) (($ (-341)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 34 T ELT))) -(((-88 |#1|) (-453) (-1201)) (T -88)) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 127 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 117 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 147 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 137 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 107 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 95 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 123 T ELT) (($ (-1297 (-327 (-577)))) 113 T ELT) (($ (-1297 (-980 (-391)))) 143 T ELT) (($ (-1297 (-980 (-577)))) 133 T ELT) (($ (-1297 (-420 (-980 (-391))))) 103 T ELT) (($ (-1297 (-420 (-980 (-577))))) 88 T ELT)) (-3495 (((-1302) $) 80 T ELT)) (-3709 (((-885) $) 28 T ELT) (($ (-665 (-341))) 70 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 73 T ELT) (($ (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720)))) 67 T ELT))) +(((-74 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720))))))) (-1206)) (T -74)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720)))) (-5 *1 (-74 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720))))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 132 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 121 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 152 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 142 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 110 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 97 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 128 T ELT) (($ (-1297 (-327 (-577)))) 117 T ELT) (($ (-1297 (-980 (-391)))) 148 T ELT) (($ (-1297 (-980 (-577)))) 138 T ELT) (($ (-1297 (-420 (-980 (-391))))) 106 T ELT) (($ (-1297 (-420 (-980 (-577))))) 90 T ELT)) (-3495 (((-1302) $) 82 T ELT)) (-3709 (((-885) $) 74 T ELT) (($ (-665 (-341))) NIL T ELT) (($ (-341)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) NIL T ELT) (($ (-1297 (-351 (-3722 (QUOTE X) (QUOTE EPS)) (-3722 (QUOTE -2573)) (-720)))) 69 T ELT))) +(((-75 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X) (QUOTE EPS)) (-3722 (QUOTE -2573)) (-720))))))) (-1206) (-1206) (-1206)) (T -75)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722 (QUOTE X) (QUOTE EPS)) (-3722 (QUOTE -2573)) (-720)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) (-14 *5 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X) (QUOTE EPS)) (-3722 (QUOTE -2573)) (-720))))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 138 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 127 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 158 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 148 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 116 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 103 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 134 T ELT) (($ (-1297 (-327 (-577)))) 123 T ELT) (($ (-1297 (-980 (-391)))) 154 T ELT) (($ (-1297 (-980 (-577)))) 144 T ELT) (($ (-1297 (-420 (-980 (-391))))) 112 T ELT) (($ (-1297 (-420 (-980 (-577))))) 96 T ELT)) (-3495 (((-1302) $) 88 T ELT)) (-3709 (((-885) $) 80 T ELT) (($ (-665 (-341))) NIL T ELT) (($ (-341)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) NIL T ELT) (($ (-1297 (-351 (-3722 (QUOTE EPS)) (-3722 (QUOTE YA) (QUOTE YB)) (-720)))) 75 T ELT))) +(((-76 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE EPS)) (-3722 (QUOTE YA) (QUOTE YB)) (-720))))))) (-1206) (-1206) (-1206)) (T -76)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722 (QUOTE EPS)) (-3722 (QUOTE YA) (QUOTE YB)) (-720)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) (-14 *5 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE EPS)) (-3722 (QUOTE YA) (QUOTE YB)) (-720))))))) +((-4335 (((-3 $ "failed") (-327 (-391))) 83 T ELT) (((-3 $ "failed") (-327 (-577))) 88 T ELT) (((-3 $ "failed") (-980 (-391))) 92 T ELT) (((-3 $ "failed") (-980 (-577))) 96 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 78 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 71 T ELT)) (-3783 (($ (-327 (-391))) 81 T ELT) (($ (-327 (-577))) 86 T ELT) (($ (-980 (-391))) 90 T ELT) (($ (-980 (-577))) 94 T ELT) (($ (-420 (-980 (-391)))) 76 T ELT) (($ (-420 (-980 (-577)))) 68 T ELT)) (-3495 (((-1302) $) 63 T ELT)) (-3709 (((-885) $) 51 T ELT) (($ (-665 (-341))) 47 T ELT) (($ (-341)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 55 T ELT) (($ (-351 (-3722) (-3722 (QUOTE X)) (-720))) 48 T ELT))) +(((-77 |#1|) (-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722) (-3722 (QUOTE X)) (-720)))))) (-1206)) (T -77)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-351 (-3722) (-3722 (QUOTE X)) (-720))) (-5 *1 (-77 *3)) (-14 *3 (-1206))))) +(-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722) (-3722 (QUOTE X)) (-720)))))) +((-4335 (((-3 $ "failed") (-327 (-391))) 47 T ELT) (((-3 $ "failed") (-327 (-577))) 52 T ELT) (((-3 $ "failed") (-980 (-391))) 56 T ELT) (((-3 $ "failed") (-980 (-577))) 60 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 42 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 35 T ELT)) (-3783 (($ (-327 (-391))) 45 T ELT) (($ (-327 (-577))) 50 T ELT) (($ (-980 (-391))) 54 T ELT) (($ (-980 (-577))) 58 T ELT) (($ (-420 (-980 (-391)))) 40 T ELT) (($ (-420 (-980 (-577)))) 32 T ELT)) (-3495 (((-1302) $) 81 T ELT)) (-3709 (((-885) $) 75 T ELT) (($ (-665 (-341))) 67 T ELT) (($ (-341)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 70 T ELT) (($ (-351 (-3722) (-3722 (QUOTE X)) (-720))) 31 T ELT))) +(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722) (-3722 (QUOTE X)) (-720)))))) (-1206)) (T -78)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-351 (-3722) (-3722 (QUOTE X)) (-720))) (-5 *1 (-78 *3)) (-14 *3 (-1206))))) +(-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722) (-3722 (QUOTE X)) (-720)))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 90 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 79 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 110 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 100 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 68 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 55 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 86 T ELT) (($ (-1297 (-327 (-577)))) 75 T ELT) (($ (-1297 (-980 (-391)))) 106 T ELT) (($ (-1297 (-980 (-577)))) 96 T ELT) (($ (-1297 (-420 (-980 (-391))))) 64 T ELT) (($ (-1297 (-420 (-980 (-577))))) 48 T ELT)) (-3495 (((-1302) $) 126 T ELT)) (-3709 (((-885) $) 120 T ELT) (($ (-665 (-341))) 113 T ELT) (($ (-341)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 116 T ELT) (($ (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720)))) 39 T ELT))) +(((-79 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720))))))) (-1206)) (T -79)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720)))) (-5 *1 (-79 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE XC)) (-720))))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 151 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 141 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 171 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 161 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 131 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 119 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 147 T ELT) (($ (-1297 (-327 (-577)))) 137 T ELT) (($ (-1297 (-980 (-391)))) 167 T ELT) (($ (-1297 (-980 (-577)))) 157 T ELT) (($ (-1297 (-420 (-980 (-391))))) 127 T ELT) (($ (-1297 (-420 (-980 (-577))))) 112 T ELT)) (-3495 (((-1302) $) 105 T ELT)) (-3709 (((-885) $) 99 T ELT) (($ (-665 (-341))) 90 T ELT) (($ (-341)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 95 T ELT) (($ (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720)))) 91 T ELT))) +(((-80 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720))))))) (-1206)) (T -80)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720)))) (-5 *1 (-80 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720))))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 79 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 68 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 99 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 89 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 57 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 44 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 75 T ELT) (($ (-1297 (-327 (-577)))) 64 T ELT) (($ (-1297 (-980 (-391)))) 95 T ELT) (($ (-1297 (-980 (-577)))) 85 T ELT) (($ (-1297 (-420 (-980 (-391))))) 53 T ELT) (($ (-1297 (-420 (-980 (-577))))) 37 T ELT)) (-3495 (((-1302) $) 125 T ELT)) (-3709 (((-885) $) 119 T ELT) (($ (-665 (-341))) 110 T ELT) (($ (-341)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 114 T ELT) (($ (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720)))) 36 T ELT))) +(((-81 |#1|) (-13 (-454) (-634 (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720))))) (-1206)) (T -81)) +NIL +(-13 (-454) (-634 (-1297 (-351 (-3722) (-3722 (QUOTE X)) (-720))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 98 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 87 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 118 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 108 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 76 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 63 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 94 T ELT) (($ (-1297 (-327 (-577)))) 83 T ELT) (($ (-1297 (-980 (-391)))) 114 T ELT) (($ (-1297 (-980 (-577)))) 104 T ELT) (($ (-1297 (-420 (-980 (-391))))) 72 T ELT) (($ (-1297 (-420 (-980 (-577))))) 56 T ELT)) (-3495 (((-1302) $) 48 T ELT)) (-3709 (((-885) $) 42 T ELT) (($ (-665 (-341))) 32 T ELT) (($ (-341)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 38 T ELT) (($ (-1297 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720)))) 33 T ELT))) +(((-82 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720))))))) (-1206)) (T -82)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720)))) (-5 *1 (-82 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720))))))) +((-4335 (((-3 $ "failed") (-710 (-327 (-391)))) 118 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 107 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 140 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 129 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 96 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 83 T ELT)) (-3783 (($ (-710 (-327 (-391)))) 114 T ELT) (($ (-710 (-327 (-577)))) 103 T ELT) (($ (-710 (-980 (-391)))) 136 T ELT) (($ (-710 (-980 (-577)))) 125 T ELT) (($ (-710 (-420 (-980 (-391))))) 92 T ELT) (($ (-710 (-420 (-980 (-577))))) 76 T ELT)) (-3495 (((-1302) $) 66 T ELT)) (-3709 (((-885) $) 53 T ELT) (($ (-665 (-341))) 60 T ELT) (($ (-341)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 58 T ELT) (($ (-710 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720)))) 50 T ELT))) +(((-83 |#1|) (-13 (-396) (-10 -8 (-15 -3709 ($ (-710 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720))))))) (-1206)) (T -83)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-710 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720)))) (-5 *1 (-83 *3)) (-14 *3 (-1206))))) +(-13 (-396) (-10 -8 (-15 -3709 ($ (-710 (-351 (-3722 (QUOTE X) (QUOTE -2573)) (-3722) (-720))))))) +((-4335 (((-3 $ "failed") (-710 (-327 (-391)))) 113 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 101 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 135 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 124 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 89 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 75 T ELT)) (-3783 (($ (-710 (-327 (-391)))) 109 T ELT) (($ (-710 (-327 (-577)))) 97 T ELT) (($ (-710 (-980 (-391)))) 131 T ELT) (($ (-710 (-980 (-577)))) 120 T ELT) (($ (-710 (-420 (-980 (-391))))) 85 T ELT) (($ (-710 (-420 (-980 (-577))))) 68 T ELT)) (-3495 (((-1302) $) 60 T ELT)) (-3709 (((-885) $) 54 T ELT) (($ (-665 (-341))) 48 T ELT) (($ (-341)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 45 T ELT) (($ (-710 (-351 (-3722 (QUOTE X)) (-3722) (-720)))) 46 T ELT))) +(((-84 |#1|) (-13 (-396) (-10 -8 (-15 -3709 ($ (-710 (-351 (-3722 (QUOTE X)) (-3722) (-720))))))) (-1206)) (T -84)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-710 (-351 (-3722 (QUOTE X)) (-3722) (-720)))) (-5 *1 (-84 *3)) (-14 *3 (-1206))))) +(-13 (-396) (-10 -8 (-15 -3709 ($ (-710 (-351 (-3722 (QUOTE X)) (-3722) (-720))))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 105 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 94 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 125 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 115 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 83 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 70 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 101 T ELT) (($ (-1297 (-327 (-577)))) 90 T ELT) (($ (-1297 (-980 (-391)))) 121 T ELT) (($ (-1297 (-980 (-577)))) 111 T ELT) (($ (-1297 (-420 (-980 (-391))))) 79 T ELT) (($ (-1297 (-420 (-980 (-577))))) 63 T ELT)) (-3495 (((-1302) $) 47 T ELT)) (-3709 (((-885) $) 41 T ELT) (($ (-665 (-341))) 50 T ELT) (($ (-341)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 53 T ELT) (($ (-1297 (-351 (-3722 (QUOTE X)) (-3722) (-720)))) 38 T ELT))) +(((-85 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X)) (-3722) (-720))))))) (-1206)) (T -85)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722 (QUOTE X)) (-3722) (-720)))) (-5 *1 (-85 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X)) (-3722) (-720))))))) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 80 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 69 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 100 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 90 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 58 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 45 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 76 T ELT) (($ (-1297 (-327 (-577)))) 65 T ELT) (($ (-1297 (-980 (-391)))) 96 T ELT) (($ (-1297 (-980 (-577)))) 86 T ELT) (($ (-1297 (-420 (-980 (-391))))) 54 T ELT) (($ (-1297 (-420 (-980 (-577))))) 38 T ELT)) (-3495 (((-1302) $) 126 T ELT)) (-3709 (((-885) $) 120 T ELT) (($ (-665 (-341))) 111 T ELT) (($ (-341)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 115 T ELT) (($ (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720)))) 37 T ELT))) +(((-86 |#1|) (-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720))))))) (-1206)) (T -86)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720)))) (-5 *1 (-86 *3)) (-14 *3 (-1206))))) +(-13 (-454) (-10 -8 (-15 -3709 ($ (-1297 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720))))))) +((-4335 (((-3 $ "failed") (-710 (-327 (-391)))) 117 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 105 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 139 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 128 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 93 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 79 T ELT)) (-3783 (($ (-710 (-327 (-391)))) 113 T ELT) (($ (-710 (-327 (-577)))) 101 T ELT) (($ (-710 (-980 (-391)))) 135 T ELT) (($ (-710 (-980 (-577)))) 124 T ELT) (($ (-710 (-420 (-980 (-391))))) 89 T ELT) (($ (-710 (-420 (-980 (-577))))) 72 T ELT)) (-3495 (((-1302) $) 63 T ELT)) (-3709 (((-885) $) 57 T ELT) (($ (-665 (-341))) 47 T ELT) (($ (-341)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 52 T ELT) (($ (-710 (-351 (-3722 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3722) (-720)))) 48 T ELT))) +(((-87 |#1|) (-13 (-396) (-10 -8 (-15 -3709 ($ (-710 (-351 (-3722 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3722) (-720))))))) (-1206)) (T -87)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-710 (-351 (-3722 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3722) (-720)))) (-5 *1 (-87 *3)) (-14 *3 (-1206))))) +(-13 (-396) (-10 -8 (-15 -3709 ($ (-710 (-351 (-3722 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3722) (-720))))))) +((-3495 (((-1302) $) 45 T ELT)) (-3709 (((-885) $) 39 T ELT) (($ (-1297 (-720))) 100 T ELT) (($ (-665 (-341))) 31 T ELT) (($ (-341)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 34 T ELT))) +(((-88 |#1|) (-453) (-1206)) (T -88)) NIL (-453) -((-2784 (((-3 $ "failed") (-327 (-391))) 48 T ELT) (((-3 $ "failed") (-327 (-577))) 53 T ELT) (((-3 $ "failed") (-975 (-391))) 57 T ELT) (((-3 $ "failed") (-975 (-577))) 61 T ELT) (((-3 $ "failed") (-420 (-975 (-391)))) 43 T ELT) (((-3 $ "failed") (-420 (-975 (-577)))) 36 T ELT)) (-2155 (($ (-327 (-391))) 46 T ELT) (($ (-327 (-577))) 51 T ELT) (($ (-975 (-391))) 55 T ELT) (($ (-975 (-577))) 59 T ELT) (($ (-420 (-975 (-391)))) 41 T ELT) (($ (-420 (-975 (-577)))) 33 T ELT)) (-3794 (((-1297) $) 91 T ELT)) (-3603 (((-880) $) 85 T ELT) (($ (-660 (-341))) 79 T ELT) (($ (-341)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 77 T ELT) (($ (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715))) 32 T ELT))) -(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715)))))) (-1201)) (T -89)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715))) (-5 *1 (-89 *3)) (-14 *3 (-1201))))) -(-13 (-409) (-10 -8 (-15 -3603 ($ (-351 (-3614 (QUOTE X)) (-3614 (QUOTE -2464)) (-715)))))) -((-2866 (((-1292 (-705 |#1|)) (-705 |#1|)) 61 T ELT)) (-2262 (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 (-660 (-944))))) |#2| (-944)) 49 T ELT)) (-2358 (((-2 (|:| |minor| (-660 (-944))) (|:| -2007 |#2|) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 |#2|))) |#2| (-944)) 72 (|has| |#1| (-375)) ELT))) -(((-90 |#1| |#2|) (-10 -7 (-15 -2262 ((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 (-660 (-944))))) |#2| (-944))) (-15 -2866 ((-1292 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-375)) (-15 -2358 ((-2 (|:| |minor| (-660 (-944))) (|:| -2007 |#2|) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 |#2|))) |#2| (-944))) |%noBranch|)) (-569) (-672 |#1|)) (T -90)) -((-2358 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |minor| (-660 (-944))) (|:| -2007 *3) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5)))) (-2866 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-705 *4)) (-4 *5 (-672 *4)))) (-2262 (*1 *2 *3 *4) (-12 (-4 *5 (-569)) (-5 *2 (-2 (|:| -1631 (-705 *5)) (|:| |vec| (-1292 (-660 (-944)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5))))) -(-10 -7 (-15 -2262 ((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 (-660 (-944))))) |#2| (-944))) (-15 -2866 ((-1292 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-375)) (-15 -2358 ((-2 (|:| |minor| (-660 (-944))) (|:| -2007 |#2|) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 |#2|))) |#2| (-944))) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2554 ((|#1| $) 40 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2223 ((|#1| |#1| $) 35 T ELT)) (-2204 ((|#1| $) 33 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) NIL T ELT)) (-4345 (($ |#1| $) 36 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-3439 ((|#1| $) 34 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 18 T ELT)) (-2693 (($) 45 T ELT)) (-2395 (((-787) $) 31 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 17 T ELT)) (-3603 (((-880) $) 30 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) NIL T ELT)) (-1946 (($ (-660 |#1|)) 42 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 15 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 12 (|has| $ (-6 -4470)) ELT))) -(((-91 |#1|) (-13 (-1146 |#1|) (-10 -8 (-15 -1946 ($ (-660 |#1|))))) (-1125)) (T -91)) -((-1946 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-91 *3))))) -(-13 (-1146 |#1|) (-10 -8 (-15 -1946 ($ (-660 |#1|))))) -((-3603 (((-880) $) 13 T ELT) (($ (-1206)) 9 T ELT) (((-1206) $) 8 T ELT))) -(((-92 |#1|) (-10 -8 (-15 -3603 ((-1206) |#1|)) (-15 -3603 (|#1| (-1206))) (-15 -3603 ((-880) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -3603 ((-1206) |#1|)) (-15 -3603 (|#1| (-1206))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-1206)) 17 T ELT) (((-1206) $) 16 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +((-4335 (((-3 $ "failed") (-327 (-391))) 48 T ELT) (((-3 $ "failed") (-327 (-577))) 53 T ELT) (((-3 $ "failed") (-980 (-391))) 57 T ELT) (((-3 $ "failed") (-980 (-577))) 61 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 43 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 36 T ELT)) (-3783 (($ (-327 (-391))) 46 T ELT) (($ (-327 (-577))) 51 T ELT) (($ (-980 (-391))) 55 T ELT) (($ (-980 (-577))) 59 T ELT) (($ (-420 (-980 (-391)))) 41 T ELT) (($ (-420 (-980 (-577)))) 33 T ELT)) (-3495 (((-1302) $) 91 T ELT)) (-3709 (((-885) $) 85 T ELT) (($ (-665 (-341))) 79 T ELT) (($ (-341)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 77 T ELT) (($ (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720))) 32 T ELT))) +(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720)))))) (-1206)) (T -89)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720))) (-5 *1 (-89 *3)) (-14 *3 (-1206))))) +(-13 (-409) (-10 -8 (-15 -3709 ($ (-351 (-3722 (QUOTE X)) (-3722 (QUOTE -2573)) (-720)))))) +((-3896 (((-1297 (-710 |#1|)) (-710 |#1|)) 61 T ELT)) (-3180 (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 (-665 (-949))))) |#2| (-949)) 49 T ELT)) (-2356 (((-2 (|:| |minor| (-665 (-949))) (|:| -2281 |#2|) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 |#2|))) |#2| (-949)) 72 (|has| |#1| (-375)) ELT))) +(((-90 |#1| |#2|) (-10 -7 (-15 -3180 ((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 (-665 (-949))))) |#2| (-949))) (-15 -3896 ((-1297 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-375)) (-15 -2356 ((-2 (|:| |minor| (-665 (-949))) (|:| -2281 |#2|) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 |#2|))) |#2| (-949))) |%noBranch|)) (-569) (-677 |#1|)) (T -90)) +((-2356 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |minor| (-665 (-949))) (|:| -2281 *3) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-710 *4)) (-4 *5 (-677 *4)))) (-3180 (*1 *2 *3 *4) (-12 (-4 *5 (-569)) (-5 *2 (-2 (|:| -3684 (-710 *5)) (|:| |vec| (-1297 (-665 (-949)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5))))) +(-10 -7 (-15 -3180 ((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 (-665 (-949))))) |#2| (-949))) (-15 -3896 ((-1297 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-375)) (-15 -2356 ((-2 (|:| |minor| (-665 (-949))) (|:| -2281 |#2|) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 |#2|))) |#2| (-949))) |%noBranch|)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2841 ((|#1| $) 40 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1839 ((|#1| |#1| $) 35 T ELT)) (-2268 ((|#1| $) 33 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) NIL T ELT)) (-4375 (($ |#1| $) 36 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3205 ((|#1| $) 34 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 18 T ELT)) (-2833 (($) 45 T ELT)) (-2105 (((-792) $) 31 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 17 T ELT)) (-3709 (((-885) $) 30 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) NIL T ELT)) (-2491 (($ (-665 |#1|)) 42 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 15 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 12 (|has| $ (-6 -4499)) ELT))) +(((-91 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -2491 ($ (-665 |#1|))))) (-1130)) (T -91)) +((-2491 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-91 *3))))) +(-13 (-1151 |#1|) (-10 -8 (-15 -2491 ($ (-665 |#1|))))) +((-3709 (((-885) $) 13 T ELT) (($ (-1211)) 9 T ELT) (((-1211) $) 8 T ELT))) +(((-92 |#1|) (-10 -8 (-15 -3709 ((-1211) |#1|)) (-15 -3709 (|#1| (-1211))) (-15 -3709 ((-885) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3709 ((-1211) |#1|)) (-15 -3709 (|#1| (-1211))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-1211)) 17 T ELT) (((-1211) $) 16 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-93) (-141)) (T -93)) NIL -(-13 (-1125) (-503 (-1206))) -(((-102) . T) ((-629 #0=(-1206)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1242) . T)) -((-2592 (($ $) 10 T ELT)) (-2604 (($ $) 12 T ELT))) -(((-94 |#1|) (-10 -8 (-15 -2604 (|#1| |#1|)) (-15 -2592 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1130) (-503 (-1211))) +(((-102) . T) ((-634 #0=(-1211)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1247) . T)) +((-1616 (($ $) 10 T ELT)) (-1626 (($ $) 12 T ELT))) +(((-94 |#1|) (-10 -8 (-15 -1626 (|#1| |#1|)) (-15 -1616 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -2604 (|#1| |#1|)) (-15 -2592 (|#1| |#1|))) -((-2570 (($ $) 11 T ELT)) (-2546 (($ $) 10 T ELT)) (-2592 (($ $) 9 T ELT)) (-2604 (($ $) 8 T ELT)) (-2581 (($ $) 7 T ELT)) (-2558 (($ $) 6 T ELT))) +(-10 -8 (-15 -1626 (|#1| |#1|)) (-15 -1616 (|#1| |#1|))) +((-2861 (($ $) 11 T ELT)) (-2834 (($ $) 10 T ELT)) (-1616 (($ $) 9 T ELT)) (-1626 (($ $) 8 T ELT)) (-2874 (($ $) 7 T ELT)) (-2847 (($ $) 6 T ELT))) (((-95) (-141)) (T -95)) -((-2570 (*1 *1 *1) (-4 *1 (-95))) (-2546 (*1 *1 *1) (-4 *1 (-95))) (-2592 (*1 *1 *1) (-4 *1 (-95))) (-2604 (*1 *1 *1) (-4 *1 (-95))) (-2581 (*1 *1 *1) (-4 *1 (-95))) (-2558 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2558 ($ $)) (-15 -2581 ($ $)) (-15 -2604 ($ $)) (-15 -2592 ($ $)) (-15 -2546 ($ $)) (-15 -2570 ($ $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2668 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 15 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-96) (-13 (-1108) (-10 -8 (-15 -2668 ((-1160) $))))) (T -96)) -((-2668 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-96))))) -(-13 (-1108) (-10 -8 (-15 -2668 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1738 (((-391) (-1183) (-391)) 46 T ELT) (((-391) (-1183) (-1183) (-391)) 44 T ELT)) (-4311 (((-391) (-391)) 35 T ELT)) (-4166 (((-1297)) 37 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3148 (((-391) (-1183) (-1183)) 50 T ELT) (((-391) (-1183)) 52 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3726 (((-391) (-1183) (-1183)) 51 T ELT)) (-2415 (((-391) (-1183) (-1183)) 53 T ELT) (((-391) (-1183)) 54 T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-97) (-13 (-1125) (-10 -7 (-15 -3148 ((-391) (-1183) (-1183))) (-15 -3148 ((-391) (-1183))) (-15 -2415 ((-391) (-1183) (-1183))) (-15 -2415 ((-391) (-1183))) (-15 -3726 ((-391) (-1183) (-1183))) (-15 -4166 ((-1297))) (-15 -4311 ((-391) (-391))) (-15 -1738 ((-391) (-1183) (-391))) (-15 -1738 ((-391) (-1183) (-1183) (-391))) (-6 -4470)))) (T -97)) -((-3148 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-2415 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3726 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-4166 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-97)))) (-4311 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-1738 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97)))) (-1738 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97))))) -(-13 (-1125) (-10 -7 (-15 -3148 ((-391) (-1183) (-1183))) (-15 -3148 ((-391) (-1183))) (-15 -2415 ((-391) (-1183) (-1183))) (-15 -2415 ((-391) (-1183))) (-15 -3726 ((-391) (-1183) (-1183))) (-15 -4166 ((-1297))) (-15 -4311 ((-391) (-391))) (-15 -1738 ((-391) (-1183) (-391))) (-15 -1738 ((-391) (-1183) (-1183) (-391))) (-6 -4470))) +((-2861 (*1 *1 *1) (-4 *1 (-95))) (-2834 (*1 *1 *1) (-4 *1 (-95))) (-1616 (*1 *1 *1) (-4 *1 (-95))) (-1626 (*1 *1 *1) (-4 *1 (-95))) (-2874 (*1 *1 *1) (-4 *1 (-95))) (-2847 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2847 ($ $)) (-15 -2874 ($ $)) (-15 -1626 ($ $)) (-15 -1616 ($ $)) (-15 -2834 ($ $)) (-15 -2861 ($ $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2758 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-96) (-13 (-1113) (-10 -8 (-15 -2758 ((-1165) $))))) (T -96)) +((-2758 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-96))))) +(-13 (-1113) (-10 -8 (-15 -2758 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4092 (((-391) (-1188) (-391)) 46 T ELT) (((-391) (-1188) (-1188) (-391)) 44 T ELT)) (-1780 (((-391) (-391)) 35 T ELT)) (-4199 (((-1302)) 37 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3672 (((-391) (-1188) (-1188)) 50 T ELT) (((-391) (-1188)) 52 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3085 (((-391) (-1188) (-1188)) 51 T ELT)) (-3347 (((-391) (-1188) (-1188)) 53 T ELT) (((-391) (-1188)) 54 T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-97) (-13 (-1130) (-10 -7 (-15 -3672 ((-391) (-1188) (-1188))) (-15 -3672 ((-391) (-1188))) (-15 -3347 ((-391) (-1188) (-1188))) (-15 -3347 ((-391) (-1188))) (-15 -3085 ((-391) (-1188) (-1188))) (-15 -4199 ((-1302))) (-15 -1780 ((-391) (-391))) (-15 -4092 ((-391) (-1188) (-391))) (-15 -4092 ((-391) (-1188) (-1188) (-391))) (-6 -4499)))) (T -97)) +((-3672 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3347 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-4199 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-97)))) (-1780 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-4092 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97)))) (-4092 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97))))) +(-13 (-1130) (-10 -7 (-15 -3672 ((-391) (-1188) (-1188))) (-15 -3672 ((-391) (-1188))) (-15 -3347 ((-391) (-1188) (-1188))) (-15 -3347 ((-391) (-1188))) (-15 -3085 ((-391) (-1188) (-1188))) (-15 -4199 ((-1302))) (-15 -1780 ((-391) (-391))) (-15 -4092 ((-391) (-1188) (-391))) (-15 -4092 ((-391) (-1188) (-1188) (-391))) (-6 -4499))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4470) (-6 (-4472 "*")) (-6 -4471) (-6 -4467) (-6 -4465) (-6 -4464) (-6 -4463) (-6 -4468) (-6 -4462) (-6 -4461) (-6 -4460) (-6 -4459) (-6 -4458) (-6 -4466) (-6 -4469) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4457))) -((-3489 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3048 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-577))) 24 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 16 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 ((|#1| $ |#1|) 13 T ELT)) (-1328 (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-3603 (((-880) $) 22 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 8 T CONST)) (-2949 (((-112) $ $) 10 T ELT)) (-3051 (($ $ $) NIL T ELT)) (** (($ $ (-944)) 32 T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 18 T ELT)) (* (($ $ $) 33 T ELT))) -(((-99 |#1|) (-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -3048 ($ (-1 |#1| |#1|))) (-15 -3048 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3048 ($ (-1 |#1| |#1| (-577)))))) (-1074)) (T -99)) -((-3048 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) (-3048 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) (-3048 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-99 *3))))) -(-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -3048 ($ (-1 |#1| |#1|))) (-15 -3048 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3048 ($ (-1 |#1| |#1| (-577)))))) -((-3898 (((-431 |#2|) |#2| (-660 |#2|)) 10 T ELT) (((-431 |#2|) |#2| |#2|) 11 T ELT))) -(((-100 |#1| |#2|) (-10 -7 (-15 -3898 ((-431 |#2|) |#2| |#2|)) (-15 -3898 ((-431 |#2|) |#2| (-660 |#2|)))) (-13 (-465) (-148)) (-1268 |#1|)) (T -100)) -((-3898 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3)))) (-3898 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -3898 ((-431 |#2|) |#2| |#2|)) (-15 -3898 ((-431 |#2|) |#2| (-660 |#2|)))) -((-3489 (((-112) $ $) 13 T ELT)) (-2726 (((-112) $ $) 14 T ELT)) (-2949 (((-112) $ $) 11 T ELT))) -(((-101 |#1|) (-10 -8 (-15 -2726 ((-112) |#1| |#1|)) (-15 -3489 ((-112) |#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2726 ((-112) |#1| |#1|)) (-15 -3489 ((-112) |#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 -4499) (-6 (-4501 "*")) (-6 -4500) (-6 -4496) (-6 -4494) (-6 -4493) (-6 -4492) (-6 -4497) (-6 -4491) (-6 -4490) (-6 -4489) (-6 -4488) (-6 -4487) (-6 -4495) (-6 -4498) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4486))) +((-3586 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-4142 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-577))) 24 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 16 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 ((|#1| $ |#1|) 13 T ELT)) (-4247 (($ $ $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3709 (((-885) $) 22 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 8 T CONST)) (-3018 (((-112) $ $) 10 T ELT)) (-3139 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 32 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 18 T ELT)) (* (($ $ $) 33 T ELT))) +(((-99 |#1|) (-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -4142 ($ (-1 |#1| |#1|))) (-15 -4142 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4142 ($ (-1 |#1| |#1| (-577)))))) (-1079)) (T -99)) +((-4142 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) (-4142 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-99 *3))))) +(-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -4142 ($ (-1 |#1| |#1|))) (-15 -4142 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4142 ($ (-1 |#1| |#1| (-577)))))) +((-1491 (((-431 |#2|) |#2| (-665 |#2|)) 10 T ELT) (((-431 |#2|) |#2| |#2|) 11 T ELT))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1491 ((-431 |#2|) |#2| |#2|)) (-15 -1491 ((-431 |#2|) |#2| (-665 |#2|)))) (-13 (-465) (-148)) (-1273 |#1|)) (T -100)) +((-1491 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3)))) (-1491 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -1491 ((-431 |#2|) |#2| |#2|)) (-15 -1491 ((-431 |#2|) |#2| (-665 |#2|)))) +((-3586 (((-112) $ $) 13 T ELT)) (-2643 (((-112) $ $) 14 T ELT)) (-3018 (((-112) $ $) 11 T ELT))) +(((-101 |#1|) (-10 -8 (-15 -2643 ((-112) |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2643 ((-112) |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-102) (-141)) (T -102)) -((-2949 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3489 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2726 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-1242) (-10 -8 (-15 -2949 ((-112) $ $)) (-15 -3489 ((-112) $ $)) (-15 -2726 ((-112) $ $)))) -(((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) 24 (|has| $ (-6 -4471)) ELT)) (-3440 (($ $ $) NIL (|has| $ (-6 -4471)) ELT)) (-1931 (($ $ $) NIL (|has| $ (-6 -4471)) ELT)) (-3313 (($ $ (-660 |#1|)) 30 T ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4471)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-3076 (($ $) 12 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3472 (($ $ |#1| $) 32 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-4124 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-4252 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3060 (($ $) 11 T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) 13 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 9 T ELT)) (-2693 (($) 31 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3834 (((-112) $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4214 (($ (-787) |#1|) 33 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -4214 ($ (-787) |#1|)) (-15 -3313 ($ $ (-660 |#1|))) (-15 -4124 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4124 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4252 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4252 ($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|))))) (-1125)) (T -103)) -((-4214 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-103 *3)) (-4 *3 (-1125)))) (-3313 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1125)))) (-4124 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3)))) (-4252 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (-5 *1 (-103 *2)))) (-4252 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-660 *2) *2 *2 *2)) (-4 *2 (-1125)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -4214 ($ (-787) |#1|)) (-15 -3313 ($ $ (-660 |#1|))) (-15 -4124 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4124 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4252 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4252 ($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|))))) -((-3176 ((|#3| |#2| |#2|) 34 T ELT)) (-1741 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4472 "*"))) ELT)) (-2931 ((|#3| |#2| |#2|) 36 T ELT)) (-2893 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4472 "*"))) ELT))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3176 (|#3| |#2| |#2|)) (-15 -2931 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4472 "*"))) (PROGN (-15 -1741 (|#1| |#2| |#2|)) (-15 -2893 (|#1| |#2|))) |%noBranch|)) (-1074) (-1268 |#1|) (-703 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) -((-2893 (*1 *2 *3) (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) (-4 *4 (-703 *2 *5 *6)))) (-1741 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) (-4 *4 (-703 *2 *5 *6)))) (-2931 (*1 *2 *3 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3176 (*1 *2 *3 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -(-10 -7 (-15 -3176 (|#3| |#2| |#2|)) (-15 -2931 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4472 "*"))) (PROGN (-15 -1741 (|#1| |#2| |#2|)) (-15 -2893 (|#1| |#2|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-3664 (((-660 (-1201))) 37 T ELT)) (-3047 (((-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228)))) (-1201)) 39 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-105) (-13 (-1125) (-10 -7 (-15 -3664 ((-660 (-1201)))) (-15 -3047 ((-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228)))) (-1201))) (-6 -4470)))) (T -105)) -((-3664 (*1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-105)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228))))) (-5 *1 (-105))))) -(-13 (-1125) (-10 -7 (-15 -3664 ((-660 (-1201)))) (-15 -3047 ((-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228)))) (-1201))) (-6 -4470))) -((-3231 (($ (-660 |#2|)) 11 T ELT))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3231 (|#1| (-660 |#2|)))) (-107 |#2|) (-1242)) (T -106)) -NIL -(-10 -8 (-15 -3231 (|#1| (-660 |#2|)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3790 (($) 7 T CONST)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-107 |#1|) (-141) (-1242)) (T -107)) -((-3231 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-107 *3)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242)))) (-4345 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242))))) -(-13 (-502 |t#1|) (-10 -8 (-6 -4471) (-15 -3231 ($ (-660 |t#1|))) (-15 -3439 (|t#1| $)) (-15 -4345 ($ |t#1| $)) (-15 -3596 (|t#1| $)))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| (-577) (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1063 (-577))) ELT)) (-2155 (((-577) $) NIL T ELT) (((-1201) $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1063 (-577))) ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-577) (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 (((-577) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-2124 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-577) (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-1374 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577))) ELT) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 (((-577) $) NIL T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-627 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1047)) ELT) (((-228) $) NIL (|has| (-577) (-1047)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1029 2) $) 10 T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-1644 (($ (-420 (-577))) 9 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| (-577) (-836)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-3051 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) -(((-108) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 2)) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -1644 ($ (-420 (-577))))))) (T -108)) -((-3053 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108))))) -(-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 2)) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -1644 ($ (-420 (-577)))))) -((-3741 (((-660 (-988)) $) 13 T ELT)) (-2668 (((-519) $) 9 T ELT)) (-3603 (((-880) $) 20 T ELT)) (-1620 (($ (-519) (-660 (-988))) 15 T ELT))) -(((-109) (-13 (-626 (-880)) (-10 -8 (-15 -2668 ((-519) $)) (-15 -3741 ((-660 (-988)) $)) (-15 -1620 ($ (-519) (-660 (-988))))))) (T -109)) -((-2668 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-109)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-660 (-988))) (-5 *1 (-109)))) (-1620 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-109))))) -(-13 (-626 (-880)) (-10 -8 (-15 -2668 ((-519) $)) (-15 -3741 ((-660 (-988)) $)) (-15 -1620 ($ (-519) (-660 (-988)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3516 (($ $) NIL T ELT)) (-2727 (($ $ $) NIL T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) $) NIL (|has| (-112) (-865)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-3246 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-112) (-865))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2312 (($ $) NIL (|has| (-112) (-865)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 (((-112) $ (-1259 (-577)) (-112)) NIL (|has| $ (-6 -4471)) ELT) (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-3920 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-2498 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-2840 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4471)) ELT)) (-2759 (((-112) $ (-577)) NIL T ELT)) (-3728 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1125)) ELT) (((-577) (-112) $) NIL (|has| (-112) (-1125)) ELT) (((-577) (-1 (-112) (-112)) $) NIL T ELT)) (-3692 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2713 (($ $ $) NIL T ELT)) (-2686 (($ $) NIL T ELT)) (-1721 (($ $ $) NIL T ELT)) (-4223 (($ (-787) (-112)) 10 T ELT)) (-2906 (($ $ $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL T ELT)) (-1334 (($ $ $) NIL (|has| (-112) (-865)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-2434 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL T ELT)) (-2826 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2218 (($ $ $ (-577)) NIL T ELT) (($ (-112) $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-112) $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-2529 (($ $ (-112)) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-112)) (-660 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-660 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-3908 (((-660 (-112)) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 (($ $ (-1259 (-577))) NIL T ELT) (((-112) $ (-577)) NIL T ELT) (((-112) $ (-577) (-112)) NIL T ELT)) (-3490 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1452 (((-787) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT) (((-787) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-112) (-627 (-549))) ELT)) (-3614 (($ (-660 (-112))) NIL T ELT)) (-1685 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2716 (($ (-787) (-112)) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2700 (($ $ $) NIL T ELT)) (-3559 (($ $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3549 (($ $ $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-110) (-13 (-124) (-10 -8 (-15 -2716 ($ (-787) (-112)))))) (T -110)) -((-2716 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -2716 ($ (-787) (-112))))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) -(((-111 |#1| |#2|) (-141) (-1074) (-1074)) (T -111)) -NIL -(-13 (-664 |t#1|) (-1081 |t#2|) (-10 -7 (-6 -4465) (-6 -4464))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3516 (($ $) 10 T ELT)) (-2727 (($ $ $) 15 T ELT)) (-2190 (($) 7 T CONST)) (-1924 (($ $) 6 T ELT)) (-3373 (((-787)) 24 T ELT)) (-2352 (($) 32 T ELT)) (-2713 (($ $ $) 13 T ELT)) (-2686 (($ $) 9 T ELT)) (-1721 (($ $ $) 16 T ELT)) (-2906 (($ $ $) 17 T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) 30 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) 28 T ELT)) (-1837 (($ $ $) 20 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3555 (($) 8 T CONST)) (-3339 (($ $ $) 21 T ELT)) (-2176 (((-549) $) 34 T ELT)) (-3603 (((-880) $) 36 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2700 (($ $ $) 11 T ELT)) (-3559 (($ $ $) 14 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 19 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 22 T ELT)) (-3549 (($ $ $) 12 T ELT))) -(((-112) (-13 (-860) (-677) (-992) (-627 (-549)) (-10 -8 (-15 -2727 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -1721 ($ $ $)) (-15 -1924 ($ $))))) (T -112)) -((-2727 (*1 *1 *1 *1) (-5 *1 (-112))) (-2906 (*1 *1 *1 *1) (-5 *1 (-112))) (-1721 (*1 *1 *1 *1) (-5 *1 (-112))) (-1924 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-860) (-677) (-992) (-627 (-549)) (-10 -8 (-15 -2727 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -1721 ($ $ $)) (-15 -1924 ($ $)))) -((-2713 (($ $ $) 6 T ELT)) (-2686 (($ $) 8 T ELT)) (-2700 (($ $ $) 7 T ELT))) +((-3018 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3586 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2643 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-1247) (-10 -8 (-15 -3018 ((-112) $ $)) (-15 -3586 ((-112) $ $)) (-15 -2643 ((-112) $ $)))) +(((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) 24 (|has| $ (-6 -4500)) ELT)) (-4257 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-1526 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-2024 (($ $ (-665 |#1|)) 30 T ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-3352 (($ $) 12 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3108 (($ $ |#1| $) 32 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3925 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-3440 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-665 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3337 (($ $) 11 T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) 13 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 9 T ELT)) (-2833 (($) 31 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3549 (($ (-792) |#1|) 33 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3549 ($ (-792) |#1|)) (-15 -2024 ($ $ (-665 |#1|))) (-15 -3925 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3925 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3440 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3440 ($ $ |#1| (-1 (-665 |#1|) |#1| |#1| |#1|))))) (-1130)) (T -103)) +((-3549 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-103 *3)) (-4 *3 (-1130)))) (-2024 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3)))) (-3925 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1130)))) (-3925 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3)))) (-3440 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (-5 *1 (-103 *2)))) (-3440 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-665 *2) *2 *2 *2)) (-4 *2 (-1130)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3549 ($ (-792) |#1|)) (-15 -2024 ($ $ (-665 |#1|))) (-15 -3925 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3925 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3440 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3440 ($ $ |#1| (-1 (-665 |#1|) |#1| |#1| |#1|))))) +((-4184 ((|#3| |#2| |#2|) 34 T ELT)) (-2275 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-2227 ((|#3| |#2| |#2|) 36 T ELT)) (-1473 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4501 "*"))) ELT))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4184 (|#3| |#2| |#2|)) (-15 -2227 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4501 "*"))) (PROGN (-15 -2275 (|#1| |#2| |#2|)) (-15 -1473 (|#1| |#2|))) |%noBranch|)) (-1079) (-1273 |#1|) (-708 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) +((-1473 (*1 *2 *3) (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-2275 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-2227 (*1 *2 *3 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-4184 (*1 *2 *3 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) +(-10 -7 (-15 -4184 (|#3| |#2| |#2|)) (-15 -2227 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4501 "*"))) (PROGN (-15 -2275 (|#1| |#2| |#2|)) (-15 -1473 (|#1| |#2|))) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2718 (((-665 (-1206))) 37 T ELT)) (-2923 (((-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228)))) (-1206)) 39 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-105) (-13 (-1130) (-10 -7 (-15 -2718 ((-665 (-1206)))) (-15 -2923 ((-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228)))) (-1206))) (-6 -4499)))) (T -105)) +((-2718 (*1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-105)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228))))) (-5 *1 (-105))))) +(-13 (-1130) (-10 -7 (-15 -2718 ((-665 (-1206)))) (-15 -2923 ((-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228)))) (-1206))) (-6 -4499))) +((-3886 (($ (-665 |#2|)) 11 T ELT))) +(((-106 |#1| |#2|) (-10 -8 (-15 -3886 (|#1| (-665 |#2|)))) (-107 |#2|) (-1247)) (T -106)) +NIL +(-10 -8 (-15 -3886 (|#1| (-665 |#2|)))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2305 (($) 7 T CONST)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-107 |#1|) (-141) (-1247)) (T -107)) +((-3886 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-4375 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) +(-13 (-502 |t#1|) (-10 -8 (-6 -4500) (-15 -3886 ($ (-665 |t#1|))) (-15 -3205 (|t#1| $)) (-15 -4375 ($ |t#1| $)) (-15 -2786 (|t#1| $)))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3783 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-577) (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 (((-577) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4417 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-577) (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-3941 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 (((-577) $) NIL T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1034 2) $) 10 T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2551 (($ (-420 (-577))) 9 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) +(((-108) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 2)) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -2551 ($ (-420 (-577))))))) (T -108)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108))))) +(-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 2)) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -2551 ($ (-420 (-577)))))) +((-2738 (((-665 (-993)) $) 13 T ELT)) (-2758 (((-519) $) 9 T ELT)) (-3709 (((-885) $) 20 T ELT)) (-2108 (($ (-519) (-665 (-993))) 15 T ELT))) +(((-109) (-13 (-631 (-885)) (-10 -8 (-15 -2758 ((-519) $)) (-15 -2738 ((-665 (-993)) $)) (-15 -2108 ($ (-519) (-665 (-993))))))) (T -109)) +((-2758 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-109)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-665 (-993))) (-5 *1 (-109)))) (-2108 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-109))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2758 ((-519) $)) (-15 -2738 ((-665 (-993)) $)) (-15 -2108 ($ (-519) (-665 (-993)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) NIL T ELT)) (-2814 (($ $ $) NIL T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) $) NIL (|has| (-112) (-870)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-2629 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-870))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1381 (($ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 (((-112) $ (-1264 (-577)) (-112)) NIL (|has| $ (-6 -4500)) ELT) (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-4004 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-2060 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-4420 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-4353 (((-112) $ (-577)) NIL T ELT)) (-3948 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1130)) ELT) (((-577) (-112) $) NIL (|has| (-112) (-1130)) ELT) (((-577) (-1 (-112) (-112)) $) NIL T ELT)) (-2118 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2802 (($ $ $) NIL T ELT)) (-2779 (($ $) NIL T ELT)) (-2933 (($ $ $) NIL T ELT)) (-3236 (($ (-792) (-112)) 10 T ELT)) (-3551 (($ $ $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL T ELT)) (-3771 (($ $ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-2152 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL T ELT)) (-4409 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2317 (($ $ $ (-577)) NIL T ELT) (($ (-112) $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-112) $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-2561 (($ $ (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-112)) (-665 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-665 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-4059 (((-665 (-112)) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 (($ $ (-1264 (-577))) NIL T ELT) (((-112) $ (-577)) NIL T ELT) (((-112) $ (-577) (-112)) NIL T ELT)) (-3587 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1481 (((-792) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT) (((-792) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-112) (-632 (-549))) ELT)) (-3722 (($ (-665 (-112))) NIL T ELT)) (-1702 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-1480 (($ (-792) (-112)) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2790 (($ $ $) NIL T ELT)) (-3660 (($ $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3647 (($ $ $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-110) (-13 (-124) (-10 -8 (-15 -1480 ($ (-792) (-112)))))) (T -110)) +((-1480 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -1480 ($ (-792) (-112))))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) +(((-111 |#1| |#2|) (-141) (-1079) (-1079)) (T -111)) +NIL +(-13 (-669 |t#1|) (-1086 |t#2|) (-10 -7 (-6 -4494) (-6 -4493))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) 10 T ELT)) (-2814 (($ $ $) 15 T ELT)) (-2288 (($) 7 T CONST)) (-4133 (($ $) 6 T ELT)) (-3005 (((-792)) 24 T ELT)) (-1424 (($) 32 T ELT)) (-2802 (($ $ $) 13 T ELT)) (-2779 (($ $) 9 T ELT)) (-2933 (($ $ $) 16 T ELT)) (-3551 (($ $ $) 17 T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) 30 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) 28 T ELT)) (-3216 (($ $ $) 20 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3655 (($) 8 T CONST)) (-3726 (($ $ $) 21 T ELT)) (-4463 (((-549) $) 34 T ELT)) (-3709 (((-885) $) 36 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2790 (($ $ $) 11 T ELT)) (-3660 (($ $ $) 14 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 19 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 22 T ELT)) (-3647 (($ $ $) 12 T ELT))) +(((-112) (-13 (-865) (-682) (-997) (-632 (-549)) (-10 -8 (-15 -2814 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -4133 ($ $))))) (T -112)) +((-2814 (*1 *1 *1 *1) (-5 *1 (-112))) (-3551 (*1 *1 *1 *1) (-5 *1 (-112))) (-2933 (*1 *1 *1 *1) (-5 *1 (-112))) (-4133 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-865) (-682) (-997) (-632 (-549)) (-10 -8 (-15 -2814 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -4133 ($ $)))) +((-2802 (($ $ $) 6 T ELT)) (-2779 (($ $) 8 T ELT)) (-2790 (($ $ $) 7 T ELT))) (((-113) (-141)) (T -113)) -((-2686 (*1 *1 *1) (-4 *1 (-113))) (-2700 (*1 *1 *1 *1) (-4 *1 (-113))) (-2713 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1242) (-10 -8 (-15 -2686 ($ $)) (-15 -2700 ($ $ $)) (-15 -2713 ($ $ $)))) -(((-1242) . T)) -((-4367 (((-3 (-1 |#1| (-660 |#1|)) "failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-660 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-115) (-660 |#1|)) 25 T ELT)) (-4089 (((-3 (-660 (-1 |#1| (-660 |#1|))) "failed") (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-660 (-1 |#1| (-660 |#1|)))) 30 T ELT)) (-2800 (((-115) |#1|) 63 T ELT)) (-2091 (((-3 |#1| "failed") (-115)) 58 T ELT))) -(((-114 |#1|) (-10 -7 (-15 -4367 ((-3 |#1| "failed") (-115) (-660 |#1|))) (-15 -4367 ((-115) (-115) (-1 |#1| (-660 |#1|)))) (-15 -4367 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4367 ((-3 (-1 |#1| (-660 |#1|)) "failed") (-115))) (-15 -4089 ((-115) (-115) (-660 (-1 |#1| (-660 |#1|))))) (-15 -4089 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4089 ((-3 (-660 (-1 |#1| (-660 |#1|))) "failed") (-115))) (-15 -2800 ((-115) |#1|)) (-15 -2091 ((-3 |#1| "failed") (-115)))) (-1125)) (T -114)) -((-2091 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1125)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1125)))) (-4089 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-1 *4 (-660 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1125)))) (-4089 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-4089 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 (-1 *4 (-660 *4)))) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-4367 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-660 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1125)))) (-4367 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-4367 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-660 *4))) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-4367 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-660 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1125))))) -(-10 -7 (-15 -4367 ((-3 |#1| "failed") (-115) (-660 |#1|))) (-15 -4367 ((-115) (-115) (-1 |#1| (-660 |#1|)))) (-15 -4367 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4367 ((-3 (-1 |#1| (-660 |#1|)) "failed") (-115))) (-15 -4089 ((-115) (-115) (-660 (-1 |#1| (-660 |#1|))))) (-15 -4089 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4089 ((-3 (-660 (-1 |#1| (-660 |#1|))) "failed") (-115))) (-15 -2800 ((-115) |#1|)) (-15 -2091 ((-3 |#1| "failed") (-115)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2539 (((-787) $) 92 T ELT) (($ $ (-787)) 37 T ELT)) (-2417 (((-112) $) 41 T ELT)) (-3974 (($ $ (-1183) (-790)) 59 T ELT) (($ $ (-519) (-790)) 33 T ELT)) (-3495 (($ $ (-45 (-1183) (-790))) 16 T ELT)) (-1773 (((-3 (-790) "failed") $ (-1183)) 27 T ELT) (((-707 (-790)) $ (-519)) 32 T ELT)) (-3741 (((-45 (-1183) (-790)) $) 15 T ELT)) (-2085 (($ (-1201)) 20 T ELT) (($ (-1201) (-787)) 23 T ELT) (($ (-1201) (-55)) 24 T ELT)) (-4393 (((-112) $) 39 T ELT)) (-4321 (((-112) $) 43 T ELT)) (-2668 (((-1201) $) 8 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3152 (((-112) $ (-1201)) 11 T ELT)) (-2042 (($ $ (-1 (-549) (-660 (-549)))) 65 T ELT) (((-3 (-1 (-549) (-660 (-549))) "failed") $) 72 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1498 (((-112) $ (-519)) 36 T ELT)) (-3524 (($ $ (-1 (-112) $ $)) 45 T ELT)) (-1992 (((-3 (-1 (-880) (-660 (-880))) "failed") $) 70 T ELT) (($ $ (-1 (-880) (-660 (-880)))) 51 T ELT) (($ $ (-1 (-880) (-880))) 53 T ELT)) (-2551 (($ $ (-1183)) 55 T ELT) (($ $ (-519)) 57 T ELT)) (-1914 (($ $) 78 T ELT)) (-3337 (($ $ (-1 (-112) $ $)) 46 T ELT)) (-3603 (((-880) $) 61 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2787 (($ $ (-519)) 34 T ELT)) (-1376 (((-55) $) 73 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 90 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 104 T ELT))) -(((-115) (-13 (-865) (-851 (-1201)) (-10 -8 (-15 -3741 ((-45 (-1183) (-790)) $)) (-15 -1914 ($ $)) (-15 -2085 ($ (-1201))) (-15 -2085 ($ (-1201) (-787))) (-15 -2085 ($ (-1201) (-55))) (-15 -4393 ((-112) $)) (-15 -2417 ((-112) $)) (-15 -4321 ((-112) $)) (-15 -2539 ((-787) $)) (-15 -2539 ($ $ (-787))) (-15 -3524 ($ $ (-1 (-112) $ $))) (-15 -3337 ($ $ (-1 (-112) $ $))) (-15 -1992 ((-3 (-1 (-880) (-660 (-880))) "failed") $)) (-15 -1992 ($ $ (-1 (-880) (-660 (-880))))) (-15 -1992 ($ $ (-1 (-880) (-880)))) (-15 -2042 ($ $ (-1 (-549) (-660 (-549))))) (-15 -2042 ((-3 (-1 (-549) (-660 (-549))) "failed") $)) (-15 -1498 ((-112) $ (-519))) (-15 -2787 ($ $ (-519))) (-15 -2551 ($ $ (-1183))) (-15 -2551 ($ $ (-519))) (-15 -1773 ((-3 (-790) "failed") $ (-1183))) (-15 -1773 ((-707 (-790)) $ (-519))) (-15 -3974 ($ $ (-1183) (-790))) (-15 -3974 ($ $ (-519) (-790))) (-15 -3495 ($ $ (-45 (-1183) (-790))))))) (T -115)) -((-3741 (*1 *2 *1) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115)))) (-1914 (*1 *1 *1) (-5 *1 (-115))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-115)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *1 (-115)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-55)) (-5 *1 (-115)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) (-2539 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3337 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1992 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) (-1992 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) (-1992 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-880))) (-5 *1 (-115)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) (-2042 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) (-1498 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2787 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-2551 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-115)))) (-2551 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-1773 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-790)) (-5 *1 (-115)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-790))) (-5 *1 (-115)))) (-3974 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-790)) (-5 *1 (-115)))) (-3974 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-790)) (-5 *1 (-115)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115))))) -(-13 (-865) (-851 (-1201)) (-10 -8 (-15 -3741 ((-45 (-1183) (-790)) $)) (-15 -1914 ($ $)) (-15 -2085 ($ (-1201))) (-15 -2085 ($ (-1201) (-787))) (-15 -2085 ($ (-1201) (-55))) (-15 -4393 ((-112) $)) (-15 -2417 ((-112) $)) (-15 -4321 ((-112) $)) (-15 -2539 ((-787) $)) (-15 -2539 ($ $ (-787))) (-15 -3524 ($ $ (-1 (-112) $ $))) (-15 -3337 ($ $ (-1 (-112) $ $))) (-15 -1992 ((-3 (-1 (-880) (-660 (-880))) "failed") $)) (-15 -1992 ($ $ (-1 (-880) (-660 (-880))))) (-15 -1992 ($ $ (-1 (-880) (-880)))) (-15 -2042 ($ $ (-1 (-549) (-660 (-549))))) (-15 -2042 ((-3 (-1 (-549) (-660 (-549))) "failed") $)) (-15 -1498 ((-112) $ (-519))) (-15 -2787 ($ $ (-519))) (-15 -2551 ($ $ (-1183))) (-15 -2551 ($ $ (-519))) (-15 -1773 ((-3 (-790) "failed") $ (-1183))) (-15 -1773 ((-707 (-790)) $ (-519))) (-15 -3974 ($ $ (-1183) (-790))) (-15 -3974 ($ $ (-519) (-790))) (-15 -3495 ($ $ (-45 (-1183) (-790)))))) -((-4054 (((-577) |#2|) 41 T ELT))) -(((-116 |#1| |#2|) (-10 -7 (-15 -4054 ((-577) |#2|))) (-13 (-375) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -116)) -((-4054 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-1063 (-420 *2)))) (-5 *2 (-577)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -4054 ((-577) |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $ (-577)) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1703 (($ (-1197 (-577)) (-577)) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3471 (($ $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2536 (((-787) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1688 (((-577)) NIL T ELT)) (-1962 (((-577) $) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1987 (($ $ (-577)) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3453 (((-1182 (-577)) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4142 (((-577) $ (-577)) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-117 |#1|) (-887 |#1|) (-577)) (T -117)) -NIL -(-887 |#1|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| (-117 |#1|) (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-117 |#1|) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (|has| (-117 |#1|) (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-117 |#1|) (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-117 |#1|) (-1063 (-577))) ELT)) (-2155 (((-117 |#1|) $) NIL T ELT) (((-1201) $) NIL (|has| (-117 |#1|) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| (-117 |#1|) (-1063 (-577))) ELT) (((-577) $) NIL (|has| (-117 |#1|) (-1063 (-577))) ELT)) (-1459 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-117 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-117 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-117 |#1|))) (|:| |vec| (-1292 (-117 |#1|)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-117 |#1|)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-117 |#1|) (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| (-117 |#1|) (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-117 |#1|) (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-117 |#1|) (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 (((-117 |#1|) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| (-117 |#1|) (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| (-117 |#1|) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-117 |#1|) (-865)) ELT)) (-2124 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-117 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-117 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-117 |#1|))) (|:| |vec| (-1292 (-117 |#1|)))) (-1292 $) $) NIL T ELT) (((-705 (-117 |#1|)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-117 |#1|) (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| (-117 |#1|) (-318)) ELT)) (-1374 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 (-117 |#1|)) (-660 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-305 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-660 (-305 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-660 (-1201)) (-660 (-117 |#1|))) NIL (|has| (-117 |#1|) (-527 (-1201) (-117 |#1|))) ELT) (($ $ (-1201) (-117 |#1|)) NIL (|has| (-117 |#1|) (-527 (-1201) (-117 |#1|))) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-297 (-117 |#1|) (-117 |#1|))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL T ELT) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $) NIL (|has| (-117 |#1|) (-238)) ELT) (($ $ (-787)) NIL (|has| (-117 |#1|) (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 (((-117 |#1|) $) NIL T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| (-117 |#1|) (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| (-117 |#1|) (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| (-117 |#1|) (-627 (-549))) ELT) (((-391) $) NIL (|has| (-117 |#1|) (-1047)) ELT) (((-228) $) NIL (|has| (-117 |#1|) (-1047)) ELT)) (-2060 (((-176 (-420 (-577))) $) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-117 |#1|)) NIL T ELT) (($ (-1201)) NIL (|has| (-117 |#1|) (-1063 (-1201))) ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-932))) (|has| (-117 |#1|) (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4142 (((-420 (-577)) $ (-577)) NIL T ELT)) (-4318 (($ $) NIL (|has| (-117 |#1|) (-836)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL T ELT) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-117 |#1|) (-923 (-1201))) ELT) (($ $) NIL (|has| (-117 |#1|) (-238)) ELT) (($ $ (-787)) NIL (|has| (-117 |#1|) (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)) ELT)) (-3051 (($ $ $) NIL T ELT) (($ (-117 |#1|) (-117 |#1|)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-117 |#1|) $) NIL T ELT) (($ $ (-117 |#1|)) NIL T ELT))) -(((-118 |#1|) (-13 (-1017 (-117 |#1|)) (-10 -8 (-15 -4142 ((-420 (-577)) $ (-577))) (-15 -2060 ((-176 (-420 (-577))) $)) (-15 -1459 ($ $)) (-15 -1459 ($ (-577) $)))) (-577)) (T -118)) -((-4142 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1017 (-117 |#1|)) (-10 -8 (-15 -4142 ((-420 (-577)) $ (-577))) (-15 -2060 ((-176 (-420 (-577))) $)) (-15 -1459 ($ $)) (-15 -1459 ($ (-577) $)))) -((-1895 ((|#2| $ "value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-1830 (((-660 $) $) 31 T ELT)) (-2725 (((-112) $ $) 36 T ELT)) (-1645 (((-112) |#2| $) 40 T ELT)) (-2935 (((-660 |#2|) $) 25 T ELT)) (-2284 (((-112) $) 18 T ELT)) (-2837 ((|#2| $ "value") NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-3834 (((-112) $) 57 T ELT)) (-3603 (((-880) $) 47 T ELT)) (-2333 (((-660 $) $) 32 T ELT)) (-2949 (((-112) $ $) 38 T ELT)) (-3501 (((-787) $) 50 T ELT))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -1895 (|#1| |#1| "right" |#1|)) (-15 -1895 (|#1| |#1| "left" |#1|)) (-15 -2837 (|#1| |#1| "right")) (-15 -2837 (|#1| |#1| "left")) (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -2725 ((-112) |#1| |#1|)) (-15 -2935 ((-660 |#2|) |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -2837 (|#2| |#1| "value")) (-15 -2284 ((-112) |#1|)) (-15 -1830 ((-660 |#1|) |#1|)) (-15 -2333 ((-660 |#1|) |#1|)) (-15 -1645 ((-112) |#2| |#1|)) (-15 -3501 ((-787) |#1|))) (-120 |#2|) (-1242)) (T -119)) -NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -1895 (|#1| |#1| "right" |#1|)) (-15 -1895 (|#1| |#1| "left" |#1|)) (-15 -2837 (|#1| |#1| "right")) (-15 -2837 (|#1| |#1| "left")) (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -2725 ((-112) |#1| |#1|)) (-15 -2935 ((-660 |#2|) |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -2837 (|#2| |#1| "value")) (-15 -2284 ((-112) |#1|)) (-15 -1830 ((-660 |#1|) |#1|)) (-15 -2333 ((-660 |#1|) |#1|)) (-15 -1645 ((-112) |#2| |#1|)) (-15 -3501 ((-787) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-3440 (($ $ $) 53 (|has| $ (-6 -4471)) ELT)) (-1931 (($ $ $) 55 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4471)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-3790 (($) 7 T CONST)) (-3076 (($ $) 58 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-3060 (($ $) 60 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-120 |#1|) (-141) (-1242)) (T -120)) -((-3060 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-3076 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-1895 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-1931 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242)))) (-1895 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-3440 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242))))) -(-13 (-1035 |t#1|) (-10 -8 (-15 -3060 ($ $)) (-15 -2837 ($ $ "left")) (-15 -3076 ($ $)) (-15 -2837 ($ $ "right")) (IF (|has| $ (-6 -4471)) (PROGN (-15 -1895 ($ $ "left" $)) (-15 -1931 ($ $ $)) (-15 -1895 ($ $ "right" $)) (-15 -3440 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-2447 (((-112) |#1|) 29 T ELT)) (-2807 (((-787) (-787)) 28 T ELT) (((-787)) 27 T ELT)) (-2985 (((-112) |#1| (-112)) 30 T ELT) (((-112) |#1|) 31 T ELT))) -(((-121 |#1|) (-10 -7 (-15 -2985 ((-112) |#1|)) (-15 -2985 ((-112) |#1| (-112))) (-15 -2807 ((-787))) (-15 -2807 ((-787) (-787))) (-15 -2447 ((-112) |#1|))) (-1268 (-577))) (T -121)) -((-2447 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-2807 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-2985 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-2985 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) -(-10 -7 (-15 -2985 ((-112) |#1|)) (-15 -2985 ((-112) |#1| (-112))) (-15 -2807 ((-787))) (-15 -2807 ((-787) (-787))) (-15 -2447 ((-112) |#1|))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 18 T ELT)) (-3333 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3440 (($ $ $) 21 (|has| $ (-6 -4471)) ELT)) (-1931 (($ $ $) 23 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4471)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-3076 (($ $) 20 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3472 (($ $ |#1| $) 27 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3060 (($ $) 22 T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2867 (($ |#1| $) 28 T ELT)) (-4345 (($ |#1| $) 15 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 17 T ELT)) (-2693 (($) 11 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3834 (((-112) $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2710 (($ (-660 |#1|)) 16 T ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -2710 ($ (-660 |#1|))) (-15 -4345 ($ |#1| $)) (-15 -2867 ($ |#1| $)) (-15 -3333 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-865)) (T -122)) -((-2710 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-122 *3)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865)))) (-2867 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865)))) (-3333 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-865))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -2710 ($ (-660 |#1|))) (-15 -4345 ($ |#1| $)) (-15 -2867 ($ |#1| $)) (-15 -3333 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3516 (($ $) 13 T ELT)) (-2686 (($ $) 11 T ELT)) (-1721 (($ $ $) 23 T ELT)) (-2906 (($ $ $) 21 T ELT)) (-3559 (($ $ $) 19 T ELT)) (-3549 (($ $ $) 17 T ELT))) -(((-123 |#1|) (-10 -8 (-15 -1721 (|#1| |#1| |#1|)) (-15 -2906 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 -3559 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -1721 (|#1| |#1| |#1|)) (-15 -2906 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 -3559 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3516 (($ $) 104 T ELT)) (-2727 (($ $ $) 29 T ELT)) (-2790 (((-1297) $ (-577) (-577)) 67 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) $) 99 (|has| (-112) (-865)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) 93 T ELT)) (-3246 (($ $) 103 (-12 (|has| (-112) (-865)) (|has| $ (-6 -4471))) ELT) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4471)) ELT)) (-2312 (($ $) 98 (|has| (-112) (-865)) ELT) (($ (-1 (-112) (-112) (-112)) $) 92 T ELT)) (-4403 (((-112) $ (-787)) 38 T ELT)) (-1895 (((-112) $ (-1259 (-577)) (-112)) 89 (|has| $ (-6 -4471)) ELT) (((-112) $ (-577) (-112)) 55 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 39 T CONST)) (-1932 (($ $) 101 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 91 T ELT)) (-3289 (($ $) 69 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4470)) ELT) (($ (-112) $) 70 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))) ELT)) (-2498 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))) ELT)) (-2840 (((-112) $ (-577) (-112)) 54 (|has| $ (-6 -4471)) ELT)) (-2759 (((-112) $ (-577)) 56 T ELT)) (-3728 (((-577) (-112) $ (-577)) 96 (|has| (-112) (-1125)) ELT) (((-577) (-112) $) 95 (|has| (-112) (-1125)) ELT) (((-577) (-1 (-112) (-112)) $) 94 T ELT)) (-3692 (((-660 (-112)) $) 46 (|has| $ (-6 -4470)) ELT)) (-2713 (($ $ $) 109 T ELT)) (-2686 (($ $) 107 T ELT)) (-1721 (($ $ $) 30 T ELT)) (-4223 (($ (-787) (-112)) 79 T ELT)) (-2906 (($ $ $) 31 T ELT)) (-1821 (((-112) $ (-787)) 37 T ELT)) (-4239 (((-577) $) 64 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 20 T ELT)) (-1334 (($ $ $) 97 (|has| (-112) (-865)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) 90 T ELT)) (-2434 (((-660 (-112)) $) 47 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 63 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 19 T ELT)) (-2826 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-112) (-112) (-112)) $ $) 84 T ELT) (($ (-1 (-112) (-112)) $) 41 T ELT)) (-3272 (((-112) $ (-787)) 36 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2218 (($ $ $ (-577)) 88 T ELT) (($ (-112) $ (-577)) 87 T ELT)) (-3445 (((-660 (-577)) $) 61 T ELT)) (-2187 (((-112) (-577) $) 60 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1652 (((-112) $) 65 (|has| (-577) (-865)) ELT)) (-2153 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76 T ELT)) (-2529 (($ $ (-112)) 66 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-112)) (-660 (-112))) 53 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-305 (-112))) 51 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-660 (-305 (-112)))) 50 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT)) (-3007 (((-112) $ $) 32 T ELT)) (-1696 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-3908 (((-660 (-112)) $) 59 T ELT)) (-2856 (((-112) $) 35 T ELT)) (-2693 (($) 34 T ELT)) (-2837 (($ $ (-1259 (-577))) 78 T ELT) (((-112) $ (-577)) 58 T ELT) (((-112) $ (-577) (-112)) 57 T ELT)) (-3490 (($ $ (-1259 (-577))) 86 T ELT) (($ $ (-577)) 85 T ELT)) (-1452 (((-787) (-112) $) 48 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4470)) ELT)) (-2875 (($ $ $ (-577)) 100 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 33 T ELT)) (-2176 (((-549) $) 68 (|has| (-112) (-627 (-549))) ELT)) (-3614 (($ (-660 (-112))) 77 T ELT)) (-1685 (($ (-660 $)) 83 T ELT) (($ $ $) 82 T ELT) (($ (-112) $) 81 T ELT) (($ $ (-112)) 80 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2285 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4470)) ELT)) (-2700 (($ $ $) 108 T ELT)) (-3559 (($ $ $) 106 T ELT)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (-3549 (($ $ $) 105 T ELT)) (-3501 (((-787) $) 40 (|has| $ (-6 -4470)) ELT))) +((-2779 (*1 *1 *1) (-4 *1 (-113))) (-2790 (*1 *1 *1 *1) (-4 *1 (-113))) (-2802 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1247) (-10 -8 (-15 -2779 ($ $)) (-15 -2790 ($ $ $)) (-15 -2802 ($ $ $)))) +(((-1247) . T)) +((-3942 (((-3 (-1 |#1| (-665 |#1|)) "failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-665 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-115) (-665 |#1|)) 25 T ELT)) (-2483 (((-3 (-665 (-1 |#1| (-665 |#1|))) "failed") (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-665 (-1 |#1| (-665 |#1|)))) 30 T ELT)) (-1375 (((-115) |#1|) 63 T ELT)) (-3955 (((-3 |#1| "failed") (-115)) 58 T ELT))) +(((-114 |#1|) (-10 -7 (-15 -3942 ((-3 |#1| "failed") (-115) (-665 |#1|))) (-15 -3942 ((-115) (-115) (-1 |#1| (-665 |#1|)))) (-15 -3942 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3942 ((-3 (-1 |#1| (-665 |#1|)) "failed") (-115))) (-15 -2483 ((-115) (-115) (-665 (-1 |#1| (-665 |#1|))))) (-15 -2483 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2483 ((-3 (-665 (-1 |#1| (-665 |#1|))) "failed") (-115))) (-15 -1375 ((-115) |#1|)) (-15 -3955 ((-3 |#1| "failed") (-115)))) (-1130)) (T -114)) +((-3955 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1130)))) (-1375 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1130)))) (-2483 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-1 *4 (-665 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1130)))) (-2483 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-2483 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 (-1 *4 (-665 *4)))) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-3942 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-665 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1130)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-665 *4))) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-3942 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-665 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1130))))) +(-10 -7 (-15 -3942 ((-3 |#1| "failed") (-115) (-665 |#1|))) (-15 -3942 ((-115) (-115) (-1 |#1| (-665 |#1|)))) (-15 -3942 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3942 ((-3 (-1 |#1| (-665 |#1|)) "failed") (-115))) (-15 -2483 ((-115) (-115) (-665 (-1 |#1| (-665 |#1|))))) (-15 -2483 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2483 ((-3 (-665 (-1 |#1| (-665 |#1|))) "failed") (-115))) (-15 -1375 ((-115) |#1|)) (-15 -3955 ((-3 |#1| "failed") (-115)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2163 (((-792) $) 92 T ELT) (($ $ (-792)) 37 T ELT)) (-1937 (((-112) $) 41 T ELT)) (-2548 (($ $ (-1188) (-795)) 59 T ELT) (($ $ (-519) (-795)) 33 T ELT)) (-2031 (($ $ (-45 (-1188) (-795))) 16 T ELT)) (-3173 (((-3 (-795) "failed") $ (-1188)) 27 T ELT) (((-712 (-795)) $ (-519)) 32 T ELT)) (-2738 (((-45 (-1188) (-795)) $) 15 T ELT)) (-3706 (($ (-1206)) 20 T ELT) (($ (-1206) (-792)) 23 T ELT) (($ (-1206) (-55)) 24 T ELT)) (-2052 (((-112) $) 39 T ELT)) (-1475 (((-112) $) 43 T ELT)) (-2758 (((-1206) $) 8 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4241 (((-112) $ (-1206)) 11 T ELT)) (-2122 (($ $ (-1 (-549) (-665 (-549)))) 65 T ELT) (((-3 (-1 (-549) (-665 (-549))) "failed") $) 72 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2041 (((-112) $ (-519)) 36 T ELT)) (-2435 (($ $ (-1 (-112) $ $)) 45 T ELT)) (-2064 (((-3 (-1 (-885) (-665 (-885))) "failed") $) 70 T ELT) (($ $ (-1 (-885) (-665 (-885)))) 51 T ELT) (($ $ (-1 (-885) (-885))) 53 T ELT)) (-3851 (($ $ (-1188)) 55 T ELT) (($ $ (-519)) 57 T ELT)) (-1977 (($ $) 78 T ELT)) (-3737 (($ $ (-1 (-112) $ $)) 46 T ELT)) (-3709 (((-885) $) 61 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2868 (($ $ (-519)) 34 T ELT)) (-3622 (((-55) $) 73 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 90 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 104 T ELT))) +(((-115) (-13 (-870) (-856 (-1206)) (-10 -8 (-15 -2738 ((-45 (-1188) (-795)) $)) (-15 -1977 ($ $)) (-15 -3706 ($ (-1206))) (-15 -3706 ($ (-1206) (-792))) (-15 -3706 ($ (-1206) (-55))) (-15 -2052 ((-112) $)) (-15 -1937 ((-112) $)) (-15 -1475 ((-112) $)) (-15 -2163 ((-792) $)) (-15 -2163 ($ $ (-792))) (-15 -2435 ($ $ (-1 (-112) $ $))) (-15 -3737 ($ $ (-1 (-112) $ $))) (-15 -2064 ((-3 (-1 (-885) (-665 (-885))) "failed") $)) (-15 -2064 ($ $ (-1 (-885) (-665 (-885))))) (-15 -2064 ($ $ (-1 (-885) (-885)))) (-15 -2122 ($ $ (-1 (-549) (-665 (-549))))) (-15 -2122 ((-3 (-1 (-549) (-665 (-549))) "failed") $)) (-15 -2041 ((-112) $ (-519))) (-15 -2868 ($ $ (-519))) (-15 -3851 ($ $ (-1188))) (-15 -3851 ($ $ (-519))) (-15 -3173 ((-3 (-795) "failed") $ (-1188))) (-15 -3173 ((-712 (-795)) $ (-519))) (-15 -2548 ($ $ (-1188) (-795))) (-15 -2548 ($ $ (-519) (-795))) (-15 -2031 ($ $ (-45 (-1188) (-795))))))) (T -115)) +((-2738 (*1 *2 *1) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115)))) (-1977 (*1 *1 *1) (-5 *1 (-115))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-115)))) (-3706 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *1 (-115)))) (-3706 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) (-2163 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3737 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2064 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-885))) (-5 *1 (-115)))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) (-2122 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2868 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-3851 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115)))) (-3851 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-3173 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-795)) (-5 *1 (-115)))) (-3173 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-795))) (-5 *1 (-115)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-795)) (-5 *1 (-115)))) (-2548 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-795)) (-5 *1 (-115)))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115))))) +(-13 (-870) (-856 (-1206)) (-10 -8 (-15 -2738 ((-45 (-1188) (-795)) $)) (-15 -1977 ($ $)) (-15 -3706 ($ (-1206))) (-15 -3706 ($ (-1206) (-792))) (-15 -3706 ($ (-1206) (-55))) (-15 -2052 ((-112) $)) (-15 -1937 ((-112) $)) (-15 -1475 ((-112) $)) (-15 -2163 ((-792) $)) (-15 -2163 ($ $ (-792))) (-15 -2435 ($ $ (-1 (-112) $ $))) (-15 -3737 ($ $ (-1 (-112) $ $))) (-15 -2064 ((-3 (-1 (-885) (-665 (-885))) "failed") $)) (-15 -2064 ($ $ (-1 (-885) (-665 (-885))))) (-15 -2064 ($ $ (-1 (-885) (-885)))) (-15 -2122 ($ $ (-1 (-549) (-665 (-549))))) (-15 -2122 ((-3 (-1 (-549) (-665 (-549))) "failed") $)) (-15 -2041 ((-112) $ (-519))) (-15 -2868 ($ $ (-519))) (-15 -3851 ($ $ (-1188))) (-15 -3851 ($ $ (-519))) (-15 -3173 ((-3 (-795) "failed") $ (-1188))) (-15 -3173 ((-712 (-795)) $ (-519))) (-15 -2548 ($ $ (-1188) (-795))) (-15 -2548 ($ $ (-519) (-795))) (-15 -2031 ($ $ (-45 (-1188) (-795)))))) +((-1733 (((-577) |#2|) 41 T ELT))) +(((-116 |#1| |#2|) (-10 -7 (-15 -1733 ((-577) |#2|))) (-13 (-375) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -116)) +((-1733 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-1068 (-420 *2)))) (-5 *2 (-577)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -1733 ((-577) |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $ (-577)) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2361 (($ (-1202 (-577)) (-577)) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-4030 (((-792) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3351 (((-577)) NIL T ELT)) (-1938 (((-577) $) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2568 (($ $ (-577)) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3046 (((-1187 (-577)) $) NIL T ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4215 (((-577) $ (-577)) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-117 |#1|) (-892 |#1|) (-577)) (T -117)) +NIL +(-892 |#1|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-117 |#1|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-117 |#1|) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT)) (-3783 (((-117 |#1|) $) NIL T ELT) (((-1206) $) NIL (|has| (-117 |#1|) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT)) (-3258 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-117 |#1|))) (|:| |vec| (-1297 (-117 |#1|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-117 |#1|)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-117 |#1|) (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-117 |#1|) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-117 |#1|) (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 (((-117 |#1|) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-4417 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-117 |#1|))) (|:| |vec| (-1297 (-117 |#1|)))) (-1297 $) $) NIL T ELT) (((-710 (-117 |#1|)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-117 |#1|) (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| (-117 |#1|) (-318)) ELT)) (-3941 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 (-117 |#1|)) (-665 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-305 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-665 (-305 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-665 (-1206)) (-665 (-117 |#1|))) NIL (|has| (-117 |#1|) (-527 (-1206) (-117 |#1|))) ELT) (($ $ (-1206) (-117 |#1|)) NIL (|has| (-117 |#1|) (-527 (-1206) (-117 |#1|))) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-297 (-117 |#1|) (-117 |#1|))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL T ELT) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-117 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-117 |#1|) (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 (((-117 |#1|) $) NIL T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| (-117 |#1|) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-117 |#1|) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-117 |#1|) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-117 |#1|) (-1052)) ELT) (((-228) $) NIL (|has| (-117 |#1|) (-1052)) ELT)) (-2979 (((-176 (-420 (-577))) $) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-117 |#1|)) NIL T ELT) (($ (-1206)) NIL (|has| (-117 |#1|) (-1068 (-1206))) ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-937))) (|has| (-117 |#1|) (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4215 (((-420 (-577)) $ (-577)) NIL T ELT)) (-2215 (($ $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL T ELT) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-117 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-117 |#1|) (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-117 |#1|) (-117 |#1|)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-117 |#1|) $) NIL T ELT) (($ $ (-117 |#1|)) NIL T ELT))) +(((-118 |#1|) (-13 (-1022 (-117 |#1|)) (-10 -8 (-15 -4215 ((-420 (-577)) $ (-577))) (-15 -2979 ((-176 (-420 (-577))) $)) (-15 -3258 ($ $)) (-15 -3258 ($ (-577) $)))) (-577)) (T -118)) +((-4215 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) (-3258 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) (-3258 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1022 (-117 |#1|)) (-10 -8 (-15 -4215 ((-420 (-577)) $ (-577))) (-15 -2979 ((-176 (-420 (-577))) $)) (-15 -3258 ($ $)) (-15 -3258 ($ (-577) $)))) +((-1957 ((|#2| $ "value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-2680 (((-665 $) $) 31 T ELT)) (-3977 (((-112) $ $) 36 T ELT)) (-3519 (((-112) |#2| $) 40 T ELT)) (-3196 (((-665 |#2|) $) 25 T ELT)) (-3188 (((-112) $) 18 T ELT)) (-2916 ((|#2| $ "value") NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-2625 (((-112) $) 57 T ELT)) (-3709 (((-885) $) 47 T ELT)) (-3217 (((-665 $) $) 32 T ELT)) (-3018 (((-112) $ $) 38 T ELT)) (-3600 (((-792) $) 50 T ELT))) +(((-119 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -1957 (|#1| |#1| "right" |#1|)) (-15 -1957 (|#1| |#1| "left" |#1|)) (-15 -2916 (|#1| |#1| "right")) (-15 -2916 (|#1| |#1| "left")) (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -3977 ((-112) |#1| |#1|)) (-15 -3196 ((-665 |#2|) |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2916 (|#2| |#1| "value")) (-15 -3188 ((-112) |#1|)) (-15 -2680 ((-665 |#1|) |#1|)) (-15 -3217 ((-665 |#1|) |#1|)) (-15 -3519 ((-112) |#2| |#1|)) (-15 -3600 ((-792) |#1|))) (-120 |#2|) (-1247)) (T -119)) +NIL +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -1957 (|#1| |#1| "right" |#1|)) (-15 -1957 (|#1| |#1| "left" |#1|)) (-15 -2916 (|#1| |#1| "right")) (-15 -2916 (|#1| |#1| "left")) (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -3977 ((-112) |#1| |#1|)) (-15 -3196 ((-665 |#2|) |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2916 (|#2| |#1| "value")) (-15 -3188 ((-112) |#1|)) (-15 -2680 ((-665 |#1|) |#1|)) (-15 -3217 ((-665 |#1|) |#1|)) (-15 -3519 ((-112) |#2| |#1|)) (-15 -3600 ((-792) |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-4257 (($ $ $) 53 (|has| $ (-6 -4500)) ELT)) (-1526 (($ $ $) 55 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4500)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2305 (($) 7 T CONST)) (-3352 (($ $) 58 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3337 (($ $) 60 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-120 |#1|) (-141) (-1247)) (T -120)) +((-3337 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-3352 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-1957 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-1526 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247)))) (-1957 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-4257 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -3337 ($ $)) (-15 -2916 ($ $ "left")) (-15 -3352 ($ $)) (-15 -2916 ($ $ "right")) (IF (|has| $ (-6 -4500)) (PROGN (-15 -1957 ($ $ "left" $)) (-15 -1526 ($ $ $)) (-15 -1957 ($ $ "right" $)) (-15 -4257 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3754 (((-112) |#1|) 29 T ELT)) (-1371 (((-792) (-792)) 28 T ELT) (((-792)) 27 T ELT)) (-3994 (((-112) |#1| (-112)) 30 T ELT) (((-112) |#1|) 31 T ELT))) +(((-121 |#1|) (-10 -7 (-15 -3994 ((-112) |#1|)) (-15 -3994 ((-112) |#1| (-112))) (-15 -1371 ((-792))) (-15 -1371 ((-792) (-792))) (-15 -3754 ((-112) |#1|))) (-1273 (-577))) (T -121)) +((-3754 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-1371 (*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-1371 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-3994 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-3994 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) +(-10 -7 (-15 -3994 ((-112) |#1|)) (-15 -3994 ((-112) |#1| (-112))) (-15 -1371 ((-792))) (-15 -1371 ((-792) (-792))) (-15 -3754 ((-112) |#1|))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 18 T ELT)) (-4452 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4257 (($ $ $) 21 (|has| $ (-6 -4500)) ELT)) (-1526 (($ $ $) 23 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-3352 (($ $) 20 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3108 (($ $ |#1| $) 27 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3337 (($ $) 22 T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1344 (($ |#1| $) 28 T ELT)) (-4375 (($ |#1| $) 15 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 17 T ELT)) (-2833 (($) 11 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-1841 (($ (-665 |#1|)) 16 T ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -1841 ($ (-665 |#1|))) (-15 -4375 ($ |#1| $)) (-15 -1344 ($ |#1| $)) (-15 -4452 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-870)) (T -122)) +((-1841 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-122 *3)))) (-4375 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870)))) (-1344 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870)))) (-4452 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-870))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -1841 ($ (-665 |#1|))) (-15 -4375 ($ |#1| $)) (-15 -1344 ($ |#1| $)) (-15 -4452 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3611 (($ $) 13 T ELT)) (-2779 (($ $) 11 T ELT)) (-2933 (($ $ $) 23 T ELT)) (-3551 (($ $ $) 21 T ELT)) (-3660 (($ $ $) 19 T ELT)) (-3647 (($ $ $) 17 T ELT))) +(((-123 |#1|) (-10 -8 (-15 -2933 (|#1| |#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3660 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -2933 (|#1| |#1| |#1|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3660 (|#1| |#1| |#1|)) (-15 -2779 (|#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3611 (($ $) 104 T ELT)) (-2814 (($ $ $) 29 T ELT)) (-1935 (((-1302) $ (-577) (-577)) 67 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) $) 99 (|has| (-112) (-870)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) 93 T ELT)) (-2629 (($ $) 103 (-12 (|has| (-112) (-870)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4500)) ELT)) (-1381 (($ $) 98 (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $) 92 T ELT)) (-1777 (((-112) $ (-792)) 38 T ELT)) (-1957 (((-112) $ (-1264 (-577)) (-112)) 89 (|has| $ (-6 -4500)) ELT) (((-112) $ (-577) (-112)) 55 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 39 T CONST)) (-2609 (($ $) 101 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 91 T ELT)) (-3589 (($ $) 69 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4499)) ELT) (($ (-112) $) 70 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-2060 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-4420 (((-112) $ (-577) (-112)) 54 (|has| $ (-6 -4500)) ELT)) (-4353 (((-112) $ (-577)) 56 T ELT)) (-3948 (((-577) (-112) $ (-577)) 96 (|has| (-112) (-1130)) ELT) (((-577) (-112) $) 95 (|has| (-112) (-1130)) ELT) (((-577) (-1 (-112) (-112)) $) 94 T ELT)) (-2118 (((-665 (-112)) $) 46 (|has| $ (-6 -4499)) ELT)) (-2802 (($ $ $) 109 T ELT)) (-2779 (($ $) 107 T ELT)) (-2933 (($ $ $) 30 T ELT)) (-3236 (($ (-792) (-112)) 79 T ELT)) (-3551 (($ $ $) 31 T ELT)) (-3862 (((-112) $ (-792)) 37 T ELT)) (-2975 (((-577) $) 64 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 20 T ELT)) (-3771 (($ $ $) 97 (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) 90 T ELT)) (-2152 (((-665 (-112)) $) 47 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 63 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 19 T ELT)) (-4409 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-112) (-112) (-112)) $ $) 84 T ELT) (($ (-1 (-112) (-112)) $) 41 T ELT)) (-3438 (((-112) $ (-792)) 36 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-2317 (($ $ $ (-577)) 88 T ELT) (($ (-112) $ (-577)) 87 T ELT)) (-2233 (((-665 (-577)) $) 61 T ELT)) (-3972 (((-112) (-577) $) 60 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4397 (((-112) $) 65 (|has| (-577) (-870)) ELT)) (-2550 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76 T ELT)) (-2561 (($ $ (-112)) 66 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-112)) (-665 (-112))) 53 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-305 (-112))) 51 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-665 (-305 (-112)))) 50 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT)) (-3701 (((-112) $ $) 32 T ELT)) (-3893 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-4059 (((-665 (-112)) $) 59 T ELT)) (-2687 (((-112) $) 35 T ELT)) (-2833 (($) 34 T ELT)) (-2916 (($ $ (-1264 (-577))) 78 T ELT) (((-112) $ (-577)) 58 T ELT) (((-112) $ (-577) (-112)) 57 T ELT)) (-3587 (($ $ (-1264 (-577))) 86 T ELT) (($ $ (-577)) 85 T ELT)) (-1481 (((-792) (-112) $) 48 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4499)) ELT)) (-2338 (($ $ $ (-577)) 100 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 33 T ELT)) (-4463 (((-549) $) 68 (|has| (-112) (-632 (-549))) ELT)) (-3722 (($ (-665 (-112))) 77 T ELT)) (-1702 (($ (-665 $)) 83 T ELT) (($ $ $) 82 T ELT) (($ (-112) $) 81 T ELT) (($ $ (-112)) 80 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1474 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4499)) ELT)) (-2790 (($ $ $) 108 T ELT)) (-3660 (($ $ $) 106 T ELT)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (-3647 (($ $ $) 105 T ELT)) (-3600 (((-792) $) 40 (|has| $ (-6 -4499)) ELT))) (((-124) (-141)) (T -124)) -((-2906 (*1 *1 *1 *1) (-4 *1 (-124))) (-1721 (*1 *1 *1 *1) (-4 *1 (-124))) (-2727 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-865) (-113) (-677) (-19 (-112)) (-10 -8 (-15 -2906 ($ $ $)) (-15 -1721 ($ $ $)) (-15 -2727 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-626 (-880)) . T) ((-152 #0=(-112)) . T) ((-627 (-549)) |has| (-112) (-627 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ((-667 #0#) . T) ((-677) . T) ((-19 #0#) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-2826 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-1914 (($ $) 16 T ELT)) (-3501 (((-787) $) 25 T ELT))) -(((-125 |#1| |#2|) (-10 -8 (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -1914 (|#1| |#1|))) (-126 |#2|) (-1125)) (T -125)) -NIL -(-10 -8 (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -1914 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-3440 (($ $ $) 53 (|has| $ (-6 -4471)) ELT)) (-1931 (($ $ $) 55 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4471)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-3790 (($) 7 T CONST)) (-3076 (($ $) 58 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-3472 (($ $ |#1| $) 61 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-3060 (($ $) 60 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-126 |#1|) (-141) (-1125)) (T -126)) -((-3472 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1125))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -3472 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 18 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) 22 (|has| $ (-6 -4471)) ELT)) (-3440 (($ $ $) 23 (|has| $ (-6 -4471)) ELT)) (-1931 (($ $ $) 21 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4471)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-3076 (($ $) 24 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3472 (($ $ |#1| $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3060 (($ $) NIL T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-4345 (($ |#1| $) 15 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 17 T ELT)) (-2693 (($) 11 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3834 (((-112) $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 20 T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3764 (($ (-660 |#1|)) 16 T ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4471) (-15 -3764 ($ (-660 |#1|))) (-15 -4345 ($ |#1| $)))) (-865)) (T -127)) -((-3764 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-127 *3)))) (-4345 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-865))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4471) (-15 -3764 ($ (-660 |#1|))) (-15 -4345 ($ |#1| $)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 30 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) 32 (|has| $ (-6 -4471)) ELT)) (-3440 (($ $ $) 36 (|has| $ (-6 -4471)) ELT)) (-1931 (($ $ $) 34 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4471)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-3076 (($ $) 23 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3472 (($ $ |#1| $) 16 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3060 (($ $) 22 T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) 25 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 20 T ELT)) (-2693 (($) 11 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3834 (((-112) $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3581 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 10 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -3581 ($ |#1|)) (-15 -3581 ($ $ |#1| $)))) (-1125)) (T -128)) -((-3581 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125)))) (-3581 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125))))) -(-13 (-126 |#1|) (-10 -8 (-15 -3581 ($ |#1|)) (-15 -3581 ($ $ |#1| $)))) -((-3489 (((-112) $ $) NIL (|has| (-130) (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) (-130) (-130)) $) NIL T ELT) (((-112) $) NIL (|has| (-130) (-865)) ELT)) (-3246 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-130) (-865))) ELT)) (-2312 (($ (-1 (-112) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 (((-130) $ (-577) (-130)) 26 (|has| $ (-6 -4471)) ELT) (((-130) $ (-1259 (-577)) (-130)) NIL (|has| $ (-6 -4471)) ELT)) (-1811 (((-787) $ (-787)) 34 T ELT)) (-3730 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))) ELT)) (-3920 (($ (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))) ELT) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4470)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 (((-130) $ (-577) (-130)) 25 (|has| $ (-6 -4471)) ELT)) (-2759 (((-130) $ (-577)) 20 T ELT)) (-3728 (((-577) (-1 (-112) (-130)) $) NIL T ELT) (((-577) (-130) $) NIL (|has| (-130) (-1125)) ELT) (((-577) (-130) $ (-577)) NIL (|has| (-130) (-1125)) ELT)) (-3692 (((-660 (-130)) $) NIL (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) (-130)) 14 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 27 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| (-130) (-865)) ELT)) (-1334 (($ (-1 (-112) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-865)) ELT)) (-2434 (((-660 (-130)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))) ELT)) (-2984 (((-577) $) 30 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-130) (-865)) ELT)) (-2826 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| (-130) (-1125)) ELT)) (-2218 (($ (-130) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| (-130) (-1125)) ELT)) (-1652 (((-130) $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL T ELT)) (-2529 (($ $ (-130)) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-130)))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125))) ELT) (($ $ (-660 (-130)) (-660 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))) ELT)) (-3908 (((-660 (-130)) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 12 T ELT)) (-2837 (((-130) $ (-577) (-130)) NIL T ELT) (((-130) $ (-577)) 23 T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-130) (-627 (-549))) ELT)) (-3614 (($ (-660 (-130))) 46 T ELT)) (-1685 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 47 T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-981 (-130)) $) 35 T ELT) (((-1183) $) 43 T ELT) (((-880) $) NIL (|has| (-130) (-626 (-880))) ELT)) (-3735 (((-787) $) 18 T ELT)) (-3900 (($ (-787)) 8 T ELT)) (-2726 (((-112) $ $) NIL (|has| (-130) (-102)) ELT)) (-2285 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-130) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-130) (-865)) ELT)) (-2949 (((-112) $ $) 32 (|has| (-130) (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| (-130) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-130) (-865)) ELT)) (-3501 (((-787) $) 15 (|has| $ (-6 -4470)) ELT))) -(((-129) (-13 (-19 (-130)) (-626 (-981 (-130))) (-626 (-1183)) (-10 -8 (-15 -3900 ($ (-787))) (-15 -3735 ((-787) $)) (-15 -1811 ((-787) $ (-787))) (-6 -4470)))) (T -129)) -((-3900 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-129)))) (-1811 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-626 (-981 (-130))) (-626 (-1183)) (-10 -8 (-15 -3900 ($ (-787))) (-15 -3735 ((-787) $)) (-15 -1811 ((-787) $ (-787))) (-6 -4470))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) 26 T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) 35 T ELT)) (-2900 (($ $ $) NIL T ELT) (($) 24 T CONST)) (-1457 (($ $ $) NIL T ELT) (($) 25 T CONST)) (-2144 (((-944) $) 33 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) 31 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-145)) 15 T ELT) (((-145) $) 17 T ELT)) (-2622 (($ (-787)) 8 T ELT)) (-2356 (($ $ $) 37 T ELT)) (-2348 (($ $ $) 36 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) 22 T ELT)) (-2978 (((-112) $ $) 20 T ELT)) (-2949 (((-112) $ $) 18 T ELT)) (-2988 (((-112) $ $) 21 T ELT)) (-2971 (((-112) $ $) 19 T ELT))) -(((-130) (-13 (-860) (-503 (-145)) (-10 -8 (-15 -2622 ($ (-787))) (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609)))) (T -130)) -((-2622 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-130)))) (-2348 (*1 *1 *1 *1) (-5 *1 (-130))) (-2356 (*1 *1 *1 *1) (-5 *1 (-130))) (-3790 (*1 *1) (-5 *1 (-130)))) -(-13 (-860) (-503 (-145)) (-10 -8 (-15 -2622 ($ (-787))) (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609))) +((-3551 (*1 *1 *1 *1) (-4 *1 (-124))) (-2933 (*1 *1 *1 *1) (-4 *1 (-124))) (-2814 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-870) (-113) (-682) (-19 (-112)) (-10 -8 (-15 -3551 ($ $ $)) (-15 -2933 ($ $ $)) (-15 -2814 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-631 (-885)) . T) ((-152 #0=(-112)) . T) ((-632 (-549)) |has| (-112) (-632 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ((-672 #0#) . T) ((-682) . T) ((-19 #0#) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-4409 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-1977 (($ $) 16 T ELT)) (-3600 (((-792) $) 25 T ELT))) +(((-125 |#1| |#2|) (-10 -8 (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1977 (|#1| |#1|))) (-126 |#2|) (-1130)) (T -125)) +NIL +(-10 -8 (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1977 (|#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-4257 (($ $ $) 53 (|has| $ (-6 -4500)) ELT)) (-1526 (($ $ $) 55 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4500)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2305 (($) 7 T CONST)) (-3352 (($ $) 58 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3108 (($ $ |#1| $) 61 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3337 (($ $) 60 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-126 |#1|) (-141) (-1130)) (T -126)) +((-3108 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1130))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -3108 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 18 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) 22 (|has| $ (-6 -4500)) ELT)) (-4257 (($ $ $) 23 (|has| $ (-6 -4500)) ELT)) (-1526 (($ $ $) 21 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-3352 (($ $) 24 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3108 (($ $ |#1| $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3337 (($ $) NIL T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4375 (($ |#1| $) 15 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 17 T ELT)) (-2833 (($) 11 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 20 T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3974 (($ (-665 |#1|)) 16 T ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4500) (-15 -3974 ($ (-665 |#1|))) (-15 -4375 ($ |#1| $)))) (-870)) (T -127)) +((-3974 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-127 *3)))) (-4375 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-870))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4500) (-15 -3974 ($ (-665 |#1|))) (-15 -4375 ($ |#1| $)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 30 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) 32 (|has| $ (-6 -4500)) ELT)) (-4257 (($ $ $) 36 (|has| $ (-6 -4500)) ELT)) (-1526 (($ $ $) 34 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-3352 (($ $) 23 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3108 (($ $ |#1| $) 16 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3337 (($ $) 22 T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) 25 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 20 T ELT)) (-2833 (($) 11 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3400 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 10 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -3400 ($ |#1|)) (-15 -3400 ($ $ |#1| $)))) (-1130)) (T -128)) +((-3400 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130)))) (-3400 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130))))) +(-13 (-126 |#1|) (-10 -8 (-15 -3400 ($ |#1|)) (-15 -3400 ($ $ |#1| $)))) +((-3586 (((-112) $ $) NIL (|has| (-130) (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) (-130) (-130)) $) NIL T ELT) (((-112) $) NIL (|has| (-130) (-870)) ELT)) (-2629 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-130) (-870))) ELT)) (-1381 (($ (-1 (-112) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 (((-130) $ (-577) (-130)) 26 (|has| $ (-6 -4500)) ELT) (((-130) $ (-1264 (-577)) (-130)) NIL (|has| $ (-6 -4500)) ELT)) (-2665 (((-792) $ (-792)) 34 T ELT)) (-1440 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-4004 (($ (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4499)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 (((-130) $ (-577) (-130)) 25 (|has| $ (-6 -4500)) ELT)) (-4353 (((-130) $ (-577)) 20 T ELT)) (-3948 (((-577) (-1 (-112) (-130)) $) NIL T ELT) (((-577) (-130) $) NIL (|has| (-130) (-1130)) ELT) (((-577) (-130) $ (-577)) NIL (|has| (-130) (-1130)) ELT)) (-2118 (((-665 (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) (-130)) 14 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 27 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-3771 (($ (-1 (-112) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-2152 (((-665 (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-1425 (((-577) $) 30 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-4409 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| (-130) (-1130)) ELT)) (-2317 (($ (-130) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| (-130) (-1130)) ELT)) (-4397 (((-130) $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL T ELT)) (-2561 (($ $ (-130)) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-130)))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT) (($ $ (-665 (-130)) (-665 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-4059 (((-665 (-130)) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 12 T ELT)) (-2916 (((-130) $ (-577) (-130)) NIL T ELT) (((-130) $ (-577)) 23 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-130) (-632 (-549))) ELT)) (-3722 (($ (-665 (-130))) 46 T ELT)) (-1702 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 47 T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-986 (-130)) $) 35 T ELT) (((-1188) $) 43 T ELT) (((-885) $) NIL (|has| (-130) (-631 (-885))) ELT)) (-3007 (((-792) $) 18 T ELT)) (-3359 (($ (-792)) 8 T ELT)) (-2643 (((-112) $ $) NIL (|has| (-130) (-102)) ELT)) (-1474 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-3018 (((-112) $ $) 32 (|has| (-130) (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-3600 (((-792) $) 15 (|has| $ (-6 -4499)) ELT))) +(((-129) (-13 (-19 (-130)) (-631 (-986 (-130))) (-631 (-1188)) (-10 -8 (-15 -3359 ($ (-792))) (-15 -3007 ((-792) $)) (-15 -2665 ((-792) $ (-792))) (-6 -4499)))) (T -129)) +((-3359 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-129)))) (-2665 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-631 (-986 (-130))) (-631 (-1188)) (-10 -8 (-15 -3359 ($ (-792))) (-15 -3007 ((-792) $)) (-15 -2665 ((-792) $ (-792))) (-6 -4499))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) 40 T ELT)) (-3005 (((-792)) 26 T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) 35 T ELT)) (-3237 (($ $ $) NIL T ELT) (($) 24 T CONST)) (-2930 (($ $ $) NIL T ELT) (($) 25 T CONST)) (-2686 (((-949) $) 33 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) 31 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-145)) 15 T ELT) (((-145) $) 17 T ELT)) (-2189 (($ (-792)) 8 T ELT)) (-2469 (($ $ $) 37 T ELT)) (-2458 (($ $ $) 36 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3660 (($ $ $) 39 T ELT)) (-3078 (((-112) $ $) 22 T ELT)) (-3054 (((-112) $ $) 20 T ELT)) (-3018 (((-112) $ $) 18 T ELT)) (-3067 (((-112) $ $) 21 T ELT)) (-3042 (((-112) $ $) 19 T ELT)) (-3647 (($ $ $) 38 T ELT))) +(((-130) (-13 (-865) (-503 (-145)) (-682) (-10 -8 (-15 -2189 ($ (-792))) (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212)))) (T -130)) +((-2189 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-130)))) (-2458 (*1 *1 *1 *1) (-5 *1 (-130))) (-2469 (*1 *1 *1 *1) (-5 *1 (-130))) (-2305 (*1 *1) (-5 *1 (-130)))) +(-13 (-865) (-503 (-145)) (-682) (-10 -8 (-15 -2189 ($ (-792))) (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-3489 (((-112) $ $) NIL T ELT)) (-2343 (($) 6 T CONST)) (-1566 (($) 7 T CONST)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 14 T ELT)) (-1815 (($) 8 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 10 T ELT))) -(((-131) (-13 (-1125) (-10 -8 (-15 -1566 ($) -2609) (-15 -1815 ($) -2609) (-15 -2343 ($) -2609)))) (T -131)) -((-1566 (*1 *1) (-5 *1 (-131))) (-1815 (*1 *1) (-5 *1 (-131))) (-2343 (*1 *1) (-5 *1 (-131)))) -(-13 (-1125) (-10 -8 (-15 -1566 ($) -2609) (-15 -1815 ($) -2609) (-15 -2343 ($) -2609))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT))) +((-3586 (((-112) $ $) NIL T ELT)) (-3514 (($) 6 T CONST)) (-1337 (($) 7 T CONST)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 14 T ELT)) (-4096 (($) 8 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 10 T ELT))) +(((-131) (-13 (-1130) (-10 -8 (-15 -1337 ($) -4212) (-15 -4096 ($) -4212) (-15 -3514 ($) -4212)))) (T -131)) +((-1337 (*1 *1) (-5 *1 (-131))) (-4096 (*1 *1) (-5 *1 (-131))) (-3514 (*1 *1) (-5 *1 (-131)))) +(-13 (-1130) (-10 -8 (-15 -1337 ($) -4212) (-15 -4096 ($) -4212) (-15 -3514 ($) -4212))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) (((-132) (-141)) (T -132)) -((-1771 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -1771 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3689 (((-1297) $ (-787)) 14 T ELT)) (-3728 (((-787) $) 15 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +((-2478 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2478 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-3631 (((-1302) $ (-792)) 14 T ELT)) (-3948 (((-792) $) 15 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-133) (-141)) (T -133)) -((-3728 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-787)))) (-3689 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-787)) (-5 *2 (-1297))))) -(-13 (-1125) (-10 -8 (-15 -3728 ((-787) $)) (-15 -3689 ((-1297) $ (-787))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 16 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-660 (-1160)) $) 10 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-134) (-13 (-1108) (-10 -8 (-15 -2682 ((-660 (-1160)) $))))) (T -134)) -((-2682 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-134))))) -(-13 (-1108) (-10 -8 (-15 -2682 ((-660 (-1160)) $)))) -((-3489 (((-112) $ $) 49 T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-787) "failed") $) 58 T ELT)) (-2155 (((-787) $) 56 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) 37 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2252 (((-112)) 59 T ELT)) (-4055 (((-112) (-112)) 61 T ELT)) (-3994 (((-112) $) 30 T ELT)) (-3452 (((-112) $) 55 T ELT)) (-3603 (((-880) $) 28 T ELT) (($ (-787)) 20 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 18 T CONST)) (-2767 (($) 19 T CONST)) (-1783 (($ (-787)) 21 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) 40 T ELT)) (-2949 (((-112) $ $) 32 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 35 T ELT)) (-3042 (((-3 $ "failed") $ $) 42 T ELT)) (-3031 (($ $ $) 38 T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-787) $) 48 T ELT) (($ (-944) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-135) (-13 (-865) (-23) (-742) (-1063 (-787)) (-10 -8 (-6 (-4472 "*")) (-15 -3042 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1783 ($ (-787))) (-15 -3994 ((-112) $)) (-15 -3452 ((-112) $)) (-15 -2252 ((-112))) (-15 -4055 ((-112) (-112)))))) (T -135)) -((-3042 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-135)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2252 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4055 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-865) (-23) (-742) (-1063 (-787)) (-10 -8 (-6 (-4472 "*")) (-15 -3042 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1783 ($ (-787))) (-15 -3994 ((-112) $)) (-15 -3452 ((-112) $)) (-15 -2252 ((-112))) (-15 -4055 ((-112) (-112))))) -((-3621 (((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-2124 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3621 ((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2124 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-577) (-787) (-174) (-174)) (T -136)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -3621 ((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2124 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1785 (($ (-660 |#3|)) 61 T ELT)) (-2660 (($ $) 123 T ELT) (($ $ (-577) (-577)) 122 T ELT)) (-3790 (($) 20 T ELT)) (-2784 (((-3 |#3| "failed") $) 83 T ELT)) (-2155 ((|#3| $) NIL T ELT)) (-2810 (($ $ (-660 (-577))) 124 T ELT)) (-3612 (((-660 |#3|) $) 56 T ELT)) (-3503 (((-787) $) 66 T ELT)) (-1439 (($ $ $) 117 T ELT)) (-1518 (($) 65 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3030 (($) 19 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 ((|#3| $ (-577)) 69 T ELT) ((|#3| $) 68 T ELT) ((|#3| $ (-577) (-577)) 70 T ELT) ((|#3| $ (-577) (-577) (-577)) 71 T ELT) ((|#3| $ (-577) (-577) (-577) (-577)) 72 T ELT) ((|#3| $ (-660 (-577))) 73 T ELT)) (-3616 (((-787) $) 67 T ELT)) (-2803 (($ $ (-577) $ (-577)) 118 T ELT) (($ $ (-577) (-577)) 120 T ELT)) (-3603 (((-880) $) 91 T ELT) (($ |#3|) 92 T ELT) (($ (-246 |#2| |#3|)) 99 T ELT) (($ (-1167 |#2| |#3|)) 102 T ELT) (($ (-660 |#3|)) 74 T ELT) (($ (-660 $)) 80 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 93 T CONST)) (-2767 (($) 94 T CONST)) (-2949 (((-112) $ $) 104 T ELT)) (-3042 (($ $) 110 T ELT) (($ $ $) 108 T ELT)) (-3031 (($ $ $) 106 T ELT)) (* (($ |#3| $) 115 T ELT) (($ $ |#3|) 116 T ELT) (($ $ (-577)) 113 T ELT) (($ (-577) $) 112 T ELT) (($ $ $) 119 T ELT))) -(((-137 |#1| |#2| |#3|) (-13 (-478 |#3| (-787)) (-483 (-577) (-787)) (-297 (-577) |#3|) (-10 -8 (-15 -3603 ($ (-246 |#2| |#3|))) (-15 -3603 ($ (-1167 |#2| |#3|))) (-15 -3603 ($ (-660 |#3|))) (-15 -3603 ($ (-660 $))) (-15 -3503 ((-787) $)) (-15 -2837 (|#3| $)) (-15 -2837 (|#3| $ (-577) (-577))) (-15 -2837 (|#3| $ (-577) (-577) (-577))) (-15 -2837 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2837 (|#3| $ (-660 (-577)))) (-15 -1439 ($ $ $)) (-15 * ($ $ $)) (-15 -2803 ($ $ (-577) $ (-577))) (-15 -2803 ($ $ (-577) (-577))) (-15 -2660 ($ $)) (-15 -2660 ($ $ (-577) (-577))) (-15 -2810 ($ $ (-660 (-577)))) (-15 -3030 ($)) (-15 -1518 ($)) (-15 -3612 ((-660 |#3|) $)) (-15 -1785 ($ (-660 |#3|))) (-15 -3790 ($)))) (-577) (-787) (-174)) (T -137)) -((-1439 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1167 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 *2) (-4 *5 (-174)))) (-2837 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-577)) (-14 *4 (-787)))) (-2837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-787)))) (-2837 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-787)))) (-2837 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-787)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-577)) (-14 *5 (-787)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-2803 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-787)) (-4 *5 (-174)))) (-2803 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-787)) (-4 *5 (-174)))) (-2660 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-2660 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-787)) (-4 *5 (-174)))) (-2810 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) (-3030 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-1518 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-660 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)))) (-3790 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174))))) -(-13 (-478 |#3| (-787)) (-483 (-577) (-787)) (-297 (-577) |#3|) (-10 -8 (-15 -3603 ($ (-246 |#2| |#3|))) (-15 -3603 ($ (-1167 |#2| |#3|))) (-15 -3603 ($ (-660 |#3|))) (-15 -3603 ($ (-660 $))) (-15 -3503 ((-787) $)) (-15 -2837 (|#3| $)) (-15 -2837 (|#3| $ (-577) (-577))) (-15 -2837 (|#3| $ (-577) (-577) (-577))) (-15 -2837 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2837 (|#3| $ (-660 (-577)))) (-15 -1439 ($ $ $)) (-15 * ($ $ $)) (-15 -2803 ($ $ (-577) $ (-577))) (-15 -2803 ($ $ (-577) (-577))) (-15 -2660 ($ $)) (-15 -2660 ($ $ (-577) (-577))) (-15 -2810 ($ $ (-660 (-577)))) (-15 -3030 ($)) (-15 -1518 ($)) (-15 -3612 ((-660 |#3|) $)) (-15 -1785 ($ (-660 |#3|))) (-15 -3790 ($)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2171 (((-1160) $) 11 T ELT)) (-2159 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 17 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-138) (-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $))))) (T -138)) -((-2159 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138))))) -(-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1803 (((-188) $) 10 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-660 (-1160)) $) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-139) (-13 (-1108) (-10 -8 (-15 -1803 ((-188) $)) (-15 -2682 ((-660 (-1160)) $))))) (T -139)) -((-1803 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-139))))) -(-13 (-1108) (-10 -8 (-15 -1803 ((-188) $)) (-15 -2682 ((-660 (-1160)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3315 (((-660 (-883)) $) NIL T ELT)) (-2668 (((-519) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1803 (((-188) $) NIL T ELT)) (-3152 (((-112) $ (-519)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3420 (((-660 (-112)) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (((-189) $) 6 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1376 (((-55) $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-140) (-13 (-187) (-626 (-189)))) (T -140)) -NIL -(-13 (-187) (-626 (-189))) -((-4163 (((-660 (-185 (-140))) $) 13 T ELT)) (-1524 (((-660 (-185 (-140))) $) 14 T ELT)) (-3203 (((-660 (-854)) $) 10 T ELT)) (-2602 (((-140) $) 7 T ELT)) (-3603 (((-880) $) 16 T ELT))) -(((-141) (-13 (-626 (-880)) (-10 -8 (-15 -2602 ((-140) $)) (-15 -3203 ((-660 (-854)) $)) (-15 -4163 ((-660 (-185 (-140))) $)) (-15 -1524 ((-660 (-185 (-140))) $))))) (T -141)) -((-2602 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-660 (-854))) (-5 *1 (-141)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-626 (-880)) (-10 -8 (-15 -2602 ((-140) $)) (-15 -3203 ((-660 (-854)) $)) (-15 -4163 ((-660 (-185 (-140))) $)) (-15 -1524 ((-660 (-185 (-140))) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1345 (($) 17 T CONST)) (-1596 (($) NIL (|has| (-145) (-380)) ELT)) (-1872 (($ $ $) 19 T ELT) (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT)) (-3470 (($ $ $) NIL T ELT)) (-2401 (((-112) $ $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| (-145) (-380)) ELT)) (-2096 (($) NIL T ELT) (($ (-660 (-145))) NIL T ELT)) (-2236 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-3266 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-145) $) 60 (|has| $ (-6 -4470)) ELT)) (-3920 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-2498 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4470)) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4470)) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-2352 (($) NIL (|has| (-145) (-380)) ELT)) (-3692 (((-660 (-145)) $) 69 (|has| $ (-6 -4470)) ELT)) (-2394 (((-112) $ $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2900 (((-145) $) NIL (|has| (-145) (-865)) ELT)) (-2434 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-1457 (((-145) $) NIL (|has| (-145) (-865)) ELT)) (-2826 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-145) (-145)) $) 64 T ELT)) (-2976 (($) 18 T CONST)) (-2144 (((-944) $) NIL (|has| (-145) (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4056 (($ $ $) 30 T ELT)) (-3596 (((-145) $) 61 T ELT)) (-4345 (($ (-145) $) 59 T ELT)) (-3251 (($ (-944)) NIL (|has| (-145) (-380)) ELT)) (-1435 (($) 16 T CONST)) (-1440 (((-1145) $) NIL T ELT)) (-2153 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-3439 (((-145) $) 62 T ELT)) (-2659 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-145)) (-660 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-660 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 57 T ELT)) (-3320 (($) 15 T CONST)) (-3127 (($ $ $) 32 T ELT) (($ $ (-145)) NIL T ELT)) (-4360 (($ (-660 (-145))) NIL T ELT) (($) NIL T ELT)) (-1452 (((-787) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT) (((-787) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-1183) $) 37 T ELT) (((-549) $) NIL (|has| (-145) (-627 (-549))) ELT) (((-660 (-145)) $) 35 T ELT)) (-3614 (($ (-660 (-145))) NIL T ELT)) (-1597 (($ $) 33 (|has| (-145) (-380)) ELT)) (-3603 (((-880) $) 53 T ELT)) (-1963 (($ (-1183)) 14 T ELT) (($ (-660 (-145))) 50 T ELT)) (-3227 (((-787) $) NIL T ELT)) (-3122 (($) 58 T ELT) (($ (-660 (-145))) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3231 (($ (-660 (-145))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1809 (($) 21 T CONST)) (-4168 (($) 20 T CONST)) (-2949 (((-112) $ $) 24 T ELT)) (-3501 (((-787) $) 56 (|has| $ (-6 -4470)) ELT))) -(((-142) (-13 (-1125) (-627 (-1183)) (-438 (-145)) (-627 (-660 (-145))) (-10 -8 (-15 -1963 ($ (-1183))) (-15 -1963 ($ (-660 (-145)))) (-15 -3320 ($) -2609) (-15 -1435 ($) -2609) (-15 -1345 ($) -2609) (-15 -2976 ($) -2609) (-15 -4168 ($) -2609) (-15 -1809 ($) -2609)))) (T -142)) -((-1963 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-142)))) (-1963 (*1 *1 *2) (-12 (-5 *2 (-660 (-145))) (-5 *1 (-142)))) (-3320 (*1 *1) (-5 *1 (-142))) (-1435 (*1 *1) (-5 *1 (-142))) (-1345 (*1 *1) (-5 *1 (-142))) (-2976 (*1 *1) (-5 *1 (-142))) (-4168 (*1 *1) (-5 *1 (-142))) (-1809 (*1 *1) (-5 *1 (-142)))) -(-13 (-1125) (-627 (-1183)) (-438 (-145)) (-627 (-660 (-145))) (-10 -8 (-15 -1963 ($ (-1183))) (-15 -1963 ($ (-660 (-145)))) (-15 -3320 ($) -2609) (-15 -1435 ($) -2609) (-15 -1345 ($) -2609) (-15 -2976 ($) -2609) (-15 -4168 ($) -2609) (-15 -1809 ($) -2609))) -((-3773 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3034 ((|#1| |#3|) 9 T ELT)) (-2785 ((|#3| |#3|) 15 T ELT))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3034 (|#1| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -3773 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1017 |#1|) (-385 |#2|)) (T -143)) -((-3773 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-385 *5)))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-385 *4)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-385 *4))))) -(-10 -7 (-15 -3034 (|#1| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -3773 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2738 (($ $ $) 8 T ELT)) (-1968 (($ $) 7 T ELT)) (-1774 (($ $ $) 6 T ELT))) +((-3948 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-792)))) (-3631 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-792)) (-5 *2 (-1302))))) +(-13 (-1130) (-10 -8 (-15 -3948 ((-792) $)) (-15 -3631 ((-1302) $ (-792))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-665 (-1165)) $) 10 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-134) (-13 (-1113) (-10 -8 (-15 -2773 ((-665 (-1165)) $))))) (T -134)) +((-2773 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-134))))) +(-13 (-1113) (-10 -8 (-15 -2773 ((-665 (-1165)) $)))) +((-3586 (((-112) $ $) 49 T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-792) "failed") $) 58 T ELT)) (-3783 (((-792) $) 56 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) 37 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2448 (((-112)) 59 T ELT)) (-3705 (((-112) (-112)) 61 T ELT)) (-2836 (((-112) $) 30 T ELT)) (-3320 (((-112) $) 55 T ELT)) (-3709 (((-885) $) 28 T ELT) (($ (-792)) 20 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 18 T CONST)) (-2853 (($) 19 T CONST)) (-2822 (($ (-792)) 21 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) 40 T ELT)) (-3018 (((-112) $ $) 32 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 35 T ELT)) (-3128 (((-3 $ "failed") $ $) 42 T ELT)) (-3114 (($ $ $) 38 T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-792) $) 48 T ELT) (($ (-949) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-135) (-13 (-870) (-23) (-747) (-1068 (-792)) (-10 -8 (-6 (-4501 "*")) (-15 -3128 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2822 ($ (-792))) (-15 -2836 ((-112) $)) (-15 -3320 ((-112) $)) (-15 -2448 ((-112))) (-15 -3705 ((-112) (-112)))))) (T -135)) +((-3128 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2822 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-135)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2448 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-870) (-23) (-747) (-1068 (-792)) (-10 -8 (-6 (-4501 "*")) (-15 -3128 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2822 ($ (-792))) (-15 -2836 ((-112) $)) (-15 -3320 ((-112) $)) (-15 -2448 ((-112))) (-15 -3705 ((-112) (-112))))) +((-3853 (((-137 |#1| |#2| |#4|) (-665 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-4417 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3853 ((-137 |#1| |#2| |#4|) (-665 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4417 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-577) (-792) (-174) (-174)) (T -136)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -3853 ((-137 |#1| |#2| |#4|) (-665 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4417 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2992 (($ (-665 |#3|)) 61 T ELT)) (-2444 (($ $) 123 T ELT) (($ $ (-577) (-577)) 122 T ELT)) (-2305 (($) 20 T ELT)) (-4335 (((-3 |#3| "failed") $) 83 T ELT)) (-3783 ((|#3| $) NIL T ELT)) (-3621 (($ $ (-665 (-577))) 124 T ELT)) (-3843 (((-665 |#3|) $) 56 T ELT)) (-1641 (((-792) $) 66 T ELT)) (-2801 (($ $ $) 117 T ELT)) (-3897 (($) 65 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3765 (($) 19 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 ((|#3| $ (-577)) 69 T ELT) ((|#3| $) 68 T ELT) ((|#3| $ (-577) (-577)) 70 T ELT) ((|#3| $ (-577) (-577) (-577)) 71 T ELT) ((|#3| $ (-577) (-577) (-577) (-577)) 72 T ELT) ((|#3| $ (-665 (-577))) 73 T ELT)) (-1597 (((-792) $) 67 T ELT)) (-4360 (($ $ (-577) $ (-577)) 118 T ELT) (($ $ (-577) (-577)) 120 T ELT)) (-3709 (((-885) $) 91 T ELT) (($ |#3|) 92 T ELT) (($ (-246 |#2| |#3|)) 99 T ELT) (($ (-1172 |#2| |#3|)) 102 T ELT) (($ (-665 |#3|)) 74 T ELT) (($ (-665 $)) 80 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 93 T CONST)) (-2853 (($) 94 T CONST)) (-3018 (((-112) $ $) 104 T ELT)) (-3128 (($ $) 110 T ELT) (($ $ $) 108 T ELT)) (-3114 (($ $ $) 106 T ELT)) (* (($ |#3| $) 115 T ELT) (($ $ |#3|) 116 T ELT) (($ $ (-577)) 113 T ELT) (($ (-577) $) 112 T ELT) (($ $ $) 119 T ELT))) +(((-137 |#1| |#2| |#3|) (-13 (-478 |#3| (-792)) (-483 (-577) (-792)) (-297 (-577) |#3|) (-10 -8 (-15 -3709 ($ (-246 |#2| |#3|))) (-15 -3709 ($ (-1172 |#2| |#3|))) (-15 -3709 ($ (-665 |#3|))) (-15 -3709 ($ (-665 $))) (-15 -1641 ((-792) $)) (-15 -2916 (|#3| $)) (-15 -2916 (|#3| $ (-577) (-577))) (-15 -2916 (|#3| $ (-577) (-577) (-577))) (-15 -2916 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2916 (|#3| $ (-665 (-577)))) (-15 -2801 ($ $ $)) (-15 * ($ $ $)) (-15 -4360 ($ $ (-577) $ (-577))) (-15 -4360 ($ $ (-577) (-577))) (-15 -2444 ($ $)) (-15 -2444 ($ $ (-577) (-577))) (-15 -3621 ($ $ (-665 (-577)))) (-15 -3765 ($)) (-15 -3897 ($)) (-15 -3843 ((-665 |#3|) $)) (-15 -2992 ($ (-665 |#3|))) (-15 -2305 ($)))) (-577) (-792) (-174)) (T -137)) +((-2801 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1172 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 *2) (-4 *5 (-174)))) (-2916 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-577)) (-14 *4 (-792)))) (-2916 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-792)))) (-2916 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-792)))) (-2916 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-792)))) (-2916 (*1 *2 *1 *3) (-12 (-5 *3 (-665 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-577)) (-14 *5 (-792)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-4360 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-792)) (-4 *5 (-174)))) (-4360 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-792)) (-4 *5 (-174)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-2444 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-792)) (-4 *5 (-174)))) (-3621 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) (-3765 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-3897 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-665 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)))) (-2305 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174))))) +(-13 (-478 |#3| (-792)) (-483 (-577) (-792)) (-297 (-577) |#3|) (-10 -8 (-15 -3709 ($ (-246 |#2| |#3|))) (-15 -3709 ($ (-1172 |#2| |#3|))) (-15 -3709 ($ (-665 |#3|))) (-15 -3709 ($ (-665 $))) (-15 -1641 ((-792) $)) (-15 -2916 (|#3| $)) (-15 -2916 (|#3| $ (-577) (-577))) (-15 -2916 (|#3| $ (-577) (-577) (-577))) (-15 -2916 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2916 (|#3| $ (-665 (-577)))) (-15 -2801 ($ $ $)) (-15 * ($ $ $)) (-15 -4360 ($ $ (-577) $ (-577))) (-15 -4360 ($ $ (-577) (-577))) (-15 -2444 ($ $)) (-15 -2444 ($ $ (-577) (-577))) (-15 -3621 ($ $ (-665 (-577)))) (-15 -3765 ($)) (-15 -3897 ($)) (-15 -3843 ((-665 |#3|) $)) (-15 -2992 ($ (-665 |#3|))) (-15 -2305 ($)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2416 (((-1165) $) 11 T ELT)) (-2404 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-138) (-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $))))) (T -138)) +((-2404 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138))))) +(-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1857 (((-188) $) 10 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-665 (-1165)) $) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-139) (-13 (-1113) (-10 -8 (-15 -1857 ((-188) $)) (-15 -2773 ((-665 (-1165)) $))))) (T -139)) +((-1857 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-139))))) +(-13 (-1113) (-10 -8 (-15 -1857 ((-188) $)) (-15 -2773 ((-665 (-1165)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3593 (((-665 (-888)) $) NIL T ELT)) (-2758 (((-519) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1857 (((-188) $) NIL T ELT)) (-4241 (((-112) $ (-519)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1476 (((-665 (-112)) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (((-189) $) 6 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3622 (((-55) $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-140) (-13 (-187) (-631 (-189)))) (T -140)) +NIL +(-13 (-187) (-631 (-189))) +((-2300 (((-665 (-185 (-140))) $) 13 T ELT)) (-1789 (((-665 (-185 (-140))) $) 14 T ELT)) (-1933 (((-665 (-859)) $) 10 T ELT)) (-2695 (((-140) $) 7 T ELT)) (-3709 (((-885) $) 16 T ELT))) +(((-141) (-13 (-631 (-885)) (-10 -8 (-15 -2695 ((-140) $)) (-15 -1933 ((-665 (-859)) $)) (-15 -2300 ((-665 (-185 (-140))) $)) (-15 -1789 ((-665 (-185 (-140))) $))))) (T -141)) +((-2695 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-665 (-859))) (-5 *1 (-141)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2695 ((-140) $)) (-15 -1933 ((-665 (-859)) $)) (-15 -2300 ((-665 (-185 (-140))) $)) (-15 -1789 ((-665 (-185 (-140))) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3890 (($) 17 T CONST)) (-3170 (($) NIL (|has| (-145) (-380)) ELT)) (-1931 (($ $ $) 19 T ELT) (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT)) (-2481 (($ $ $) NIL T ELT)) (-2710 (((-112) $ $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| (-145) (-380)) ELT)) (-2181 (($) NIL T ELT) (($ (-665 (-145))) NIL T ELT)) (-3730 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1894 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-145) $) 60 (|has| $ (-6 -4499)) ELT)) (-4004 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2060 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1424 (($) NIL (|has| (-145) (-380)) ELT)) (-2118 (((-665 (-145)) $) 69 (|has| $ (-6 -4499)) ELT)) (-2049 (((-112) $ $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-3237 (((-145) $) NIL (|has| (-145) (-870)) ELT)) (-2152 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2930 (((-145) $) NIL (|has| (-145) (-870)) ELT)) (-4409 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-145) (-145)) $) 64 T ELT)) (-3110 (($) 18 T CONST)) (-2686 (((-949) $) NIL (|has| (-145) (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1565 (($ $ $) 30 T ELT)) (-2786 (((-145) $) 61 T ELT)) (-4375 (($ (-145) $) 59 T ELT)) (-3354 (($ (-949)) NIL (|has| (-145) (-380)) ELT)) (-3767 (($) 16 T CONST)) (-1470 (((-1150) $) NIL T ELT)) (-2550 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-3205 (((-145) $) 62 T ELT)) (-3446 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-145)) (-665 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 57 T ELT)) (-3877 (($) 15 T CONST)) (-3165 (($ $ $) 32 T ELT) (($ $ (-145)) NIL T ELT)) (-3470 (($ (-665 (-145))) NIL T ELT) (($) NIL T ELT)) (-1481 (((-792) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (((-792) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-1188) $) 37 T ELT) (((-549) $) NIL (|has| (-145) (-632 (-549))) ELT) (((-665 (-145)) $) 35 T ELT)) (-3722 (($ (-665 (-145))) NIL T ELT)) (-3435 (($ $) 33 (|has| (-145) (-380)) ELT)) (-3709 (((-885) $) 53 T ELT)) (-4077 (($ (-1188)) 14 T ELT) (($ (-665 (-145))) 50 T ELT)) (-4408 (((-792) $) NIL T ELT)) (-3823 (($) 58 T ELT) (($ (-665 (-145))) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3886 (($ (-665 (-145))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2081 (($) 21 T CONST)) (-3837 (($) 20 T CONST)) (-3018 (((-112) $ $) 24 T ELT)) (-3600 (((-792) $) 56 (|has| $ (-6 -4499)) ELT))) +(((-142) (-13 (-1130) (-632 (-1188)) (-438 (-145)) (-632 (-665 (-145))) (-10 -8 (-15 -4077 ($ (-1188))) (-15 -4077 ($ (-665 (-145)))) (-15 -3877 ($) -4212) (-15 -3767 ($) -4212) (-15 -3890 ($) -4212) (-15 -3110 ($) -4212) (-15 -3837 ($) -4212) (-15 -2081 ($) -4212)))) (T -142)) +((-4077 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-142)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-665 (-145))) (-5 *1 (-142)))) (-3877 (*1 *1) (-5 *1 (-142))) (-3767 (*1 *1) (-5 *1 (-142))) (-3890 (*1 *1) (-5 *1 (-142))) (-3110 (*1 *1) (-5 *1 (-142))) (-3837 (*1 *1) (-5 *1 (-142))) (-2081 (*1 *1) (-5 *1 (-142)))) +(-13 (-1130) (-632 (-1188)) (-438 (-145)) (-632 (-665 (-145))) (-10 -8 (-15 -4077 ($ (-1188))) (-15 -4077 ($ (-665 (-145)))) (-15 -3877 ($) -4212) (-15 -3767 ($) -4212) (-15 -3890 ($) -4212) (-15 -3110 ($) -4212) (-15 -3837 ($) -4212) (-15 -2081 ($) -4212))) +((-1411 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3632 ((|#1| |#3|) 9 T ELT)) (-2668 ((|#3| |#3|) 15 T ELT))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -2668 (|#3| |#3|)) (-15 -1411 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1022 |#1|) (-385 |#2|)) (T -143)) +((-1411 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-385 *5)))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-385 *4)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-385 *4))))) +(-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -2668 (|#3| |#3|)) (-15 -1411 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2381 (($ $ $) 8 T ELT)) (-2964 (($ $) 7 T ELT)) (-2990 (($ $ $) 6 T ELT))) (((-144) (-141)) (T -144)) -((-2738 (*1 *1 *1 *1) (-4 *1 (-144))) (-1968 (*1 *1 *1) (-4 *1 (-144))) (-1774 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -1774 ($ $ $)) (-15 -1968 ($ $)) (-15 -2738 ($ $ $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1642 (((-112) $) 39 T ELT)) (-1345 (($ $) 55 T ELT)) (-3255 (($) 26 T CONST)) (-3373 (((-787)) 13 T ELT)) (-2352 (($) 25 T ELT)) (-4382 (($) 27 T CONST)) (-3112 (((-787) $) 21 T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3637 (((-112) $) 41 T ELT)) (-2976 (($ $) 56 T ELT)) (-2144 (((-944) $) 23 T ELT)) (-2045 (((-1183) $) 49 T ELT)) (-3251 (($ (-944)) 20 T ELT)) (-1818 (((-112) $) 37 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3224 (($) 28 T CONST)) (-1590 (((-112) $) 35 T ELT)) (-3603 (((-880) $) 30 T ELT)) (-2999 (($ (-787)) 19 T ELT) (($ (-1183)) 54 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1817 (((-112) $) 45 T ELT)) (-3314 (((-112) $) 43 T ELT)) (-3001 (((-112) $ $) 11 T ELT)) (-2978 (((-112) $ $) 9 T ELT)) (-2949 (((-112) $ $) 7 T ELT)) (-2988 (((-112) $ $) 10 T ELT)) (-2971 (((-112) $ $) 8 T ELT))) -(((-145) (-13 (-860) (-10 -8 (-15 -3112 ((-787) $)) (-15 -2999 ($ (-787))) (-15 -2999 ($ (-1183))) (-15 -3255 ($) -2609) (-15 -4382 ($) -2609) (-15 -3224 ($) -2609) (-15 -1345 ($ $)) (-15 -2976 ($ $)) (-15 -1590 ((-112) $)) (-15 -1818 ((-112) $)) (-15 -3314 ((-112) $)) (-15 -1642 ((-112) $)) (-15 -3637 ((-112) $)) (-15 -1817 ((-112) $))))) (T -145)) -((-3112 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-145)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-145)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-145)))) (-3255 (*1 *1) (-5 *1 (-145))) (-4382 (*1 *1) (-5 *1 (-145))) (-3224 (*1 *1) (-5 *1 (-145))) (-1345 (*1 *1 *1) (-5 *1 (-145))) (-2976 (*1 *1 *1) (-5 *1 (-145))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-860) (-10 -8 (-15 -3112 ((-787) $)) (-15 -2999 ($ (-787))) (-15 -2999 ($ (-1183))) (-15 -3255 ($) -2609) (-15 -4382 ($) -2609) (-15 -3224 ($) -2609) (-15 -1345 ($ $)) (-15 -2976 ($ $)) (-15 -1590 ((-112) $)) (-15 -1818 ((-112) $)) (-15 -3314 ((-112) $)) (-15 -1642 ((-112) $)) (-15 -3637 ((-112) $)) (-15 -1817 ((-112) $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3907 (((-3 $ "failed") $) 39 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-2381 (*1 *1 *1 *1) (-4 *1 (-144))) (-2964 (*1 *1 *1) (-4 *1 (-144))) (-2990 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -2990 ($ $ $)) (-15 -2964 ($ $)) (-15 -2381 ($ $ $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2124 (((-112) $) 39 T ELT)) (-3890 (($ $) 55 T ELT)) (-4351 (($) 26 T CONST)) (-3005 (((-792)) 13 T ELT)) (-1424 (($) 25 T ELT)) (-1837 (($) 27 T CONST)) (-4432 (((-792) $) 21 T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4458 (((-112) $) 41 T ELT)) (-3110 (($ $) 56 T ELT)) (-2686 (((-949) $) 23 T ELT)) (-3235 (((-1188) $) 49 T ELT)) (-3354 (($ (-949)) 20 T ELT)) (-4370 (((-112) $) 37 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4179 (($) 28 T CONST)) (-2155 (((-112) $) 35 T ELT)) (-3709 (((-885) $) 30 T ELT)) (-3100 (($ (-792)) 19 T ELT) (($ (-1188)) 54 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4250 (((-112) $) 45 T ELT)) (-3879 (((-112) $) 43 T ELT)) (-3078 (((-112) $ $) 11 T ELT)) (-3054 (((-112) $ $) 9 T ELT)) (-3018 (((-112) $ $) 7 T ELT)) (-3067 (((-112) $ $) 10 T ELT)) (-3042 (((-112) $ $) 8 T ELT))) +(((-145) (-13 (-865) (-10 -8 (-15 -4432 ((-792) $)) (-15 -3100 ($ (-792))) (-15 -3100 ($ (-1188))) (-15 -4351 ($) -4212) (-15 -1837 ($) -4212) (-15 -4179 ($) -4212) (-15 -3890 ($ $)) (-15 -3110 ($ $)) (-15 -2155 ((-112) $)) (-15 -4370 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -2124 ((-112) $)) (-15 -4458 ((-112) $)) (-15 -4250 ((-112) $))))) (T -145)) +((-4432 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-145)))) (-3100 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-145)))) (-3100 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-145)))) (-4351 (*1 *1) (-5 *1 (-145))) (-1837 (*1 *1) (-5 *1 (-145))) (-4179 (*1 *1) (-5 *1 (-145))) (-3890 (*1 *1 *1) (-5 *1 (-145))) (-3110 (*1 *1 *1) (-5 *1 (-145))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-865) (-10 -8 (-15 -4432 ((-792) $)) (-15 -3100 ($ (-792))) (-15 -3100 ($ (-1188))) (-15 -4351 ($) -4212) (-15 -1837 ($) -4212) (-15 -4179 ($) -4212) (-15 -3890 ($ $)) (-15 -3110 ($ $)) (-15 -2155 ((-112) $)) (-15 -4370 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -2124 ((-112) $)) (-15 -4458 ((-112) $)) (-15 -4250 ((-112) $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-2708 (((-3 $ "failed") $) 39 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-146) (-141)) (T -146)) -((-3907 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1074) (-10 -8 (-15 -3907 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2600 ((|#1| (-705 |#1|) |#1|) 19 T ELT))) -(((-147 |#1|) (-10 -7 (-15 -2600 (|#1| (-705 |#1|) |#1|))) (-174)) (T -147)) -((-2600 (*1 *2 *3 *2) (-12 (-5 *3 (-705 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -2600 (|#1| (-705 |#1|) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-2708 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1079) (-10 -8 (-15 -2708 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-2932 ((|#1| (-710 |#1|) |#1|) 19 T ELT))) +(((-147 |#1|) (-10 -7 (-15 -2932 (|#1| (-710 |#1|) |#1|))) (-174)) (T -147)) +((-2932 (*1 *2 *3 *2) (-12 (-5 *3 (-710 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -2932 (|#1| (-710 |#1|) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-148) (-141)) (T -148)) NIL -(-13 (-1074)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-4287 (((-2 (|:| -1527 (-787)) (|:| -2940 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-787)) 76 T ELT)) (-2491 (((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-787))) "failed") |#3|) 56 T ELT)) (-3140 (((-2 (|:| -2940 (-420 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-2964 ((|#1| |#3| |#3|) 44 T ELT)) (-3273 ((|#3| |#3| (-420 |#2|) (-420 |#2|)) 20 T ELT)) (-2806 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-787))) |#3| |#3|) 53 T ELT))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3140 ((-2 (|:| -2940 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2491 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-787))) "failed") |#3|)) (-15 -4287 ((-2 (|:| -1527 (-787)) (|:| -2940 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-787))) (-15 -2964 (|#1| |#3| |#3|)) (-15 -3273 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -2806 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-787))) |#3| |#3|))) (-1246) (-1268 |#1|) (-1268 (-420 |#2|))) (T -149)) -((-2806 (*1 *2 *3 *3) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) (|:| |c2| (-420 *5)) (|:| |deg| (-787)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5))))) (-3273 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1268 *3)))) (-2964 (*1 *2 *3 *3) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1246)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1268 (-420 *4))))) (-4287 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *6)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-787)) (-4 *7 (-1268 *3)))) (-2491 (*1 *2 *3) (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-787)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5))))) (-3140 (*1 *2 *3) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -2940 (-420 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) -(-10 -7 (-15 -3140 ((-2 (|:| -2940 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2491 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-787))) "failed") |#3|)) (-15 -4287 ((-2 (|:| -1527 (-787)) (|:| -2940 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-787))) (-15 -2964 (|#1| |#3| |#3|)) (-15 -3273 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -2806 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-787))) |#3| |#3|))) -((-3578 (((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)) 35 T ELT))) -(((-150 |#1| |#2|) (-10 -7 (-15 -3578 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)))) (-558) (-167 |#1|)) (T -150)) -((-3578 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -3578 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)))) -((-3730 (($ (-1 (-112) |#2|) $) 37 T ELT)) (-3289 (($ $) 44 T ELT)) (-3920 (($ (-1 (-112) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-2498 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-2153 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27 T ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 24 T ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) 18 T ELT) (((-787) |#2| $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-3501 (((-787) $) 12 T ELT))) -(((-151 |#1| |#2|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3920 (|#1| |#2| |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2153 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3501 ((-787) |#1|))) (-152 |#2|) (-1242)) (T -151)) -NIL -(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3920 (|#1| |#2| |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2153 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3501 ((-787) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3289 (($ $) 42 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)) ELT) (($ |#1| $) 43 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 41 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 50 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-152 |#1|) (-141) (-1242)) (T -152)) -((-3614 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-152 *3)))) (-2153 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-2498 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-2498 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-3920 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) (-4 *3 (-1242)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) (-4 *3 (-1242)))) (-2498 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-3920 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) (-3289 (*1 *1 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) (-4 *2 (-1125))))) -(-13 (-502 |t#1|) (-10 -8 (-15 -3614 ($ (-660 |t#1|))) (-15 -2153 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4470)) (PROGN (-15 -2498 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2498 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3920 ($ (-1 (-112) |t#1|) $)) (-15 -3730 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -2498 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3920 ($ |t#1| $)) (-15 -3289 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) 111 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3180 (($ |#2| (-660 (-944))) 71 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1414 (($ (-944)) 57 T ELT)) (-3941 (((-135)) 23 T ELT)) (-3603 (((-880) $) 86 T ELT) (($ (-577)) 53 T ELT) (($ |#2|) 54 T ELT)) (-3421 ((|#2| $ (-660 (-944))) 74 T ELT)) (-1920 (((-787)) 20 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 47 T CONST)) (-2767 (($) 51 T CONST)) (-2949 (((-112) $ $) 33 T ELT)) (-3051 (($ $ |#2|) NIL T ELT)) (-3042 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-3031 (($ $ $) 38 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) -(((-153 |#1| |#2| |#3|) (-13 (-1074) (-38 |#2|) (-1299 |#2|) (-10 -8 (-15 -1414 ($ (-944))) (-15 -3180 ($ |#2| (-660 (-944)))) (-15 -3421 (|#2| $ (-660 (-944)))) (-15 -1625 ((-3 $ "failed") $)))) (-944) (-375) (-1018 |#1| |#2|)) (T -153)) -((-1625 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-944)) (-4 *3 (-375)) (-14 *4 (-1018 *2 *3)))) (-1414 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-375)) (-14 *5 (-1018 *3 *4)))) (-3180 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-944)) (-4 *2 (-375)) (-14 *5 (-1018 *4 *2)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-944))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-944)) (-14 *5 (-1018 *4 *2))))) -(-13 (-1074) (-38 |#2|) (-1299 |#2|) (-10 -8 (-15 -1414 ($ (-944))) (-15 -3180 ($ |#2| (-660 (-944)))) (-15 -3421 (|#2| $ (-660 (-944)))) (-15 -1625 ((-3 $ "failed") $)))) -((-2835 (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))) (-228) (-228) (-228) (-228)) 59 T ELT)) (-4201 (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577))) 95 T ELT) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950)) 96 T ELT)) (-1559 (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228))))) 99 T ELT) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-966 (-228)))) 98 T ELT) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577))) 90 T ELT) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950)) 91 T ELT))) -(((-154) (-10 -7 (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -4201 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -4201 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -2835 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))) (-228) (-228) (-228) (-228))) (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-966 (-228))))) (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))))))) (T -154)) -((-1559 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 (-228))))))) (-1559 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)) (-5 *3 (-660 (-966 (-228)))))) (-2835 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-228)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 *4)))) (|:| |xValues| (-1119 *4)) (|:| |yValues| (-1119 *4)))) (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 *4)))))) (-4201 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154))))) -(-10 -7 (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -4201 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -4201 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -2835 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))) (-228) (-228) (-228) (-228))) (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-966 (-228))))) (-15 -1559 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228))))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3066 (((-660 (-1160)) $) 20 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 27 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-1160) $) 9 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-155) (-13 (-1108) (-10 -8 (-15 -3066 ((-660 (-1160)) $)) (-15 -2682 ((-1160) $))))) (T -155)) -((-3066 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-155)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-155))))) -(-13 (-1108) (-10 -8 (-15 -3066 ((-660 (-1160)) $)) (-15 -2682 ((-1160) $)))) -((-4019 (((-660 (-171 |#2|)) |#1| |#2|) 50 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -4019 ((-660 (-171 |#2|)) |#1| |#2|))) (-1268 (-171 (-577))) (-13 (-375) (-864))) (T -156)) -((-4019 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1268 (-171 (-577)))) (-4 *4 (-13 (-375) (-864)))))) -(-10 -7 (-15 -4019 ((-660 (-171 |#2|)) |#1| |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2171 (((-1241) $) 12 T ELT)) (-2159 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 19 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-157) (-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1241) $))))) (T -157)) -((-2159 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-157)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-157))))) -(-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1241) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1445 (($) 41 T ELT)) (-2422 (($) 40 T ELT)) (-1424 (((-944)) 46 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2552 (((-577) $) 44 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3849 (($) 42 T ELT)) (-3196 (($ (-577)) 47 T ELT)) (-3603 (((-880) $) 53 T ELT)) (-1886 (($) 43 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 38 T ELT)) (-3031 (($ $ $) 35 T ELT)) (* (($ (-944) $) 45 T ELT) (($ (-228) $) 11 T ELT))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-944) $)) (-15 * ($ (-228) $)) (-15 -3031 ($ $ $)) (-15 -2422 ($)) (-15 -1445 ($)) (-15 -3849 ($)) (-15 -1886 ($)) (-15 -2552 ((-577) $)) (-15 -1424 ((-944))) (-15 -3196 ($ (-577)))))) (T -158)) -((-3031 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-158)))) (-2422 (*1 *1) (-5 *1 (-158))) (-1445 (*1 *1) (-5 *1 (-158))) (-3849 (*1 *1) (-5 *1 (-158))) (-1886 (*1 *1) (-5 *1 (-158))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) (-1424 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-158)))) (-3196 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-944) $)) (-15 * ($ (-228) $)) (-15 -3031 ($ $ $)) (-15 -2422 ($)) (-15 -1445 ($)) (-15 -3849 ($)) (-15 -1886 ($)) (-15 -2552 ((-577) $)) (-15 -1424 ((-944))) (-15 -3196 ($ (-577))))) -((-2922 ((|#2| |#2| (-1117 |#2|)) 98 T ELT) ((|#2| |#2| (-1201)) 75 T ELT)) (-1439 ((|#2| |#2| (-1117 |#2|)) 97 T ELT) ((|#2| |#2| (-1201)) 74 T ELT)) (-2738 ((|#2| |#2| |#2|) 25 T ELT)) (-2085 (((-115) (-115)) 111 T ELT)) (-3645 ((|#2| (-660 |#2|)) 130 T ELT)) (-1330 ((|#2| (-660 |#2|)) 151 T ELT)) (-2303 ((|#2| (-660 |#2|)) 138 T ELT)) (-3134 ((|#2| |#2|) 136 T ELT)) (-2004 ((|#2| (-660 |#2|)) 124 T ELT)) (-3802 ((|#2| (-660 |#2|)) 125 T ELT)) (-3169 ((|#2| (-660 |#2|)) 149 T ELT)) (-1592 ((|#2| |#2| (-1201)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1968 ((|#2| |#2|) 21 T ELT)) (-1774 ((|#2| |#2| |#2|) 24 T ELT)) (-3123 (((-112) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-159 |#1| |#2|) (-10 -7 (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1774 (|#2| |#2| |#2|)) (-15 -2738 (|#2| |#2| |#2|)) (-15 -1968 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1592 (|#2| |#2| (-1201))) (-15 -2922 (|#2| |#2| (-1201))) (-15 -2922 (|#2| |#2| (-1117 |#2|))) (-15 -1439 (|#2| |#2| (-1201))) (-15 -1439 (|#2| |#2| (-1117 |#2|))) (-15 -3134 (|#2| |#2|)) (-15 -3169 (|#2| (-660 |#2|))) (-15 -2303 (|#2| (-660 |#2|))) (-15 -1330 (|#2| (-660 |#2|))) (-15 -2004 (|#2| (-660 |#2|))) (-15 -3802 (|#2| (-660 |#2|))) (-15 -3645 (|#2| (-660 |#2|)))) (-569) (-443 |#1|)) (T -159)) -((-3645 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3134 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-1592 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-1968 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2738 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-1774 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) (-4 *4 (-443 *3)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4))))) -(-10 -7 (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1774 (|#2| |#2| |#2|)) (-15 -2738 (|#2| |#2| |#2|)) (-15 -1968 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1592 (|#2| |#2| (-1201))) (-15 -2922 (|#2| |#2| (-1201))) (-15 -2922 (|#2| |#2| (-1117 |#2|))) (-15 -1439 (|#2| |#2| (-1201))) (-15 -1439 (|#2| |#2| (-1117 |#2|))) (-15 -3134 (|#2| |#2|)) (-15 -3169 (|#2| (-660 |#2|))) (-15 -2303 (|#2| (-660 |#2|))) (-15 -1330 (|#2| (-660 |#2|))) (-15 -2004 (|#2| (-660 |#2|))) (-15 -3802 (|#2| (-660 |#2|))) (-15 -3645 (|#2| (-660 |#2|)))) -((-3040 ((|#1| |#1| |#1|) 64 T ELT)) (-1430 ((|#1| |#1| |#1|) 61 T ELT)) (-2738 ((|#1| |#1| |#1|) 55 T ELT)) (-4082 ((|#1| |#1|) 42 T ELT)) (-4111 ((|#1| |#1| (-660 |#1|)) 53 T ELT)) (-1968 ((|#1| |#1|) 46 T ELT)) (-1774 ((|#1| |#1| |#1|) 49 T ELT))) -(((-160 |#1|) (-10 -7 (-15 -1774 (|#1| |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -4111 (|#1| |#1| (-660 |#1|))) (-15 -4082 (|#1| |#1|)) (-15 -2738 (|#1| |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -3040 (|#1| |#1| |#1|))) (-558)) (T -160)) -((-3040 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-1430 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2738 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-4082 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-4111 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2)))) (-1968 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-1774 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(-10 -7 (-15 -1774 (|#1| |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -4111 (|#1| |#1| (-660 |#1|))) (-15 -4082 (|#1| |#1|)) (-15 -2738 (|#1| |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -3040 (|#1| |#1| |#1|))) -((-2922 (($ $ (-1201)) 12 T ELT) (($ $ (-1117 $)) 11 T ELT)) (-1439 (($ $ (-1201)) 10 T ELT) (($ $ (-1117 $)) 9 T ELT)) (-2738 (($ $ $) 8 T ELT)) (-1592 (($ $) 14 T ELT) (($ $ (-1201)) 13 T ELT)) (-1968 (($ $) 7 T ELT)) (-1774 (($ $ $) 6 T ELT))) +(-13 (-1079)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4107 (((-2 (|:| -2328 (-792)) (|:| -4473 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-792)) 76 T ELT)) (-3511 (((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-792))) "failed") |#3|) 56 T ELT)) (-2816 (((-2 (|:| -4473 (-420 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-3867 ((|#1| |#3| |#3|) 44 T ELT)) (-3373 ((|#3| |#3| (-420 |#2|) (-420 |#2|)) 20 T ELT)) (-2997 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-792))) |#3| |#3|) 53 T ELT))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2816 ((-2 (|:| -4473 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3511 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-792))) "failed") |#3|)) (-15 -4107 ((-2 (|:| -2328 (-792)) (|:| -4473 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-792))) (-15 -3867 (|#1| |#3| |#3|)) (-15 -3373 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -2997 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-792))) |#3| |#3|))) (-1251) (-1273 |#1|) (-1273 (-420 |#2|))) (T -149)) +((-2997 (*1 *2 *3 *3) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) (|:| |c2| (-420 *5)) (|:| |deg| (-792)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5))))) (-3373 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1273 *3)))) (-3867 (*1 *2 *3 *3) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1251)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1273 (-420 *4))))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *6)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-792)) (-4 *7 (-1273 *3)))) (-3511 (*1 *2 *3) (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-792)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5))))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -4473 (-420 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) +(-10 -7 (-15 -2816 ((-2 (|:| -4473 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3511 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-792))) "failed") |#3|)) (-15 -4107 ((-2 (|:| -2328 (-792)) (|:| -4473 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-792))) (-15 -3867 (|#1| |#3| |#3|)) (-15 -3373 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -2997 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-792))) |#3| |#3|))) +((-2008 (((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)) 35 T ELT))) +(((-150 |#1| |#2|) (-10 -7 (-15 -2008 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)))) (-558) (-167 |#1|)) (T -150)) +((-2008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -2008 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)))) +((-1440 (($ (-1 (-112) |#2|) $) 37 T ELT)) (-3589 (($ $) 44 T ELT)) (-4004 (($ (-1 (-112) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-2060 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-2550 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27 T ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 24 T ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) 18 T ELT) (((-792) |#2| $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-3600 (((-792) $) 12 T ELT))) +(((-151 |#1| |#2|) (-10 -8 (-15 -3589 (|#1| |#1|)) (-15 -4004 (|#1| |#2| |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1440 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4004 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2550 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3600 ((-792) |#1|))) (-152 |#2|) (-1247)) (T -151)) +NIL +(-10 -8 (-15 -3589 (|#1| |#1|)) (-15 -4004 (|#1| |#2| |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1440 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4004 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2550 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3600 ((-792) |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1440 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-3589 (($ $) 42 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT) (($ |#1| $) 43 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 41 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 50 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-152 |#1|) (-141) (-1247)) (T -152)) +((-3722 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-152 *3)))) (-2550 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-2060 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-2060 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-4004 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) (-4 *3 (-1247)))) (-1440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) (-4 *3 (-1247)))) (-2060 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-4004 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) (-3589 (*1 *1 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) (-4 *2 (-1130))))) +(-13 (-502 |t#1|) (-10 -8 (-15 -3722 ($ (-665 |t#1|))) (-15 -2550 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4499)) (PROGN (-15 -2060 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2060 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -4004 ($ (-1 (-112) |t#1|) $)) (-15 -1440 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -2060 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -4004 ($ |t#1| $)) (-15 -3589 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) 111 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3872 (($ |#2| (-665 (-949))) 71 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1441 (($ (-949)) 57 T ELT)) (-4366 (((-135)) 23 T ELT)) (-3709 (((-885) $) 86 T ELT) (($ (-577)) 53 T ELT) (($ |#2|) 54 T ELT)) (-4171 ((|#2| $ (-665 (-949))) 74 T ELT)) (-3331 (((-792)) 20 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 47 T CONST)) (-2853 (($) 51 T CONST)) (-3018 (((-112) $ $) 33 T ELT)) (-3139 (($ $ |#2|) NIL T ELT)) (-3128 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-3114 (($ $ $) 38 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) +(((-153 |#1| |#2| |#3|) (-13 (-1079) (-38 |#2|) (-1304 |#2|) (-10 -8 (-15 -1441 ($ (-949))) (-15 -3872 ($ |#2| (-665 (-949)))) (-15 -4171 (|#2| $ (-665 (-949)))) (-15 -3167 ((-3 $ "failed") $)))) (-949) (-375) (-1023 |#1| |#2|)) (T -153)) +((-3167 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-949)) (-4 *3 (-375)) (-14 *4 (-1023 *2 *3)))) (-1441 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-375)) (-14 *5 (-1023 *3 *4)))) (-3872 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-949)) (-4 *2 (-375)) (-14 *5 (-1023 *4 *2)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-665 (-949))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-949)) (-14 *5 (-1023 *4 *2))))) +(-13 (-1079) (-38 |#2|) (-1304 |#2|) (-10 -8 (-15 -1441 ($ (-949))) (-15 -3872 ($ |#2| (-665 (-949)))) (-15 -4171 (|#2| $ (-665 (-949)))) (-15 -3167 ((-3 $ "failed") $)))) +((-1609 (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))) (-228) (-228) (-228) (-228)) 59 T ELT)) (-2430 (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577))) 95 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955)) 96 T ELT)) (-1896 (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228))))) 99 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-971 (-228)))) 98 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577))) 90 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955)) 91 T ELT))) +(((-154) (-10 -7 (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -2430 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -2430 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -1609 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))) (-228) (-228) (-228) (-228))) (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-971 (-228))))) (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))))))) (T -154)) +((-1896 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 (-228))))))) (-1896 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)) (-5 *3 (-665 (-971 (-228)))))) (-1609 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-228)) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 *4)))) (|:| |xValues| (-1124 *4)) (|:| |yValues| (-1124 *4)))) (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 *4)))))) (-2430 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-955)) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)))) (-1896 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-955)) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154))))) +(-10 -7 (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -2430 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -2430 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -1609 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))) (-228) (-228) (-228) (-228))) (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-971 (-228))))) (-15 -1896 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228))))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3356 (((-665 (-1165)) $) 20 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 27 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-1165) $) 9 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-155) (-13 (-1113) (-10 -8 (-15 -3356 ((-665 (-1165)) $)) (-15 -2773 ((-1165) $))))) (T -155)) +((-3356 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-155)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-155))))) +(-13 (-1113) (-10 -8 (-15 -3356 ((-665 (-1165)) $)) (-15 -2773 ((-1165) $)))) +((-4323 (((-665 (-171 |#2|)) |#1| |#2|) 50 T ELT))) +(((-156 |#1| |#2|) (-10 -7 (-15 -4323 ((-665 (-171 |#2|)) |#1| |#2|))) (-1273 (-171 (-577))) (-13 (-375) (-869))) (T -156)) +((-4323 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1273 (-171 (-577)))) (-4 *4 (-13 (-375) (-869)))))) +(-10 -7 (-15 -4323 ((-665 (-171 |#2|)) |#1| |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-2416 (((-1246) $) 12 T ELT)) (-2404 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-157) (-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1246) $))))) (T -157)) +((-2404 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-157)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-157))))) +(-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1246) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2177 (($) 41 T ELT)) (-3355 (($) 40 T ELT)) (-4429 (((-949)) 46 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3807 (((-577) $) 44 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4400 (($) 42 T ELT)) (-3397 (($ (-577)) 47 T ELT)) (-3709 (((-885) $) 53 T ELT)) (-3101 (($) 43 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 38 T ELT)) (-3114 (($ $ $) 35 T ELT)) (* (($ (-949) $) 45 T ELT) (($ (-228) $) 11 T ELT))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-949) $)) (-15 * ($ (-228) $)) (-15 -3114 ($ $ $)) (-15 -3355 ($)) (-15 -2177 ($)) (-15 -4400 ($)) (-15 -3101 ($)) (-15 -3807 ((-577) $)) (-15 -4429 ((-949))) (-15 -3397 ($ (-577)))))) (T -158)) +((-3114 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-158)))) (-3355 (*1 *1) (-5 *1 (-158))) (-2177 (*1 *1) (-5 *1 (-158))) (-4400 (*1 *1) (-5 *1 (-158))) (-3101 (*1 *1) (-5 *1 (-158))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) (-4429 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-158)))) (-3397 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-949) $)) (-15 * ($ (-228) $)) (-15 -3114 ($ $ $)) (-15 -3355 ($)) (-15 -2177 ($)) (-15 -4400 ($)) (-15 -3101 ($)) (-15 -3807 ((-577) $)) (-15 -4429 ((-949))) (-15 -3397 ($ (-577))))) +((-2284 ((|#2| |#2| (-1122 |#2|)) 98 T ELT) ((|#2| |#2| (-1206)) 75 T ELT)) (-2801 ((|#2| |#2| (-1122 |#2|)) 97 T ELT) ((|#2| |#2| (-1206)) 74 T ELT)) (-2381 ((|#2| |#2| |#2|) 25 T ELT)) (-3706 (((-115) (-115)) 111 T ELT)) (-4272 ((|#2| (-665 |#2|)) 130 T ELT)) (-3812 ((|#2| (-665 |#2|)) 151 T ELT)) (-2589 ((|#2| (-665 |#2|)) 138 T ELT)) (-3884 ((|#2| |#2|) 136 T ELT)) (-3676 ((|#2| (-665 |#2|)) 124 T ELT)) (-3342 ((|#2| (-665 |#2|)) 125 T ELT)) (-3424 ((|#2| (-665 |#2|)) 149 T ELT)) (-2198 ((|#2| |#2| (-1206)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-2964 ((|#2| |#2|) 21 T ELT)) (-2990 ((|#2| |#2| |#2|) 24 T ELT)) (-1448 (((-112) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-159 |#1| |#2|) (-10 -7 (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2990 (|#2| |#2| |#2|)) (-15 -2381 (|#2| |#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2198 (|#2| |#2| (-1206))) (-15 -2284 (|#2| |#2| (-1206))) (-15 -2284 (|#2| |#2| (-1122 |#2|))) (-15 -2801 (|#2| |#2| (-1206))) (-15 -2801 (|#2| |#2| (-1122 |#2|))) (-15 -3884 (|#2| |#2|)) (-15 -3424 (|#2| (-665 |#2|))) (-15 -2589 (|#2| (-665 |#2|))) (-15 -3812 (|#2| (-665 |#2|))) (-15 -3676 (|#2| (-665 |#2|))) (-15 -3342 (|#2| (-665 |#2|))) (-15 -4272 (|#2| (-665 |#2|)))) (-569) (-443 |#1|)) (T -159)) +((-4272 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-2284 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-2284 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-2198 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2964 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2381 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2990 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) (-4 *4 (-443 *3)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4))))) +(-10 -7 (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2990 (|#2| |#2| |#2|)) (-15 -2381 (|#2| |#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2198 (|#2| |#2| (-1206))) (-15 -2284 (|#2| |#2| (-1206))) (-15 -2284 (|#2| |#2| (-1122 |#2|))) (-15 -2801 (|#2| |#2| (-1206))) (-15 -2801 (|#2| |#2| (-1122 |#2|))) (-15 -3884 (|#2| |#2|)) (-15 -3424 (|#2| (-665 |#2|))) (-15 -2589 (|#2| (-665 |#2|))) (-15 -3812 (|#2| (-665 |#2|))) (-15 -3676 (|#2| (-665 |#2|))) (-15 -3342 (|#2| (-665 |#2|))) (-15 -4272 (|#2| (-665 |#2|)))) +((-4129 ((|#1| |#1| |#1|) 64 T ELT)) (-3338 ((|#1| |#1| |#1|) 61 T ELT)) (-2381 ((|#1| |#1| |#1|) 55 T ELT)) (-1988 ((|#1| |#1|) 42 T ELT)) (-4451 ((|#1| |#1| (-665 |#1|)) 53 T ELT)) (-2964 ((|#1| |#1|) 46 T ELT)) (-2990 ((|#1| |#1| |#1|) 49 T ELT))) +(((-160 |#1|) (-10 -7 (-15 -2990 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -4451 (|#1| |#1| (-665 |#1|))) (-15 -1988 (|#1| |#1|)) (-15 -2381 (|#1| |#1| |#1|)) (-15 -3338 (|#1| |#1| |#1|)) (-15 -4129 (|#1| |#1| |#1|))) (-558)) (T -160)) +((-4129 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-3338 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2381 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-1988 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-4451 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2)))) (-2964 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2990 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(-10 -7 (-15 -2990 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -4451 (|#1| |#1| (-665 |#1|))) (-15 -1988 (|#1| |#1|)) (-15 -2381 (|#1| |#1| |#1|)) (-15 -3338 (|#1| |#1| |#1|)) (-15 -4129 (|#1| |#1| |#1|))) +((-2284 (($ $ (-1206)) 12 T ELT) (($ $ (-1122 $)) 11 T ELT)) (-2801 (($ $ (-1206)) 10 T ELT) (($ $ (-1122 $)) 9 T ELT)) (-2381 (($ $ $) 8 T ELT)) (-2198 (($ $) 14 T ELT) (($ $ (-1206)) 13 T ELT)) (-2964 (($ $) 7 T ELT)) (-2990 (($ $ $) 6 T ELT))) (((-161) (-141)) (T -161)) -((-1592 (*1 *1 *1) (-4 *1 (-161))) (-1592 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) (-2922 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) (-2922 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161)))) (-1439 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) (-1439 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -1592 ($ $)) (-15 -1592 ($ $ (-1201))) (-15 -2922 ($ $ (-1201))) (-15 -2922 ($ $ (-1117 $))) (-15 -1439 ($ $ (-1201))) (-15 -1439 ($ $ (-1117 $))))) +((-2198 (*1 *1 *1) (-4 *1 (-161))) (-2198 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) (-2284 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) (-2284 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161)))) (-2801 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) (-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -2198 ($ $)) (-15 -2198 ($ $ (-1206))) (-15 -2284 ($ $ (-1206))) (-15 -2284 ($ $ (-1122 $))) (-15 -2801 ($ $ (-1206))) (-15 -2801 ($ $ (-1122 $))))) (((-144) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 16 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-660 (-1160)) $) 10 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-162) (-13 (-1108) (-10 -8 (-15 -2682 ((-660 (-1160)) $))))) (T -162)) -((-2682 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-162))))) -(-13 (-1108) (-10 -8 (-15 -2682 ((-660 (-1160)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3311 (($ (-577)) 14 T ELT) (($ $ $) 15 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 9 T ELT))) -(((-163) (-13 (-1125) (-10 -8 (-15 -3311 ($ (-577))) (-15 -3311 ($ $ $))))) (T -163)) -((-3311 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163)))) (-3311 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1125) (-10 -8 (-15 -3311 ($ (-577))) (-15 -3311 ($ $ $)))) -((-2085 (((-115) (-1201)) 102 T ELT))) -(((-164) (-10 -7 (-15 -2085 ((-115) (-1201))))) (T -164)) -((-2085 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -2085 ((-115) (-1201)))) -((-1695 ((|#3| |#3|) 19 T ELT))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1695 (|#3| |#3|))) (-1074) (-1268 |#1|) (-1268 |#2|)) (T -165)) -((-1695 (*1 *2 *2) (-12 (-4 *3 (-1074)) (-4 *4 (-1268 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1268 *4))))) -(-10 -7 (-15 -1695 (|#3| |#3|))) -((-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 223 T ELT)) (-2219 ((|#2| $) 102 T ELT)) (-2642 (($ $) 256 T ELT)) (-2501 (($ $) 250 T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 47 T ELT)) (-2616 (($ $) 254 T ELT)) (-2471 (($ $) 248 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 146 T ELT)) (-2155 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-3436 (($ $ $) 229 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 160 T ELT) (((-705 |#2|) (-705 $)) 154 T ELT)) (-2498 (($ (-1197 |#2|)) 125 T ELT) (((-3 $ "failed") (-420 (-1197 |#2|))) NIL T ELT)) (-1625 (((-3 $ "failed") $) 214 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 204 T ELT)) (-2828 (((-112) $) 199 T ELT)) (-2950 (((-420 (-577)) $) 202 T ELT)) (-3503 (((-944)) 96 T ELT)) (-3447 (($ $ $) 231 T ELT)) (-1832 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269 T ELT)) (-2824 (($) 245 T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 193 T ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 198 T ELT)) (-4021 ((|#2| $) 100 T ELT)) (-3810 (((-1197 |#2|) $) 127 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3716 (($ $) 247 T ELT)) (-2482 (((-1197 |#2|) $) 126 T ELT)) (-3318 (($ $) 207 T ELT)) (-2833 (($) 103 T ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 95 T ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 64 T ELT)) (-3478 (((-3 $ "failed") $ |#2|) 209 T ELT) (((-3 $ "failed") $ $) 212 T ELT)) (-2079 (($ $) 246 T ELT)) (-4167 (((-787) $) 226 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 236 T ELT)) (-4447 ((|#2| (-1292 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3362 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-1629 (((-1197 |#2|)) 120 T ELT)) (-2631 (($ $) 255 T ELT)) (-2486 (($ $) 249 T ELT)) (-2729 (((-1292 |#2|) $ (-1292 $)) 136 T ELT) (((-705 |#2|) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 |#2|) $) 116 T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-2176 (((-1292 |#2|) $) NIL T ELT) (($ (-1292 |#2|)) NIL T ELT) (((-1197 |#2|) $) NIL T ELT) (($ (-1197 |#2|)) NIL T ELT) (((-911 (-577)) $) 184 T ELT) (((-911 (-391)) $) 188 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-228)) $) 167 T ELT) (((-549) $) 180 T ELT)) (-1328 (($ $) 104 T ELT)) (-3603 (((-880) $) 143 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-2600 (((-1197 |#2|) $) 32 T ELT)) (-1920 (((-787)) 106 T ELT)) (-2726 (((-112) $ $) 13 T ELT)) (-2722 (($ $) 259 T ELT)) (-2570 (($ $) 253 T ELT)) (-2694 (($ $) 257 T ELT)) (-2546 (($ $) 251 T ELT)) (-4100 ((|#2| $) 242 T ELT)) (-2708 (($ $) 258 T ELT)) (-2558 (($ $) 252 T ELT)) (-4318 (($ $) 162 T ELT)) (-2949 (((-112) $ $) 110 T ELT)) (-3042 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 111 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-420 (-577))) 276 T ELT) (($ $ $) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-166 |#1| |#2|) (-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3603 (|#1| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2958 ((-2 (|:| -3426 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4167 ((-787) |#1|)) (-15 -3039 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -3447 (|#1| |#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2176 ((-549) |#1|)) (-15 -2176 ((-171 (-228)) |#1|)) (-15 -2176 ((-171 (-391)) |#1|)) (-15 -2501 (|#1| |#1|)) (-15 -2471 (|#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2722 (|#1| |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2824 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -1761 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2331 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -1832 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4100 (|#2| |#1|)) (-15 -4318 (|#1| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1328 (|#1| |#1|)) (-15 -2833 (|#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2498 ((-3 |#1| "failed") (-420 (-1197 |#2|)))) (-15 -2482 ((-1197 |#2|) |#1|)) (-15 -2176 (|#1| (-1197 |#2|))) (-15 -2498 (|#1| (-1197 |#2|))) (-15 -1629 ((-1197 |#2|))) (-15 -2850 ((-705 |#2|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2176 ((-1197 |#2|) |#1|)) (-15 -4447 (|#2|)) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3810 ((-1197 |#2|) |#1|)) (-15 -2600 ((-1197 |#2|) |#1|)) (-15 -4447 (|#2| (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -4021 (|#2| |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -3503 ((-944))) (-15 -3603 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-1920 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3503 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-944)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4447 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1629 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1197 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3603 (|#1| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2958 ((-2 (|:| -3426 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4167 ((-787) |#1|)) (-15 -3039 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -3447 (|#1| |#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2176 ((-549) |#1|)) (-15 -2176 ((-171 (-228)) |#1|)) (-15 -2176 ((-171 (-391)) |#1|)) (-15 -2501 (|#1| |#1|)) (-15 -2471 (|#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2722 (|#1| |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2824 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -1761 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2331 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -1832 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4100 (|#2| |#1|)) (-15 -4318 (|#1| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1328 (|#1| |#1|)) (-15 -2833 (|#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2498 ((-3 |#1| "failed") (-420 (-1197 |#2|)))) (-15 -2482 ((-1197 |#2|) |#1|)) (-15 -2176 (|#1| (-1197 |#2|))) (-15 -2498 (|#1| (-1197 |#2|))) (-15 -1629 ((-1197 |#2|))) (-15 -2850 ((-705 |#2|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2176 ((-1197 |#2|) |#1|)) (-15 -4447 (|#2|)) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3810 ((-1197 |#2|) |#1|)) (-15 -2600 ((-1197 |#2|) |#1|)) (-15 -4447 (|#2| (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -4021 (|#2| |#1|)) (-15 -2219 (|#2| |#1|)) (-15 -3503 ((-944))) (-15 -3603 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 105 (-2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-4122 (($ $) 106 (-2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-3547 (((-112) $) 108 (-2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-4436 (((-705 |#1|) (-1292 $)) 53 T ELT) (((-705 |#1|)) 68 T ELT)) (-2219 ((|#1| $) 59 T ELT)) (-2642 (($ $) 236 (|has| |#1| (-1227)) ELT)) (-2501 (($ $) 219 (|has| |#1| (-1227)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 158 (|has| |#1| (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 250 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-2001 (($ $) 125 (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-3836 (((-431 $) $) 126 (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-3070 (($ $) 249 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 253 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-2435 (((-112) $ $) 116 (|has| |#1| (-318)) ELT)) (-3373 (((-787)) 99 (|has| |#1| (-380)) ELT)) (-2616 (($ $) 235 (|has| |#1| (-1227)) ELT)) (-2471 (($ $) 220 (|has| |#1| (-1227)) ELT)) (-2666 (($ $) 234 (|has| |#1| (-1227)) ELT)) (-2523 (($ $) 221 (|has| |#1| (-1227)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-2155 (((-577) $) 184 (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) 182 (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 181 T ELT)) (-1911 (($ (-1292 |#1|) (-1292 $)) 55 T ELT) (($ (-1292 |#1|)) 71 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)) ELT)) (-3436 (($ $ $) 120 (|has| |#1| (-318)) ELT)) (-2678 (((-705 |#1|) $ (-1292 $)) 60 T ELT) (((-705 |#1|) $) 66 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 177 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 176 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 175 T ELT) (((-705 |#1|) (-705 $)) 174 T ELT)) (-2498 (($ (-1197 |#1|)) 169 T ELT) (((-3 $ "failed") (-420 (-1197 |#1|))) 166 (|has| |#1| (-375)) ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3081 ((|#1| $) 261 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 254 (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) 256 (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) 255 (|has| |#1| (-558)) ELT)) (-3503 (((-944)) 61 T ELT)) (-2352 (($) 102 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) 119 (|has| |#1| (-318)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 114 (|has| |#1| (-318)) ELT)) (-1742 (($) 160 (|has| |#1| (-361)) ELT)) (-4402 (((-112) $) 161 (|has| |#1| (-361)) ELT)) (-1865 (($ $ (-787)) 152 (|has| |#1| (-361)) ELT) (($ $) 151 (|has| |#1| (-361)) ELT)) (-2182 (((-112) $) 127 (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-1832 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1085)) (|has| |#1| (-1227))) ELT)) (-2824 (($) 246 (|has| |#1| (-1227)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 269 (|has| |#1| (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 268 (|has| |#1| (-905 (-391))) ELT)) (-2536 (((-944) $) 163 (|has| |#1| (-361)) ELT) (((-849 (-944)) $) 149 (|has| |#1| (-361)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 248 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ELT)) (-4021 ((|#1| $) 58 T ELT)) (-1454 (((-3 $ "failed") $) 153 (|has| |#1| (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 123 (|has| |#1| (-318)) ELT)) (-3810 (((-1197 |#1|) $) 51 (|has| |#1| (-375)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 270 T ELT)) (-2144 (((-944) $) 101 (|has| |#1| (-380)) ELT)) (-3716 (($ $) 243 (|has| |#1| (-1227)) ELT)) (-2482 (((-1197 |#1|) $) 167 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 179 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 178 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 173 T ELT) (((-705 |#1|) (-1292 $)) 172 T ELT)) (-3508 (($ (-660 $)) 112 (-2811 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT) (($ $ $) 111 (-2811 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 128 (|has| |#1| (-375)) ELT)) (-3457 (($) 154 (|has| |#1| (-361)) CONST)) (-3251 (($ (-944)) 100 (|has| |#1| (-380)) ELT)) (-2833 (($) 265 T ELT)) (-3091 ((|#1| $) 262 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3428 (($) 171 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 113 (-2811 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-3543 (($ (-660 $)) 110 (-2811 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT) (($ $ $) 109 (-2811 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 157 (|has| |#1| (-361)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 252 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 251 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-3056 (((-431 $) $) 124 (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 121 (|has| |#1| (-318)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 104 (-2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 115 (|has| |#1| (-318)) ELT)) (-2079 (($ $) 244 (|has| |#1| (-1227)) ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) 276 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 275 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 274 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 273 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) 272 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) 271 (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-4167 (((-787) $) 117 (|has| |#1| (-318)) ELT)) (-2837 (($ $ |#1|) 277 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 118 (|has| |#1| (-318)) ELT)) (-4447 ((|#1| (-1292 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-3816 (((-787) $) 162 (|has| |#1| (-361)) ELT) (((-3 (-787) "failed") $ $) 150 (|has| |#1| (-361)) ELT)) (-3362 (($ $ (-1 |#1| |#1|)) 136 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 135 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) 141 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) 140 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) 139 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201)) 137 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-787)) 147 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2700 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT) (($ $) 145 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2700 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT)) (-3285 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)) ELT)) (-1629 (((-1197 |#1|)) 170 T ELT)) (-2680 (($ $) 233 (|has| |#1| (-1227)) ELT)) (-2535 (($ $) 222 (|has| |#1| (-1227)) ELT)) (-2932 (($) 159 (|has| |#1| (-361)) ELT)) (-2655 (($ $) 232 (|has| |#1| (-1227)) ELT)) (-2512 (($ $) 223 (|has| |#1| (-1227)) ELT)) (-2631 (($ $) 231 (|has| |#1| (-1227)) ELT)) (-2486 (($ $) 224 (|has| |#1| (-1227)) ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 57 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) 56 T ELT) (((-1292 |#1|) $) 73 T ELT) (((-705 |#1|) (-1292 $)) 72 T ELT)) (-2176 (((-1292 |#1|) $) 70 T ELT) (($ (-1292 |#1|)) 69 T ELT) (((-1197 |#1|) $) 186 T ELT) (($ (-1197 |#1|)) 168 T ELT) (((-911 (-577)) $) 267 (|has| |#1| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) 266 (|has| |#1| (-627 (-911 (-391)))) ELT) (((-171 (-391)) $) 218 (|has| |#1| (-1047)) ELT) (((-171 (-228)) $) 217 (|has| |#1| (-1047)) ELT) (((-549) $) 216 (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $) 264 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 156 (-2811 (-2700 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (|has| |#1| (-361))) ELT)) (-4155 (($ |#1| |#1|) 263 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 98 (-2811 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) 103 (-2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-3907 (($ $) 155 (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) 50 (-2811 (-2700 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (|has| |#1| (-146))) ELT)) (-2600 (((-1197 |#1|) $) 52 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2559 (((-1292 $)) 74 T ELT)) (-2722 (($ $) 242 (|has| |#1| (-1227)) ELT)) (-2570 (($ $) 230 (|has| |#1| (-1227)) ELT)) (-2174 (((-112) $ $) 107 (-2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) ELT)) (-2694 (($ $) 241 (|has| |#1| (-1227)) ELT)) (-2546 (($ $) 229 (|has| |#1| (-1227)) ELT)) (-2748 (($ $) 240 (|has| |#1| (-1227)) ELT)) (-2592 (($ $) 228 (|has| |#1| (-1227)) ELT)) (-4100 ((|#1| $) 258 (|has| |#1| (-1227)) ELT)) (-2897 (($ $) 239 (|has| |#1| (-1227)) ELT)) (-2604 (($ $) 227 (|has| |#1| (-1227)) ELT)) (-2734 (($ $) 238 (|has| |#1| (-1227)) ELT)) (-2581 (($ $) 226 (|has| |#1| (-1227)) ELT)) (-2708 (($ $) 237 (|has| |#1| (-1227)) ELT)) (-2558 (($ $) 225 (|has| |#1| (-1227)) ELT)) (-4318 (($ $) 259 (|has| |#1| (-1085)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 133 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) 144 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) 143 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) 142 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201)) 138 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-787)) 148 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2700 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT) (($ $) 146 (-2811 (-2700 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2700 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2700 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 132 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-420 (-577))) 247 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ELT) (($ $ $) 245 (|has| |#1| (-1227)) ELT) (($ $ (-577)) 129 (|has| |#1| (-375)) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-375)) ELT))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-665 (-1165)) $) 10 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-162) (-13 (-1113) (-10 -8 (-15 -2773 ((-665 (-1165)) $))))) (T -162)) +((-2773 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-162))))) +(-13 (-1113) (-10 -8 (-15 -2773 ((-665 (-1165)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2364 (($ (-577)) 14 T ELT) (($ $ $) 15 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 9 T ELT))) +(((-163) (-13 (-1130) (-10 -8 (-15 -2364 ($ (-577))) (-15 -2364 ($ $ $))))) (T -163)) +((-2364 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163)))) (-2364 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1130) (-10 -8 (-15 -2364 ($ (-577))) (-15 -2364 ($ $ $)))) +((-3706 (((-115) (-1206)) 102 T ELT))) +(((-164) (-10 -7 (-15 -3706 ((-115) (-1206))))) (T -164)) +((-3706 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -3706 ((-115) (-1206)))) +((-3735 ((|#3| |#3|) 19 T ELT))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3735 (|#3| |#3|))) (-1079) (-1273 |#1|) (-1273 |#2|)) (T -165)) +((-3735 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-4 *4 (-1273 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1273 *4))))) +(-10 -7 (-15 -3735 (|#3| |#3|))) +((-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 223 T ELT)) (-2318 ((|#2| $) 102 T ELT)) (-1660 (($ $) 256 T ELT)) (-2785 (($ $) 250 T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 47 T ELT)) (-1638 (($ $) 254 T ELT)) (-2757 (($ $) 248 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 146 T ELT)) (-3783 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-3531 (($ $ $) 229 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 160 T ELT) (((-710 |#2|) (-710 $)) 154 T ELT)) (-2060 (($ (-1202 |#2|)) 125 T ELT) (((-3 $ "failed") (-420 (-1202 |#2|))) NIL T ELT)) (-3167 (((-3 $ "failed") $) 214 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 204 T ELT)) (-1356 (((-112) $) 199 T ELT)) (-4035 (((-420 (-577)) $) 202 T ELT)) (-1641 (((-949)) 96 T ELT)) (-3541 (($ $ $) 231 T ELT)) (-3798 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269 T ELT)) (-2450 (($) 245 T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 193 T ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 198 T ELT)) (-2794 ((|#2| $) 100 T ELT)) (-2346 (((-1202 |#2|) $) 127 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3825 (($ $) 247 T ELT)) (-2047 (((-1202 |#2|) $) 126 T ELT)) (-3981 (($ $) 207 T ELT)) (-1687 (($) 103 T ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 95 T ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 64 T ELT)) (-3574 (((-3 $ "failed") $ |#2|) 209 T ELT) (((-3 $ "failed") $ $) 212 T ELT)) (-2355 (($ $) 246 T ELT)) (-4081 (((-792) $) 226 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 236 T ELT)) (-3846 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3641 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-4263 (((-1202 |#2|)) 120 T ELT)) (-1648 (($ $) 255 T ELT)) (-2772 (($ $) 249 T ELT)) (-3762 (((-1297 |#2|) $ (-1297 $)) 136 T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 116 T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-4463 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT) (($ (-1202 |#2|)) NIL T ELT) (((-916 (-577)) $) 184 T ELT) (((-916 (-391)) $) 188 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-228)) $) 167 T ELT) (((-549) $) 180 T ELT)) (-4247 (($ $) 104 T ELT)) (-3709 (((-885) $) 143 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-2932 (((-1202 |#2|) $) 32 T ELT)) (-3331 (((-792)) 106 T ELT)) (-2643 (((-112) $ $) 13 T ELT)) (-1727 (($ $) 259 T ELT)) (-2861 (($ $) 253 T ELT)) (-1703 (($ $) 257 T ELT)) (-2834 (($ $) 251 T ELT)) (-3656 ((|#2| $) 242 T ELT)) (-1715 (($ $) 258 T ELT)) (-2847 (($ $) 252 T ELT)) (-2215 (($ $) 162 T ELT)) (-3018 (((-112) $ $) 110 T ELT)) (-3128 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 111 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-420 (-577))) 276 T ELT) (($ $ $) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT))) +(((-166 |#1| |#2|) (-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3709 (|#1| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1758 ((-2 (|:| -3273 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4081 ((-792) |#1|)) (-15 -3372 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -3541 (|#1| |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4463 ((-549) |#1|)) (-15 -4463 ((-171 (-228)) |#1|)) (-15 -4463 ((-171 (-391)) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -2847 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -2355 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2450 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2083 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4058 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -3798 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -2215 (|#1| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4247 (|#1| |#1|)) (-15 -1687 (|#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 ((-3 |#1| "failed") (-420 (-1202 |#2|)))) (-15 -2047 ((-1202 |#2|) |#1|)) (-15 -4463 (|#1| (-1202 |#2|))) (-15 -2060 (|#1| (-1202 |#2|))) (-15 -4263 ((-1202 |#2|))) (-15 -3187 ((-710 |#2|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4463 ((-1202 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -2346 ((-1202 |#2|) |#1|)) (-15 -2932 ((-1202 |#2|) |#1|)) (-15 -3846 (|#2| (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2794 (|#2| |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -1641 ((-949))) (-15 -3709 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -2643 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-3331 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1641 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-949)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3846 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-4263 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1202 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3709 (|#1| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1758 ((-2 (|:| -3273 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4081 ((-792) |#1|)) (-15 -3372 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -3541 (|#1| |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4463 ((-549) |#1|)) (-15 -4463 ((-171 (-228)) |#1|)) (-15 -4463 ((-171 (-391)) |#1|)) (-15 -2785 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -2847 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -2355 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2450 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2083 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4058 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -3798 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3656 (|#2| |#1|)) (-15 -2215 (|#1| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4247 (|#1| |#1|)) (-15 -1687 (|#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2060 ((-3 |#1| "failed") (-420 (-1202 |#2|)))) (-15 -2047 ((-1202 |#2|) |#1|)) (-15 -4463 (|#1| (-1202 |#2|))) (-15 -2060 (|#1| (-1202 |#2|))) (-15 -4263 ((-1202 |#2|))) (-15 -3187 ((-710 |#2|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4463 ((-1202 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -2346 ((-1202 |#2|) |#1|)) (-15 -2932 ((-1202 |#2|) |#1|)) (-15 -3846 (|#2| (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2794 (|#2| |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -1641 ((-949))) (-15 -3709 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -2643 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 105 (-2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2261 (($ $) 106 (-2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2538 (((-112) $) 108 (-2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2901 (((-710 |#1|) (-1297 $)) 53 T ELT) (((-710 |#1|)) 68 T ELT)) (-2318 ((|#1| $) 59 T ELT)) (-1660 (($ $) 236 (|has| |#1| (-1232)) ELT)) (-2785 (($ $) 219 (|has| |#1| (-1232)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 158 (|has| |#1| (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 250 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2612 (($ $) 125 (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-3206 (((-431 $) $) 126 (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-3770 (($ $) 249 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 253 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2495 (((-112) $ $) 116 (|has| |#1| (-318)) ELT)) (-3005 (((-792)) 99 (|has| |#1| (-380)) ELT)) (-1638 (($ $) 235 (|has| |#1| (-1232)) ELT)) (-2757 (($ $) 220 (|has| |#1| (-1232)) ELT)) (-1682 (($ $) 234 (|has| |#1| (-1232)) ELT)) (-2809 (($ $) 221 (|has| |#1| (-1232)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3783 (((-577) $) 184 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 182 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 181 T ELT)) (-2385 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)) ELT)) (-3531 (($ $ $) 120 (|has| |#1| (-318)) ELT)) (-3921 (((-710 |#1|) $ (-1297 $)) 60 T ELT) (((-710 |#1|) $) 66 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 177 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 176 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 175 T ELT) (((-710 |#1|) (-710 $)) 174 T ELT)) (-2060 (($ (-1202 |#1|)) 169 T ELT) (((-3 $ "failed") (-420 (-1202 |#1|))) 166 (|has| |#1| (-375)) ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3782 ((|#1| $) 261 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 254 (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) 256 (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) 255 (|has| |#1| (-558)) ELT)) (-1641 (((-949)) 61 T ELT)) (-1424 (($) 102 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) 119 (|has| |#1| (-318)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 114 (|has| |#1| (-318)) ELT)) (-2213 (($) 160 (|has| |#1| (-361)) ELT)) (-3275 (((-112) $) 161 (|has| |#1| (-361)) ELT)) (-3987 (($ $ (-792)) 152 (|has| |#1| (-361)) ELT) (($ $) 151 (|has| |#1| (-361)) ELT)) (-3567 (((-112) $) 127 (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-3798 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1090)) (|has| |#1| (-1232))) ELT)) (-2450 (($) 246 (|has| |#1| (-1232)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 269 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 268 (|has| |#1| (-910 (-391))) ELT)) (-4030 (((-949) $) 163 (|has| |#1| (-361)) ELT) (((-854 (-949)) $) 149 (|has| |#1| (-361)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 248 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-2794 ((|#1| $) 58 T ELT)) (-2004 (((-3 $ "failed") $) 153 (|has| |#1| (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 123 (|has| |#1| (-318)) ELT)) (-2346 (((-1202 |#1|) $) 51 (|has| |#1| (-375)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 270 T ELT)) (-2686 (((-949) $) 101 (|has| |#1| (-380)) ELT)) (-3825 (($ $) 243 (|has| |#1| (-1232)) ELT)) (-2047 (((-1202 |#1|) $) 167 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 179 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 178 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-710 |#1|) (-1297 $)) 172 T ELT)) (-3606 (($ (-665 $)) 112 (-2867 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT) (($ $ $) 111 (-2867 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 128 (|has| |#1| (-375)) ELT)) (-2443 (($) 154 (|has| |#1| (-361)) CONST)) (-3354 (($ (-949)) 100 (|has| |#1| (-380)) ELT)) (-1687 (($) 265 T ELT)) (-3794 ((|#1| $) 262 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2343 (($) 171 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 113 (-2867 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-3642 (($ (-665 $)) 110 (-2867 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT) (($ $ $) 109 (-2867 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 157 (|has| |#1| (-361)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 252 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 251 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-3759 (((-431 $) $) 124 (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 121 (|has| |#1| (-318)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 104 (-2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 115 (|has| |#1| (-318)) ELT)) (-2355 (($ $) 244 (|has| |#1| (-1232)) ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) 276 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 275 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 274 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 273 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 272 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 271 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-4081 (((-792) $) 117 (|has| |#1| (-318)) ELT)) (-2916 (($ $ |#1|) 277 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 118 (|has| |#1| (-318)) ELT)) (-3846 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-3038 (((-792) $) 162 (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) 150 (|has| |#1| (-361)) ELT)) (-3641 (($ $ (-1 |#1| |#1|)) 136 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 135 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 141 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) 140 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) 139 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) 137 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) 147 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2790 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT) (($ $) 145 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2790 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT)) (-4040 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)) ELT)) (-4263 (((-1202 |#1|)) 170 T ELT)) (-1692 (($ $) 233 (|has| |#1| (-1232)) ELT)) (-2821 (($ $) 222 (|has| |#1| (-1232)) ELT)) (-3475 (($) 159 (|has| |#1| (-361)) ELT)) (-1671 (($ $) 232 (|has| |#1| (-1232)) ELT)) (-2797 (($ $) 223 (|has| |#1| (-1232)) ELT)) (-1648 (($ $) 231 (|has| |#1| (-1232)) ELT)) (-2772 (($ $) 224 (|has| |#1| (-1232)) ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-710 |#1|) (-1297 $)) 72 T ELT)) (-4463 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) (((-1202 |#1|) $) 186 T ELT) (($ (-1202 |#1|)) 168 T ELT) (((-916 (-577)) $) 267 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 266 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-171 (-391)) $) 218 (|has| |#1| (-1052)) ELT) (((-171 (-228)) $) 217 (|has| |#1| (-1052)) ELT) (((-549) $) 216 (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $) 264 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 156 (-2867 (-2790 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (|has| |#1| (-361))) ELT)) (-4225 (($ |#1| |#1|) 263 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 98 (-2867 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) 103 (-2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2708 (($ $) 155 (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) 50 (-2867 (-2790 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (|has| |#1| (-146))) ELT)) (-2932 (((-1202 |#1|) $) 52 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2104 (((-1297 $)) 74 T ELT)) (-1727 (($ $) 242 (|has| |#1| (-1232)) ELT)) (-2861 (($ $) 230 (|has| |#1| (-1232)) ELT)) (-4124 (((-112) $ $) 107 (-2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-1703 (($ $) 241 (|has| |#1| (-1232)) ELT)) (-2834 (($ $) 229 (|has| |#1| (-1232)) ELT)) (-1748 (($ $) 240 (|has| |#1| (-1232)) ELT)) (-1616 (($ $) 228 (|has| |#1| (-1232)) ELT)) (-3656 ((|#1| $) 258 (|has| |#1| (-1232)) ELT)) (-4468 (($ $) 239 (|has| |#1| (-1232)) ELT)) (-1626 (($ $) 227 (|has| |#1| (-1232)) ELT)) (-1737 (($ $) 238 (|has| |#1| (-1232)) ELT)) (-2874 (($ $) 226 (|has| |#1| (-1232)) ELT)) (-1715 (($ $) 237 (|has| |#1| (-1232)) ELT)) (-2847 (($ $) 225 (|has| |#1| (-1232)) ELT)) (-2215 (($ $) 259 (|has| |#1| (-1090)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 133 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 144 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) 143 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) 142 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) 138 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) 148 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2790 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT) (($ $) 146 (-2867 (-2790 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2790 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2790 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 132 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-420 (-577))) 247 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT) (($ $ $) 245 (|has| |#1| (-1232)) ELT) (($ $ (-577)) 129 (|has| |#1| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-375)) ELT))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-4021 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2833 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4155 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-4318 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1227)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1085)) (-4 *3 (-1227)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-1493 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) -(-13 (-740 |t#1| (-1197 |t#1|)) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-413 |t#1|) (-903 |t#1|) (-389 |t#1|) (-174) (-10 -8 (-6 -4155) (-15 -2833 ($)) (-15 -1328 ($ $)) (-15 -4155 ($ |t#1| |t#1|)) (-15 -3091 (|t#1| $)) (-15 -3081 (|t#1| $)) (-15 -4021 (|t#1| $)) (IF (|has| |t#1| (-569)) (PROGN (-6 (-569)) (-15 -3478 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-6 -4469)) (-6 -4469) |%noBranch|) (IF (|has| |t#1| (-6 -4466)) (-6 -4466) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-6 (-627 (-171 (-228)))) (-6 (-627 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -4318 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1227)) (PROGN (-6 (-1227)) (-15 -4100 (|t#1| $)) (IF (|has| |t#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -1832 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-932)) (IF (|has| |t#1| (-318)) (-6 (-932)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-35) |has| |#1| (-1227)) ((-95) |has| |#1| (-1227)) ((-102) . T) ((-111 #0# #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2811 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-626 (-880)) . T) ((-174) . T) ((-627 (-171 (-228))) |has| |#1| (-1047)) ((-627 (-171 (-391))) |has| |#1| (-1047)) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-627 #1=(-1197 |#1|)) . T) ((-235 $) -2811 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2811 (|has| |#1| (-361)) (|has| |#1| (-239))) ((-238) -2811 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-295) |has| |#1| (-1227)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2811 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-318) -2811 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2811 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| #1#) . T) ((-422 |#1| #1#) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) -2811 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-506) |has| |#1| (-1227)) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) -2811 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-662 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-664 #2=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-656 |#1|) . T) ((-656 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-654 #2#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-733 |#1|) . T) ((-733 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-740 |#1| #1#) . T) ((-742) . T) ((-915 $ #3=(-1201)) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #3#) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-932) -12 (|has| |#1| (-318)) (|has| |#1| (-932))) ((-943) -2811 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-1027) -12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-361)) ((-1227) |has| |#1| (-1227)) ((-1230) |has| |#1| (-1227)) ((-1242) . T) ((-1246) -2811 (|has| |#1| (-361)) (|has| |#1| (-375)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) -((-3056 (((-431 |#2|) |#2|) 67 T ELT))) -(((-168 |#1| |#2|) (-10 -7 (-15 -3056 ((-431 |#2|) |#2|))) (-318) (-1268 (-171 |#1|))) (T -168)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) -(-10 -7 (-15 -3056 ((-431 |#2|) |#2|))) -((-3237 (((-1160) (-1160) (-302)) 8 T ELT)) (-1544 (((-660 (-707 (-291))) (-1183)) 81 T ELT)) (-1805 (((-707 (-291)) (-1160)) 76 T ELT))) -(((-169) (-13 (-1242) (-10 -7 (-15 -3237 ((-1160) (-1160) (-302))) (-15 -1805 ((-707 (-291)) (-1160))) (-15 -1544 ((-660 (-707 (-291))) (-1183)))))) (T -169)) -((-3237 (*1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-302)) (-5 *1 (-169)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-707 (-291))) (-5 *1 (-169)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-707 (-291)))) (-5 *1 (-169))))) -(-13 (-1242) (-10 -7 (-15 -3237 ((-1160) (-1160) (-302))) (-15 -1805 ((-707 (-291)) (-1160))) (-15 -1544 ((-660 (-707 (-291))) (-1183))))) -((-2124 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -2124 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -2124 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 34 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))) ELT)) (-4122 (($ $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))) ELT)) (-3547 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))) ELT)) (-4436 (((-705 |#1|) (-1292 $)) NIL T ELT) (((-705 |#1|)) NIL T ELT)) (-2219 ((|#1| $) NIL T ELT)) (-2642 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2501 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-2001 (($ $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-3836 (((-431 $) $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-3070 (($ $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-318)) ELT)) (-3373 (((-787)) NIL (|has| |#1| (-380)) ELT)) (-2616 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2471 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2666 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2523 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-1911 (($ (-1292 |#1|) (-1292 $)) NIL T ELT) (($ (-1292 |#1|)) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)) ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2678 (((-705 |#1|) $ (-1292 $)) NIL T ELT) (((-705 |#1|) $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-2498 (($ (-1197 |#1|)) NIL T ELT) (((-3 $ "failed") (-420 (-1197 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3081 ((|#1| $) 13 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-3503 (((-944)) NIL T ELT)) (-2352 (($) NIL (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-318)) ELT)) (-1742 (($) NIL (|has| |#1| (-361)) ELT)) (-4402 (((-112) $) NIL (|has| |#1| (-361)) ELT)) (-1865 (($ $ (-787)) NIL (|has| |#1| (-361)) ELT) (($ $) NIL (|has| |#1| (-361)) ELT)) (-2182 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-1832 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1085)) (|has| |#1| (-1227))) ELT)) (-2824 (($) NIL (|has| |#1| (-1227)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| |#1| (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| |#1| (-905 (-391))) ELT)) (-2536 (((-944) $) NIL (|has| |#1| (-361)) ELT) (((-849 (-944)) $) NIL (|has| |#1| (-361)) ELT)) (-3306 (((-112) $) 36 T ELT)) (-4286 (($ $ (-577)) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ELT)) (-4021 ((|#1| $) 47 T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-318)) ELT)) (-3810 (((-1197 |#1|) $) NIL (|has| |#1| (-375)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#1| (-380)) ELT)) (-3716 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2482 (((-1197 |#1|) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3457 (($) NIL (|has| |#1| (-361)) CONST)) (-3251 (($ (-944)) NIL (|has| |#1| (-380)) ELT)) (-2833 (($) NIL T ELT)) (-3091 ((|#1| $) 15 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-318)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| |#1| (-361)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) ELT)) (-3056 (((-431 $) $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 48 (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-318)) ELT)) (-2079 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-318)) ELT)) (-2837 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-4447 ((|#1| (-1292 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3816 (((-787) $) NIL (|has| |#1| (-361)) ELT) (((-3 (-787) "failed") $ $) NIL (|has| |#1| (-361)) ELT)) (-3362 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT) (($ $) NIL (-2811 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT)) (-3285 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT)) (-1629 (((-1197 |#1|)) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2535 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2932 (($) NIL (|has| |#1| (-361)) ELT)) (-2655 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2512 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2631 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2486 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) NIL T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 |#1|) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2176 (((-1292 |#1|) $) NIL T ELT) (($ (-1292 |#1|)) NIL T ELT) (((-1197 |#1|) $) NIL T ELT) (($ (-1197 |#1|)) NIL T ELT) (((-911 (-577)) $) NIL (|has| |#1| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| |#1| (-627 (-911 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1047)) ELT) (((-171 (-228)) $) NIL (|has| |#1| (-1047)) ELT) (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $) 46 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-361))) ELT)) (-4155 (($ |#1| |#1|) 38 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-2600 (((-1197 |#1|) $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2570 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2174 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))) ELT)) (-2694 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2546 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2748 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2592 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-4100 ((|#1| $) NIL (|has| |#1| (-1227)) ELT)) (-2897 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2604 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2734 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2581 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2708 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-2558 (($ $) NIL (|has| |#1| (-1227)) ELT)) (-4318 (($ $) NIL (|has| |#1| (-1085)) ELT)) (-2754 (($) 28 T CONST)) (-2767 (($) 30 T CONST)) (-1422 (((-1183) $) 23 (|has| |#1| (-844)) ELT) (((-1183) $ (-112)) 25 (|has| |#1| (-844)) ELT) (((-1297) (-838) $) 26 (|has| |#1| (-844)) ELT) (((-1297) (-838) $ (-112)) 27 (|has| |#1| (-844)) ELT)) (-2136 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT) (($ $) NIL (-2811 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 40 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-420 (-577))) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ELT) (($ $ $) NIL (|has| |#1| (-1227)) ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT))) -(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-174)) (T -171)) -NIL -(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) -((-2176 (((-911 |#1|) |#3|) 22 T ELT))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -2176 ((-911 |#1|) |#3|))) (-1125) (-13 (-627 (-911 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-2176 (*1 *2 *3) (-12 (-4 *5 (-13 (-627 *2) (-174))) (-5 *2 (-911 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1125)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -2176 ((-911 |#1|) |#3|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3525 (((-112) $) 9 T ELT)) (-3686 (((-112) $ (-112)) 11 T ELT)) (-4223 (($) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1914 (($ $) 14 T ELT)) (-3603 (((-880) $) 18 T ELT)) (-1947 (((-112) $) 8 T ELT)) (-1970 (((-112) $ (-112)) 10 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-173) (-13 (-1125) (-10 -8 (-15 -4223 ($)) (-15 -1947 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -1970 ((-112) $ (-112))) (-15 -3686 ((-112) $ (-112))) (-15 -1914 ($ $))))) (T -173)) -((-4223 (*1 *1) (-5 *1 (-173))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1970 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3686 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1914 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1125) (-10 -8 (-15 -4223 ($)) (-15 -1947 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -1970 ((-112) $ (-112))) (-15 -3686 ((-112) $ (-112))) (-15 -1914 ($ $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-2794 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1687 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4247 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4225 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3574 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-2215 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1232)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1090)) (-4 *3 (-1232)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) +(-13 (-745 |t#1| (-1202 |t#1|)) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-413 |t#1|) (-908 |t#1|) (-389 |t#1|) (-174) (-10 -8 (-6 -4225) (-15 -1687 ($)) (-15 -4247 ($ $)) (-15 -4225 ($ |t#1| |t#1|)) (-15 -3794 (|t#1| $)) (-15 -3782 (|t#1| $)) (-15 -2794 (|t#1| $)) (IF (|has| |t#1| (-569)) (PROGN (-6 (-569)) (-15 -3574 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-6 -4498)) (-6 -4498) |%noBranch|) (IF (|has| |t#1| (-6 -4495)) (-6 -4495) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-6 (-632 (-171 (-228)))) (-6 (-632 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -2215 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1232)) (PROGN (-6 (-1232)) (-15 -3656 (|t#1| $)) (IF (|has| |t#1| (-1032)) (-6 (-1032)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -3798 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-937)) (IF (|has| |t#1| (-318)) (-6 (-937)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-35) |has| |#1| (-1232)) ((-95) |has| |#1| (-1232)) ((-102) . T) ((-111 #0# #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2867 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-631 (-885)) . T) ((-174) . T) ((-632 (-171 (-228))) |has| |#1| (-1052)) ((-632 (-171 (-391))) |has| |#1| (-1052)) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-632 #1=(-1202 |#1|)) . T) ((-235 $) -2867 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2867 (|has| |#1| (-361)) (|has| |#1| (-239))) ((-238) -2867 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-295) |has| |#1| (-1232)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2867 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-318) -2867 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2867 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| #1#) . T) ((-422 |#1| #1#) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) -2867 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-506) |has| |#1| (-1232)) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) -2867 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-667 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-669 #2=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-661 |#1|) . T) ((-661 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-659 #2#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-738 |#1|) . T) ((-738 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-745 |#1| #1#) . T) ((-747) . T) ((-920 $ #3=(-1206)) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #3#) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-937) -12 (|has| |#1| (-318)) (|has| |#1| (-937))) ((-948) -2867 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-1032) -12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-361)) ((-1232) |has| |#1| (-1232)) ((-1235) |has| |#1| (-1232)) ((-1247) . T) ((-1251) -2867 (|has| |#1| (-361)) (|has| |#1| (-375)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937))))) +((-3759 (((-431 |#2|) |#2|) 67 T ELT))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3759 ((-431 |#2|) |#2|))) (-318) (-1273 (-171 |#1|))) (T -168)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(-10 -7 (-15 -3759 ((-431 |#2|) |#2|))) +((-2917 (((-1165) (-1165) (-302)) 8 T ELT)) (-2208 (((-665 (-712 (-291))) (-1188)) 81 T ELT)) (-3349 (((-712 (-291)) (-1165)) 76 T ELT))) +(((-169) (-13 (-1247) (-10 -7 (-15 -2917 ((-1165) (-1165) (-302))) (-15 -3349 ((-712 (-291)) (-1165))) (-15 -2208 ((-665 (-712 (-291))) (-1188)))))) (T -169)) +((-2917 (*1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-302)) (-5 *1 (-169)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-712 (-291))) (-5 *1 (-169)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-712 (-291)))) (-5 *1 (-169))))) +(-13 (-1247) (-10 -7 (-15 -2917 ((-1165) (-1165) (-302))) (-15 -3349 ((-712 (-291)) (-1165))) (-15 -2208 ((-665 (-712 (-291))) (-1188))))) +((-4417 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) +(((-170 |#1| |#2|) (-10 -7 (-15 -4417 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -4417 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 34 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-2261 (($ $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-2538 (((-112) $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-2901 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) NIL T ELT)) (-2318 ((|#1| $) NIL T ELT)) (-1660 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2785 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2612 (($ $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-3206 (((-431 $) $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-3770 (($ $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-318)) ELT)) (-3005 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-1638 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2757 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1682 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-2385 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)) ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3921 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-2060 (($ (-1202 |#1|)) NIL T ELT) (((-3 $ "failed") (-420 (-1202 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3782 ((|#1| $) 13 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-1641 (((-949)) NIL T ELT)) (-1424 (($) NIL (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-318)) ELT)) (-2213 (($) NIL (|has| |#1| (-361)) ELT)) (-3275 (((-112) $) NIL (|has| |#1| (-361)) ELT)) (-3987 (($ $ (-792)) NIL (|has| |#1| (-361)) ELT) (($ $) NIL (|has| |#1| (-361)) ELT)) (-3567 (((-112) $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-3798 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1090)) (|has| |#1| (-1232))) ELT)) (-2450 (($) NIL (|has| |#1| (-1232)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-910 (-391))) ELT)) (-4030 (((-949) $) NIL (|has| |#1| (-361)) ELT) (((-854 (-949)) $) NIL (|has| |#1| (-361)) ELT)) (-3357 (((-112) $) 36 T ELT)) (-3368 (($ $ (-577)) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-2794 ((|#1| $) 47 T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-318)) ELT)) (-2346 (((-1202 |#1|) $) NIL (|has| |#1| (-375)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3825 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2047 (((-1202 |#1|) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2443 (($) NIL (|has| |#1| (-361)) CONST)) (-3354 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1687 (($) NIL T ELT)) (-3794 ((|#1| $) 15 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-318)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| |#1| (-361)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-3759 (((-431 $) $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 48 (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-318)) ELT)) (-2355 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-318)) ELT)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3846 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3038 (((-792) $) NIL (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| |#1| (-361)) ELT)) (-3641 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT) (($ $) NIL (-2867 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT)) (-4040 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT)) (-4263 (((-1202 |#1|)) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2821 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-3475 (($) NIL (|has| |#1| (-361)) ELT)) (-1671 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2797 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1648 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2772 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4463 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) (((-1202 |#1|) $) NIL T ELT) (($ (-1202 |#1|)) NIL T ELT) (((-916 (-577)) $) NIL (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-632 (-916 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1052)) ELT) (((-171 (-228)) $) NIL (|has| |#1| (-1052)) ELT) (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $) 46 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-361))) ELT)) (-4225 (($ |#1| |#1|) 38 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-2932 (((-1202 |#1|) $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2861 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-4124 (((-112) $ $) NIL (-2867 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-1703 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2834 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1748 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1616 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-3656 ((|#1| $) NIL (|has| |#1| (-1232)) ELT)) (-4468 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1626 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1737 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2874 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1715 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2847 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2215 (($ $) NIL (|has| |#1| (-1090)) ELT)) (-2839 (($) 28 T CONST)) (-2853 (($) 30 T CONST)) (-4136 (((-1188) $) 23 (|has| |#1| (-849)) ELT) (((-1188) $ (-112)) 25 (|has| |#1| (-849)) ELT) (((-1302) (-843) $) 26 (|has| |#1| (-849)) ELT) (((-1302) (-843) $ (-112)) 27 (|has| |#1| (-849)) ELT)) (-2389 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT) (($ $) NIL (-2867 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 40 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-420 (-577))) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT) (($ $ $) NIL (|has| |#1| (-1232)) ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT))) +(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) (-174)) (T -171)) +NIL +(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) +((-4463 (((-916 |#1|) |#3|) 22 T ELT))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4463 ((-916 |#1|) |#3|))) (-1130) (-13 (-632 (-916 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-4463 (*1 *2 *3) (-12 (-4 *5 (-13 (-632 *2) (-174))) (-5 *2 (-916 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1130)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -4463 ((-916 |#1|) |#3|))) +((-3586 (((-112) $ $) NIL T ELT)) (-2315 (((-112) $) 9 T ELT)) (-2543 (((-112) $ (-112)) 11 T ELT)) (-3236 (($) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1977 (($ $) 14 T ELT)) (-3709 (((-885) $) 18 T ELT)) (-4367 (((-112) $) 8 T ELT)) (-2040 (((-112) $ (-112)) 10 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-173) (-13 (-1130) (-10 -8 (-15 -3236 ($)) (-15 -4367 ((-112) $)) (-15 -2315 ((-112) $)) (-15 -2040 ((-112) $ (-112))) (-15 -2543 ((-112) $ (-112))) (-15 -1977 ($ $))))) (T -173)) +((-3236 (*1 *1) (-5 *1 (-173))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2040 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2543 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1977 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1130) (-10 -8 (-15 -3236 ($)) (-15 -4367 ((-112) $)) (-15 -2315 ((-112) $)) (-15 -2040 ((-112) $ (-112))) (-15 -2543 ((-112) $ (-112))) (-15 -1977 ($ $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-174) (-141)) (T -174)) NIL -(-13 (-1074) (-111 $ $) (-10 -7 (-6 (-4472 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3349 (($ $) 6 T ELT))) +(-13 (-1079) (-111 $ $) (-10 -7 (-6 (-4501 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-2823 (($ $) 6 T ELT))) (((-175) (-141)) (T -175)) -((-3349 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -3349 ($ $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 ((|#1| $) 81 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) NIL T ELT)) (-3943 (($ $) 21 T ELT)) (-3449 (($ |#1| (-1182 |#1|)) 50 T ELT)) (-1625 (((-3 $ "failed") $) 123 T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-2408 (((-1182 |#1|) $) 88 T ELT)) (-3679 (((-1182 |#1|) $) 85 T ELT)) (-2151 (((-1182 |#1|) $) 86 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1661 (((-1182 |#1|) $) 94 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3508 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT)) (-1987 (($ $ (-577)) 97 T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-1908 (((-1182 |#1|) $) 95 T ELT)) (-4313 (((-1182 (-420 |#1|)) $) 14 T ELT)) (-2060 (($ (-420 |#1|)) 17 T ELT) (($ |#1| (-1182 |#1|) (-1182 |#1|)) 40 T ELT)) (-2544 (($ $) 99 T ELT)) (-3603 (((-880) $) 139 T ELT) (($ (-577)) 53 T ELT) (($ |#1|) 54 T ELT) (($ (-420 |#1|)) 38 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-1920 (((-787)) 69 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4375 (((-1182 (-420 |#1|)) $) 20 T ELT)) (-2754 (($) 27 T CONST)) (-2767 (($) 30 T CONST)) (-2949 (((-112) $ $) 37 T ELT)) (-3051 (($ $ $) 121 T ELT)) (-3042 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3031 (($ $ $) 107 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-420 |#1|) $) 117 T ELT) (($ $ (-420 |#1|)) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2060 ($ (-420 |#1|))) (-15 -2060 ($ |#1| (-1182 |#1|) (-1182 |#1|))) (-15 -3449 ($ |#1| (-1182 |#1|))) (-15 -3679 ((-1182 |#1|) $)) (-15 -2151 ((-1182 |#1|) $)) (-15 -2408 ((-1182 |#1|) $)) (-15 -2829 (|#1| $)) (-15 -3943 ($ $)) (-15 -4375 ((-1182 (-420 |#1|)) $)) (-15 -4313 ((-1182 (-420 |#1|)) $)) (-15 -1661 ((-1182 |#1|) $)) (-15 -1908 ((-1182 |#1|) $)) (-15 -1987 ($ $ (-577))) (-15 -2544 ($ $)))) (-318)) (T -176)) -((-2060 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) (-2060 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-3449 (*1 *1 *2 *3) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2829 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-1661 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2544 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) -(-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2060 ($ (-420 |#1|))) (-15 -2060 ($ |#1| (-1182 |#1|) (-1182 |#1|))) (-15 -3449 ($ |#1| (-1182 |#1|))) (-15 -3679 ((-1182 |#1|) $)) (-15 -2151 ((-1182 |#1|) $)) (-15 -2408 ((-1182 |#1|) $)) (-15 -2829 (|#1| $)) (-15 -3943 ($ $)) (-15 -4375 ((-1182 (-420 |#1|)) $)) (-15 -4313 ((-1182 (-420 |#1|)) $)) (-15 -1661 ((-1182 |#1|) $)) (-15 -1908 ((-1182 |#1|) $)) (-15 -1987 ($ $ (-577))) (-15 -2544 ($ $)))) -((-3342 (($ (-109) $) 15 T ELT)) (-2874 (((-707 (-109)) (-519) $) 14 T ELT)) (-3603 (((-880) $) 18 T ELT)) (-3815 (((-660 (-109)) $) 8 T ELT))) -(((-177) (-13 (-626 (-880)) (-10 -8 (-15 -3815 ((-660 (-109)) $)) (-15 -3342 ($ (-109) $)) (-15 -2874 ((-707 (-109)) (-519) $))))) (T -177)) -((-3815 (*1 *2 *1) (-12 (-5 *2 (-660 (-109))) (-5 *1 (-177)))) (-3342 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2874 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-177))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3815 ((-660 (-109)) $)) (-15 -3342 ($ (-109) $)) (-15 -2874 ((-707 (-109)) (-519) $)))) -((-3507 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 38 T ELT)) (-3284 (((-966 |#1|) (-966 |#1|)) 22 T ELT)) (-3029 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 34 T ELT)) (-2740 (((-966 |#1|) (-966 |#1|)) 20 T ELT)) (-4425 (((-966 |#1|) (-966 |#1|)) 28 T ELT)) (-3625 (((-966 |#1|) (-966 |#1|)) 27 T ELT)) (-1694 (((-966 |#1|) (-966 |#1|)) 26 T ELT)) (-1624 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 35 T ELT)) (-3162 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 33 T ELT)) (-4404 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 32 T ELT)) (-1415 (((-966 |#1|) (-966 |#1|)) 21 T ELT)) (-1680 (((-1 (-966 |#1|) (-966 |#1|)) |#1| |#1|) 41 T ELT)) (-3876 (((-966 |#1|) (-966 |#1|)) 8 T ELT)) (-3379 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 37 T ELT)) (-1646 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 36 T ELT))) -(((-178 |#1|) (-10 -7 (-15 -3876 ((-966 |#1|) (-966 |#1|))) (-15 -2740 ((-966 |#1|) (-966 |#1|))) (-15 -1415 ((-966 |#1|) (-966 |#1|))) (-15 -3284 ((-966 |#1|) (-966 |#1|))) (-15 -1694 ((-966 |#1|) (-966 |#1|))) (-15 -3625 ((-966 |#1|) (-966 |#1|))) (-15 -4425 ((-966 |#1|) (-966 |#1|))) (-15 -4404 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3162 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3029 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -1624 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -1646 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3379 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3507 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -1680 ((-1 (-966 |#1|) (-966 |#1|)) |#1| |#1|))) (-13 (-375) (-1227) (-1027))) (T -178)) -((-1680 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-3507 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-3379 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-1646 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-3029 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-3162 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4404 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4425 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-1694 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-2740 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -3876 ((-966 |#1|) (-966 |#1|))) (-15 -2740 ((-966 |#1|) (-966 |#1|))) (-15 -1415 ((-966 |#1|) (-966 |#1|))) (-15 -3284 ((-966 |#1|) (-966 |#1|))) (-15 -1694 ((-966 |#1|) (-966 |#1|))) (-15 -3625 ((-966 |#1|) (-966 |#1|))) (-15 -4425 ((-966 |#1|) (-966 |#1|))) (-15 -4404 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3162 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3029 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -1624 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -1646 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3379 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -3507 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -1680 ((-1 (-966 |#1|) (-966 |#1|)) |#1| |#1|))) -((-2600 ((|#2| |#3|) 28 T ELT))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2600 (|#2| |#3|))) (-174) (-1268 |#1|) (-740 |#1| |#2|)) (T -179)) -((-2600 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1268 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-740 *4 *2))))) -(-10 -7 (-15 -2600 (|#2| |#3|))) -((-4359 (((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)) 44 (|has| (-975 |#2|) (-905 |#1|)) ELT))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-975 |#2|) (-905 |#1|)) (-15 -4359 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) |%noBranch|)) (-1125) (-13 (-905 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *3 (-167 *6)) (-4 (-975 *6) (-905 *5)) (-4 *6 (-13 (-905 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-975 |#2|) (-905 |#1|)) (-15 -4359 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) |%noBranch|)) -((-2188 (((-660 |#1|) (-660 |#1|) |#1|) 41 T ELT)) (-1558 (((-660 |#1|) |#1| (-660 |#1|)) 20 T ELT)) (-1999 (((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|)) 36 T ELT) ((|#1| (-660 |#1|) (-660 |#1|)) 32 T ELT))) -(((-181 |#1|) (-10 -7 (-15 -1558 ((-660 |#1|) |#1| (-660 |#1|))) (-15 -1999 (|#1| (-660 |#1|) (-660 |#1|))) (-15 -1999 ((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|))) (-15 -2188 ((-660 |#1|) (-660 |#1|) |#1|))) (-318)) (T -181)) -((-2188 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3)))) (-1999 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-660 *4))) (-5 *2 (-660 *4)) (-4 *4 (-318)) (-5 *1 (-181 *4)))) (-1999 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) (-1558 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -1558 ((-660 |#1|) |#1| (-660 |#1|))) (-15 -1999 (|#1| (-660 |#1|) (-660 |#1|))) (-15 -1999 ((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|))) (-15 -2188 ((-660 |#1|) (-660 |#1|) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3014 (((-1241) $) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3201 (((-1160) $) 10 T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-182) (-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -3014 ((-1241) $))))) (T -182)) -((-3201 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-182)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-182))))) -(-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -3014 ((-1241) $)))) -((-3712 (((-2 (|:| |start| |#2|) (|:| -1704 (-431 |#2|))) |#2|) 66 T ELT)) (-1906 ((|#1| |#1|) 58 T ELT)) (-3277 (((-171 |#1|) |#2|) 93 T ELT)) (-1608 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-2947 ((|#2| |#2|) 91 T ELT)) (-3075 (((-431 |#2|) |#2| |#1|) 118 T ELT) (((-431 |#2|) |#2| |#1| (-112)) 88 T ELT)) (-4021 ((|#1| |#2|) 117 T ELT)) (-4443 ((|#2| |#2|) 130 T ELT)) (-3056 (((-431 |#2|) |#2|) 153 T ELT) (((-431 |#2|) |#2| |#1|) 33 T ELT) (((-431 |#2|) |#2| |#1| (-112)) 152 T ELT)) (-2589 (((-660 (-2 (|:| -1704 (-660 |#2|)) (|:| -3308 |#1|))) |#2| |#2|) 151 T ELT) (((-660 (-2 (|:| -1704 (-660 |#2|)) (|:| -3308 |#1|))) |#2| |#2| (-112)) 81 T ELT)) (-4019 (((-660 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-660 (-171 |#1|)) |#2|) 43 T ELT))) -(((-183 |#1| |#2|) (-10 -7 (-15 -4019 ((-660 (-171 |#1|)) |#2|)) (-15 -4019 ((-660 (-171 |#1|)) |#2| |#1|)) (-15 -2589 ((-660 (-2 (|:| -1704 (-660 |#2|)) (|:| -3308 |#1|))) |#2| |#2| (-112))) (-15 -2589 ((-660 (-2 (|:| -1704 (-660 |#2|)) (|:| -3308 |#1|))) |#2| |#2|)) (-15 -3056 ((-431 |#2|) |#2| |#1| (-112))) (-15 -3056 ((-431 |#2|) |#2| |#1|)) (-15 -3056 ((-431 |#2|) |#2|)) (-15 -4443 (|#2| |#2|)) (-15 -4021 (|#1| |#2|)) (-15 -3075 ((-431 |#2|) |#2| |#1| (-112))) (-15 -3075 ((-431 |#2|) |#2| |#1|)) (-15 -2947 (|#2| |#2|)) (-15 -1608 (|#1| |#2| |#1|)) (-15 -1608 (|#1| |#2|)) (-15 -3277 ((-171 |#1|) |#2|)) (-15 -1906 (|#1| |#1|)) (-15 -3712 ((-2 (|:| |start| |#2|) (|:| -1704 (-431 |#2|))) |#2|))) (-13 (-375) (-864)) (-1268 (-171 |#1|))) (T -183)) -((-3712 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-2 (|:| |start| *3) (|:| -1704 (-431 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-1906 (*1 *2 *2) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-3277 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-375) (-864))) (-4 *3 (-1268 *2)))) (-1608 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-1608 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-2947 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1268 (-171 *3))))) (-3075 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-3075 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4021 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-4443 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1268 (-171 *3))))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-3056 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-3056 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-2589 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-2 (|:| -1704 (-660 *3)) (|:| -3308 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-2589 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-864))) (-5 *2 (-660 (-2 (|:| -1704 (-660 *3)) (|:| -3308 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1268 (-171 *5))))) (-4019 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4019 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) -(-10 -7 (-15 -4019 ((-660 (-171 |#1|)) |#2|)) (-15 -4019 ((-660 (-171 |#1|)) |#2| |#1|)) (-15 -2589 ((-660 (-2 (|:| -1704 (-660 |#2|)) (|:| -3308 |#1|))) |#2| |#2| (-112))) (-15 -2589 ((-660 (-2 (|:| -1704 (-660 |#2|)) (|:| -3308 |#1|))) |#2| |#2|)) (-15 -3056 ((-431 |#2|) |#2| |#1| (-112))) (-15 -3056 ((-431 |#2|) |#2| |#1|)) (-15 -3056 ((-431 |#2|) |#2|)) (-15 -4443 (|#2| |#2|)) (-15 -4021 (|#1| |#2|)) (-15 -3075 ((-431 |#2|) |#2| |#1| (-112))) (-15 -3075 ((-431 |#2|) |#2| |#1|)) (-15 -2947 (|#2| |#2|)) (-15 -1608 (|#1| |#2| |#1|)) (-15 -1608 (|#1| |#2|)) (-15 -3277 ((-171 |#1|) |#2|)) (-15 -1906 (|#1| |#1|)) (-15 -3712 ((-2 (|:| |start| |#2|) (|:| -1704 (-431 |#2|))) |#2|))) -((-3518 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-3312 (((-787) |#2|) 18 T ELT)) (-1873 ((|#2| |#2| |#2|) 20 T ELT))) -(((-184 |#1| |#2|) (-10 -7 (-15 -3518 ((-3 |#2| "failed") |#2|)) (-15 -3312 ((-787) |#2|)) (-15 -1873 (|#2| |#2| |#2|))) (-1242) (-690 |#1|)) (T -184)) -((-1873 (*1 *2 *2 *2) (-12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) (-4 *2 (-690 *3)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-1242)) (-5 *2 (-787)) (-5 *1 (-184 *4 *3)) (-4 *3 (-690 *4)))) (-3518 (*1 *2 *2) (|partial| -12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) (-4 *2 (-690 *3))))) -(-10 -7 (-15 -3518 ((-3 |#2| "failed") |#2|)) (-15 -3312 ((-787) |#2|)) (-15 -1873 (|#2| |#2| |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2602 ((|#1| $) 7 T ELT)) (-3603 (((-880) $) 14 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1951 (((-660 (-1206)) $) 10 T ELT)) (-2949 (((-112) $ $) 12 T ELT))) -(((-185 |#1|) (-13 (-1125) (-10 -8 (-15 -2602 (|#1| $)) (-15 -1951 ((-660 (-1206)) $)))) (-187)) (T -185)) -((-2602 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1125) (-10 -8 (-15 -2602 (|#1| $)) (-15 -1951 ((-660 (-1206)) $)))) -((-3315 (((-660 (-883)) $) 16 T ELT)) (-1803 (((-188) $) 8 T ELT)) (-3420 (((-660 (-112)) $) 13 T ELT)) (-1376 (((-55) $) 10 T ELT))) -(((-186 |#1|) (-10 -8 (-15 -3315 ((-660 (-883)) |#1|)) (-15 -3420 ((-660 (-112)) |#1|)) (-15 -1803 ((-188) |#1|)) (-15 -1376 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -3315 ((-660 (-883)) |#1|)) (-15 -3420 ((-660 (-112)) |#1|)) (-15 -1803 ((-188) |#1|)) (-15 -1376 ((-55) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3315 (((-660 (-883)) $) 19 T ELT)) (-2668 (((-519) $) 16 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1803 (((-188) $) 21 T ELT)) (-3152 (((-112) $ (-519)) 14 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3420 (((-660 (-112)) $) 20 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-1376 (((-55) $) 15 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +((-2823 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -2823 ($ $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 ((|#1| $) 81 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) NIL T ELT)) (-1401 (($ $) 21 T ELT)) (-2679 (($ |#1| (-1187 |#1|)) 50 T ELT)) (-3167 (((-3 $ "failed") $) 123 T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-2504 (((-1187 |#1|) $) 88 T ELT)) (-3453 (((-1187 |#1|) $) 85 T ELT)) (-1442 (((-1187 |#1|) $) 86 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-4130 (((-1187 |#1|) $) 94 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3606 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT)) (-2568 (($ $ (-577)) 97 T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-2604 (((-1187 |#1|) $) 95 T ELT)) (-3451 (((-1187 (-420 |#1|)) $) 14 T ELT)) (-2979 (($ (-420 |#1|)) 17 T ELT) (($ |#1| (-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-4165 (($ $) 99 T ELT)) (-3709 (((-885) $) 139 T ELT) (($ (-577)) 53 T ELT) (($ |#1|) 54 T ELT) (($ (-420 |#1|)) 38 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-3331 (((-792)) 69 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4283 (((-1187 (-420 |#1|)) $) 20 T ELT)) (-2839 (($) 27 T CONST)) (-2853 (($) 30 T CONST)) (-3018 (((-112) $ $) 37 T ELT)) (-3139 (($ $ $) 121 T ELT)) (-3128 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3114 (($ $ $) 107 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-420 |#1|) $) 117 T ELT) (($ $ (-420 |#1|)) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2979 ($ (-420 |#1|))) (-15 -2979 ($ |#1| (-1187 |#1|) (-1187 |#1|))) (-15 -2679 ($ |#1| (-1187 |#1|))) (-15 -3453 ((-1187 |#1|) $)) (-15 -1442 ((-1187 |#1|) $)) (-15 -2504 ((-1187 |#1|) $)) (-15 -1363 (|#1| $)) (-15 -1401 ($ $)) (-15 -4283 ((-1187 (-420 |#1|)) $)) (-15 -3451 ((-1187 (-420 |#1|)) $)) (-15 -4130 ((-1187 |#1|) $)) (-15 -2604 ((-1187 |#1|) $)) (-15 -2568 ($ $ (-577))) (-15 -4165 ($ $)))) (-318)) (T -176)) +((-2979 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) (-2979 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-2679 (*1 *1 *2 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-1363 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-1401 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2568 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-4165 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) +(-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2979 ($ (-420 |#1|))) (-15 -2979 ($ |#1| (-1187 |#1|) (-1187 |#1|))) (-15 -2679 ($ |#1| (-1187 |#1|))) (-15 -3453 ((-1187 |#1|) $)) (-15 -1442 ((-1187 |#1|) $)) (-15 -2504 ((-1187 |#1|) $)) (-15 -1363 (|#1| $)) (-15 -1401 ($ $)) (-15 -4283 ((-1187 (-420 |#1|)) $)) (-15 -3451 ((-1187 (-420 |#1|)) $)) (-15 -4130 ((-1187 |#1|) $)) (-15 -2604 ((-1187 |#1|) $)) (-15 -2568 ($ $ (-577))) (-15 -4165 ($ $)))) +((-4286 (($ (-109) $) 15 T ELT)) (-2231 (((-712 (-109)) (-519) $) 14 T ELT)) (-3709 (((-885) $) 18 T ELT)) (-2196 (((-665 (-109)) $) 8 T ELT))) +(((-177) (-13 (-631 (-885)) (-10 -8 (-15 -2196 ((-665 (-109)) $)) (-15 -4286 ($ (-109) $)) (-15 -2231 ((-712 (-109)) (-519) $))))) (T -177)) +((-2196 (*1 *2 *1) (-12 (-5 *2 (-665 (-109))) (-5 *1 (-177)))) (-4286 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2231 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-177))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2196 ((-665 (-109)) $)) (-15 -4286 ($ (-109) $)) (-15 -2231 ((-712 (-109)) (-519) $)))) +((-2397 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 38 T ELT)) (-3859 (((-971 |#1|) (-971 |#1|)) 22 T ELT)) (-3920 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 34 T ELT)) (-3084 (((-971 |#1|) (-971 |#1|)) 20 T ELT)) (-4206 (((-971 |#1|) (-971 |#1|)) 28 T ELT)) (-3829 (((-971 |#1|) (-971 |#1|)) 27 T ELT)) (-3939 (((-971 |#1|) (-971 |#1|)) 26 T ELT)) (-3633 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 35 T ELT)) (-1408 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 33 T ELT)) (-3585 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 32 T ELT)) (-4311 (((-971 |#1|) (-971 |#1|)) 21 T ELT)) (-3520 (((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|) 41 T ELT)) (-1905 (((-971 |#1|) (-971 |#1|)) 8 T ELT)) (-2968 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 37 T ELT)) (-2598 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 36 T ELT))) +(((-178 |#1|) (-10 -7 (-15 -1905 ((-971 |#1|) (-971 |#1|))) (-15 -3084 ((-971 |#1|) (-971 |#1|))) (-15 -4311 ((-971 |#1|) (-971 |#1|))) (-15 -3859 ((-971 |#1|) (-971 |#1|))) (-15 -3939 ((-971 |#1|) (-971 |#1|))) (-15 -3829 ((-971 |#1|) (-971 |#1|))) (-15 -4206 ((-971 |#1|) (-971 |#1|))) (-15 -3585 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1408 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3920 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3633 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2598 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2968 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2397 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3520 ((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|))) (-13 (-375) (-1232) (-1032))) (T -178)) +((-3520 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-2397 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-2968 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-3633 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-3920 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-1408 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-3585 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-4206 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-3829 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-4311 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-1905 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -1905 ((-971 |#1|) (-971 |#1|))) (-15 -3084 ((-971 |#1|) (-971 |#1|))) (-15 -4311 ((-971 |#1|) (-971 |#1|))) (-15 -3859 ((-971 |#1|) (-971 |#1|))) (-15 -3939 ((-971 |#1|) (-971 |#1|))) (-15 -3829 ((-971 |#1|) (-971 |#1|))) (-15 -4206 ((-971 |#1|) (-971 |#1|))) (-15 -3585 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -1408 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3920 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3633 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2598 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2968 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2397 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3520 ((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|))) +((-2932 ((|#2| |#3|) 28 T ELT))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2932 (|#2| |#3|))) (-174) (-1273 |#1|) (-745 |#1| |#2|)) (T -179)) +((-2932 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1273 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-745 *4 *2))))) +(-10 -7 (-15 -2932 (|#2| |#3|))) +((-2425 (((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)) 44 (|has| (-980 |#2|) (-910 |#1|)) ELT))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-980 |#2|) (-910 |#1|)) (-15 -2425 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) |%noBranch|)) (-1130) (-13 (-910 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *3 (-167 *6)) (-4 (-980 *6) (-910 *5)) (-4 *6 (-13 (-910 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-980 |#2|) (-910 |#1|)) (-15 -2425 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) |%noBranch|)) +((-3577 (((-665 |#1|) (-665 |#1|) |#1|) 41 T ELT)) (-3866 (((-665 |#1|) |#1| (-665 |#1|)) 20 T ELT)) (-2965 (((-665 |#1|) (-665 (-665 |#1|)) (-665 |#1|)) 36 T ELT) ((|#1| (-665 |#1|) (-665 |#1|)) 32 T ELT))) +(((-181 |#1|) (-10 -7 (-15 -3866 ((-665 |#1|) |#1| (-665 |#1|))) (-15 -2965 (|#1| (-665 |#1|) (-665 |#1|))) (-15 -2965 ((-665 |#1|) (-665 (-665 |#1|)) (-665 |#1|))) (-15 -3577 ((-665 |#1|) (-665 |#1|) |#1|))) (-318)) (T -181)) +((-3577 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3)))) (-2965 (*1 *2 *3 *2) (-12 (-5 *3 (-665 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-318)) (-5 *1 (-181 *4)))) (-2965 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) (-3866 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -3866 ((-665 |#1|) |#1| (-665 |#1|))) (-15 -2965 (|#1| (-665 |#1|) (-665 |#1|))) (-15 -2965 ((-665 |#1|) (-665 (-665 |#1|)) (-665 |#1|))) (-15 -3577 ((-665 |#1|) (-665 |#1|) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3117 (((-1246) $) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3477 (((-1165) $) 10 T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-182) (-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3117 ((-1246) $))))) (T -182)) +((-3477 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-182)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-182))))) +(-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3117 ((-1246) $)))) +((-3160 (((-2 (|:| |start| |#2|) (|:| -2127 (-431 |#2|))) |#2|) 66 T ELT)) (-3997 ((|#1| |#1|) 58 T ELT)) (-3528 (((-171 |#1|) |#2|) 93 T ELT)) (-2165 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-2036 ((|#2| |#2|) 91 T ELT)) (-1879 (((-431 |#2|) |#2| |#1|) 118 T ELT) (((-431 |#2|) |#2| |#1| (-112)) 88 T ELT)) (-2794 ((|#1| |#2|) 117 T ELT)) (-3716 ((|#2| |#2|) 130 T ELT)) (-3759 (((-431 |#2|) |#2|) 153 T ELT) (((-431 |#2|) |#2| |#1|) 33 T ELT) (((-431 |#2|) |#2| |#1| (-112)) 152 T ELT)) (-1351 (((-665 (-2 (|:| -2127 (-665 |#2|)) (|:| -3405 |#1|))) |#2| |#2|) 151 T ELT) (((-665 (-2 (|:| -2127 (-665 |#2|)) (|:| -3405 |#1|))) |#2| |#2| (-112)) 81 T ELT)) (-4323 (((-665 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-665 (-171 |#1|)) |#2|) 43 T ELT))) +(((-183 |#1| |#2|) (-10 -7 (-15 -4323 ((-665 (-171 |#1|)) |#2|)) (-15 -4323 ((-665 (-171 |#1|)) |#2| |#1|)) (-15 -1351 ((-665 (-2 (|:| -2127 (-665 |#2|)) (|:| -3405 |#1|))) |#2| |#2| (-112))) (-15 -1351 ((-665 (-2 (|:| -2127 (-665 |#2|)) (|:| -3405 |#1|))) |#2| |#2|)) (-15 -3759 ((-431 |#2|) |#2| |#1| (-112))) (-15 -3759 ((-431 |#2|) |#2| |#1|)) (-15 -3759 ((-431 |#2|) |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -2794 (|#1| |#2|)) (-15 -1879 ((-431 |#2|) |#2| |#1| (-112))) (-15 -1879 ((-431 |#2|) |#2| |#1|)) (-15 -2036 (|#2| |#2|)) (-15 -2165 (|#1| |#2| |#1|)) (-15 -2165 (|#1| |#2|)) (-15 -3528 ((-171 |#1|) |#2|)) (-15 -3997 (|#1| |#1|)) (-15 -3160 ((-2 (|:| |start| |#2|) (|:| -2127 (-431 |#2|))) |#2|))) (-13 (-375) (-869)) (-1273 (-171 |#1|))) (T -183)) +((-3160 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-2 (|:| |start| *3) (|:| -2127 (-431 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3997 (*1 *2 *2) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-3528 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-375) (-869))) (-4 *3 (-1273 *2)))) (-2165 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-2165 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-2036 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-1879 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1879 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2794 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3759 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3759 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-2 (|:| -2127 (-665 *3)) (|:| -3405 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1351 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-869))) (-5 *2 (-665 (-2 (|:| -2127 (-665 *3)) (|:| -3405 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1273 (-171 *5))))) (-4323 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4323 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(-10 -7 (-15 -4323 ((-665 (-171 |#1|)) |#2|)) (-15 -4323 ((-665 (-171 |#1|)) |#2| |#1|)) (-15 -1351 ((-665 (-2 (|:| -2127 (-665 |#2|)) (|:| -3405 |#1|))) |#2| |#2| (-112))) (-15 -1351 ((-665 (-2 (|:| -2127 (-665 |#2|)) (|:| -3405 |#1|))) |#2| |#2|)) (-15 -3759 ((-431 |#2|) |#2| |#1| (-112))) (-15 -3759 ((-431 |#2|) |#2| |#1|)) (-15 -3759 ((-431 |#2|) |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -2794 (|#1| |#2|)) (-15 -1879 ((-431 |#2|) |#2| |#1| (-112))) (-15 -1879 ((-431 |#2|) |#2| |#1|)) (-15 -2036 (|#2| |#2|)) (-15 -2165 (|#1| |#2| |#1|)) (-15 -2165 (|#1| |#2|)) (-15 -3528 ((-171 |#1|) |#2|)) (-15 -3997 (|#1| |#1|)) (-15 -3160 ((-2 (|:| |start| |#2|) (|:| -2127 (-431 |#2|))) |#2|))) +((-3474 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-4088 (((-792) |#2|) 18 T ELT)) (-2308 ((|#2| |#2| |#2|) 20 T ELT))) +(((-184 |#1| |#2|) (-10 -7 (-15 -3474 ((-3 |#2| "failed") |#2|)) (-15 -4088 ((-792) |#2|)) (-15 -2308 (|#2| |#2| |#2|))) (-1247) (-695 |#1|)) (T -184)) +((-2308 (*1 *2 *2 *2) (-12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) (-4 *2 (-695 *3)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-1247)) (-5 *2 (-792)) (-5 *1 (-184 *4 *3)) (-4 *3 (-695 *4)))) (-3474 (*1 *2 *2) (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) (-4 *2 (-695 *3))))) +(-10 -7 (-15 -3474 ((-3 |#2| "failed") |#2|)) (-15 -4088 ((-792) |#2|)) (-15 -2308 (|#2| |#2| |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2695 ((|#1| $) 7 T ELT)) (-3709 (((-885) $) 14 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2112 (((-665 (-1211)) $) 10 T ELT)) (-3018 (((-112) $ $) 12 T ELT))) +(((-185 |#1|) (-13 (-1130) (-10 -8 (-15 -2695 (|#1| $)) (-15 -2112 ((-665 (-1211)) $)))) (-187)) (T -185)) +((-2695 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1130) (-10 -8 (-15 -2695 (|#1| $)) (-15 -2112 ((-665 (-1211)) $)))) +((-3593 (((-665 (-888)) $) 16 T ELT)) (-1857 (((-188) $) 8 T ELT)) (-1476 (((-665 (-112)) $) 13 T ELT)) (-3622 (((-55) $) 10 T ELT))) +(((-186 |#1|) (-10 -8 (-15 -3593 ((-665 (-888)) |#1|)) (-15 -1476 ((-665 (-112)) |#1|)) (-15 -1857 ((-188) |#1|)) (-15 -3622 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -3593 ((-665 (-888)) |#1|)) (-15 -1476 ((-665 (-112)) |#1|)) (-15 -1857 ((-188) |#1|)) (-15 -3622 ((-55) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3593 (((-665 (-888)) $) 19 T ELT)) (-2758 (((-519) $) 16 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1857 (((-188) $) 21 T ELT)) (-4241 (((-112) $ (-519)) 14 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-1476 (((-665 (-112)) $) 20 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3622 (((-55) $) 15 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-187) (-141)) (T -187)) -((-1803 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-112))))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-883)))))) -(-13 (-851 (-519)) (-10 -8 (-15 -1803 ((-188) $)) (-15 -3420 ((-660 (-112)) $)) (-15 -3315 ((-660 (-883)) $)))) -(((-102) . T) ((-626 (-880)) . T) ((-851 (-519)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3603 (((-880) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 10 T ELT))) -(((-188) (-13 (-1125) (-10 -8 (-15 -9 ($) -2609) (-15 -8 ($) -2609) (-15 -7 ($) -2609)))) (T -188)) +((-1857 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-112))))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-888)))))) +(-13 (-856 (-519)) (-10 -8 (-15 -1857 ((-188) $)) (-15 -1476 ((-665 (-112)) $)) (-15 -3593 ((-665 (-888)) $)))) +(((-102) . T) ((-631 (-885)) . T) ((-856 (-519)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3709 (((-885) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 10 T ELT))) +(((-188) (-13 (-1130) (-10 -8 (-15 -9 ($) -4212) (-15 -8 ($) -4212) (-15 -7 ($) -4212)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1125) (-10 -8 (-15 -9 ($) -2609) (-15 -8 ($) -2609) (-15 -7 ($) -2609))) -((-3489 (((-112) $ $) NIL T ELT)) (-3315 (((-660 (-883)) $) NIL T ELT)) (-2668 (((-519) $) 8 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1803 (((-188) $) 10 T ELT)) (-3152 (((-112) $ (-519)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3665 (((-707 $) (-519)) 17 T ELT)) (-3420 (((-660 (-112)) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1376 (((-55) $) 12 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-189) (-13 (-187) (-10 -8 (-15 -3665 ((-707 $) (-519)))))) (T -189)) -((-3665 (*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -3665 ((-707 $) (-519))))) -((-3639 ((|#2| |#2|) 28 T ELT)) (-3236 (((-112) |#2|) 19 T ELT)) (-3081 (((-327 |#1|) |#2|) 12 T ELT)) (-3091 (((-327 |#1|) |#2|) 14 T ELT)) (-3545 ((|#2| |#2| (-1201)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-2808 (((-171 (-327 |#1|)) |#2|) 10 T ELT)) (-2039 ((|#2| |#2| (-1201)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-190 |#1| |#2|) (-10 -7 (-15 -3545 (|#2| |#2|)) (-15 -3545 (|#2| |#2| (-1201))) (-15 -2039 (|#2| |#2|)) (-15 -2039 (|#2| |#2| (-1201))) (-15 -3081 ((-327 |#1|) |#2|)) (-15 -3091 ((-327 |#1|) |#2|)) (-15 -3236 ((-112) |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -2808 ((-171 (-327 |#1|)) |#2|))) (-13 (-569) (-1063 (-577))) (-13 (-27) (-1227) (-443 (-171 |#1|)))) (T -190)) -((-2808 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-171 (-327 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) (-3236 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-3091 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-2039 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-2039 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) (-3545 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-3545 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3))))))) -(-10 -7 (-15 -3545 (|#2| |#2|)) (-15 -3545 (|#2| |#2| (-1201))) (-15 -2039 (|#2| |#2|)) (-15 -2039 (|#2| |#2| (-1201))) (-15 -3081 ((-327 |#1|) |#2|)) (-15 -3091 ((-327 |#1|) |#2|)) (-15 -3236 ((-112) |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -2808 ((-171 (-327 |#1|)) |#2|))) -((-2022 (((-1292 (-705 (-975 |#1|))) (-1292 (-705 |#1|))) 26 T ELT)) (-3603 (((-1292 (-705 (-420 (-975 |#1|)))) (-1292 (-705 |#1|))) 37 T ELT))) -(((-191 |#1|) (-10 -7 (-15 -2022 ((-1292 (-705 (-975 |#1|))) (-1292 (-705 |#1|)))) (-15 -3603 ((-1292 (-705 (-420 (-975 |#1|)))) (-1292 (-705 |#1|))))) (-174)) (T -191)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) (-5 *2 (-1292 (-705 (-420 (-975 *4))))) (-5 *1 (-191 *4)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) (-5 *2 (-1292 (-705 (-975 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -2022 ((-1292 (-705 (-975 |#1|))) (-1292 (-705 |#1|)))) (-15 -3603 ((-1292 (-705 (-420 (-975 |#1|)))) (-1292 (-705 |#1|))))) -((-3446 (((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577)))) 93 T ELT)) (-1735 (((-1203 (-420 (-577))) (-660 (-577)) (-660 (-577))) 107 T ELT)) (-3714 (((-1203 (-420 (-577))) (-944)) 54 T ELT)) (-2654 (((-1203 (-420 (-577))) (-944)) 79 T ELT)) (-3273 (((-420 (-577)) (-1203 (-420 (-577)))) 89 T ELT)) (-2888 (((-1203 (-420 (-577))) (-944)) 37 T ELT)) (-1887 (((-1203 (-420 (-577))) (-944)) 66 T ELT)) (-3398 (((-1203 (-420 (-577))) (-944)) 61 T ELT)) (-1707 (((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577)))) 87 T ELT)) (-2544 (((-1203 (-420 (-577))) (-944)) 29 T ELT)) (-3657 (((-420 (-577)) (-1203 (-420 (-577))) (-1203 (-420 (-577)))) 91 T ELT)) (-1630 (((-1203 (-420 (-577))) (-944)) 35 T ELT)) (-1975 (((-1203 (-420 (-577))) (-660 (-944))) 100 T ELT))) -(((-192) (-10 -7 (-15 -2544 ((-1203 (-420 (-577))) (-944))) (-15 -3714 ((-1203 (-420 (-577))) (-944))) (-15 -2888 ((-1203 (-420 (-577))) (-944))) (-15 -1630 ((-1203 (-420 (-577))) (-944))) (-15 -3398 ((-1203 (-420 (-577))) (-944))) (-15 -1887 ((-1203 (-420 (-577))) (-944))) (-15 -2654 ((-1203 (-420 (-577))) (-944))) (-15 -3657 ((-420 (-577)) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1707 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -3273 ((-420 (-577)) (-1203 (-420 (-577))))) (-15 -3446 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1975 ((-1203 (-420 (-577))) (-660 (-944)))) (-15 -1735 ((-1203 (-420 (-577))) (-660 (-577)) (-660 (-577)))))) (T -192)) -((-1735 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-3446 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-1707 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-3657 (*1 *2 *3 *3) (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) -(-10 -7 (-15 -2544 ((-1203 (-420 (-577))) (-944))) (-15 -3714 ((-1203 (-420 (-577))) (-944))) (-15 -2888 ((-1203 (-420 (-577))) (-944))) (-15 -1630 ((-1203 (-420 (-577))) (-944))) (-15 -3398 ((-1203 (-420 (-577))) (-944))) (-15 -1887 ((-1203 (-420 (-577))) (-944))) (-15 -2654 ((-1203 (-420 (-577))) (-944))) (-15 -3657 ((-420 (-577)) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1707 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -3273 ((-420 (-577)) (-1203 (-420 (-577))))) (-15 -3446 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1975 ((-1203 (-420 (-577))) (-660 (-944)))) (-15 -1735 ((-1203 (-420 (-577))) (-660 (-577)) (-660 (-577))))) -((-3369 (((-431 (-1197 (-577))) (-577)) 38 T ELT)) (-1613 (((-660 (-1197 (-577))) (-577)) 33 T ELT)) (-4134 (((-1197 (-577)) (-577)) 28 T ELT))) -(((-193) (-10 -7 (-15 -1613 ((-660 (-1197 (-577))) (-577))) (-15 -4134 ((-1197 (-577)) (-577))) (-15 -3369 ((-431 (-1197 (-577))) (-577))))) (T -193)) -((-3369 (*1 *2 *3) (-12 (-5 *2 (-431 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577)))) (-4134 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-660 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) -(-10 -7 (-15 -1613 ((-660 (-1197 (-577))) (-577))) (-15 -4134 ((-1197 (-577)) (-577))) (-15 -3369 ((-431 (-1197 (-577))) (-577)))) -((-1575 (((-1182 (-228)) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 132 T ELT)) (-2972 (((-660 (-1183)) (-1182 (-228))) NIL T ELT)) (-1916 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109 T ELT)) (-3494 (((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228)))) NIL T ELT)) (-4296 (((-660 (-1183)) (-660 (-228))) NIL T ELT)) (-2321 (((-228) (-1119 (-859 (-228)))) 31 T ELT)) (-2101 (((-228) (-1119 (-859 (-228)))) 32 T ELT)) (-3610 (((-391) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 126 T ELT)) (-3827 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 67 T ELT)) (-3629 (((-1183) (-228)) NIL T ELT)) (-2831 (((-1183) (-660 (-1183))) 27 T ELT)) (-3323 (((-1060) (-1201) (-1201) (-1060)) 13 T ELT))) -(((-194) (-10 -7 (-15 -1916 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3827 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2321 ((-228) (-1119 (-859 (-228))))) (-15 -2101 ((-228) (-1119 (-859 (-228))))) (-15 -3610 ((-391) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3494 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -1575 ((-1182 (-228)) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3629 ((-1183) (-228))) (-15 -4296 ((-660 (-1183)) (-660 (-228)))) (-15 -2972 ((-660 (-1183)) (-1182 (-228)))) (-15 -2831 ((-1183) (-660 (-1183)))) (-15 -3323 ((-1060) (-1201) (-1201) (-1060))))) (T -194)) -((-3323 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-194)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-194)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-194)))) (-1575 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-194)))) (-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-194)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-194)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -1916 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3827 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2321 ((-228) (-1119 (-859 (-228))))) (-15 -2101 ((-228) (-1119 (-859 (-228))))) (-15 -3610 ((-391) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3494 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -1575 ((-1182 (-228)) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3629 ((-1183) (-228))) (-15 -4296 ((-660 (-1183)) (-660 (-228)))) (-15 -2972 ((-660 (-1183)) (-1182 (-228)))) (-15 -2831 ((-1183) (-660 (-1183)))) (-15 -3323 ((-1060) (-1201) (-1201) (-1060)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 61 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 33 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-195) (-803)) (T -195)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 66 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-196) (-803)) (T -196)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 81 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 46 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-197) (-803)) (T -197)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 63 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 36 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-198) (-803)) (T -198)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 76 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-199) (-803)) (T -199)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 93 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-200) (-803)) (T -200)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 90 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 51 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-201) (-803)) (T -201)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 78 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-202) (-803)) (T -202)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 76 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 35 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-203) (-803)) (T -203)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 77 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 42 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-204) (-803)) (T -204)) -NIL -(-803) -((-3489 (((-112) $ $) NIL T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 105 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 86 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-205) (-803)) (T -205)) -NIL -(-803) -((-1882 (((-3 (-2 (|:| -1814 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109 T ELT)) (-3634 (((-577) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 59 T ELT)) (-3675 (((-3 (-660 (-228)) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 90 T ELT))) -(((-206) (-10 -7 (-15 -1882 ((-3 (-2 (|:| -1814 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3675 ((-3 (-660 (-228)) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3634 ((-577) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -206)) -((-3634 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-577)) (-5 *1 (-206)))) (-3675 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-206)))) (-1882 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -1814 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) -(-10 -7 (-15 -1882 ((-3 (-2 (|:| -1814 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3675 ((-3 (-660 (-228)) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3634 ((-577) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-2304 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49 T ELT)) (-3623 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 157 T ELT)) (-1831 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-705 (-327 (-228)))) 112 T ELT)) (-3808 (((-391) (-705 (-327 (-228)))) 140 T ELT)) (-4259 (((-705 (-327 (-228))) (-1292 (-327 (-228))) (-660 (-1201))) 136 T ELT)) (-1716 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 37 T ELT)) (-2172 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 53 T ELT)) (-3273 (((-705 (-327 (-228))) (-705 (-327 (-228))) (-660 (-1201)) (-1292 (-327 (-228)))) 125 T ELT)) (-2104 (((-391) (-391) (-660 (-391))) 133 T ELT) (((-391) (-391) (-391)) 128 T ELT)) (-3981 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 45 T ELT))) -(((-207) (-10 -7 (-15 -2104 ((-391) (-391) (-391))) (-15 -2104 ((-391) (-391) (-660 (-391)))) (-15 -3808 ((-391) (-705 (-327 (-228))))) (-15 -4259 ((-705 (-327 (-228))) (-1292 (-327 (-228))) (-660 (-1201)))) (-15 -3273 ((-705 (-327 (-228))) (-705 (-327 (-228))) (-660 (-1201)) (-1292 (-327 (-228))))) (-15 -1831 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-705 (-327 (-228))))) (-15 -3623 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2304 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2172 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3981 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1716 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -207)) -((-1716 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-705 (-327 (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-3273 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-705 (-327 (-228)))) (-5 *3 (-660 (-1201))) (-5 *4 (-1292 (-327 (-228)))) (-5 *1 (-207)))) (-4259 (*1 *2 *3 *4) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) (-5 *2 (-705 (-327 (-228)))) (-5 *1 (-207)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-705 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-391))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2104 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207))))) -(-10 -7 (-15 -2104 ((-391) (-391) (-391))) (-15 -2104 ((-391) (-391) (-660 (-391)))) (-15 -3808 ((-391) (-705 (-327 (-228))))) (-15 -4259 ((-705 (-327 (-228))) (-1292 (-327 (-228))) (-660 (-1201)))) (-15 -3273 ((-705 (-327 (-228))) (-705 (-327 (-228))) (-660 (-1201)) (-1292 (-327 (-228))))) (-15 -1831 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-705 (-327 (-228))))) (-15 -3623 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2304 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2172 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3981 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1716 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1926 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 75 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-208) (-816)) (T -208)) -NIL -(-816) -((-3489 (((-112) $ $) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1926 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 73 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-209) (-816)) (T -209)) -NIL -(-816) -((-3489 (((-112) $ $) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1926 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 76 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-210) (-816)) (T -210)) -NIL -(-816) -((-3489 (((-112) $ $) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 48 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1926 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 88 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-211) (-816)) (T -211)) -NIL -(-816) -((-1530 (((-660 (-1201)) (-1201) (-787)) 26 T ELT)) (-3558 (((-327 (-228)) (-327 (-228))) 35 T ELT)) (-1925 (((-112) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 87 T ELT)) (-2233 (((-112) (-228) (-228) (-660 (-327 (-228)))) 47 T ELT))) -(((-212) (-10 -7 (-15 -1530 ((-660 (-1201)) (-1201) (-787))) (-15 -3558 ((-327 (-228)) (-327 (-228)))) (-15 -2233 ((-112) (-228) (-228) (-660 (-327 (-228))))) (-15 -1925 ((-112) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))))) (T -212)) -((-1925 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2233 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-660 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-660 (-1201))) (-5 *1 (-212)) (-5 *3 (-1201))))) -(-10 -7 (-15 -1530 ((-660 (-1201)) (-1201) (-787))) (-15 -3558 ((-327 (-228)) (-327 (-228)))) (-15 -2233 ((-112) (-228) (-228) (-660 (-327 (-228))))) (-15 -1925 ((-112) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 28 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1583 (((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 70 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-213) (-916)) (T -213)) -NIL -(-916) -((-3489 (((-112) $ $) NIL T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 24 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1583 (((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-214) (-916)) (T -214)) -NIL -(-916) -((-3489 (((-112) $ $) NIL T ELT)) (-2768 ((|#2| $ (-787) |#2|) 11 T ELT)) (-2759 ((|#2| $ (-787)) 10 T ELT)) (-4223 (($) 8 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 23 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 13 T ELT))) -(((-215 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -4223 ($)) (-15 -2759 (|#2| $ (-787))) (-15 -2768 (|#2| $ (-787) |#2|)))) (-944) (-1125)) (T -215)) -((-4223 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1125)))) (-2759 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *2 (-1125)) (-5 *1 (-215 *4 *2)) (-14 *4 (-944)))) (-2768 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-215 *4 *2)) (-14 *4 (-944)) (-4 *2 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -4223 ($)) (-15 -2759 (|#2| $ (-787))) (-15 -2768 (|#2| $ (-787) |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2032 (((-1297) $) 37 T ELT) (((-1297) $ (-944) (-944)) 41 T ELT)) (-2837 (($ $ (-1014)) 19 T ELT) (((-251 (-1183)) $ (-1201)) 15 T ELT)) (-1992 (((-1297) $) 35 T ELT)) (-3603 (((-880) $) 32 T ELT) (($ (-660 |#1|)) 8 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $ $) 27 T ELT)) (-3031 (($ $ $) 22 T ELT))) -(((-216 |#1|) (-13 (-1125) (-629 (-660 |#1|)) (-10 -8 (-15 -2837 ($ $ (-1014))) (-15 -2837 ((-251 (-1183)) $ (-1201))) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $)) (-15 -2032 ((-1297) $ (-944) (-944))))) (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $))))) (T -216)) -((-2837 (*1 *1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $))))))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-251 (-1183))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ *3)) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $))))))) (-3031 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $))))))) (-3042 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $))))))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 (*2 $)) (-15 -2032 (*2 $))))))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 (*2 $)) (-15 -2032 (*2 $))))))) (-2032 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 (*2 $)) (-15 -2032 (*2 $)))))))) -(-13 (-1125) (-629 (-660 |#1|)) (-10 -8 (-15 -2837 ($ $ (-1014))) (-15 -2837 ((-251 (-1183)) $ (-1201))) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $)) (-15 -2032 ((-1297) $ (-944) (-944))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) 10 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1664 (($ (-651 |#1|)) 11 T ELT)) (-3603 (((-880) $) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-217 |#1|) (-13 (-860) (-10 -8 (-15 -1664 ($ (-651 |#1|))))) (-660 (-1201))) (T -217)) -((-1664 (*1 *1 *2) (-12 (-5 *2 (-651 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-217 *3))))) -(-13 (-860) (-10 -8 (-15 -1664 ($ (-651 |#1|))))) -((-3883 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-218 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3883 (|#2| |#4| (-1 |#2| |#2|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -218)) -((-3883 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1268 (-420 *2))) (-4 *2 (-1268 *5)) (-5 *1 (-218 *5 *2 *6 *3)) (-4 *3 (-354 *5 *2 *6))))) -(-10 -7 (-15 -3883 (|#2| |#4| (-1 |#2| |#2|)))) -((-3848 ((|#2| |#2| (-787) |#2|) 55 T ELT)) (-1928 ((|#2| |#2| (-787) |#2|) 51 T ELT)) (-4044 (((-660 |#2|) (-660 (-2 (|:| |deg| (-787)) (|:| -2100 |#2|)))) 79 T ELT)) (-3020 (((-660 (-2 (|:| |deg| (-787)) (|:| -2100 |#2|))) |#2|) 73 T ELT)) (-2425 (((-112) |#2|) 71 T ELT)) (-2503 (((-431 |#2|) |#2|) 91 T ELT)) (-3056 (((-431 |#2|) |#2|) 90 T ELT)) (-1379 ((|#2| |#2| (-787) |#2|) 49 T ELT)) (-4377 (((-2 (|:| |cont| |#1|) (|:| -1704 (-660 (-2 (|:| |irr| |#2|) (|:| -2087 (-577)))))) |#2| (-112)) 85 T ELT))) -(((-219 |#1| |#2|) (-10 -7 (-15 -3056 ((-431 |#2|) |#2|)) (-15 -2503 ((-431 |#2|) |#2|)) (-15 -4377 ((-2 (|:| |cont| |#1|) (|:| -1704 (-660 (-2 (|:| |irr| |#2|) (|:| -2087 (-577)))))) |#2| (-112))) (-15 -3020 ((-660 (-2 (|:| |deg| (-787)) (|:| -2100 |#2|))) |#2|)) (-15 -4044 ((-660 |#2|) (-660 (-2 (|:| |deg| (-787)) (|:| -2100 |#2|))))) (-15 -1379 (|#2| |#2| (-787) |#2|)) (-15 -1928 (|#2| |#2| (-787) |#2|)) (-15 -3848 (|#2| |#2| (-787) |#2|)) (-15 -2425 ((-112) |#2|))) (-361) (-1268 |#1|)) (T -219)) -((-2425 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4)))) (-3848 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1268 *4)))) (-1928 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1268 *4)))) (-1379 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1268 *4)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |deg| (-787)) (|:| -2100 *5)))) (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *2 (-660 *5)) (-5 *1 (-219 *4 *5)))) (-3020 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -2100 *3)))) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-361)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) (-5 *1 (-219 *5 *3)) (-4 *3 (-1268 *5)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4)))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -3056 ((-431 |#2|) |#2|)) (-15 -2503 ((-431 |#2|) |#2|)) (-15 -4377 ((-2 (|:| |cont| |#1|) (|:| -1704 (-660 (-2 (|:| |irr| |#2|) (|:| -2087 (-577)))))) |#2| (-112))) (-15 -3020 ((-660 (-2 (|:| |deg| (-787)) (|:| -2100 |#2|))) |#2|)) (-15 -4044 ((-660 |#2|) (-660 (-2 (|:| |deg| (-787)) (|:| -2100 |#2|))))) (-15 -1379 (|#2| |#2| (-787) |#2|)) (-15 -1928 (|#2| |#2| (-787) |#2|)) (-15 -3848 (|#2| |#2| (-787) |#2|)) (-15 -2425 ((-112) |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| (-577) (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1063 (-577))) ELT)) (-2155 (((-577) $) NIL T ELT) (((-1201) $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1063 (-577))) ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-577) (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 (((-577) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-2124 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-577) (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-1374 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577))) ELT) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 (((-577) $) NIL T ELT)) (-2276 (($ (-420 (-577))) 9 T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-627 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1047)) ELT) (((-228) $) NIL (|has| (-577) (-1047)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1029 10) $) 10 T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| (-577) (-836)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-3051 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) -(((-220) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 10)) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -2276 ($ (-420 (-577))))))) (T -220)) -((-3053 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) -(-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 10)) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -2276 ($ (-420 (-577)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2698 (((-1143) $) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2515 (((-496) $) 10 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 23 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-1160) $) 15 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-221) (-13 (-1108) (-10 -8 (-15 -2515 ((-496) $)) (-15 -2698 ((-1143) $)) (-15 -2682 ((-1160) $))))) (T -221)) -((-2515 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-221)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-221))))) -(-13 (-1108) (-10 -8 (-15 -2515 ((-496) $)) (-15 -2698 ((-1143) $)) (-15 -2682 ((-1160) $)))) -((-4129 (((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)) (-1183)) 29 T ELT) (((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|))) 25 T ELT)) (-4069 (((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1201) (-859 |#2|) (-859 |#2|) (-112)) 17 T ELT))) -(((-222 |#1| |#2|) (-10 -7 (-15 -4129 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)))) (-15 -4129 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)) (-1183))) (-15 -4069 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1201) (-859 |#2|) (-859 |#2|) (-112)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-29 |#1|))) (T -222)) -((-4069 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1201)) (-5 *6 (-112)) (-4 *7 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-4 *3 (-13 (-1227) (-982) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *7 *3)) (-5 *5 (-859 *3)))) (-4129 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117 (-859 *3))) (-5 *5 (-1183)) (-4 *3 (-13 (-1227) (-982) (-29 *6))) (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6 *3)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-859 *3))) (-4 *3 (-13 (-1227) (-982) (-29 *5))) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5 *3))))) -(-10 -7 (-15 -4129 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)))) (-15 -4129 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)) (-1183))) (-15 -4069 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1201) (-859 |#2|) (-859 |#2|) (-112)))) -((-4129 (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))) (-1183)) 49 T ELT) (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))) (-1183)) 50 T ELT) (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|)))) 22 T ELT))) -(((-223 |#1|) (-10 -7 (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))))) (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))) (-1183))) (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))))) (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))) (-1183)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (T -223)) -((-4129 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117 (-859 (-420 (-975 *6))))) (-5 *5 (-1183)) (-5 *3 (-420 (-975 *6))) (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-859 (-420 (-975 *5))))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5)))) (-4129 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1117 (-859 (-327 *6)))) (-5 *5 (-1183)) (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1117 (-859 (-327 *5)))) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5))))) -(-10 -7 (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))))) (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))) (-1183))) (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))))) (-15 -4129 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))) (-1183)))) -((-2498 (((-2 (|:| -2364 (-1197 |#1|)) (|:| |deg| (-944))) (-1197 |#1|)) 26 T ELT)) (-3694 (((-660 (-327 |#2|)) (-327 |#2|) (-944)) 51 T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -2498 ((-2 (|:| -2364 (-1197 |#1|)) (|:| |deg| (-944))) (-1197 |#1|))) (-15 -3694 ((-660 (-327 |#2|)) (-327 |#2|) (-944)))) (-1074) (-569)) (T -224)) -((-3694 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *6 (-569)) (-5 *2 (-660 (-327 *6))) (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1074)))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-2 (|:| -2364 (-1197 *4)) (|:| |deg| (-944)))) (-5 *1 (-224 *4 *5)) (-5 *3 (-1197 *4)) (-4 *5 (-569))))) -(-10 -7 (-15 -2498 ((-2 (|:| -2364 (-1197 |#1|)) (|:| |deg| (-944))) (-1197 |#1|))) (-15 -3694 ((-660 (-327 |#2|)) (-327 |#2|) (-944)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1477 ((|#1| $) NIL T ELT)) (-2554 ((|#1| $) 30 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-4218 (($ $) NIL T ELT)) (-1932 (($ $) 39 T ELT)) (-2223 ((|#1| |#1| $) NIL T ELT)) (-2204 ((|#1| $) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3762 (((-787) $) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) NIL T ELT)) (-1909 ((|#1| |#1| $) 35 T ELT)) (-1762 ((|#1| |#1| $) 37 T ELT)) (-4345 (($ |#1| $) NIL T ELT)) (-4181 (((-787) $) 33 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2387 ((|#1| $) NIL T ELT)) (-3539 ((|#1| $) 31 T ELT)) (-1603 ((|#1| $) 29 T ELT)) (-3439 ((|#1| $) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2696 ((|#1| |#1| $) NIL T ELT)) (-2856 (((-112) $) 9 T ELT)) (-2693 (($) NIL T ELT)) (-4108 ((|#1| $) NIL T ELT)) (-2996 (($) NIL T ELT) (($ (-660 |#1|)) 16 T ELT)) (-2395 (((-787) $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-3916 ((|#1| $) 13 T ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) NIL T ELT)) (-3035 ((|#1| $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-225 |#1|) (-13 (-262 |#1|) (-10 -8 (-15 -2996 ($ (-660 |#1|))))) (-1125)) (T -225)) -((-2996 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-225 *3))))) -(-13 (-262 |#1|) (-10 -8 (-15 -2996 ($ (-660 |#1|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1342 (($ (-327 |#1|)) 24 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3216 (((-112) $) NIL T ELT)) (-2784 (((-3 (-327 |#1|) "failed") $) NIL T ELT)) (-2155 (((-327 |#1|) $) NIL T ELT)) (-3391 (($ $) 32 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2124 (($ (-1 (-327 |#1|) (-327 |#1|)) $) NIL T ELT)) (-3365 (((-327 |#1|) $) NIL T ELT)) (-2834 (($ $) 31 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3058 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($ (-787)) NIL T ELT)) (-2623 (($ $) 33 T ELT)) (-3616 (((-577) $) NIL T ELT)) (-3603 (((-880) $) 65 T ELT) (($ (-577)) NIL T ELT) (($ (-327 |#1|)) NIL T ELT)) (-3421 (((-327 |#1|) $ $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 26 T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) 29 T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 20 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-327 |#1|) $) 19 T ELT))) -(((-226 |#1| |#2|) (-13 (-633 (-327 |#1|)) (-1063 (-327 |#1|)) (-10 -8 (-15 -3365 ((-327 |#1|) $)) (-15 -2834 ($ $)) (-15 -3391 ($ $)) (-15 -3421 ((-327 |#1|) $ $)) (-15 -3428 ($ (-787))) (-15 -3058 ((-112) $)) (-15 -3216 ((-112) $)) (-15 -3616 ((-577) $)) (-15 -2124 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -1342 ($ (-327 |#1|))) (-15 -2623 ($ $)))) (-13 (-1074) (-865)) (-660 (-1201))) (T -226)) -((-3365 (*1 *2 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-2834 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) (-14 *3 (-660 (-1201))))) (-3391 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) (-14 *3 (-660 (-1201))))) (-3421 (*1 *2 *1 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1074) (-865))) (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201))))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1074) (-865))) (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201))))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) (-14 *3 (-660 (-1201)))))) -(-13 (-633 (-327 |#1|)) (-1063 (-327 |#1|)) (-10 -8 (-15 -3365 ((-327 |#1|) $)) (-15 -2834 ($ $)) (-15 -3391 ($ $)) (-15 -3421 ((-327 |#1|) $ $)) (-15 -3428 ($ (-787))) (-15 -3058 ((-112) $)) (-15 -3216 ((-112) $)) (-15 -3616 ((-577) $)) (-15 -2124 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -1342 ($ (-327 |#1|))) (-15 -2623 ($ $)))) -((-2548 (((-112) (-1183)) 26 T ELT)) (-4284 (((-3 (-859 |#2|) "failed") (-625 |#2|) |#2| (-859 |#2|) (-859 |#2|) (-112)) 35 T ELT)) (-4172 (((-3 (-112) "failed") (-1197 |#2|) (-859 |#2|) (-859 |#2|) (-112)) 84 T ELT) (((-3 (-112) "failed") (-975 |#1|) (-1201) (-859 |#2|) (-859 |#2|) (-112)) 85 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -2548 ((-112) (-1183))) (-15 -4284 ((-3 (-859 |#2|) "failed") (-625 |#2|) |#2| (-859 |#2|) (-859 |#2|) (-112))) (-15 -4172 ((-3 (-112) "failed") (-975 |#1|) (-1201) (-859 |#2|) (-859 |#2|) (-112))) (-15 -4172 ((-3 (-112) "failed") (-1197 |#2|) (-859 |#2|) (-859 |#2|) (-112)))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-29 |#1|))) (T -227)) -((-4172 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1197 *6)) (-5 *4 (-859 *6)) (-4 *6 (-13 (-1227) (-29 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-227 *5 *6)))) (-4172 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-975 *6)) (-5 *4 (-1201)) (-5 *5 (-859 *7)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *7 (-13 (-1227) (-29 *6))) (-5 *1 (-227 *6 *7)))) (-4284 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-859 *4)) (-5 *3 (-625 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1227) (-29 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-227 *6 *4)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1227) (-29 *4)))))) -(-10 -7 (-15 -2548 ((-112) (-1183))) (-15 -4284 ((-3 (-859 |#2|) "failed") (-625 |#2|) |#2| (-859 |#2|) (-859 |#2|) (-112))) (-15 -4172 ((-3 (-112) "failed") (-975 |#1|) (-1201) (-859 |#2|) (-859 |#2|) (-112))) (-15 -4172 ((-3 (-112) "failed") (-1197 |#2|) (-859 |#2|) (-859 |#2|) (-112)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 98 T ELT)) (-2829 (((-577) $) 33 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-2642 (($ $) 87 T ELT)) (-2501 (($ $) 75 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3070 (($ $) 66 T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2616 (($ $) 85 T ELT)) (-2471 (($ $) 73 T ELT)) (-2917 (((-577) $) 127 T ELT)) (-2666 (($ $) 90 T ELT)) (-2523 (($ $) 77 T ELT)) (-3790 (($) NIL T CONST)) (-1609 (($ $) NIL T ELT)) (-2784 (((-3 (-577) "failed") $) 126 T ELT) (((-3 (-420 (-577)) "failed") $) 123 T ELT)) (-2155 (((-577) $) 124 T ELT) (((-420 (-577)) $) 121 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 103 T ELT)) (-3966 (((-420 (-577)) $ (-787)) 117 T ELT) (((-420 (-577)) $ (-787) (-787)) 116 T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3437 (((-944)) 28 T ELT) (((-944) (-944)) NIL (|has| $ (-6 -4461)) ELT)) (-4302 (((-112) $) NIL T ELT)) (-2824 (($) 46 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL T ELT)) (-2536 (((-577) $) 40 T ELT)) (-3306 (((-112) $) 99 T ELT)) (-4286 (($ $ (-577)) NIL T ELT)) (-4021 (($ $) NIL T ELT)) (-2178 (((-112) $) 97 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) 63 T ELT) (($) 36 (-12 (-2686 (|has| $ (-6 -4453))) (-2686 (|has| $ (-6 -4461)))) ELT)) (-1457 (($ $ $) 62 T ELT) (($) 35 (-12 (-2686 (|has| $ (-6 -4453))) (-2686 (|has| $ (-6 -4461)))) ELT)) (-1595 (((-577) $) 26 T ELT)) (-2241 (($ $) 31 T ELT)) (-2337 (($ $) 67 T ELT)) (-3716 (($ $) 72 T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-4115 (((-944) (-577)) NIL (|has| $ (-6 -4461)) ELT)) (-1440 (((-1145) $) 101 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL T ELT)) (-1374 (($ $) NIL T ELT)) (-3068 (($ (-577) (-577)) NIL T ELT) (($ (-577) (-577) (-944)) 110 T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1527 (((-577) $) 27 T ELT)) (-3628 (($) 45 T ELT)) (-2079 (($ $) 71 T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3453 (((-944)) NIL T ELT) (((-944) (-944)) NIL (|has| $ (-6 -4461)) ELT)) (-3362 (($ $) 104 T ELT) (($ $ (-787)) NIL T ELT)) (-4315 (((-944) (-577)) NIL (|has| $ (-6 -4461)) ELT)) (-2680 (($ $) 88 T ELT)) (-2535 (($ $) 78 T ELT)) (-2655 (($ $) 89 T ELT)) (-2512 (($ $) 76 T ELT)) (-2631 (($ $) 86 T ELT)) (-2486 (($ $) 74 T ELT)) (-2176 (((-391) $) 113 T ELT) (((-228) $) 14 T ELT) (((-911 (-391)) $) NIL T ELT) (((-549) $) 52 T ELT)) (-3603 (((-880) $) 49 T ELT) (($ (-577)) 152 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) 152 T ELT) (($ (-420 (-577))) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (($ $) NIL T ELT)) (-2716 (((-944)) 34 T ELT) (((-944) (-944)) NIL (|has| $ (-6 -4461)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (((-944)) 24 T ELT)) (-2722 (($ $) 93 T ELT)) (-2570 (($ $) 81 T ELT) (($ $ $) 119 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2694 (($ $) 91 T ELT)) (-2546 (($ $) 79 T ELT)) (-2748 (($ $) 96 T ELT)) (-2592 (($ $) 84 T ELT)) (-2897 (($ $) 94 T ELT)) (-2604 (($ $) 82 T ELT)) (-2734 (($ $) 95 T ELT)) (-2581 (($ $) 83 T ELT)) (-2708 (($ $) 92 T ELT)) (-2558 (($ $) 80 T ELT)) (-4318 (($ $) 118 T ELT)) (-2754 (($) 42 T CONST)) (-2767 (($) 43 T CONST)) (-1422 (((-1183) $) 18 T ELT) (((-1183) $ (-112)) 20 T ELT) (((-1297) (-838) $) 21 T ELT) (((-1297) (-838) $ (-112)) 22 T ELT)) (-2345 (($ $) 107 T ELT)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3072 (($ $ $) 109 T ELT)) (-3001 (((-112) $ $) 56 T ELT)) (-2978 (((-112) $ $) 54 T ELT)) (-2949 (((-112) $ $) 64 T ELT)) (-2988 (((-112) $ $) 55 T ELT)) (-2971 (((-112) $ $) 53 T ELT)) (-3051 (($ $ $) 44 T ELT) (($ $ (-577)) 65 T ELT)) (-3042 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-3031 (($ $ $) 58 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 68 T ELT) (($ $ (-420 (-577))) 151 T ELT) (($ $ $) 69 T ELT)) (* (($ (-944) $) 32 T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-228) (-13 (-417) (-239) (-844) (-1227) (-627 (-549)) (-10 -8 (-15 -3051 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -3628 ($)) (-15 -2241 ($ $)) (-15 -2337 ($ $)) (-15 -2570 ($ $ $)) (-15 -2345 ($ $)) (-15 -3072 ($ $ $)) (-15 -3966 ((-420 (-577)) $ (-787))) (-15 -3966 ((-420 (-577)) $ (-787) (-787)))))) (T -228)) -((** (*1 *1 *1 *1) (-5 *1 (-228))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-228)))) (-3628 (*1 *1) (-5 *1 (-228))) (-2241 (*1 *1 *1) (-5 *1 (-228))) (-2337 (*1 *1 *1) (-5 *1 (-228))) (-2570 (*1 *1 *1 *1) (-5 *1 (-228))) (-2345 (*1 *1 *1) (-5 *1 (-228))) (-3072 (*1 *1 *1 *1) (-5 *1 (-228))) (-3966 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) (-3966 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228))))) -(-13 (-417) (-239) (-844) (-1227) (-627 (-549)) (-10 -8 (-15 -3051 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -3628 ($)) (-15 -2241 ($ $)) (-15 -2337 ($ $)) (-15 -2570 ($ $ $)) (-15 -2345 ($ $)) (-15 -3072 ($ $ $)) (-15 -3966 ((-420 (-577)) $ (-787))) (-15 -3966 ((-420 (-577)) $ (-787) (-787))))) -((-3512 (((-171 (-228)) (-787) (-171 (-228))) 11 T ELT) (((-228) (-787) (-228)) 12 T ELT)) (-2772 (((-171 (-228)) (-171 (-228))) 13 T ELT) (((-228) (-228)) 14 T ELT)) (-1396 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 19 T ELT) (((-228) (-228) (-228)) 22 T ELT)) (-1666 (((-171 (-228)) (-171 (-228))) 27 T ELT) (((-228) (-228)) 26 T ELT)) (-2920 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 57 T ELT) (((-228) (-228) (-228)) 49 T ELT)) (-3241 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 62 T ELT) (((-228) (-228) (-228)) 60 T ELT)) (-4291 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 15 T ELT) (((-228) (-228) (-228)) 16 T ELT)) (-1586 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 17 T ELT) (((-228) (-228) (-228)) 18 T ELT)) (-3691 (((-171 (-228)) (-171 (-228))) 74 T ELT) (((-228) (-228)) 73 T ELT)) (-1888 (((-228) (-228)) 68 T ELT) (((-171 (-228)) (-171 (-228))) 72 T ELT)) (-2345 (((-171 (-228)) (-171 (-228))) 8 T ELT) (((-228) (-228)) 9 T ELT)) (-3072 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 35 T ELT) (((-228) (-228) (-228)) 31 T ELT))) -(((-229) (-10 -7 (-15 -2345 ((-228) (-228))) (-15 -2345 ((-171 (-228)) (-171 (-228)))) (-15 -3072 ((-228) (-228) (-228))) (-15 -3072 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2772 ((-228) (-228))) (-15 -2772 ((-171 (-228)) (-171 (-228)))) (-15 -1666 ((-228) (-228))) (-15 -1666 ((-171 (-228)) (-171 (-228)))) (-15 -3512 ((-228) (-787) (-228))) (-15 -3512 ((-171 (-228)) (-787) (-171 (-228)))) (-15 -4291 ((-228) (-228) (-228))) (-15 -4291 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2920 ((-228) (-228) (-228))) (-15 -2920 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1586 ((-228) (-228) (-228))) (-15 -1586 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3241 ((-228) (-228) (-228))) (-15 -3241 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1888 ((-171 (-228)) (-171 (-228)))) (-15 -1888 ((-228) (-228))) (-15 -3691 ((-228) (-228))) (-15 -3691 ((-171 (-228)) (-171 (-228)))) (-15 -1396 ((-228) (-228) (-228))) (-15 -1396 ((-171 (-228)) (-171 (-228)) (-171 (-228)))))) (T -229)) -((-1396 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1396 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1888 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3241 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3241 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1586 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1586 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2920 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2920 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3512 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-228))) (-5 *3 (-787)) (-5 *1 (-229)))) (-3512 (*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-787)) (-5 *1 (-229)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3072 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3072 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2345 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2345 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229))))) -(-10 -7 (-15 -2345 ((-228) (-228))) (-15 -2345 ((-171 (-228)) (-171 (-228)))) (-15 -3072 ((-228) (-228) (-228))) (-15 -3072 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2772 ((-228) (-228))) (-15 -2772 ((-171 (-228)) (-171 (-228)))) (-15 -1666 ((-228) (-228))) (-15 -1666 ((-171 (-228)) (-171 (-228)))) (-15 -3512 ((-228) (-787) (-228))) (-15 -3512 ((-171 (-228)) (-787) (-171 (-228)))) (-15 -4291 ((-228) (-228) (-228))) (-15 -4291 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2920 ((-228) (-228) (-228))) (-15 -2920 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1586 ((-228) (-228) (-228))) (-15 -1586 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3241 ((-228) (-228) (-228))) (-15 -3241 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1888 ((-171 (-228)) (-171 (-228)))) (-15 -1888 ((-228) (-228))) (-15 -3691 ((-228) (-228))) (-15 -3691 ((-171 (-228)) (-171 (-228)))) (-15 -1396 ((-228) (-228) (-228))) (-15 -1396 ((-171 (-228)) (-171 (-228)) (-171 (-228))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3832 (($ (-787) (-787)) NIL T ELT)) (-3871 (($ $ $) NIL T ELT)) (-2660 (($ (-1292 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3757 (($ |#1| |#1| |#1|) 33 T ELT)) (-3755 (((-112) $) NIL T ELT)) (-1915 (($ $ (-577) (-577)) NIL T ELT)) (-2953 (($ $ (-577) (-577)) NIL T ELT)) (-2457 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-4173 (($ $) NIL T ELT)) (-2010 (((-112) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3914 (($ $ (-577) (-577) $) NIL T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577)) $) NIL T ELT)) (-2937 (($ $ (-577) (-1292 |#1|)) NIL T ELT)) (-2025 (($ $ (-577) (-1292 |#1|)) NIL T ELT)) (-1368 (($ |#1| |#1| |#1|) 32 T ELT)) (-1390 (($ (-787) |#1|) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1863 (($ $) NIL (|has| |#1| (-318)) ELT)) (-1578 (((-1292 |#1|) $ (-577)) NIL T ELT)) (-4190 (($ |#1|) 31 T ELT)) (-4224 (($ |#1|) 30 T ELT)) (-4070 (($ |#1|) 29 T ELT)) (-3503 (((-787) $) NIL (|has| |#1| (-569)) ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2759 ((|#1| $ (-577) (-577)) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL T ELT)) (-3225 (((-787) $) NIL (|has| |#1| (-569)) ELT)) (-1404 (((-660 (-1292 |#1|)) $) NIL (|has| |#1| (-569)) ELT)) (-4022 (((-787) $) NIL T ELT)) (-4223 (($ (-787) (-787) |#1|) NIL T ELT)) (-4033 (((-787) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-3979 ((|#1| $) NIL (|has| |#1| (-6 (-4472 "*"))) ELT)) (-4250 (((-577) $) NIL T ELT)) (-2952 (((-577) $) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1484 (((-577) $) NIL T ELT)) (-3329 (((-577) $) NIL T ELT)) (-4307 (($ (-660 (-660 |#1|))) 11 T ELT) (($ (-787) (-787) (-1 |#1| (-577) (-577))) NIL T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2347 (((-660 (-660 |#1|)) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3564 (((-3 $ "failed") $) NIL (|has| |#1| (-375)) ELT)) (-2661 (($) 12 T ELT)) (-2310 (($ $ $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577))) NIL T ELT)) (-3937 (($ (-660 |#1|)) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3534 (((-112) $) NIL T ELT)) (-2534 ((|#1| $) NIL (|has| |#1| (-6 (-4472 "*"))) ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2859 (((-1292 |#1|) $ (-577)) NIL T ELT)) (-3603 (($ (-1292 |#1|)) NIL T ELT) (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) NIL T ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-1292 |#1|) $ (-1292 |#1|)) 15 T ELT) (((-1292 |#1|) (-1292 |#1|) $) NIL T ELT) (((-966 |#1|) $ (-966 |#1|)) 21 T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-230 |#1|) (-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 * ((-966 |#1|) $ (-966 |#1|))) (-15 -2661 ($)) (-15 -4070 ($ |#1|)) (-15 -4224 ($ |#1|)) (-15 -4190 ($ |#1|)) (-15 -1368 ($ |#1| |#1| |#1|)) (-15 -3757 ($ |#1| |#1| |#1|)))) (-13 (-375) (-1227))) (T -230)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227))) (-5 *1 (-230 *3)))) (-2661 (*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-4070 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-4224 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-4190 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-1368 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-3757 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) -(-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 * ((-966 |#1|) $ (-966 |#1|))) (-15 -2661 ($)) (-15 -4070 ($ |#1|)) (-15 -4224 ($ |#1|)) (-15 -4190 ($ |#1|)) (-15 -1368 ($ |#1| |#1| |#1|)) (-15 -3757 ($ |#1| |#1| |#1|)))) -((-2236 (($ (-1 (-112) |#2|) $) 16 T ELT)) (-3266 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 28 T ELT)) (-4360 (($) NIL T ELT) (($ (-660 |#2|)) 11 T ELT)) (-2949 (((-112) $ $) 26 T ELT))) -(((-231 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2236 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3266 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3266 (|#1| |#2| |#1|)) (-15 -4360 (|#1| (-660 |#2|))) (-15 -4360 (|#1|))) (-232 |#2|) (-1125)) (T -231)) -NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2236 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3266 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3266 (|#1| |#2| |#1|)) (-15 -4360 (|#1| (-660 |#2|))) (-15 -4360 (|#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3289 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ |#1| $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 |#1|)) 49 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 51 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-232 |#1|) (-141) (-1125)) (T -232)) +(-13 (-1130) (-10 -8 (-15 -9 ($) -4212) (-15 -8 ($) -4212) (-15 -7 ($) -4212))) +((-3586 (((-112) $ $) NIL T ELT)) (-3593 (((-665 (-888)) $) NIL T ELT)) (-2758 (((-519) $) 8 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1857 (((-188) $) 10 T ELT)) (-4241 (((-112) $ (-519)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2395 (((-712 $) (-519)) 17 T ELT)) (-1476 (((-665 (-112)) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3622 (((-55) $) 12 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-189) (-13 (-187) (-10 -8 (-15 -2395 ((-712 $) (-519)))))) (T -189)) +((-2395 (*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -2395 ((-712 $) (-519))))) +((-4261 ((|#2| |#2|) 28 T ELT)) (-3122 (((-112) |#2|) 19 T ELT)) (-3782 (((-327 |#1|) |#2|) 12 T ELT)) (-3794 (((-327 |#1|) |#2|) 14 T ELT)) (-1350 ((|#2| |#2| (-1206)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3694 (((-171 (-327 |#1|)) |#2|) 10 T ELT)) (-4268 ((|#2| |#2| (-1206)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-190 |#1| |#2|) (-10 -7 (-15 -1350 (|#2| |#2|)) (-15 -1350 (|#2| |#2| (-1206))) (-15 -4268 (|#2| |#2|)) (-15 -4268 (|#2| |#2| (-1206))) (-15 -3782 ((-327 |#1|) |#2|)) (-15 -3794 ((-327 |#1|) |#2|)) (-15 -3122 ((-112) |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -3694 ((-171 (-327 |#1|)) |#2|))) (-13 (-569) (-1068 (-577))) (-13 (-27) (-1232) (-443 (-171 |#1|)))) (T -190)) +((-3694 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-171 (-327 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-4261 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) (-3122 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-4268 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) (-1350 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3))))))) +(-10 -7 (-15 -1350 (|#2| |#2|)) (-15 -1350 (|#2| |#2| (-1206))) (-15 -4268 (|#2| |#2|)) (-15 -4268 (|#2| |#2| (-1206))) (-15 -3782 ((-327 |#1|) |#2|)) (-15 -3794 ((-327 |#1|) |#2|)) (-15 -3122 ((-112) |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -3694 ((-171 (-327 |#1|)) |#2|))) +((-2282 (((-1297 (-710 (-980 |#1|))) (-1297 (-710 |#1|))) 26 T ELT)) (-3709 (((-1297 (-710 (-420 (-980 |#1|)))) (-1297 (-710 |#1|))) 37 T ELT))) +(((-191 |#1|) (-10 -7 (-15 -2282 ((-1297 (-710 (-980 |#1|))) (-1297 (-710 |#1|)))) (-15 -3709 ((-1297 (-710 (-420 (-980 |#1|)))) (-1297 (-710 |#1|))))) (-174)) (T -191)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) (-5 *2 (-1297 (-710 (-420 (-980 *4))))) (-5 *1 (-191 *4)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) (-5 *2 (-1297 (-710 (-980 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -2282 ((-1297 (-710 (-980 |#1|))) (-1297 (-710 |#1|)))) (-15 -3709 ((-1297 (-710 (-420 (-980 |#1|)))) (-1297 (-710 |#1|))))) +((-3903 (((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577)))) 93 T ELT)) (-2521 (((-1208 (-420 (-577))) (-665 (-577)) (-665 (-577))) 107 T ELT)) (-4278 (((-1208 (-420 (-577))) (-949)) 54 T ELT)) (-4419 (((-1208 (-420 (-577))) (-949)) 79 T ELT)) (-3373 (((-420 (-577)) (-1208 (-420 (-577)))) 89 T ELT)) (-3995 (((-1208 (-420 (-577))) (-949)) 37 T ELT)) (-3743 (((-1208 (-420 (-577))) (-949)) 66 T ELT)) (-3969 (((-1208 (-420 (-577))) (-949)) 61 T ELT)) (-1458 (((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577)))) 87 T ELT)) (-4165 (((-1208 (-420 (-577))) (-949)) 29 T ELT)) (-1956 (((-420 (-577)) (-1208 (-420 (-577))) (-1208 (-420 (-577)))) 91 T ELT)) (-1502 (((-1208 (-420 (-577))) (-949)) 35 T ELT)) (-1340 (((-1208 (-420 (-577))) (-665 (-949))) 100 T ELT))) +(((-192) (-10 -7 (-15 -4165 ((-1208 (-420 (-577))) (-949))) (-15 -4278 ((-1208 (-420 (-577))) (-949))) (-15 -3995 ((-1208 (-420 (-577))) (-949))) (-15 -1502 ((-1208 (-420 (-577))) (-949))) (-15 -3969 ((-1208 (-420 (-577))) (-949))) (-15 -3743 ((-1208 (-420 (-577))) (-949))) (-15 -4419 ((-1208 (-420 (-577))) (-949))) (-15 -1956 ((-420 (-577)) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -1458 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3373 ((-420 (-577)) (-1208 (-420 (-577))))) (-15 -3903 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -1340 ((-1208 (-420 (-577))) (-665 (-949)))) (-15 -2521 ((-1208 (-420 (-577))) (-665 (-577)) (-665 (-577)))))) (T -192)) +((-2521 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3903 (*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-1956 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-4419 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) +(-10 -7 (-15 -4165 ((-1208 (-420 (-577))) (-949))) (-15 -4278 ((-1208 (-420 (-577))) (-949))) (-15 -3995 ((-1208 (-420 (-577))) (-949))) (-15 -1502 ((-1208 (-420 (-577))) (-949))) (-15 -3969 ((-1208 (-420 (-577))) (-949))) (-15 -3743 ((-1208 (-420 (-577))) (-949))) (-15 -4419 ((-1208 (-420 (-577))) (-949))) (-15 -1956 ((-420 (-577)) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -1458 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3373 ((-420 (-577)) (-1208 (-420 (-577))))) (-15 -3903 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -1340 ((-1208 (-420 (-577))) (-665 (-949)))) (-15 -2521 ((-1208 (-420 (-577))) (-665 (-577)) (-665 (-577))))) +((-3250 (((-431 (-1202 (-577))) (-577)) 38 T ELT)) (-2858 (((-665 (-1202 (-577))) (-577)) 33 T ELT)) (-1971 (((-1202 (-577)) (-577)) 28 T ELT))) +(((-193) (-10 -7 (-15 -2858 ((-665 (-1202 (-577))) (-577))) (-15 -1971 ((-1202 (-577)) (-577))) (-15 -3250 ((-431 (-1202 (-577))) (-577))))) (T -193)) +((-3250 (*1 *2 *3) (-12 (-5 *2 (-431 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577)))) (-1971 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) (-2858 (*1 *2 *3) (-12 (-5 *2 (-665 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) +(-10 -7 (-15 -2858 ((-665 (-1202 (-577))) (-577))) (-15 -1971 ((-1202 (-577)) (-577))) (-15 -3250 ((-431 (-1202 (-577))) (-577)))) +((-3486 (((-1187 (-228)) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 132 T ELT)) (-2536 (((-665 (-1188)) (-1187 (-228))) NIL T ELT)) (-2862 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109 T ELT)) (-2835 (((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228)))) NIL T ELT)) (-2608 (((-665 (-1188)) (-665 (-228))) NIL T ELT)) (-1608 (((-228) (-1124 (-864 (-228)))) 31 T ELT)) (-2212 (((-228) (-1124 (-864 (-228)))) 32 T ELT)) (-3815 (((-391) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 126 T ELT)) (-3643 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 67 T ELT)) (-3029 (((-1188) (-228)) NIL T ELT)) (-3010 (((-1188) (-665 (-1188))) 27 T ELT)) (-2360 (((-1065) (-1206) (-1206) (-1065)) 13 T ELT))) +(((-194) (-10 -7 (-15 -2862 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3643 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1608 ((-228) (-1124 (-864 (-228))))) (-15 -2212 ((-228) (-1124 (-864 (-228))))) (-15 -3815 ((-391) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2835 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -3486 ((-1187 (-228)) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3029 ((-1188) (-228))) (-15 -2608 ((-665 (-1188)) (-665 (-228)))) (-15 -2536 ((-665 (-1188)) (-1187 (-228)))) (-15 -3010 ((-1188) (-665 (-1188)))) (-15 -2360 ((-1065) (-1206) (-1206) (-1065))))) (T -194)) +((-2360 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-194)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-194)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-194)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-194)))) (-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-194)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-194)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -2862 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3643 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1608 ((-228) (-1124 (-864 (-228))))) (-15 -2212 ((-228) (-1124 (-864 (-228))))) (-15 -3815 ((-391) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2835 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -3486 ((-1187 (-228)) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3029 ((-1188) (-228))) (-15 -2608 ((-665 (-1188)) (-665 (-228)))) (-15 -2536 ((-665 (-1188)) (-1187 (-228)))) (-15 -3010 ((-1188) (-665 (-1188)))) (-15 -2360 ((-1065) (-1206) (-1206) (-1065)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 61 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 33 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-195) (-808)) (T -195)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 66 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-196) (-808)) (T -196)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 81 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 46 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-197) (-808)) (T -197)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 63 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 36 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-198) (-808)) (T -198)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 76 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-199) (-808)) (T -199)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 93 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-200) (-808)) (T -200)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 90 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 51 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-201) (-808)) (T -201)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 78 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-202) (-808)) (T -202)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 76 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 35 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-203) (-808)) (T -203)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 77 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 42 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-204) (-808)) (T -204)) +NIL +(-808) +((-3586 (((-112) $ $) NIL T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 105 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 86 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-205) (-808)) (T -205)) +NIL +(-808) +((-4009 (((-3 (-2 (|:| -1868 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109 T ELT)) (-1829 (((-577) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 59 T ELT)) (-1345 (((-3 (-665 (-228)) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 90 T ELT))) +(((-206) (-10 -7 (-15 -4009 ((-3 (-2 (|:| -1868 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1345 ((-3 (-665 (-228)) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1829 ((-577) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -206)) +((-1829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-577)) (-5 *1 (-206)))) (-1345 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-206)))) (-4009 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -1868 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) +(-10 -7 (-15 -4009 ((-3 (-2 (|:| -1868 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1345 ((-3 (-665 (-228)) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1829 ((-577) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-2132 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49 T ELT)) (-1584 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 157 T ELT)) (-1705 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-710 (-327 (-228)))) 112 T ELT)) (-1576 (((-391) (-710 (-327 (-228)))) 140 T ELT)) (-2909 (((-710 (-327 (-228))) (-1297 (-327 (-228))) (-665 (-1206))) 136 T ELT)) (-2685 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 37 T ELT)) (-3242 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 53 T ELT)) (-3373 (((-710 (-327 (-228))) (-710 (-327 (-228))) (-665 (-1206)) (-1297 (-327 (-228)))) 125 T ELT)) (-3785 (((-391) (-391) (-665 (-391))) 133 T ELT) (((-391) (-391) (-391)) 128 T ELT)) (-2492 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 45 T ELT))) +(((-207) (-10 -7 (-15 -3785 ((-391) (-391) (-391))) (-15 -3785 ((-391) (-391) (-665 (-391)))) (-15 -1576 ((-391) (-710 (-327 (-228))))) (-15 -2909 ((-710 (-327 (-228))) (-1297 (-327 (-228))) (-665 (-1206)))) (-15 -3373 ((-710 (-327 (-228))) (-710 (-327 (-228))) (-665 (-1206)) (-1297 (-327 (-228))))) (-15 -1705 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-710 (-327 (-228))))) (-15 -1584 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2132 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3242 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2492 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2685 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -207)) +((-2685 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-710 (-327 (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-3373 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-710 (-327 (-228)))) (-5 *3 (-665 (-1206))) (-5 *4 (-1297 (-327 (-228)))) (-5 *1 (-207)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) (-5 *2 (-710 (-327 (-228)))) (-5 *1 (-207)))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-710 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-3785 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-391))) (-5 *2 (-391)) (-5 *1 (-207)))) (-3785 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207))))) +(-10 -7 (-15 -3785 ((-391) (-391) (-391))) (-15 -3785 ((-391) (-391) (-665 (-391)))) (-15 -1576 ((-391) (-710 (-327 (-228))))) (-15 -2909 ((-710 (-327 (-228))) (-1297 (-327 (-228))) (-665 (-1206)))) (-15 -3373 ((-710 (-327 (-228))) (-710 (-327 (-228))) (-665 (-1206)) (-1297 (-327 (-228))))) (-15 -1705 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-710 (-327 (-228))))) (-15 -1584 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2132 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3242 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2492 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2685 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3472 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 75 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-208) (-821)) (T -208)) +NIL +(-821) +((-3586 (((-112) $ $) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3472 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 73 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-209) (-821)) (T -209)) +NIL +(-821) +((-3586 (((-112) $ $) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3472 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 76 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-210) (-821)) (T -210)) +NIL +(-821) +((-3586 (((-112) $ $) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 48 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3472 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 88 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-211) (-821)) (T -211)) +NIL +(-821) +((-4294 (((-665 (-1206)) (-1206) (-792)) 26 T ELT)) (-3313 (((-327 (-228)) (-327 (-228))) 35 T ELT)) (-3374 (((-112) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 87 T ELT)) (-2383 (((-112) (-228) (-228) (-665 (-327 (-228)))) 47 T ELT))) +(((-212) (-10 -7 (-15 -4294 ((-665 (-1206)) (-1206) (-792))) (-15 -3313 ((-327 (-228)) (-327 (-228)))) (-15 -2383 ((-112) (-228) (-228) (-665 (-327 (-228))))) (-15 -3374 ((-112) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))))) (T -212)) +((-3374 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2383 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-665 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3313 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-665 (-1206))) (-5 *1 (-212)) (-5 *3 (-1206))))) +(-10 -7 (-15 -4294 ((-665 (-1206)) (-1206) (-792))) (-15 -3313 ((-327 (-228)) (-327 (-228)))) (-15 -2383 ((-112) (-228) (-228) (-665 (-327 (-228))))) (-15 -3374 ((-112) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 28 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3979 (((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 70 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-213) (-921)) (T -213)) +NIL +(-921) +((-3586 (((-112) $ $) NIL T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 24 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3979 (((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-214) (-921)) (T -214)) +NIL +(-921) +((-3586 (((-112) $ $) NIL T ELT)) (-4364 ((|#2| $ (-792) |#2|) 11 T ELT)) (-4353 ((|#2| $ (-792)) 10 T ELT)) (-3236 (($) 8 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 23 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 13 T ELT))) +(((-215 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3236 ($)) (-15 -4353 (|#2| $ (-792))) (-15 -4364 (|#2| $ (-792) |#2|)))) (-949) (-1130)) (T -215)) +((-3236 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1130)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *2 (-1130)) (-5 *1 (-215 *4 *2)) (-14 *4 (-949)))) (-4364 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-215 *4 *2)) (-14 *4 (-949)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3236 ($)) (-15 -4353 (|#2| $ (-792))) (-15 -4364 (|#2| $ (-792) |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3699 (((-1302) $) 37 T ELT) (((-1302) $ (-949) (-949)) 41 T ELT)) (-2916 (($ $ (-1019)) 19 T ELT) (((-251 (-1188)) $ (-1206)) 15 T ELT)) (-2064 (((-1302) $) 35 T ELT)) (-3709 (((-885) $) 32 T ELT) (($ (-665 |#1|)) 8 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $ $) 27 T ELT)) (-3114 (($ $ $) 22 T ELT))) +(((-216 |#1|) (-13 (-1130) (-634 (-665 |#1|)) (-10 -8 (-15 -2916 ($ $ (-1019))) (-15 -2916 ((-251 (-1188)) $ (-1206))) (-15 -3114 ($ $ $)) (-15 -3128 ($ $ $)) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $)) (-15 -3699 ((-1302) $ (-949) (-949))))) (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $))))) (T -216)) +((-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $))))))) (-2916 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-251 (-1188))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ *3)) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $))))))) (-3114 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $))))))) (-3128 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $))))))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 (*2 $)) (-15 -3699 (*2 $))))))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 (*2 $)) (-15 -3699 (*2 $))))))) (-3699 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 (*2 $)) (-15 -3699 (*2 $)))))))) +(-13 (-1130) (-634 (-665 |#1|)) (-10 -8 (-15 -2916 ($ $ (-1019))) (-15 -2916 ((-251 (-1188)) $ (-1206))) (-15 -3114 ($ $ $)) (-15 -3128 ($ $ $)) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $)) (-15 -3699 ((-1302) $ (-949) (-949))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) 10 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2812 (($ (-656 |#1|)) 11 T ELT)) (-3709 (((-885) $) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-217 |#1|) (-13 (-865) (-10 -8 (-15 -2812 ($ (-656 |#1|))))) (-665 (-1206))) (T -217)) +((-2812 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-217 *3))))) +(-13 (-865) (-10 -8 (-15 -2812 ($ (-656 |#1|))))) +((-2871 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-218 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2871 (|#2| |#4| (-1 |#2| |#2|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -218)) +((-2871 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1273 (-420 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-218 *5 *2 *6 *3)) (-4 *3 (-354 *5 *2 *6))))) +(-10 -7 (-15 -2871 (|#2| |#4| (-1 |#2| |#2|)))) +((-4244 ((|#2| |#2| (-792) |#2|) 55 T ELT)) (-3460 ((|#2| |#2| (-792) |#2|) 51 T ELT)) (-2670 (((-665 |#2|) (-665 (-2 (|:| |deg| (-792)) (|:| -3566 |#2|)))) 79 T ELT)) (-2113 (((-665 (-2 (|:| |deg| (-792)) (|:| -3566 |#2|))) |#2|) 73 T ELT)) (-2726 (((-112) |#2|) 71 T ELT)) (-3332 (((-431 |#2|) |#2|) 91 T ELT)) (-3759 (((-431 |#2|) |#2|) 90 T ELT)) (-2771 ((|#2| |#2| (-792) |#2|) 49 T ELT)) (-2648 (((-2 (|:| |cont| |#1|) (|:| -2127 (-665 (-2 (|:| |irr| |#2|) (|:| -2243 (-577)))))) |#2| (-112)) 85 T ELT))) +(((-219 |#1| |#2|) (-10 -7 (-15 -3759 ((-431 |#2|) |#2|)) (-15 -3332 ((-431 |#2|) |#2|)) (-15 -2648 ((-2 (|:| |cont| |#1|) (|:| -2127 (-665 (-2 (|:| |irr| |#2|) (|:| -2243 (-577)))))) |#2| (-112))) (-15 -2113 ((-665 (-2 (|:| |deg| (-792)) (|:| -3566 |#2|))) |#2|)) (-15 -2670 ((-665 |#2|) (-665 (-2 (|:| |deg| (-792)) (|:| -3566 |#2|))))) (-15 -2771 (|#2| |#2| (-792) |#2|)) (-15 -3460 (|#2| |#2| (-792) |#2|)) (-15 -4244 (|#2| |#2| (-792) |#2|)) (-15 -2726 ((-112) |#2|))) (-361) (-1273 |#1|)) (T -219)) +((-2726 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4)))) (-4244 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1273 *4)))) (-3460 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1273 *4)))) (-2771 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1273 *4)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |deg| (-792)) (|:| -3566 *5)))) (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *2 (-665 *5)) (-5 *1 (-219 *4 *5)))) (-2113 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -3566 *3)))) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-361)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) (-5 *1 (-219 *5 *3)) (-4 *3 (-1273 *5)))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3759 ((-431 |#2|) |#2|)) (-15 -3332 ((-431 |#2|) |#2|)) (-15 -2648 ((-2 (|:| |cont| |#1|) (|:| -2127 (-665 (-2 (|:| |irr| |#2|) (|:| -2243 (-577)))))) |#2| (-112))) (-15 -2113 ((-665 (-2 (|:| |deg| (-792)) (|:| -3566 |#2|))) |#2|)) (-15 -2670 ((-665 |#2|) (-665 (-2 (|:| |deg| (-792)) (|:| -3566 |#2|))))) (-15 -2771 (|#2| |#2| (-792) |#2|)) (-15 -3460 (|#2| |#2| (-792) |#2|)) (-15 -4244 (|#2| |#2| (-792) |#2|)) (-15 -2726 ((-112) |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3783 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-577) (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 (((-577) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4417 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-577) (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-3941 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 (((-577) $) NIL T ELT)) (-1484 (($ (-420 (-577))) 9 T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1034 10) $) 10 T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) +(((-220) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 10)) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -1484 ($ (-420 (-577))))))) (T -220)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) +(-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 10)) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -1484 ($ (-420 (-577)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2978 (((-1148) $) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2392 (((-496) $) 10 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 23 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-1165) $) 15 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-221) (-13 (-1113) (-10 -8 (-15 -2392 ((-496) $)) (-15 -2978 ((-1148) $)) (-15 -2773 ((-1165) $))))) (T -221)) +((-2392 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-221)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-221))))) +(-13 (-1113) (-10 -8 (-15 -2392 ((-496) $)) (-15 -2978 ((-1148) $)) (-15 -2773 ((-1165) $)))) +((-1869 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)) (-1188)) 29 T ELT) (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|))) 25 T ELT)) (-2440 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1206) (-864 |#2|) (-864 |#2|) (-112)) 17 T ELT))) +(((-222 |#1| |#2|) (-10 -7 (-15 -1869 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)))) (-15 -1869 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)) (-1188))) (-15 -2440 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1206) (-864 |#2|) (-864 |#2|) (-112)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-29 |#1|))) (T -222)) +((-2440 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1206)) (-5 *6 (-112)) (-4 *7 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-4 *3 (-13 (-1232) (-987) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *7 *3)) (-5 *5 (-864 *3)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-864 *3))) (-5 *5 (-1188)) (-4 *3 (-13 (-1232) (-987) (-29 *6))) (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6 *3)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-864 *3))) (-4 *3 (-13 (-1232) (-987) (-29 *5))) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5 *3))))) +(-10 -7 (-15 -1869 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)))) (-15 -1869 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)) (-1188))) (-15 -2440 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1206) (-864 |#2|) (-864 |#2|) (-112)))) +((-1869 (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))) (-1188)) 49 T ELT) (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))) (-1188)) 50 T ELT) (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|)))) 22 T ELT))) +(((-223 |#1|) (-10 -7 (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))))) (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))) (-1188))) (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))))) (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))) (-1188)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (T -223)) +((-1869 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-864 (-420 (-980 *6))))) (-5 *5 (-1188)) (-5 *3 (-420 (-980 *6))) (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-864 (-420 (-980 *5))))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1122 (-864 (-327 *6)))) (-5 *5 (-1188)) (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1122 (-864 (-327 *5)))) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5))))) +(-10 -7 (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))))) (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))) (-1188))) (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))))) (-15 -1869 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))) (-1188)))) +((-2060 (((-2 (|:| -4181 (-1202 |#1|)) (|:| |deg| (-949))) (-1202 |#1|)) 26 T ELT)) (-3138 (((-665 (-327 |#2|)) (-327 |#2|) (-949)) 51 T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -2060 ((-2 (|:| -4181 (-1202 |#1|)) (|:| |deg| (-949))) (-1202 |#1|))) (-15 -3138 ((-665 (-327 |#2|)) (-327 |#2|) (-949)))) (-1079) (-569)) (T -224)) +((-3138 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *6 (-569)) (-5 *2 (-665 (-327 *6))) (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1079)))) (-2060 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-2 (|:| -4181 (-1202 *4)) (|:| |deg| (-949)))) (-5 *1 (-224 *4 *5)) (-5 *3 (-1202 *4)) (-4 *5 (-569))))) +(-10 -7 (-15 -2060 ((-2 (|:| -4181 (-1202 |#1|)) (|:| |deg| (-949))) (-1202 |#1|))) (-15 -3138 ((-665 (-327 |#2|)) (-327 |#2|) (-949)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1412 ((|#1| $) NIL T ELT)) (-2841 ((|#1| $) 30 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4258 (($ $) NIL T ELT)) (-2609 (($ $) 39 T ELT)) (-1839 ((|#1| |#1| $) NIL T ELT)) (-2268 ((|#1| $) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-4166 (((-792) $) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) NIL T ELT)) (-3146 ((|#1| |#1| $) 35 T ELT)) (-2202 ((|#1| |#1| $) 37 T ELT)) (-4375 (($ |#1| $) NIL T ELT)) (-2553 (((-792) $) 33 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3183 ((|#1| $) NIL T ELT)) (-3142 ((|#1| $) 31 T ELT)) (-4385 ((|#1| $) 29 T ELT)) (-3205 ((|#1| $) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2613 ((|#1| |#1| $) NIL T ELT)) (-2687 (((-112) $) 9 T ELT)) (-2833 (($) NIL T ELT)) (-3855 ((|#1| $) NIL T ELT)) (-1559 (($) NIL T ELT) (($ (-665 |#1|)) 16 T ELT)) (-2105 (((-792) $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2322 ((|#1| $) 13 T ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) NIL T ELT)) (-3993 ((|#1| $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-225 |#1|) (-13 (-262 |#1|) (-10 -8 (-15 -1559 ($ (-665 |#1|))))) (-1130)) (T -225)) +((-1559 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-225 *3))))) +(-13 (-262 |#1|) (-10 -8 (-15 -1559 ($ (-665 |#1|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4269 (($ (-327 |#1|)) 24 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1887 (((-112) $) NIL T ELT)) (-4335 (((-3 (-327 |#1|) "failed") $) NIL T ELT)) (-3783 (((-327 |#1|) $) NIL T ELT)) (-4048 (($ $) 32 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-4417 (($ (-1 (-327 |#1|) (-327 |#1|)) $) NIL T ELT)) (-4025 (((-327 |#1|) $) NIL T ELT)) (-2944 (($ $) 31 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3876 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($ (-792)) NIL T ELT)) (-1586 (($ $) 33 T ELT)) (-1597 (((-577) $) NIL T ELT)) (-3709 (((-885) $) 65 T ELT) (($ (-577)) NIL T ELT) (($ (-327 |#1|)) NIL T ELT)) (-4171 (((-327 |#1|) $ $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 26 T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) 29 T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-327 |#1|) $) 19 T ELT))) +(((-226 |#1| |#2|) (-13 (-638 (-327 |#1|)) (-1068 (-327 |#1|)) (-10 -8 (-15 -4025 ((-327 |#1|) $)) (-15 -2944 ($ $)) (-15 -4048 ($ $)) (-15 -4171 ((-327 |#1|) $ $)) (-15 -2343 ($ (-792))) (-15 -3876 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1597 ((-577) $)) (-15 -4417 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -4269 ($ (-327 |#1|))) (-15 -1586 ($ $)))) (-13 (-1079) (-870)) (-665 (-1206))) (T -226)) +((-4025 (*1 *2 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-2944 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-665 (-1206))))) (-4048 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-665 (-1206))))) (-4171 (*1 *2 *1 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1079) (-870))) (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206))))) (-4269 (*1 *1 *2) (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1079) (-870))) (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206))))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-665 (-1206)))))) +(-13 (-638 (-327 |#1|)) (-1068 (-327 |#1|)) (-10 -8 (-15 -4025 ((-327 |#1|) $)) (-15 -2944 ($ $)) (-15 -4048 ($ $)) (-15 -4171 ((-327 |#1|) $ $)) (-15 -2343 ($ (-792))) (-15 -3876 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1597 ((-577) $)) (-15 -4417 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -4269 ($ (-327 |#1|))) (-15 -1586 ($ $)))) +((-2782 (((-112) (-1188)) 26 T ELT)) (-2169 (((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-112)) 35 T ELT)) (-4381 (((-3 (-112) "failed") (-1202 |#2|) (-864 |#2|) (-864 |#2|) (-112)) 84 T ELT) (((-3 (-112) "failed") (-980 |#1|) (-1206) (-864 |#2|) (-864 |#2|) (-112)) 85 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -2782 ((-112) (-1188))) (-15 -2169 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-112))) (-15 -4381 ((-3 (-112) "failed") (-980 |#1|) (-1206) (-864 |#2|) (-864 |#2|) (-112))) (-15 -4381 ((-3 (-112) "failed") (-1202 |#2|) (-864 |#2|) (-864 |#2|) (-112)))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-29 |#1|))) (T -227)) +((-4381 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1202 *6)) (-5 *4 (-864 *6)) (-4 *6 (-13 (-1232) (-29 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-227 *5 *6)))) (-4381 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-980 *6)) (-5 *4 (-1206)) (-5 *5 (-864 *7)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *7 (-13 (-1232) (-29 *6))) (-5 *1 (-227 *6 *7)))) (-2169 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1232) (-29 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-227 *6 *4)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1232) (-29 *4)))))) +(-10 -7 (-15 -2782 ((-112) (-1188))) (-15 -2169 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-112))) (-15 -4381 ((-3 (-112) "failed") (-980 |#1|) (-1206) (-864 |#2|) (-864 |#2|) (-112))) (-15 -4381 ((-3 (-112) "failed") (-1202 |#2|) (-864 |#2|) (-864 |#2|) (-112)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 98 T ELT)) (-1363 (((-577) $) 33 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3610 (($ $) NIL T ELT)) (-1660 (($ $) 87 T ELT)) (-2785 (($ $) 75 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-3770 (($ $) 66 T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-1638 (($ $) 85 T ELT)) (-2757 (($ $) 73 T ELT)) (-2578 (((-577) $) 127 T ELT)) (-1682 (($ $) 90 T ELT)) (-2809 (($ $) 77 T ELT)) (-2305 (($) NIL T CONST)) (-3260 (($ $) NIL T ELT)) (-4335 (((-3 (-577) "failed") $) 126 T ELT) (((-3 (-420 (-577)) "failed") $) 123 T ELT)) (-3783 (((-577) $) 124 T ELT) (((-420 (-577)) $) 121 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 103 T ELT)) (-4412 (((-420 (-577)) $ (-792)) 117 T ELT) (((-420 (-577)) $ (-792) (-792)) 116 T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-1847 (((-949)) 28 T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-4339 (((-112) $) NIL T ELT)) (-2450 (($) 46 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL T ELT)) (-4030 (((-577) $) 40 T ELT)) (-3357 (((-112) $) 99 T ELT)) (-3368 (($ $ (-577)) NIL T ELT)) (-2794 (($ $) NIL T ELT)) (-2649 (((-112) $) 97 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) 63 T ELT) (($) 36 (-12 (-2779 (|has| $ (-6 -4482))) (-2779 (|has| $ (-6 -4490)))) ELT)) (-2930 (($ $ $) 62 T ELT) (($) 35 (-12 (-2779 (|has| $ (-6 -4482))) (-2779 (|has| $ (-6 -4490)))) ELT)) (-3079 (((-577) $) 26 T ELT)) (-3591 (($ $) 31 T ELT)) (-2445 (($ $) 67 T ELT)) (-3825 (($ $) 72 T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2110 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-1470 (((-1150) $) 101 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3172 (($ (-577) (-577)) NIL T ELT) (($ (-577) (-577) (-949)) 110 T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2328 (((-577) $) 27 T ELT)) (-1466 (($) 45 T ELT)) (-2355 (($ $) 71 T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3046 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-3641 (($ $) 104 T ELT) (($ $ (-792)) NIL T ELT)) (-4326 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-1692 (($ $) 88 T ELT)) (-2821 (($ $) 78 T ELT)) (-1671 (($ $) 89 T ELT)) (-2797 (($ $) 76 T ELT)) (-1648 (($ $) 86 T ELT)) (-2772 (($ $) 74 T ELT)) (-4463 (((-391) $) 113 T ELT) (((-228) $) 14 T ELT) (((-916 (-391)) $) NIL T ELT) (((-549) $) 52 T ELT)) (-3709 (((-885) $) 49 T ELT) (($ (-577)) 152 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) 152 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (($ $) NIL T ELT)) (-1480 (((-949)) 34 T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (((-949)) 24 T ELT)) (-1727 (($ $) 93 T ELT)) (-2861 (($ $) 81 T ELT) (($ $ $) 119 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-1703 (($ $) 91 T ELT)) (-2834 (($ $) 79 T ELT)) (-1748 (($ $) 96 T ELT)) (-1616 (($ $) 84 T ELT)) (-4468 (($ $) 94 T ELT)) (-1626 (($ $) 82 T ELT)) (-1737 (($ $) 95 T ELT)) (-2874 (($ $) 83 T ELT)) (-1715 (($ $) 92 T ELT)) (-2847 (($ $) 80 T ELT)) (-2215 (($ $) 118 T ELT)) (-2839 (($) 42 T CONST)) (-2853 (($) 43 T CONST)) (-4136 (((-1188) $) 18 T ELT) (((-1188) $ (-112)) 20 T ELT) (((-1302) (-843) $) 21 T ELT) (((-1302) (-843) $ (-112)) 22 T ELT)) (-3802 (($ $) 107 T ELT)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3012 (($ $ $) 109 T ELT)) (-3078 (((-112) $ $) 56 T ELT)) (-3054 (((-112) $ $) 54 T ELT)) (-3018 (((-112) $ $) 64 T ELT)) (-3067 (((-112) $ $) 55 T ELT)) (-3042 (((-112) $ $) 53 T ELT)) (-3139 (($ $ $) 44 T ELT) (($ $ (-577)) 65 T ELT)) (-3128 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-3114 (($ $ $) 58 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 68 T ELT) (($ $ (-420 (-577))) 151 T ELT) (($ $ $) 69 T ELT)) (* (($ (-949) $) 32 T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-228) (-13 (-417) (-239) (-849) (-1232) (-632 (-549)) (-10 -8 (-15 -3139 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -1466 ($)) (-15 -3591 ($ $)) (-15 -2445 ($ $)) (-15 -2861 ($ $ $)) (-15 -3802 ($ $)) (-15 -3012 ($ $ $)) (-15 -4412 ((-420 (-577)) $ (-792))) (-15 -4412 ((-420 (-577)) $ (-792) (-792)))))) (T -228)) +((** (*1 *1 *1 *1) (-5 *1 (-228))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-228)))) (-1466 (*1 *1) (-5 *1 (-228))) (-3591 (*1 *1 *1) (-5 *1 (-228))) (-2445 (*1 *1 *1) (-5 *1 (-228))) (-2861 (*1 *1 *1 *1) (-5 *1 (-228))) (-3802 (*1 *1 *1) (-5 *1 (-228))) (-3012 (*1 *1 *1 *1) (-5 *1 (-228))) (-4412 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) (-4412 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228))))) +(-13 (-417) (-239) (-849) (-1232) (-632 (-549)) (-10 -8 (-15 -3139 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -1466 ($)) (-15 -3591 ($ $)) (-15 -2445 ($ $)) (-15 -2861 ($ $ $)) (-15 -3802 ($ $)) (-15 -3012 ($ $ $)) (-15 -4412 ((-420 (-577)) $ (-792))) (-15 -4412 ((-420 (-577)) $ (-792) (-792))))) +((-4172 (((-171 (-228)) (-792) (-171 (-228))) 11 T ELT) (((-228) (-792) (-228)) 12 T ELT)) (-3933 (((-171 (-228)) (-171 (-228))) 13 T ELT) (((-228) (-228)) 14 T ELT)) (-2722 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 19 T ELT) (((-228) (-228) (-228)) 22 T ELT)) (-2843 (((-171 (-228)) (-171 (-228))) 27 T ELT) (((-228) (-228)) 26 T ELT)) (-2830 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 57 T ELT) (((-228) (-228) (-228)) 49 T ELT)) (-2238 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 62 T ELT) (((-228) (-228) (-228)) 60 T ELT)) (-3923 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 15 T ELT) (((-228) (-228) (-228)) 16 T ELT)) (-3026 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 17 T ELT) (((-228) (-228) (-228)) 18 T ELT)) (-4089 (((-171 (-228)) (-171 (-228))) 74 T ELT) (((-228) (-228)) 73 T ELT)) (-1889 (((-228) (-228)) 68 T ELT) (((-171 (-228)) (-171 (-228))) 72 T ELT)) (-3802 (((-171 (-228)) (-171 (-228))) 8 T ELT) (((-228) (-228)) 9 T ELT)) (-3012 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 35 T ELT) (((-228) (-228) (-228)) 31 T ELT))) +(((-229) (-10 -7 (-15 -3802 ((-228) (-228))) (-15 -3802 ((-171 (-228)) (-171 (-228)))) (-15 -3012 ((-228) (-228) (-228))) (-15 -3012 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3933 ((-228) (-228))) (-15 -3933 ((-171 (-228)) (-171 (-228)))) (-15 -2843 ((-228) (-228))) (-15 -2843 ((-171 (-228)) (-171 (-228)))) (-15 -4172 ((-228) (-792) (-228))) (-15 -4172 ((-171 (-228)) (-792) (-171 (-228)))) (-15 -3923 ((-228) (-228) (-228))) (-15 -3923 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2830 ((-228) (-228) (-228))) (-15 -2830 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3026 ((-228) (-228) (-228))) (-15 -3026 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2238 ((-228) (-228) (-228))) (-15 -2238 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1889 ((-171 (-228)) (-171 (-228)))) (-15 -1889 ((-228) (-228))) (-15 -4089 ((-228) (-228))) (-15 -4089 ((-171 (-228)) (-171 (-228)))) (-15 -2722 ((-228) (-228) (-228))) (-15 -2722 ((-171 (-228)) (-171 (-228)) (-171 (-228)))))) (T -229)) +((-2722 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2722 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2238 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2238 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3026 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3026 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2830 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2830 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3923 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3923 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-4172 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-228))) (-5 *3 (-792)) (-5 *1 (-229)))) (-4172 (*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-792)) (-5 *1 (-229)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229))))) +(-10 -7 (-15 -3802 ((-228) (-228))) (-15 -3802 ((-171 (-228)) (-171 (-228)))) (-15 -3012 ((-228) (-228) (-228))) (-15 -3012 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3933 ((-228) (-228))) (-15 -3933 ((-171 (-228)) (-171 (-228)))) (-15 -2843 ((-228) (-228))) (-15 -2843 ((-171 (-228)) (-171 (-228)))) (-15 -4172 ((-228) (-792) (-228))) (-15 -4172 ((-171 (-228)) (-792) (-171 (-228)))) (-15 -3923 ((-228) (-228) (-228))) (-15 -3923 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2830 ((-228) (-228) (-228))) (-15 -2830 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3026 ((-228) (-228) (-228))) (-15 -3026 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2238 ((-228) (-228) (-228))) (-15 -2238 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1889 ((-171 (-228)) (-171 (-228)))) (-15 -1889 ((-228) (-228))) (-15 -4089 ((-228) (-228))) (-15 -4089 ((-171 (-228)) (-171 (-228)))) (-15 -2722 ((-228) (-228) (-228))) (-15 -2722 ((-171 (-228)) (-171 (-228)) (-171 (-228))))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4084 (($ (-792) (-792)) NIL T ELT)) (-3813 (($ $ $) NIL T ELT)) (-2444 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-2751 (($ |#1| |#1| |#1|) 33 T ELT)) (-4140 (((-112) $) NIL T ELT)) (-3674 (($ $ (-577) (-577)) NIL T ELT)) (-4459 (($ $ (-577) (-577)) NIL T ELT)) (-2660 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-2422 (($ $) NIL T ELT)) (-2671 (((-112) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2956 (($ $ (-577) (-577) $) NIL T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) NIL T ELT)) (-2699 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-1969 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-2641 (($ |#1| |#1| |#1|) 32 T ELT)) (-4316 (($ (-792) |#1|) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3280 (($ $) NIL (|has| |#1| (-318)) ELT)) (-4448 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-2988 (($ |#1|) 31 T ELT)) (-4161 (($ |#1|) 30 T ELT)) (-2739 (($ |#1|) 29 T ELT)) (-1641 (((-792) $) NIL (|has| |#1| (-569)) ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-4353 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL T ELT)) (-3480 (((-792) $) NIL (|has| |#1| (-569)) ELT)) (-4202 (((-665 (-1297 |#1|)) $) NIL (|has| |#1| (-569)) ELT)) (-2408 (((-792) $) NIL T ELT)) (-3236 (($ (-792) (-792) |#1|) NIL T ELT)) (-2420 (((-792) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2607 ((|#1| $) NIL (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4051 (((-577) $) NIL T ELT)) (-3232 (((-577) $) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1766 (((-577) $) NIL T ELT)) (-3371 (((-577) $) NIL T ELT)) (-2374 (($ (-665 (-665 |#1|))) 11 T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) NIL T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2905 (((-665 (-665 |#1|)) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1767 (((-3 $ "failed") $) NIL (|has| |#1| (-375)) ELT)) (-3529 (($) 12 T ELT)) (-2010 (($ $ $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) NIL T ELT)) (-3650 (($ (-665 |#1|)) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4101 (((-112) $) NIL T ELT)) (-3422 ((|#1| $) NIL (|has| |#1| (-6 (-4501 "*"))) ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-1455 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-3709 (($ (-1297 |#1|)) NIL T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) NIL T ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) 15 T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT) (((-971 |#1|) $ (-971 |#1|)) 21 T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-230 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-971 |#1|) $ (-971 |#1|))) (-15 -3529 ($)) (-15 -2739 ($ |#1|)) (-15 -4161 ($ |#1|)) (-15 -2988 ($ |#1|)) (-15 -2641 ($ |#1| |#1| |#1|)) (-15 -2751 ($ |#1| |#1| |#1|)))) (-13 (-375) (-1232))) (T -230)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232))) (-5 *1 (-230 *3)))) (-3529 (*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-2739 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-4161 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-2988 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-2641 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-2751 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) +(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-971 |#1|) $ (-971 |#1|))) (-15 -3529 ($)) (-15 -2739 ($ |#1|)) (-15 -4161 ($ |#1|)) (-15 -2988 ($ |#1|)) (-15 -2641 ($ |#1| |#1| |#1|)) (-15 -2751 ($ |#1| |#1| |#1|)))) +((-3730 (($ (-1 (-112) |#2|) $) 16 T ELT)) (-1894 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 28 T ELT)) (-3470 (($) NIL T ELT) (($ (-665 |#2|)) 11 T ELT)) (-3018 (((-112) $ $) 26 T ELT))) +(((-231 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1894 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1894 (|#1| |#2| |#1|)) (-15 -3470 (|#1| (-665 |#2|))) (-15 -3470 (|#1|))) (-232 |#2|) (-1130)) (T -231)) +NIL +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1894 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1894 (|#1| |#2| |#1|)) (-15 -3470 (|#1| (-665 |#2|))) (-15 -3470 (|#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-3589 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 51 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-232 |#1|) (-141) (-1130)) (T -232)) NIL (-13 (-241 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3362 (($ $ (-1 |#1| |#1|) (-787)) 57 T ELT) (($ $ (-1 |#1| |#1|)) 56 T ELT) (($ $ (-1201)) 55 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 53 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 52 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 51 (|has| |#1| (-923 (-1201))) ELT) (($ $) 47 (|has| |#1| (-238)) ELT) (($ $ (-787)) 45 (|has| |#1| (-238)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1 |#1| |#1|) (-787)) 59 T ELT) (($ $ (-1 |#1| |#1|)) 58 T ELT) (($ $ (-1201)) 54 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 50 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 49 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 48 (|has| |#1| (-923 (-1201))) ELT) (($ $) 46 (|has| |#1| (-238)) ELT) (($ $ (-787)) 44 (|has| |#1| (-238)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-233 |#1|) (-141) (-1074)) (T -233)) -NIL -(-13 (-1074) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-235 $) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-239) |has| |#1| (-239)) ((-238) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-915 $ #0=(-1201)) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #0#) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2136 ((|#2| $) 9 T ELT))) -(((-234 |#1| |#2|) (-10 -8 (-15 -2136 (|#2| |#1|))) (-235 |#2|) (-1242)) (T -234)) -NIL -(-10 -8 (-15 -2136 (|#2| |#1|))) -((-3362 ((|#1| $) 7 T ELT)) (-2136 ((|#1| $) 6 T ELT))) -(((-235 |#1|) (-141) (-1242)) (T -235)) -((-3362 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242))))) -(-13 (-1242) (-10 -8 (-15 -3362 (|t#1| $)) (-15 -2136 (|t#1| $)))) -(((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3362 (($ $ (-787)) 37 T ELT) (($ $) 35 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2136 (($ $ (-787)) 38 T ELT) (($ $) 36 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-236 |#1|) (-141) (-1074)) (T -236)) -NIL -(-13 (-111 |t#1| |t#1|) (-238) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-733 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-235 $) . T) ((-238) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3362 (($ $) NIL T ELT) (($ $ (-787)) 9 T ELT)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) 11 T ELT))) -(((-237 |#1|) (-10 -8 (-15 -2136 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-787))) (-15 -2136 (|#1| |#1|)) (-15 -3362 (|#1| |#1|))) (-238)) (T -237)) -NIL -(-10 -8 (-15 -2136 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-787))) (-15 -2136 (|#1| |#1|)) (-15 -3362 (|#1| |#1|))) -((-3362 (($ $) 7 T ELT) (($ $ (-787)) 10 T ELT)) (-2136 (($ $) 6 T ELT) (($ $ (-787)) 9 T ELT))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3641 (($ $ (-1 |#1| |#1|) (-792)) 57 T ELT) (($ $ (-1 |#1| |#1|)) 56 T ELT) (($ $ (-1206)) 55 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 53 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 52 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 51 (|has| |#1| (-928 (-1206))) ELT) (($ $) 47 (|has| |#1| (-238)) ELT) (($ $ (-792)) 45 (|has| |#1| (-238)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1 |#1| |#1|) (-792)) 59 T ELT) (($ $ (-1 |#1| |#1|)) 58 T ELT) (($ $ (-1206)) 54 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 50 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 49 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 48 (|has| |#1| (-928 (-1206))) ELT) (($ $) 46 (|has| |#1| (-238)) ELT) (($ $ (-792)) 44 (|has| |#1| (-238)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-233 |#1|) (-141) (-1079)) (T -233)) +NIL +(-13 (-1079) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-235 $) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-239) |has| |#1| (-239)) ((-238) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-920 $ #0=(-1206)) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #0#) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-2389 ((|#2| $) 9 T ELT))) +(((-234 |#1| |#2|) (-10 -8 (-15 -2389 (|#2| |#1|))) (-235 |#2|) (-1247)) (T -234)) +NIL +(-10 -8 (-15 -2389 (|#2| |#1|))) +((-3641 ((|#1| $) 7 T ELT)) (-2389 ((|#1| $) 6 T ELT))) +(((-235 |#1|) (-141) (-1247)) (T -235)) +((-3641 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -3641 (|t#1| $)) (-15 -2389 (|t#1| $)))) +(((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3641 (($ $ (-792)) 37 T ELT) (($ $) 35 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2389 (($ $ (-792)) 38 T ELT) (($ $) 36 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-236 |#1|) (-141) (-1079)) (T -236)) +NIL +(-13 (-111 |t#1| |t#1|) (-238) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-738 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-235 $) . T) ((-238) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3641 (($ $) NIL T ELT) (($ $ (-792)) 9 T ELT)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) 11 T ELT))) +(((-237 |#1|) (-10 -8 (-15 -2389 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-792))) (-15 -2389 (|#1| |#1|)) (-15 -3641 (|#1| |#1|))) (-238)) (T -237)) +NIL +(-10 -8 (-15 -2389 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-792))) (-15 -2389 (|#1| |#1|)) (-15 -3641 (|#1| |#1|))) +((-3641 (($ $) 7 T ELT) (($ $ (-792)) 10 T ELT)) (-2389 (($ $) 6 T ELT) (($ $ (-792)) 9 T ELT))) (((-238) (-141)) (T -238)) -((-3362 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787)))) (-2136 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787))))) -(-13 (-235 $) (-10 -8 (-15 -3362 ($ $ (-787))) (-15 -2136 ($ $ (-787))))) -(((-235 $) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3362 (($ $ (-787)) 42 T ELT) (($ $) 40 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-787)) 43 T ELT) (($ $) 41 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-3641 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792)))) (-2389 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792))))) +(-13 (-235 $) (-10 -8 (-15 -3641 ($ $ (-792))) (-15 -2389 ($ $ (-792))))) +(((-235 $) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3641 (($ $ (-792)) 42 T ELT) (($ $) 40 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-792)) 43 T ELT) (($ $) 41 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-239) (-141)) (T -239)) NIL -(-13 (-1074) (-238)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-235 $) . T) ((-238) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-4360 (($) 12 T ELT) (($ (-660 |#2|)) NIL T ELT)) (-1914 (($ $) 14 T ELT)) (-3614 (($ (-660 |#2|)) 10 T ELT)) (-3603 (((-880) $) 21 T ELT))) -(((-240 |#1| |#2|) (-10 -8 (-15 -3603 ((-880) |#1|)) (-15 -4360 (|#1| (-660 |#2|))) (-15 -4360 (|#1|)) (-15 -3614 (|#1| (-660 |#2|))) (-15 -1914 (|#1| |#1|))) (-241 |#2|) (-1125)) (T -240)) -NIL -(-10 -8 (-15 -3603 ((-880) |#1|)) (-15 -4360 (|#1| (-660 |#2|))) (-15 -4360 (|#1|)) (-15 -3614 (|#1| (-660 |#2|))) (-15 -1914 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3289 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ |#1| $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 |#1|)) 49 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 51 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-241 |#1|) (-141) (-1125)) (T -241)) -((-4360 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1125)))) (-4360 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-241 *3)))) (-3266 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-241 *2)) (-4 *2 (-1125)))) (-3266 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) (-4 *3 (-1125)))) (-2236 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) (-4 *3 (-1125))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -4360 ($)) (-15 -4360 ($ (-660 |t#1|))) (IF (|has| $ (-6 -4470)) (PROGN (-15 -3266 ($ |t#1| $)) (-15 -3266 ($ (-1 (-112) |t#1|) $)) (-15 -2236 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-4120 (((-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787))))) (-305 (-975 (-577)))) 42 T ELT))) -(((-242) (-10 -7 (-15 -4120 ((-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787))))) (-305 (-975 (-577))))))) (T -242)) -((-4120 (*1 *2 *3) (-12 (-5 *3 (-305 (-975 (-577)))) (-5 *2 (-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787)))))) (-5 *1 (-242))))) -(-10 -7 (-15 -4120 ((-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787))))) (-305 (-975 (-577)))))) -((-3373 (((-787)) 56 T ELT)) (-2850 (((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) 53 T ELT) (((-705 |#3|) (-705 $)) 44 T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT)) (-3941 (((-135)) 62 T ELT)) (-3362 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-3603 (((-1292 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-880) $) NIL T ELT) (($ (-577)) 12 T ELT) (($ (-420 (-577))) NIL T ELT)) (-1920 (((-787)) 15 T ELT)) (-3051 (($ $ |#3|) 59 T ELT))) -(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| (-577))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3603 ((-880) |#1|)) (-15 -1920 ((-787))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -3603 (|#1| |#3|)) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2850 ((-705 |#3|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -3373 ((-787))) (-15 -3051 (|#1| |#1| |#3|)) (-15 -3941 ((-135))) (-15 -3603 ((-1292 |#3|) |#1|))) (-244 |#2| |#3|) (-787) (-1242)) (T -243)) -((-3941 (*1 *2) (-12 (-14 *4 (-787)) (-4 *5 (-1242)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-3373 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-1920 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) -(-10 -8 (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| (-577))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3603 ((-880) |#1|)) (-15 -1920 ((-787))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -3603 (|#1| |#3|)) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2850 ((-705 |#3|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -3373 ((-787))) (-15 -3051 (|#1| |#1| |#3|)) (-15 -3941 ((-135))) (-15 -3603 ((-1292 |#3|) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-3801 (((-112) $) 76 (|has| |#2| (-23)) ELT)) (-3303 (($ (-944)) 129 (|has| |#2| (-1074)) ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-2510 (($ $ $) 125 (|has| |#2| (-809)) ELT)) (-1771 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3373 (((-787)) 115 (|has| |#2| (-380)) ELT)) (-1895 ((|#2| $ (-577) |#2|) 53 (|has| $ (-6 -4471)) ELT)) (-3790 (($) 7 T CONST)) (-2784 (((-3 (-577) "failed") $) 71 (-2700 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-3 (-420 (-577)) "failed") $) 68 (-2700 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1125)) ELT)) (-2155 (((-577) $) 70 (-2700 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-420 (-577)) $) 67 (-2700 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) ((|#2| $) 66 (|has| |#2| (-1125)) ELT)) (-2850 (((-705 (-577)) (-705 $)) 112 (-2700 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 111 (-2700 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 110 (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-705 $)) 109 (|has| |#2| (-1074)) ELT)) (-1625 (((-3 $ "failed") $) 86 (|has| |#2| (-1074)) ELT)) (-2352 (($) 118 (|has| |#2| (-380)) ELT)) (-2840 ((|#2| $ (-577) |#2|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ (-577)) 52 T ELT)) (-3692 (((-660 |#2|) $) 31 (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) 88 (|has| |#2| (-1074)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 119 (|has| |#2| (-865)) ELT)) (-2434 (((-660 |#2|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 120 (|has| |#2| (-865)) ELT)) (-2826 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-2144 (((-944) $) 117 (|has| |#2| (-380)) ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 114 (-2700 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 113 (-2700 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) 108 (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-1292 $)) 107 (|has| |#2| (-1074)) ELT)) (-2045 (((-1183) $) 23 (|has| |#2| (-1125)) ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-3251 (($ (-944)) 116 (|has| |#2| (-380)) ELT)) (-1440 (((-1145) $) 22 (|has| |#2| (-1125)) ELT)) (-1652 ((|#2| $) 43 (|has| (-577) (-865)) ELT)) (-2529 (($ $ |#2|) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#2| $ (-577) |#2|) 51 T ELT) ((|#2| $ (-577)) 50 T ELT)) (-3366 ((|#2| $ $) 128 (|has| |#2| (-1074)) ELT)) (-3097 (($ (-1292 |#2|)) 130 T ELT)) (-3941 (((-135)) 127 (|has| |#2| (-375)) ELT)) (-3362 (($ $ (-787)) 105 (-2700 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) 103 (-2700 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 99 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) 98 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) 97 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) 95 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) 93 (|has| |#2| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) 29 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-1292 |#2|) $) 131 T ELT) (($ (-577)) 72 (-2811 (-2700 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ELT) (($ (-420 (-577))) 69 (-2700 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (($ |#2|) 64 (|has| |#2| (-1125)) ELT) (((-880) $) 18 (|has| |#2| (-626 (-880))) ELT)) (-1920 (((-787)) 90 (|has| |#2| (-1074)) CONST)) (-2726 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2754 (($) 75 (|has| |#2| (-23)) CONST)) (-2767 (($) 89 (|has| |#2| (-1074)) CONST)) (-2136 (($ $ (-787)) 106 (-2700 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) 104 (-2700 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 102 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) 101 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) 100 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) 96 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) 91 (|has| |#2| (-1074)) ELT)) (-3001 (((-112) $ $) 121 (|has| |#2| (-865)) ELT)) (-2978 (((-112) $ $) 123 (|has| |#2| (-865)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-2988 (((-112) $ $) 122 (|has| |#2| (-865)) ELT)) (-2971 (((-112) $ $) 124 (|has| |#2| (-865)) ELT)) (-3051 (($ $ |#2|) 126 (|has| |#2| (-375)) ELT)) (-3042 (($ $ $) 81 (|has| |#2| (-21)) ELT) (($ $) 80 (|has| |#2| (-21)) ELT)) (-3031 (($ $ $) 73 (|has| |#2| (-25)) ELT)) (** (($ $ (-787)) 87 (|has| |#2| (-1074)) ELT) (($ $ (-944)) 84 (|has| |#2| (-1074)) ELT)) (* (($ $ $) 85 (|has| |#2| (-1074)) ELT) (($ $ |#2|) 83 (|has| |#2| (-742)) ELT) (($ |#2| $) 82 (|has| |#2| (-742)) ELT) (($ (-577) $) 79 (|has| |#2| (-21)) ELT) (($ (-787) $) 77 (|has| |#2| (-23)) ELT) (($ (-944) $) 74 (|has| |#2| (-25)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-244 |#1| |#2|) (-141) (-787) (-1242)) (T -244)) -((-3097 (*1 *1 *2) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1242)) (-4 *1 (-244 *3 *4)))) (-3303 (*1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1074)) (-4 *4 (-1242)))) (-3366 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1242)) (-4 *2 (-1074))))) -(-13 (-617 (-577) |t#2|) (-626 (-1292 |t#2|)) (-10 -8 (-6 -4470) (-15 -3097 ($ (-1292 |t#2|))) (IF (|has| |t#2| (-1125)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1074)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-389 |t#2|)) (-15 -3303 ($ (-944))) (-15 -3366 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-742)) (-6 (-656 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-733 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4467)) (-6 -4467) |%noBranch|) (IF (|has| |t#2| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#2| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |t#2| (-375)) (-6 (-1299 |t#2|)) |%noBranch|))) -(((-21) -2811 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2811 (|has| |#2| (-1074)) (|has| |#2| (-809)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2811 (|has| |#2| (-1074)) (|has| |#2| (-809)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2811 (|has| |#2| (-1125)) (|has| |#2| (-1074)) (|has| |#2| (-865)) (|has| |#2| (-809)) (|has| |#2| (-742)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2811 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-132) -2811 (|has| |#2| (-1074)) (|has| |#2| (-809)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-629 #0=(-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ((-629 (-577)) -2811 (|has| |#2| (-1074)) (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) ((-629 |#2|) |has| |#2| (-1125)) ((-626 (-880)) -2811 (|has| |#2| (-1125)) (|has| |#2| (-1074)) (|has| |#2| (-865)) (|has| |#2| (-809)) (|has| |#2| (-742)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-626 (-880))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-626 (-1292 |#2|)) . T) ((-235 $) -2811 (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1074)))) ((-233 |#2|) |has| |#2| (-1074)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1074))) ((-238) -2811 (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1074)))) ((-273 |#2|) |has| |#2| (-1074)) ((-297 #1=(-577) |#2|) . T) ((-299 #1# |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-380) |has| |#2| (-380)) ((-389 |#2|) |has| |#2| (-1074)) ((-424 |#2|) |has| |#2| (-1125)) ((-502 |#2|) . T) ((-617 #1# |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-662 (-577)) -2811 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-662 |#2|) -2811 (|has| |#2| (-1074)) (|has| |#2| (-742)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-662 $) |has| |#2| (-1074)) ((-664 #2=(-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ((-664 |#2|) -2811 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-664 $) |has| |#2| (-1074)) ((-656 |#2|) -2811 (|has| |#2| (-742)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-654 #2#) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ((-654 |#2|) |has| |#2| (-1074)) ((-733 |#2|) -2811 (|has| |#2| (-375)) (|has| |#2| (-174))) ((-742) |has| |#2| (-1074)) ((-808) |has| |#2| (-809)) ((-809) |has| |#2| (-809)) ((-810) |has| |#2| (-809)) ((-811) |has| |#2| (-809)) ((-865) -2811 (|has| |#2| (-865)) (|has| |#2| (-809))) ((-868) -2811 (|has| |#2| (-865)) (|has| |#2| (-809))) ((-915 $ #3=(-1201)) -2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) ((-921 (-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) ((-923 #3#) -2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) ((-1063 #0#) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ((-1063 (-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ((-1063 |#2|) |has| |#2| (-1125)) ((-1076 |#2|) -2811 (|has| |#2| (-1074)) (|has| |#2| (-742)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1081 |#2|) -2811 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1074) |has| |#2| (-1074)) ((-1083) |has| |#2| (-1074)) ((-1137) |has| |#2| (-1074)) ((-1125) -2811 (|has| |#2| (-1125)) (|has| |#2| (-1074)) (|has| |#2| (-865)) (|has| |#2| (-809)) (|has| |#2| (-742)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1242) . T) ((-1299 |#2|) |has| |#2| (-375))) -((-1979 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-2498 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-2124 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) -(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -1979 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2498 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2124 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-787) (-1242) (-1242)) (T -245)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) (-4 *6 (-1242)) (-4 *2 (-1242)) (-5 *1 (-245 *5 *6 *2)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-787)) (-4 *7 (-1242)) (-4 *5 (-1242)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) -(-10 -7 (-15 -1979 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2498 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2124 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) -((-3489 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3801 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-3303 (($ (-944)) 62 (|has| |#2| (-1074)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2510 (($ $ $) 68 (|has| |#2| (-809)) ELT)) (-1771 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#2| (-380)) ELT)) (-1895 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1125)) ELT)) (-2155 (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) ((|#2| $) 28 (|has| |#2| (-1125)) ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-705 $)) NIL (|has| |#2| (-1074)) ELT)) (-1625 (((-3 $ "failed") $) 58 (|has| |#2| (-1074)) ELT)) (-2352 (($) NIL (|has| |#2| (-380)) ELT)) (-2840 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ (-577)) 56 T ELT)) (-3692 (((-660 |#2|) $) 14 (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL (|has| |#2| (-1074)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 19 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-2434 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-2826 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#2| (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-1292 $)) NIL (|has| |#2| (-1074)) ELT)) (-2045 (((-1183) $) NIL (|has| |#2| (-1125)) ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-3251 (($ (-944)) NIL (|has| |#2| (-380)) ELT)) (-1440 (((-1145) $) NIL (|has| |#2| (-1125)) ELT)) (-1652 ((|#2| $) NIL (|has| (-577) (-865)) ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) 20 T ELT)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1074)) ELT)) (-3097 (($ (-1292 |#2|)) 17 T ELT)) (-3941 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-3362 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-1292 |#2|) $) 9 T ELT) (($ (-577)) NIL (-2811 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (($ |#2|) 12 (|has| |#2| (-1125)) ELT) (((-880) $) NIL (|has| |#2| (-626 (-880))) ELT)) (-1920 (((-787)) NIL (|has| |#2| (-1074)) CONST)) (-2726 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2754 (($) 36 (|has| |#2| (-23)) CONST)) (-2767 (($) 40 (|has| |#2| (-1074)) CONST)) (-2136 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2949 (((-112) $ $) 27 (|has| |#2| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2971 (((-112) $ $) 66 (|has| |#2| (-865)) ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3031 (($ $ $) 34 (|has| |#2| (-25)) ELT)) (** (($ $ (-787)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-944)) NIL (|has| |#2| (-1074)) ELT)) (* (($ $ $) 46 (|has| |#2| (-1074)) ELT) (($ $ |#2|) 44 (|has| |#2| (-742)) ELT) (($ |#2| $) 45 (|has| |#2| (-742)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-787) $) NIL (|has| |#2| (-23)) ELT) (($ (-944) $) NIL (|has| |#2| (-25)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-246 |#1| |#2|) (-244 |#1| |#2|) (-787) (-1242)) (T -246)) +(-13 (-1079) (-238)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-235 $) . T) ((-238) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3470 (($) 12 T ELT) (($ (-665 |#2|)) NIL T ELT)) (-1977 (($ $) 14 T ELT)) (-3722 (($ (-665 |#2|)) 10 T ELT)) (-3709 (((-885) $) 21 T ELT))) +(((-240 |#1| |#2|) (-10 -8 (-15 -3709 ((-885) |#1|)) (-15 -3470 (|#1| (-665 |#2|))) (-15 -3470 (|#1|)) (-15 -3722 (|#1| (-665 |#2|))) (-15 -1977 (|#1| |#1|))) (-241 |#2|) (-1130)) (T -240)) +NIL +(-10 -8 (-15 -3709 ((-885) |#1|)) (-15 -3470 (|#1| (-665 |#2|))) (-15 -3470 (|#1|)) (-15 -3722 (|#1| (-665 |#2|))) (-15 -1977 (|#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-3589 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 51 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-241 |#1|) (-141) (-1130)) (T -241)) +((-3470 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1130)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-241 *3)))) (-1894 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-241 *2)) (-4 *2 (-1130)))) (-1894 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) (-4 *3 (-1130)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) (-4 *3 (-1130))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3470 ($)) (-15 -3470 ($ (-665 |t#1|))) (IF (|has| $ (-6 -4499)) (PROGN (-15 -1894 ($ |t#1| $)) (-15 -1894 ($ (-1 (-112) |t#1|) $)) (-15 -3730 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-1865 (((-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792))))) (-305 (-980 (-577)))) 42 T ELT))) +(((-242) (-10 -7 (-15 -1865 ((-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792))))) (-305 (-980 (-577))))))) (T -242)) +((-1865 (*1 *2 *3) (-12 (-5 *3 (-305 (-980 (-577)))) (-5 *2 (-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792)))))) (-5 *1 (-242))))) +(-10 -7 (-15 -1865 ((-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792))))) (-305 (-980 (-577)))))) +((-3005 (((-792)) 56 T ELT)) (-3187 (((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) 53 T ELT) (((-710 |#3|) (-710 $)) 44 T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-4366 (((-135)) 62 T ELT)) (-3641 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-3709 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-885) $) NIL T ELT) (($ (-577)) 12 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3331 (((-792)) 15 T ELT)) (-3139 (($ $ |#3|) 59 T ELT))) +(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| (-577))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3709 ((-885) |#1|)) (-15 -3331 ((-792))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3709 (|#1| |#3|)) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3187 ((-710 |#3|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -3005 ((-792))) (-15 -3139 (|#1| |#1| |#3|)) (-15 -4366 ((-135))) (-15 -3709 ((-1297 |#3|) |#1|))) (-244 |#2| |#3|) (-792) (-1247)) (T -243)) +((-4366 (*1 *2) (-12 (-14 *4 (-792)) (-4 *5 (-1247)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-3005 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-3331 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) +(-10 -8 (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| (-577))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3709 ((-885) |#1|)) (-15 -3331 ((-792))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3709 (|#1| |#3|)) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3187 ((-710 |#3|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -3005 ((-792))) (-15 -3139 (|#1| |#1| |#3|)) (-15 -4366 ((-135))) (-15 -3709 ((-1297 |#3|) |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-4113 (((-112) $) 76 (|has| |#2| (-23)) ELT)) (-1385 (($ (-949)) 129 (|has| |#2| (-1079)) ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-4208 (($ $ $) 125 (|has| |#2| (-814)) ELT)) (-2478 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-3005 (((-792)) 115 (|has| |#2| (-380)) ELT)) (-1957 ((|#2| $ (-577) |#2|) 53 (|has| $ (-6 -4500)) ELT)) (-2305 (($) 7 T CONST)) (-4335 (((-3 (-577) "failed") $) 71 (-2790 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) 68 (-2790 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1130)) ELT)) (-3783 (((-577) $) 70 (-2790 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) 67 (-2790 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) 66 (|has| |#2| (-1130)) ELT)) (-3187 (((-710 (-577)) (-710 $)) 112 (-2790 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 111 (-2790 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 110 (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) 109 (|has| |#2| (-1079)) ELT)) (-3167 (((-3 $ "failed") $) 86 (|has| |#2| (-1079)) ELT)) (-1424 (($) 118 (|has| |#2| (-380)) ELT)) (-4420 ((|#2| $ (-577) |#2|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ (-577)) 52 T ELT)) (-2118 (((-665 |#2|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) 88 (|has| |#2| (-1079)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 119 (|has| |#2| (-870)) ELT)) (-2152 (((-665 |#2|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 120 (|has| |#2| (-870)) ELT)) (-4409 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-2686 (((-949) $) 117 (|has| |#2| (-380)) ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 114 (-2790 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 113 (-2790 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 108 (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) 107 (|has| |#2| (-1079)) ELT)) (-3235 (((-1188) $) 23 (|has| |#2| (-1130)) ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-3354 (($ (-949)) 116 (|has| |#2| (-380)) ELT)) (-1470 (((-1150) $) 22 (|has| |#2| (-1130)) ELT)) (-4397 ((|#2| $) 43 (|has| (-577) (-870)) ELT)) (-2561 (($ $ |#2|) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#2| $ (-577) |#2|) 51 T ELT) ((|#2| $ (-577)) 50 T ELT)) (-4047 ((|#2| $ $) 128 (|has| |#2| (-1079)) ELT)) (-3805 (($ (-1297 |#2|)) 130 T ELT)) (-4366 (((-135)) 127 (|has| |#2| (-375)) ELT)) (-3641 (($ $ (-792)) 105 (-2790 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) 103 (-2790 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 99 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) 98 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) 97 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) 95 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) 93 (|has| |#2| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) 29 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-1297 |#2|) $) 131 T ELT) (($ (-577)) 72 (-2867 (-2790 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) 69 (-2790 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) 64 (|has| |#2| (-1130)) ELT) (((-885) $) 18 (|has| |#2| (-631 (-885))) ELT)) (-3331 (((-792)) 90 (|has| |#2| (-1079)) CONST)) (-2643 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2839 (($) 75 (|has| |#2| (-23)) CONST)) (-2853 (($) 89 (|has| |#2| (-1079)) CONST)) (-2389 (($ $ (-792)) 106 (-2790 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) 104 (-2790 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 102 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) 101 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) 100 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) 96 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) 91 (|has| |#2| (-1079)) ELT)) (-3078 (((-112) $ $) 121 (|has| |#2| (-870)) ELT)) (-3054 (((-112) $ $) 123 (|has| |#2| (-870)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-3067 (((-112) $ $) 122 (|has| |#2| (-870)) ELT)) (-3042 (((-112) $ $) 124 (|has| |#2| (-870)) ELT)) (-3139 (($ $ |#2|) 126 (|has| |#2| (-375)) ELT)) (-3128 (($ $ $) 81 (|has| |#2| (-21)) ELT) (($ $) 80 (|has| |#2| (-21)) ELT)) (-3114 (($ $ $) 73 (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) 87 (|has| |#2| (-1079)) ELT) (($ $ (-949)) 84 (|has| |#2| (-1079)) ELT)) (* (($ $ $) 85 (|has| |#2| (-1079)) ELT) (($ $ |#2|) 83 (|has| |#2| (-747)) ELT) (($ |#2| $) 82 (|has| |#2| (-747)) ELT) (($ (-577) $) 79 (|has| |#2| (-21)) ELT) (($ (-792) $) 77 (|has| |#2| (-23)) ELT) (($ (-949) $) 74 (|has| |#2| (-25)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-244 |#1| |#2|) (-141) (-792) (-1247)) (T -244)) +((-3805 (*1 *1 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-244 *3 *4)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1079)) (-4 *4 (-1247)))) (-4047 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) +(-13 (-617 (-577) |t#2|) (-631 (-1297 |t#2|)) (-10 -8 (-6 -4499) (-15 -3805 ($ (-1297 |t#2|))) (IF (|has| |t#2| (-1130)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1079)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-389 |t#2|)) (-15 -1385 ($ (-949))) (-15 -4047 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-747)) (-6 (-661 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-738 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4496)) (-6 -4496) |%noBranch|) (IF (|has| |t#2| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#2| (-814)) (-6 (-814)) |%noBranch|) (IF (|has| |t#2| (-375)) (-6 (-1304 |t#2|)) |%noBranch|))) +(((-21) -2867 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2867 (|has| |#2| (-1079)) (|has| |#2| (-814)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2867 (|has| |#2| (-1079)) (|has| |#2| (-814)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2867 (|has| |#2| (-1130)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-814)) (|has| |#2| (-747)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2867 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-132) -2867 (|has| |#2| (-1079)) (|has| |#2| (-814)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-634 #0=(-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ((-634 (-577)) -2867 (|has| |#2| (-1079)) (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130)))) ((-634 |#2|) |has| |#2| (-1130)) ((-631 (-885)) -2867 (|has| |#2| (-1130)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-814)) (|has| |#2| (-747)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-631 (-885))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-631 (-1297 |#2|)) . T) ((-235 $) -2867 (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079)))) ((-233 |#2|) |has| |#2| (-1079)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ((-238) -2867 (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079)))) ((-273 |#2|) |has| |#2| (-1079)) ((-297 #1=(-577) |#2|) . T) ((-299 #1# |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-380) |has| |#2| (-380)) ((-389 |#2|) |has| |#2| (-1079)) ((-424 |#2|) |has| |#2| (-1130)) ((-502 |#2|) . T) ((-617 #1# |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-667 (-577)) -2867 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-667 |#2|) -2867 (|has| |#2| (-1079)) (|has| |#2| (-747)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-667 $) |has| |#2| (-1079)) ((-669 #2=(-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ((-669 |#2|) -2867 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-669 $) |has| |#2| (-1079)) ((-661 |#2|) -2867 (|has| |#2| (-747)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-659 #2#) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ((-659 |#2|) |has| |#2| (-1079)) ((-738 |#2|) -2867 (|has| |#2| (-375)) (|has| |#2| (-174))) ((-747) |has| |#2| (-1079)) ((-813) |has| |#2| (-814)) ((-814) |has| |#2| (-814)) ((-815) |has| |#2| (-814)) ((-816) |has| |#2| (-814)) ((-870) -2867 (|has| |#2| (-870)) (|has| |#2| (-814))) ((-873) -2867 (|has| |#2| (-870)) (|has| |#2| (-814))) ((-920 $ #3=(-1206)) -2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) ((-926 (-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) ((-928 #3#) -2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) ((-1068 #0#) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ((-1068 (-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ((-1068 |#2|) |has| |#2| (-1130)) ((-1081 |#2|) -2867 (|has| |#2| (-1079)) (|has| |#2| (-747)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1086 |#2|) -2867 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1079) |has| |#2| (-1079)) ((-1088) |has| |#2| (-1079)) ((-1142) |has| |#2| (-1079)) ((-1130) -2867 (|has| |#2| (-1130)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-814)) (|has| |#2| (-747)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1247) . T) ((-1304 |#2|) |has| |#2| (-375))) +((-4256 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-2060 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-4417 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) +(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -4256 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2060 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4417 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-792) (-1247) (-1247)) (T -245)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-245 *5 *6 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-792)) (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) +(-10 -7 (-15 -4256 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2060 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4417 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) +((-3586 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-4113 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-1385 (($ (-949)) 62 (|has| |#2| (-1079)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-4208 (($ $ $) 68 (|has| |#2| (-814)) ELT)) (-2478 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#2| (-380)) ELT)) (-1957 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1130)) ELT)) (-3783 (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) 28 (|has| |#2| (-1130)) ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) NIL (|has| |#2| (-1079)) ELT)) (-3167 (((-3 $ "failed") $) 58 (|has| |#2| (-1079)) ELT)) (-1424 (($) NIL (|has| |#2| (-380)) ELT)) (-4420 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ (-577)) 56 T ELT)) (-2118 (((-665 |#2|) $) 14 (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL (|has| |#2| (-1079)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 19 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-2152 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4409 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#2| (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3235 (((-1188) $) NIL (|has| |#2| (-1130)) ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-3354 (($ (-949)) NIL (|has| |#2| (-380)) ELT)) (-1470 (((-1150) $) NIL (|has| |#2| (-1130)) ELT)) (-4397 ((|#2| $) NIL (|has| (-577) (-870)) ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) 20 T ELT)) (-4047 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-3805 (($ (-1297 |#2|)) 17 T ELT)) (-4366 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-3641 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-1297 |#2|) $) 9 T ELT) (($ (-577)) NIL (-2867 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) 12 (|has| |#2| (-1130)) ELT) (((-885) $) NIL (|has| |#2| (-631 (-885))) ELT)) (-3331 (((-792)) NIL (|has| |#2| (-1079)) CONST)) (-2643 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2839 (($) 36 (|has| |#2| (-23)) CONST)) (-2853 (($) 40 (|has| |#2| (-1079)) CONST)) (-2389 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3018 (((-112) $ $) 27 (|has| |#2| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3042 (((-112) $ $) 66 (|has| |#2| (-870)) ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3114 (($ $ $) 34 (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) 46 (|has| |#2| (-1079)) ELT) (($ $ |#2|) 44 (|has| |#2| (-747)) ELT) (($ |#2| $) 45 (|has| |#2| (-747)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-792) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-246 |#1| |#2|) (-244 |#1| |#2|) (-792) (-1247)) (T -246)) NIL (-244 |#1| |#2|) -((-2224 (((-577) (-660 (-1183))) 36 T ELT) (((-577) (-1183)) 29 T ELT)) (-2431 (((-1297) (-660 (-1183))) 40 T ELT) (((-1297) (-1183)) 39 T ELT)) (-3991 (((-1183)) 16 T ELT)) (-2545 (((-1183) (-577) (-1183)) 23 T ELT)) (-4269 (((-660 (-1183)) (-660 (-1183)) (-577) (-1183)) 37 T ELT) (((-1183) (-1183) (-577) (-1183)) 35 T ELT)) (-3247 (((-660 (-1183)) (-660 (-1183))) 15 T ELT) (((-660 (-1183)) (-1183)) 11 T ELT))) -(((-247) (-10 -7 (-15 -3247 ((-660 (-1183)) (-1183))) (-15 -3247 ((-660 (-1183)) (-660 (-1183)))) (-15 -3991 ((-1183))) (-15 -2545 ((-1183) (-577) (-1183))) (-15 -4269 ((-1183) (-1183) (-577) (-1183))) (-15 -4269 ((-660 (-1183)) (-660 (-1183)) (-577) (-1183))) (-15 -2431 ((-1297) (-1183))) (-15 -2431 ((-1297) (-660 (-1183)))) (-15 -2224 ((-577) (-1183))) (-15 -2224 ((-577) (-660 (-1183)))))) (T -247)) -((-2224 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-577)) (-5 *1 (-247)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-247)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1297)) (-5 *1 (-247)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-247)))) (-4269 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-660 (-1183))) (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *1 (-247)))) (-4269 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247)))) (-2545 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247)))) (-3991 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-247)))) (-3247 (*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)))) (-3247 (*1 *2 *3) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)) (-5 *3 (-1183))))) -(-10 -7 (-15 -3247 ((-660 (-1183)) (-1183))) (-15 -3247 ((-660 (-1183)) (-660 (-1183)))) (-15 -3991 ((-1183))) (-15 -2545 ((-1183) (-577) (-1183))) (-15 -4269 ((-1183) (-1183) (-577) (-1183))) (-15 -4269 ((-660 (-1183)) (-660 (-1183)) (-577) (-1183))) (-15 -2431 ((-1297) (-1183))) (-15 -2431 ((-1297) (-660 (-1183)))) (-15 -2224 ((-577) (-1183))) (-15 -2224 ((-577) (-660 (-1183))))) -((** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 20 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-420 (-577)) $) 27 T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-249)) (T -248)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 47 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 51 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 48 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-420 (-577)) $) 50 T ELT) (($ $ (-420 (-577))) 49 T ELT))) +((-4160 (((-577) (-665 (-1188))) 36 T ELT) (((-577) (-1188)) 29 T ELT)) (-2730 (((-1302) (-665 (-1188))) 40 T ELT) (((-1302) (-1188)) 39 T ELT)) (-3496 (((-1188)) 16 T ELT)) (-2225 (((-1188) (-577) (-1188)) 23 T ELT)) (-1343 (((-665 (-1188)) (-665 (-1188)) (-577) (-1188)) 37 T ELT) (((-1188) (-1188) (-577) (-1188)) 35 T ELT)) (-3348 (((-665 (-1188)) (-665 (-1188))) 15 T ELT) (((-665 (-1188)) (-1188)) 11 T ELT))) +(((-247) (-10 -7 (-15 -3348 ((-665 (-1188)) (-1188))) (-15 -3348 ((-665 (-1188)) (-665 (-1188)))) (-15 -3496 ((-1188))) (-15 -2225 ((-1188) (-577) (-1188))) (-15 -1343 ((-1188) (-1188) (-577) (-1188))) (-15 -1343 ((-665 (-1188)) (-665 (-1188)) (-577) (-1188))) (-15 -2730 ((-1302) (-1188))) (-15 -2730 ((-1302) (-665 (-1188)))) (-15 -4160 ((-577) (-1188))) (-15 -4160 ((-577) (-665 (-1188)))))) (T -247)) +((-4160 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-577)) (-5 *1 (-247)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-247)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1302)) (-5 *1 (-247)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-247)))) (-1343 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 (-1188))) (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *1 (-247)))) (-1343 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247)))) (-2225 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247)))) (-3496 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-247)))) (-3348 (*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)))) (-3348 (*1 *2 *3) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)) (-5 *3 (-1188))))) +(-10 -7 (-15 -3348 ((-665 (-1188)) (-1188))) (-15 -3348 ((-665 (-1188)) (-665 (-1188)))) (-15 -3496 ((-1188))) (-15 -2225 ((-1188) (-577) (-1188))) (-15 -1343 ((-1188) (-1188) (-577) (-1188))) (-15 -1343 ((-665 (-1188)) (-665 (-1188)) (-577) (-1188))) (-15 -2730 ((-1302) (-1188))) (-15 -2730 ((-1302) (-665 (-1188)))) (-15 -4160 ((-577) (-1188))) (-15 -4160 ((-577) (-665 (-1188))))) +((** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 20 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-420 (-577)) $) 27 T ELT) (($ $ (-420 (-577))) NIL T ELT))) +(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-249)) (T -248)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 47 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 51 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 48 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-420 (-577)) $) 50 T ELT) (($ $ (-420 (-577))) 49 T ELT))) (((-249) (-141)) (T -249)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-577)))) (-3318 (*1 *1 *1) (-4 *1 (-249)))) -(-13 (-301) (-38 (-420 (-577))) (-10 -8 (-15 ** ($ $ (-577))) (-15 -3318 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-301) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-733 #0#) . T) ((-742) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-3063 (($ $) 58 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-4156 (($ $ $) 54 (|has| $ (-6 -4471)) ELT)) (-2195 (($ $ $) 53 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-3790 (($) 7 T CONST)) (-2898 (($ $) 57 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-4297 (($ $) 56 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) 60 T ELT)) (-2515 (($ $) 59 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-1584 (($ $ $) 55 (|has| $ (-6 -4471)) ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-250 |#1|) (-141) (-1242)) (T -250)) -((-3942 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-2515 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-2898 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-4297 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-1584 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-4156 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-2195 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242))))) -(-13 (-1035 |t#1|) (-10 -8 (-15 -3942 (|t#1| $)) (-15 -2515 ($ $)) (-15 -3063 ($ $)) (-15 -2898 ($ $)) (-15 -4297 ($ $)) (IF (|has| $ (-6 -4471)) (PROGN (-15 -1584 ($ $ $)) (-15 -4156 ($ $ $)) (-15 -2195 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) NIL T ELT)) (-4148 ((|#1| $) NIL T ELT)) (-3063 (($ $) NIL T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) $) NIL (|has| |#1| (-865)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-3246 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2312 (($ $) 10 (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) NIL (|has| $ (-6 -4471)) ELT)) (-2946 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4135 ((|#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-1663 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3699 (($ $) NIL (|has| |#1| (-1125)) ELT)) (-3289 (($ $) 7 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) NIL (|has| |#1| (-1125)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3920 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3919 (((-112) $) NIL T ELT)) (-3728 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1615 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-1334 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2880 (($ |#1|) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-4345 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2218 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1861 (((-112) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) ((|#1| $ (-577) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-787) $ "count") 16 T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3839 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3490 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1517 (($ (-660 |#1|)) 22 T ELT)) (-3834 (((-112) $) NIL T ELT)) (-4243 (($ $) NIL T ELT)) (-1839 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) NIL T ELT)) (-3855 (($ $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) NIL T ELT)) (-1584 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1685 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-660 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3603 (($ (-660 |#1|)) 17 T ELT) (((-660 |#1|) $) 18 T ELT) (((-880) $) 21 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 14 (|has| $ (-6 -4470)) ELT))) -(((-251 |#1|) (-13 (-682 |#1|) (-503 (-660 |#1|)) (-10 -8 (-15 -1517 ($ (-660 |#1|))) (-15 -2837 ($ $ "unique")) (-15 -2837 ($ $ "sort")) (-15 -2837 ((-787) $ "count")))) (-865)) (T -251)) -((-1517 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-251 *3)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-865)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-865)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-787)) (-5 *1 (-251 *4)) (-4 *4 (-865))))) -(-13 (-682 |#1|) (-503 (-660 |#1|)) (-10 -8 (-15 -1517 ($ (-660 |#1|))) (-15 -2837 ($ $ "unique")) (-15 -2837 ($ $ "sort")) (-15 -2837 ((-787) $ "count")))) -((-1610 (((-3 (-787) "failed") |#1| |#1| (-787)) 40 T ELT))) -(((-252 |#1|) (-10 -7 (-15 -1610 ((-3 (-787) "failed") |#1| |#1| (-787)))) (-13 (-742) (-380) (-10 -7 (-15 ** (|#1| |#1| (-577)))))) (T -252)) -((-1610 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-787)) (-4 *3 (-13 (-742) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) (-5 *1 (-252 *3))))) -(-10 -7 (-15 -1610 ((-3 (-787) "failed") |#1| |#1| (-787)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3362 (($ $) 54 (|has| |#1| (-238)) ELT) (($ $ (-787)) 52 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 50 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 48 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 47 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 46 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1 |#1| |#1|) (-787)) 40 T ELT) (($ $ (-1 |#1| |#1|)) 39 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2136 (($ $) 53 (|has| |#1| (-238)) ELT) (($ $ (-787)) 51 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 49 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 45 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 44 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 43 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1 |#1| |#1|) (-787)) 42 T ELT) (($ $ (-1 |#1| |#1|)) 41 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-253 |#1|) (-141) (-1074)) (T -253)) -NIL -(-13 (-111 |t#1| |t#1|) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-236 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-923 (-1201))) (-6 (-920 |t#1| (-1201))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-235 $) |has| |#1| (-238)) ((-236 |#1|) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-273 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) -2811 (-12 (|has| |#1| (-174)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-733 |#1|) -2811 (-12 (|has| |#1| (-174)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-915 $ #0=(-1201)) |has| |#1| (-923 (-1201))) ((-920 |#1| (-1201)) |has| |#1| (-923 (-1201))) ((-923 #0#) |has| |#1| (-923 (-1201))) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-882 |#1|)) $) NIL T ELT)) (-3024 (((-1197 $) $ (-882 |#1|)) NIL T ELT) (((-1197 |#2|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#2| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-882 |#1|))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-882 |#1|) "failed") $) NIL T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-882 |#1|) $) NIL T ELT)) (-2653 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-1835 (($ $ (-660 (-577))) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#2| (-932)) ELT)) (-3367 (($ $ |#2| (-246 (-3501 |#1|) (-787)) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-3194 (($ (-1197 |#2|) (-882 |#1|)) NIL T ELT) (($ (-1197 $) (-882 |#1|)) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#2| (-246 (-3501 |#1|) (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-882 |#1|)) NIL T ELT)) (-2643 (((-246 (-3501 |#1|) (-787)) $) NIL T ELT) (((-787) $ (-882 |#1|)) NIL T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL T ELT)) (-4373 (($ (-1 (-246 (-3501 |#1|) (-787)) (-246 (-3501 |#1|) (-787))) $) NIL T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4038 (((-3 (-882 |#1|) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#2| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#2| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#2| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-882 |#1|) |#2|) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) NIL T ELT) (($ $ (-882 |#1|) $) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 $)) NIL T ELT)) (-4447 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3362 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT)) (-3616 (((-246 (-3501 |#1|) (-787)) $) NIL T ELT) (((-787) $ (-882 |#1|)) NIL T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))) ELT)) (-2240 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-882 |#1|)) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-246 (-3501 |#1|) (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#2| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-254 |#1| |#2|) (-13 (-972 |#2| (-246 (-3501 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1835 ($ $ (-660 (-577)))))) (-660 (-1201)) (-1074)) (T -254)) -((-1835 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-254 *3 *4)) (-14 *3 (-660 (-1201))) (-4 *4 (-1074))))) -(-13 (-972 |#2| (-246 (-3501 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1835 ($ $ (-660 (-577)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2625 (((-1297) $) 17 T ELT)) (-2094 (((-185 (-256)) $) 11 T ELT)) (-3454 (($ (-185 (-256))) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2602 (((-256) $) 7 T ELT)) (-3603 (((-880) $) 9 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 15 T ELT))) -(((-255) (-13 (-1125) (-10 -8 (-15 -2602 ((-256) $)) (-15 -2094 ((-185 (-256)) $)) (-15 -3454 ($ (-185 (-256)))) (-15 -2625 ((-1297) $))))) (T -255)) -((-2602 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-255)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-255))))) -(-13 (-1125) (-10 -8 (-15 -2602 ((-256) $)) (-15 -2094 ((-185 (-256)) $)) (-15 -3454 ($ (-185 (-256)))) (-15 -2625 ((-1297) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3315 (((-660 (-883)) $) NIL T ELT)) (-2668 (((-519) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1803 (((-188) $) NIL T ELT)) (-3152 (((-112) $ (-519)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3918 (((-344) $) 7 T ELT)) (-3420 (((-660 (-112)) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (((-189) $) 8 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1376 (((-55) $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-256) (-13 (-187) (-626 (-189)) (-10 -8 (-15 -3918 ((-344) $))))) (T -256)) -((-3918 (*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) -(-13 (-187) (-626 (-189)) (-10 -8 (-15 -3918 ((-344) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 (((-1206) $ (-787)) 13 T ELT)) (-3603 (((-880) $) 20 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 16 T ELT)) (-3501 (((-787) $) 9 T ELT))) -(((-257) (-13 (-1125) (-297 (-787) (-1206)) (-10 -8 (-15 -3501 ((-787) $))))) (T -257)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-257))))) -(-13 (-1125) (-297 (-787) (-1206)) (-10 -8 (-15 -3501 ((-787) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3303 (($ (-944)) NIL (|has| |#4| (-1074)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2510 (($ $ $) NIL (|has| |#4| (-809)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#4| (-380)) ELT)) (-1895 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1125)) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125))) ELT)) (-2155 ((|#4| $) NIL (|has| |#4| (-1125)) ELT) (((-577) $) NIL (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125))) ELT)) (-2850 (((-2 (|:| -1631 (-705 |#4|)) (|:| |vec| (-1292 |#4|))) (-705 $) (-1292 $)) NIL (|has| |#4| (-1074)) ELT) (((-705 |#4|) (-705 $)) NIL (|has| |#4| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074))) ELT) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074))) ELT)) (-1625 (((-3 $ "failed") $) NIL (|has| |#4| (-1074)) ELT)) (-2352 (($) NIL (|has| |#4| (-380)) ELT)) (-2840 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#4| $ (-577)) NIL T ELT)) (-3692 (((-660 |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL (|has| |#4| (-1074)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#4| (-865)) ELT)) (-2434 (((-660 |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#4| (-865)) ELT)) (-2826 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#4| (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1512 (((-2 (|:| -1631 (-705 |#4|)) (|:| |vec| (-1292 |#4|))) (-1292 $) $) NIL (|has| |#4| (-1074)) ELT) (((-705 |#4|) (-1292 $)) NIL (|has| |#4| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074))) ELT) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074))) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-3251 (($ (-944)) NIL (|has| |#4| (-380)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 ((|#4| $) NIL (|has| (-577) (-865)) ELT)) (-2529 (($ $ |#4|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-3908 (((-660 |#4|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#4| $ (-577) |#4|) NIL T ELT) ((|#4| $ (-577)) 12 T ELT)) (-3366 ((|#4| $ $) NIL (|has| |#4| (-1074)) ELT)) (-3097 (($ (-1292 |#4|)) NIL T ELT)) (-3941 (((-135)) NIL (|has| |#4| (-375)) ELT)) (-3362 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1074)) ELT) (($ $ (-1 |#4| |#4|) (-787)) NIL (|has| |#4| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))) ELT) (($ $) NIL (-2811 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))) ELT)) (-1452 (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-1292 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1125)) ELT) (((-880) $) NIL T ELT) (($ (-577)) NIL (-2811 (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) (|has| |#4| (-1074))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125))) ELT)) (-1920 (((-787)) NIL (|has| |#4| (-1074)) CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL (|has| |#4| (-1074)) CONST)) (-2136 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1074)) ELT) (($ $ (-1 |#4| |#4|) (-787)) NIL (|has| |#4| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))) ELT) (($ $) NIL (-2811 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))) ELT)) (-3001 (((-112) $ $) NIL (|has| |#4| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#4| (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| |#4| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#4| (-865)) ELT)) (-3051 (($ $ |#4|) NIL (|has| |#4| (-375)) ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL (|has| |#4| (-1074)) ELT) (($ $ (-944)) NIL (|has| |#4| (-1074)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-577) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-944) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-742)) ELT) (($ |#4| $) NIL (|has| |#4| (-742)) ELT) (($ $ $) NIL (|has| |#4| (-1074)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-258 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-664 |#2|) (-664 |#3|)) (-944) (-1074) (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-664 |#2|)) (T -258)) -NIL -(-13 (-244 |#1| |#4|) (-664 |#2|) (-664 |#3|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3303 (($ (-944)) NIL (|has| |#3| (-1074)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2510 (($ $ $) NIL (|has| |#3| (-809)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#3| (-380)) ELT)) (-1895 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1125)) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))) ELT)) (-2155 ((|#3| $) NIL (|has| |#3| (-1125)) ELT) (((-577) $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))) ELT)) (-2850 (((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) NIL (|has| |#3| (-1074)) ELT) (((-705 |#3|) (-705 $)) NIL (|has| |#3| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT)) (-1625 (((-3 $ "failed") $) NIL (|has| |#3| (-1074)) ELT)) (-2352 (($) NIL (|has| |#3| (-380)) ELT)) (-2840 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#3| $ (-577)) NIL T ELT)) (-3692 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL (|has| |#3| (-1074)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#3| (-865)) ELT)) (-2434 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#3| (-865)) ELT)) (-2826 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#3| (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1512 (((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-1292 $) $) NIL (|has| |#3| (-1074)) ELT) (((-705 |#3|) (-1292 $)) NIL (|has| |#3| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-3251 (($ (-944)) NIL (|has| |#3| (-380)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 ((|#3| $) NIL (|has| (-577) (-865)) ELT)) (-2529 (($ $ |#3|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT)) (-3908 (((-660 |#3|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#3| $ (-577) |#3|) NIL T ELT) ((|#3| $ (-577)) 11 T ELT)) (-3366 ((|#3| $ $) NIL (|has| |#3| (-1074)) ELT)) (-3097 (($ (-1292 |#3|)) NIL T ELT)) (-3941 (((-135)) NIL (|has| |#3| (-375)) ELT)) (-3362 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) ELT) (($ $) NIL (-2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) ELT)) (-1452 (((-787) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-1292 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1125)) ELT) (((-880) $) NIL T ELT) (($ (-577)) NIL (-2811 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))) ELT)) (-1920 (((-787)) NIL (|has| |#3| (-1074)) CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL (|has| |#3| (-1074)) CONST)) (-2136 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) ELT) (($ $) NIL (-2811 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) ELT)) (-3001 (((-112) $ $) NIL (|has| |#3| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#3| (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| |#3| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#3| (-865)) ELT)) (-3051 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-944)) NIL (|has| |#3| (-1074)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-577) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-944) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-742)) ELT) (($ |#3| $) NIL (|has| |#3| (-742)) ELT) (($ $ $) NIL (|has| |#3| (-1074)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-259 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-664 |#2|)) (-787) (-1074) (-664 |#2|)) (T -259)) -NIL -(-13 (-244 |#1| |#3|) (-664 |#2|)) -((-2959 (((-660 (-787)) $) 56 T ELT) (((-660 (-787)) $ |#3|) 59 T ELT)) (-2539 (((-787) $) 58 T ELT) (((-787) $ |#3|) 61 T ELT)) (-2475 (($ $) 76 T ELT)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 83 T ELT)) (-2536 (((-787) $ |#3|) 43 T ELT) (((-787) $) 38 T ELT)) (-4417 (((-1 $ (-787)) |#3|) 15 T ELT) (((-1 $ (-787)) $) 88 T ELT)) (-2646 ((|#4| $) 69 T ELT)) (-2330 (((-112) $) 67 T ELT)) (-2268 (($ $) 75 T ELT)) (-3273 (($ $ (-660 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-660 |#4|) (-660 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-660 |#4|) (-660 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-660 |#3|) (-660 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-660 |#3|) (-660 |#2|)) 97 T ELT)) (-3362 (($ $ (-660 |#4|) (-660 (-787))) NIL T ELT) (($ $ |#4| (-787)) NIL T ELT) (($ $ (-660 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-1727 (((-660 |#3|) $) 86 T ELT)) (-3616 ((|#5| $) NIL T ELT) (((-787) $ |#4|) NIL T ELT) (((-660 (-787)) $ (-660 |#4|)) NIL T ELT) (((-787) $ |#3|) 49 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT))) -(((-260 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3603 (|#1| |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3273 (|#1| |#1| (-660 |#3|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#3| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#3|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#3| |#1|)) (-15 -4417 ((-1 |#1| (-787)) |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2646 (|#4| |#1|)) (-15 -2330 ((-112) |#1|)) (-15 -2539 ((-787) |#1| |#3|)) (-15 -2959 ((-660 (-787)) |#1| |#3|)) (-15 -2539 ((-787) |#1|)) (-15 -2959 ((-660 (-787)) |#1|)) (-15 -3616 ((-787) |#1| |#3|)) (-15 -2536 ((-787) |#1|)) (-15 -2536 ((-787) |#1| |#3|)) (-15 -1727 ((-660 |#3|) |#1|)) (-15 -4417 ((-1 |#1| (-787)) |#3|)) (-15 -3603 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3616 ((-660 (-787)) |#1| (-660 |#4|))) (-15 -3616 ((-787) |#1| |#4|)) (-15 -3603 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#4| |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#4| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3616 (|#5| |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -3362 (|#1| |#1| |#4|)) (-15 -3362 (|#1| |#1| (-660 |#4|))) (-15 -3362 (|#1| |#1| |#4| (-787))) (-15 -3362 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-261 |#2| |#3| |#4| |#5|) (-1074) (-865) (-276 |#3|) (-809)) (T -260)) -NIL -(-10 -8 (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3603 (|#1| |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3273 (|#1| |#1| (-660 |#3|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#3| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#3|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#3| |#1|)) (-15 -4417 ((-1 |#1| (-787)) |#1|)) (-15 -2475 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -2646 (|#4| |#1|)) (-15 -2330 ((-112) |#1|)) (-15 -2539 ((-787) |#1| |#3|)) (-15 -2959 ((-660 (-787)) |#1| |#3|)) (-15 -2539 ((-787) |#1|)) (-15 -2959 ((-660 (-787)) |#1|)) (-15 -3616 ((-787) |#1| |#3|)) (-15 -2536 ((-787) |#1|)) (-15 -2536 ((-787) |#1| |#3|)) (-15 -1727 ((-660 |#3|) |#1|)) (-15 -4417 ((-1 |#1| (-787)) |#3|)) (-15 -3603 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3616 ((-660 (-787)) |#1| (-660 |#4|))) (-15 -3616 ((-787) |#1| |#4|)) (-15 -3603 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#4| |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#4| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3616 (|#5| |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -3362 (|#1| |#1| |#4|)) (-15 -3362 (|#1| |#1| (-660 |#4|))) (-15 -3362 (|#1| |#1| |#4| (-787))) (-15 -3362 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2959 (((-660 (-787)) $) 236 T ELT) (((-660 (-787)) $ |#2|) 234 T ELT)) (-2539 (((-787) $) 235 T ELT) (((-787) $ |#2|) 233 T ELT)) (-3206 (((-660 |#3|) $) 113 T ELT)) (-3024 (((-1197 $) $ |#3|) 128 T ELT) (((-1197 |#1|) $) 127 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 91 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) 115 T ELT) (((-787) $ (-660 |#3|)) 114 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)) ELT)) (-2001 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)) ELT)) (-2475 (($ $) 229 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 |#2| "failed") $) 243 T ELT)) (-2155 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1063 (-577))) ELT) ((|#3| $) 144 T ELT) ((|#2| $) 244 T ELT)) (-2653 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT)) (-3391 (($ $) 161 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137 T ELT) (((-705 |#1|) (-705 $)) 136 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2308 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) 112 T ELT)) (-2182 (((-112) $) 99 (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| |#4| $) 179 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| |#3| (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| |#3| (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-2536 (((-787) $ |#2|) 239 T ELT) (((-787) $) 238 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2011 (((-787) $) 176 T ELT)) (-3194 (($ (-1197 |#1|) |#3|) 120 T ELT) (($ (-1197 $) |#3|) 119 T ELT)) (-4242 (((-660 $) $) 129 T ELT)) (-2148 (((-112) $) 159 T ELT)) (-3180 (($ |#1| |#4|) 160 T ELT) (($ $ |#3| (-787)) 122 T ELT) (($ $ (-660 |#3|) (-660 (-787))) 121 T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |#3|) 123 T ELT)) (-2643 ((|#4| $) 177 T ELT) (((-787) $ |#3|) 125 T ELT) (((-660 (-787)) $ (-660 |#3|)) 124 T ELT)) (-4373 (($ (-1 |#4| |#4|) $) 178 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-4417 (((-1 $ (-787)) |#2|) 241 T ELT) (((-1 $ (-787)) $) 228 (|has| |#1| (-239)) ELT)) (-4038 (((-3 |#3| "failed") $) 126 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135 T ELT) (((-705 |#1|) (-1292 $)) 134 T ELT)) (-3354 (($ $) 156 T ELT)) (-3365 ((|#1| $) 155 T ELT)) (-2646 ((|#3| $) 231 T ELT)) (-3508 (($ (-660 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2330 (((-112) $) 232 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 117 T ELT)) (-3910 (((-3 (-660 $) "failed") $) 118 T ELT)) (-1966 (((-3 (-2 (|:| |var| |#3|) (|:| -1527 (-787))) "failed") $) 116 T ELT)) (-2268 (($ $) 230 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3327 (((-112) $) 173 T ELT)) (-3340 ((|#1| $) 174 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) 102 (|has| |#1| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-660 $) (-660 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-660 |#3|) (-660 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-660 |#3|) (-660 $)) 145 T ELT) (($ $ |#2| $) 227 (|has| |#1| (-239)) ELT) (($ $ (-660 |#2|) (-660 $)) 226 (|has| |#1| (-239)) ELT) (($ $ |#2| |#1|) 225 (|has| |#1| (-239)) ELT) (($ $ (-660 |#2|) (-660 |#1|)) 224 (|has| |#1| (-239)) ELT)) (-4447 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 |#3|) (-660 (-787))) 44 T ELT) (($ $ |#3| (-787)) 43 T ELT) (($ $ (-660 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT) (($ $ (-1 |#1| |#1|)) 248 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 247 T ELT) (($ $) 223 (|has| |#1| (-238)) ELT) (($ $ (-787)) 221 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 219 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 217 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 216 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 215 (|has| |#1| (-923 (-1201))) ELT)) (-1727 (((-660 |#2|) $) 240 T ELT)) (-3616 ((|#4| $) 157 T ELT) (((-787) $ |#3|) 133 T ELT) (((-660 (-787)) $ (-660 |#3|)) 132 T ELT) (((-787) $ |#2|) 237 T ELT)) (-2176 (((-911 (-391)) $) 85 (-12 (|has| |#3| (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) 84 (-12 (|has| |#3| (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ |#2|) 242 T ELT) (($ (-420 (-577))) 81 (-2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) 175 T ELT)) (-3421 ((|#1| $ |#4|) 162 T ELT) (($ $ |#3| (-787)) 131 T ELT) (($ $ (-660 |#3|) (-660 (-787))) 130 T ELT)) (-3907 (((-3 $ "failed") $) 82 (-2811 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 32 T CONST)) (-3528 (($ $ $ (-787)) 180 (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-660 |#3|) (-660 (-787))) 47 T ELT) (($ $ |#3| (-787)) 46 T ELT) (($ $ (-660 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT) (($ $ (-1 |#1| |#1|)) 246 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 245 T ELT) (($ $) 222 (|has| |#1| (-238)) ELT) (($ $ (-787)) 220 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 218 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 214 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 213 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 212 (|has| |#1| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-261 |#1| |#2| |#3| |#4|) (-141) (-1074) (-865) (-276 |t#2|) (-809)) (T -261)) -((-4417 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *4 *3 *5 *6)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 *4)))) (-2536 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) (-3616 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 (-787))))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-660 (-787))))) (-2539 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-112)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-809)) (-4 *2 (-276 *4)))) (-2268 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) (-4 *4 (-276 *3)) (-4 *5 (-809)))) (-2475 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) (-4 *4 (-276 *3)) (-4 *5 (-809)))) (-4417 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *3 *4 *5 *6))))) -(-13 (-972 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1063 |t#2|) (-10 -8 (-15 -4417 ((-1 $ (-787)) |t#2|)) (-15 -1727 ((-660 |t#2|) $)) (-15 -2536 ((-787) $ |t#2|)) (-15 -2536 ((-787) $)) (-15 -3616 ((-787) $ |t#2|)) (-15 -2959 ((-660 (-787)) $)) (-15 -2539 ((-787) $)) (-15 -2959 ((-660 (-787)) $ |t#2|)) (-15 -2539 ((-787) $ |t#2|)) (-15 -2330 ((-112) $)) (-15 -2646 (|t#3| $)) (-15 -2268 ($ $)) (-15 -2475 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-527 |t#2| |t#1|)) (-6 (-527 |t#2| $)) (-6 (-320 $)) (-15 -4417 ((-1 $ (-787)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 |#2|) . T) ((-629 |#3|) . T) ((-629 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) ((-235 $) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-301) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#4|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2811 (|has| |#1| (-932)) (|has| |#1| (-465))) ((-527 |#2| |#1|) |has| |#1| (-239)) ((-527 |#2| $) |has| |#1| (-239)) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-742) . T) ((-915 $ #2=(-1201)) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-915 $ |#3|) . T) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-921 |#3|) . T) ((-923 #2#) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-923 |#3|) . T) ((-905 (-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) ((-972 |#1| |#4| |#3|) . T) ((-932) |has| |#1| (-932)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1063 |#2|) . T) ((-1063 |#3|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-932))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1477 ((|#1| $) 55 T ELT)) (-2554 ((|#1| $) 45 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3790 (($) 7 T CONST)) (-4218 (($ $) 61 T ELT)) (-1932 (($ $) 49 T ELT)) (-2223 ((|#1| |#1| $) 47 T ELT)) (-2204 ((|#1| $) 46 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-3762 (((-787) $) 62 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-1909 ((|#1| |#1| $) 53 T ELT)) (-1762 ((|#1| |#1| $) 52 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-4181 (((-787) $) 56 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2387 ((|#1| $) 63 T ELT)) (-3539 ((|#1| $) 51 T ELT)) (-1603 ((|#1| $) 50 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2696 ((|#1| |#1| $) 59 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-4108 ((|#1| $) 60 T ELT)) (-2996 (($) 58 T ELT) (($ (-660 |#1|)) 57 T ELT)) (-2395 (((-787) $) 44 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-3916 ((|#1| $) 54 T ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-3035 ((|#1| $) 64 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-262 |#1|) (-141) (-1242)) (T -262)) -((-2996 (*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-262 *3)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-1909 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-1762 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-1932 (*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) -(-13 (-1146 |t#1|) (-1020 |t#1|) (-10 -8 (-15 -2996 ($)) (-15 -2996 ($ (-660 |t#1|))) (-15 -4181 ((-787) $)) (-15 -1477 (|t#1| $)) (-15 -3916 (|t#1| $)) (-15 -1909 (|t#1| |t#1| $)) (-15 -1762 (|t#1| |t#1| $)) (-15 -3539 (|t#1| $)) (-15 -1603 (|t#1| $)) (-15 -1932 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1020 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1146 |#1|) . T) ((-1242) . T)) -((-2583 (((-1 (-966 (-228)) (-228) (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 153 T ELT)) (-2929 (((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391))) 173 T ELT) (((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 171 T ELT) (((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 176 T ELT) (((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 172 T ELT) (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 164 T ELT) (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 163 T ELT) (((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391))) 145 T ELT) (((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271))) 143 T ELT) (((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391))) 144 T ELT) (((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271))) 141 T ELT)) (-2891 (((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391))) 175 T ELT) (((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 174 T ELT) (((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 178 T ELT) (((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 177 T ELT) (((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 166 T ELT) (((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 165 T ELT) (((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391))) 151 T ELT) (((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271))) 150 T ELT) (((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391))) 149 T ELT) (((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271))) 148 T ELT) (((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391))) 113 T ELT) (((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271))) 112 T ELT) (((-1293) (-1 (-228) (-228)) (-1119 (-391))) 107 T ELT) (((-1293) (-1 (-228) (-228)) (-1119 (-391)) (-660 (-271))) 105 T ELT))) -(((-263) (-10 -7 (-15 -2891 ((-1293) (-1 (-228) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) (-1 (-228) (-228)) (-1119 (-391)))) (-15 -2891 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -2891 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -2891 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2891 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -2583 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -263)) -((-2583 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228) (-228))) (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1293)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1293)) (-5 *1 (-263)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263))))) -(-10 -7 (-15 -2891 ((-1293) (-1 (-228) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) (-1 (-228) (-228)) (-1119 (-391)))) (-15 -2891 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -2891 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -2891 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -2891 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -2929 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -2583 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) -((-2891 (((-1293) (-305 |#2|) (-1201) (-1201) (-660 (-271))) 101 T ELT))) -(((-264 |#1| |#2|) (-10 -7 (-15 -2891 ((-1293) (-305 |#2|) (-1201) (-1201) (-660 (-271))))) (-13 (-569) (-865) (-1063 (-577))) (-443 |#1|)) (T -264)) -((-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1201)) (-5 *5 (-660 (-271))) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-865) (-1063 (-577)))) (-5 *2 (-1293)) (-5 *1 (-264 *6 *7))))) -(-10 -7 (-15 -2891 ((-1293) (-305 |#2|) (-1201) (-1201) (-660 (-271))))) -((-3535 (((-577) (-577)) 71 T ELT)) (-2031 (((-577) (-577)) 72 T ELT)) (-1536 (((-228) (-228)) 73 T ELT)) (-3768 (((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228))) 70 T ELT)) (-2263 (((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)) (-112)) 68 T ELT))) -(((-265) (-10 -7 (-15 -2263 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)) (-112))) (-15 -3768 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -3535 ((-577) (-577))) (-15 -2031 ((-577) (-577))) (-15 -1536 ((-228) (-228))))) (T -265)) -((-1536 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-3535 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-3768 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) (-5 *2 (-1294)) (-5 *1 (-265)))) (-2263 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) (-5 *5 (-112)) (-5 *2 (-1294)) (-5 *1 (-265))))) -(-10 -7 (-15 -2263 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)) (-112))) (-15 -3768 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -3535 ((-577) (-577))) (-15 -2031 ((-577) (-577))) (-15 -1536 ((-228) (-228)))) -((-3603 (((-1117 (-391)) (-1117 (-327 |#1|))) 16 T ELT))) -(((-266 |#1|) (-10 -7 (-15 -3603 ((-1117 (-391)) (-1117 (-327 |#1|))))) (-13 (-865) (-569) (-627 (-391)))) (T -266)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-1117 (-327 *4))) (-4 *4 (-13 (-865) (-569) (-627 (-391)))) (-5 *2 (-1117 (-391))) (-5 *1 (-266 *4))))) -(-10 -7 (-15 -3603 ((-1117 (-391)) (-1117 (-327 |#1|))))) -((-2929 (((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391))) 75 T ELT) (((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 74 T ELT) (((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391))) 65 T ELT) (((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 64 T ELT) (((-1158 (-228)) (-898 |#1|) (-1117 (-391))) 56 T ELT) (((-1158 (-228)) (-898 |#1|) (-1117 (-391)) (-660 (-271))) 55 T ELT)) (-2891 (((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391))) 78 T ELT) (((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 77 T ELT) (((-1294) |#1| (-1117 (-391)) (-1117 (-391))) 68 T ELT) (((-1294) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 67 T ELT) (((-1294) (-898 |#1|) (-1117 (-391))) 60 T ELT) (((-1294) (-898 |#1|) (-1117 (-391)) (-660 (-271))) 59 T ELT) (((-1293) (-896 |#1|) (-1117 (-391))) 47 T ELT) (((-1293) (-896 |#1|) (-1117 (-391)) (-660 (-271))) 46 T ELT) (((-1293) |#1| (-1117 (-391))) 38 T ELT) (((-1293) |#1| (-1117 (-391)) (-660 (-271))) 36 T ELT))) -(((-267 |#1|) (-10 -7 (-15 -2891 ((-1293) |#1| (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) |#1| (-1117 (-391)))) (-15 -2891 ((-1293) (-896 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) (-896 |#1|) (-1117 (-391)))) (-15 -2891 ((-1294) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-898 |#1|) (-1117 (-391)))) (-15 -2929 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)))) (-15 -2891 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -2929 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -2891 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)))) (-15 -2929 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391))))) (-13 (-627 (-549)) (-1125))) (T -267)) -((-2929 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *5)))) (-2929 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *6)))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *5)))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *6)))) (-2929 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-2929 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-2891 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1294)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-2891 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *5)))) (-2929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *6)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *5)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *6)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-896 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) (-5 *1 (-267 *5)))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-896 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) (-5 *1 (-267 *6)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1293)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125)))))) -(-10 -7 (-15 -2891 ((-1293) |#1| (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) |#1| (-1117 (-391)))) (-15 -2891 ((-1293) (-896 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1293) (-896 |#1|) (-1117 (-391)))) (-15 -2891 ((-1294) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-898 |#1|) (-1117 (-391)))) (-15 -2929 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)))) (-15 -2891 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -2929 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -2891 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2891 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)))) (-15 -2929 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -2929 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391))))) -((-2891 (((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)) (-660 (-271))) 23 T ELT) (((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228))) 24 T ELT) (((-1293) (-660 (-966 (-228))) (-660 (-271))) 16 T ELT) (((-1293) (-660 (-966 (-228)))) 17 T ELT) (((-1293) (-660 (-228)) (-660 (-228)) (-660 (-271))) 20 T ELT) (((-1293) (-660 (-228)) (-660 (-228))) 21 T ELT))) -(((-268) (-10 -7 (-15 -2891 ((-1293) (-660 (-228)) (-660 (-228)))) (-15 -2891 ((-1293) (-660 (-228)) (-660 (-228)) (-660 (-271)))) (-15 -2891 ((-1293) (-660 (-966 (-228))))) (-15 -2891 ((-1293) (-660 (-966 (-228))) (-660 (-271)))) (-15 -2891 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)))) (-15 -2891 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)) (-660 (-271)))))) (T -268)) -((-2891 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-268)))) (-2891 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1294)) (-5 *1 (-268)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-268)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *2 (-1293)) (-5 *1 (-268)))) (-2891 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-268)))) (-2891 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1293)) (-5 *1 (-268))))) -(-10 -7 (-15 -2891 ((-1293) (-660 (-228)) (-660 (-228)))) (-15 -2891 ((-1293) (-660 (-228)) (-660 (-228)) (-660 (-271)))) (-15 -2891 ((-1293) (-660 (-966 (-228))))) (-15 -2891 ((-1293) (-660 (-966 (-228))) (-660 (-271)))) (-15 -2891 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)))) (-15 -2891 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)) (-660 (-271))))) -((-3409 (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-660 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 25 T ELT)) (-1533 (((-944) (-660 (-271)) (-944)) 52 T ELT)) (-1786 (((-944) (-660 (-271)) (-944)) 51 T ELT)) (-4385 (((-660 (-391)) (-660 (-271)) (-660 (-391))) 68 T ELT)) (-3841 (((-391) (-660 (-271)) (-391)) 57 T ELT)) (-1918 (((-944) (-660 (-271)) (-944)) 53 T ELT)) (-3003 (((-112) (-660 (-271)) (-112)) 27 T ELT)) (-1382 (((-1183) (-660 (-271)) (-1183)) 19 T ELT)) (-4228 (((-1183) (-660 (-271)) (-1183)) 26 T ELT)) (-3255 (((-1158 (-228)) (-660 (-271))) 46 T ELT)) (-3819 (((-660 (-1119 (-391))) (-660 (-271)) (-660 (-1119 (-391)))) 40 T ELT)) (-2450 (((-892) (-660 (-271)) (-892)) 32 T ELT)) (-4298 (((-892) (-660 (-271)) (-892)) 33 T ELT)) (-3613 (((-1 (-966 (-228)) (-966 (-228))) (-660 (-271)) (-1 (-966 (-228)) (-966 (-228)))) 63 T ELT)) (-4411 (((-112) (-660 (-271)) (-112)) 14 T ELT)) (-3414 (((-112) (-660 (-271)) (-112)) 13 T ELT))) -(((-269) (-10 -7 (-15 -3414 ((-112) (-660 (-271)) (-112))) (-15 -4411 ((-112) (-660 (-271)) (-112))) (-15 -3409 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-660 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1382 ((-1183) (-660 (-271)) (-1183))) (-15 -4228 ((-1183) (-660 (-271)) (-1183))) (-15 -3003 ((-112) (-660 (-271)) (-112))) (-15 -2450 ((-892) (-660 (-271)) (-892))) (-15 -4298 ((-892) (-660 (-271)) (-892))) (-15 -3819 ((-660 (-1119 (-391))) (-660 (-271)) (-660 (-1119 (-391))))) (-15 -1786 ((-944) (-660 (-271)) (-944))) (-15 -1533 ((-944) (-660 (-271)) (-944))) (-15 -3255 ((-1158 (-228)) (-660 (-271)))) (-15 -1918 ((-944) (-660 (-271)) (-944))) (-15 -3841 ((-391) (-660 (-271)) (-391))) (-15 -3613 ((-1 (-966 (-228)) (-966 (-228))) (-660 (-271)) (-1 (-966 (-228)) (-966 (-228))))) (-15 -4385 ((-660 (-391)) (-660 (-271)) (-660 (-391)))))) (T -269)) -((-4385 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-391))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3613 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3841 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-1918 (*1 *2 *3 *2) (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-269)))) (-1533 (*1 *2 *3 *2) (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-1786 (*1 *2 *3 *2) (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3819 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-4298 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-2450 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3003 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-4228 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-1382 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3409 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-4411 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3414 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) -(-10 -7 (-15 -3414 ((-112) (-660 (-271)) (-112))) (-15 -4411 ((-112) (-660 (-271)) (-112))) (-15 -3409 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-660 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1382 ((-1183) (-660 (-271)) (-1183))) (-15 -4228 ((-1183) (-660 (-271)) (-1183))) (-15 -3003 ((-112) (-660 (-271)) (-112))) (-15 -2450 ((-892) (-660 (-271)) (-892))) (-15 -4298 ((-892) (-660 (-271)) (-892))) (-15 -3819 ((-660 (-1119 (-391))) (-660 (-271)) (-660 (-1119 (-391))))) (-15 -1786 ((-944) (-660 (-271)) (-944))) (-15 -1533 ((-944) (-660 (-271)) (-944))) (-15 -3255 ((-1158 (-228)) (-660 (-271)))) (-15 -1918 ((-944) (-660 (-271)) (-944))) (-15 -3841 ((-391) (-660 (-271)) (-391))) (-15 -3613 ((-1 (-966 (-228)) (-966 (-228))) (-660 (-271)) (-1 (-966 (-228)) (-966 (-228))))) (-15 -4385 ((-660 (-391)) (-660 (-271)) (-660 (-391))))) -((-2620 (((-3 |#1| "failed") (-660 (-271)) (-1201)) 17 T ELT))) -(((-270 |#1|) (-10 -7 (-15 -2620 ((-3 |#1| "failed") (-660 (-271)) (-1201)))) (-1242)) (T -270)) -((-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *1 (-270 *2)) (-4 *2 (-1242))))) -(-10 -7 (-15 -2620 ((-3 |#1| "failed") (-660 (-271)) (-1201)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3409 (($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 24 T ELT)) (-1533 (($ (-944)) 81 T ELT)) (-1786 (($ (-944)) 80 T ELT)) (-3426 (($ (-660 (-391))) 87 T ELT)) (-3841 (($ (-391)) 66 T ELT)) (-1918 (($ (-944)) 82 T ELT)) (-3003 (($ (-112)) 33 T ELT)) (-1382 (($ (-1183)) 28 T ELT)) (-4228 (($ (-1183)) 29 T ELT)) (-3255 (($ (-1158 (-228))) 76 T ELT)) (-3819 (($ (-660 (-1119 (-391)))) 72 T ELT)) (-2097 (($ (-660 (-1119 (-391)))) 68 T ELT) (($ (-660 (-1119 (-420 (-577))))) 71 T ELT)) (-1789 (($ (-391)) 38 T ELT) (($ (-892)) 42 T ELT)) (-2446 (((-112) (-660 $) (-1201)) 100 T ELT)) (-2620 (((-3 (-52) "failed") (-660 $) (-1201)) 102 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3278 (($ (-391)) 43 T ELT) (($ (-892)) 44 T ELT)) (-2729 (($ (-1 (-966 (-228)) (-966 (-228)))) 65 T ELT)) (-3613 (($ (-1 (-966 (-228)) (-966 (-228)))) 83 T ELT)) (-3706 (($ (-1 (-228) (-228))) 48 T ELT) (($ (-1 (-228) (-228) (-228))) 52 T ELT) (($ (-1 (-228) (-228) (-228) (-228))) 56 T ELT)) (-3603 (((-880) $) 93 T ELT)) (-1559 (($ (-112)) 34 T ELT) (($ (-660 (-1119 (-391)))) 60 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3414 (($ (-112)) 35 T ELT)) (-2949 (((-112) $ $) 97 T ELT))) -(((-271) (-13 (-1125) (-10 -8 (-15 -3414 ($ (-112))) (-15 -1559 ($ (-112))) (-15 -3409 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1382 ($ (-1183))) (-15 -4228 ($ (-1183))) (-15 -3003 ($ (-112))) (-15 -1559 ($ (-660 (-1119 (-391))))) (-15 -2729 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -1789 ($ (-391))) (-15 -1789 ($ (-892))) (-15 -3278 ($ (-391))) (-15 -3278 ($ (-892))) (-15 -3706 ($ (-1 (-228) (-228)))) (-15 -3706 ($ (-1 (-228) (-228) (-228)))) (-15 -3706 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -3841 ($ (-391))) (-15 -2097 ($ (-660 (-1119 (-391))))) (-15 -2097 ($ (-660 (-1119 (-420 (-577)))))) (-15 -3819 ($ (-660 (-1119 (-391))))) (-15 -3255 ($ (-1158 (-228)))) (-15 -1786 ($ (-944))) (-15 -1533 ($ (-944))) (-15 -1918 ($ (-944))) (-15 -3613 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -3426 ($ (-660 (-391)))) (-15 -2620 ((-3 (-52) "failed") (-660 $) (-1201))) (-15 -2446 ((-112) (-660 $) (-1201)))))) (T -271)) -((-3414 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-271)))) (-1382 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271)))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) (-2729 (*1 *1 *2) (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) (-3278 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-3278 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) (-3841 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-2097 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) (-2097 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-420 (-577))))) (-5 *1 (-271)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) (-3255 (*1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-271)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271)))) (-1533 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271)))) (-1918 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271)))) (-3613 (*1 *1 *2) (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-271)))) (-2620 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-52)) (-5 *1 (-271)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-112)) (-5 *1 (-271))))) -(-13 (-1125) (-10 -8 (-15 -3414 ($ (-112))) (-15 -1559 ($ (-112))) (-15 -3409 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1382 ($ (-1183))) (-15 -4228 ($ (-1183))) (-15 -3003 ($ (-112))) (-15 -1559 ($ (-660 (-1119 (-391))))) (-15 -2729 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -1789 ($ (-391))) (-15 -1789 ($ (-892))) (-15 -3278 ($ (-391))) (-15 -3278 ($ (-892))) (-15 -3706 ($ (-1 (-228) (-228)))) (-15 -3706 ($ (-1 (-228) (-228) (-228)))) (-15 -3706 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -3841 ($ (-391))) (-15 -2097 ($ (-660 (-1119 (-391))))) (-15 -2097 ($ (-660 (-1119 (-420 (-577)))))) (-15 -3819 ($ (-660 (-1119 (-391))))) (-15 -3255 ($ (-1158 (-228)))) (-15 -1786 ($ (-944))) (-15 -1533 ($ (-944))) (-15 -1918 ($ (-944))) (-15 -3613 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -3426 ($ (-660 (-391)))) (-15 -2620 ((-3 (-52) "failed") (-660 $) (-1201))) (-15 -2446 ((-112) (-660 $) (-1201))))) -((-3362 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-787)) 11 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) 19 T ELT) (($ $ (-787)) NIL T ELT) (($ $) 16 T ELT)) (-2136 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-787)) 14 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT))) -(((-272 |#1| |#2|) (-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -2136 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -2136 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2136 (|#1| |#1| (-660 (-1201)))) (-15 -2136 (|#1| |#1| (-1201) (-787))) (-15 -2136 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2136 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2136 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|)))) (-273 |#2|) (-1242)) (T -272)) -NIL -(-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -2136 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -2136 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2136 (|#1| |#1| (-660 (-1201)))) (-15 -2136 (|#1| |#1| (-1201) (-787))) (-15 -2136 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2136 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2136 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|)))) -((-3362 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 22 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) 16 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 15 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 14 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201)) 12 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-787)) 10 (|has| |#1| (-238)) ELT) (($ $) 8 (|has| |#1| (-238)) ELT)) (-2136 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 20 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) 19 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 18 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 17 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201)) 13 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-787)) 11 (|has| |#1| (-238)) ELT) (($ $) 9 (|has| |#1| (-238)) ELT))) -(((-273 |#1|) (-141) (-1242)) (T -273)) -((-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) (-4 *4 (-1242)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) (-2136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) (-4 *4 (-1242))))) -(-13 (-1242) (-10 -8 (-15 -3362 ($ $ (-1 |t#1| |t#1|))) (-15 -3362 ($ $ (-1 |t#1| |t#1|) (-787))) (-15 -2136 ($ $ (-1 |t#1| |t#1|))) (-15 -2136 ($ $ (-1 |t#1| |t#1|) (-787))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-923 (-1201))) (-6 (-923 (-1201))) |%noBranch|))) -(((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-915 $ #0=(-1201)) |has| |#1| (-923 (-1201))) ((-923 #0#) |has| |#1| (-923 (-1201))) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2959 (((-660 (-787)) $) NIL T ELT) (((-660 (-787)) $ |#2|) NIL T ELT)) (-2539 (((-787) $) NIL T ELT) (((-787) $ |#2|) NIL T ELT)) (-3206 (((-660 |#3|) $) NIL T ELT)) (-3024 (((-1197 $) $ |#3|) NIL T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 |#3|)) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2475 (($ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1150 |#1| |#2|) "failed") $) 23 T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1150 |#1| |#2|) $) NIL T ELT)) (-2653 (($ $ $ |#3|) NIL (|has| |#1| (-174)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#3|) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-544 |#3|) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) ELT)) (-2536 (((-787) $ |#2|) NIL T ELT) (((-787) $) 10 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-3194 (($ (-1197 |#1|) |#3|) NIL T ELT) (($ (-1197 $) |#3|) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-544 |#3|)) NIL T ELT) (($ $ |#3| (-787)) NIL T ELT) (($ $ (-660 |#3|) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |#3|) NIL T ELT)) (-2643 (((-544 |#3|) $) NIL T ELT) (((-787) $ |#3|) NIL T ELT) (((-660 (-787)) $ (-660 |#3|)) NIL T ELT)) (-4373 (($ (-1 (-544 |#3|) (-544 |#3|)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (((-1 $ (-787)) |#2|) NIL T ELT) (((-1 $ (-787)) $) NIL (|has| |#1| (-239)) ELT)) (-4038 (((-3 |#3| "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2646 ((|#3| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2330 (((-112) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| |#3|) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-2268 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-660 |#3|) (-660 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-660 |#3|) (-660 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-239)) ELT) (($ $ (-660 |#2|) (-660 $)) NIL (|has| |#1| (-239)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-660 |#2|) (-660 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-4447 (($ $ |#3|) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 |#3|) (-660 (-787))) NIL T ELT) (($ $ |#3| (-787)) NIL T ELT) (($ $ (-660 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-1727 (((-660 |#2|) $) NIL T ELT)) (-3616 (((-544 |#3|) $) NIL T ELT) (((-787) $ |#3|) NIL T ELT) (((-660 (-787)) $ (-660 |#3|)) NIL T ELT) (((-787) $ |#2|) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))) ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ |#3|) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1150 |#1| |#2|)) 32 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-544 |#3|)) NIL T ELT) (($ $ |#3| (-787)) NIL T ELT) (($ $ (-660 |#3|) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 |#3|) (-660 (-787))) NIL T ELT) (($ $ |#3| (-787)) NIL T ELT) (($ $ (-660 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-274 |#1| |#2| |#3|) (-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1063 (-1150 |#1| |#2|))) (-1074) (-865) (-276 |#2|)) (T -274)) -NIL -(-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1063 (-1150 |#1| |#2|))) -((-2539 (((-787) $) 37 T ELT)) (-2784 (((-3 |#2| "failed") $) 22 T ELT)) (-2155 ((|#2| $) 33 T ELT)) (-3362 (($ $ (-787)) 18 T ELT) (($ $) 14 T ELT)) (-3603 (((-880) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-2949 (((-112) $ $) 26 T ELT)) (-2971 (((-112) $ $) 36 T ELT))) -(((-275 |#1| |#2|) (-10 -8 (-15 -2539 ((-787) |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-276 |#2|) (-865)) (T -275)) -NIL -(-10 -8 (-15 -2539 ((-787) |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2539 (((-787) $) 23 T ELT)) (-3052 ((|#1| $) 24 T ELT)) (-2784 (((-3 |#1| "failed") $) 28 T ELT)) (-2155 ((|#1| $) 29 T ELT)) (-2536 (((-787) $) 25 T ELT)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-4417 (($ |#1| (-787)) 26 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3362 (($ $ (-787)) 32 T ELT) (($ $) 30 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ |#1|) 27 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2136 (($ $ (-787)) 33 T ELT) (($ $) 31 T ELT)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT))) -(((-276 |#1|) (-141) (-865)) (T -276)) -((-3603 (*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) (-4417 (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-276 *2)) (-4 *2 (-865)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787)))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787))))) -(-13 (-865) (-238) (-1063 |t#1|) (-10 -8 (-15 -4417 ($ |t#1| (-787))) (-15 -2536 ((-787) $)) (-15 -3052 (|t#1| $)) (-15 -2539 ((-787) $)) (-15 -3603 ($ |t#1|)))) -(((-102) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-235 $) . T) ((-238) . T) ((-865) . T) ((-868) . T) ((-1063 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3206 (((-660 (-1201)) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 53 T ELT)) (-1530 (((-660 (-1201)) (-327 (-228)) (-787)) 94 T ELT)) (-1436 (((-3 (-327 (-228)) "failed") (-327 (-228))) 63 T ELT)) (-3260 (((-327 (-228)) (-327 (-228))) 79 T ELT)) (-2741 (((-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 38 T ELT)) (-3137 (((-112) (-660 (-327 (-228)))) 104 T ELT)) (-2095 (((-112) (-327 (-228))) 36 T ELT)) (-1713 (((-660 (-1183)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))))) 132 T ELT)) (-3475 (((-660 (-327 (-228))) (-660 (-327 (-228)))) 108 T ELT)) (-1705 (((-660 (-327 (-228))) (-660 (-327 (-228)))) 106 T ELT)) (-1823 (((-705 (-228)) (-660 (-327 (-228))) (-787)) 120 T ELT)) (-2073 (((-112) (-327 (-228))) 31 T ELT) (((-112) (-660 (-327 (-228)))) 105 T ELT)) (-4149 (((-660 (-228)) (-660 (-859 (-228))) (-228)) 15 T ELT)) (-3956 (((-391) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 126 T ELT)) (-3765 (((-1060) (-1201) (-1060)) 46 T ELT))) -(((-277) (-10 -7 (-15 -4149 ((-660 (-228)) (-660 (-859 (-228))) (-228))) (-15 -2741 ((-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -1436 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3260 ((-327 (-228)) (-327 (-228)))) (-15 -3137 ((-112) (-660 (-327 (-228))))) (-15 -2073 ((-112) (-660 (-327 (-228))))) (-15 -2073 ((-112) (-327 (-228)))) (-15 -1823 ((-705 (-228)) (-660 (-327 (-228))) (-787))) (-15 -1705 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -3475 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -2095 ((-112) (-327 (-228)))) (-15 -3206 ((-660 (-1201)) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -1530 ((-660 (-1201)) (-327 (-228)) (-787))) (-15 -3765 ((-1060) (-1201) (-1060))) (-15 -3956 ((-391) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -1713 ((-660 (-1183)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))))))) (T -277)) -((-1713 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))))) (-5 *2 (-660 (-1183))) (-5 *1 (-277)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) (-5 *2 (-391)) (-5 *1 (-277)))) (-3765 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-277)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-787)) (-5 *2 (-660 (-1201))) (-5 *1 (-277)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) (-5 *2 (-660 (-1201))) (-5 *1 (-277)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277)))) (-1705 (*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *4 (-787)) (-5 *2 (-705 (-228))) (-5 *1 (-277)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-1436 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-2741 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *1 (-277)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-859 (-228)))) (-5 *4 (-228)) (-5 *2 (-660 *4)) (-5 *1 (-277))))) -(-10 -7 (-15 -4149 ((-660 (-228)) (-660 (-859 (-228))) (-228))) (-15 -2741 ((-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -1436 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3260 ((-327 (-228)) (-327 (-228)))) (-15 -3137 ((-112) (-660 (-327 (-228))))) (-15 -2073 ((-112) (-660 (-327 (-228))))) (-15 -2073 ((-112) (-327 (-228)))) (-15 -1823 ((-705 (-228)) (-660 (-327 (-228))) (-787))) (-15 -1705 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -3475 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -2095 ((-112) (-327 (-228)))) (-15 -3206 ((-660 (-1201)) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -1530 ((-660 (-1201)) (-327 (-228)) (-787))) (-15 -3765 ((-1060) (-1201) (-1060))) (-15 -3956 ((-391) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -1713 ((-660 (-1183)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))))))) -((-3489 (((-112) $ $) NIL T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 56 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 32 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-278) (-855)) (T -278)) -NIL -(-855) -((-3489 (((-112) $ $) NIL T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 72 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 63 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 41 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 43 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-279) (-855)) (T -279)) -NIL -(-855) -((-3489 (((-112) $ $) NIL T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 90 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 85 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 52 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 65 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-280) (-855)) (T -280)) -NIL -(-855) -((-3489 (((-112) $ $) NIL T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 73 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 45 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-281) (-855)) (T -281)) -NIL -(-855) -((-3489 (((-112) $ $) NIL T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 65 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 31 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-282) (-855)) (T -282)) -NIL -(-855) -((-3489 (((-112) $ $) NIL T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 90 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 33 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-283) (-855)) (T -283)) -NIL -(-855) -((-3489 (((-112) $ $) NIL T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 87 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 32 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-284) (-855)) (T -284)) -NIL -(-855) -((-3489 (((-112) $ $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3108 (((-660 (-577)) $) 29 T ELT)) (-3616 (((-787) $) 27 T ELT)) (-3603 (((-880) $) 33 T ELT) (($ (-660 (-577))) 23 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1465 (($ (-787)) 30 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 9 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 17 T ELT))) -(((-285) (-13 (-865) (-10 -8 (-15 -3603 ($ (-660 (-577)))) (-15 -3616 ((-787) $)) (-15 -3108 ((-660 (-577)) $)) (-15 -1465 ($ (-787)))))) (T -285)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-285)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-285))))) -(-13 (-865) (-10 -8 (-15 -3603 ($ (-660 (-577)))) (-15 -3616 ((-787) $)) (-15 -3108 ((-660 (-577)) $)) (-15 -1465 ($ (-787))))) -((-2642 ((|#2| |#2|) 77 T ELT)) (-2501 ((|#2| |#2|) 65 T ELT)) (-1897 (((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125 T ELT)) (-2616 ((|#2| |#2|) 75 T ELT)) (-2471 ((|#2| |#2|) 63 T ELT)) (-2666 ((|#2| |#2|) 79 T ELT)) (-2523 ((|#2| |#2|) 67 T ELT)) (-2824 ((|#2|) 46 T ELT)) (-2085 (((-115) (-115)) 100 T ELT)) (-3716 ((|#2| |#2|) 61 T ELT)) (-1581 (((-112) |#2|) 147 T ELT)) (-2487 ((|#2| |#2|) 195 T ELT)) (-4339 ((|#2| |#2|) 171 T ELT)) (-1416 ((|#2|) 59 T ELT)) (-2881 ((|#2|) 58 T ELT)) (-1635 ((|#2| |#2|) 191 T ELT)) (-2774 ((|#2| |#2|) 167 T ELT)) (-2410 ((|#2| |#2|) 199 T ELT)) (-1686 ((|#2| |#2|) 175 T ELT)) (-4186 ((|#2| |#2|) 163 T ELT)) (-4358 ((|#2| |#2|) 165 T ELT)) (-2050 ((|#2| |#2|) 201 T ELT)) (-3433 ((|#2| |#2|) 177 T ELT)) (-4061 ((|#2| |#2|) 197 T ELT)) (-3093 ((|#2| |#2|) 173 T ELT)) (-2975 ((|#2| |#2|) 193 T ELT)) (-2397 ((|#2| |#2|) 169 T ELT)) (-2844 ((|#2| |#2|) 207 T ELT)) (-2860 ((|#2| |#2|) 183 T ELT)) (-3776 ((|#2| |#2|) 203 T ELT)) (-2072 ((|#2| |#2|) 179 T ELT)) (-3987 ((|#2| |#2|) 211 T ELT)) (-2286 ((|#2| |#2|) 187 T ELT)) (-2314 ((|#2| |#2|) 213 T ELT)) (-1943 ((|#2| |#2|) 189 T ELT)) (-2369 ((|#2| |#2|) 209 T ELT)) (-1621 ((|#2| |#2|) 185 T ELT)) (-3406 ((|#2| |#2|) 205 T ELT)) (-4005 ((|#2| |#2|) 181 T ELT)) (-2079 ((|#2| |#2|) 62 T ELT)) (-2680 ((|#2| |#2|) 80 T ELT)) (-2535 ((|#2| |#2|) 68 T ELT)) (-2655 ((|#2| |#2|) 78 T ELT)) (-2512 ((|#2| |#2|) 66 T ELT)) (-2631 ((|#2| |#2|) 76 T ELT)) (-2486 ((|#2| |#2|) 64 T ELT)) (-3123 (((-112) (-115)) 98 T ELT)) (-2722 ((|#2| |#2|) 83 T ELT)) (-2570 ((|#2| |#2|) 71 T ELT)) (-2694 ((|#2| |#2|) 81 T ELT)) (-2546 ((|#2| |#2|) 69 T ELT)) (-2748 ((|#2| |#2|) 85 T ELT)) (-2592 ((|#2| |#2|) 73 T ELT)) (-2897 ((|#2| |#2|) 86 T ELT)) (-2604 ((|#2| |#2|) 74 T ELT)) (-2734 ((|#2| |#2|) 84 T ELT)) (-2581 ((|#2| |#2|) 72 T ELT)) (-2708 ((|#2| |#2|) 82 T ELT)) (-2558 ((|#2| |#2|) 70 T ELT))) -(((-286 |#1| |#2|) (-10 -7 (-15 -2079 (|#2| |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -2471 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2501 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -2655 (|#2| |#2|)) (-15 -2666 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -2708 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2748 (|#2| |#2|)) (-15 -2897 (|#2| |#2|)) (-15 -2824 (|#2|)) (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -2881 (|#2|)) (-15 -1416 (|#2|)) (-15 -4358 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -4339 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -3433 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -1621 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -1943 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -2975 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3406 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -1897 ((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1581 ((-112) |#2|))) (-569) (-13 (-443 |#1|) (-1027))) (T -286)) -((-1581 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) (-4 *3 (-13 (-443 *4) (-1027))))) (-1897 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-660 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-443 *4) (-1027))) (-4 *4 (-569)) (-5 *1 (-286 *4 *2)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3987 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3406 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2975 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-1943 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-1621 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2860 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2072 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3433 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4339 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2397 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4358 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-1416 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-2881 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) (-4 *4 (-13 (-443 *3) (-1027))))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027))))) (-2824 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-2897 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2722 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2694 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2655 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2642 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2581 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2558 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2546 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2501 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027)))))) -(-10 -7 (-15 -2079 (|#2| |#2|)) (-15 -3716 (|#2| |#2|)) (-15 -2471 (|#2| |#2|)) (-15 -2486 (|#2| |#2|)) (-15 -2501 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -2523 (|#2| |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -2546 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -2655 (|#2| |#2|)) (-15 -2666 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -2708 (|#2| |#2|)) (-15 -2722 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2748 (|#2| |#2|)) (-15 -2897 (|#2| |#2|)) (-15 -2824 (|#2|)) (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -2881 (|#2|)) (-15 -1416 (|#2|)) (-15 -4358 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -2397 (|#2| |#2|)) (-15 -4339 (|#2| |#2|)) (-15 -3093 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -3433 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -1621 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -1943 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -2975 (|#2| |#2|)) (-15 -2487 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3406 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -3987 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -1897 ((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1581 ((-112) |#2|))) -((-4303 (((-3 |#2| "failed") (-660 (-625 |#2|)) |#2| (-1201)) 151 T ELT)) (-3867 ((|#2| (-420 (-577)) |#2|) 49 T ELT)) (-2138 ((|#2| |#2| (-625 |#2|)) 144 T ELT)) (-3084 (((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-625 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1201)) 143 T ELT)) (-2633 ((|#2| |#2| (-1201)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2030 ((|#2| |#2| (-1201)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -2030 (|#2| |#2|)) (-15 -2030 (|#2| |#2| (-1201))) (-15 -3084 ((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-625 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1201))) (-15 -2633 (|#2| |#2|)) (-15 -2633 (|#2| |#2| (-1201))) (-15 -4303 ((-3 |#2| "failed") (-660 (-625 |#2|)) |#2| (-1201))) (-15 -2138 (|#2| |#2| (-625 |#2|))) (-15 -3867 (|#2| (-420 (-577)) |#2|))) (-13 (-569) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -287)) -((-3867 (*1 *2 *3 *2) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-2138 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)))) (-4303 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-1201)) (-4 *2 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *5 *2)))) (-2633 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-2633 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-660 (-625 *3))) (|:| |vals| (-660 *3)))) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2030 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) -(-10 -7 (-15 -2030 (|#2| |#2|)) (-15 -2030 (|#2| |#2| (-1201))) (-15 -3084 ((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-625 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1201))) (-15 -2633 (|#2| |#2|)) (-15 -2633 (|#2| |#2| (-1201))) (-15 -4303 ((-3 |#2| "failed") (-660 (-625 |#2|)) |#2| (-1201))) (-15 -2138 (|#2| |#2| (-625 |#2|))) (-15 -3867 (|#2| (-420 (-577)) |#2|))) -((-3218 (((-3 |#3| "failed") |#3|) 120 T ELT)) (-2642 ((|#3| |#3|) 142 T ELT)) (-4147 (((-3 |#3| "failed") |#3|) 89 T ELT)) (-2501 ((|#3| |#3|) 132 T ELT)) (-1995 (((-3 |#3| "failed") |#3|) 65 T ELT)) (-2616 ((|#3| |#3|) 140 T ELT)) (-2614 (((-3 |#3| "failed") |#3|) 53 T ELT)) (-2471 ((|#3| |#3|) 130 T ELT)) (-4416 (((-3 |#3| "failed") |#3|) 122 T ELT)) (-2666 ((|#3| |#3|) 144 T ELT)) (-2130 (((-3 |#3| "failed") |#3|) 91 T ELT)) (-2523 ((|#3| |#3|) 134 T ELT)) (-4064 (((-3 |#3| "failed") |#3| (-787)) 41 T ELT)) (-4152 (((-3 |#3| "failed") |#3|) 81 T ELT)) (-3716 ((|#3| |#3|) 129 T ELT)) (-2412 (((-3 |#3| "failed") |#3|) 51 T ELT)) (-2079 ((|#3| |#3|) 128 T ELT)) (-3899 (((-3 |#3| "failed") |#3|) 123 T ELT)) (-2680 ((|#3| |#3|) 145 T ELT)) (-3743 (((-3 |#3| "failed") |#3|) 92 T ELT)) (-2535 ((|#3| |#3|) 135 T ELT)) (-2865 (((-3 |#3| "failed") |#3|) 121 T ELT)) (-2655 ((|#3| |#3|) 143 T ELT)) (-2516 (((-3 |#3| "failed") |#3|) 90 T ELT)) (-2512 ((|#3| |#3|) 133 T ELT)) (-1678 (((-3 |#3| "failed") |#3|) 67 T ELT)) (-2631 ((|#3| |#3|) 141 T ELT)) (-4374 (((-3 |#3| "failed") |#3|) 55 T ELT)) (-2486 ((|#3| |#3|) 131 T ELT)) (-3954 (((-3 |#3| "failed") |#3|) 73 T ELT)) (-2722 ((|#3| |#3|) 148 T ELT)) (-1636 (((-3 |#3| "failed") |#3|) 114 T ELT)) (-2570 ((|#3| |#3|) 152 T ELT)) (-1378 (((-3 |#3| "failed") |#3|) 69 T ELT)) (-2694 ((|#3| |#3|) 146 T ELT)) (-3431 (((-3 |#3| "failed") |#3|) 57 T ELT)) (-2546 ((|#3| |#3|) 136 T ELT)) (-1827 (((-3 |#3| "failed") |#3|) 77 T ELT)) (-2748 ((|#3| |#3|) 150 T ELT)) (-2670 (((-3 |#3| "failed") |#3|) 61 T ELT)) (-2592 ((|#3| |#3|) 138 T ELT)) (-1395 (((-3 |#3| "failed") |#3|) 79 T ELT)) (-2897 ((|#3| |#3|) 151 T ELT)) (-2292 (((-3 |#3| "failed") |#3|) 63 T ELT)) (-2604 ((|#3| |#3|) 139 T ELT)) (-3523 (((-3 |#3| "failed") |#3|) 75 T ELT)) (-2734 ((|#3| |#3|) 149 T ELT)) (-3126 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-2581 ((|#3| |#3|) 153 T ELT)) (-4388 (((-3 |#3| "failed") |#3|) 71 T ELT)) (-2708 ((|#3| |#3|) 147 T ELT)) (-1936 (((-3 |#3| "failed") |#3|) 59 T ELT)) (-2558 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-420 (-577))) 47 (|has| |#1| (-375)) ELT))) -(((-288 |#1| |#2| |#3|) (-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2079 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -2471 (|#3| |#3|)) (-15 -2486 (|#3| |#3|)) (-15 -2501 (|#3| |#3|)) (-15 -2512 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)) (-15 -2546 (|#3| |#3|)) (-15 -2558 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2581 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2631 (|#3| |#3|)) (-15 -2642 (|#3| |#3|)) (-15 -2655 (|#3| |#3|)) (-15 -2666 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2694 (|#3| |#3|)) (-15 -2708 (|#3| |#3|)) (-15 -2722 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2897 (|#3| |#3|)))) (-38 (-420 (-577))) (-1283 |#1|) (-1254 |#1| |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1283 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1254 *4 *5)))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2501 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2546 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2558 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2581 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2642 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2655 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2694 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2722 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2897 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4))))) -(-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2079 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -2471 (|#3| |#3|)) (-15 -2486 (|#3| |#3|)) (-15 -2501 (|#3| |#3|)) (-15 -2512 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)) (-15 -2546 (|#3| |#3|)) (-15 -2558 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2581 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2631 (|#3| |#3|)) (-15 -2642 (|#3| |#3|)) (-15 -2655 (|#3| |#3|)) (-15 -2666 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2694 (|#3| |#3|)) (-15 -2708 (|#3| |#3|)) (-15 -2722 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2897 (|#3| |#3|)))) -((-3218 (((-3 |#3| "failed") |#3|) 70 T ELT)) (-2642 ((|#3| |#3|) 137 T ELT)) (-4147 (((-3 |#3| "failed") |#3|) 54 T ELT)) (-2501 ((|#3| |#3|) 125 T ELT)) (-1995 (((-3 |#3| "failed") |#3|) 66 T ELT)) (-2616 ((|#3| |#3|) 135 T ELT)) (-2614 (((-3 |#3| "failed") |#3|) 50 T ELT)) (-2471 ((|#3| |#3|) 123 T ELT)) (-4416 (((-3 |#3| "failed") |#3|) 74 T ELT)) (-2666 ((|#3| |#3|) 139 T ELT)) (-2130 (((-3 |#3| "failed") |#3|) 58 T ELT)) (-2523 ((|#3| |#3|) 127 T ELT)) (-4064 (((-3 |#3| "failed") |#3| (-787)) 38 T ELT)) (-4152 (((-3 |#3| "failed") |#3|) 48 T ELT)) (-3716 ((|#3| |#3|) 111 T ELT)) (-2412 (((-3 |#3| "failed") |#3|) 46 T ELT)) (-2079 ((|#3| |#3|) 122 T ELT)) (-3899 (((-3 |#3| "failed") |#3|) 76 T ELT)) (-2680 ((|#3| |#3|) 140 T ELT)) (-3743 (((-3 |#3| "failed") |#3|) 60 T ELT)) (-2535 ((|#3| |#3|) 128 T ELT)) (-2865 (((-3 |#3| "failed") |#3|) 72 T ELT)) (-2655 ((|#3| |#3|) 138 T ELT)) (-2516 (((-3 |#3| "failed") |#3|) 56 T ELT)) (-2512 ((|#3| |#3|) 126 T ELT)) (-1678 (((-3 |#3| "failed") |#3|) 68 T ELT)) (-2631 ((|#3| |#3|) 136 T ELT)) (-4374 (((-3 |#3| "failed") |#3|) 52 T ELT)) (-2486 ((|#3| |#3|) 124 T ELT)) (-3954 (((-3 |#3| "failed") |#3|) 78 T ELT)) (-2722 ((|#3| |#3|) 143 T ELT)) (-1636 (((-3 |#3| "failed") |#3|) 62 T ELT)) (-2570 ((|#3| |#3|) 131 T ELT)) (-1378 (((-3 |#3| "failed") |#3|) 112 T ELT)) (-2694 ((|#3| |#3|) 141 T ELT)) (-3431 (((-3 |#3| "failed") |#3|) 100 T ELT)) (-2546 ((|#3| |#3|) 129 T ELT)) (-1827 (((-3 |#3| "failed") |#3|) 116 T ELT)) (-2748 ((|#3| |#3|) 145 T ELT)) (-2670 (((-3 |#3| "failed") |#3|) 107 T ELT)) (-2592 ((|#3| |#3|) 133 T ELT)) (-1395 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-2897 ((|#3| |#3|) 146 T ELT)) (-2292 (((-3 |#3| "failed") |#3|) 109 T ELT)) (-2604 ((|#3| |#3|) 134 T ELT)) (-3523 (((-3 |#3| "failed") |#3|) 80 T ELT)) (-2734 ((|#3| |#3|) 144 T ELT)) (-3126 (((-3 |#3| "failed") |#3|) 64 T ELT)) (-2581 ((|#3| |#3|) 132 T ELT)) (-4388 (((-3 |#3| "failed") |#3|) 113 T ELT)) (-2708 ((|#3| |#3|) 142 T ELT)) (-1936 (((-3 |#3| "failed") |#3|) 103 T ELT)) (-2558 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-420 (-577))) 44 (|has| |#1| (-375)) ELT))) -(((-289 |#1| |#2| |#3| |#4|) (-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2079 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -2471 (|#3| |#3|)) (-15 -2486 (|#3| |#3|)) (-15 -2501 (|#3| |#3|)) (-15 -2512 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)) (-15 -2546 (|#3| |#3|)) (-15 -2558 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2581 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2631 (|#3| |#3|)) (-15 -2642 (|#3| |#3|)) (-15 -2655 (|#3| |#3|)) (-15 -2666 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2694 (|#3| |#3|)) (-15 -2708 (|#3| |#3|)) (-15 -2722 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2897 (|#3| |#3|)))) (-38 (-420 (-577))) (-1252 |#1|) (-1275 |#1| |#2|) (-1008 |#2|)) (T -289)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1252 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1275 *4 *5)) (-4 *6 (-1008 *5)))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2501 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2523 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2546 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2558 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2581 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2642 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2655 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2666 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2694 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2722 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2897 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4))))) -(-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2079 (|#3| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -2471 (|#3| |#3|)) (-15 -2486 (|#3| |#3|)) (-15 -2501 (|#3| |#3|)) (-15 -2512 (|#3| |#3|)) (-15 -2523 (|#3| |#3|)) (-15 -2535 (|#3| |#3|)) (-15 -2546 (|#3| |#3|)) (-15 -2558 (|#3| |#3|)) (-15 -2570 (|#3| |#3|)) (-15 -2581 (|#3| |#3|)) (-15 -2592 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2631 (|#3| |#3|)) (-15 -2642 (|#3| |#3|)) (-15 -2655 (|#3| |#3|)) (-15 -2666 (|#3| |#3|)) (-15 -2680 (|#3| |#3|)) (-15 -2694 (|#3| |#3|)) (-15 -2708 (|#3| |#3|)) (-15 -2722 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2897 (|#3| |#3|)))) -((-3703 (((-112) $) 20 T ELT)) (-3015 (((-1206) $) 7 T ELT)) (-3736 (((-3 (-519) "failed") $) 14 T ELT)) (-2008 (((-3 (-660 $) "failed") $) NIL T ELT)) (-2119 (((-3 (-519) "failed") $) 21 T ELT)) (-4354 (((-3 (-1129) "failed") $) 18 T ELT)) (-1460 (((-112) $) 16 T ELT)) (-3603 (((-880) $) NIL T ELT)) (-3617 (((-112) $) 9 T ELT))) -(((-290) (-13 (-626 (-880)) (-10 -8 (-15 -3015 ((-1206) $)) (-15 -1460 ((-112) $)) (-15 -4354 ((-3 (-1129) "failed") $)) (-15 -3703 ((-112) $)) (-15 -2119 ((-3 (-519) "failed") $)) (-15 -3617 ((-112) $)) (-15 -3736 ((-3 (-519) "failed") $)) (-15 -2008 ((-3 (-660 $) "failed") $))))) (T -290)) -((-3015 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-290)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-4354 (*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-290)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-2119 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-3736 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-2008 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-290))) (-5 *1 (-290))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3015 ((-1206) $)) (-15 -1460 ((-112) $)) (-15 -4354 ((-3 (-1129) "failed") $)) (-15 -3703 ((-112) $)) (-15 -2119 ((-3 (-519) "failed") $)) (-15 -3617 ((-112) $)) (-15 -3736 ((-3 (-519) "failed") $)) (-15 -2008 ((-3 (-660 $) "failed") $)))) -((-3729 (((-610) $) 10 T ELT)) (-3997 (((-598) $) 8 T ELT)) (-4334 (((-302) $) 12 T ELT)) (-2465 (($ (-598) (-610) (-302)) NIL T ELT)) (-3603 (((-880) $) 19 T ELT))) -(((-291) (-13 (-626 (-880)) (-10 -8 (-15 -2465 ($ (-598) (-610) (-302))) (-15 -3997 ((-598) $)) (-15 -3729 ((-610) $)) (-15 -4334 ((-302) $))))) (T -291)) -((-2465 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291)))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) -(-13 (-626 (-880)) (-10 -8 (-15 -2465 ($ (-598) (-610) (-302))) (-15 -3997 ((-598) $)) (-15 -3729 ((-610) $)) (-15 -4334 ((-302) $)))) -((-3730 (($ (-1 (-112) |#2|) $) 24 T ELT)) (-3289 (($ $) 38 T ELT)) (-3266 (($ (-1 (-112) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3920 (($ |#2| $) 34 T ELT) (($ (-1 (-112) |#2|) $) 18 T ELT)) (-1615 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2218 (($ |#2| $ (-577)) 20 T ELT) (($ $ $ (-577)) 22 T ELT)) (-3490 (($ $ (-577)) 11 T ELT) (($ $ (-1259 (-577))) 14 T ELT)) (-1584 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-1685 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-660 $)) NIL T ELT))) -(((-292 |#1| |#2|) (-10 -8 (-15 -1615 (|#1| |#1| |#1|)) (-15 -3266 (|#1| |#2| |#1|)) (-15 -1615 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3266 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1584 (|#1| |#1| |#1|)) (-15 -1584 (|#1| |#1| |#2|)) (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -3490 (|#1| |#1| (-1259 (-577)))) (-15 -3490 (|#1| |#1| (-577))) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#2|)) (-15 -3920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3920 (|#1| |#2| |#1|)) (-15 -3289 (|#1| |#1|))) (-293 |#2|) (-1242)) (T -292)) -NIL -(-10 -8 (-15 -1615 (|#1| |#1| |#1|)) (-15 -3266 (|#1| |#2| |#1|)) (-15 -1615 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3266 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1584 (|#1| |#1| |#1|)) (-15 -1584 (|#1| |#1| |#2|)) (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -3490 (|#1| |#1| (-1259 (-577)))) (-15 -3490 (|#1| |#1| (-577))) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#2|)) (-15 -3920 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3920 (|#1| |#2| |#1|)) (-15 -3289 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) |#1|) $) 88 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3699 (($ $) 86 (|has| |#1| (-1125)) ELT)) (-3289 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ (-1 (-112) |#1|) $) 92 T ELT) (($ |#1| $) 87 (|has| |#1| (-1125)) ELT)) (-3920 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 52 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) 70 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-1615 (($ (-1 (-112) |#1| |#1|) $ $) 89 T ELT) (($ $ $) 85 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-4345 (($ |#1| $ (-577)) 91 T ELT) (($ $ $ (-577)) 90 T ELT)) (-2218 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 43 (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2529 (($ $ |#1|) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1259 (-577))) 71 T ELT)) (-3839 (($ $ (-577)) 94 T ELT) (($ $ (-1259 (-577))) 93 T ELT)) (-3490 (($ $ (-577)) 64 T ELT) (($ $ (-1259 (-577))) 63 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 81 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 72 T ELT)) (-1584 (($ $ |#1|) 96 T ELT) (($ $ $) 95 T ELT)) (-1685 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-660 $)) 66 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-293 |#1|) (-141) (-1242)) (T -293)) -((-1584 (*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) (-1584 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-3266 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-4345 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1242)))) (-4345 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-1615 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-2236 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-3266 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) (-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-865))))) -(-13 (-667 |t#1|) (-10 -8 (-6 -4471) (-15 -1584 ($ $ |t#1|)) (-15 -1584 ($ $ $)) (-15 -3839 ($ $ (-577))) (-15 -3839 ($ $ (-1259 (-577)))) (-15 -3266 ($ (-1 (-112) |t#1|) $)) (-15 -4345 ($ |t#1| $ (-577))) (-15 -4345 ($ $ $ (-577))) (-15 -1615 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2236 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -3266 ($ |t#1| $)) (-15 -3699 ($ $))) |%noBranch|) (IF (|has| |t#1| (-865)) (-15 -1615 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-577)))) (-3981 (*1 *1 *1) (-4 *1 (-249)))) +(-13 (-301) (-38 (-420 (-577))) (-10 -8 (-15 ** ($ $ (-577))) (-15 -3981 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-301) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-738 #0#) . T) ((-747) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-2688 (($ $) 58 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-2877 (($ $ $) 54 (|has| $ (-6 -4500)) ELT)) (-2531 (($ $ $) 53 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2305 (($) 7 T CONST)) (-4469 (($ $) 57 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-2615 (($ $) 56 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) 60 T ELT)) (-2392 (($ $) 59 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-2562 (($ $ $) 55 (|has| $ (-6 -4500)) ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-250 |#1|) (-141) (-1247)) (T -250)) +((-4026 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-2392 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-2688 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-4469 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-2615 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-2562 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-2877 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-2531 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -4026 (|t#1| $)) (-15 -2392 ($ $)) (-15 -2688 ($ $)) (-15 -4469 ($ $)) (-15 -2615 ($ $)) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2562 ($ $ $)) (-15 -2877 ($ $ $)) (-15 -2531 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) NIL T ELT)) (-1893 ((|#1| $) NIL T ELT)) (-2688 (($ $) NIL T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) $) NIL (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-2629 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1381 (($ $) 10 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-1968 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1883 ((|#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-4410 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2697 (($ $) NIL (|has| |#1| (-1130)) ELT)) (-3589 (($ $) 7 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4004 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-4236 (((-112) $) NIL T ELT)) (-3948 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-3771 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4415 (($ |#1|) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-4375 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2317 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3661 (((-112) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) ((|#1| $ (-577) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-792) $ "count") 16 T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-4068 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3587 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3113 (($ (-665 |#1|)) 22 T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1659 (($ $) NIL T ELT)) (-1697 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) NIL T ELT)) (-2554 (($ $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) NIL T ELT)) (-2562 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1702 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-665 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3709 (($ (-665 |#1|)) 17 T ELT) (((-665 |#1|) $) 18 T ELT) (((-885) $) 21 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 14 (|has| $ (-6 -4499)) ELT))) +(((-251 |#1|) (-13 (-687 |#1|) (-503 (-665 |#1|)) (-10 -8 (-15 -3113 ($ (-665 |#1|))) (-15 -2916 ($ $ "unique")) (-15 -2916 ($ $ "sort")) (-15 -2916 ((-792) $ "count")))) (-870)) (T -251)) +((-3113 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-251 *3)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-870)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-870)))) (-2916 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-792)) (-5 *1 (-251 *4)) (-4 *4 (-870))))) +(-13 (-687 |#1|) (-503 (-665 |#1|)) (-10 -8 (-15 -3113 ($ (-665 |#1|))) (-15 -2916 ($ $ "unique")) (-15 -2916 ($ $ "sort")) (-15 -2916 ((-792) $ "count")))) +((-4216 (((-3 (-792) "failed") |#1| |#1| (-792)) 40 T ELT))) +(((-252 |#1|) (-10 -7 (-15 -4216 ((-3 (-792) "failed") |#1| |#1| (-792)))) (-13 (-747) (-380) (-10 -7 (-15 ** (|#1| |#1| (-577)))))) (T -252)) +((-4216 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-792)) (-4 *3 (-13 (-747) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) (-5 *1 (-252 *3))))) +(-10 -7 (-15 -4216 ((-3 (-792) "failed") |#1| |#1| (-792)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3641 (($ $) 54 (|has| |#1| (-238)) ELT) (($ $ (-792)) 52 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 50 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 48 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 47 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 46 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1 |#1| |#1|) (-792)) 40 T ELT) (($ $ (-1 |#1| |#1|)) 39 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2389 (($ $) 53 (|has| |#1| (-238)) ELT) (($ $ (-792)) 51 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 49 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 45 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 44 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 43 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1 |#1| |#1|) (-792)) 42 T ELT) (($ $ (-1 |#1| |#1|)) 41 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-253 |#1|) (-141) (-1079)) (T -253)) +NIL +(-13 (-111 |t#1| |t#1|) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-236 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-928 (-1206))) (-6 (-925 |t#1| (-1206))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-235 $) |has| |#1| (-238)) ((-236 |#1|) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-273 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) -2867 (-12 (|has| |#1| (-174)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-738 |#1|) -2867 (-12 (|has| |#1| (-174)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-920 $ #0=(-1206)) |has| |#1| (-928 (-1206))) ((-925 |#1| (-1206)) |has| |#1| (-928 (-1206))) ((-928 #0#) |has| |#1| (-928 (-1206))) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-887 |#1|)) $) NIL T ELT)) (-3732 (((-1202 $) $ (-887 |#1|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3868 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-2014 (($ $ (-665 (-577))) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4365 (($ $ |#2| (-246 (-3600 |#1|) (-792)) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-3882 (($ (-1202 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1202 $) (-887 |#1|)) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#2| (-246 (-3600 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-887 |#1|)) NIL T ELT)) (-4340 (((-246 (-3600 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4329 (($ (-1 (-246 (-3600 |#1|) (-792)) (-246 (-3600 |#1|) (-792))) $) NIL T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3946 (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#2| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) NIL T ELT)) (-3846 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3641 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-1597 (((-246 (-3600 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2407 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-246 (-3600 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-254 |#1| |#2|) (-13 (-977 |#2| (-246 (-3600 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -2014 ($ $ (-665 (-577)))))) (-665 (-1206)) (-1079)) (T -254)) +((-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-254 *3 *4)) (-14 *3 (-665 (-1206))) (-4 *4 (-1079))))) +(-13 (-977 |#2| (-246 (-3600 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -2014 ($ $ (-665 (-577)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2715 (((-1302) $) 17 T ELT)) (-3635 (((-185 (-256)) $) 11 T ELT)) (-1514 (($ (-185 (-256))) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2695 (((-256) $) 7 T ELT)) (-3709 (((-885) $) 9 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 15 T ELT))) +(((-255) (-13 (-1130) (-10 -8 (-15 -2695 ((-256) $)) (-15 -3635 ((-185 (-256)) $)) (-15 -1514 ($ (-185 (-256)))) (-15 -2715 ((-1302) $))))) (T -255)) +((-2695 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-255)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-255))))) +(-13 (-1130) (-10 -8 (-15 -2695 ((-256) $)) (-15 -3635 ((-185 (-256)) $)) (-15 -1514 ($ (-185 (-256)))) (-15 -2715 ((-1302) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3593 (((-665 (-888)) $) NIL T ELT)) (-2758 (((-519) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1857 (((-188) $) NIL T ELT)) (-4241 (((-112) $ (-519)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1992 (((-344) $) 7 T ELT)) (-1476 (((-665 (-112)) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (((-189) $) 8 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3622 (((-55) $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-256) (-13 (-187) (-631 (-189)) (-10 -8 (-15 -1992 ((-344) $))))) (T -256)) +((-1992 (*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) +(-13 (-187) (-631 (-189)) (-10 -8 (-15 -1992 ((-344) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 (((-1211) $ (-792)) 13 T ELT)) (-3709 (((-885) $) 20 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 16 T ELT)) (-3600 (((-792) $) 9 T ELT))) +(((-257) (-13 (-1130) (-297 (-792) (-1211)) (-10 -8 (-15 -3600 ((-792) $))))) (T -257)) +((-3600 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-257))))) +(-13 (-1130) (-297 (-792) (-1211)) (-10 -8 (-15 -3600 ((-792) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1385 (($ (-949)) NIL (|has| |#4| (-1079)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-4208 (($ $ $) NIL (|has| |#4| (-814)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#4| (-380)) ELT)) (-1957 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1130)) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130))) ELT)) (-3783 ((|#4| $) NIL (|has| |#4| (-1130)) ELT) (((-577) $) NIL (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130))) ELT)) (-3187 (((-2 (|:| -3684 (-710 |#4|)) (|:| |vec| (-1297 |#4|))) (-710 $) (-1297 $)) NIL (|has| |#4| (-1079)) ELT) (((-710 |#4|) (-710 $)) NIL (|has| |#4| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT)) (-3167 (((-3 $ "failed") $) NIL (|has| |#4| (-1079)) ELT)) (-1424 (($) NIL (|has| |#4| (-380)) ELT)) (-4420 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#4| $ (-577)) NIL T ELT)) (-2118 (((-665 |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL (|has| |#4| (-1079)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#4| (-870)) ELT)) (-2152 (((-665 |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#4| (-870)) ELT)) (-4409 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#4| (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3163 (((-2 (|:| -3684 (-710 |#4|)) (|:| |vec| (-1297 |#4|))) (-1297 $) $) NIL (|has| |#4| (-1079)) ELT) (((-710 |#4|) (-1297 $)) NIL (|has| |#4| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-3354 (($ (-949)) NIL (|has| |#4| (-380)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 ((|#4| $) NIL (|has| (-577) (-870)) ELT)) (-2561 (($ $ |#4|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4059 (((-665 |#4|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#4| $ (-577) |#4|) NIL T ELT) ((|#4| $ (-577)) 12 T ELT)) (-4047 ((|#4| $ $) NIL (|has| |#4| (-1079)) ELT)) (-3805 (($ (-1297 |#4|)) NIL T ELT)) (-4366 (((-135)) NIL (|has| |#4| (-375)) ELT)) (-3641 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-1 |#4| |#4|) (-792)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT) (($ $) NIL (-2867 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT)) (-1481 (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-1297 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1130)) ELT) (((-885) $) NIL T ELT) (($ (-577)) NIL (-2867 (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) (|has| |#4| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130))) ELT)) (-3331 (((-792)) NIL (|has| |#4| (-1079)) CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL (|has| |#4| (-1079)) CONST)) (-2389 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-1 |#4| |#4|) (-792)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT) (($ $) NIL (-2867 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT)) (-3078 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-3139 (($ $ |#4|) NIL (|has| |#4| (-375)) ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#4| (-1079)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-747)) ELT) (($ |#4| $) NIL (|has| |#4| (-747)) ELT) (($ $ $) NIL (|has| |#4| (-1079)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-258 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-669 |#2|) (-669 |#3|)) (-949) (-1079) (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-669 |#2|)) (T -258)) +NIL +(-13 (-244 |#1| |#4|) (-669 |#2|) (-669 |#3|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1385 (($ (-949)) NIL (|has| |#3| (-1079)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-4208 (($ $ $) NIL (|has| |#3| (-814)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#3| (-380)) ELT)) (-1957 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1130)) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT)) (-3783 ((|#3| $) NIL (|has| |#3| (-1130)) ELT) (((-577) $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT)) (-3187 (((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-710 $)) NIL (|has| |#3| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT)) (-3167 (((-3 $ "failed") $) NIL (|has| |#3| (-1079)) ELT)) (-1424 (($) NIL (|has| |#3| (-380)) ELT)) (-4420 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#3| $ (-577)) NIL T ELT)) (-2118 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL (|has| |#3| (-1079)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-2152 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-4409 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#3| (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3163 (((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-3354 (($ (-949)) NIL (|has| |#3| (-380)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 ((|#3| $) NIL (|has| (-577) (-870)) ELT)) (-2561 (($ $ |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 |#3|) (-665 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-4059 (((-665 |#3|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#3| $ (-577) |#3|) NIL T ELT) ((|#3| $ (-577)) 11 T ELT)) (-4047 ((|#3| $ $) NIL (|has| |#3| (-1079)) ELT)) (-3805 (($ (-1297 |#3|)) NIL T ELT)) (-4366 (((-135)) NIL (|has| |#3| (-375)) ELT)) (-3641 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT) (($ $) NIL (-2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT)) (-1481 (((-792) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1130)) ELT) (((-885) $) NIL T ELT) (($ (-577)) NIL (-2867 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT)) (-3331 (((-792)) NIL (|has| |#3| (-1079)) CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL (|has| |#3| (-1079)) CONST)) (-2389 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT) (($ $) NIL (-2867 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT)) (-3078 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-3139 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#3| (-1079)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-747)) ELT) (($ |#3| $) NIL (|has| |#3| (-747)) ELT) (($ $ $) NIL (|has| |#3| (-1079)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-259 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-669 |#2|)) (-792) (-1079) (-669 |#2|)) (T -259)) +NIL +(-13 (-244 |#1| |#3|) (-669 |#2|)) +((-1698 (((-665 (-792)) $) 56 T ELT) (((-665 (-792)) $ |#3|) 59 T ELT)) (-2163 (((-792) $) 58 T ELT) (((-792) $ |#3|) 61 T ELT)) (-1821 (($ $) 76 T ELT)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 83 T ELT)) (-4030 (((-792) $ |#3|) 43 T ELT) (((-792) $) 38 T ELT)) (-2512 (((-1 $ (-792)) |#3|) 15 T ELT) (((-1 $ (-792)) $) 88 T ELT)) (-2357 ((|#4| $) 69 T ELT)) (-3288 (((-112) $) 67 T ELT)) (-2544 (($ $) 75 T ELT)) (-3373 (($ $ (-665 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-665 |#4|) (-665 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-665 |#4|) (-665 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-665 |#3|) (-665 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-665 |#3|) (-665 |#2|)) 97 T ELT)) (-3641 (($ $ (-665 |#4|) (-665 (-792))) NIL T ELT) (($ $ |#4| (-792)) NIL T ELT) (($ $ (-665 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-4434 (((-665 |#3|) $) 86 T ELT)) (-1597 ((|#5| $) NIL T ELT) (((-792) $ |#4|) NIL T ELT) (((-665 (-792)) $ (-665 |#4|)) NIL T ELT) (((-792) $ |#3|) 49 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT))) +(((-260 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3709 (|#1| |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3373 (|#1| |#1| (-665 |#3|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#3| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#3|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#3| |#1|)) (-15 -2512 ((-1 |#1| (-792)) |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -2357 (|#4| |#1|)) (-15 -3288 ((-112) |#1|)) (-15 -2163 ((-792) |#1| |#3|)) (-15 -1698 ((-665 (-792)) |#1| |#3|)) (-15 -2163 ((-792) |#1|)) (-15 -1698 ((-665 (-792)) |#1|)) (-15 -1597 ((-792) |#1| |#3|)) (-15 -4030 ((-792) |#1|)) (-15 -4030 ((-792) |#1| |#3|)) (-15 -4434 ((-665 |#3|) |#1|)) (-15 -2512 ((-1 |#1| (-792)) |#3|)) (-15 -3709 (|#1| |#3|)) (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1597 ((-665 (-792)) |#1| (-665 |#4|))) (-15 -1597 ((-792) |#1| |#4|)) (-15 -3709 (|#1| |#4|)) (-15 -4335 ((-3 |#4| "failed") |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#4| |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#4| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -1597 (|#5| |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -3641 (|#1| |#1| |#4|)) (-15 -3641 (|#1| |#1| (-665 |#4|))) (-15 -3641 (|#1| |#1| |#4| (-792))) (-15 -3641 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-261 |#2| |#3| |#4| |#5|) (-1079) (-870) (-276 |#3|) (-814)) (T -260)) +NIL +(-10 -8 (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3709 (|#1| |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3373 (|#1| |#1| (-665 |#3|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#3| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#3|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#3| |#1|)) (-15 -2512 ((-1 |#1| (-792)) |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -2357 (|#4| |#1|)) (-15 -3288 ((-112) |#1|)) (-15 -2163 ((-792) |#1| |#3|)) (-15 -1698 ((-665 (-792)) |#1| |#3|)) (-15 -2163 ((-792) |#1|)) (-15 -1698 ((-665 (-792)) |#1|)) (-15 -1597 ((-792) |#1| |#3|)) (-15 -4030 ((-792) |#1|)) (-15 -4030 ((-792) |#1| |#3|)) (-15 -4434 ((-665 |#3|) |#1|)) (-15 -2512 ((-1 |#1| (-792)) |#3|)) (-15 -3709 (|#1| |#3|)) (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1597 ((-665 (-792)) |#1| (-665 |#4|))) (-15 -1597 ((-792) |#1| |#4|)) (-15 -3709 (|#1| |#4|)) (-15 -4335 ((-3 |#4| "failed") |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#4| |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#4| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -1597 (|#5| |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -3641 (|#1| |#1| |#4|)) (-15 -3641 (|#1| |#1| (-665 |#4|))) (-15 -3641 (|#1| |#1| |#4| (-792))) (-15 -3641 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1698 (((-665 (-792)) $) 236 T ELT) (((-665 (-792)) $ |#2|) 234 T ELT)) (-2163 (((-792) $) 235 T ELT) (((-792) $ |#2|) 233 T ELT)) (-3891 (((-665 |#3|) $) 113 T ELT)) (-3732 (((-1202 $) $ |#3|) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 91 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) 115 T ELT) (((-792) $ (-665 |#3|)) 114 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-2612 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-1821 (($ $) 229 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 |#2| "failed") $) 243 T ELT)) (-3783 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) 144 T ELT) ((|#2| $) 244 T ELT)) (-3868 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT)) (-4048 (($ $) 161 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2796 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) 112 T ELT)) (-3567 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| |#4| $) 179 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| |#3| (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-4030 (((-792) $ |#2|) 239 T ELT) (((-792) $) 238 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2662 (((-792) $) 176 T ELT)) (-3882 (($ (-1202 |#1|) |#3|) 120 T ELT) (($ (-1202 $) |#3|) 119 T ELT)) (-2102 (((-665 $) $) 129 T ELT)) (-2696 (((-112) $) 159 T ELT)) (-3872 (($ |#1| |#4|) 160 T ELT) (($ $ |#3| (-792)) 122 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 121 T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |#3|) 123 T ELT)) (-4340 ((|#4| $) 177 T ELT) (((-792) $ |#3|) 125 T ELT) (((-665 (-792)) $ (-665 |#3|)) 124 T ELT)) (-4329 (($ (-1 |#4| |#4|) $) 178 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-2512 (((-1 $ (-792)) |#2|) 241 T ELT) (((-1 $ (-792)) $) 228 (|has| |#1| (-239)) ELT)) (-3946 (((-3 |#3| "failed") $) 126 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-4014 (($ $) 156 T ELT)) (-4025 ((|#1| $) 155 T ELT)) (-2357 ((|#3| $) 231 T ELT)) (-3606 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3288 (((-112) $) 232 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 117 T ELT)) (-1796 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2547 (((-3 (-2 (|:| |var| |#3|) (|:| -2328 (-792))) "failed") $) 116 T ELT)) (-2544 (($ $) 230 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3988 (((-112) $) 173 T ELT)) (-3999 ((|#1| $) 174 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-665 |#3|) (-665 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-665 |#3|) (-665 $)) 145 T ELT) (($ $ |#2| $) 227 (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 $)) 226 (|has| |#1| (-239)) ELT) (($ $ |#2| |#1|) 225 (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 |#1|)) 224 (|has| |#1| (-239)) ELT)) (-3846 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 |#3|) (-665 (-792))) 44 T ELT) (($ $ |#3| (-792)) 43 T ELT) (($ $ (-665 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT) (($ $ (-1 |#1| |#1|)) 248 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 247 T ELT) (($ $) 223 (|has| |#1| (-238)) ELT) (($ $ (-792)) 221 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 219 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 217 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 216 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 215 (|has| |#1| (-928 (-1206))) ELT)) (-4434 (((-665 |#2|) $) 240 T ELT)) (-1597 ((|#4| $) 157 T ELT) (((-792) $ |#3|) 133 T ELT) (((-665 (-792)) $ (-665 |#3|)) 132 T ELT) (((-792) $ |#2|) 237 T ELT)) (-4463 (((-916 (-391)) $) 85 (-12 (|has| |#3| (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| |#3| (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ |#2|) 242 T ELT) (($ (-420 (-577))) 81 (-2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) 175 T ELT)) (-4171 ((|#1| $ |#4|) 162 T ELT) (($ $ |#3| (-792)) 131 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 130 T ELT)) (-2708 (((-3 $ "failed") $) 82 (-2867 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 32 T CONST)) (-2576 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-665 |#3|) (-665 (-792))) 47 T ELT) (($ $ |#3| (-792)) 46 T ELT) (($ $ (-665 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT) (($ $ (-1 |#1| |#1|)) 246 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 245 T ELT) (($ $) 222 (|has| |#1| (-238)) ELT) (($ $ (-792)) 220 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 218 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 214 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 213 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 212 (|has| |#1| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-261 |#1| |#2| |#3| |#4|) (-141) (-1079) (-870) (-276 |t#2|) (-814)) (T -261)) +((-2512 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *4 *3 *5 *6)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 *4)))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) (-1597 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 (-792))))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) (-1698 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-665 (-792))))) (-2163 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-112)))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-814)) (-4 *2 (-276 *4)))) (-2544 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-276 *3)) (-4 *5 (-814)))) (-1821 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-276 *3)) (-4 *5 (-814)))) (-2512 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *3 *4 *5 *6))))) +(-13 (-977 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1068 |t#2|) (-10 -8 (-15 -2512 ((-1 $ (-792)) |t#2|)) (-15 -4434 ((-665 |t#2|) $)) (-15 -4030 ((-792) $ |t#2|)) (-15 -4030 ((-792) $)) (-15 -1597 ((-792) $ |t#2|)) (-15 -1698 ((-665 (-792)) $)) (-15 -2163 ((-792) $)) (-15 -1698 ((-665 (-792)) $ |t#2|)) (-15 -2163 ((-792) $ |t#2|)) (-15 -3288 ((-112) $)) (-15 -2357 (|t#3| $)) (-15 -2544 ($ $)) (-15 -1821 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-527 |t#2| |t#1|)) (-6 (-527 |t#2| $)) (-6 (-320 $)) (-15 -2512 ((-1 $ (-792)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 |#2|) . T) ((-634 |#3|) . T) ((-634 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ((-235 $) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-301) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#4|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2867 (|has| |#1| (-937)) (|has| |#1| (-465))) ((-527 |#2| |#1|) |has| |#1| (-239)) ((-527 |#2| $) |has| |#1| (-239)) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-747) . T) ((-920 $ #2=(-1206)) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-920 $ |#3|) . T) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-926 |#3|) . T) ((-928 #2#) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ((-977 |#1| |#4| |#3|) . T) ((-937) |has| |#1| (-937)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1068 |#2|) . T) ((-1068 |#3|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-937))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1412 ((|#1| $) 55 T ELT)) (-2841 ((|#1| $) 45 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2305 (($) 7 T CONST)) (-4258 (($ $) 61 T ELT)) (-2609 (($ $) 49 T ELT)) (-1839 ((|#1| |#1| $) 47 T ELT)) (-2268 ((|#1| $) 46 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-4166 (((-792) $) 62 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-3146 ((|#1| |#1| $) 53 T ELT)) (-2202 ((|#1| |#1| $) 52 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-2553 (((-792) $) 56 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3183 ((|#1| $) 63 T ELT)) (-3142 ((|#1| $) 51 T ELT)) (-4385 ((|#1| $) 50 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2613 ((|#1| |#1| $) 59 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-3855 ((|#1| $) 60 T ELT)) (-1559 (($) 58 T ELT) (($ (-665 |#1|)) 57 T ELT)) (-2105 (((-792) $) 44 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2322 ((|#1| $) 54 T ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-3993 ((|#1| $) 64 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-262 |#1|) (-141) (-1247)) (T -262)) +((-1559 (*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-262 *3)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3146 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-2202 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-2609 (*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) +(-13 (-1151 |t#1|) (-1025 |t#1|) (-10 -8 (-15 -1559 ($)) (-15 -1559 ($ (-665 |t#1|))) (-15 -2553 ((-792) $)) (-15 -1412 (|t#1| $)) (-15 -2322 (|t#1| $)) (-15 -3146 (|t#1| |t#1| $)) (-15 -2202 (|t#1| |t#1| $)) (-15 -3142 (|t#1| $)) (-15 -4385 (|t#1| $)) (-15 -2609 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1025 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1151 |#1|) . T) ((-1247) . T)) +((-1941 (((-1 (-971 (-228)) (-228) (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 153 T ELT)) (-4460 (((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391))) 173 T ELT) (((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 171 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 176 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 172 T ELT) (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 164 T ELT) (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 163 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391))) 145 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271))) 143 T ELT) (((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391))) 144 T ELT) (((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271))) 141 T ELT)) (-4421 (((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391))) 175 T ELT) (((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 174 T ELT) (((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 178 T ELT) (((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 177 T ELT) (((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 166 T ELT) (((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 165 T ELT) (((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391))) 151 T ELT) (((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271))) 150 T ELT) (((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391))) 149 T ELT) (((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271))) 148 T ELT) (((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391))) 113 T ELT) (((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271))) 112 T ELT) (((-1298) (-1 (-228) (-228)) (-1124 (-391))) 107 T ELT) (((-1298) (-1 (-228) (-228)) (-1124 (-391)) (-665 (-271))) 105 T ELT))) +(((-263) (-10 -7 (-15 -4421 ((-1298) (-1 (-228) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) (-1 (-228) (-228)) (-1124 (-391)))) (-15 -4421 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -4421 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -4421 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4421 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -1941 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -263)) +((-1941 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228) (-228))) (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1298)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1298)) (-5 *1 (-263)))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263))))) +(-10 -7 (-15 -4421 ((-1298) (-1 (-228) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) (-1 (-228) (-228)) (-1124 (-391)))) (-15 -4421 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -4421 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -4421 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -4421 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -4460 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -1941 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) +((-4421 (((-1298) (-305 |#2|) (-1206) (-1206) (-665 (-271))) 101 T ELT))) +(((-264 |#1| |#2|) (-10 -7 (-15 -4421 ((-1298) (-305 |#2|) (-1206) (-1206) (-665 (-271))))) (-13 (-569) (-870) (-1068 (-577))) (-443 |#1|)) (T -264)) +((-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1206)) (-5 *5 (-665 (-271))) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-870) (-1068 (-577)))) (-5 *2 (-1298)) (-5 *1 (-264 *6 *7))))) +(-10 -7 (-15 -4421 ((-1298) (-305 |#2|) (-1206) (-1206) (-665 (-271))))) +((-3227 (((-577) (-577)) 71 T ELT)) (-3136 (((-577) (-577)) 72 T ELT)) (-3869 (((-228) (-228)) 73 T ELT)) (-4063 (((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228))) 70 T ELT)) (-3570 (((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)) (-112)) 68 T ELT))) +(((-265) (-10 -7 (-15 -3570 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)) (-112))) (-15 -4063 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -3227 ((-577) (-577))) (-15 -3136 ((-577) (-577))) (-15 -3869 ((-228) (-228))))) (T -265)) +((-3869 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265)))) (-3136 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-4063 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) (-5 *2 (-1299)) (-5 *1 (-265)))) (-3570 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) (-5 *5 (-112)) (-5 *2 (-1299)) (-5 *1 (-265))))) +(-10 -7 (-15 -3570 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)) (-112))) (-15 -4063 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -3227 ((-577) (-577))) (-15 -3136 ((-577) (-577))) (-15 -3869 ((-228) (-228)))) +((-3709 (((-1122 (-391)) (-1122 (-327 |#1|))) 16 T ELT))) +(((-266 |#1|) (-10 -7 (-15 -3709 ((-1122 (-391)) (-1122 (-327 |#1|))))) (-13 (-870) (-569) (-632 (-391)))) (T -266)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-1122 (-327 *4))) (-4 *4 (-13 (-870) (-569) (-632 (-391)))) (-5 *2 (-1122 (-391))) (-5 *1 (-266 *4))))) +(-10 -7 (-15 -3709 ((-1122 (-391)) (-1122 (-327 |#1|))))) +((-4460 (((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))) 75 T ELT) (((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 74 T ELT) (((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391))) 65 T ELT) (((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 64 T ELT) (((-1163 (-228)) (-903 |#1|) (-1122 (-391))) 56 T ELT) (((-1163 (-228)) (-903 |#1|) (-1122 (-391)) (-665 (-271))) 55 T ELT)) (-4421 (((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391))) 78 T ELT) (((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 77 T ELT) (((-1299) |#1| (-1122 (-391)) (-1122 (-391))) 68 T ELT) (((-1299) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 67 T ELT) (((-1299) (-903 |#1|) (-1122 (-391))) 60 T ELT) (((-1299) (-903 |#1|) (-1122 (-391)) (-665 (-271))) 59 T ELT) (((-1298) (-901 |#1|) (-1122 (-391))) 47 T ELT) (((-1298) (-901 |#1|) (-1122 (-391)) (-665 (-271))) 46 T ELT) (((-1298) |#1| (-1122 (-391))) 38 T ELT) (((-1298) |#1| (-1122 (-391)) (-665 (-271))) 36 T ELT))) +(((-267 |#1|) (-10 -7 (-15 -4421 ((-1298) |#1| (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) |#1| (-1122 (-391)))) (-15 -4421 ((-1298) (-901 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) (-901 |#1|) (-1122 (-391)))) (-15 -4421 ((-1299) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-903 |#1|) (-1122 (-391)))) (-15 -4460 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)))) (-15 -4421 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -4460 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -4421 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)))) (-15 -4460 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))))) (-13 (-632 (-549)) (-1130))) (T -267)) +((-4460 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *5)))) (-4460 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *6)))) (-4421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *5)))) (-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *6)))) (-4460 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-4460 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-4421 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1299)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-4460 (*1 *2 *3 *4) (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *5)))) (-4460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *6)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *5)))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *6)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *3 (-901 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) (-5 *1 (-267 *5)))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-901 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) (-5 *1 (-267 *6)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1298)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130)))))) +(-10 -7 (-15 -4421 ((-1298) |#1| (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) |#1| (-1122 (-391)))) (-15 -4421 ((-1298) (-901 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1298) (-901 |#1|) (-1122 (-391)))) (-15 -4421 ((-1299) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-903 |#1|) (-1122 (-391)))) (-15 -4460 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)))) (-15 -4421 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -4460 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -4421 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4421 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)))) (-15 -4460 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -4460 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))))) +((-4421 (((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)) (-665 (-271))) 23 T ELT) (((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228))) 24 T ELT) (((-1298) (-665 (-971 (-228))) (-665 (-271))) 16 T ELT) (((-1298) (-665 (-971 (-228)))) 17 T ELT) (((-1298) (-665 (-228)) (-665 (-228)) (-665 (-271))) 20 T ELT) (((-1298) (-665 (-228)) (-665 (-228))) 21 T ELT))) +(((-268) (-10 -7 (-15 -4421 ((-1298) (-665 (-228)) (-665 (-228)))) (-15 -4421 ((-1298) (-665 (-228)) (-665 (-228)) (-665 (-271)))) (-15 -4421 ((-1298) (-665 (-971 (-228))))) (-15 -4421 ((-1298) (-665 (-971 (-228))) (-665 (-271)))) (-15 -4421 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)))) (-15 -4421 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)) (-665 (-271)))))) (T -268)) +((-4421 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-268)))) (-4421 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1299)) (-5 *1 (-268)))) (-4421 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-268)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *2 (-1298)) (-5 *1 (-268)))) (-4421 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-268)))) (-4421 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1298)) (-5 *1 (-268))))) +(-10 -7 (-15 -4421 ((-1298) (-665 (-228)) (-665 (-228)))) (-15 -4421 ((-1298) (-665 (-228)) (-665 (-228)) (-665 (-271)))) (-15 -4421 ((-1298) (-665 (-971 (-228))))) (-15 -4421 ((-1298) (-665 (-971 (-228))) (-665 (-271)))) (-15 -4421 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)))) (-15 -4421 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)) (-665 (-271))))) +((-1331 (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-665 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 25 T ELT)) (-1928 (((-949) (-665 (-271)) (-949)) 52 T ELT)) (-2484 (((-949) (-665 (-271)) (-949)) 51 T ELT)) (-1445 (((-665 (-391)) (-665 (-271)) (-665 (-391))) 68 T ELT)) (-2824 (((-391) (-665 (-271)) (-391)) 57 T ELT)) (-1570 (((-949) (-665 (-271)) (-949)) 53 T ELT)) (-3086 (((-112) (-665 (-271)) (-112)) 27 T ELT)) (-1407 (((-1188) (-665 (-271)) (-1188)) 19 T ELT)) (-2017 (((-1188) (-665 (-271)) (-1188)) 26 T ELT)) (-4351 (((-1163 (-228)) (-665 (-271))) 46 T ELT)) (-3308 (((-665 (-1124 (-391))) (-665 (-271)) (-665 (-1124 (-391)))) 40 T ELT)) (-1656 (((-897) (-665 (-271)) (-897)) 32 T ELT)) (-3985 (((-897) (-665 (-271)) (-897)) 33 T ELT)) (-2818 (((-1 (-971 (-228)) (-971 (-228))) (-665 (-271)) (-1 (-971 (-228)) (-971 (-228)))) 63 T ELT)) (-3137 (((-112) (-665 (-271)) (-112)) 14 T ELT)) (-2638 (((-112) (-665 (-271)) (-112)) 13 T ELT))) +(((-269) (-10 -7 (-15 -2638 ((-112) (-665 (-271)) (-112))) (-15 -3137 ((-112) (-665 (-271)) (-112))) (-15 -1331 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-665 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1407 ((-1188) (-665 (-271)) (-1188))) (-15 -2017 ((-1188) (-665 (-271)) (-1188))) (-15 -3086 ((-112) (-665 (-271)) (-112))) (-15 -1656 ((-897) (-665 (-271)) (-897))) (-15 -3985 ((-897) (-665 (-271)) (-897))) (-15 -3308 ((-665 (-1124 (-391))) (-665 (-271)) (-665 (-1124 (-391))))) (-15 -2484 ((-949) (-665 (-271)) (-949))) (-15 -1928 ((-949) (-665 (-271)) (-949))) (-15 -4351 ((-1163 (-228)) (-665 (-271)))) (-15 -1570 ((-949) (-665 (-271)) (-949))) (-15 -2824 ((-391) (-665 (-271)) (-391))) (-15 -2818 ((-1 (-971 (-228)) (-971 (-228))) (-665 (-271)) (-1 (-971 (-228)) (-971 (-228))))) (-15 -1445 ((-665 (-391)) (-665 (-271)) (-665 (-391)))))) (T -269)) +((-1445 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-391))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2818 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2824 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-1570 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-4351 (*1 *2 *3) (-12 (-5 *3 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-269)))) (-1928 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2484 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3308 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3985 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-1656 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3086 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2017 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-1407 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-1331 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3137 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2638 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) +(-10 -7 (-15 -2638 ((-112) (-665 (-271)) (-112))) (-15 -3137 ((-112) (-665 (-271)) (-112))) (-15 -1331 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-665 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1407 ((-1188) (-665 (-271)) (-1188))) (-15 -2017 ((-1188) (-665 (-271)) (-1188))) (-15 -3086 ((-112) (-665 (-271)) (-112))) (-15 -1656 ((-897) (-665 (-271)) (-897))) (-15 -3985 ((-897) (-665 (-271)) (-897))) (-15 -3308 ((-665 (-1124 (-391))) (-665 (-271)) (-665 (-1124 (-391))))) (-15 -2484 ((-949) (-665 (-271)) (-949))) (-15 -1928 ((-949) (-665 (-271)) (-949))) (-15 -4351 ((-1163 (-228)) (-665 (-271)))) (-15 -1570 ((-949) (-665 (-271)) (-949))) (-15 -2824 ((-391) (-665 (-271)) (-391))) (-15 -2818 ((-1 (-971 (-228)) (-971 (-228))) (-665 (-271)) (-1 (-971 (-228)) (-971 (-228))))) (-15 -1445 ((-665 (-391)) (-665 (-271)) (-665 (-391))))) +((-2709 (((-3 |#1| "failed") (-665 (-271)) (-1206)) 17 T ELT))) +(((-270 |#1|) (-10 -7 (-15 -2709 ((-3 |#1| "failed") (-665 (-271)) (-1206)))) (-1247)) (T -270)) +((-2709 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *1 (-270 *2)) (-4 *2 (-1247))))) +(-10 -7 (-15 -2709 ((-3 |#1| "failed") (-665 (-271)) (-1206)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1331 (($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 24 T ELT)) (-1928 (($ (-949)) 81 T ELT)) (-2484 (($ (-949)) 80 T ELT)) (-3273 (($ (-665 (-391))) 87 T ELT)) (-2824 (($ (-391)) 66 T ELT)) (-1570 (($ (-949)) 82 T ELT)) (-3086 (($ (-112)) 33 T ELT)) (-1407 (($ (-1188)) 28 T ELT)) (-2017 (($ (-1188)) 29 T ELT)) (-4351 (($ (-1163 (-228))) 76 T ELT)) (-3308 (($ (-665 (-1124 (-391)))) 72 T ELT)) (-3433 (($ (-665 (-1124 (-391)))) 68 T ELT) (($ (-665 (-1124 (-420 (-577))))) 71 T ELT)) (-2119 (($ (-391)) 38 T ELT) (($ (-897)) 42 T ELT)) (-1361 (((-112) (-665 $) (-1206)) 100 T ELT)) (-2709 (((-3 (-52) "failed") (-665 $) (-1206)) 102 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2388 (($ (-391)) 43 T ELT) (($ (-897)) 44 T ELT)) (-3762 (($ (-1 (-971 (-228)) (-971 (-228)))) 65 T ELT)) (-2818 (($ (-1 (-971 (-228)) (-971 (-228)))) 83 T ELT)) (-3870 (($ (-1 (-228) (-228))) 48 T ELT) (($ (-1 (-228) (-228) (-228))) 52 T ELT) (($ (-1 (-228) (-228) (-228) (-228))) 56 T ELT)) (-3709 (((-885) $) 93 T ELT)) (-1896 (($ (-112)) 34 T ELT) (($ (-665 (-1124 (-391)))) 60 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2638 (($ (-112)) 35 T ELT)) (-3018 (((-112) $ $) 97 T ELT))) +(((-271) (-13 (-1130) (-10 -8 (-15 -2638 ($ (-112))) (-15 -1896 ($ (-112))) (-15 -1331 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1407 ($ (-1188))) (-15 -2017 ($ (-1188))) (-15 -3086 ($ (-112))) (-15 -1896 ($ (-665 (-1124 (-391))))) (-15 -3762 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -2119 ($ (-391))) (-15 -2119 ($ (-897))) (-15 -2388 ($ (-391))) (-15 -2388 ($ (-897))) (-15 -3870 ($ (-1 (-228) (-228)))) (-15 -3870 ($ (-1 (-228) (-228) (-228)))) (-15 -3870 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -2824 ($ (-391))) (-15 -3433 ($ (-665 (-1124 (-391))))) (-15 -3433 ($ (-665 (-1124 (-420 (-577)))))) (-15 -3308 ($ (-665 (-1124 (-391))))) (-15 -4351 ($ (-1163 (-228)))) (-15 -2484 ($ (-949))) (-15 -1928 ($ (-949))) (-15 -1570 ($ (-949))) (-15 -2818 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -3273 ($ (-665 (-391)))) (-15 -2709 ((-3 (-52) "failed") (-665 $) (-1206))) (-15 -1361 ((-112) (-665 $) (-1206)))))) (T -271)) +((-2638 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-271)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271)))) (-3086 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) (-3762 (*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) (-2119 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-2119 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) (-2824 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-420 (-577))))) (-5 *1 (-271)))) (-3308 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) (-4351 (*1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-271)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271)))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271)))) (-2818 (*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) (-3273 (*1 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-271)))) (-2709 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-52)) (-5 *1 (-271)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-112)) (-5 *1 (-271))))) +(-13 (-1130) (-10 -8 (-15 -2638 ($ (-112))) (-15 -1896 ($ (-112))) (-15 -1331 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1407 ($ (-1188))) (-15 -2017 ($ (-1188))) (-15 -3086 ($ (-112))) (-15 -1896 ($ (-665 (-1124 (-391))))) (-15 -3762 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -2119 ($ (-391))) (-15 -2119 ($ (-897))) (-15 -2388 ($ (-391))) (-15 -2388 ($ (-897))) (-15 -3870 ($ (-1 (-228) (-228)))) (-15 -3870 ($ (-1 (-228) (-228) (-228)))) (-15 -3870 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -2824 ($ (-391))) (-15 -3433 ($ (-665 (-1124 (-391))))) (-15 -3433 ($ (-665 (-1124 (-420 (-577)))))) (-15 -3308 ($ (-665 (-1124 (-391))))) (-15 -4351 ($ (-1163 (-228)))) (-15 -2484 ($ (-949))) (-15 -1928 ($ (-949))) (-15 -1570 ($ (-949))) (-15 -2818 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -3273 ($ (-665 (-391)))) (-15 -2709 ((-3 (-52) "failed") (-665 $) (-1206))) (-15 -1361 ((-112) (-665 $) (-1206))))) +((-3641 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) 11 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) 19 T ELT) (($ $ (-792)) NIL T ELT) (($ $) 16 T ELT)) (-2389 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-792)) 14 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT))) +(((-272 |#1| |#2|) (-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -2389 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -2389 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2389 (|#1| |#1| (-665 (-1206)))) (-15 -2389 (|#1| |#1| (-1206) (-792))) (-15 -2389 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|)))) (-273 |#2|) (-1247)) (T -272)) +NIL +(-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -2389 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -2389 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -2389 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2389 (|#1| |#1| (-665 (-1206)))) (-15 -2389 (|#1| |#1| (-1206) (-792))) (-15 -2389 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2389 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|)))) +((-3641 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 22 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 16 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 15 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 14 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206)) 12 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-792)) 10 (|has| |#1| (-238)) ELT) (($ $) 8 (|has| |#1| (-238)) ELT)) (-2389 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 20 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 19 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 18 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 17 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206)) 13 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-792)) 11 (|has| |#1| (-238)) ELT) (($ $) 9 (|has| |#1| (-238)) ELT))) +(((-273 |#1|) (-141) (-1247)) (T -273)) +((-3641 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) (-3641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) (-4 *4 (-1247)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) (-2389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) (-4 *4 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -3641 ($ $ (-1 |t#1| |t#1|))) (-15 -3641 ($ $ (-1 |t#1| |t#1|) (-792))) (-15 -2389 ($ $ (-1 |t#1| |t#1|))) (-15 -2389 ($ $ (-1 |t#1| |t#1|) (-792))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-928 (-1206))) (-6 (-928 (-1206))) |%noBranch|))) +(((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-920 $ #0=(-1206)) |has| |#1| (-928 (-1206))) ((-928 #0#) |has| |#1| (-928 (-1206))) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1698 (((-665 (-792)) $) NIL T ELT) (((-665 (-792)) $ |#2|) NIL T ELT)) (-2163 (((-792) $) NIL T ELT) (((-792) $ |#2|) NIL T ELT)) (-3891 (((-665 |#3|) $) NIL T ELT)) (-3732 (((-1202 $) $ |#3|) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 |#3|)) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-1821 (($ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1155 |#1| |#2|) "failed") $) 23 T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1155 |#1| |#2|) $) NIL T ELT)) (-3868 (($ $ $ |#3|) NIL (|has| |#1| (-174)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#3|) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-544 |#3|) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ELT)) (-4030 (((-792) $ |#2|) NIL T ELT) (((-792) $) 10 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-3882 (($ (-1202 |#1|) |#3|) NIL T ELT) (($ (-1202 $) |#3|) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-544 |#3|)) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |#3|) NIL T ELT)) (-4340 (((-544 |#3|) $) NIL T ELT) (((-792) $ |#3|) NIL T ELT) (((-665 (-792)) $ (-665 |#3|)) NIL T ELT)) (-4329 (($ (-1 (-544 |#3|) (-544 |#3|)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2512 (((-1 $ (-792)) |#2|) NIL T ELT) (((-1 $ (-792)) $) NIL (|has| |#1| (-239)) ELT)) (-3946 (((-3 |#3| "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-2357 ((|#3| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3288 (((-112) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| |#3|) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-665 |#3|) (-665 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-665 |#3|) (-665 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 $)) NIL (|has| |#1| (-239)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-3846 (($ $ |#3|) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-4434 (((-665 |#2|) $) NIL T ELT)) (-1597 (((-544 |#3|) $) NIL T ELT) (((-792) $ |#3|) NIL T ELT) (((-665 (-792)) $ (-665 |#3|)) NIL T ELT) (((-792) $ |#2|) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ |#3|) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1155 |#1| |#2|)) 32 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-544 |#3|)) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-274 |#1| |#2| |#3|) (-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1068 (-1155 |#1| |#2|))) (-1079) (-870) (-276 |#2|)) (T -274)) +NIL +(-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1068 (-1155 |#1| |#2|))) +((-2163 (((-792) $) 37 T ELT)) (-4335 (((-3 |#2| "failed") $) 22 T ELT)) (-3783 ((|#2| $) 33 T ELT)) (-3641 (($ $ (-792)) 18 T ELT) (($ $) 14 T ELT)) (-3709 (((-885) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3018 (((-112) $ $) 26 T ELT)) (-3042 (((-112) $ $) 36 T ELT))) +(((-275 |#1| |#2|) (-10 -8 (-15 -2163 ((-792) |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-276 |#2|) (-870)) (T -275)) +NIL +(-10 -8 (-15 -2163 ((-792) |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3042 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-2163 (((-792) $) 23 T ELT)) (-3341 ((|#1| $) 24 T ELT)) (-4335 (((-3 |#1| "failed") $) 28 T ELT)) (-3783 ((|#1| $) 29 T ELT)) (-4030 (((-792) $) 25 T ELT)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-2512 (($ |#1| (-792)) 26 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3641 (($ $ (-792)) 32 T ELT) (($ $) 30 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ |#1|) 27 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2389 (($ $ (-792)) 33 T ELT) (($ $) 31 T ELT)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT))) +(((-276 |#1|) (-141) (-870)) (T -276)) +((-3709 (*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) (-2512 (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-276 *2)) (-4 *2 (-870)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792))))) +(-13 (-870) (-238) (-1068 |t#1|) (-10 -8 (-15 -2512 ($ |t#1| (-792))) (-15 -4030 ((-792) $)) (-15 -3341 (|t#1| $)) (-15 -2163 ((-792) $)) (-15 -3709 ($ |t#1|)))) +(((-102) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-235 $) . T) ((-238) . T) ((-870) . T) ((-873) . T) ((-1068 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3891 (((-665 (-1206)) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 53 T ELT)) (-4294 (((-665 (-1206)) (-327 (-228)) (-792)) 94 T ELT)) (-3463 (((-3 (-327 (-228)) "failed") (-327 (-228))) 63 T ELT)) (-3809 (((-327 (-228)) (-327 (-228))) 79 T ELT)) (-1450 (((-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 38 T ELT)) (-3362 (((-112) (-665 (-327 (-228)))) 104 T ELT)) (-2529 (((-112) (-327 (-228))) 36 T ELT)) (-3406 (((-665 (-1188)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))))) 132 T ELT)) (-2342 (((-665 (-327 (-228))) (-665 (-327 (-228)))) 108 T ELT)) (-3370 (((-665 (-327 (-228))) (-665 (-327 (-228)))) 106 T ELT)) (-1853 (((-710 (-228)) (-665 (-327 (-228))) (-792)) 120 T ELT)) (-2775 (((-112) (-327 (-228))) 31 T ELT) (((-112) (-665 (-327 (-228)))) 105 T ELT)) (-1688 (((-665 (-228)) (-665 (-864 (-228))) (-228)) 15 T ELT)) (-1976 (((-391) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 126 T ELT)) (-2053 (((-1065) (-1206) (-1065)) 46 T ELT))) +(((-277) (-10 -7 (-15 -1688 ((-665 (-228)) (-665 (-864 (-228))) (-228))) (-15 -1450 ((-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -3463 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3809 ((-327 (-228)) (-327 (-228)))) (-15 -3362 ((-112) (-665 (-327 (-228))))) (-15 -2775 ((-112) (-665 (-327 (-228))))) (-15 -2775 ((-112) (-327 (-228)))) (-15 -1853 ((-710 (-228)) (-665 (-327 (-228))) (-792))) (-15 -3370 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -2342 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -2529 ((-112) (-327 (-228)))) (-15 -3891 ((-665 (-1206)) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -4294 ((-665 (-1206)) (-327 (-228)) (-792))) (-15 -2053 ((-1065) (-1206) (-1065))) (-15 -1976 ((-391) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -3406 ((-665 (-1188)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))))))) (T -277)) +((-3406 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))))) (-5 *2 (-665 (-1188))) (-5 *1 (-277)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) (-5 *2 (-391)) (-5 *1 (-277)))) (-2053 (*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-277)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-792)) (-5 *2 (-665 (-1206))) (-5 *1 (-277)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) (-5 *2 (-665 (-1206))) (-5 *1 (-277)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-2342 (*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *4 (-792)) (-5 *2 (-710 (-228))) (-5 *1 (-277)))) (-2775 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-2775 (*1 *2 *3) (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-3463 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *1 (-277)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-864 (-228)))) (-5 *4 (-228)) (-5 *2 (-665 *4)) (-5 *1 (-277))))) +(-10 -7 (-15 -1688 ((-665 (-228)) (-665 (-864 (-228))) (-228))) (-15 -1450 ((-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -3463 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3809 ((-327 (-228)) (-327 (-228)))) (-15 -3362 ((-112) (-665 (-327 (-228))))) (-15 -2775 ((-112) (-665 (-327 (-228))))) (-15 -2775 ((-112) (-327 (-228)))) (-15 -1853 ((-710 (-228)) (-665 (-327 (-228))) (-792))) (-15 -3370 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -2342 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -2529 ((-112) (-327 (-228)))) (-15 -3891 ((-665 (-1206)) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -4294 ((-665 (-1206)) (-327 (-228)) (-792))) (-15 -2053 ((-1065) (-1206) (-1065))) (-15 -1976 ((-391) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -3406 ((-665 (-1188)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 56 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 32 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-278) (-860)) (T -278)) +NIL +(-860) +((-3586 (((-112) $ $) NIL T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 72 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 63 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 41 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 43 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-279) (-860)) (T -279)) +NIL +(-860) +((-3586 (((-112) $ $) NIL T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 90 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 85 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 52 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 65 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-280) (-860)) (T -280)) +NIL +(-860) +((-3586 (((-112) $ $) NIL T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 73 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 45 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-281) (-860)) (T -281)) +NIL +(-860) +((-3586 (((-112) $ $) NIL T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 65 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 31 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-282) (-860)) (T -282)) +NIL +(-860) +((-3586 (((-112) $ $) NIL T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 90 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 33 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-283) (-860)) (T -283)) +NIL +(-860) +((-3586 (((-112) $ $) NIL T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 87 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 32 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-284) (-860)) (T -284)) +NIL +(-860) +((-3586 (((-112) $ $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3204 (((-665 (-577)) $) 29 T ELT)) (-1597 (((-792) $) 27 T ELT)) (-3709 (((-885) $) 33 T ELT) (($ (-665 (-577))) 23 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4453 (($ (-792)) 30 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 9 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 17 T ELT))) +(((-285) (-13 (-870) (-10 -8 (-15 -3709 ($ (-665 (-577)))) (-15 -1597 ((-792) $)) (-15 -3204 ((-665 (-577)) $)) (-15 -4453 ($ (-792)))))) (T -285)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-285)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285)))) (-4453 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-285))))) +(-13 (-870) (-10 -8 (-15 -3709 ($ (-665 (-577)))) (-15 -1597 ((-792) $)) (-15 -3204 ((-665 (-577)) $)) (-15 -4453 ($ (-792))))) +((-1660 ((|#2| |#2|) 77 T ELT)) (-2785 ((|#2| |#2|) 65 T ELT)) (-3063 (((-3 |#2| "failed") |#2| (-665 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125 T ELT)) (-1638 ((|#2| |#2|) 75 T ELT)) (-2757 ((|#2| |#2|) 63 T ELT)) (-1682 ((|#2| |#2|) 79 T ELT)) (-2809 ((|#2| |#2|) 67 T ELT)) (-2450 ((|#2|) 46 T ELT)) (-3706 (((-115) (-115)) 100 T ELT)) (-3825 ((|#2| |#2|) 61 T ELT)) (-3568 (((-112) |#2|) 147 T ELT)) (-1750 ((|#2| |#2|) 195 T ELT)) (-4071 ((|#2| |#2|) 171 T ELT)) (-2482 ((|#2|) 59 T ELT)) (-4061 ((|#2|) 58 T ELT)) (-3207 ((|#2| |#2|) 191 T ELT)) (-3418 ((|#2| |#2|) 167 T ELT)) (-4207 ((|#2| |#2|) 199 T ELT)) (-2228 ((|#2| |#2|) 175 T ELT)) (-3791 ((|#2| |#2|) 163 T ELT)) (-1634 ((|#2| |#2|) 165 T ELT)) (-1604 ((|#2| |#2|) 201 T ELT)) (-4362 ((|#2| |#2|) 177 T ELT)) (-1807 ((|#2| |#2|) 197 T ELT)) (-1854 ((|#2| |#2|) 173 T ELT)) (-3209 ((|#2| |#2|) 193 T ELT)) (-1922 ((|#2| |#2|) 169 T ELT)) (-2520 ((|#2| |#2|) 207 T ELT)) (-1851 ((|#2| |#2|) 183 T ELT)) (-3218 ((|#2| |#2|) 203 T ELT)) (-4327 ((|#2| |#2|) 179 T ELT)) (-4320 ((|#2| |#2|) 211 T ELT)) (-2335 ((|#2| |#2|) 187 T ELT)) (-4373 ((|#2| |#2|) 213 T ELT)) (-3340 ((|#2| |#2|) 189 T ELT)) (-3682 ((|#2| |#2|) 209 T ELT)) (-3264 ((|#2| |#2|) 185 T ELT)) (-4284 ((|#2| |#2|) 205 T ELT)) (-3501 ((|#2| |#2|) 181 T ELT)) (-2355 ((|#2| |#2|) 62 T ELT)) (-1692 ((|#2| |#2|) 80 T ELT)) (-2821 ((|#2| |#2|) 68 T ELT)) (-1671 ((|#2| |#2|) 78 T ELT)) (-2797 ((|#2| |#2|) 66 T ELT)) (-1648 ((|#2| |#2|) 76 T ELT)) (-2772 ((|#2| |#2|) 64 T ELT)) (-1448 (((-112) (-115)) 98 T ELT)) (-1727 ((|#2| |#2|) 83 T ELT)) (-2861 ((|#2| |#2|) 71 T ELT)) (-1703 ((|#2| |#2|) 81 T ELT)) (-2834 ((|#2| |#2|) 69 T ELT)) (-1748 ((|#2| |#2|) 85 T ELT)) (-1616 ((|#2| |#2|) 73 T ELT)) (-4468 ((|#2| |#2|) 86 T ELT)) (-1626 ((|#2| |#2|) 74 T ELT)) (-1737 ((|#2| |#2|) 84 T ELT)) (-2874 ((|#2| |#2|) 72 T ELT)) (-1715 ((|#2| |#2|) 82 T ELT)) (-2847 ((|#2| |#2|) 70 T ELT))) +(((-286 |#1| |#2|) (-10 -7 (-15 -2355 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -2757 (|#2| |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -2797 (|#2| |#2|)) (-15 -2809 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2847 (|#2| |#2|)) (-15 -2861 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1715 (|#2| |#2|)) (-15 -1727 (|#2| |#2|)) (-15 -1737 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -4468 (|#2| |#2|)) (-15 -2450 (|#2|)) (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -4061 (|#2|)) (-15 -2482 (|#2|)) (-15 -1634 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3418 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -4327 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -3340 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -1750 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -4207 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -4284 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -3682 (|#2| |#2|)) (-15 -4320 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -3063 ((-3 |#2| "failed") |#2| (-665 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3568 ((-112) |#2|))) (-569) (-13 (-443 |#1|) (-1032))) (T -286)) +((-3568 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) (-4 *3 (-13 (-443 *4) (-1032))))) (-3063 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-665 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-443 *4) (-1032))) (-4 *4 (-569)) (-5 *1 (-286 *4 *2)))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4320 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3682 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4284 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3218 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4207 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1807 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1750 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3340 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3264 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4327 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4362 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2228 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1854 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1922 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3418 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1634 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2482 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-4061 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) (-4 *4 (-13 (-443 *3) (-1032))))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032))))) (-2450 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-4468 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1737 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1727 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1715 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2861 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2847 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2809 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2797 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2757 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032)))))) +(-10 -7 (-15 -2355 (|#2| |#2|)) (-15 -3825 (|#2| |#2|)) (-15 -2757 (|#2| |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -2797 (|#2| |#2|)) (-15 -2809 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2847 (|#2| |#2|)) (-15 -2861 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1638 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -1715 (|#2| |#2|)) (-15 -1727 (|#2| |#2|)) (-15 -1737 (|#2| |#2|)) (-15 -1748 (|#2| |#2|)) (-15 -4468 (|#2| |#2|)) (-15 -2450 (|#2|)) (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -4061 (|#2|)) (-15 -2482 (|#2|)) (-15 -1634 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3418 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -4327 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -3340 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -1750 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -4207 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -4284 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -3682 (|#2| |#2|)) (-15 -4320 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -3063 ((-3 |#2| "failed") |#2| (-665 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3568 ((-112) |#2|))) +((-2749 (((-3 |#2| "failed") (-665 (-630 |#2|)) |#2| (-1206)) 151 T ELT)) (-3456 ((|#2| (-420 (-577)) |#2|) 49 T ELT)) (-1947 ((|#2| |#2| (-630 |#2|)) 144 T ELT)) (-2924 (((-2 (|:| |func| |#2|) (|:| |kers| (-665 (-630 |#2|))) (|:| |vals| (-665 |#2|))) |#2| (-1206)) 143 T ELT)) (-1993 ((|#2| |#2| (-1206)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-4237 ((|#2| |#2| (-1206)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -4237 (|#2| |#2|)) (-15 -4237 (|#2| |#2| (-1206))) (-15 -2924 ((-2 (|:| |func| |#2|) (|:| |kers| (-665 (-630 |#2|))) (|:| |vals| (-665 |#2|))) |#2| (-1206))) (-15 -1993 (|#2| |#2|)) (-15 -1993 (|#2| |#2| (-1206))) (-15 -2749 ((-3 |#2| "failed") (-665 (-630 |#2|)) |#2| (-1206))) (-15 -1947 (|#2| |#2| (-630 |#2|))) (-15 -3456 (|#2| (-420 (-577)) |#2|))) (-13 (-569) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -287)) +((-3456 (*1 *2 *3 *2) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-1947 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)))) (-2749 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-1206)) (-4 *2 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *5 *2)))) (-1993 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-2924 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-665 (-630 *3))) (|:| |vals| (-665 *3)))) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-4237 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-4237 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) +(-10 -7 (-15 -4237 (|#2| |#2|)) (-15 -4237 (|#2| |#2| (-1206))) (-15 -2924 ((-2 (|:| |func| |#2|) (|:| |kers| (-665 (-630 |#2|))) (|:| |vals| (-665 |#2|))) |#2| (-1206))) (-15 -1993 (|#2| |#2|)) (-15 -1993 (|#2| |#2| (-1206))) (-15 -2749 ((-3 |#2| "failed") (-665 (-630 |#2|)) |#2| (-1206))) (-15 -1947 (|#2| |#2| (-630 |#2|))) (-15 -3456 (|#2| (-420 (-577)) |#2|))) +((-2747 (((-3 |#3| "failed") |#3|) 120 T ELT)) (-1660 ((|#3| |#3|) 142 T ELT)) (-3111 (((-3 |#3| "failed") |#3|) 89 T ELT)) (-2785 ((|#3| |#3|) 132 T ELT)) (-2503 (((-3 |#3| "failed") |#3|) 65 T ELT)) (-1638 ((|#3| |#3|) 140 T ELT)) (-2077 (((-3 |#3| "failed") |#3|) 53 T ELT)) (-2757 ((|#3| |#3|) 130 T ELT)) (-2278 (((-3 |#3| "failed") |#3|) 122 T ELT)) (-1682 ((|#3| |#3|) 144 T ELT)) (-3065 (((-3 |#3| "failed") |#3|) 91 T ELT)) (-2809 ((|#3| |#3|) 134 T ELT)) (-1867 (((-3 |#3| "failed") |#3| (-792)) 41 T ELT)) (-1936 (((-3 |#3| "failed") |#3|) 81 T ELT)) (-3825 ((|#3| |#3|) 129 T ELT)) (-4312 (((-3 |#3| "failed") |#3|) 51 T ELT)) (-2355 ((|#3| |#3|) 128 T ELT)) (-4106 (((-3 |#3| "failed") |#3|) 123 T ELT)) (-1692 ((|#3| |#3|) 145 T ELT)) (-1972 (((-3 |#3| "failed") |#3|) 92 T ELT)) (-2821 ((|#3| |#3|) 135 T ELT)) (-3964 (((-3 |#3| "failed") |#3|) 121 T ELT)) (-1671 ((|#3| |#3|) 143 T ELT)) (-2023 (((-3 |#3| "failed") |#3|) 90 T ELT)) (-2797 ((|#3| |#3|) 133 T ELT)) (-1333 (((-3 |#3| "failed") |#3|) 67 T ELT)) (-1648 ((|#3| |#3|) 141 T ELT)) (-3703 (((-3 |#3| "failed") |#3|) 55 T ELT)) (-2772 ((|#3| |#3|) 131 T ELT)) (-3654 (((-3 |#3| "failed") |#3|) 73 T ELT)) (-1727 ((|#3| |#3|) 148 T ELT)) (-4354 (((-3 |#3| "failed") |#3|) 114 T ELT)) (-2861 ((|#3| |#3|) 152 T ELT)) (-1805 (((-3 |#3| "failed") |#3|) 69 T ELT)) (-1703 ((|#3| |#3|) 146 T ELT)) (-4266 (((-3 |#3| "failed") |#3|) 57 T ELT)) (-2834 ((|#3| |#3|) 136 T ELT)) (-4413 (((-3 |#3| "failed") |#3|) 77 T ELT)) (-1748 ((|#3| |#3|) 150 T ELT)) (-2967 (((-3 |#3| "failed") |#3|) 61 T ELT)) (-1616 ((|#3| |#3|) 138 T ELT)) (-1855 (((-3 |#3| "failed") |#3|) 79 T ELT)) (-4468 ((|#3| |#3|) 151 T ELT)) (-3929 (((-3 |#3| "failed") |#3|) 63 T ELT)) (-1626 ((|#3| |#3|) 139 T ELT)) (-2439 (((-3 |#3| "failed") |#3|) 75 T ELT)) (-1737 ((|#3| |#3|) 149 T ELT)) (-1782 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-2874 ((|#3| |#3|) 153 T ELT)) (-2237 (((-3 |#3| "failed") |#3|) 71 T ELT)) (-1715 ((|#3| |#3|) 147 T ELT)) (-2290 (((-3 |#3| "failed") |#3|) 59 T ELT)) (-2847 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-420 (-577))) 47 (|has| |#1| (-375)) ELT))) +(((-288 |#1| |#2| |#3|) (-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2355 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2809 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2847 (|#3| |#3|)) (-15 -2861 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -1616 (|#3| |#3|)) (-15 -1626 (|#3| |#3|)) (-15 -1638 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1692 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1715 (|#3| |#3|)) (-15 -1727 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -4468 (|#3| |#3|)))) (-38 (-420 (-577))) (-1288 |#1|) (-1259 |#1| |#2|)) (T -288)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1288 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1259 *4 *5)))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2757 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2797 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2809 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2847 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2861 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1715 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1727 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1737 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-4468 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4))))) +(-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2355 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2809 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2847 (|#3| |#3|)) (-15 -2861 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -1616 (|#3| |#3|)) (-15 -1626 (|#3| |#3|)) (-15 -1638 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1692 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1715 (|#3| |#3|)) (-15 -1727 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -4468 (|#3| |#3|)))) +((-2747 (((-3 |#3| "failed") |#3|) 70 T ELT)) (-1660 ((|#3| |#3|) 137 T ELT)) (-3111 (((-3 |#3| "failed") |#3|) 54 T ELT)) (-2785 ((|#3| |#3|) 125 T ELT)) (-2503 (((-3 |#3| "failed") |#3|) 66 T ELT)) (-1638 ((|#3| |#3|) 135 T ELT)) (-2077 (((-3 |#3| "failed") |#3|) 50 T ELT)) (-2757 ((|#3| |#3|) 123 T ELT)) (-2278 (((-3 |#3| "failed") |#3|) 74 T ELT)) (-1682 ((|#3| |#3|) 139 T ELT)) (-3065 (((-3 |#3| "failed") |#3|) 58 T ELT)) (-2809 ((|#3| |#3|) 127 T ELT)) (-1867 (((-3 |#3| "failed") |#3| (-792)) 38 T ELT)) (-1936 (((-3 |#3| "failed") |#3|) 48 T ELT)) (-3825 ((|#3| |#3|) 111 T ELT)) (-4312 (((-3 |#3| "failed") |#3|) 46 T ELT)) (-2355 ((|#3| |#3|) 122 T ELT)) (-4106 (((-3 |#3| "failed") |#3|) 76 T ELT)) (-1692 ((|#3| |#3|) 140 T ELT)) (-1972 (((-3 |#3| "failed") |#3|) 60 T ELT)) (-2821 ((|#3| |#3|) 128 T ELT)) (-3964 (((-3 |#3| "failed") |#3|) 72 T ELT)) (-1671 ((|#3| |#3|) 138 T ELT)) (-2023 (((-3 |#3| "failed") |#3|) 56 T ELT)) (-2797 ((|#3| |#3|) 126 T ELT)) (-1333 (((-3 |#3| "failed") |#3|) 68 T ELT)) (-1648 ((|#3| |#3|) 136 T ELT)) (-3703 (((-3 |#3| "failed") |#3|) 52 T ELT)) (-2772 ((|#3| |#3|) 124 T ELT)) (-3654 (((-3 |#3| "failed") |#3|) 78 T ELT)) (-1727 ((|#3| |#3|) 143 T ELT)) (-4354 (((-3 |#3| "failed") |#3|) 62 T ELT)) (-2861 ((|#3| |#3|) 131 T ELT)) (-1805 (((-3 |#3| "failed") |#3|) 112 T ELT)) (-1703 ((|#3| |#3|) 141 T ELT)) (-4266 (((-3 |#3| "failed") |#3|) 100 T ELT)) (-2834 ((|#3| |#3|) 129 T ELT)) (-4413 (((-3 |#3| "failed") |#3|) 116 T ELT)) (-1748 ((|#3| |#3|) 145 T ELT)) (-2967 (((-3 |#3| "failed") |#3|) 107 T ELT)) (-1616 ((|#3| |#3|) 133 T ELT)) (-1855 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-4468 ((|#3| |#3|) 146 T ELT)) (-3929 (((-3 |#3| "failed") |#3|) 109 T ELT)) (-1626 ((|#3| |#3|) 134 T ELT)) (-2439 (((-3 |#3| "failed") |#3|) 80 T ELT)) (-1737 ((|#3| |#3|) 144 T ELT)) (-1782 (((-3 |#3| "failed") |#3|) 64 T ELT)) (-2874 ((|#3| |#3|) 132 T ELT)) (-2237 (((-3 |#3| "failed") |#3|) 113 T ELT)) (-1715 ((|#3| |#3|) 142 T ELT)) (-2290 (((-3 |#3| "failed") |#3|) 103 T ELT)) (-2847 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-420 (-577))) 44 (|has| |#1| (-375)) ELT))) +(((-289 |#1| |#2| |#3| |#4|) (-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2355 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2809 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2847 (|#3| |#3|)) (-15 -2861 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -1616 (|#3| |#3|)) (-15 -1626 (|#3| |#3|)) (-15 -1638 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1692 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1715 (|#3| |#3|)) (-15 -1727 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -4468 (|#3| |#3|)))) (-38 (-420 (-577))) (-1257 |#1|) (-1280 |#1| |#2|) (-1013 |#2|)) (T -289)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1257 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1280 *4 *5)) (-4 *6 (-1013 *5)))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-3825 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2757 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2797 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2809 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2847 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2861 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1638 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1715 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1727 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1737 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1748 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-4468 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4))))) +(-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -2355 (|#3| |#3|)) (-15 -3825 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -2797 (|#3| |#3|)) (-15 -2809 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2847 (|#3| |#3|)) (-15 -2861 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -1616 (|#3| |#3|)) (-15 -1626 (|#3| |#3|)) (-15 -1638 (|#3| |#3|)) (-15 -1648 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1682 (|#3| |#3|)) (-15 -1692 (|#3| |#3|)) (-15 -1703 (|#3| |#3|)) (-15 -1715 (|#3| |#3|)) (-15 -1727 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1748 (|#3| |#3|)) (-15 -4468 (|#3| |#3|)))) +((-2092 (((-112) $) 20 T ELT)) (-3120 (((-1211) $) 7 T ELT)) (-2890 (((-3 (-519) "failed") $) 14 T ELT)) (-4111 (((-3 (-665 $) "failed") $) NIL T ELT)) (-4289 (((-3 (-519) "failed") $) 21 T ELT)) (-2952 (((-3 (-1134) "failed") $) 18 T ELT)) (-2456 (((-112) $) 16 T ELT)) (-3709 (((-885) $) NIL T ELT)) (-1711 (((-112) $) 9 T ELT))) +(((-290) (-13 (-631 (-885)) (-10 -8 (-15 -3120 ((-1211) $)) (-15 -2456 ((-112) $)) (-15 -2952 ((-3 (-1134) "failed") $)) (-15 -2092 ((-112) $)) (-15 -4289 ((-3 (-519) "failed") $)) (-15 -1711 ((-112) $)) (-15 -2890 ((-3 (-519) "failed") $)) (-15 -4111 ((-3 (-665 $) "failed") $))))) (T -290)) +((-3120 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-290)))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-2952 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-290)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-4289 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-2890 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-4111 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-290))) (-5 *1 (-290))))) +(-13 (-631 (-885)) (-10 -8 (-15 -3120 ((-1211) $)) (-15 -2456 ((-112) $)) (-15 -2952 ((-3 (-1134) "failed") $)) (-15 -2092 ((-112) $)) (-15 -4289 ((-3 (-519) "failed") $)) (-15 -1711 ((-112) $)) (-15 -2890 ((-3 (-519) "failed") $)) (-15 -4111 ((-3 (-665 $) "failed") $)))) +((-2156 (((-610) $) 10 T ELT)) (-3909 (((-598) $) 8 T ELT)) (-1756 (((-302) $) 12 T ELT)) (-2750 (($ (-598) (-610) (-302)) NIL T ELT)) (-3709 (((-885) $) 19 T ELT))) +(((-291) (-13 (-631 (-885)) (-10 -8 (-15 -2750 ($ (-598) (-610) (-302))) (-15 -3909 ((-598) $)) (-15 -2156 ((-610) $)) (-15 -1756 ((-302) $))))) (T -291)) +((-2750 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291)))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2750 ($ (-598) (-610) (-302))) (-15 -3909 ((-598) $)) (-15 -2156 ((-610) $)) (-15 -1756 ((-302) $)))) +((-1440 (($ (-1 (-112) |#2|) $) 24 T ELT)) (-3589 (($ $) 38 T ELT)) (-1894 (($ (-1 (-112) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-4004 (($ |#2| $) 34 T ELT) (($ (-1 (-112) |#2|) $) 18 T ELT)) (-3836 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2317 (($ |#2| $ (-577)) 20 T ELT) (($ $ $ (-577)) 22 T ELT)) (-3587 (($ $ (-577)) 11 T ELT) (($ $ (-1264 (-577))) 14 T ELT)) (-2562 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-1702 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-665 $)) NIL T ELT))) +(((-292 |#1| |#2|) (-10 -8 (-15 -3836 (|#1| |#1| |#1|)) (-15 -1894 (|#1| |#2| |#1|)) (-15 -3836 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1894 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#2|)) (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -3587 (|#1| |#1| (-1264 (-577)))) (-15 -3587 (|#1| |#1| (-577))) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#2|)) (-15 -4004 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1440 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4004 (|#1| |#2| |#1|)) (-15 -3589 (|#1| |#1|))) (-293 |#2|) (-1247)) (T -292)) +NIL +(-10 -8 (-15 -3836 (|#1| |#1| |#1|)) (-15 -1894 (|#1| |#2| |#1|)) (-15 -3836 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1894 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#2|)) (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -3587 (|#1| |#1| (-1264 (-577)))) (-15 -3587 (|#1| |#1| (-577))) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#2|)) (-15 -4004 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1440 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4004 (|#1| |#2| |#1|)) (-15 -3589 (|#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 88 T ELT)) (-1440 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2697 (($ $) 86 (|has| |#1| (-1130)) ELT)) (-3589 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ (-1 (-112) |#1|) $) 92 T ELT) (($ |#1| $) 87 (|has| |#1| (-1130)) ELT)) (-4004 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 52 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) 70 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-3836 (($ (-1 (-112) |#1| |#1|) $ $) 89 T ELT) (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4375 (($ |#1| $ (-577)) 91 T ELT) (($ $ $ (-577)) 90 T ELT)) (-2317 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2561 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-4068 (($ $ (-577)) 94 T ELT) (($ $ (-1264 (-577))) 93 T ELT)) (-3587 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 72 T ELT)) (-2562 (($ $ |#1|) 96 T ELT) (($ $ $) 95 T ELT)) (-1702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-293 |#1|) (-141) (-1247)) (T -293)) +((-2562 (*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) (-2562 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) (-4068 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-4068 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-1894 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-4375 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1247)))) (-4375 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-3836 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-1894 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) (-2697 (*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-870))))) +(-13 (-672 |t#1|) (-10 -8 (-6 -4500) (-15 -2562 ($ $ |t#1|)) (-15 -2562 ($ $ $)) (-15 -4068 ($ $ (-577))) (-15 -4068 ($ $ (-1264 (-577)))) (-15 -1894 ($ (-1 (-112) |t#1|) $)) (-15 -4375 ($ |t#1| $ (-577))) (-15 -4375 ($ $ $ (-577))) (-15 -3836 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3730 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -1894 ($ |t#1| $)) (-15 -2697 ($ $))) |%noBranch|) (IF (|has| |t#1| (-870)) (-15 -3836 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) ((** (($ $ $) 10 T ELT))) (((-294 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-295)) (T -294)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3716 (($ $) 6 T ELT)) (-2079 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-3825 (($ $) 6 T ELT)) (-2355 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-295) (-141)) (T -295)) -((** (*1 *1 *1 *1) (-4 *1 (-295))) (-2079 (*1 *1 *1) (-4 *1 (-295))) (-3716 (*1 *1 *1) (-4 *1 (-295)))) -(-13 (-10 -8 (-15 -3716 ($ $)) (-15 -2079 ($ $)) (-15 ** ($ $ $)))) -((-3636 (((-660 (-1182 |#1|)) (-1182 |#1|) |#1|) 35 T ELT)) (-3300 ((|#2| |#2| |#1|) 39 T ELT)) (-2385 ((|#2| |#2| |#1|) 41 T ELT)) (-3271 ((|#2| |#2| |#1|) 40 T ELT))) -(((-296 |#1| |#2|) (-10 -7 (-15 -3300 (|#2| |#2| |#1|)) (-15 -3271 (|#2| |#2| |#1|)) (-15 -2385 (|#2| |#2| |#1|)) (-15 -3636 ((-660 (-1182 |#1|)) (-1182 |#1|) |#1|))) (-375) (-1283 |#1|)) (T -296)) -((-3636 (*1 *2 *3 *4) (-12 (-4 *4 (-375)) (-5 *2 (-660 (-1182 *4))) (-5 *1 (-296 *4 *5)) (-5 *3 (-1182 *4)) (-4 *5 (-1283 *4)))) (-2385 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3)))) (-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3)))) (-3300 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) -(-10 -7 (-15 -3300 (|#2| |#2| |#1|)) (-15 -3271 (|#2| |#2| |#1|)) (-15 -2385 (|#2| |#2| |#1|)) (-15 -3636 ((-660 (-1182 |#1|)) (-1182 |#1|) |#1|))) -((-2837 ((|#2| $ |#1|) 6 T ELT))) -(((-297 |#1| |#2|) (-141) (-1242) (-1242)) (T -297)) -((-2837 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1242)) (-4 *2 (-1242))))) -(-13 (-1242) (-10 -8 (-15 -2837 (|t#2| $ |t#1|)))) -(((-1242) . T)) -((-2840 ((|#3| $ |#2| |#3|) 12 T ELT)) (-2759 ((|#3| $ |#2|) 10 T ELT))) -(((-298 |#1| |#2| |#3|) (-10 -8 (-15 -2840 (|#3| |#1| |#2| |#3|)) (-15 -2759 (|#3| |#1| |#2|))) (-299 |#2| |#3|) (-1125) (-1242)) (T -298)) -NIL -(-10 -8 (-15 -2840 (|#3| |#1| |#2| |#3|)) (-15 -2759 (|#3| |#1| |#2|))) -((-1895 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4471)) ELT)) (-2840 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) 11 T ELT)) (-2837 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-299 |#1| |#2|) (-141) (-1125) (-1242)) (T -299)) -((-2837 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-2759 (*1 *2 *1 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-1895 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-2840 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242))))) -(-13 (-297 |t#1| |t#2|) (-10 -8 (-15 -2837 (|t#2| $ |t#1| |t#2|)) (-15 -2759 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4471)) (PROGN (-15 -1895 (|t#2| $ |t#1| |t#2|)) (-15 -2840 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-297 |#1| |#2|) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 37 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 44 T ELT)) (-4122 (($ $) 41 T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) 35 T ELT)) (-2498 (($ |#2| |#3|) 18 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1688 ((|#3| $) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 19 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4211 (((-3 $ "failed") $ $) NIL T ELT)) (-4167 (((-787) $) 36 T ELT)) (-2837 ((|#2| $ |#2|) 46 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 23 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) 31 T CONST)) (-2767 (($) 39 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-300 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -1688 (|#3| $)) (-15 -3603 (|#2| $)) (-15 -2498 ($ |#2| |#3|)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -1625 ((-3 $ "failed") $)) (-15 -3318 ($ $)))) (-174) (-1268 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -300)) -((-1625 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1688 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1268 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3603 (*1 *2 *1) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2498 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1268 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4211 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3318 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -1688 (|#3| $)) (-15 -3603 (|#2| $)) (-15 -2498 ($ |#2| |#3|)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -1625 ((-3 $ "failed") $)) (-15 -3318 ($ $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((** (*1 *1 *1 *1) (-4 *1 (-295))) (-2355 (*1 *1 *1) (-4 *1 (-295))) (-3825 (*1 *1 *1) (-4 *1 (-295)))) +(-13 (-10 -8 (-15 -3825 ($ $)) (-15 -2355 ($ $)) (-15 ** ($ $ $)))) +((-4466 (((-665 (-1187 |#1|)) (-1187 |#1|) |#1|) 35 T ELT)) (-1707 ((|#2| |#2| |#1|) 39 T ELT)) (-3267 ((|#2| |#2| |#1|) 41 T ELT)) (-2232 ((|#2| |#2| |#1|) 40 T ELT))) +(((-296 |#1| |#2|) (-10 -7 (-15 -1707 (|#2| |#2| |#1|)) (-15 -2232 (|#2| |#2| |#1|)) (-15 -3267 (|#2| |#2| |#1|)) (-15 -4466 ((-665 (-1187 |#1|)) (-1187 |#1|) |#1|))) (-375) (-1288 |#1|)) (T -296)) +((-4466 (*1 *2 *3 *4) (-12 (-4 *4 (-375)) (-5 *2 (-665 (-1187 *4))) (-5 *1 (-296 *4 *5)) (-5 *3 (-1187 *4)) (-4 *5 (-1288 *4)))) (-3267 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3)))) (-2232 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3)))) (-1707 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) +(-10 -7 (-15 -1707 (|#2| |#2| |#1|)) (-15 -2232 (|#2| |#2| |#1|)) (-15 -3267 (|#2| |#2| |#1|)) (-15 -4466 ((-665 (-1187 |#1|)) (-1187 |#1|) |#1|))) +((-2916 ((|#2| $ |#1|) 6 T ELT))) +(((-297 |#1| |#2|) (-141) (-1247) (-1247)) (T -297)) +((-2916 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -2916 (|t#2| $ |t#1|)))) +(((-1247) . T)) +((-4420 ((|#3| $ |#2| |#3|) 12 T ELT)) (-4353 ((|#3| $ |#2|) 10 T ELT))) +(((-298 |#1| |#2| |#3|) (-10 -8 (-15 -4420 (|#3| |#1| |#2| |#3|)) (-15 -4353 (|#3| |#1| |#2|))) (-299 |#2| |#3|) (-1130) (-1247)) (T -298)) +NIL +(-10 -8 (-15 -4420 (|#3| |#1| |#2| |#3|)) (-15 -4353 (|#3| |#1| |#2|))) +((-1957 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4500)) ELT)) (-4420 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) 11 T ELT)) (-2916 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-299 |#1| |#2|) (-141) (-1130) (-1247)) (T -299)) +((-2916 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-4353 (*1 *2 *1 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-1957 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-4420 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247))))) +(-13 (-297 |t#1| |t#2|) (-10 -8 (-15 -2916 (|t#2| $ |t#1| |t#2|)) (-15 -4353 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4500)) (PROGN (-15 -1957 (|t#2| $ |t#1| |t#2|)) (-15 -4420 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-297 |#1| |#2|) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 37 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 44 T ELT)) (-2261 (($ $) 41 T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) 35 T ELT)) (-2060 (($ |#2| |#3|) 18 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3351 ((|#3| $) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 19 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3751 (((-3 $ "failed") $ $) NIL T ELT)) (-4081 (((-792) $) 36 T ELT)) (-2916 ((|#2| $ |#2|) 46 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 23 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) 31 T CONST)) (-2853 (($) 39 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-300 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -3351 (|#3| $)) (-15 -3709 (|#2| $)) (-15 -2060 ($ |#2| |#3|)) (-15 -3751 ((-3 $ "failed") $ $)) (-15 -3167 ((-3 $ "failed") $)) (-15 -3981 ($ $)))) (-174) (-1273 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -300)) +((-3167 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3351 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3709 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2060 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3751 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3981 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -3351 (|#3| $)) (-15 -3709 (|#2| $)) (-15 -2060 ($ |#2| |#3|)) (-15 -3751 ((-3 $ "failed") $ $)) (-15 -3167 ((-3 $ "failed") $)) (-15 -3981 ($ $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-301) (-141)) (T -301)) NIL -(-13 (-1074) (-111 $ $) (-10 -7 (-6 -4463))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2316 (((-660 (-1110)) $) 10 T ELT)) (-1813 (($ (-519) (-519) (-1129) $) 19 T ELT)) (-1490 (($ (-519) (-660 (-988)) $) 23 T ELT)) (-1718 (($) 25 T ELT)) (-2390 (((-707 (-1129)) (-519) (-519) $) 18 T ELT)) (-3136 (((-660 (-988)) (-519) $) 22 T ELT)) (-2693 (($) 7 T ELT)) (-2887 (($) 24 T ELT)) (-3603 (((-880) $) 29 T ELT)) (-3572 (($) 26 T ELT))) -(((-302) (-13 (-626 (-880)) (-10 -8 (-15 -2693 ($)) (-15 -2316 ((-660 (-1110)) $)) (-15 -2390 ((-707 (-1129)) (-519) (-519) $)) (-15 -1813 ($ (-519) (-519) (-1129) $)) (-15 -3136 ((-660 (-988)) (-519) $)) (-15 -1490 ($ (-519) (-660 (-988)) $)) (-15 -2887 ($)) (-15 -1718 ($)) (-15 -3572 ($))))) (T -302)) -((-2693 (*1 *1) (-5 *1 (-302))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-660 (-1110))) (-5 *1 (-302)))) (-2390 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-1129))) (-5 *1 (-302)))) (-1813 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-302)))) (-3136 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-660 (-988))) (-5 *1 (-302)))) (-1490 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-302)))) (-2887 (*1 *1) (-5 *1 (-302))) (-1718 (*1 *1) (-5 *1 (-302))) (-3572 (*1 *1) (-5 *1 (-302)))) -(-13 (-626 (-880)) (-10 -8 (-15 -2693 ($)) (-15 -2316 ((-660 (-1110)) $)) (-15 -2390 ((-707 (-1129)) (-519) (-519) $)) (-15 -1813 ($ (-519) (-519) (-1129) $)) (-15 -3136 ((-660 (-988)) (-519) $)) (-15 -1490 ($ (-519) (-660 (-988)) $)) (-15 -2887 ($)) (-15 -1718 ($)) (-15 -3572 ($)))) -((-4011 (((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))) 102 T ELT)) (-2351 (((-660 (-705 (-420 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|)))))) (-705 (-420 (-975 |#1|)))) 97 T ELT) (((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))) (-787) (-787)) 41 T ELT)) (-2587 (((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))) 99 T ELT)) (-2647 (((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|)))) 75 T ELT)) (-4159 (((-660 (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (-705 (-420 (-975 |#1|)))) 74 T ELT)) (-2600 (((-975 |#1|) (-705 (-420 (-975 |#1|)))) 55 T ELT) (((-975 |#1|) (-705 (-420 (-975 |#1|))) (-1201)) 56 T ELT))) -(((-303 |#1|) (-10 -7 (-15 -2600 ((-975 |#1|) (-705 (-420 (-975 |#1|))) (-1201))) (-15 -2600 ((-975 |#1|) (-705 (-420 (-975 |#1|))))) (-15 -4159 ((-660 (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (-705 (-420 (-975 |#1|))))) (-15 -2647 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))))) (-15 -2351 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))) (-787) (-787))) (-15 -2351 ((-660 (-705 (-420 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|)))))) (-705 (-420 (-975 |#1|))))) (-15 -4011 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|))))) (-15 -2587 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))))) (-465)) (T -303)) -((-2587 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-660 (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4)))))) (-4011 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-660 (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4)))))) (-2351 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 *4)))) (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5)))))) (-2351 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-420 (-975 *6)) (-1190 (-1201) (-975 *6)))) (-5 *5 (-787)) (-4 *6 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *6))))) (-5 *1 (-303 *6)) (-5 *4 (-705 (-420 (-975 *6)))))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5)))))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-4 *4 (-465)) (-5 *2 (-660 (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4))))) (-5 *1 (-303 *4)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-5 *2 (-975 *4)) (-5 *1 (-303 *4)) (-4 *4 (-465)))) (-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-975 *5)))) (-5 *4 (-1201)) (-5 *2 (-975 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465))))) -(-10 -7 (-15 -2600 ((-975 |#1|) (-705 (-420 (-975 |#1|))) (-1201))) (-15 -2600 ((-975 |#1|) (-705 (-420 (-975 |#1|))))) (-15 -4159 ((-660 (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (-705 (-420 (-975 |#1|))))) (-15 -2647 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))))) (-15 -2351 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))) (-787) (-787))) (-15 -2351 ((-660 (-705 (-420 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|)))))) (-705 (-420 (-975 |#1|))))) (-15 -4011 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|))))) (-15 -2587 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))))) -((-2124 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) -(((-304 |#1| |#2|) (-10 -7 (-15 -2124 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1242) (-1242)) (T -304)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6))))) -(-10 -7 (-15 -2124 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3801 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-1695 (($ $) 12 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2692 (($ $ $) 95 (|has| |#1| (-313)) ELT)) (-3790 (($) NIL (-2811 (|has| |#1| (-21)) (|has| |#1| (-742))) CONST)) (-2231 (($ $) 51 (|has| |#1| (-21)) ELT)) (-4188 (((-3 $ "failed") $) 62 (|has| |#1| (-742)) ELT)) (-2171 ((|#1| $) 11 T ELT)) (-1625 (((-3 $ "failed") $) 60 (|has| |#1| (-742)) ELT)) (-3306 (((-112) $) NIL (|has| |#1| (-742)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-2159 ((|#1| $) 10 T ELT)) (-3846 (($ $) 50 (|has| |#1| (-21)) ELT)) (-2584 (((-3 $ "failed") $) 61 (|has| |#1| (-742)) ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3318 (($ $) 64 (-2811 (|has| |#1| (-375)) (|has| |#1| (-486))) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-4432 (((-660 $) $) 85 (|has| |#1| (-569)) ELT)) (-3273 (($ $ $) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 $)) 28 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-1201) |#1|) 17 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) 21 (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-3602 (($ |#1| |#1|) 9 T ELT)) (-3941 (((-135)) 90 (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) 87 (|has| |#1| (-921 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-921 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-921 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-921 (-1201))) ELT)) (-1328 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-3823 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-3603 (($ (-577)) NIL (|has| |#1| (-1074)) ELT) (((-112) $) 37 (|has| |#1| (-1125)) ELT) (((-880) $) 36 (|has| |#1| (-1125)) ELT)) (-1920 (((-787)) 67 (|has| |#1| (-1074)) CONST)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2754 (($) 47 (|has| |#1| (-21)) CONST)) (-2767 (($) 57 (|has| |#1| (-742)) CONST)) (-2136 (($ $ (-1201)) NIL (|has| |#1| (-921 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-921 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-921 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-921 (-1201))) ELT)) (-2949 (($ |#1| |#1|) 8 T ELT) (((-112) $ $) 32 (|has| |#1| (-1125)) ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 92 (-2811 (|has| |#1| (-375)) (|has| |#1| (-486))) ELT)) (-3042 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3031 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-577)) NIL (|has| |#1| (-486)) ELT) (($ $ (-787)) NIL (|has| |#1| (-742)) ELT) (($ $ (-944)) NIL (|has| |#1| (-1137)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1137)) ELT) (($ |#1| $) 54 (|has| |#1| (-1137)) ELT) (($ $ $) 53 (|has| |#1| (-1137)) ELT) (($ (-577) $) 70 (|has| |#1| (-21)) ELT) (($ (-787) $) NIL (|has| |#1| (-21)) ELT) (($ (-944) $) NIL (|has| |#1| (-25)) ELT))) -(((-305 |#1|) (-13 (-1242) (-10 -8 (-15 -2949 ($ |#1| |#1|)) (-15 -3602 ($ |#1| |#1|)) (-15 -1695 ($ $)) (-15 -2159 (|#1| $)) (-15 -2171 (|#1| $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1201) |#1|)) (-6 (-527 (-1201) |#1|)) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-6 (-626 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3273 ($ $ $)) (-15 -3273 ($ $ (-660 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3031 ($ |#1| $)) (-15 -3031 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3846 ($ $)) (-15 -2231 ($ $)) (-15 -3042 ($ |#1| $)) (-15 -3042 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1137)) (PROGN (-6 (-1137)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-742)) (PROGN (-6 (-742)) (-15 -2584 ((-3 $ "failed") $)) (-15 -4188 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -2584 ((-3 $ "failed") $)) (-15 -4188 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -4432 ((-660 $) $)) |%noBranch|) (IF (|has| |#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1299 |#1|)) (-15 -3051 ($ $ $)) (-15 -3318 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -2692 ($ $ $)) |%noBranch|))) (-1242)) (T -305)) -((-2949 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-3602 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-1695 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-2159 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-2171 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-305 *3)))) (-3273 (*1 *1 *1 *1) (-12 (-4 *2 (-320 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)) (-5 *1 (-305 *2)))) (-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1125)) (-4 *3 (-1242)) (-5 *1 (-305 *3)))) (-3031 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) (-3031 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) (-3846 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-2231 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-3042 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-3042 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-2584 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242)))) (-4188 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242)))) (-4432 (*1 *2 *1) (-12 (-5 *2 (-660 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) (-4 *3 (-1242)))) (-2692 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1242)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) (-3051 (*1 *1 *1 *1) (-2811 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242))))) (-3318 (*1 *1 *1) (-2811 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242)))))) -(-13 (-1242) (-10 -8 (-15 -2949 ($ |#1| |#1|)) (-15 -3602 ($ |#1| |#1|)) (-15 -1695 ($ $)) (-15 -2159 (|#1| $)) (-15 -2171 (|#1| $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1201) |#1|)) (-6 (-527 (-1201) |#1|)) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-6 (-626 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3273 ($ $ $)) (-15 -3273 ($ $ (-660 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3031 ($ |#1| $)) (-15 -3031 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3846 ($ $)) (-15 -2231 ($ $)) (-15 -3042 ($ |#1| $)) (-15 -3042 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1137)) (PROGN (-6 (-1137)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-742)) (PROGN (-6 (-742)) (-15 -2584 ((-3 $ "failed") $)) (-15 -4188 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -2584 ((-3 $ "failed") $)) (-15 -4188 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -4432 ((-660 $) $)) |%noBranch|) (IF (|has| |#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1299 |#1|)) (-15 -3051 ($ $ $)) (-15 -3318 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -2692 ($ $ $)) |%noBranch|))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2790 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#2| $ |#1| |#2|) NIL T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-3740 (((-660 |#1|) $) NIL T ELT)) (-2490 (((-112) |#1| $) NIL T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3445 (((-660 |#1|) $) NIL T ELT)) (-2187 (((-112) |#1| $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#2| $) NIL (|has| |#1| (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-306 |#1| |#2|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125)) (T -306)) -NIL -(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) -((-3308 (((-323) (-1183) (-660 (-1183))) 17 T ELT) (((-323) (-1183) (-1183)) 16 T ELT) (((-323) (-660 (-1183))) 15 T ELT) (((-323) (-1183)) 14 T ELT))) -(((-307) (-10 -7 (-15 -3308 ((-323) (-1183))) (-15 -3308 ((-323) (-660 (-1183)))) (-15 -3308 ((-323) (-1183) (-1183))) (-15 -3308 ((-323) (-1183) (-660 (-1183)))))) (T -307)) -((-3308 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1183))) (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3308 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-323)) (-5 *1 (-307)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307))))) -(-10 -7 (-15 -3308 ((-323) (-1183))) (-15 -3308 ((-323) (-660 (-1183)))) (-15 -3308 ((-323) (-1183) (-1183))) (-15 -3308 ((-323) (-1183) (-660 (-1183))))) -((-2124 ((|#2| (-1 |#2| |#1|) (-1183) (-625 |#1|)) 18 T ELT))) -(((-308 |#1| |#2|) (-10 -7 (-15 -2124 (|#2| (-1 |#2| |#1|) (-1183) (-625 |#1|)))) (-313) (-1242)) (T -308)) -((-2124 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1183)) (-5 *5 (-625 *6)) (-4 *6 (-313)) (-4 *2 (-1242)) (-5 *1 (-308 *6 *2))))) -(-10 -7 (-15 -2124 (|#2| (-1 |#2| |#1|) (-1183) (-625 |#1|)))) -((-2124 ((|#2| (-1 |#2| |#1|) (-625 |#1|)) 17 T ELT))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2124 (|#2| (-1 |#2| |#1|) (-625 |#1|)))) (-313) (-313)) (T -309)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-625 *5)) (-4 *5 (-313)) (-4 *2 (-313)) (-5 *1 (-309 *5 *2))))) -(-10 -7 (-15 -2124 (|#2| (-1 |#2| |#1|) (-625 |#1|)))) -((-2907 (((-112) (-228)) 12 T ELT))) -(((-310 |#1| |#2|) (-10 -7 (-15 -2907 ((-112) (-228)))) (-228) (-228)) (T -310)) -((-2907 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2907 ((-112) (-228)))) -((-1884 (((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228)))) 118 T ELT)) (-1575 (((-1182 (-228)) (-1292 (-327 (-228))) (-660 (-1201)) (-1119 (-859 (-228)))) 135 T ELT) (((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228)))) 72 T ELT)) (-2972 (((-660 (-1183)) (-1182 (-228))) NIL T ELT)) (-3494 (((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228)))) 69 T ELT)) (-4161 (((-660 (-228)) (-975 (-420 (-577))) (-1201) (-1119 (-859 (-228)))) 59 T ELT)) (-4296 (((-660 (-1183)) (-660 (-228))) NIL T ELT)) (-2321 (((-228) (-1119 (-859 (-228)))) 29 T ELT)) (-2101 (((-228) (-1119 (-859 (-228)))) 30 T ELT)) (-1525 (((-112) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 64 T ELT)) (-3629 (((-1183) (-228)) NIL T ELT))) -(((-311) (-10 -7 (-15 -2321 ((-228) (-1119 (-859 (-228))))) (-15 -2101 ((-228) (-1119 (-859 (-228))))) (-15 -1525 ((-112) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3494 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -1884 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -1575 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -1575 ((-1182 (-228)) (-1292 (-327 (-228))) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -4161 ((-660 (-228)) (-975 (-420 (-577))) (-1201) (-1119 (-859 (-228))))) (-15 -3629 ((-1183) (-228))) (-15 -4296 ((-660 (-1183)) (-660 (-228)))) (-15 -2972 ((-660 (-1183)) (-1182 (-228)))))) (T -311)) -((-2972 (*1 *2 *3) (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-311)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *4 (-1201)) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311)))) (-1575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) (-1575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) (-1884 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) (-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-112)) (-5 *1 (-311)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311))))) -(-10 -7 (-15 -2321 ((-228) (-1119 (-859 (-228))))) (-15 -2101 ((-228) (-1119 (-859 (-228))))) (-15 -1525 ((-112) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3494 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -1884 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -1575 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -1575 ((-1182 (-228)) (-1292 (-327 (-228))) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -4161 ((-660 (-228)) (-975 (-420 (-577))) (-1201) (-1119 (-859 (-228))))) (-15 -3629 ((-1183) (-228))) (-15 -4296 ((-660 (-1183)) (-660 (-228)))) (-15 -2972 ((-660 (-1183)) (-1182 (-228))))) -((-2002 (((-660 (-625 $)) $) 27 T ELT)) (-2692 (($ $ (-305 $)) 78 T ELT) (($ $ (-660 (-305 $))) 139 T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT)) (-2784 (((-3 (-625 $) "failed") $) 127 T ELT)) (-2155 (((-625 $) $) 126 T ELT)) (-4301 (($ $) 17 T ELT) (($ (-660 $)) 54 T ELT)) (-1653 (((-660 (-115)) $) 35 T ELT)) (-2085 (((-115) (-115)) 88 T ELT)) (-2238 (((-112) $) 150 T ELT)) (-2124 (($ (-1 $ $) (-625 $)) 86 T ELT)) (-3215 (((-3 (-625 $) "failed") $) 94 T ELT)) (-2869 (($ (-115) $) 59 T ELT) (($ (-115) (-660 $)) 110 T ELT)) (-3152 (((-112) $ (-115)) 132 T ELT) (((-112) $ (-1201)) 131 T ELT)) (-4181 (((-787) $) 44 T ELT)) (-1859 (((-112) $ $) 57 T ELT) (((-112) $ (-1201)) 49 T ELT)) (-3861 (((-112) $) 148 T ELT)) (-3273 (($ $ (-625 $) $) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 81 T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1201) (-1 $ (-660 $))) 67 T ELT) (($ $ (-1201) (-1 $ $)) 72 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 80 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-660 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-2837 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-660 $)) 123 T ELT)) (-1746 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-1866 (($ $) 15 T ELT) (($ (-660 $)) 53 T ELT)) (-3123 (((-112) (-115)) 21 T ELT))) -(((-312 |#1|) (-10 -8 (-15 -2238 ((-112) |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -1859 ((-112) |#1| (-1201))) (-15 -1859 ((-112) |#1| |#1|)) (-15 -2124 (|#1| (-1 |#1| |#1|) (-625 |#1|))) (-15 -2869 (|#1| (-115) (-660 |#1|))) (-15 -2869 (|#1| (-115) |#1|)) (-15 -3152 ((-112) |#1| (-1201))) (-15 -3152 ((-112) |#1| (-115))) (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -1653 ((-660 (-115)) |#1|)) (-15 -2002 ((-660 (-625 |#1|)) |#1|)) (-15 -3215 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4181 ((-787) |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1|)) (-15 -4301 (|#1| (-660 |#1|))) (-15 -4301 (|#1| |#1|)) (-15 -1866 (|#1| (-660 |#1|))) (-15 -1866 (|#1| |#1|)) (-15 -2692 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -2692 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2692 (|#1| |#1| (-305 |#1|))) (-15 -2837 (|#1| (-115) (-660 |#1|))) (-15 -2837 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3273 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -2784 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2155 ((-625 |#1|) |#1|))) (-313)) (T -312)) -((-2085 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313))))) -(-10 -8 (-15 -2238 ((-112) |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -1859 ((-112) |#1| (-1201))) (-15 -1859 ((-112) |#1| |#1|)) (-15 -2124 (|#1| (-1 |#1| |#1|) (-625 |#1|))) (-15 -2869 (|#1| (-115) (-660 |#1|))) (-15 -2869 (|#1| (-115) |#1|)) (-15 -3152 ((-112) |#1| (-1201))) (-15 -3152 ((-112) |#1| (-115))) (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -1653 ((-660 (-115)) |#1|)) (-15 -2002 ((-660 (-625 |#1|)) |#1|)) (-15 -3215 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4181 ((-787) |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1|)) (-15 -4301 (|#1| (-660 |#1|))) (-15 -4301 (|#1| |#1|)) (-15 -1866 (|#1| (-660 |#1|))) (-15 -1866 (|#1| |#1|)) (-15 -2692 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -2692 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2692 (|#1| |#1| (-305 |#1|))) (-15 -2837 (|#1| (-115) (-660 |#1|))) (-15 -2837 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3273 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -2784 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2155 ((-625 |#1|) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2002 (((-660 (-625 $)) $) 39 T ELT)) (-2692 (($ $ (-305 $)) 51 T ELT) (($ $ (-660 (-305 $))) 50 T ELT) (($ $ (-660 (-625 $)) (-660 $)) 49 T ELT)) (-2784 (((-3 (-625 $) "failed") $) 64 T ELT)) (-2155 (((-625 $) $) 65 T ELT)) (-4301 (($ $) 46 T ELT) (($ (-660 $)) 45 T ELT)) (-1653 (((-660 (-115)) $) 38 T ELT)) (-2085 (((-115) (-115)) 37 T ELT)) (-2238 (((-112) $) 17 (|has| $ (-1063 (-577))) ELT)) (-3348 (((-1197 $) (-625 $)) 20 (|has| $ (-1074)) ELT)) (-2124 (($ (-1 $ $) (-625 $)) 31 T ELT)) (-3215 (((-3 (-625 $) "failed") $) 41 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2074 (((-660 (-625 $)) $) 40 T ELT)) (-2869 (($ (-115) $) 33 T ELT) (($ (-115) (-660 $)) 32 T ELT)) (-3152 (((-112) $ (-115)) 35 T ELT) (((-112) $ (-1201)) 34 T ELT)) (-4181 (((-787) $) 42 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1859 (((-112) $ $) 30 T ELT) (((-112) $ (-1201)) 29 T ELT)) (-3861 (((-112) $) 18 (|has| $ (-1063 (-577))) ELT)) (-3273 (($ $ (-625 $) $) 62 T ELT) (($ $ (-660 (-625 $)) (-660 $)) 61 T ELT) (($ $ (-660 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-660 $) (-660 $)) 57 T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 28 T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 27 T ELT) (($ $ (-1201) (-1 $ (-660 $))) 26 T ELT) (($ $ (-1201) (-1 $ $)) 25 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 24 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-660 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT)) (-2837 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-660 $)) 52 T ELT)) (-1746 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-1629 (($ $) 19 (|has| $ (-1074)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-625 $)) 63 T ELT)) (-1866 (($ $) 48 T ELT) (($ (-660 $)) 47 T ELT)) (-3123 (((-112) (-115)) 36 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +(-13 (-1079) (-111 $ $) (-10 -7 (-6 -4492))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-2059 (((-665 (-1115)) $) 10 T ELT)) (-4018 (($ (-519) (-519) (-1134) $) 19 T ELT)) (-2626 (($ (-519) (-665 (-993)) $) 23 T ELT)) (-2334 (($) 25 T ELT)) (-4404 (((-712 (-1134)) (-519) (-519) $) 18 T ELT)) (-1430 (((-665 (-993)) (-519) $) 22 T ELT)) (-2833 (($) 7 T ELT)) (-2509 (($) 24 T ELT)) (-3709 (((-885) $) 29 T ELT)) (-3229 (($) 26 T ELT))) +(((-302) (-13 (-631 (-885)) (-10 -8 (-15 -2833 ($)) (-15 -2059 ((-665 (-1115)) $)) (-15 -4404 ((-712 (-1134)) (-519) (-519) $)) (-15 -4018 ($ (-519) (-519) (-1134) $)) (-15 -1430 ((-665 (-993)) (-519) $)) (-15 -2626 ($ (-519) (-665 (-993)) $)) (-15 -2509 ($)) (-15 -2334 ($)) (-15 -3229 ($))))) (T -302)) +((-2833 (*1 *1) (-5 *1 (-302))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-665 (-1115))) (-5 *1 (-302)))) (-4404 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-1134))) (-5 *1 (-302)))) (-4018 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-302)))) (-1430 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-665 (-993))) (-5 *1 (-302)))) (-2626 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-302)))) (-2509 (*1 *1) (-5 *1 (-302))) (-2334 (*1 *1) (-5 *1 (-302))) (-3229 (*1 *1) (-5 *1 (-302)))) +(-13 (-631 (-885)) (-10 -8 (-15 -2833 ($)) (-15 -2059 ((-665 (-1115)) $)) (-15 -4404 ((-712 (-1134)) (-519) (-519) $)) (-15 -4018 ($ (-519) (-519) (-1134) $)) (-15 -1430 ((-665 (-993)) (-519) $)) (-15 -2626 ($ (-519) (-665 (-993)) $)) (-15 -2509 ($)) (-15 -2334 ($)) (-15 -3229 ($)))) +((-3965 (((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))) 102 T ELT)) (-1677 (((-665 (-710 (-420 (-980 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|)))))) (-710 (-420 (-980 |#1|)))) 97 T ELT) (((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))) (-792) (-792)) 41 T ELT)) (-1652 (((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))) 99 T ELT)) (-3780 (((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|)))) 75 T ELT)) (-3498 (((-665 (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (-710 (-420 (-980 |#1|)))) 74 T ELT)) (-2932 (((-980 |#1|) (-710 (-420 (-980 |#1|)))) 55 T ELT) (((-980 |#1|) (-710 (-420 (-980 |#1|))) (-1206)) 56 T ELT))) +(((-303 |#1|) (-10 -7 (-15 -2932 ((-980 |#1|) (-710 (-420 (-980 |#1|))) (-1206))) (-15 -2932 ((-980 |#1|) (-710 (-420 (-980 |#1|))))) (-15 -3498 ((-665 (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (-710 (-420 (-980 |#1|))))) (-15 -3780 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))))) (-15 -1677 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))) (-792) (-792))) (-15 -1677 ((-665 (-710 (-420 (-980 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|)))))) (-710 (-420 (-980 |#1|))))) (-15 -3965 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|))))) (-15 -1652 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))))) (-465)) (T -303)) +((-1652 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-665 (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4)))))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-665 (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4)))))) (-1677 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 *4)))) (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5)))))) (-1677 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-420 (-980 *6)) (-1195 (-1206) (-980 *6)))) (-5 *5 (-792)) (-4 *6 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *6))))) (-5 *1 (-303 *6)) (-5 *4 (-710 (-420 (-980 *6)))))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5)))))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-4 *4 (-465)) (-5 *2 (-665 (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4))))) (-5 *1 (-303 *4)))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-5 *2 (-980 *4)) (-5 *1 (-303 *4)) (-4 *4 (-465)))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-980 *5)))) (-5 *4 (-1206)) (-5 *2 (-980 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465))))) +(-10 -7 (-15 -2932 ((-980 |#1|) (-710 (-420 (-980 |#1|))) (-1206))) (-15 -2932 ((-980 |#1|) (-710 (-420 (-980 |#1|))))) (-15 -3498 ((-665 (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (-710 (-420 (-980 |#1|))))) (-15 -3780 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))))) (-15 -1677 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))) (-792) (-792))) (-15 -1677 ((-665 (-710 (-420 (-980 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|)))))) (-710 (-420 (-980 |#1|))))) (-15 -3965 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|))))) (-15 -1652 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))))) +((-4417 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) +(((-304 |#1| |#2|) (-10 -7 (-15 -4417 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1247) (-1247)) (T -304)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6))))) +(-10 -7 (-15 -4417 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-4113 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-3735 (($ $) 12 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4313 (($ $ $) 95 (|has| |#1| (-313)) ELT)) (-2305 (($) NIL (-2867 (|has| |#1| (-21)) (|has| |#1| (-747))) CONST)) (-2093 (($ $) 51 (|has| |#1| (-21)) ELT)) (-3757 (((-3 $ "failed") $) 62 (|has| |#1| (-747)) ELT)) (-2416 ((|#1| $) 11 T ELT)) (-3167 (((-3 $ "failed") $) 60 (|has| |#1| (-747)) ELT)) (-3357 (((-112) $) NIL (|has| |#1| (-747)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-2404 ((|#1| $) 10 T ELT)) (-1394 (($ $) 50 (|has| |#1| (-21)) ELT)) (-3488 (((-3 $ "failed") $) 61 (|has| |#1| (-747)) ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3981 (($ $) 64 (-2867 (|has| |#1| (-375)) (|has| |#1| (-486))) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3983 (((-665 $) $) 85 (|has| |#1| (-569)) ELT)) (-3373 (($ $ $) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 $)) 28 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-1206) |#1|) 17 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 21 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-4220 (($ |#1| |#1|) 9 T ELT)) (-4366 (((-135)) 90 (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) 87 (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-926 (-1206))) ELT)) (-4247 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-2486 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-3709 (($ (-577)) NIL (|has| |#1| (-1079)) ELT) (((-112) $) 37 (|has| |#1| (-1130)) ELT) (((-885) $) 36 (|has| |#1| (-1130)) ELT)) (-3331 (((-792)) 67 (|has| |#1| (-1079)) CONST)) (-2643 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2839 (($) 47 (|has| |#1| (-21)) CONST)) (-2853 (($) 57 (|has| |#1| (-747)) CONST)) (-2389 (($ $ (-1206)) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-926 (-1206))) ELT)) (-3018 (($ |#1| |#1|) 8 T ELT) (((-112) $ $) 32 (|has| |#1| (-1130)) ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 92 (-2867 (|has| |#1| (-375)) (|has| |#1| (-486))) ELT)) (-3128 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3114 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-577)) NIL (|has| |#1| (-486)) ELT) (($ $ (-792)) NIL (|has| |#1| (-747)) ELT) (($ $ (-949)) NIL (|has| |#1| (-1142)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1142)) ELT) (($ |#1| $) 54 (|has| |#1| (-1142)) ELT) (($ $ $) 53 (|has| |#1| (-1142)) ELT) (($ (-577) $) 70 (|has| |#1| (-21)) ELT) (($ (-792) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-25)) ELT))) +(((-305 |#1|) (-13 (-1247) (-10 -8 (-15 -3018 ($ |#1| |#1|)) (-15 -4220 ($ |#1| |#1|)) (-15 -3735 ($ $)) (-15 -2404 (|#1| $)) (-15 -2416 (|#1| $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1206) |#1|)) (-6 (-527 (-1206) |#1|)) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-6 (-631 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3373 ($ $ $)) (-15 -3373 ($ $ (-665 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3114 ($ |#1| $)) (-15 -3114 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1394 ($ $)) (-15 -2093 ($ $)) (-15 -3128 ($ |#1| $)) (-15 -3128 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1142)) (PROGN (-6 (-1142)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-747)) (PROGN (-6 (-747)) (-15 -3488 ((-3 $ "failed") $)) (-15 -3757 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -3488 ((-3 $ "failed") $)) (-15 -3757 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -3983 ((-665 $) $)) |%noBranch|) (IF (|has| |#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1304 |#1|)) (-15 -3139 ($ $ $)) (-15 -3981 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -4313 ($ $ $)) |%noBranch|))) (-1247)) (T -305)) +((-3018 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4220 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3735 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-2404 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-2416 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-3373 (*1 *1 *1 *1) (-12 (-4 *2 (-320 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)) (-5 *1 (-305 *2)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1130)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-3114 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-3114 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-1394 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-2093 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-3128 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-3128 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-3488 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247)))) (-3757 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-665 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) (-4 *3 (-1247)))) (-4313 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1247)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) (-3139 (*1 *1 *1 *1) (-2867 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247))))) (-3981 (*1 *1 *1) (-2867 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247)))))) +(-13 (-1247) (-10 -8 (-15 -3018 ($ |#1| |#1|)) (-15 -4220 ($ |#1| |#1|)) (-15 -3735 ($ $)) (-15 -2404 (|#1| $)) (-15 -2416 (|#1| $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1206) |#1|)) (-6 (-527 (-1206) |#1|)) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-6 (-631 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3373 ($ $ $)) (-15 -3373 ($ $ (-665 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3114 ($ |#1| $)) (-15 -3114 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1394 ($ $)) (-15 -2093 ($ $)) (-15 -3128 ($ |#1| $)) (-15 -3128 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1142)) (PROGN (-6 (-1142)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-747)) (PROGN (-6 (-747)) (-15 -3488 ((-3 $ "failed") $)) (-15 -3757 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -3488 ((-3 $ "failed") $)) (-15 -3757 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -3983 ((-665 $) $)) |%noBranch|) (IF (|has| |#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1304 |#1|)) (-15 -3139 ($ $ $)) (-15 -3981 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -4313 ($ $ $)) |%noBranch|))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1935 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4001 (((-665 |#1|) $) NIL T ELT)) (-4065 (((-112) |#1| $) NIL T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2233 (((-665 |#1|) $) NIL T ELT)) (-3972 (((-112) |#1| $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-306 |#1| |#2|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130)) (T -306)) +NIL +(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) +((-3405 (((-323) (-1188) (-665 (-1188))) 17 T ELT) (((-323) (-1188) (-1188)) 16 T ELT) (((-323) (-665 (-1188))) 15 T ELT) (((-323) (-1188)) 14 T ELT))) +(((-307) (-10 -7 (-15 -3405 ((-323) (-1188))) (-15 -3405 ((-323) (-665 (-1188)))) (-15 -3405 ((-323) (-1188) (-1188))) (-15 -3405 ((-323) (-1188) (-665 (-1188)))))) (T -307)) +((-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1188))) (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3405 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-323)) (-5 *1 (-307)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307))))) +(-10 -7 (-15 -3405 ((-323) (-1188))) (-15 -3405 ((-323) (-665 (-1188)))) (-15 -3405 ((-323) (-1188) (-1188))) (-15 -3405 ((-323) (-1188) (-665 (-1188))))) +((-4417 ((|#2| (-1 |#2| |#1|) (-1188) (-630 |#1|)) 18 T ELT))) +(((-308 |#1| |#2|) (-10 -7 (-15 -4417 (|#2| (-1 |#2| |#1|) (-1188) (-630 |#1|)))) (-313) (-1247)) (T -308)) +((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1188)) (-5 *5 (-630 *6)) (-4 *6 (-313)) (-4 *2 (-1247)) (-5 *1 (-308 *6 *2))))) +(-10 -7 (-15 -4417 (|#2| (-1 |#2| |#1|) (-1188) (-630 |#1|)))) +((-4417 ((|#2| (-1 |#2| |#1|) (-630 |#1|)) 17 T ELT))) +(((-309 |#1| |#2|) (-10 -7 (-15 -4417 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) (-313) (-313)) (T -309)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-313)) (-4 *2 (-313)) (-5 *1 (-309 *5 *2))))) +(-10 -7 (-15 -4417 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) +((-1752 (((-112) (-228)) 12 T ELT))) +(((-310 |#1| |#2|) (-10 -7 (-15 -1752 ((-112) (-228)))) (-228) (-228)) (T -310)) +((-1752 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1752 ((-112) (-228)))) +((-4006 (((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228)))) 118 T ELT)) (-3486 (((-1187 (-228)) (-1297 (-327 (-228))) (-665 (-1206)) (-1124 (-864 (-228)))) 135 T ELT) (((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228)))) 72 T ELT)) (-2536 (((-665 (-1188)) (-1187 (-228))) NIL T ELT)) (-2835 (((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228)))) 69 T ELT)) (-1666 (((-665 (-228)) (-980 (-420 (-577))) (-1206) (-1124 (-864 (-228)))) 59 T ELT)) (-2608 (((-665 (-1188)) (-665 (-228))) NIL T ELT)) (-1608 (((-228) (-1124 (-864 (-228)))) 29 T ELT)) (-2212 (((-228) (-1124 (-864 (-228)))) 30 T ELT)) (-1773 (((-112) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 64 T ELT)) (-3029 (((-1188) (-228)) NIL T ELT))) +(((-311) (-10 -7 (-15 -1608 ((-228) (-1124 (-864 (-228))))) (-15 -2212 ((-228) (-1124 (-864 (-228))))) (-15 -1773 ((-112) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2835 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -4006 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -3486 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -3486 ((-1187 (-228)) (-1297 (-327 (-228))) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -1666 ((-665 (-228)) (-980 (-420 (-577))) (-1206) (-1124 (-864 (-228))))) (-15 -3029 ((-1188) (-228))) (-15 -2608 ((-665 (-1188)) (-665 (-228)))) (-15 -2536 ((-665 (-1188)) (-1187 (-228)))))) (T -311)) +((-2536 (*1 *2 *3) (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-311)))) (-1666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *4 (-1206)) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311)))) (-3486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) (-3486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) (-4006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) (-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-112)) (-5 *1 (-311)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311))))) +(-10 -7 (-15 -1608 ((-228) (-1124 (-864 (-228))))) (-15 -2212 ((-228) (-1124 (-864 (-228))))) (-15 -1773 ((-112) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2835 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -4006 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -3486 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -3486 ((-1187 (-228)) (-1297 (-327 (-228))) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -1666 ((-665 (-228)) (-980 (-420 (-577))) (-1206) (-1124 (-864 (-228))))) (-15 -3029 ((-1188) (-228))) (-15 -2608 ((-665 (-1188)) (-665 (-228)))) (-15 -2536 ((-665 (-1188)) (-1187 (-228))))) +((-3613 (((-665 (-630 $)) $) 27 T ELT)) (-4313 (($ $ (-305 $)) 78 T ELT) (($ $ (-665 (-305 $))) 139 T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-4335 (((-3 (-630 $) "failed") $) 127 T ELT)) (-3783 (((-630 $) $) 126 T ELT)) (-2754 (($ $) 17 T ELT) (($ (-665 $)) 54 T ELT)) (-1529 (((-665 (-115)) $) 35 T ELT)) (-3706 (((-115) (-115)) 88 T ELT)) (-2310 (((-112) $) 150 T ELT)) (-4417 (($ (-1 $ $) (-630 $)) 86 T ELT)) (-2998 (((-3 (-630 $) "failed") $) 94 T ELT)) (-4399 (($ (-115) $) 59 T ELT) (($ (-115) (-665 $)) 110 T ELT)) (-4241 (((-112) $ (-115)) 132 T ELT) (((-112) $ (-1206)) 131 T ELT)) (-2553 (((-792) $) 44 T ELT)) (-3219 (((-112) $ $) 57 T ELT) (((-112) $ (-1206)) 49 T ELT)) (-2820 (((-112) $) 148 T ELT)) (-3373 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 81 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) 67 T ELT) (($ $ (-1206) (-1 $ $)) 72 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 80 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-665 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-2916 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-665 $)) 123 T ELT)) (-2106 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2907 (($ $) 15 T ELT) (($ (-665 $)) 53 T ELT)) (-1448 (((-112) (-115)) 21 T ELT))) +(((-312 |#1|) (-10 -8 (-15 -2310 ((-112) |#1|)) (-15 -2820 ((-112) |#1|)) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -3219 ((-112) |#1| (-1206))) (-15 -3219 ((-112) |#1| |#1|)) (-15 -4417 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -4399 (|#1| (-115) (-665 |#1|))) (-15 -4399 (|#1| (-115) |#1|)) (-15 -4241 ((-112) |#1| (-1206))) (-15 -4241 ((-112) |#1| (-115))) (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -1529 ((-665 (-115)) |#1|)) (-15 -3613 ((-665 (-630 |#1|)) |#1|)) (-15 -2998 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2553 ((-792) |#1|)) (-15 -2106 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2754 (|#1| (-665 |#1|))) (-15 -2754 (|#1| |#1|)) (-15 -2907 (|#1| (-665 |#1|))) (-15 -2907 (|#1| |#1|)) (-15 -4313 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -4313 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -4313 (|#1| |#1| (-305 |#1|))) (-15 -2916 (|#1| (-115) (-665 |#1|))) (-15 -2916 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3373 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -4335 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3783 ((-630 |#1|) |#1|))) (-313)) (T -312)) +((-3706 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313))))) +(-10 -8 (-15 -2310 ((-112) |#1|)) (-15 -2820 ((-112) |#1|)) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -3219 ((-112) |#1| (-1206))) (-15 -3219 ((-112) |#1| |#1|)) (-15 -4417 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -4399 (|#1| (-115) (-665 |#1|))) (-15 -4399 (|#1| (-115) |#1|)) (-15 -4241 ((-112) |#1| (-1206))) (-15 -4241 ((-112) |#1| (-115))) (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -1529 ((-665 (-115)) |#1|)) (-15 -3613 ((-665 (-630 |#1|)) |#1|)) (-15 -2998 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2553 ((-792) |#1|)) (-15 -2106 (|#1| |#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2754 (|#1| (-665 |#1|))) (-15 -2754 (|#1| |#1|)) (-15 -2907 (|#1| (-665 |#1|))) (-15 -2907 (|#1| |#1|)) (-15 -4313 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -4313 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -4313 (|#1| |#1| (-305 |#1|))) (-15 -2916 (|#1| (-115) (-665 |#1|))) (-15 -2916 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3373 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -4335 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3783 ((-630 |#1|) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3613 (((-665 (-630 $)) $) 39 T ELT)) (-4313 (($ $ (-305 $)) 51 T ELT) (($ $ (-665 (-305 $))) 50 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 49 T ELT)) (-4335 (((-3 (-630 $) "failed") $) 64 T ELT)) (-3783 (((-630 $) $) 65 T ELT)) (-2754 (($ $) 46 T ELT) (($ (-665 $)) 45 T ELT)) (-1529 (((-665 (-115)) $) 38 T ELT)) (-3706 (((-115) (-115)) 37 T ELT)) (-2310 (((-112) $) 17 (|has| $ (-1068 (-577))) ELT)) (-2465 (((-1202 $) (-630 $)) 20 (|has| $ (-1079)) ELT)) (-4417 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-2998 (((-3 (-630 $) "failed") $) 41 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3693 (((-665 (-630 $)) $) 40 T ELT)) (-4399 (($ (-115) $) 33 T ELT) (($ (-115) (-665 $)) 32 T ELT)) (-4241 (((-112) $ (-115)) 35 T ELT) (((-112) $ (-1206)) 34 T ELT)) (-2553 (((-792) $) 42 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3219 (((-112) $ $) 30 T ELT) (((-112) $ (-1206)) 29 T ELT)) (-2820 (((-112) $) 18 (|has| $ (-1068 (-577))) ELT)) (-3373 (($ $ (-630 $) $) 62 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 61 T ELT) (($ $ (-665 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-665 $) (-665 $)) 57 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 28 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 27 T ELT) (($ $ (-1206) (-1 $ (-665 $))) 26 T ELT) (($ $ (-1206) (-1 $ $)) 25 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 24 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-665 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT)) (-2916 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-665 $)) 52 T ELT)) (-2106 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-4263 (($ $) 19 (|has| $ (-1079)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-630 $)) 63 T ELT)) (-2907 (($ $) 48 T ELT) (($ (-665 $)) 47 T ELT)) (-1448 (((-112) (-115)) 36 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-313) (-141)) (T -313)) -((-2837 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2837 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2837 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2837 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *1))) (-4 *1 (-313)))) (-2692 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-625 *1))) (-5 *3 (-660 *1)) (-4 *1 (-313)))) (-1866 (*1 *1 *1) (-4 *1 (-313))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) (-4301 (*1 *1 *1) (-4 *1 (-313))) (-4301 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) (-1746 (*1 *1 *1) (-4 *1 (-313))) (-1746 (*1 *1 *1 *1) (-4 *1 (-313))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-787)))) (-3215 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-313)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-660 (-115))))) (-2085 (*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-3123 (*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3152 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3152 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) (-2869 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2869 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) (-2124 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-625 *1)) (-4 *1 (-313)))) (-1859 (*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))) (-1859 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-313)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-313)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1074)) (-4 *1 (-313)) (-5 *2 (-1197 *1)))) (-1629 (*1 *1 *1) (-12 (-4 *1 (-1074)) (-4 *1 (-313)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112))))) -(-13 (-1125) (-1063 (-625 $)) (-527 (-625 $) $) (-320 $) (-10 -8 (-15 -2837 ($ (-115) $)) (-15 -2837 ($ (-115) $ $)) (-15 -2837 ($ (-115) $ $ $)) (-15 -2837 ($ (-115) $ $ $ $)) (-15 -2837 ($ (-115) (-660 $))) (-15 -2692 ($ $ (-305 $))) (-15 -2692 ($ $ (-660 (-305 $)))) (-15 -2692 ($ $ (-660 (-625 $)) (-660 $))) (-15 -1866 ($ $)) (-15 -1866 ($ (-660 $))) (-15 -4301 ($ $)) (-15 -4301 ($ (-660 $))) (-15 -1746 ($ $)) (-15 -1746 ($ $ $)) (-15 -4181 ((-787) $)) (-15 -3215 ((-3 (-625 $) "failed") $)) (-15 -2074 ((-660 (-625 $)) $)) (-15 -2002 ((-660 (-625 $)) $)) (-15 -1653 ((-660 (-115)) $)) (-15 -2085 ((-115) (-115))) (-15 -3123 ((-112) (-115))) (-15 -3152 ((-112) $ (-115))) (-15 -3152 ((-112) $ (-1201))) (-15 -2869 ($ (-115) $)) (-15 -2869 ($ (-115) (-660 $))) (-15 -2124 ($ (-1 $ $) (-625 $))) (-15 -1859 ((-112) $ $)) (-15 -1859 ((-112) $ (-1201))) (-15 -3273 ($ $ (-660 (-1201)) (-660 (-1 $ $)))) (-15 -3273 ($ $ (-660 (-1201)) (-660 (-1 $ (-660 $))))) (-15 -3273 ($ $ (-1201) (-1 $ (-660 $)))) (-15 -3273 ($ $ (-1201) (-1 $ $))) (-15 -3273 ($ $ (-660 (-115)) (-660 (-1 $ $)))) (-15 -3273 ($ $ (-660 (-115)) (-660 (-1 $ (-660 $))))) (-15 -3273 ($ $ (-115) (-1 $ (-660 $)))) (-15 -3273 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1074)) (PROGN (-15 -3348 ((-1197 $) (-625 $))) (-15 -1629 ($ $))) |%noBranch|) (IF (|has| $ (-1063 (-577))) (PROGN (-15 -3861 ((-112) $)) (-15 -2238 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-629 #0=(-625 $)) . T) ((-626 (-880)) . T) ((-320 $) . T) ((-527 (-625 $) $) . T) ((-527 $ $) . T) ((-1063 #0#) . T) ((-1125) . T) ((-1242) . T)) -((-3151 (((-660 |#1|) (-660 |#1|)) 10 T ELT))) -(((-314 |#1|) (-10 -7 (-15 -3151 ((-660 |#1|) (-660 |#1|)))) (-864)) (T -314)) -((-3151 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-864)) (-5 *1 (-314 *3))))) -(-10 -7 (-15 -3151 ((-660 |#1|) (-660 |#1|)))) -((-2124 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 17 T ELT))) -(((-315 |#1| |#2|) (-10 -7 (-15 -2124 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-1074) (-1074)) (T -315)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-705 *6)) (-5 *1 (-315 *5 *6))))) -(-10 -7 (-15 -2124 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) -((-2029 (((-1292 (-327 (-391))) (-1292 (-327 (-228)))) 110 T ELT)) (-3480 (((-1119 (-859 (-228))) (-1119 (-859 (-391)))) 43 T ELT)) (-2972 (((-660 (-1183)) (-1182 (-228))) 92 T ELT)) (-2198 (((-327 (-391)) (-975 (-228))) 53 T ELT)) (-3929 (((-228) (-975 (-228))) 49 T ELT)) (-3838 (((-1183) (-391)) 195 T ELT)) (-4003 (((-859 (-228)) (-859 (-391))) 37 T ELT)) (-2400 (((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1292 (-327 (-228)))) 165 T ELT)) (-3527 (((-1060) (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) 207 T ELT) (((-1060) (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) 205 T ELT)) (-1631 (((-705 (-228)) (-660 (-228)) (-787)) 19 T ELT)) (-3877 (((-1292 (-715)) (-660 (-228))) 99 T ELT)) (-4296 (((-660 (-1183)) (-660 (-228))) 79 T ELT)) (-4127 (((-3 (-327 (-228)) "failed") (-327 (-228))) 128 T ELT)) (-2907 (((-112) (-228) (-1119 (-859 (-228)))) 117 T ELT)) (-2373 (((-1060) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 224 T ELT)) (-2321 (((-228) (-1119 (-859 (-228)))) 112 T ELT)) (-2101 (((-228) (-1119 (-859 (-228)))) 113 T ELT)) (-1942 (((-228) (-420 (-577))) 31 T ELT)) (-3261 (((-1183) (-391)) 77 T ELT)) (-2637 (((-228) (-391)) 22 T ELT)) (-3956 (((-391) (-1292 (-327 (-228)))) 177 T ELT)) (-4258 (((-327 (-228)) (-327 (-391))) 28 T ELT)) (-2776 (((-420 (-577)) (-327 (-228))) 56 T ELT)) (-2186 (((-327 (-420 (-577))) (-327 (-228))) 73 T ELT)) (-2354 (((-327 (-391)) (-327 (-228))) 103 T ELT)) (-2221 (((-228) (-327 (-228))) 57 T ELT)) (-2723 (((-660 (-228)) (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) 68 T ELT)) (-1764 (((-1119 (-859 (-228))) (-1119 (-859 (-228)))) 65 T ELT)) (-3629 (((-1183) (-228)) 76 T ELT)) (-4314 (((-715) (-228)) 95 T ELT)) (-1892 (((-420 (-577)) (-228)) 58 T ELT)) (-3563 (((-327 (-391)) (-228)) 52 T ELT)) (-2176 (((-660 (-1119 (-859 (-228)))) (-660 (-1119 (-859 (-391))))) 46 T ELT)) (-1685 (((-1060) (-660 (-1060))) 191 T ELT) (((-1060) (-1060) (-1060)) 185 T ELT)) (-3933 (((-1060) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221 T ELT))) -(((-316) (-10 -7 (-15 -2637 ((-228) (-391))) (-15 -4258 ((-327 (-228)) (-327 (-391)))) (-15 -4003 ((-859 (-228)) (-859 (-391)))) (-15 -3480 ((-1119 (-859 (-228))) (-1119 (-859 (-391))))) (-15 -2176 ((-660 (-1119 (-859 (-228)))) (-660 (-1119 (-859 (-391)))))) (-15 -1892 ((-420 (-577)) (-228))) (-15 -2776 ((-420 (-577)) (-327 (-228)))) (-15 -2221 ((-228) (-327 (-228)))) (-15 -4127 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3956 ((-391) (-1292 (-327 (-228))))) (-15 -2400 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1292 (-327 (-228))))) (-15 -2186 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -1764 ((-1119 (-859 (-228))) (-1119 (-859 (-228))))) (-15 -2723 ((-660 (-228)) (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) (-15 -4314 ((-715) (-228))) (-15 -3877 ((-1292 (-715)) (-660 (-228)))) (-15 -2354 ((-327 (-391)) (-327 (-228)))) (-15 -2029 ((-1292 (-327 (-391))) (-1292 (-327 (-228))))) (-15 -2907 ((-112) (-228) (-1119 (-859 (-228))))) (-15 -3629 ((-1183) (-228))) (-15 -3261 ((-1183) (-391))) (-15 -4296 ((-660 (-1183)) (-660 (-228)))) (-15 -2972 ((-660 (-1183)) (-1182 (-228)))) (-15 -2321 ((-228) (-1119 (-859 (-228))))) (-15 -2101 ((-228) (-1119 (-859 (-228))))) (-15 -1685 ((-1060) (-1060) (-1060))) (-15 -1685 ((-1060) (-660 (-1060)))) (-15 -3838 ((-1183) (-391))) (-15 -3527 ((-1060) (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))))) (-15 -3527 ((-1060) (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))))) (-15 -3933 ((-1060) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2373 ((-1060) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -2198 ((-327 (-391)) (-975 (-228)))) (-15 -3929 ((-228) (-975 (-228)))) (-15 -3563 ((-327 (-391)) (-228))) (-15 -1942 ((-228) (-420 (-577)))) (-15 -1631 ((-705 (-228)) (-660 (-228)) (-787))))) (T -316)) -((-1631 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-228))) (-5 *4 (-787)) (-5 *2 (-705 (-228))) (-5 *1 (-316)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-3929 (*1 *2 *3) (-12 (-5 *3 (-975 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-975 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-660 (-1060))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-1685 (*1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-316)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-316)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *4 (-1119 (-859 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-316)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-1292 (-327 (-391)))) (-5 *1 (-316)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1292 (-715))) (-5 *1 (-316)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-715)) (-5 *1 (-316)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-5 *2 (-660 (-228))) (-5 *1 (-316)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-1119 (-859 (-228)))) (-5 *1 (-316)))) (-2186 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) (-5 *1 (-316)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) (-5 *1 (-316)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316)))) (-4127 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-660 (-1119 (-859 (-391))))) (-5 *2 (-660 (-1119 (-859 (-228))))) (-5 *1 (-316)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-391)))) (-5 *2 (-1119 (-859 (-228)))) (-5 *1 (-316)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-859 (-391))) (-5 *2 (-859 (-228))) (-5 *1 (-316)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) -(-10 -7 (-15 -2637 ((-228) (-391))) (-15 -4258 ((-327 (-228)) (-327 (-391)))) (-15 -4003 ((-859 (-228)) (-859 (-391)))) (-15 -3480 ((-1119 (-859 (-228))) (-1119 (-859 (-391))))) (-15 -2176 ((-660 (-1119 (-859 (-228)))) (-660 (-1119 (-859 (-391)))))) (-15 -1892 ((-420 (-577)) (-228))) (-15 -2776 ((-420 (-577)) (-327 (-228)))) (-15 -2221 ((-228) (-327 (-228)))) (-15 -4127 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3956 ((-391) (-1292 (-327 (-228))))) (-15 -2400 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1292 (-327 (-228))))) (-15 -2186 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -1764 ((-1119 (-859 (-228))) (-1119 (-859 (-228))))) (-15 -2723 ((-660 (-228)) (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) (-15 -4314 ((-715) (-228))) (-15 -3877 ((-1292 (-715)) (-660 (-228)))) (-15 -2354 ((-327 (-391)) (-327 (-228)))) (-15 -2029 ((-1292 (-327 (-391))) (-1292 (-327 (-228))))) (-15 -2907 ((-112) (-228) (-1119 (-859 (-228))))) (-15 -3629 ((-1183) (-228))) (-15 -3261 ((-1183) (-391))) (-15 -4296 ((-660 (-1183)) (-660 (-228)))) (-15 -2972 ((-660 (-1183)) (-1182 (-228)))) (-15 -2321 ((-228) (-1119 (-859 (-228))))) (-15 -2101 ((-228) (-1119 (-859 (-228))))) (-15 -1685 ((-1060) (-1060) (-1060))) (-15 -1685 ((-1060) (-660 (-1060)))) (-15 -3838 ((-1183) (-391))) (-15 -3527 ((-1060) (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))))) (-15 -3527 ((-1060) (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))))) (-15 -3933 ((-1060) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2373 ((-1060) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -2198 ((-327 (-391)) (-975 (-228)))) (-15 -3929 ((-228) (-975 (-228)))) (-15 -3563 ((-327 (-391)) (-228))) (-15 -1942 ((-228) (-420 (-577)))) (-15 -1631 ((-705 (-228)) (-660 (-228)) (-787)))) -((-2435 (((-112) $ $) 14 T ELT)) (-3436 (($ $ $) 18 T ELT)) (-3447 (($ $ $) 17 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 50 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 65 T ELT)) (-3543 (($ $ $) 25 T ELT) (($ (-660 $)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-3478 (((-3 $ "failed") $ $) 21 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 53 T ELT))) -(((-317 |#1|) (-10 -8 (-15 -1736 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -1373 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1373 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3428 |#1|)) |#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3447 (|#1| |#1| |#1|)) (-15 -2435 ((-112) |#1| |#1|)) (-15 -2071 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -3885 ((-2 (|:| -2940 (-660 |#1|)) (|:| -3428 |#1|)) (-660 |#1|))) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3543 (|#1| |#1| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|))) (-318)) (T -317)) -NIL -(-10 -8 (-15 -1736 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -1373 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1373 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3428 |#1|)) |#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3447 (|#1| |#1| |#1|)) (-15 -2435 ((-112) |#1| |#1|)) (-15 -2071 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -3885 ((-2 (|:| -2940 (-660 |#1|)) (|:| -3428 |#1|)) (-660 |#1|))) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3543 (|#1| |#1| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3790 (($) 18 T CONST)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-2916 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2916 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2916 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2916 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *1))) (-4 *1 (-313)))) (-4313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-630 *1))) (-5 *3 (-665 *1)) (-4 *1 (-313)))) (-2907 (*1 *1 *1) (-4 *1 (-313))) (-2907 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) (-2754 (*1 *1 *1) (-4 *1 (-313))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) (-2106 (*1 *1 *1) (-4 *1 (-313))) (-2106 (*1 *1 *1 *1) (-4 *1 (-313))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-792)))) (-2998 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-313)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-665 (-115))))) (-3706 (*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-1448 (*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4241 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4241 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) (-4399 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-4399 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) (-4417 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-313)))) (-3219 (*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))) (-3219 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-313)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-313)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1079)) (-4 *1 (-313)) (-5 *2 (-1202 *1)))) (-4263 (*1 *1 *1) (-12 (-4 *1 (-1079)) (-4 *1 (-313)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112))))) +(-13 (-1130) (-1068 (-630 $)) (-527 (-630 $) $) (-320 $) (-10 -8 (-15 -2916 ($ (-115) $)) (-15 -2916 ($ (-115) $ $)) (-15 -2916 ($ (-115) $ $ $)) (-15 -2916 ($ (-115) $ $ $ $)) (-15 -2916 ($ (-115) (-665 $))) (-15 -4313 ($ $ (-305 $))) (-15 -4313 ($ $ (-665 (-305 $)))) (-15 -4313 ($ $ (-665 (-630 $)) (-665 $))) (-15 -2907 ($ $)) (-15 -2907 ($ (-665 $))) (-15 -2754 ($ $)) (-15 -2754 ($ (-665 $))) (-15 -2106 ($ $)) (-15 -2106 ($ $ $)) (-15 -2553 ((-792) $)) (-15 -2998 ((-3 (-630 $) "failed") $)) (-15 -3693 ((-665 (-630 $)) $)) (-15 -3613 ((-665 (-630 $)) $)) (-15 -1529 ((-665 (-115)) $)) (-15 -3706 ((-115) (-115))) (-15 -1448 ((-112) (-115))) (-15 -4241 ((-112) $ (-115))) (-15 -4241 ((-112) $ (-1206))) (-15 -4399 ($ (-115) $)) (-15 -4399 ($ (-115) (-665 $))) (-15 -4417 ($ (-1 $ $) (-630 $))) (-15 -3219 ((-112) $ $)) (-15 -3219 ((-112) $ (-1206))) (-15 -3373 ($ $ (-665 (-1206)) (-665 (-1 $ $)))) (-15 -3373 ($ $ (-665 (-1206)) (-665 (-1 $ (-665 $))))) (-15 -3373 ($ $ (-1206) (-1 $ (-665 $)))) (-15 -3373 ($ $ (-1206) (-1 $ $))) (-15 -3373 ($ $ (-665 (-115)) (-665 (-1 $ $)))) (-15 -3373 ($ $ (-665 (-115)) (-665 (-1 $ (-665 $))))) (-15 -3373 ($ $ (-115) (-1 $ (-665 $)))) (-15 -3373 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1079)) (PROGN (-15 -2465 ((-1202 $) (-630 $))) (-15 -4263 ($ $))) |%noBranch|) (IF (|has| $ (-1068 (-577))) (PROGN (-15 -2820 ((-112) $)) (-15 -2310 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-634 #0=(-630 $)) . T) ((-631 (-885)) . T) ((-320 $) . T) ((-527 (-630 $) $) . T) ((-527 $ $) . T) ((-1068 #0#) . T) ((-1130) . T) ((-1247) . T)) +((-4386 (((-665 |#1|) (-665 |#1|)) 10 T ELT))) +(((-314 |#1|) (-10 -7 (-15 -4386 ((-665 |#1|) (-665 |#1|)))) (-869)) (T -314)) +((-4386 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-869)) (-5 *1 (-314 *3))))) +(-10 -7 (-15 -4386 ((-665 |#1|) (-665 |#1|)))) +((-4417 (((-710 |#2|) (-1 |#2| |#1|) (-710 |#1|)) 17 T ELT))) +(((-315 |#1| |#2|) (-10 -7 (-15 -4417 ((-710 |#2|) (-1 |#2| |#1|) (-710 |#1|)))) (-1079) (-1079)) (T -315)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-710 *6)) (-5 *1 (-315 *5 *6))))) +(-10 -7 (-15 -4417 ((-710 |#2|) (-1 |#2| |#1|) (-710 |#1|)))) +((-2194 (((-1297 (-327 (-391))) (-1297 (-327 (-228)))) 110 T ELT)) (-1689 (((-1124 (-864 (-228))) (-1124 (-864 (-391)))) 43 T ELT)) (-2536 (((-665 (-1188)) (-1187 (-228))) 92 T ELT)) (-1645 (((-327 (-391)) (-980 (-228))) 53 T ELT)) (-3761 (((-228) (-980 (-228))) 49 T ELT)) (-4245 (((-1188) (-391)) 195 T ELT)) (-2946 (((-864 (-228)) (-864 (-391))) 37 T ELT)) (-3538 (((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1297 (-327 (-228)))) 165 T ELT)) (-2642 (((-1065) (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) 207 T ELT) (((-1065) (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) 205 T ELT)) (-3684 (((-710 (-228)) (-665 (-228)) (-792)) 19 T ELT)) (-3161 (((-1297 (-720)) (-665 (-228))) 99 T ELT)) (-2608 (((-665 (-1188)) (-665 (-228))) 79 T ELT)) (-2507 (((-3 (-327 (-228)) "failed") (-327 (-228))) 128 T ELT)) (-1752 (((-112) (-228) (-1124 (-864 (-228)))) 117 T ELT)) (-4292 (((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 224 T ELT)) (-1608 (((-228) (-1124 (-864 (-228)))) 112 T ELT)) (-2212 (((-228) (-1124 (-864 (-228)))) 113 T ELT)) (-4391 (((-228) (-420 (-577))) 31 T ELT)) (-1979 (((-1188) (-391)) 77 T ELT)) (-1644 (((-228) (-391)) 22 T ELT)) (-1976 (((-391) (-1297 (-327 (-228)))) 177 T ELT)) (-3778 (((-327 (-228)) (-327 (-391))) 28 T ELT)) (-1995 (((-420 (-577)) (-327 (-228))) 56 T ELT)) (-2571 (((-327 (-420 (-577))) (-327 (-228))) 73 T ELT)) (-1775 (((-327 (-391)) (-327 (-228))) 103 T ELT)) (-3284 (((-228) (-327 (-228))) 57 T ELT)) (-3008 (((-665 (-228)) (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) 68 T ELT)) (-3353 (((-1124 (-864 (-228))) (-1124 (-864 (-228)))) 65 T ELT)) (-3029 (((-1188) (-228)) 76 T ELT)) (-3797 (((-720) (-228)) 95 T ELT)) (-2037 (((-420 (-577)) (-228)) 58 T ELT)) (-3508 (((-327 (-391)) (-228)) 52 T ELT)) (-4463 (((-665 (-1124 (-864 (-228)))) (-665 (-1124 (-864 (-391))))) 46 T ELT)) (-1702 (((-1065) (-665 (-1065))) 191 T ELT) (((-1065) (-1065) (-1065)) 185 T ELT)) (-3552 (((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221 T ELT))) +(((-316) (-10 -7 (-15 -1644 ((-228) (-391))) (-15 -3778 ((-327 (-228)) (-327 (-391)))) (-15 -2946 ((-864 (-228)) (-864 (-391)))) (-15 -1689 ((-1124 (-864 (-228))) (-1124 (-864 (-391))))) (-15 -4463 ((-665 (-1124 (-864 (-228)))) (-665 (-1124 (-864 (-391)))))) (-15 -2037 ((-420 (-577)) (-228))) (-15 -1995 ((-420 (-577)) (-327 (-228)))) (-15 -3284 ((-228) (-327 (-228)))) (-15 -2507 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -1976 ((-391) (-1297 (-327 (-228))))) (-15 -3538 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1297 (-327 (-228))))) (-15 -2571 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -3353 ((-1124 (-864 (-228))) (-1124 (-864 (-228))))) (-15 -3008 ((-665 (-228)) (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) (-15 -3797 ((-720) (-228))) (-15 -3161 ((-1297 (-720)) (-665 (-228)))) (-15 -1775 ((-327 (-391)) (-327 (-228)))) (-15 -2194 ((-1297 (-327 (-391))) (-1297 (-327 (-228))))) (-15 -1752 ((-112) (-228) (-1124 (-864 (-228))))) (-15 -3029 ((-1188) (-228))) (-15 -1979 ((-1188) (-391))) (-15 -2608 ((-665 (-1188)) (-665 (-228)))) (-15 -2536 ((-665 (-1188)) (-1187 (-228)))) (-15 -1608 ((-228) (-1124 (-864 (-228))))) (-15 -2212 ((-228) (-1124 (-864 (-228))))) (-15 -1702 ((-1065) (-1065) (-1065))) (-15 -1702 ((-1065) (-665 (-1065)))) (-15 -4245 ((-1188) (-391))) (-15 -2642 ((-1065) (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))))) (-15 -2642 ((-1065) (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))))) (-15 -3552 ((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4292 ((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1645 ((-327 (-391)) (-980 (-228)))) (-15 -3761 ((-228) (-980 (-228)))) (-15 -3508 ((-327 (-391)) (-228))) (-15 -4391 ((-228) (-420 (-577)))) (-15 -3684 ((-710 (-228)) (-665 (-228)) (-792))))) (T -316)) +((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-228))) (-5 *4 (-792)) (-5 *2 (-710 (-228))) (-5 *1 (-316)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-980 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-980 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-665 (-1065))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-1702 (*1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-316)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-316)))) (-1752 (*1 *2 *3 *4) (-12 (-5 *4 (-1124 (-864 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-316)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-1297 (-327 (-391)))) (-5 *1 (-316)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1297 (-720))) (-5 *1 (-316)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-720)) (-5 *1 (-316)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-5 *2 (-665 (-228))) (-5 *1 (-316)))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-1124 (-864 (-228)))) (-5 *1 (-316)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) (-5 *1 (-316)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) (-5 *1 (-316)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316)))) (-2507 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-4463 (*1 *2 *3) (-12 (-5 *3 (-665 (-1124 (-864 (-391))))) (-5 *2 (-665 (-1124 (-864 (-228))))) (-5 *1 (-316)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-391)))) (-5 *2 (-1124 (-864 (-228)))) (-5 *1 (-316)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-228))) (-5 *1 (-316)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) +(-10 -7 (-15 -1644 ((-228) (-391))) (-15 -3778 ((-327 (-228)) (-327 (-391)))) (-15 -2946 ((-864 (-228)) (-864 (-391)))) (-15 -1689 ((-1124 (-864 (-228))) (-1124 (-864 (-391))))) (-15 -4463 ((-665 (-1124 (-864 (-228)))) (-665 (-1124 (-864 (-391)))))) (-15 -2037 ((-420 (-577)) (-228))) (-15 -1995 ((-420 (-577)) (-327 (-228)))) (-15 -3284 ((-228) (-327 (-228)))) (-15 -2507 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -1976 ((-391) (-1297 (-327 (-228))))) (-15 -3538 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1297 (-327 (-228))))) (-15 -2571 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -3353 ((-1124 (-864 (-228))) (-1124 (-864 (-228))))) (-15 -3008 ((-665 (-228)) (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) (-15 -3797 ((-720) (-228))) (-15 -3161 ((-1297 (-720)) (-665 (-228)))) (-15 -1775 ((-327 (-391)) (-327 (-228)))) (-15 -2194 ((-1297 (-327 (-391))) (-1297 (-327 (-228))))) (-15 -1752 ((-112) (-228) (-1124 (-864 (-228))))) (-15 -3029 ((-1188) (-228))) (-15 -1979 ((-1188) (-391))) (-15 -2608 ((-665 (-1188)) (-665 (-228)))) (-15 -2536 ((-665 (-1188)) (-1187 (-228)))) (-15 -1608 ((-228) (-1124 (-864 (-228))))) (-15 -2212 ((-228) (-1124 (-864 (-228))))) (-15 -1702 ((-1065) (-1065) (-1065))) (-15 -1702 ((-1065) (-665 (-1065)))) (-15 -4245 ((-1188) (-391))) (-15 -2642 ((-1065) (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))))) (-15 -2642 ((-1065) (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))))) (-15 -3552 ((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4292 ((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1645 ((-327 (-391)) (-980 (-228)))) (-15 -3761 ((-228) (-980 (-228)))) (-15 -3508 ((-327 (-391)) (-228))) (-15 -4391 ((-228) (-420 (-577)))) (-15 -3684 ((-710 (-228)) (-665 (-228)) (-792)))) +((-2495 (((-112) $ $) 14 T ELT)) (-3531 (($ $ $) 18 T ELT)) (-3541 (($ $ $) 17 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 50 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 65 T ELT)) (-3642 (($ $ $) 25 T ELT) (($ (-665 $)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-3574 (((-3 $ "failed") $ $) 21 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 53 T ELT))) +(((-317 |#1|) (-10 -8 (-15 -1695 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -1934 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1934 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2343 |#1|)) |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1|)) (-15 -3541 (|#1| |#1| |#1|)) (-15 -2495 ((-112) |#1| |#1|)) (-15 -3002 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -3089 ((-2 (|:| -4473 (-665 |#1|)) (|:| -2343 |#1|)) (-665 |#1|))) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|))) (-318)) (T -317)) +NIL +(-10 -8 (-15 -1695 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -1934 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1934 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2343 |#1|)) |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1|)) (-15 -3541 (|#1| |#1| |#1|)) (-15 -2495 ((-112) |#1| |#1|)) (-15 -3002 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -3089 ((-2 (|:| -4473 (-665 |#1|)) (|:| -2343 |#1|)) (-665 |#1|))) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2305 (($) 18 T CONST)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-318) (-141)) (T -318)) -((-2435 (*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-787)))) (-3039 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-318)))) (-3447 (*1 *1 *1 *1) (-4 *1 (-318))) (-3436 (*1 *1 *1 *1) (-4 *1 (-318))) (-1373 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3428 *1))) (-4 *1 (-318)))) (-1373 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-318)))) (-1736 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-318))))) -(-13 (-943) (-10 -8 (-15 -2435 ((-112) $ $)) (-15 -4167 ((-787) $)) (-15 -3039 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -3447 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -1373 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $)) (-15 -1373 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1736 ((-3 (-660 $) "failed") (-660 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3273 (($ $ (-660 |#2|) (-660 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-660 (-305 |#2|))) NIL T ELT))) -(((-319 |#1| |#2|) (-10 -8 (-15 -3273 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3273 (|#1| |#1| (-305 |#2|))) (-15 -3273 (|#1| |#1| |#2| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#2|)))) (-320 |#2|) (-1125)) (T -319)) -NIL -(-10 -8 (-15 -3273 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3273 (|#1| |#1| (-305 |#2|))) (-15 -3273 (|#1| |#1| |#2| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#2|)))) -((-3273 (($ $ (-660 |#1|) (-660 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 11 T ELT) (($ $ (-660 (-305 |#1|))) 10 T ELT))) -(((-320 |#1|) (-141) (-1125)) (T -320)) -((-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1125)))) (-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1125))))) -(-13 (-527 |t#1| |t#1|) (-10 -8 (-15 -3273 ($ $ (-305 |t#1|))) (-15 -3273 ($ $ (-660 (-305 |t#1|)))))) +((-2495 (*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-792)))) (-3372 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-318)))) (-3541 (*1 *1 *1 *1) (-4 *1 (-318))) (-3531 (*1 *1 *1 *1) (-4 *1 (-318))) (-1934 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2343 *1))) (-4 *1 (-318)))) (-1934 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-318)))) (-1695 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-318))))) +(-13 (-948) (-10 -8 (-15 -2495 ((-112) $ $)) (-15 -4081 ((-792) $)) (-15 -3372 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -3541 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -1934 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $)) (-15 -1934 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1695 ((-3 (-665 $) "failed") (-665 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3373 (($ $ (-665 |#2|) (-665 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-665 (-305 |#2|))) NIL T ELT))) +(((-319 |#1| |#2|) (-10 -8 (-15 -3373 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3373 (|#1| |#1| (-305 |#2|))) (-15 -3373 (|#1| |#1| |#2| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#2|)))) (-320 |#2|) (-1130)) (T -319)) +NIL +(-10 -8 (-15 -3373 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3373 (|#1| |#1| (-305 |#2|))) (-15 -3373 (|#1| |#1| |#2| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#2|)))) +((-3373 (($ $ (-665 |#1|) (-665 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 11 T ELT) (($ $ (-665 (-305 |#1|))) 10 T ELT))) +(((-320 |#1|) (-141) (-1130)) (T -320)) +((-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1130)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1130))))) +(-13 (-527 |t#1| |t#1|) (-10 -8 (-15 -3373 ($ $ (-305 |t#1|))) (-15 -3373 ($ $ (-665 (-305 |t#1|)))))) (((-527 |#1| |#1|) . T)) -((-3273 ((|#1| (-1 |#1| (-577)) (-1203 (-420 (-577)))) 26 T ELT))) -(((-321 |#1|) (-10 -7 (-15 -3273 (|#1| (-1 |#1| (-577)) (-1203 (-420 (-577)))))) (-38 (-420 (-577)))) (T -321)) -((-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1203 (-420 (-577)))) (-5 *1 (-321 *2)) (-4 *2 (-38 (-420 (-577))))))) -(-10 -7 (-15 -3273 (|#1| (-1 |#1| (-577)) (-1203 (-420 (-577)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2090 (((-577) $) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3201 (((-1160) $) 9 T ELT)) (-3603 (((-880) $) 19 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-322) (-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -2090 ((-577) $))))) (T -322)) -((-3201 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-322)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322))))) -(-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -2090 ((-577) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 7 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 9 T ELT))) -(((-323) (-1125)) (T -323)) -NIL -(-1125) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 60 T ELT)) (-2829 (((-1278 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-1278 |#1| |#2| |#3| |#4|) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577))) ELT) (((-3 (-1277 |#2| |#3| |#4|) "failed") $) 26 T ELT)) (-2155 (((-1278 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1201) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577))) ELT) (((-577) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577))) ELT) (((-1277 |#2| |#3| |#4|) $) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-1278 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1292 (-1278 |#1| |#2| |#3| |#4|)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-1278 |#1| |#2| |#3| |#4|)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 (((-1278 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)) ELT)) (-2124 (($ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3345 (((-3 (-859 |#2|) "failed") $) 80 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-1278 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1292 (-1278 |#1| |#2| |#3| |#4|)))) (-1292 $) $) NIL T ELT) (((-705 (-1278 |#1| |#2| |#3| |#4|)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-318)) ELT)) (-1374 (((-1278 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 (-1278 |#1| |#2| |#3| |#4|)) (-660 (-1278 |#1| |#2| |#3| |#4|))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1278 |#1| |#2| |#3| |#4|))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-660 (-305 (-1278 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-660 (-1201)) (-660 (-1278 |#1| |#2| |#3| |#4|))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-527 (-1201) (-1278 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1201) (-1278 |#1| |#2| |#3| |#4|)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-527 (-1201) (-1278 |#1| |#2| |#3| |#4|))) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ (-1278 |#1| |#2| |#3| |#4|)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-297 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238)) ELT) (($ $ (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 (((-1278 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-627 (-549))) ELT) (((-391) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1047)) ELT) (((-228) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1047)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3| |#4|) (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-1278 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1201)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-1201))) ELT) (($ (-1277 |#2| |#3| |#4|)) 37 T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3| |#4|) (-932))) (|has| (-1278 |#1| |#2| |#3| |#4|) (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (((-1278 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201))) ELT) (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238)) ELT) (($ $ (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)) ELT)) (-3051 (($ $ $) 35 T ELT) (($ (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-1278 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1278 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-324 |#1| |#2| |#3| |#4|) (-13 (-1017 (-1278 |#1| |#2| |#3| |#4|)) (-1063 (-1277 |#2| |#3| |#4|)) (-10 -8 (-15 -3345 ((-3 (-859 |#2|) "failed") $)) (-15 -3603 ($ (-1277 |#2| |#3| |#4|))))) (-13 (-1063 (-577)) (-654 (-577)) (-465)) (-13 (-27) (-1227) (-443 |#1|)) (-1201) |#2|) (T -324)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1277 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4) (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *1 (-324 *3 *4 *5 *6)))) (-3345 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *2 (-859 *4)) (-5 *1 (-324 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4)))) -(-13 (-1017 (-1278 |#1| |#2| |#3| |#4|)) (-1063 (-1277 |#2| |#3| |#4|)) (-10 -8 (-15 -3345 ((-3 (-859 |#2|) "failed") $)) (-15 -3603 ($ (-1277 |#2| |#3| |#4|))))) -((-2124 (((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)) 13 T ELT))) -(((-325 |#1| |#2|) (-10 -7 (-15 -2124 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) (-1125) (-1125)) (T -325)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6))))) -(-10 -7 (-15 -2124 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) -((-3268 (((-52) |#2| (-305 |#2|) (-787)) 40 T ELT) (((-52) |#2| (-305 |#2|)) 32 T ELT) (((-52) |#2| (-787)) 35 T ELT) (((-52) |#2|) 33 T ELT) (((-52) (-1201)) 26 T ELT)) (-2857 (((-52) |#2| (-305 |#2|) (-420 (-577))) 59 T ELT) (((-52) |#2| (-305 |#2|)) 56 T ELT) (((-52) |#2| (-420 (-577))) 58 T ELT) (((-52) |#2|) 57 T ELT) (((-52) (-1201)) 55 T ELT)) (-3293 (((-52) |#2| (-305 |#2|) (-420 (-577))) 54 T ELT) (((-52) |#2| (-305 |#2|)) 51 T ELT) (((-52) |#2| (-420 (-577))) 53 T ELT) (((-52) |#2|) 52 T ELT) (((-52) (-1201)) 50 T ELT)) (-3281 (((-52) |#2| (-305 |#2|) (-577)) 47 T ELT) (((-52) |#2| (-305 |#2|)) 44 T ELT) (((-52) |#2| (-577)) 46 T ELT) (((-52) |#2|) 45 T ELT) (((-52) (-1201)) 43 T ELT))) -(((-326 |#1| |#2|) (-10 -7 (-15 -3268 ((-52) (-1201))) (-15 -3268 ((-52) |#2|)) (-15 -3268 ((-52) |#2| (-787))) (-15 -3268 ((-52) |#2| (-305 |#2|))) (-15 -3268 ((-52) |#2| (-305 |#2|) (-787))) (-15 -3281 ((-52) (-1201))) (-15 -3281 ((-52) |#2|)) (-15 -3281 ((-52) |#2| (-577))) (-15 -3281 ((-52) |#2| (-305 |#2|))) (-15 -3281 ((-52) |#2| (-305 |#2|) (-577))) (-15 -3293 ((-52) (-1201))) (-15 -3293 ((-52) |#2|)) (-15 -3293 ((-52) |#2| (-420 (-577)))) (-15 -3293 ((-52) |#2| (-305 |#2|))) (-15 -3293 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -2857 ((-52) (-1201))) (-15 -2857 ((-52) |#2|)) (-15 -2857 ((-52) |#2| (-420 (-577)))) (-15 -2857 ((-52) |#2| (-305 |#2|))) (-15 -2857 ((-52) |#2| (-305 |#2|) (-420 (-577))))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -326)) -((-2857 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2857 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) (-3293 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-3293 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) (-3281 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 *5) (-654 *5))) (-5 *5 (-577)) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1063 *4) (-654 *4))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-3281 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) (-3268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-787)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-3268 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4)))))) -(-10 -7 (-15 -3268 ((-52) (-1201))) (-15 -3268 ((-52) |#2|)) (-15 -3268 ((-52) |#2| (-787))) (-15 -3268 ((-52) |#2| (-305 |#2|))) (-15 -3268 ((-52) |#2| (-305 |#2|) (-787))) (-15 -3281 ((-52) (-1201))) (-15 -3281 ((-52) |#2|)) (-15 -3281 ((-52) |#2| (-577))) (-15 -3281 ((-52) |#2| (-305 |#2|))) (-15 -3281 ((-52) |#2| (-305 |#2|) (-577))) (-15 -3293 ((-52) (-1201))) (-15 -3293 ((-52) |#2|)) (-15 -3293 ((-52) |#2| (-420 (-577)))) (-15 -3293 ((-52) |#2| (-305 |#2|))) (-15 -3293 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -2857 ((-52) (-1201))) (-15 -2857 ((-52) |#2|)) (-15 -2857 ((-52) |#2| (-420 (-577)))) (-15 -2857 ((-52) |#2| (-305 |#2|))) (-15 -2857 ((-52) |#2| (-305 |#2|) (-420 (-577))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1884 (((-660 $) $ (-1201)) NIL (|has| |#1| (-569)) ELT) (((-660 $) $) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1197 $) (-1201)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1197 $)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-975 $)) NIL (|has| |#1| (-569)) ELT)) (-2690 (($ $ (-1201)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1197 $) (-1201)) NIL (|has| |#1| (-569)) ELT) (($ (-1197 $)) NIL (|has| |#1| (-569)) ELT) (($ (-975 $)) NIL (|has| |#1| (-569)) ELT)) (-3801 (((-112) $) 27 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT)) (-3206 (((-660 (-1201)) $) 368 T ELT)) (-3024 (((-420 (-1197 $)) $ (-625 $)) NIL (|has| |#1| (-569)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2002 (((-660 (-625 $)) $) NIL T ELT)) (-2642 (($ $) 171 (|has| |#1| (-569)) ELT)) (-2501 (($ $) 147 (|has| |#1| (-569)) ELT)) (-2922 (($ $ (-1117 $)) 232 (|has| |#1| (-569)) ELT) (($ $ (-1201)) 228 (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT)) (-2692 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) 386 T ELT) (($ $ (-660 (-625 $)) (-660 $)) 430 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 308 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))) ELT)) (-2001 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-569)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2616 (($ $) 167 (|has| |#1| (-569)) ELT)) (-2471 (($ $) 143 (|has| |#1| (-569)) ELT)) (-2117 (($ $ (-577)) 73 (|has| |#1| (-569)) ELT)) (-2666 (($ $) 175 (|has| |#1| (-569)) ELT)) (-2523 (($ $) 151 (|has| |#1| (-569)) ELT)) (-3790 (($) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) (|has| |#1| (-1137))) CONST)) (-1344 (((-660 $) $ (-1201)) NIL (|has| |#1| (-569)) ELT) (((-660 $) $) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1197 $) (-1201)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1197 $)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-975 $)) NIL (|has| |#1| (-569)) ELT)) (-3400 (($ $ (-1201)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1197 $) (-1201)) 134 (|has| |#1| (-569)) ELT) (($ (-1197 $)) NIL (|has| |#1| (-569)) ELT) (($ (-975 $)) NIL (|has| |#1| (-569)) ELT)) (-2784 (((-3 (-625 $) "failed") $) 18 T ELT) (((-3 (-1201) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 441 T ELT) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-975 |#1|)) "failed") $) NIL (|has| |#1| (-569)) ELT) (((-3 (-975 |#1|) "failed") $) NIL (|has| |#1| (-1074)) ELT) (((-3 (-420 (-577)) "failed") $) 46 (-2811 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-2155 (((-625 $) $) 12 T ELT) (((-1201) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-975 |#1|)) $) NIL (|has| |#1| (-569)) ELT) (((-975 |#1|) $) NIL (|has| |#1| (-1074)) ELT) (((-420 (-577)) $) 319 (-2811 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2850 (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 125 (|has| |#1| (-1074)) ELT) (((-705 |#1|) (-705 $)) 115 (|has| |#1| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT)) (-2498 (($ $) 96 (|has| |#1| (-569)) ELT)) (-1625 (((-3 $ "failed") $) NIL (|has| |#1| (-1137)) ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1439 (($ $ (-1117 $)) 236 (|has| |#1| (-569)) ELT) (($ $ (-1201)) 234 (|has| |#1| (-569)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-569)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3512 (($ $ $) 202 (|has| |#1| (-569)) ELT)) (-2824 (($) 137 (|has| |#1| (-569)) ELT)) (-2738 (($ $ $) 222 (|has| |#1| (-569)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 392 (|has| |#1| (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 399 (|has| |#1| (-905 (-391))) ELT)) (-4301 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1653 (((-660 (-115)) $) NIL T ELT)) (-2085 (((-115) (-115)) 276 T ELT)) (-3306 (((-112) $) 25 (|has| |#1| (-1137)) ELT)) (-2238 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-3116 (($ $) 72 (|has| |#1| (-1074)) ELT)) (-2781 (((-1150 |#1| (-625 $)) $) 91 (|has| |#1| (-1074)) ELT)) (-1816 (((-112) $) 62 (|has| |#1| (-569)) ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-569)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-569)) ELT)) (-3348 (((-1197 $) (-625 $)) 277 (|has| $ (-1074)) ELT)) (-2124 (($ (-1 $ $) (-625 $)) 426 T ELT)) (-3215 (((-3 (-625 $) "failed") $) NIL T ELT)) (-3716 (($ $) 141 (|has| |#1| (-569)) ELT)) (-1844 (($ $) 247 (|has| |#1| (-569)) ELT)) (-1512 (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL (|has| |#1| (-1074)) ELT) (((-705 |#1|) (-1292 $)) NIL (|has| |#1| (-1074)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2074 (((-660 (-625 $)) $) 49 T ELT)) (-2869 (($ (-115) $) NIL T ELT) (($ (-115) (-660 $)) 431 T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL (|has| |#1| (-1137)) ELT)) (-2998 (((-3 (-2 (|:| |val| $) (|:| -1527 (-577))) "failed") $) NIL (|has| |#1| (-1074)) ELT)) (-3910 (((-3 (-660 $) "failed") $) 436 (|has| |#1| (-25)) ELT)) (-1400 (((-3 (-2 (|:| -2940 (-577)) (|:| |var| (-625 $))) "failed") $) 440 (|has| |#1| (-25)) ELT)) (-1966 (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $) NIL (|has| |#1| (-1137)) ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-115)) NIL (|has| |#1| (-1074)) ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-1201)) NIL (|has| |#1| (-1074)) ELT)) (-3152 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1201)) 51 T ELT)) (-3318 (($ $) NIL (-2811 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-1961 (($ $ (-1201)) 251 (|has| |#1| (-569)) ELT) (($ $ (-1117 $)) 253 (|has| |#1| (-569)) ELT)) (-4181 (((-787) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) 43 T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 301 (|has| |#1| (-569)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1859 (((-112) $ $) NIL T ELT) (((-112) $ (-1201)) NIL T ELT)) (-1592 (($ $ (-1201)) 226 (|has| |#1| (-569)) ELT) (($ $) 224 (|has| |#1| (-569)) ELT)) (-1968 (($ $) 218 (|has| |#1| (-569)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 306 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-569)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-569)) ELT)) (-2079 (($ $) 139 (|has| |#1| (-569)) ELT)) (-3861 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-3273 (($ $ (-625 $) $) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) 425 T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1201) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1201) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 379 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-627 (-549))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-627 (-549))) ELT) (($ $) NIL (|has| |#1| (-627 (-549))) ELT) (($ $ (-115) $ (-1201)) 366 (|has| |#1| (-627 (-549))) ELT) (($ $ (-660 (-115)) (-660 $) (-1201)) 365 (|has| |#1| (-627 (-549))) ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) NIL (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) NIL (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787) (-1 $ (-660 $))) NIL (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787) (-1 $ $)) NIL (|has| |#1| (-1074)) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-569)) ELT)) (-2421 (($ $) 239 (|has| |#1| (-569)) ELT)) (-2837 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2458 (($ $) 249 (|has| |#1| (-569)) ELT)) (-1666 (($ $) 200 (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-1201)) NIL (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-1074)) ELT)) (-3069 (($ $) 74 (|has| |#1| (-569)) ELT)) (-2797 (((-1150 |#1| (-625 $)) $) 93 (|has| |#1| (-569)) ELT)) (-1629 (($ $) 317 (|has| $ (-1074)) ELT)) (-2680 (($ $) 177 (|has| |#1| (-569)) ELT)) (-2535 (($ $) 153 (|has| |#1| (-569)) ELT)) (-2655 (($ $) 173 (|has| |#1| (-569)) ELT)) (-2512 (($ $) 149 (|has| |#1| (-569)) ELT)) (-2631 (($ $) 169 (|has| |#1| (-569)) ELT)) (-2486 (($ $) 145 (|has| |#1| (-569)) ELT)) (-2176 (((-911 (-577)) $) NIL (|has| |#1| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| |#1| (-627 (-911 (-391)))) ELT) (($ (-431 $)) NIL (|has| |#1| (-569)) ELT) (((-549) $) 363 (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-3823 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-3603 (((-880) $) 424 T ELT) (($ (-625 $)) 415 T ELT) (($ (-1201)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) ELT) (($ (-1150 |#1| (-625 $))) 95 (|has| |#1| (-1074)) ELT) (($ (-420 |#1|)) NIL (|has| |#1| (-569)) ELT) (($ (-975 (-420 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-975 (-420 |#1|)))) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-975 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-975 |#1|)) NIL (|has| |#1| (-1074)) ELT) (($ (-577)) 34 (-2811 (|has| |#1| (-1063 (-577))) (|has| |#1| (-1074))) ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-569)) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL (|has| |#1| (-1074)) CONST)) (-1866 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1774 (($ $ $) 220 (|has| |#1| (-569)) ELT)) (-2920 (($ $ $) 206 (|has| |#1| (-569)) ELT)) (-3241 (($ $ $) 210 (|has| |#1| (-569)) ELT)) (-4291 (($ $ $) 204 (|has| |#1| (-569)) ELT)) (-1586 (($ $ $) 208 (|has| |#1| (-569)) ELT)) (-3123 (((-112) (-115)) 10 T ELT)) (-2726 (((-112) $ $) 86 T ELT)) (-2722 (($ $) 183 (|has| |#1| (-569)) ELT)) (-2570 (($ $) 159 (|has| |#1| (-569)) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) 179 (|has| |#1| (-569)) ELT)) (-2546 (($ $) 155 (|has| |#1| (-569)) ELT)) (-2748 (($ $) 187 (|has| |#1| (-569)) ELT)) (-2592 (($ $) 163 (|has| |#1| (-569)) ELT)) (-2792 (($ (-1201) $) NIL T ELT) (($ (-1201) $ $) NIL T ELT) (($ (-1201) $ $ $) NIL T ELT) (($ (-1201) $ $ $ $) NIL T ELT) (($ (-1201) (-660 $)) NIL T ELT)) (-3691 (($ $) 214 (|has| |#1| (-569)) ELT)) (-1888 (($ $) 212 (|has| |#1| (-569)) ELT)) (-2897 (($ $) 189 (|has| |#1| (-569)) ELT)) (-2604 (($ $) 165 (|has| |#1| (-569)) ELT)) (-2734 (($ $) 185 (|has| |#1| (-569)) ELT)) (-2581 (($ $) 161 (|has| |#1| (-569)) ELT)) (-2708 (($ $) 181 (|has| |#1| (-569)) ELT)) (-2558 (($ $) 157 (|has| |#1| (-569)) ELT)) (-4318 (($ $) 192 (|has| |#1| (-569)) ELT)) (-2754 (($) 21 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) CONST)) (-4412 (($ $) 243 (|has| |#1| (-569)) ELT)) (-2767 (($) 23 (|has| |#1| (-1137)) CONST)) (-2345 (($ $) 194 (|has| |#1| (-569)) ELT) (($ $ $) 196 (|has| |#1| (-569)) ELT)) (-3059 (($ $) 241 (|has| |#1| (-569)) ELT)) (-2136 (($ $ (-1201)) NIL (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-1074)) ELT)) (-2597 (($ $) 245 (|has| |#1| (-569)) ELT)) (-3072 (($ $ $) 198 (|has| |#1| (-569)) ELT)) (-2949 (((-112) $ $) 88 T ELT)) (-3051 (($ (-1150 |#1| (-625 $)) (-1150 |#1| (-625 $))) 106 (|has| |#1| (-569)) ELT) (($ $ $) 42 (-2811 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-3042 (($ $ $) 40 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT) (($ $) 29 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT)) (-3031 (($ $ $) 38 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) 314 (|has| |#1| (-569)) ELT) (($ $ (-577)) 80 (-2811 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT) (($ $ (-787)) 75 (|has| |#1| (-1137)) ELT) (($ $ (-944)) 84 (|has| |#1| (-1137)) ELT)) (* (($ (-420 (-577)) $) NIL (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-569)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT) (($ |#1| $) NIL (|has| |#1| (-1074)) ELT) (($ $ $) 36 (|has| |#1| (-1137)) ELT) (($ (-577) $) 32 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT) (($ (-787) $) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT) (($ (-944) $) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) ELT))) -(((-327 |#1|) (-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1227)) (-6 (-161)) (-6 (-642)) (-6 (-1164)) (-15 -2498 ($ $)) (-15 -1816 ((-112) $)) (-15 -2117 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -1761 ((-431 (-1197 $)) (-1197 $))) (-15 -3569 ((-431 (-1197 $)) (-1197 $)))) |%noBranch|) (IF (|has| |#1| (-1063 (-577))) (-6 (-1063 (-48))) |%noBranch|)) |%noBranch|))) (-1125)) (T -327)) -((-2498 (*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1125)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125)))) (-2117 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125)))) (-1761 (*1 *2 *3) (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125)))) (-3569 (*1 *2 *3) (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125))))) -(-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1227)) (-6 (-161)) (-6 (-642)) (-6 (-1164)) (-15 -2498 ($ $)) (-15 -1816 ((-112) $)) (-15 -2117 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -1761 ((-431 (-1197 $)) (-1197 $))) (-15 -3569 ((-431 (-1197 $)) (-1197 $)))) |%noBranch|) (IF (|has| |#1| (-1063 (-577))) (-6 (-1063 (-48))) |%noBranch|)) |%noBranch|))) -((-1411 (((-52) |#2| (-115) (-305 |#2|) (-660 |#2|)) 89 T ELT) (((-52) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-52) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|))) 81 T ELT) (((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|)) 83 T ELT) (((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|)) 84 T ELT) (((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|))) 82 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|)) 90 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -1411 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1411 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -1411 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1411 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1411 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1411 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1411 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1411 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1411 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1411 ((-52) |#2| (-115) (-305 |#2|) (-660 |#2|)))) (-13 (-569) (-627 (-549))) (-443 |#1|)) (T -328)) -((-1411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-660 *3)) (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *3)))) (-1411 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-1411 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-1411 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *5)))) (-1411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-115))) (-5 *6 (-660 (-305 *8))) (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-1411 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-1411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 (-305 *8))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-660 *8)) (-4 *8 (-443 *7)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-1411 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-1411 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-660 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-1411 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) (-4 *5 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *5 *6))))) -(-10 -7 (-15 -1411 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1411 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -1411 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1411 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1411 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1411 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1411 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1411 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1411 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1411 ((-52) |#2| (-115) (-305 |#2|) (-660 |#2|)))) -((-2590 (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577) (-1183)) 67 T ELT) (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577)) 68 T ELT) (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577) (-1183)) 64 T ELT) (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577)) 65 T ELT)) (-4236 (((-1 (-228) (-228)) (-228)) 66 T ELT))) -(((-329) (-10 -7 (-15 -4236 ((-1 (-228) (-228)) (-228))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577) (-1183))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577) (-1183))))) (T -329)) -((-2590 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1183)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-2590 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-2590 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *7 (-1183)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-2590 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-4236 (*1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) -(-10 -7 (-15 -4236 ((-1 (-228) (-228)) (-228))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577) (-1183))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577))) (-15 -2590 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577) (-1183)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 26 T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 20 T ELT)) (-2642 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-2666 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) 36 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) 16 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-420 (-577))) NIL T ELT) (($ $ (-1107) (-420 (-577))) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3716 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4129 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-420 (-577))) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2225 (((-420 (-577)) $) 17 T ELT)) (-3928 (($ (-1277 |#1| |#2| |#3|)) 11 T ELT)) (-1527 (((-1277 |#1| |#2| |#3|) $) 12 T ELT)) (-2079 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3616 (((-420 (-577)) $) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 10 T ELT)) (-3603 (((-880) $) 42 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-420 (-577))) 34 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 28 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 37 T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-330 |#1| |#2| |#3|) (-13 (-1273 |#1|) (-808) (-10 -8 (-15 -3928 ($ (-1277 |#1| |#2| |#3|))) (-15 -1527 ((-1277 |#1| |#2| |#3|) $)) (-15 -2225 ((-420 (-577)) $)))) (-375) (-1201) |#1|) (T -330)) -((-3928 (*1 *1 *2) (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) (-14 *5 *3))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) (-14 *5 *3)))) -(-13 (-1273 |#1|) (-808) (-10 -8 (-15 -3928 ($ (-1277 |#1| |#2| |#3|))) (-15 -1527 ((-1277 |#1| |#2| |#3|) $)) (-15 -2225 ((-420 (-577)) $)))) -((-4286 (((-2 (|:| -1527 (-787)) (|:| -2940 |#1|) (|:| |radicand| (-660 |#1|))) (-431 |#1|) (-787)) 35 T ELT)) (-3716 (((-660 (-2 (|:| -2940 (-787)) (|:| |logand| |#1|))) (-431 |#1|)) 40 T ELT))) -(((-331 |#1|) (-10 -7 (-15 -4286 ((-2 (|:| -1527 (-787)) (|:| -2940 |#1|) (|:| |radicand| (-660 |#1|))) (-431 |#1|) (-787))) (-15 -3716 ((-660 (-2 (|:| -2940 (-787)) (|:| |logand| |#1|))) (-431 |#1|)))) (-569)) (T -331)) -((-3716 (*1 *2 *3) (-12 (-5 *3 (-431 *4)) (-4 *4 (-569)) (-5 *2 (-660 (-2 (|:| -2940 (-787)) (|:| |logand| *4)))) (-5 *1 (-331 *4)))) (-4286 (*1 *2 *3 *4) (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *5) (|:| |radicand| (-660 *5)))) (-5 *1 (-331 *5)) (-5 *4 (-787))))) -(-10 -7 (-15 -4286 ((-2 (|:| -1527 (-787)) (|:| -2940 |#1|) (|:| |radicand| (-660 |#1|))) (-431 |#1|) (-787))) (-15 -3716 ((-660 (-2 (|:| -2940 (-787)) (|:| |logand| |#1|))) (-431 |#1|)))) -((-3206 (((-660 |#2|) (-1197 |#4|)) 44 T ELT)) (-3326 ((|#3| (-577)) 47 T ELT)) (-2220 (((-1197 |#4|) (-1197 |#3|)) 30 T ELT)) (-3742 (((-1197 |#4|) (-1197 |#4|) (-577)) 66 T ELT)) (-4324 (((-1197 |#3|) (-1197 |#4|)) 21 T ELT)) (-3616 (((-660 (-787)) (-1197 |#4|) (-660 |#2|)) 41 T ELT)) (-3727 (((-1197 |#3|) (-1197 |#4|) (-660 |#2|) (-660 |#3|)) 35 T ELT))) -(((-332 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3727 ((-1197 |#3|) (-1197 |#4|) (-660 |#2|) (-660 |#3|))) (-15 -3616 ((-660 (-787)) (-1197 |#4|) (-660 |#2|))) (-15 -3206 ((-660 |#2|) (-1197 |#4|))) (-15 -4324 ((-1197 |#3|) (-1197 |#4|))) (-15 -2220 ((-1197 |#4|) (-1197 |#3|))) (-15 -3742 ((-1197 |#4|) (-1197 |#4|) (-577))) (-15 -3326 (|#3| (-577)))) (-809) (-865) (-1074) (-972 |#3| |#1| |#2|)) (T -332)) -((-3326 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1074)) (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-972 *2 *4 *5)))) (-3742 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 *7)) (-5 *3 (-577)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1197 *6)) (-4 *6 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-1197 *7)) (-5 *1 (-332 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-1197 *6)) (-5 *1 (-332 *4 *5 *6 *7)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-660 *5)) (-5 *1 (-332 *4 *5 *6 *7)))) (-3616 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *8)) (-5 *4 (-660 *6)) (-4 *6 (-865)) (-4 *8 (-972 *7 *5 *6)) (-4 *5 (-809)) (-4 *7 (-1074)) (-5 *2 (-660 (-787))) (-5 *1 (-332 *5 *6 *7 *8)))) (-3727 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 *8)) (-4 *7 (-865)) (-4 *8 (-1074)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-5 *2 (-1197 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) -(-10 -7 (-15 -3727 ((-1197 |#3|) (-1197 |#4|) (-660 |#2|) (-660 |#3|))) (-15 -3616 ((-660 (-787)) (-1197 |#4|) (-660 |#2|))) (-15 -3206 ((-660 |#2|) (-1197 |#4|))) (-15 -4324 ((-1197 |#3|) (-1197 |#4|))) (-15 -2220 ((-1197 |#4|) (-1197 |#3|))) (-15 -3742 ((-1197 |#4|) (-1197 |#4|) (-577))) (-15 -3326 (|#3| (-577)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 19 T ELT)) (-3229 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-577)))) $) 21 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3373 (((-787) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-3733 ((|#1| $ (-577)) NIL T ELT)) (-3870 (((-577) $ (-577)) NIL T ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-3672 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4330 (($ (-1 (-577) (-577)) $) 11 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2862 (($ $ $) NIL (|has| (-577) (-808)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3421 (((-577) |#1| $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 29 (|has| |#1| (-865)) ELT)) (-3042 (($ $) 12 T ELT) (($ $ $) 28 T ELT)) (-3031 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ (-577) |#1|) 27 T ELT))) -(((-333 |#1|) (-13 (-21) (-733 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-865)) (-6 (-865)) |%noBranch|))) (-1125)) (T -333)) -NIL -(-13 (-21) (-733 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-865)) (-6 (-865)) |%noBranch|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3229 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|))) $) 28 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3373 (((-787) $) 29 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 33 T ELT)) (-2155 ((|#1| $) 34 T ELT)) (-3733 ((|#1| $ (-577)) 26 T ELT)) (-3870 ((|#2| $ (-577)) 27 T ELT)) (-3672 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-4330 (($ (-1 |#2| |#2|) $) 24 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2862 (($ $ $) 22 (|has| |#2| (-808)) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ |#1|) 32 T ELT)) (-3421 ((|#2| |#1| $) 25 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3031 (($ $ $) 15 T ELT) (($ |#1| $) 31 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ |#2| |#1|) 30 T ELT))) -(((-334 |#1| |#2|) (-141) (-1125) (-132)) (T -334)) -((-3031 (*1 *1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) (-5 *2 (-787)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 *4)))))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1125)) (-4 *2 (-132)))) (-3733 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1125)))) (-3421 (*1 *2 *3 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) (-4330 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)))) (-3672 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)) (-4 *3 (-808))))) -(-13 (-132) (-1063 |t#1|) (-10 -8 (-15 -3031 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3373 ((-787) $)) (-15 -3229 ((-660 (-2 (|:| |gen| |t#1|) (|:| -2079 |t#2|))) $)) (-15 -3870 (|t#2| $ (-577))) (-15 -3733 (|t#1| $ (-577))) (-15 -3421 (|t#2| |t#1| $)) (-15 -4330 ($ (-1 |t#2| |t#2|) $)) (-15 -3672 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-808)) (-15 -2862 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-1063 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3229 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-787)))) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3373 (((-787) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-3733 ((|#1| $ (-577)) NIL T ELT)) (-3870 (((-787) $ (-577)) NIL T ELT)) (-3672 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4330 (($ (-1 (-787) (-787)) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2862 (($ $ $) NIL (|has| (-787) (-808)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3421 (((-787) |#1| $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-787) |#1|) NIL T ELT))) -(((-335 |#1|) (-334 |#1| (-787)) (-1125)) (T -335)) -NIL -(-334 |#1| (-787)) -((-2308 (($ $) 72 T ELT)) (-3367 (($ $ |#2| |#3| $) 14 T ELT)) (-4373 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-3327 (((-112) $) 42 T ELT)) (-3340 ((|#2| $) 44 T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-2240 ((|#2| $) 68 T ELT)) (-4198 (((-660 |#2|) $) 56 T ELT)) (-3528 (($ $ $ (-787)) 37 T ELT)) (-3051 (($ $ |#2|) 60 T ELT))) -(((-336 |#1| |#2| |#3|) (-10 -8 (-15 -2308 (|#1| |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3528 (|#1| |#1| |#1| (-787))) (-15 -3367 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4373 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4198 ((-660 |#2|) |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3051 (|#1| |#1| |#2|))) (-337 |#2| |#3|) (-1074) (-808)) (T -336)) -NIL -(-10 -8 (-15 -2308 (|#1| |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3528 (|#1| |#1| |#1| (-787))) (-15 -3367 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4373 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4198 ((-660 |#2|) |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3051 (|#1| |#1| |#2|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 100 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-2155 (((-577) $) 99 (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) 97 (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 96 T ELT)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2308 (($ $) 84 (|has| |#1| (-465)) ELT)) (-3367 (($ $ |#1| |#2| $) 88 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2011 (((-787) $) 91 T ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| |#2|) 73 T ELT)) (-2643 ((|#2| $) 90 T ELT)) (-4373 (($ (-1 |#2| |#2|) $) 89 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3327 (((-112) $) 94 T ELT)) (-3340 ((|#1| $) 93 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-569)) ELT)) (-3616 ((|#2| $) 76 T ELT)) (-2240 ((|#1| $) 85 (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 T ELT) (($ (-420 (-577))) 69 (-2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-4198 (((-660 |#1|) $) 92 T ELT)) (-3421 ((|#1| $ |#2|) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-3528 (($ $ $ (-787)) 87 (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-337 |#1| |#2|) (-141) (-1074) (-808)) (T -337)) -((-3327 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-112)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-660 *3)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-787)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)))) (-3367 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-3528 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-4 *3 (-174)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *2 (-569)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)) (-4 *2 (-465)))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *2 (-465))))) -(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -3327 ((-112) $)) (-15 -3340 (|t#1| $)) (-15 -4198 ((-660 |t#1|) $)) (-15 -2011 ((-787) $)) (-15 -2643 (|t#2| $)) (-15 -4373 ($ (-1 |t#2| |t#2|) $)) (-15 -3367 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3528 ($ $ $ (-787))) |%noBranch|) (IF (|has| |t#1| (-569)) (-15 -3478 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -2240 (|t#1| $)) (-15 -2308 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-424 |#1|) . T) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-4094 (((-112) (-112)) NIL T ELT)) (-1895 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3699 (($ $) NIL (|has| |#1| (-1125)) ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) NIL (|has| |#1| (-1125)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-2665 (($ $ (-577)) NIL T ELT)) (-2332 (((-787) $) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1615 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-4345 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-4257 (($ (-660 |#1|)) NIL T ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3839 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) NIL T ELT)) (-1584 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-338 |#1|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -4257 ($ (-660 |#1|))) (-15 -2332 ((-787) $)) (-15 -2665 ($ $ (-577))) (-15 -4094 ((-112) (-112))))) (-1242)) (T -338)) -((-4257 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-338 *3)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1242))))) -(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -4257 ($ (-660 |#1|))) (-15 -2332 ((-787) $)) (-15 -2665 ($ $ (-577))) (-15 -4094 ((-112) (-112))))) -((-3591 (((-112) $) 47 T ELT)) (-3678 (((-787)) 23 T ELT)) (-2219 ((|#2| $) 51 T ELT) (($ $ (-944)) 121 T ELT)) (-3373 (((-787)) 122 T ELT)) (-1911 (($ (-1292 |#2|)) 20 T ELT)) (-2936 (((-112) $) 134 T ELT)) (-4021 ((|#2| $) 53 T ELT) (($ $ (-944)) 118 T ELT)) (-3810 (((-1197 |#2|) $) NIL T ELT) (((-1197 $) $ (-944)) 109 T ELT)) (-1948 (((-1197 |#2|) $) 95 T ELT)) (-3995 (((-1197 |#2|) $) 91 T ELT) (((-3 (-1197 |#2|) "failed") $ $) 88 T ELT)) (-1542 (($ $ (-1197 |#2|)) 58 T ELT)) (-2884 (((-849 (-944))) 30 T ELT) (((-944)) 48 T ELT)) (-3941 (((-135)) 27 T ELT)) (-3616 (((-849 (-944)) $) 32 T ELT) (((-944) $) 137 T ELT)) (-3204 (($) 128 T ELT)) (-2729 (((-1292 |#2|) $) NIL T ELT) (((-705 |#2|) (-1292 $)) 42 T ELT)) (-3907 (($ $) NIL T ELT) (((-3 $ "failed") $) 98 T ELT)) (-1401 (((-112) $) 45 T ELT))) -(((-339 |#1| |#2|) (-10 -8 (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -3373 ((-787))) (-15 -3907 (|#1| |#1|)) (-15 -3995 ((-3 (-1197 |#2|) "failed") |#1| |#1|)) (-15 -3995 ((-1197 |#2|) |#1|)) (-15 -1948 ((-1197 |#2|) |#1|)) (-15 -1542 (|#1| |#1| (-1197 |#2|))) (-15 -2936 ((-112) |#1|)) (-15 -3204 (|#1|)) (-15 -2219 (|#1| |#1| (-944))) (-15 -4021 (|#1| |#1| (-944))) (-15 -3810 ((-1197 |#1|) |#1| (-944))) (-15 -2219 (|#2| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -3616 ((-944) |#1|)) (-15 -2884 ((-944))) (-15 -3810 ((-1197 |#2|) |#1|)) (-15 -1911 (|#1| (-1292 |#2|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3678 ((-787))) (-15 -2884 ((-849 (-944)))) (-15 -3616 ((-849 (-944)) |#1|)) (-15 -3591 ((-112) |#1|)) (-15 -1401 ((-112) |#1|)) (-15 -3941 ((-135)))) (-340 |#2|) (-375)) (T -339)) -((-3941 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2884 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-849 (-944))) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3678 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2884 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-944)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3373 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4))))) -(-10 -8 (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -3373 ((-787))) (-15 -3907 (|#1| |#1|)) (-15 -3995 ((-3 (-1197 |#2|) "failed") |#1| |#1|)) (-15 -3995 ((-1197 |#2|) |#1|)) (-15 -1948 ((-1197 |#2|) |#1|)) (-15 -1542 (|#1| |#1| (-1197 |#2|))) (-15 -2936 ((-112) |#1|)) (-15 -3204 (|#1|)) (-15 -2219 (|#1| |#1| (-944))) (-15 -4021 (|#1| |#1| (-944))) (-15 -3810 ((-1197 |#1|) |#1| (-944))) (-15 -2219 (|#2| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -3616 ((-944) |#1|)) (-15 -2884 ((-944))) (-15 -3810 ((-1197 |#2|) |#1|)) (-15 -1911 (|#1| (-1292 |#2|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3678 ((-787))) (-15 -2884 ((-849 (-944)))) (-15 -3616 ((-849 (-944)) |#1|)) (-15 -3591 ((-112) |#1|)) (-15 -1401 ((-112) |#1|)) (-15 -3941 ((-135)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-3591 (((-112) $) 104 T ELT)) (-3678 (((-787)) 100 T ELT)) (-2219 ((|#1| $) 151 T ELT) (($ $ (-944)) 148 (|has| |#1| (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 133 (|has| |#1| (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3373 (((-787)) 123 (|has| |#1| (-380)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 111 T ELT)) (-2155 ((|#1| $) 112 T ELT)) (-1911 (($ (-1292 |#1|)) 157 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-380)) ELT)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2352 (($) 120 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-1742 (($) 135 (|has| |#1| (-380)) ELT)) (-4402 (((-112) $) 136 (|has| |#1| (-380)) ELT)) (-1865 (($ $ (-787)) 97 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) 96 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) 79 T ELT)) (-2536 (((-944) $) 138 (|has| |#1| (-380)) ELT) (((-849 (-944)) $) 94 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) 35 T ELT)) (-2189 (($) 146 (|has| |#1| (-380)) ELT)) (-2936 (((-112) $) 145 (|has| |#1| (-380)) ELT)) (-4021 ((|#1| $) 152 T ELT) (($ $ (-944)) 149 (|has| |#1| (-380)) ELT)) (-1454 (((-3 $ "failed") $) 124 (|has| |#1| (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-3810 (((-1197 |#1|) $) 156 T ELT) (((-1197 $) $ (-944)) 150 (|has| |#1| (-380)) ELT)) (-2144 (((-944) $) 121 (|has| |#1| (-380)) ELT)) (-1948 (((-1197 |#1|) $) 142 (|has| |#1| (-380)) ELT)) (-3995 (((-1197 |#1|) $) 141 (|has| |#1| (-380)) ELT) (((-3 (-1197 |#1|) "failed") $ $) 140 (|has| |#1| (-380)) ELT)) (-1542 (($ $ (-1197 |#1|)) 143 (|has| |#1| (-380)) ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-3457 (($) 125 (|has| |#1| (-380)) CONST)) (-3251 (($ (-944)) 122 (|has| |#1| (-380)) ELT)) (-1792 (((-112) $) 103 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3428 (($) 144 (|has| |#1| (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 132 (|has| |#1| (-380)) ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-2884 (((-849 (-944))) 101 T ELT) (((-944)) 154 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3816 (((-787) $) 137 (|has| |#1| (-380)) ELT) (((-3 (-787) "failed") $ $) 95 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) 109 T ELT)) (-3362 (($ $ (-787)) 128 (|has| |#1| (-380)) ELT) (($ $) 126 (|has| |#1| (-380)) ELT)) (-3616 (((-849 (-944)) $) 102 T ELT) (((-944) $) 153 T ELT)) (-1629 (((-1197 |#1|)) 155 T ELT)) (-2932 (($) 134 (|has| |#1| (-380)) ELT)) (-3204 (($) 147 (|has| |#1| (-380)) ELT)) (-2729 (((-1292 |#1|) $) 159 T ELT) (((-705 |#1|) (-1292 $)) 158 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 131 (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 110 T ELT)) (-3907 (($ $) 130 (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) 93 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2559 (((-1292 $)) 161 T ELT) (((-1292 $) (-944)) 160 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-1401 (((-112) $) 105 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-1427 (($ $) 99 (|has| |#1| (-380)) ELT) (($ $ (-787)) 98 (|has| |#1| (-380)) ELT)) (-2136 (($ $ (-787)) 129 (|has| |#1| (-380)) ELT) (($ $) 127 (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) +((-3373 ((|#1| (-1 |#1| (-577)) (-1208 (-420 (-577)))) 26 T ELT))) +(((-321 |#1|) (-10 -7 (-15 -3373 (|#1| (-1 |#1| (-577)) (-1208 (-420 (-577)))))) (-38 (-420 (-577)))) (T -321)) +((-3373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1208 (-420 (-577)))) (-5 *1 (-321 *2)) (-4 *2 (-38 (-420 (-577))))))) +(-10 -7 (-15 -3373 (|#1| (-1 |#1| (-577)) (-1208 (-420 (-577)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3714 (((-577) $) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3477 (((-1165) $) 9 T ELT)) (-3709 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-322) (-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3714 ((-577) $))))) (T -322)) +((-3477 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-322)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322))))) +(-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3714 ((-577) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 7 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 9 T ELT))) +(((-323) (-1130)) (T -323)) +NIL +(-1130) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 60 T ELT)) (-1363 (((-1283 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-1283 |#1| |#2| |#3| |#4|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-3 (-1282 |#2| |#3| |#4|) "failed") $) 26 T ELT)) (-3783 (((-1283 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1206) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-1282 |#2| |#3| |#4|) $) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-1283 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1283 |#1| |#2| |#3| |#4|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-1283 |#1| |#2| |#3| |#4|)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 (((-1283 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-4417 (($ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3309 (((-3 (-864 |#2|) "failed") $) 80 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-1283 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1283 |#1| |#2| |#3| |#4|)))) (-1297 $) $) NIL T ELT) (((-710 (-1283 |#1| |#2| |#3| |#4|)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-318)) ELT)) (-3941 (((-1283 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 (-1283 |#1| |#2| |#3| |#4|)) (-665 (-1283 |#1| |#2| |#3| |#4|))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1283 |#1| |#2| |#3| |#4|))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-665 (-305 (-1283 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-665 (-1206)) (-665 (-1283 |#1| |#2| |#3| |#4|))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-527 (-1206) (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1206) (-1283 |#1| |#2| |#3| |#4|)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-527 (-1206) (-1283 |#1| |#2| |#3| |#4|))) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ (-1283 |#1| |#2| |#3| |#4|)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-297 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 (((-1283 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1052)) ELT) (((-228) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1052)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-1283 |#1| |#2| |#3| |#4|) (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-1283 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1206)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-1206))) ELT) (($ (-1282 |#2| |#3| |#4|)) 37 T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-1283 |#1| |#2| |#3| |#4|) (-937))) (|has| (-1283 |#1| |#2| |#3| |#4|) (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (((-1283 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3139 (($ $ $) 35 T ELT) (($ (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-1283 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1283 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-324 |#1| |#2| |#3| |#4|) (-13 (-1022 (-1283 |#1| |#2| |#3| |#4|)) (-1068 (-1282 |#2| |#3| |#4|)) (-10 -8 (-15 -3309 ((-3 (-864 |#2|) "failed") $)) (-15 -3709 ($ (-1282 |#2| |#3| |#4|))))) (-13 (-1068 (-577)) (-659 (-577)) (-465)) (-13 (-27) (-1232) (-443 |#1|)) (-1206) |#2|) (T -324)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1282 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4) (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *1 (-324 *3 *4 *5 *6)))) (-3309 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *2 (-864 *4)) (-5 *1 (-324 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4)))) +(-13 (-1022 (-1283 |#1| |#2| |#3| |#4|)) (-1068 (-1282 |#2| |#3| |#4|)) (-10 -8 (-15 -3309 ((-3 (-864 |#2|) "failed") $)) (-15 -3709 ($ (-1282 |#2| |#3| |#4|))))) +((-4417 (((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)) 13 T ELT))) +(((-325 |#1| |#2|) (-10 -7 (-15 -4417 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) (-1130) (-1130)) (T -325)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6))))) +(-10 -7 (-15 -4417 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) +((-3938 (((-52) |#2| (-305 |#2|) (-792)) 40 T ELT) (((-52) |#2| (-305 |#2|)) 32 T ELT) (((-52) |#2| (-792)) 35 T ELT) (((-52) |#2|) 33 T ELT) (((-52) (-1206)) 26 T ELT)) (-3190 (((-52) |#2| (-305 |#2|) (-420 (-577))) 59 T ELT) (((-52) |#2| (-305 |#2|)) 56 T ELT) (((-52) |#2| (-420 (-577))) 58 T ELT) (((-52) |#2|) 57 T ELT) (((-52) (-1206)) 55 T ELT)) (-3960 (((-52) |#2| (-305 |#2|) (-420 (-577))) 54 T ELT) (((-52) |#2| (-305 |#2|)) 51 T ELT) (((-52) |#2| (-420 (-577))) 53 T ELT) (((-52) |#2|) 52 T ELT) (((-52) (-1206)) 50 T ELT)) (-3949 (((-52) |#2| (-305 |#2|) (-577)) 47 T ELT) (((-52) |#2| (-305 |#2|)) 44 T ELT) (((-52) |#2| (-577)) 46 T ELT) (((-52) |#2|) 45 T ELT) (((-52) (-1206)) 43 T ELT))) +(((-326 |#1| |#2|) (-10 -7 (-15 -3938 ((-52) (-1206))) (-15 -3938 ((-52) |#2|)) (-15 -3938 ((-52) |#2| (-792))) (-15 -3938 ((-52) |#2| (-305 |#2|))) (-15 -3938 ((-52) |#2| (-305 |#2|) (-792))) (-15 -3949 ((-52) (-1206))) (-15 -3949 ((-52) |#2|)) (-15 -3949 ((-52) |#2| (-577))) (-15 -3949 ((-52) |#2| (-305 |#2|))) (-15 -3949 ((-52) |#2| (-305 |#2|) (-577))) (-15 -3960 ((-52) (-1206))) (-15 -3960 ((-52) |#2|)) (-15 -3960 ((-52) |#2| (-420 (-577)))) (-15 -3960 ((-52) |#2| (-305 |#2|))) (-15 -3960 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -3190 ((-52) (-1206))) (-15 -3190 ((-52) |#2|)) (-15 -3190 ((-52) |#2| (-420 (-577)))) (-15 -3190 ((-52) |#2| (-305 |#2|))) (-15 -3190 ((-52) |#2| (-305 |#2|) (-420 (-577))))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -326)) +((-3190 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3190 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3190 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3190 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) (-3949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 *5) (-659 *5))) (-5 *5 (-577)) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1068 *4) (-659 *4))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3949 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-792)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3938 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4)))))) +(-10 -7 (-15 -3938 ((-52) (-1206))) (-15 -3938 ((-52) |#2|)) (-15 -3938 ((-52) |#2| (-792))) (-15 -3938 ((-52) |#2| (-305 |#2|))) (-15 -3938 ((-52) |#2| (-305 |#2|) (-792))) (-15 -3949 ((-52) (-1206))) (-15 -3949 ((-52) |#2|)) (-15 -3949 ((-52) |#2| (-577))) (-15 -3949 ((-52) |#2| (-305 |#2|))) (-15 -3949 ((-52) |#2| (-305 |#2|) (-577))) (-15 -3960 ((-52) (-1206))) (-15 -3960 ((-52) |#2|)) (-15 -3960 ((-52) |#2| (-420 (-577)))) (-15 -3960 ((-52) |#2| (-305 |#2|))) (-15 -3960 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -3190 ((-52) (-1206))) (-15 -3190 ((-52) |#2|)) (-15 -3190 ((-52) |#2| (-420 (-577)))) (-15 -3190 ((-52) |#2| (-305 |#2|))) (-15 -3190 ((-52) |#2| (-305 |#2|) (-420 (-577))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4006 (((-665 $) $ (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) $) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $) (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-2370 (($ $ (-1206)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1202 $) (-1206)) NIL (|has| |#1| (-569)) ELT) (($ (-1202 $)) NIL (|has| |#1| (-569)) ELT) (($ (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-4113 (((-112) $) 27 (-2867 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-3891 (((-665 (-1206)) $) 368 T ELT)) (-3732 (((-420 (-1202 $)) $ (-630 $)) NIL (|has| |#1| (-569)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3613 (((-665 (-630 $)) $) NIL T ELT)) (-1660 (($ $) 171 (|has| |#1| (-569)) ELT)) (-2785 (($ $) 147 (|has| |#1| (-569)) ELT)) (-2284 (($ $ (-1122 $)) 232 (|has| |#1| (-569)) ELT) (($ $ (-1206)) 228 (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL (-2867 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-4313 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) 386 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 430 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 308 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))) ELT)) (-2612 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-569)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1638 (($ $) 167 (|has| |#1| (-569)) ELT)) (-2757 (($ $) 143 (|has| |#1| (-569)) ELT)) (-1624 (($ $ (-577)) 73 (|has| |#1| (-569)) ELT)) (-1682 (($ $) 175 (|has| |#1| (-569)) ELT)) (-2809 (($ $) 151 (|has| |#1| (-569)) ELT)) (-2305 (($) NIL (-2867 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) (|has| |#1| (-1142))) CONST)) (-3390 (((-665 $) $ (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) $) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $) (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-1940 (($ $ (-1206)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1202 $) (-1206)) 134 (|has| |#1| (-569)) ELT) (($ (-1202 $)) NIL (|has| |#1| (-569)) ELT) (($ (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-4335 (((-3 (-630 $) "failed") $) 18 T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 441 T ELT) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-980 |#1|)) "failed") $) NIL (|has| |#1| (-569)) ELT) (((-3 (-980 |#1|) "failed") $) NIL (|has| |#1| (-1079)) ELT) (((-3 (-420 (-577)) "failed") $) 46 (-2867 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3783 (((-630 $) $) 12 T ELT) (((-1206) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-980 |#1|)) $) NIL (|has| |#1| (-569)) ELT) (((-980 |#1|) $) NIL (|has| |#1| (-1079)) ELT) (((-420 (-577)) $) 319 (-2867 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3187 (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 125 (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-710 $)) 115 (|has| |#1| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT)) (-2060 (($ $) 96 (|has| |#1| (-569)) ELT)) (-3167 (((-3 $ "failed") $) NIL (|has| |#1| (-1142)) ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2801 (($ $ (-1122 $)) 236 (|has| |#1| (-569)) ELT) (($ $ (-1206)) 234 (|has| |#1| (-569)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-569)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4172 (($ $ $) 202 (|has| |#1| (-569)) ELT)) (-2450 (($) 137 (|has| |#1| (-569)) ELT)) (-2381 (($ $ $) 222 (|has| |#1| (-569)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 392 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 399 (|has| |#1| (-910 (-391))) ELT)) (-2754 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1529 (((-665 (-115)) $) NIL T ELT)) (-3706 (((-115) (-115)) 276 T ELT)) (-3357 (((-112) $) 25 (|has| |#1| (-1142)) ELT)) (-2310 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3608 (($ $) 72 (|has| |#1| (-1079)) ELT)) (-2417 (((-1155 |#1| (-630 $)) $) 91 (|has| |#1| (-1079)) ELT)) (-4477 (((-112) $) 62 (|has| |#1| (-569)) ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-569)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-569)) ELT)) (-2465 (((-1202 $) (-630 $)) 277 (|has| $ (-1079)) ELT)) (-4417 (($ (-1 $ $) (-630 $)) 426 T ELT)) (-2998 (((-3 (-630 $) "failed") $) NIL T ELT)) (-3825 (($ $) 141 (|has| |#1| (-569)) ELT)) (-2091 (($ $) 247 (|has| |#1| (-569)) ELT)) (-3163 (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#1| (-1079)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3693 (((-665 (-630 $)) $) 49 T ELT)) (-4399 (($ (-115) $) NIL T ELT) (($ (-115) (-665 $)) 431 T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL (|has| |#1| (-1142)) ELT)) (-2646 (((-3 (-2 (|:| |val| $) (|:| -2328 (-577))) "failed") $) NIL (|has| |#1| (-1079)) ELT)) (-1796 (((-3 (-665 $) "failed") $) 436 (|has| |#1| (-25)) ELT)) (-1901 (((-3 (-2 (|:| -4473 (-577)) (|:| |var| (-630 $))) "failed") $) 440 (|has| |#1| (-25)) ELT)) (-2547 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $) NIL (|has| |#1| (-1142)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-115)) NIL (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-1206)) NIL (|has| |#1| (-1079)) ELT)) (-4241 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) 51 T ELT)) (-3981 (($ $) NIL (-2867 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-1961 (($ $ (-1206)) 251 (|has| |#1| (-569)) ELT) (($ $ (-1122 $)) 253 (|has| |#1| (-569)) ELT)) (-2553 (((-792) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) 43 T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 301 (|has| |#1| (-569)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-2198 (($ $ (-1206)) 226 (|has| |#1| (-569)) ELT) (($ $) 224 (|has| |#1| (-569)) ELT)) (-2964 (($ $) 218 (|has| |#1| (-569)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 306 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-569)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-569)) ELT)) (-2355 (($ $) 139 (|has| |#1| (-569)) ELT)) (-2820 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3373 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) 425 T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 379 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-632 (-549))) ELT) (($ $) NIL (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) $ (-1206)) 366 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 365 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ $)) NIL (|has| |#1| (-1079)) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-569)) ELT)) (-2707 (($ $) 239 (|has| |#1| (-569)) ELT)) (-2916 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2106 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2744 (($ $) 249 (|has| |#1| (-569)) ELT)) (-2843 (($ $) 200 (|has| |#1| (-569)) ELT)) (-3641 (($ $ (-1206)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-1079)) ELT)) (-1674 (($ $) 74 (|has| |#1| (-569)) ELT)) (-2429 (((-1155 |#1| (-630 $)) $) 93 (|has| |#1| (-569)) ELT)) (-4263 (($ $) 317 (|has| $ (-1079)) ELT)) (-1692 (($ $) 177 (|has| |#1| (-569)) ELT)) (-2821 (($ $) 153 (|has| |#1| (-569)) ELT)) (-1671 (($ $) 173 (|has| |#1| (-569)) ELT)) (-2797 (($ $) 149 (|has| |#1| (-569)) ELT)) (-1648 (($ $) 169 (|has| |#1| (-569)) ELT)) (-2772 (($ $) 145 (|has| |#1| (-569)) ELT)) (-4463 (((-916 (-577)) $) NIL (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-632 (-916 (-391)))) ELT) (($ (-431 $)) NIL (|has| |#1| (-569)) ELT) (((-549) $) 363 (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-2486 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-3709 (((-885) $) 424 T ELT) (($ (-630 $)) 415 T ELT) (($ (-1206)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) ELT) (($ (-1155 |#1| (-630 $))) 95 (|has| |#1| (-1079)) ELT) (($ (-420 |#1|)) NIL (|has| |#1| (-569)) ELT) (($ (-980 (-420 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-980 (-420 |#1|)))) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-980 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-980 |#1|)) NIL (|has| |#1| (-1079)) ELT) (($ (-577)) 34 (-2867 (|has| |#1| (-1068 (-577))) (|has| |#1| (-1079))) ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-569)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL (|has| |#1| (-1079)) CONST)) (-2907 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2990 (($ $ $) 220 (|has| |#1| (-569)) ELT)) (-2830 (($ $ $) 206 (|has| |#1| (-569)) ELT)) (-2238 (($ $ $) 210 (|has| |#1| (-569)) ELT)) (-3923 (($ $ $) 204 (|has| |#1| (-569)) ELT)) (-3026 (($ $ $) 208 (|has| |#1| (-569)) ELT)) (-1448 (((-112) (-115)) 10 T ELT)) (-2643 (((-112) $ $) 86 T ELT)) (-1727 (($ $) 183 (|has| |#1| (-569)) ELT)) (-2861 (($ $) 159 (|has| |#1| (-569)) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) 179 (|has| |#1| (-569)) ELT)) (-2834 (($ $) 155 (|has| |#1| (-569)) ELT)) (-1748 (($ $) 187 (|has| |#1| (-569)) ELT)) (-1616 (($ $) 163 (|has| |#1| (-569)) ELT)) (-1781 (($ (-1206) $) NIL T ELT) (($ (-1206) $ $) NIL T ELT) (($ (-1206) $ $ $) NIL T ELT) (($ (-1206) $ $ $ $) NIL T ELT) (($ (-1206) (-665 $)) NIL T ELT)) (-4089 (($ $) 214 (|has| |#1| (-569)) ELT)) (-1889 (($ $) 212 (|has| |#1| (-569)) ELT)) (-4468 (($ $) 189 (|has| |#1| (-569)) ELT)) (-1626 (($ $) 165 (|has| |#1| (-569)) ELT)) (-1737 (($ $) 185 (|has| |#1| (-569)) ELT)) (-2874 (($ $) 161 (|has| |#1| (-569)) ELT)) (-1715 (($ $) 181 (|has| |#1| (-569)) ELT)) (-2847 (($ $) 157 (|has| |#1| (-569)) ELT)) (-2215 (($ $) 192 (|has| |#1| (-569)) ELT)) (-2839 (($) 21 (-2867 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) CONST)) (-3967 (($ $) 243 (|has| |#1| (-569)) ELT)) (-2853 (($) 23 (|has| |#1| (-1142)) CONST)) (-3802 (($ $) 194 (|has| |#1| (-569)) ELT) (($ $ $) 196 (|has| |#1| (-569)) ELT)) (-4052 (($ $) 241 (|has| |#1| (-569)) ELT)) (-2389 (($ $ (-1206)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-1079)) ELT)) (-1364 (($ $) 245 (|has| |#1| (-569)) ELT)) (-3012 (($ $ $) 198 (|has| |#1| (-569)) ELT)) (-3018 (((-112) $ $) 88 T ELT)) (-3139 (($ (-1155 |#1| (-630 $)) (-1155 |#1| (-630 $))) 106 (|has| |#1| (-569)) ELT) (($ $ $) 42 (-2867 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-3128 (($ $ $) 40 (-2867 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (($ $) 29 (-2867 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-3114 (($ $ $) 38 (-2867 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) 314 (|has| |#1| (-569)) ELT) (($ $ (-577)) 80 (-2867 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT) (($ $ (-792)) 75 (|has| |#1| (-1142)) ELT) (($ $ (-949)) 84 (|has| |#1| (-1142)) ELT)) (* (($ (-420 (-577)) $) NIL (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-569)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT) (($ |#1| $) NIL (|has| |#1| (-1079)) ELT) (($ $ $) 36 (|has| |#1| (-1142)) ELT) (($ (-577) $) 32 (-2867 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (($ (-792) $) NIL (-2867 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (($ (-949) $) NIL (-2867 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT))) +(((-327 |#1|) (-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1232)) (-6 (-161)) (-6 (-647)) (-6 (-1169)) (-15 -2060 ($ $)) (-15 -4477 ((-112) $)) (-15 -1624 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -2083 ((-431 (-1202 $)) (-1202 $))) (-15 -2969 ((-431 (-1202 $)) (-1202 $)))) |%noBranch|) (IF (|has| |#1| (-1068 (-577))) (-6 (-1068 (-48))) |%noBranch|)) |%noBranch|))) (-1130)) (T -327)) +((-2060 (*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1130)))) (-4477 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130)))) (-1624 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130)))) (-2969 (*1 *2 *3) (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130))))) +(-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1232)) (-6 (-161)) (-6 (-647)) (-6 (-1169)) (-15 -2060 ($ $)) (-15 -4477 ((-112) $)) (-15 -1624 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -2083 ((-431 (-1202 $)) (-1202 $))) (-15 -2969 ((-431 (-1202 $)) (-1202 $)))) |%noBranch|) (IF (|has| |#1| (-1068 (-577))) (-6 (-1068 (-48))) |%noBranch|)) |%noBranch|))) +((-2490 (((-52) |#2| (-115) (-305 |#2|) (-665 |#2|)) 89 T ELT) (((-52) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-52) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|))) 81 T ELT) (((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 |#2|)) 83 T ELT) (((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 |#2|)) 84 T ELT) (((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|))) 82 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|)) 90 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) +(((-328 |#1| |#2|) (-10 -7 (-15 -2490 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -2490 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -2490 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2490 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2490 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2490 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2490 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -2490 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -2490 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -2490 ((-52) |#2| (-115) (-305 |#2|) (-665 |#2|)))) (-13 (-569) (-632 (-549))) (-443 |#1|)) (T -328)) +((-2490 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-665 *3)) (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *3)))) (-2490 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-2490 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-2490 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *5)))) (-2490 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-115))) (-5 *6 (-665 (-305 *8))) (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-2490 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-2490 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 (-305 *8))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-665 *8)) (-4 *8 (-443 *7)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-2490 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-2490 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-665 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-2490 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) (-4 *5 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *5 *6))))) +(-10 -7 (-15 -2490 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -2490 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -2490 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2490 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2490 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2490 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2490 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -2490 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -2490 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -2490 ((-52) |#2| (-115) (-305 |#2|) (-665 |#2|)))) +((-3381 (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577) (-1188)) 67 T ELT) (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577)) 68 T ELT) (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577) (-1188)) 64 T ELT) (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577)) 65 T ELT)) (-1784 (((-1 (-228) (-228)) (-228)) 66 T ELT))) +(((-329) (-10 -7 (-15 -1784 ((-1 (-228) (-228)) (-228))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577) (-1188))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577) (-1188))))) (T -329)) +((-3381 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1188)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-3381 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-3381 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *7 (-1188)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-3381 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-1784 (*1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) +(-10 -7 (-15 -1784 ((-1 (-228) (-228)) (-228))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577) (-1188))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577))) (-15 -3381 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577) (-1188)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 26 T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 20 T ELT)) (-1660 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1682 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) 36 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) 16 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-420 (-577))) NIL T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3825 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-1869 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-420 (-577))) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-4123 (((-420 (-577)) $) 17 T ELT)) (-3700 (($ (-1282 |#1| |#2| |#3|)) 11 T ELT)) (-2328 (((-1282 |#1| |#2| |#3|) $) 12 T ELT)) (-2355 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-1597 (((-420 (-577)) $) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 10 T ELT)) (-3709 (((-885) $) 42 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-420 (-577))) 34 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 28 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 37 T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-330 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-813) (-10 -8 (-15 -3700 ($ (-1282 |#1| |#2| |#3|))) (-15 -2328 ((-1282 |#1| |#2| |#3|) $)) (-15 -4123 ((-420 (-577)) $)))) (-375) (-1206) |#1|) (T -330)) +((-3700 (*1 *1 *2) (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-1282 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) (-14 *5 *3))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) (-14 *5 *3)))) +(-13 (-1278 |#1|) (-813) (-10 -8 (-15 -3700 ($ (-1282 |#1| |#2| |#3|))) (-15 -2328 ((-1282 |#1| |#2| |#3|) $)) (-15 -4123 ((-420 (-577)) $)))) +((-3368 (((-2 (|:| -2328 (-792)) (|:| -4473 |#1|) (|:| |radicand| (-665 |#1|))) (-431 |#1|) (-792)) 35 T ELT)) (-3825 (((-665 (-2 (|:| -4473 (-792)) (|:| |logand| |#1|))) (-431 |#1|)) 40 T ELT))) +(((-331 |#1|) (-10 -7 (-15 -3368 ((-2 (|:| -2328 (-792)) (|:| -4473 |#1|) (|:| |radicand| (-665 |#1|))) (-431 |#1|) (-792))) (-15 -3825 ((-665 (-2 (|:| -4473 (-792)) (|:| |logand| |#1|))) (-431 |#1|)))) (-569)) (T -331)) +((-3825 (*1 *2 *3) (-12 (-5 *3 (-431 *4)) (-4 *4 (-569)) (-5 *2 (-665 (-2 (|:| -4473 (-792)) (|:| |logand| *4)))) (-5 *1 (-331 *4)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *5) (|:| |radicand| (-665 *5)))) (-5 *1 (-331 *5)) (-5 *4 (-792))))) +(-10 -7 (-15 -3368 ((-2 (|:| -2328 (-792)) (|:| -4473 |#1|) (|:| |radicand| (-665 |#1|))) (-431 |#1|) (-792))) (-15 -3825 ((-665 (-2 (|:| -4473 (-792)) (|:| |logand| |#1|))) (-431 |#1|)))) +((-3891 (((-665 |#2|) (-1202 |#4|)) 44 T ELT)) (-1808 ((|#3| (-577)) 47 T ELT)) (-2661 (((-1202 |#4|) (-1202 |#3|)) 30 T ELT)) (-2983 (((-1202 |#4|) (-1202 |#4|) (-577)) 66 T ELT)) (-1571 (((-1202 |#3|) (-1202 |#4|)) 21 T ELT)) (-1597 (((-665 (-792)) (-1202 |#4|) (-665 |#2|)) 41 T ELT)) (-3230 (((-1202 |#3|) (-1202 |#4|) (-665 |#2|) (-665 |#3|)) 35 T ELT))) +(((-332 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3230 ((-1202 |#3|) (-1202 |#4|) (-665 |#2|) (-665 |#3|))) (-15 -1597 ((-665 (-792)) (-1202 |#4|) (-665 |#2|))) (-15 -3891 ((-665 |#2|) (-1202 |#4|))) (-15 -1571 ((-1202 |#3|) (-1202 |#4|))) (-15 -2661 ((-1202 |#4|) (-1202 |#3|))) (-15 -2983 ((-1202 |#4|) (-1202 |#4|) (-577))) (-15 -1808 (|#3| (-577)))) (-814) (-870) (-1079) (-977 |#3| |#1| |#2|)) (T -332)) +((-1808 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1079)) (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-977 *2 *4 *5)))) (-2983 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 *7)) (-5 *3 (-577)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-1202 *6)) (-4 *6 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-1202 *7)) (-5 *1 (-332 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-1202 *6)) (-5 *1 (-332 *4 *5 *6 *7)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-665 *5)) (-5 *1 (-332 *4 *5 *6 *7)))) (-1597 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *8)) (-5 *4 (-665 *6)) (-4 *6 (-870)) (-4 *8 (-977 *7 *5 *6)) (-4 *5 (-814)) (-4 *7 (-1079)) (-5 *2 (-665 (-792))) (-5 *1 (-332 *5 *6 *7 *8)))) (-3230 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 *8)) (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 (-1202 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) +(-10 -7 (-15 -3230 ((-1202 |#3|) (-1202 |#4|) (-665 |#2|) (-665 |#3|))) (-15 -1597 ((-665 (-792)) (-1202 |#4|) (-665 |#2|))) (-15 -3891 ((-665 |#2|) (-1202 |#4|))) (-15 -1571 ((-1202 |#3|) (-1202 |#4|))) (-15 -2661 ((-1202 |#4|) (-1202 |#3|))) (-15 -2983 ((-1202 |#4|) (-1202 |#4|) (-577))) (-15 -1808 (|#3| (-577)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 19 T ELT)) (-2072 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-577)))) $) 21 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3005 (((-792) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-1770 ((|#1| $ (-577)) NIL T ELT)) (-2806 (((-577) $ (-577)) NIL T ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2399 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1613 (($ (-1 (-577) (-577)) $) 11 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2500 (($ $ $) NIL (|has| (-577) (-813)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4171 (((-577) |#1| $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 29 (|has| |#1| (-870)) ELT)) (-3128 (($ $) 12 T ELT) (($ $ $) 28 T ELT)) (-3114 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ (-577) |#1|) 27 T ELT))) +(((-333 |#1|) (-13 (-21) (-738 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|))) (-1130)) (T -333)) +NIL +(-13 (-21) (-738 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2072 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|))) $) 28 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3005 (((-792) $) 29 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 33 T ELT)) (-3783 ((|#1| $) 34 T ELT)) (-1770 ((|#1| $ (-577)) 26 T ELT)) (-2806 ((|#2| $ (-577)) 27 T ELT)) (-2399 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-1613 (($ (-1 |#2| |#2|) $) 24 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-2500 (($ $ $) 22 (|has| |#2| (-813)) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ |#1|) 32 T ELT)) (-4171 ((|#2| |#1| $) 25 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3114 (($ $ $) 15 T ELT) (($ |#1| $) 31 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ |#2| |#1|) 30 T ELT))) +(((-334 |#1| |#2|) (-141) (-1130) (-132)) (T -334)) +((-3114 (*1 *1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) (-5 *2 (-792)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 *4)))))) (-2806 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1130)) (-4 *2 (-132)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1130)))) (-4171 (*1 *2 *3 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) (-1613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)))) (-2399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)) (-4 *3 (-813))))) +(-13 (-132) (-1068 |t#1|) (-10 -8 (-15 -3114 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3005 ((-792) $)) (-15 -2072 ((-665 (-2 (|:| |gen| |t#1|) (|:| -2355 |t#2|))) $)) (-15 -2806 (|t#2| $ (-577))) (-15 -1770 (|t#1| $ (-577))) (-15 -4171 (|t#2| |t#1| $)) (-15 -1613 ($ (-1 |t#2| |t#2|) $)) (-15 -2399 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-813)) (-15 -2500 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-1068 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2072 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-792)))) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3005 (((-792) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-1770 ((|#1| $ (-577)) NIL T ELT)) (-2806 (((-792) $ (-577)) NIL T ELT)) (-2399 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1613 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2500 (($ $ $) NIL (|has| (-792) (-813)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4171 (((-792) |#1| $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-792) |#1|) NIL T ELT))) +(((-335 |#1|) (-334 |#1| (-792)) (-1130)) (T -335)) +NIL +(-334 |#1| (-792)) +((-2796 (($ $) 72 T ELT)) (-4365 (($ $ |#2| |#3| $) 14 T ELT)) (-4329 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-3988 (((-112) $) 42 T ELT)) (-3999 ((|#2| $) 44 T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-2407 ((|#2| $) 68 T ELT)) (-4343 (((-665 |#2|) $) 56 T ELT)) (-2576 (($ $ $ (-792)) 37 T ELT)) (-3139 (($ $ |#2|) 60 T ELT))) +(((-336 |#1| |#2| |#3|) (-10 -8 (-15 -2796 (|#1| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2576 (|#1| |#1| |#1| (-792))) (-15 -4365 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4329 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4343 ((-665 |#2|) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3139 (|#1| |#1| |#2|))) (-337 |#2| |#3|) (-1079) (-813)) (T -336)) +NIL +(-10 -8 (-15 -2796 (|#1| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2576 (|#1| |#1| |#1| (-792))) (-15 -4365 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4329 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4343 ((-665 |#2|) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3139 (|#1| |#1| |#2|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 100 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3783 (((-577) $) 99 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 97 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 96 T ELT)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2796 (($ $) 84 (|has| |#1| (-465)) ELT)) (-4365 (($ $ |#1| |#2| $) 88 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2662 (((-792) $) 91 T ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| |#2|) 73 T ELT)) (-4340 ((|#2| $) 90 T ELT)) (-4329 (($ (-1 |#2| |#2|) $) 89 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3988 (((-112) $) 94 T ELT)) (-3999 ((|#1| $) 93 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-569)) ELT)) (-1597 ((|#2| $) 76 T ELT)) (-2407 ((|#1| $) 85 (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 T ELT) (($ (-420 (-577))) 69 (-2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-4343 (((-665 |#1|) $) 92 T ELT)) (-4171 ((|#1| $ |#2|) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2576 (($ $ $ (-792)) 87 (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-337 |#1| |#2|) (-141) (-1079) (-813)) (T -337)) +((-3988 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-112)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-665 *3)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-792)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-4329 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)))) (-4365 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-2576 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-4 *3 (-174)))) (-3574 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-569)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)) (-4 *2 (-465)))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-465))))) +(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -3988 ((-112) $)) (-15 -3999 (|t#1| $)) (-15 -4343 ((-665 |t#1|) $)) (-15 -2662 ((-792) $)) (-15 -4340 (|t#2| $)) (-15 -4329 ($ (-1 |t#2| |t#2|) $)) (-15 -4365 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2576 ($ $ $ (-792))) |%noBranch|) (IF (|has| |t#1| (-569)) (-15 -3574 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -2407 (|t#1| $)) (-15 -2796 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-424 |#1|) . T) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2766 (((-112) (-112)) NIL T ELT)) (-1957 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-2697 (($ $) NIL (|has| |#1| (-1130)) ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2885 (($ $ (-577)) NIL T ELT)) (-2088 (((-792) $) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4375 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2756 (($ (-665 |#1|)) NIL T ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4068 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) NIL T ELT)) (-2562 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-338 |#1|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -2756 ($ (-665 |#1|))) (-15 -2088 ((-792) $)) (-15 -2885 ($ $ (-577))) (-15 -2766 ((-112) (-112))))) (-1247)) (T -338)) +((-2756 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-338 *3)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1247))))) +(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -2756 ($ (-665 |#1|))) (-15 -2088 ((-792) $)) (-15 -2885 ($ $ (-577))) (-15 -2766 ((-112) (-112))))) +((-3028 (((-112) $) 47 T ELT)) (-3073 (((-792)) 23 T ELT)) (-2318 ((|#2| $) 51 T ELT) (($ $ (-949)) 121 T ELT)) (-3005 (((-792)) 122 T ELT)) (-2385 (($ (-1297 |#2|)) 20 T ELT)) (-3524 (((-112) $) 134 T ELT)) (-2794 ((|#2| $) 53 T ELT) (($ $ (-949)) 118 T ELT)) (-2346 (((-1202 |#2|) $) NIL T ELT) (((-1202 $) $ (-949)) 109 T ELT)) (-3200 (((-1202 |#2|) $) 95 T ELT)) (-3467 (((-1202 |#2|) $) 91 T ELT) (((-3 (-1202 |#2|) "failed") $ $) 88 T ELT)) (-1464 (($ $ (-1202 |#2|)) 58 T ELT)) (-3417 (((-854 (-949))) 30 T ELT) (((-949)) 48 T ELT)) (-4366 (((-135)) 27 T ELT)) (-1597 (((-854 (-949)) $) 32 T ELT) (((-949) $) 137 T ELT)) (-2984 (($) 128 T ELT)) (-3762 (((-1297 |#2|) $) NIL T ELT) (((-710 |#2|) (-1297 $)) 42 T ELT)) (-2708 (($ $) NIL T ELT) (((-3 $ "failed") $) 98 T ELT)) (-2066 (((-112) $) 45 T ELT))) +(((-339 |#1| |#2|) (-10 -8 (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -3005 ((-792))) (-15 -2708 (|#1| |#1|)) (-15 -3467 ((-3 (-1202 |#2|) "failed") |#1| |#1|)) (-15 -3467 ((-1202 |#2|) |#1|)) (-15 -3200 ((-1202 |#2|) |#1|)) (-15 -1464 (|#1| |#1| (-1202 |#2|))) (-15 -3524 ((-112) |#1|)) (-15 -2984 (|#1|)) (-15 -2318 (|#1| |#1| (-949))) (-15 -2794 (|#1| |#1| (-949))) (-15 -2346 ((-1202 |#1|) |#1| (-949))) (-15 -2318 (|#2| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -1597 ((-949) |#1|)) (-15 -3417 ((-949))) (-15 -2346 ((-1202 |#2|) |#1|)) (-15 -2385 (|#1| (-1297 |#2|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -3073 ((-792))) (-15 -3417 ((-854 (-949)))) (-15 -1597 ((-854 (-949)) |#1|)) (-15 -3028 ((-112) |#1|)) (-15 -2066 ((-112) |#1|)) (-15 -4366 ((-135)))) (-340 |#2|) (-375)) (T -339)) +((-4366 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3417 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-854 (-949))) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3073 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3417 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-949)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3005 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4))))) +(-10 -8 (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -3005 ((-792))) (-15 -2708 (|#1| |#1|)) (-15 -3467 ((-3 (-1202 |#2|) "failed") |#1| |#1|)) (-15 -3467 ((-1202 |#2|) |#1|)) (-15 -3200 ((-1202 |#2|) |#1|)) (-15 -1464 (|#1| |#1| (-1202 |#2|))) (-15 -3524 ((-112) |#1|)) (-15 -2984 (|#1|)) (-15 -2318 (|#1| |#1| (-949))) (-15 -2794 (|#1| |#1| (-949))) (-15 -2346 ((-1202 |#1|) |#1| (-949))) (-15 -2318 (|#2| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -1597 ((-949) |#1|)) (-15 -3417 ((-949))) (-15 -2346 ((-1202 |#2|) |#1|)) (-15 -2385 (|#1| (-1297 |#2|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -3073 ((-792))) (-15 -3417 ((-854 (-949)))) (-15 -1597 ((-854 (-949)) |#1|)) (-15 -3028 ((-112) |#1|)) (-15 -2066 ((-112) |#1|)) (-15 -4366 ((-135)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-3028 (((-112) $) 104 T ELT)) (-3073 (((-792)) 100 T ELT)) (-2318 ((|#1| $) 151 T ELT) (($ $ (-949)) 148 (|has| |#1| (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 133 (|has| |#1| (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-3005 (((-792)) 123 (|has| |#1| (-380)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 111 T ELT)) (-3783 ((|#1| $) 112 T ELT)) (-2385 (($ (-1297 |#1|)) 157 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-380)) ELT)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1424 (($) 120 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-2213 (($) 135 (|has| |#1| (-380)) ELT)) (-3275 (((-112) $) 136 (|has| |#1| (-380)) ELT)) (-3987 (($ $ (-792)) 97 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) 96 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) 79 T ELT)) (-4030 (((-949) $) 138 (|has| |#1| (-380)) ELT) (((-854 (-949)) $) 94 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) 35 T ELT)) (-4235 (($) 146 (|has| |#1| (-380)) ELT)) (-3524 (((-112) $) 145 (|has| |#1| (-380)) ELT)) (-2794 ((|#1| $) 152 T ELT) (($ $ (-949)) 149 (|has| |#1| (-380)) ELT)) (-2004 (((-3 $ "failed") $) 124 (|has| |#1| (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2346 (((-1202 |#1|) $) 156 T ELT) (((-1202 $) $ (-949)) 150 (|has| |#1| (-380)) ELT)) (-2686 (((-949) $) 121 (|has| |#1| (-380)) ELT)) (-3200 (((-1202 |#1|) $) 142 (|has| |#1| (-380)) ELT)) (-3467 (((-1202 |#1|) $) 141 (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) 140 (|has| |#1| (-380)) ELT)) (-1464 (($ $ (-1202 |#1|)) 143 (|has| |#1| (-380)) ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-2443 (($) 125 (|has| |#1| (-380)) CONST)) (-3354 (($ (-949)) 122 (|has| |#1| (-380)) ELT)) (-2789 (((-112) $) 103 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2343 (($) 144 (|has| |#1| (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 132 (|has| |#1| (-380)) ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-3417 (((-854 (-949))) 101 T ELT) (((-949)) 154 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3038 (((-792) $) 137 (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) 95 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) 109 T ELT)) (-3641 (($ $ (-792)) 128 (|has| |#1| (-380)) ELT) (($ $) 126 (|has| |#1| (-380)) ELT)) (-1597 (((-854 (-949)) $) 102 T ELT) (((-949) $) 153 T ELT)) (-4263 (((-1202 |#1|)) 155 T ELT)) (-3475 (($) 134 (|has| |#1| (-380)) ELT)) (-2984 (($) 147 (|has| |#1| (-380)) ELT)) (-3762 (((-1297 |#1|) $) 159 T ELT) (((-710 |#1|) (-1297 $)) 158 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 131 (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 110 T ELT)) (-2708 (($ $) 130 (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) 93 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2104 (((-1297 $)) 161 T ELT) (((-1297 $) (-949)) 160 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2066 (((-112) $) 105 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-4173 (($ $) 99 (|has| |#1| (-380)) ELT) (($ $ (-792)) 98 (|has| |#1| (-380)) ELT)) (-2389 (($ $ (-792)) 129 (|has| |#1| (-380)) ELT) (($ $) 127 (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) (((-340 |#1|) (-141) (-375)) (T -340)) -((-2559 (*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1292 *1)) (-4 *1 (-340 *3)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-944)) (-4 *4 (-375)) (-5 *2 (-1292 *1)) (-4 *1 (-340 *4)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1292 *3)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) (-5 *2 (-705 *4)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) (-1629 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) (-2884 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-944)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1197 *1)) (-4 *1 (-340 *4)))) (-4021 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-3204 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-2189 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) (-3428 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) (-4 *3 (-375)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1197 *3)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1197 *3)))) (-3995 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1197 *3))))) -(-13 (-1311 |t#1|) (-1063 |t#1|) (-10 -8 (-15 -2559 ((-1292 $))) (-15 -2559 ((-1292 $) (-944))) (-15 -2729 ((-1292 |t#1|) $)) (-15 -2729 ((-705 |t#1|) (-1292 $))) (-15 -1911 ($ (-1292 |t#1|))) (-15 -3810 ((-1197 |t#1|) $)) (-15 -1629 ((-1197 |t#1|))) (-15 -2884 ((-944))) (-15 -3616 ((-944) $)) (-15 -4021 (|t#1| $)) (-15 -2219 (|t#1| $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-361)) (-15 -3810 ((-1197 $) $ (-944))) (-15 -4021 ($ $ (-944))) (-15 -2219 ($ $ (-944))) (-15 -3204 ($)) (-15 -2189 ($)) (-15 -2936 ((-112) $)) (-15 -3428 ($)) (-15 -1542 ($ $ (-1197 |t#1|))) (-15 -1948 ((-1197 |t#1|) $)) (-15 -3995 ((-1197 |t#1|) $)) (-15 -3995 ((-3 (-1197 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2811 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-235 $) |has| |#1| (-380)) ((-239) |has| |#1| (-380)) ((-238) |has| |#1| (-380)) ((-249) . T) ((-301) . T) ((-318) . T) ((-1311 |#1|) . T) ((-375) . T) ((-415) -2811 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-380) |has| |#1| (-380)) ((-361) |has| |#1| (-380)) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 |#1|) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-380)) ((-1242) . T) ((-1246) . T) ((-1299 |#1|) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-4203 (($ (-1200) $) 100 T ELT)) (-2253 (($) 89 T ELT)) (-1737 (((-1145) (-1145)) 9 T ELT)) (-2492 (($) 90 T ELT)) (-3660 (($) 104 T ELT) (($ (-327 (-715))) 112 T ELT) (($ (-327 (-717))) 108 T ELT) (($ (-327 (-710))) 116 T ELT) (($ (-327 (-391))) 123 T ELT) (($ (-327 (-577))) 119 T ELT) (($ (-327 (-171 (-391)))) 127 T ELT)) (-2502 (($ (-1200) $) 101 T ELT)) (-4053 (($ (-660 (-880))) 91 T ELT)) (-4189 (((-1297) $) 87 T ELT)) (-4141 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3905 (($ (-1145)) 58 T ELT)) (-1491 (((-1129) $) 30 T ELT)) (-1829 (($ (-1117 (-975 (-577))) $) 97 T ELT) (($ (-1117 (-975 (-577))) (-975 (-577)) $) 98 T ELT)) (-2563 (($ (-1145)) 99 T ELT)) (-2855 (($ (-1200) $) 129 T ELT) (($ (-1200) $ $) 130 T ELT)) (-1765 (($ (-1201) (-660 (-1201))) 88 T ELT)) (-4262 (($ (-1183)) 94 T ELT) (($ (-660 (-1183))) 92 T ELT)) (-3603 (((-880) $) 132 T ELT)) (-4434 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2856 (-112)) (|:| -3145 (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -2097 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2682 $))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2682 $))) (|:| |commonBranch| (-2 (|:| -2668 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880)))) $) 50 T ELT)) (-2047 (($ (-1183)) 202 T ELT)) (-2615 (($ (-660 $)) 128 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3155 (($ (-1201) (-1183)) 135 T ELT) (($ (-1201) (-327 (-717))) 175 T ELT) (($ (-1201) (-327 (-715))) 176 T ELT) (($ (-1201) (-327 (-710))) 177 T ELT) (($ (-1201) (-705 (-717))) 138 T ELT) (($ (-1201) (-705 (-715))) 141 T ELT) (($ (-1201) (-705 (-710))) 144 T ELT) (($ (-1201) (-1292 (-717))) 147 T ELT) (($ (-1201) (-1292 (-715))) 150 T ELT) (($ (-1201) (-1292 (-710))) 153 T ELT) (($ (-1201) (-705 (-327 (-717)))) 156 T ELT) (($ (-1201) (-705 (-327 (-715)))) 159 T ELT) (($ (-1201) (-705 (-327 (-710)))) 162 T ELT) (($ (-1201) (-1292 (-327 (-717)))) 165 T ELT) (($ (-1201) (-1292 (-327 (-715)))) 168 T ELT) (($ (-1201) (-1292 (-327 (-710)))) 171 T ELT) (($ (-1201) (-660 (-975 (-577))) (-327 (-717))) 172 T ELT) (($ (-1201) (-660 (-975 (-577))) (-327 (-715))) 173 T ELT) (($ (-1201) (-660 (-975 (-577))) (-327 (-710))) 174 T ELT) (($ (-1201) (-327 (-577))) 199 T ELT) (($ (-1201) (-327 (-391))) 200 T ELT) (($ (-1201) (-327 (-171 (-391)))) 201 T ELT) (($ (-1201) (-705 (-327 (-577)))) 180 T ELT) (($ (-1201) (-705 (-327 (-391)))) 183 T ELT) (($ (-1201) (-705 (-327 (-171 (-391))))) 186 T ELT) (($ (-1201) (-1292 (-327 (-577)))) 189 T ELT) (($ (-1201) (-1292 (-327 (-391)))) 192 T ELT) (($ (-1201) (-1292 (-327 (-171 (-391))))) 195 T ELT) (($ (-1201) (-660 (-975 (-577))) (-327 (-577))) 196 T ELT) (($ (-1201) (-660 (-975 (-577))) (-327 (-391))) 197 T ELT) (($ (-1201) (-660 (-975 (-577))) (-327 (-171 (-391)))) 198 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-341) (-13 (-1125) (-10 -8 (-15 -1829 ($ (-1117 (-975 (-577))) $)) (-15 -1829 ($ (-1117 (-975 (-577))) (-975 (-577)) $)) (-15 -4203 ($ (-1200) $)) (-15 -2502 ($ (-1200) $)) (-15 -3905 ($ (-1145))) (-15 -2563 ($ (-1145))) (-15 -4262 ($ (-1183))) (-15 -4262 ($ (-660 (-1183)))) (-15 -2047 ($ (-1183))) (-15 -3660 ($)) (-15 -3660 ($ (-327 (-715)))) (-15 -3660 ($ (-327 (-717)))) (-15 -3660 ($ (-327 (-710)))) (-15 -3660 ($ (-327 (-391)))) (-15 -3660 ($ (-327 (-577)))) (-15 -3660 ($ (-327 (-171 (-391))))) (-15 -2855 ($ (-1200) $)) (-15 -2855 ($ (-1200) $ $)) (-15 -3155 ($ (-1201) (-1183))) (-15 -3155 ($ (-1201) (-327 (-717)))) (-15 -3155 ($ (-1201) (-327 (-715)))) (-15 -3155 ($ (-1201) (-327 (-710)))) (-15 -3155 ($ (-1201) (-705 (-717)))) (-15 -3155 ($ (-1201) (-705 (-715)))) (-15 -3155 ($ (-1201) (-705 (-710)))) (-15 -3155 ($ (-1201) (-1292 (-717)))) (-15 -3155 ($ (-1201) (-1292 (-715)))) (-15 -3155 ($ (-1201) (-1292 (-710)))) (-15 -3155 ($ (-1201) (-705 (-327 (-717))))) (-15 -3155 ($ (-1201) (-705 (-327 (-715))))) (-15 -3155 ($ (-1201) (-705 (-327 (-710))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-717))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-715))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-710))))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-717)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-715)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-710)))) (-15 -3155 ($ (-1201) (-327 (-577)))) (-15 -3155 ($ (-1201) (-327 (-391)))) (-15 -3155 ($ (-1201) (-327 (-171 (-391))))) (-15 -3155 ($ (-1201) (-705 (-327 (-577))))) (-15 -3155 ($ (-1201) (-705 (-327 (-391))))) (-15 -3155 ($ (-1201) (-705 (-327 (-171 (-391)))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-577))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-391))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-171 (-391)))))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-577)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-391)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-171 (-391))))) (-15 -2615 ($ (-660 $))) (-15 -2253 ($)) (-15 -2492 ($)) (-15 -4053 ($ (-660 (-880)))) (-15 -1765 ($ (-1201) (-660 (-1201)))) (-15 -4141 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4434 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2856 (-112)) (|:| -3145 (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -2097 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2682 $))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2682 $))) (|:| |commonBranch| (-2 (|:| -2668 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880)))) $)) (-15 -4189 ((-1297) $)) (-15 -1491 ((-1129) $)) (-15 -1737 ((-1145) (-1145)))))) (T -341)) -((-1829 (*1 *1 *2 *1) (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *1 (-341)))) (-1829 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *3 (-975 (-577))) (-5 *1 (-341)))) (-4203 (*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-3905 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341)))) (-4262 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341)))) (-4262 (*1 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-341)))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341)))) (-3660 (*1 *1) (-5 *1 (-341))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-327 (-717))) (-5 *1 (-341)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-327 (-710))) (-5 *1 (-341)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-2855 (*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-2855 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-717))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-710))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-717))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-715))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-710))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-717))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-715))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-710))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-717)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-715)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-710)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-717)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-715)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-710)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-717))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-715))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-710))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-577)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-391)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-577)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-391)))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-577))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-391))) (-5 *1 (-341)))) (-3155 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-5 *1 (-341)))) (-2253 (*1 *1) (-5 *1 (-341))) (-2492 (*1 *1) (-5 *1 (-341))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-341)))) (-1765 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-341)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-341)))) (-4434 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| (-341)) (|:| |elseClause| (-341)))) (|:| |returnBranch| (-2 (|:| -2856 (-112)) (|:| -3145 (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |blockBranch| (-660 (-341))) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -2097 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2682 (-341)))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2682 (-341)))) (|:| |commonBranch| (-2 (|:| -2668 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880))))) (-5 *1 (-341)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-341)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-341)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) -(-13 (-1125) (-10 -8 (-15 -1829 ($ (-1117 (-975 (-577))) $)) (-15 -1829 ($ (-1117 (-975 (-577))) (-975 (-577)) $)) (-15 -4203 ($ (-1200) $)) (-15 -2502 ($ (-1200) $)) (-15 -3905 ($ (-1145))) (-15 -2563 ($ (-1145))) (-15 -4262 ($ (-1183))) (-15 -4262 ($ (-660 (-1183)))) (-15 -2047 ($ (-1183))) (-15 -3660 ($)) (-15 -3660 ($ (-327 (-715)))) (-15 -3660 ($ (-327 (-717)))) (-15 -3660 ($ (-327 (-710)))) (-15 -3660 ($ (-327 (-391)))) (-15 -3660 ($ (-327 (-577)))) (-15 -3660 ($ (-327 (-171 (-391))))) (-15 -2855 ($ (-1200) $)) (-15 -2855 ($ (-1200) $ $)) (-15 -3155 ($ (-1201) (-1183))) (-15 -3155 ($ (-1201) (-327 (-717)))) (-15 -3155 ($ (-1201) (-327 (-715)))) (-15 -3155 ($ (-1201) (-327 (-710)))) (-15 -3155 ($ (-1201) (-705 (-717)))) (-15 -3155 ($ (-1201) (-705 (-715)))) (-15 -3155 ($ (-1201) (-705 (-710)))) (-15 -3155 ($ (-1201) (-1292 (-717)))) (-15 -3155 ($ (-1201) (-1292 (-715)))) (-15 -3155 ($ (-1201) (-1292 (-710)))) (-15 -3155 ($ (-1201) (-705 (-327 (-717))))) (-15 -3155 ($ (-1201) (-705 (-327 (-715))))) (-15 -3155 ($ (-1201) (-705 (-327 (-710))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-717))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-715))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-710))))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-717)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-715)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-710)))) (-15 -3155 ($ (-1201) (-327 (-577)))) (-15 -3155 ($ (-1201) (-327 (-391)))) (-15 -3155 ($ (-1201) (-327 (-171 (-391))))) (-15 -3155 ($ (-1201) (-705 (-327 (-577))))) (-15 -3155 ($ (-1201) (-705 (-327 (-391))))) (-15 -3155 ($ (-1201) (-705 (-327 (-171 (-391)))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-577))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-391))))) (-15 -3155 ($ (-1201) (-1292 (-327 (-171 (-391)))))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-577)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-391)))) (-15 -3155 ($ (-1201) (-660 (-975 (-577))) (-327 (-171 (-391))))) (-15 -2615 ($ (-660 $))) (-15 -2253 ($)) (-15 -2492 ($)) (-15 -4053 ($ (-660 (-880)))) (-15 -1765 ($ (-1201) (-660 (-1201)))) (-15 -4141 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4434 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2856 (-112)) (|:| -3145 (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -2097 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2682 $))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2682 $))) (|:| |commonBranch| (-2 (|:| -2668 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880)))) $)) (-15 -4189 ((-1297) $)) (-15 -1491 ((-1129) $)) (-15 -1737 ((-1145) (-1145))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3872 (((-112) $) 13 T ELT)) (-2471 (($ |#1|) 10 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2486 (($ |#1|) 12 T ELT)) (-3603 (((-880) $) 19 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-4100 ((|#1| $) 14 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 21 T ELT))) -(((-342 |#1|) (-13 (-865) (-10 -8 (-15 -2471 ($ |#1|)) (-15 -2486 ($ |#1|)) (-15 -3872 ((-112) $)) (-15 -4100 (|#1| $)))) (-865)) (T -342)) -((-2471 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) (-2486 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-865)))) (-4100 (*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865))))) -(-13 (-865) (-10 -8 (-15 -2471 ($ |#1|)) (-15 -2486 ($ |#1|)) (-15 -3872 ((-112) $)) (-15 -4100 (|#1| $)))) -((-2449 (((-341) (-1201) (-975 (-577))) 23 T ELT)) (-2293 (((-341) (-1201) (-975 (-577))) 27 T ELT)) (-1375 (((-341) (-1201) (-1117 (-975 (-577))) (-1117 (-975 (-577)))) 26 T ELT) (((-341) (-1201) (-975 (-577)) (-975 (-577))) 24 T ELT)) (-2311 (((-341) (-1201) (-975 (-577))) 31 T ELT))) -(((-343) (-10 -7 (-15 -2449 ((-341) (-1201) (-975 (-577)))) (-15 -1375 ((-341) (-1201) (-975 (-577)) (-975 (-577)))) (-15 -1375 ((-341) (-1201) (-1117 (-975 (-577))) (-1117 (-975 (-577))))) (-15 -2293 ((-341) (-1201) (-975 (-577)))) (-15 -2311 ((-341) (-1201) (-975 (-577)))))) (T -343)) -((-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-2293 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-1375 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-1117 (-975 (-577)))) (-5 *2 (-341)) (-5 *1 (-343)))) (-1375 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343))))) -(-10 -7 (-15 -2449 ((-341) (-1201) (-975 (-577)))) (-15 -1375 ((-341) (-1201) (-975 (-577)) (-975 (-577)))) (-15 -1375 ((-341) (-1201) (-1117 (-975 (-577))) (-1117 (-975 (-577))))) (-15 -2293 ((-341) (-1201) (-975 (-577)))) (-15 -2311 ((-341) (-1201) (-975 (-577))))) -((-3489 (((-112) $ $) NIL T ELT)) (-4073 (((-519) $) 20 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2641 (((-981 (-787)) $) 18 T ELT)) (-2173 (((-257) $) 7 T ELT)) (-3603 (((-880) $) 26 T ELT)) (-3429 (((-981 (-185 (-140))) $) 16 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2407 (((-660 (-891 (-1206) (-787))) $) 12 T ELT)) (-2949 (((-112) $ $) 22 T ELT))) -(((-344) (-13 (-1125) (-10 -8 (-15 -2173 ((-257) $)) (-15 -2407 ((-660 (-891 (-1206) (-787))) $)) (-15 -2641 ((-981 (-787)) $)) (-15 -3429 ((-981 (-185 (-140))) $)) (-15 -4073 ((-519) $))))) (T -344)) -((-2173 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-1206) (-787)))) (-5 *1 (-344)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-981 (-787))) (-5 *1 (-344)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-981 (-185 (-140)))) (-5 *1 (-344)))) (-4073 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) -(-13 (-1125) (-10 -8 (-15 -2173 ((-257) $)) (-15 -2407 ((-660 (-891 (-1206) (-787))) $)) (-15 -2641 ((-981 (-787)) $)) (-15 -3429 ((-981 (-185 (-140))) $)) (-15 -4073 ((-519) $)))) -((-2124 (((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2124 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-375) (-1268 |#5|) (-1268 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -345)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *9 (-375)) (-4 *10 (-1268 *9)) (-4 *11 (-1268 (-420 *10))) (-5 *2 (-348 *9 *10 *11 *12)) (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-354 *9 *10 *11))))) -(-10 -7 (-15 -2124 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) -((-3316 (((-112) $) 14 T ELT))) -(((-346 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3316 ((-112) |#1|))) (-347 |#2| |#3| |#4| |#5|) (-375) (-1268 |#2|) (-1268 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -346)) -NIL -(-10 -8 (-15 -3316 ((-112) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2498 (($ $) 29 T ELT)) (-3316 (((-112) $) 28 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2756 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 35 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3428 (((-3 |#4| "failed") $) 27 T ELT)) (-2084 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 34 T ELT) (($ |#4|) 33 T ELT) (($ |#1| |#1|) 32 T ELT) (($ |#1| |#1| (-577)) 31 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 26 T ELT)) (-4337 (((-2 (|:| -3163 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT))) -(((-347 |#1| |#2| |#3| |#4|) (-141) (-375) (-1268 |t#1|) (-1268 (-420 |t#2|)) (-354 |t#1| |t#2| |t#3|)) (T -347)) -((-2756 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-426 *4 (-420 *4) *5 *6)))) (-2084 (*1 *1 *2) (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) (-4 *1 (-347 *3 *4 *5 *6)))) (-2084 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) (-2084 (*1 *1 *2 *2) (-12 (-4 *2 (-375)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))) (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) (-2084 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1268 *2)) (-4 *5 (-1268 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) (-4 *6 (-354 *2 *4 *5)))) (-4337 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-2 (|:| -3163 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) (-2498 (*1 *1 *1) (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112)))) (-3428 (*1 *2 *1) (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *2 (-354 *3 *4 *5)))) (-2084 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-375)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2756 ((-426 |t#2| (-420 |t#2|) |t#3| |t#4|) $)) (-15 -2084 ($ (-426 |t#2| (-420 |t#2|) |t#3| |t#4|))) (-15 -2084 ($ |t#4|)) (-15 -2084 ($ |t#1| |t#1|)) (-15 -2084 ($ |t#1| |t#1| (-577))) (-15 -4337 ((-2 (|:| -3163 (-426 |t#2| (-420 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2498 ($ $)) (-15 -3316 ((-112) $)) (-15 -3428 ((-3 |t#4| "failed") $)) (-15 -2084 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2498 (($ $) 33 T ELT)) (-3316 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4130 (((-1292 |#4|) $) 134 T ELT)) (-2756 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 31 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (((-3 |#4| "failed") $) 36 T ELT)) (-1577 (((-1292 |#4|) $) 126 T ELT)) (-2084 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-577)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-4337 (((-2 (|:| -3163 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-3603 (((-880) $) 17 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 14 T CONST)) (-2949 (((-112) $ $) 20 T ELT)) (-3042 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 25 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 23 T ELT))) -(((-348 |#1| |#2| |#3| |#4|) (-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1577 ((-1292 |#4|) $)) (-15 -4130 ((-1292 |#4|) $)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -348)) -((-1577 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5)))) (-4130 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5))))) -(-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1577 ((-1292 |#4|) $)) (-15 -4130 ((-1292 |#4|) $)))) -((-3273 (($ $ (-1201) |#2|) NIL T ELT) (($ $ (-660 (-1201)) (-660 |#2|)) 20 T ELT) (($ $ (-660 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL T ELT)) (-2837 (($ $ |#2|) 11 T ELT))) -(((-349 |#1| |#2|) (-10 -8 (-15 -2837 (|#1| |#1| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#2| |#2|)) (-15 -3273 (|#1| |#1| (-305 |#2|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 |#2|))) (-15 -3273 (|#1| |#1| (-1201) |#2|))) (-350 |#2|) (-1125)) (T -349)) -NIL -(-10 -8 (-15 -2837 (|#1| |#1| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#2| |#2|)) (-15 -3273 (|#1| |#1| (-305 |#2|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 |#2|))) (-15 -3273 (|#1| |#1| (-1201) |#2|))) -((-2124 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3273 (($ $ (-1201) |#1|) 17 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) 16 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 15 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 12 (|has| |#1| (-320 |#1|)) ELT)) (-2837 (($ $ |#1|) 11 (|has| |#1| (-297 |#1| |#1|)) ELT))) -(((-350 |#1|) (-141) (-1125)) (T -350)) -((-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1125))))) -(-13 (-10 -8 (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-297 |t#1| |t#1|)) (-6 (-297 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-527 (-1201) |t#1|)) (-6 (-527 (-1201) |t#1|)) |%noBranch|))) -(((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-1242) |has| |#1| (-297 |#1| |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1201)) $) NIL T ELT)) (-3787 (((-112)) 96 T ELT) (((-112) (-112)) 97 T ELT)) (-2002 (((-660 (-625 $)) $) NIL T ELT)) (-2642 (($ $) NIL T ELT)) (-2501 (($ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2692 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT)) (-3070 (($ $) NIL T ELT)) (-2616 (($ $) NIL T ELT)) (-2471 (($ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-625 $) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 $ "failed") (-327 |#3|)) 76 T ELT) (((-3 $ "failed") (-1201)) 103 T ELT) (((-3 $ "failed") (-327 (-577))) 64 (|has| |#3| (-1063 (-577))) ELT) (((-3 $ "failed") (-420 (-975 (-577)))) 70 (|has| |#3| (-1063 (-577))) ELT) (((-3 $ "failed") (-975 (-577))) 65 (|has| |#3| (-1063 (-577))) ELT) (((-3 $ "failed") (-327 (-391))) 94 (|has| |#3| (-1063 (-391))) ELT) (((-3 $ "failed") (-420 (-975 (-391)))) 88 (|has| |#3| (-1063 (-391))) ELT) (((-3 $ "failed") (-975 (-391))) 83 (|has| |#3| (-1063 (-391))) ELT)) (-2155 (((-625 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-327 |#3|)) 77 T ELT) (($ (-1201)) 104 T ELT) (($ (-327 (-577))) 66 (|has| |#3| (-1063 (-577))) ELT) (($ (-420 (-975 (-577)))) 71 (|has| |#3| (-1063 (-577))) ELT) (($ (-975 (-577))) 67 (|has| |#3| (-1063 (-577))) ELT) (($ (-327 (-391))) 95 (|has| |#3| (-1063 (-391))) ELT) (($ (-420 (-975 (-391)))) 89 (|has| |#3| (-1063 (-391))) ELT) (($ (-975 (-391))) 85 (|has| |#3| (-1063 (-391))) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2824 (($) 101 T ELT)) (-4301 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1653 (((-660 (-115)) $) NIL T ELT)) (-2085 (((-115) (-115)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2238 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-3348 (((-1197 $) (-625 $)) NIL (|has| $ (-1074)) ELT)) (-2124 (($ (-1 $ $) (-625 $)) NIL T ELT)) (-3215 (((-3 (-625 $) "failed") $) NIL T ELT)) (-2337 (($ $) 99 T ELT)) (-3716 (($ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2074 (((-660 (-625 $)) $) NIL T ELT)) (-2869 (($ (-115) $) 98 T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3152 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1201)) NIL T ELT)) (-4181 (((-787) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1859 (((-112) $ $) NIL T ELT) (((-112) $ (-1201)) NIL T ELT)) (-2079 (($ $) NIL T ELT)) (-3861 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-3273 (($ $ (-625 $) $) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1201) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1201) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-2837 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3362 (($ $ (-1201)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-1629 (($ $) NIL (|has| $ (-1074)) ELT)) (-2631 (($ $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-625 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-577)) NIL T ELT) (((-327 |#3|) $) 102 T ELT)) (-1920 (((-787)) NIL T CONST)) (-1866 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3123 (((-112) (-115)) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2570 (($ $) NIL T ELT)) (-2546 (($ $) NIL T ELT)) (-2558 (($ $) NIL T ELT)) (-4318 (($ $) NIL T ELT)) (-2754 (($) 100 T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1201)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-944) $) NIL T ELT))) -(((-351 |#1| |#2| |#3|) (-13 (-313) (-38 |#3|) (-1063 |#3|) (-921 (-1201)) (-10 -8 (-15 -2155 ($ (-327 |#3|))) (-15 -2784 ((-3 $ "failed") (-327 |#3|))) (-15 -2155 ($ (-1201))) (-15 -2784 ((-3 $ "failed") (-1201))) (-15 -3603 ((-327 |#3|) $)) (IF (|has| |#3| (-1063 (-577))) (PROGN (-15 -2155 ($ (-327 (-577)))) (-15 -2784 ((-3 $ "failed") (-327 (-577)))) (-15 -2155 ($ (-420 (-975 (-577))))) (-15 -2784 ((-3 $ "failed") (-420 (-975 (-577))))) (-15 -2155 ($ (-975 (-577)))) (-15 -2784 ((-3 $ "failed") (-975 (-577))))) |%noBranch|) (IF (|has| |#3| (-1063 (-391))) (PROGN (-15 -2155 ($ (-327 (-391)))) (-15 -2784 ((-3 $ "failed") (-327 (-391)))) (-15 -2155 ($ (-420 (-975 (-391))))) (-15 -2784 ((-3 $ "failed") (-420 (-975 (-391))))) (-15 -2155 ($ (-975 (-391)))) (-15 -2784 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -4318 ($ $)) (-15 -3070 ($ $)) (-15 -2079 ($ $)) (-15 -3716 ($ $)) (-15 -2337 ($ $)) (-15 -2471 ($ $)) (-15 -2486 ($ $)) (-15 -2501 ($ $)) (-15 -2546 ($ $)) (-15 -2558 ($ $)) (-15 -2570 ($ $)) (-15 -2616 ($ $)) (-15 -2631 ($ $)) (-15 -2642 ($ $)) (-15 -2824 ($)) (-15 -3206 ((-660 (-1201)) $)) (-15 -3787 ((-112))) (-15 -3787 ((-112) (-112))))) (-660 (-1201)) (-660 (-1201)) (-400)) (T -351)) -((-2155 (*1 *1 *2) (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-400)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-400)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-327 *5)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-4318 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-3070 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2079 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-3716 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2337 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2471 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2486 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2501 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2546 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2558 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2616 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2631 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2642 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2824 (*1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-400)))) (-3787 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400))))) -(-13 (-313) (-38 |#3|) (-1063 |#3|) (-921 (-1201)) (-10 -8 (-15 -2155 ($ (-327 |#3|))) (-15 -2784 ((-3 $ "failed") (-327 |#3|))) (-15 -2155 ($ (-1201))) (-15 -2784 ((-3 $ "failed") (-1201))) (-15 -3603 ((-327 |#3|) $)) (IF (|has| |#3| (-1063 (-577))) (PROGN (-15 -2155 ($ (-327 (-577)))) (-15 -2784 ((-3 $ "failed") (-327 (-577)))) (-15 -2155 ($ (-420 (-975 (-577))))) (-15 -2784 ((-3 $ "failed") (-420 (-975 (-577))))) (-15 -2155 ($ (-975 (-577)))) (-15 -2784 ((-3 $ "failed") (-975 (-577))))) |%noBranch|) (IF (|has| |#3| (-1063 (-391))) (PROGN (-15 -2155 ($ (-327 (-391)))) (-15 -2784 ((-3 $ "failed") (-327 (-391)))) (-15 -2155 ($ (-420 (-975 (-391))))) (-15 -2784 ((-3 $ "failed") (-420 (-975 (-391))))) (-15 -2155 ($ (-975 (-391)))) (-15 -2784 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -4318 ($ $)) (-15 -3070 ($ $)) (-15 -2079 ($ $)) (-15 -3716 ($ $)) (-15 -2337 ($ $)) (-15 -2471 ($ $)) (-15 -2486 ($ $)) (-15 -2501 ($ $)) (-15 -2546 ($ $)) (-15 -2558 ($ $)) (-15 -2570 ($ $)) (-15 -2616 ($ $)) (-15 -2631 ($ $)) (-15 -2642 ($ $)) (-15 -2824 ($)) (-15 -3206 ((-660 (-1201)) $)) (-15 -3787 ((-112))) (-15 -3787 ((-112) (-112))))) -((-2124 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-352 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2124 (|#8| (-1 |#5| |#1|) |#4|))) (-1246) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-1246) (-1268 |#5|) (-1268 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -352)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1246)) (-4 *8 (-1246)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *9 (-1268 *8)) (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1268 (-420 *9)))))) -(-10 -7 (-15 -2124 (|#8| (-1 |#5| |#1|) |#4|))) -((-4326 (((-2 (|:| |num| (-1292 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1911 (($ (-1292 (-420 |#3|)) (-1292 $)) NIL T ELT) (($ (-1292 (-420 |#3|))) NIL T ELT) (($ (-1292 |#3|) |#3|) 173 T ELT)) (-4264 (((-1292 $) (-1292 $)) 156 T ELT)) (-3651 (((-660 (-660 |#2|))) 126 T ELT)) (-2648 (((-112) |#2| |#2|) 76 T ELT)) (-2308 (($ $) 148 T ELT)) (-2561 (((-787)) 172 T ELT)) (-2960 (((-1292 $) (-1292 $)) 218 T ELT)) (-4292 (((-660 (-975 |#2|)) (-1201)) 115 T ELT)) (-4421 (((-112) $) 169 T ELT)) (-1363 (((-112) $) 27 T ELT) (((-112) $ |#2|) 31 T ELT) (((-112) $ |#3|) 222 T ELT)) (-2541 (((-3 |#3| "failed")) 52 T ELT)) (-2525 (((-787)) 184 T ELT)) (-2837 ((|#2| $ |#2| |#2|) 140 T ELT)) (-4404 (((-3 |#3| "failed")) 71 T ELT)) (-3362 (($ $ (-1 (-420 |#3|) (-420 |#3|))) NIL T ELT) (($ $ (-1 (-420 |#3|) (-420 |#3|)) (-787)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 226 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-2714 (((-1292 $) (-1292 $)) 162 T ELT)) (-3998 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-2335 (((-112)) 34 T ELT))) -(((-353 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3651 ((-660 (-660 |#2|)))) (-15 -4292 ((-660 (-975 |#2|)) (-1201))) (-15 -3998 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2541 ((-3 |#3| "failed"))) (-15 -4404 ((-3 |#3| "failed"))) (-15 -2837 (|#2| |#1| |#2| |#2|)) (-15 -2308 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1363 ((-112) |#1| |#3|)) (-15 -1363 ((-112) |#1| |#2|)) (-15 -1911 (|#1| (-1292 |#3|) |#3|)) (-15 -4326 ((-2 (|:| |num| (-1292 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4264 ((-1292 |#1|) (-1292 |#1|))) (-15 -2960 ((-1292 |#1|) (-1292 |#1|))) (-15 -2714 ((-1292 |#1|) (-1292 |#1|))) (-15 -1363 ((-112) |#1|)) (-15 -4421 ((-112) |#1|)) (-15 -2648 ((-112) |#2| |#2|)) (-15 -2335 ((-112))) (-15 -2525 ((-787))) (-15 -2561 ((-787))) (-15 -3362 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-787))) (-15 -3362 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -1911 (|#1| (-1292 (-420 |#3|)))) (-15 -1911 (|#1| (-1292 (-420 |#3|)) (-1292 |#1|)))) (-354 |#2| |#3| |#4|) (-1246) (-1268 |#2|) (-1268 (-420 |#3|))) (T -353)) -((-2561 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-2525 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-2335 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-2648 (*1 *2 *3 *3) (-12 (-4 *3 (-1246)) (-4 *5 (-1268 *3)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) (-4404 (*1 *2) (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-2541 (*1 *2) (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-5 *2 (-660 (-975 *5))) (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) (-3651 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-660 (-660 *4))) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6))))) -(-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3651 ((-660 (-660 |#2|)))) (-15 -4292 ((-660 (-975 |#2|)) (-1201))) (-15 -3998 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2541 ((-3 |#3| "failed"))) (-15 -4404 ((-3 |#3| "failed"))) (-15 -2837 (|#2| |#1| |#2| |#2|)) (-15 -2308 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1363 ((-112) |#1| |#3|)) (-15 -1363 ((-112) |#1| |#2|)) (-15 -1911 (|#1| (-1292 |#3|) |#3|)) (-15 -4326 ((-2 (|:| |num| (-1292 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4264 ((-1292 |#1|) (-1292 |#1|))) (-15 -2960 ((-1292 |#1|) (-1292 |#1|))) (-15 -2714 ((-1292 |#1|) (-1292 |#1|))) (-15 -1363 ((-112) |#1|)) (-15 -4421 ((-112) |#1|)) (-15 -2648 ((-112) |#2| |#2|)) (-15 -2335 ((-112))) (-15 -2525 ((-787))) (-15 -2561 ((-787))) (-15 -3362 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-787))) (-15 -3362 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -1911 (|#1| (-1292 (-420 |#3|)))) (-15 -1911 (|#1| (-1292 (-420 |#3|)) (-1292 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-4326 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 211 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 105 (|has| (-420 |#2|) (-375)) ELT)) (-4122 (($ $) 106 (|has| (-420 |#2|) (-375)) ELT)) (-3547 (((-112) $) 108 (|has| (-420 |#2|) (-375)) ELT)) (-4436 (((-705 (-420 |#2|)) (-1292 $)) 53 T ELT) (((-705 (-420 |#2|))) 68 T ELT)) (-2219 (((-420 |#2|) $) 59 T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 158 (|has| (-420 |#2|) (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 125 (|has| (-420 |#2|) (-375)) ELT)) (-3836 (((-431 $) $) 126 (|has| (-420 |#2|) (-375)) ELT)) (-2435 (((-112) $ $) 116 (|has| (-420 |#2|) (-375)) ELT)) (-3373 (((-787)) 99 (|has| (-420 |#2|) (-380)) ELT)) (-2944 (((-112)) 228 T ELT)) (-4310 (((-112) |#1|) 227 T ELT) (((-112) |#2|) 226 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 185 (|has| (-420 |#2|) (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| (-420 |#2|) (-1063 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) 180 T ELT)) (-2155 (((-577) $) 184 (|has| (-420 |#2|) (-1063 (-577))) ELT) (((-420 (-577)) $) 182 (|has| (-420 |#2|) (-1063 (-420 (-577)))) ELT) (((-420 |#2|) $) 181 T ELT)) (-1911 (($ (-1292 (-420 |#2|)) (-1292 $)) 55 T ELT) (($ (-1292 (-420 |#2|))) 71 T ELT) (($ (-1292 |#2|) |#2|) 210 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-420 |#2|) (-361)) ELT)) (-3436 (($ $ $) 120 (|has| (-420 |#2|) (-375)) ELT)) (-2678 (((-705 (-420 |#2|)) $ (-1292 $)) 60 T ELT) (((-705 (-420 |#2|)) $) 66 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 177 (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 176 (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-705 $) (-1292 $)) 175 T ELT) (((-705 (-420 |#2|)) (-705 $)) 174 T ELT)) (-4264 (((-1292 $) (-1292 $)) 216 T ELT)) (-2498 (($ |#3|) 169 T ELT) (((-3 $ "failed") (-420 |#3|)) 166 (|has| (-420 |#2|) (-375)) ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3651 (((-660 (-660 |#1|))) 197 (|has| |#1| (-380)) ELT)) (-2648 (((-112) |#1| |#1|) 232 T ELT)) (-3503 (((-944)) 61 T ELT)) (-2352 (($) 102 (|has| (-420 |#2|) (-380)) ELT)) (-2463 (((-112)) 225 T ELT)) (-3013 (((-112) |#1|) 224 T ELT) (((-112) |#2|) 223 T ELT)) (-3447 (($ $ $) 119 (|has| (-420 |#2|) (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 114 (|has| (-420 |#2|) (-375)) ELT)) (-2308 (($ $) 203 T ELT)) (-1742 (($) 160 (|has| (-420 |#2|) (-361)) ELT)) (-4402 (((-112) $) 161 (|has| (-420 |#2|) (-361)) ELT)) (-1865 (($ $ (-787)) 152 (|has| (-420 |#2|) (-361)) ELT) (($ $) 151 (|has| (-420 |#2|) (-361)) ELT)) (-2182 (((-112) $) 127 (|has| (-420 |#2|) (-375)) ELT)) (-2536 (((-944) $) 163 (|has| (-420 |#2|) (-361)) ELT) (((-849 (-944)) $) 149 (|has| (-420 |#2|) (-361)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-2561 (((-787)) 235 T ELT)) (-2960 (((-1292 $) (-1292 $)) 217 T ELT)) (-4021 (((-420 |#2|) $) 58 T ELT)) (-4292 (((-660 (-975 |#1|)) (-1201)) 198 (|has| |#1| (-375)) ELT)) (-1454 (((-3 $ "failed") $) 153 (|has| (-420 |#2|) (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 123 (|has| (-420 |#2|) (-375)) ELT)) (-3810 ((|#3| $) 51 (|has| (-420 |#2|) (-375)) ELT)) (-2144 (((-944) $) 101 (|has| (-420 |#2|) (-380)) ELT)) (-2482 ((|#3| $) 167 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 179 (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 178 (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-1292 $) $) 173 T ELT) (((-705 (-420 |#2|)) (-1292 $)) 172 T ELT)) (-3508 (($ (-660 $)) 112 (|has| (-420 |#2|) (-375)) ELT) (($ $ $) 111 (|has| (-420 |#2|) (-375)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-4215 (((-705 (-420 |#2|))) 212 T ELT)) (-1450 (((-705 (-420 |#2|))) 214 T ELT)) (-3318 (($ $) 128 (|has| (-420 |#2|) (-375)) ELT)) (-2764 (($ (-1292 |#2|) |#2|) 208 T ELT)) (-2812 (((-705 (-420 |#2|))) 213 T ELT)) (-2459 (((-705 (-420 |#2|))) 215 T ELT)) (-2997 (((-2 (|:| |num| (-705 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207 T ELT)) (-2514 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 209 T ELT)) (-4238 (((-1292 $)) 221 T ELT)) (-2461 (((-1292 $)) 222 T ELT)) (-4421 (((-112) $) 220 T ELT)) (-1363 (((-112) $) 219 T ELT) (((-112) $ |#1|) 206 T ELT) (((-112) $ |#2|) 205 T ELT)) (-3457 (($) 154 (|has| (-420 |#2|) (-361)) CONST)) (-3251 (($ (-944)) 100 (|has| (-420 |#2|) (-380)) ELT)) (-2541 (((-3 |#2| "failed")) 200 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-2525 (((-787)) 234 T ELT)) (-3428 (($) 171 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 113 (|has| (-420 |#2|) (-375)) ELT)) (-3543 (($ (-660 $)) 110 (|has| (-420 |#2|) (-375)) ELT) (($ $ $) 109 (|has| (-420 |#2|) (-375)) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 157 (|has| (-420 |#2|) (-361)) ELT)) (-3056 (((-431 $) $) 124 (|has| (-420 |#2|) (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 121 (|has| (-420 |#2|) (-375)) ELT)) (-3478 (((-3 $ "failed") $ $) 104 (|has| (-420 |#2|) (-375)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 115 (|has| (-420 |#2|) (-375)) ELT)) (-4167 (((-787) $) 117 (|has| (-420 |#2|) (-375)) ELT)) (-2837 ((|#1| $ |#1| |#1|) 202 T ELT)) (-4404 (((-3 |#2| "failed")) 201 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 118 (|has| (-420 |#2|) (-375)) ELT)) (-4447 (((-420 |#2|) (-1292 $)) 54 T ELT) (((-420 |#2|)) 67 T ELT)) (-3816 (((-787) $) 162 (|has| (-420 |#2|) (-361)) ELT) (((-3 (-787) "failed") $ $) 150 (|has| (-420 |#2|) (-361)) ELT)) (-3362 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 136 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) 135 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) 204 T ELT) (($ $ (-660 (-1201)) (-660 (-787))) 141 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1201) (-787)) 140 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-660 (-1201))) 139 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1201)) 137 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-787)) 147 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2700 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) 145 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2700 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-3285 (((-705 (-420 |#2|)) (-1292 $) (-1 (-420 |#2|) (-420 |#2|))) 165 (|has| (-420 |#2|) (-375)) ELT)) (-1629 ((|#3|) 170 T ELT)) (-2932 (($) 159 (|has| (-420 |#2|) (-361)) ELT)) (-2729 (((-1292 (-420 |#2|)) $ (-1292 $)) 57 T ELT) (((-705 (-420 |#2|)) (-1292 $) (-1292 $)) 56 T ELT) (((-1292 (-420 |#2|)) $) 73 T ELT) (((-705 (-420 |#2|)) (-1292 $)) 72 T ELT)) (-2176 (((-1292 (-420 |#2|)) $) 70 T ELT) (($ (-1292 (-420 |#2|))) 69 T ELT) ((|#3| $) 186 T ELT) (($ |#3|) 168 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 156 (|has| (-420 |#2|) (-361)) ELT)) (-2714 (((-1292 $) (-1292 $)) 218 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 |#2|)) 44 T ELT) (($ (-420 (-577))) 98 (-2811 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-1063 (-420 (-577))))) ELT) (($ $) 103 (|has| (-420 |#2|) (-375)) ELT)) (-3907 (($ $) 155 (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) 50 (|has| (-420 |#2|) (-146)) ELT)) (-2600 ((|#3| $) 52 T ELT)) (-1920 (((-787)) 32 T CONST)) (-3033 (((-112)) 231 T ELT)) (-1545 (((-112) |#1|) 230 T ELT) (((-112) |#2|) 229 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2559 (((-1292 $)) 74 T ELT)) (-2174 (((-112) $ $) 107 (|has| (-420 |#2|) (-375)) ELT)) (-3998 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199 T ELT)) (-2335 (((-112)) 233 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 134 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) 133 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 144 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1201) (-787)) 143 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-660 (-1201))) 142 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1201)) 138 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2700 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-787)) 148 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2700 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) 146 (-2811 (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2700 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2700 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 132 (|has| (-420 |#2|) (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 129 (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 |#2|)) 46 T ELT) (($ (-420 |#2|) $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| (-420 |#2|) (-375)) ELT))) -(((-354 |#1| |#2| |#3|) (-141) (-1246) (-1268 |t#1|) (-1268 (-420 |t#2|))) (T -354)) -((-2561 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787)))) (-2525 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787)))) (-2335 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-2648 (*1 *2 *3 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-3033 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1545 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1545 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-2944 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-4310 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-4310 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-2463 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-3013 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-3013 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-2461 (*1 *2) (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)))) (-4238 (*1 *2) (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)))) (-4421 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-4264 (*1 *2 *2) (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-2459 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-1450 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-2812 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-4215 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-4326 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4))))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3))))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4))))) (-2764 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3))))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-2 (|:| |num| (-705 *5)) (|:| |den| *5))))) (-1363 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1363 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))))) (-2837 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))))) (-4404 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3)))) (-2541 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1246)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-354 *4 *5 *6)))) (-4292 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *4 (-375)) (-5 *2 (-660 (-975 *4))))) (-3651 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-660 (-660 *3)))))) -(-13 (-740 (-420 |t#2|) |t#3|) (-10 -8 (-15 -2561 ((-787))) (-15 -2525 ((-787))) (-15 -2335 ((-112))) (-15 -2648 ((-112) |t#1| |t#1|)) (-15 -3033 ((-112))) (-15 -1545 ((-112) |t#1|)) (-15 -1545 ((-112) |t#2|)) (-15 -2944 ((-112))) (-15 -4310 ((-112) |t#1|)) (-15 -4310 ((-112) |t#2|)) (-15 -2463 ((-112))) (-15 -3013 ((-112) |t#1|)) (-15 -3013 ((-112) |t#2|)) (-15 -2461 ((-1292 $))) (-15 -4238 ((-1292 $))) (-15 -4421 ((-112) $)) (-15 -1363 ((-112) $)) (-15 -2714 ((-1292 $) (-1292 $))) (-15 -2960 ((-1292 $) (-1292 $))) (-15 -4264 ((-1292 $) (-1292 $))) (-15 -2459 ((-705 (-420 |t#2|)))) (-15 -1450 ((-705 (-420 |t#2|)))) (-15 -2812 ((-705 (-420 |t#2|)))) (-15 -4215 ((-705 (-420 |t#2|)))) (-15 -4326 ((-2 (|:| |num| (-1292 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1911 ($ (-1292 |t#2|) |t#2|)) (-15 -2514 ((-2 (|:| |num| (-1292 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2764 ($ (-1292 |t#2|) |t#2|)) (-15 -2997 ((-2 (|:| |num| (-705 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1363 ((-112) $ |t#1|)) (-15 -1363 ((-112) $ |t#2|)) (-15 -3362 ($ $ (-1 |t#2| |t#2|))) (-15 -2308 ($ $)) (-15 -2837 (|t#1| $ |t#1| |t#1|)) (-15 -4404 ((-3 |t#2| "failed"))) (-15 -2541 ((-3 |t#2| "failed"))) (-15 -3998 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-375)) (-15 -4292 ((-660 (-975 |t#1|)) (-1201))) |%noBranch|) (IF (|has| |t#1| (-380)) (-15 -3651 ((-660 (-660 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-38 #1=(-420 |#2|)) . T) ((-38 $) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-102) . T) ((-111 #0# #0#) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-146))) ((-148) |has| (-420 |#2|) (-148)) ((-629 #0#) -2811 (|has| (-420 |#2|) (-1063 (-420 (-577)))) (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-629 #1#) . T) ((-629 (-577)) . T) ((-629 $) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-626 (-880)) . T) ((-174) . T) ((-627 |#3|) . T) ((-235 $) -2811 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-233 #1#) |has| (-420 |#2|) (-375)) ((-239) -2811 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-238) -2811 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-273 #1#) |has| (-420 |#2|) (-375)) ((-249) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-301) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-318) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-375) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-415) |has| (-420 |#2|) (-361)) ((-380) -2811 (|has| (-420 |#2|) (-380)) (|has| (-420 |#2|) (-361))) ((-361) |has| (-420 |#2|) (-361)) ((-382 #1# |#3|) . T) ((-422 #1# |#3|) . T) ((-389 #1#) . T) ((-424 #1#) . T) ((-465) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-569) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-662 #0#) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-662 #1#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-664 #1#) . T) ((-664 #2=(-577)) |has| (-420 |#2|) (-654 (-577))) ((-664 $) . T) ((-656 #0#) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-656 #1#) . T) ((-656 $) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-654 #1#) . T) ((-654 #2#) |has| (-420 |#2|) (-654 (-577))) ((-733 #0#) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-733 #1#) . T) ((-733 $) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-740 #1# |#3|) . T) ((-742) . T) ((-915 $ #3=(-1201)) -2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201))))) ((-921 (-1201)) -12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) ((-923 #3#) -2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201))))) ((-943) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1063 (-420 (-577))) |has| (-420 |#2|) (-1063 (-420 (-577)))) ((-1063 #1#) . T) ((-1063 (-577)) |has| (-420 |#2|) (-1063 (-577))) ((-1076 #0#) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1076 #1#) . T) ((-1076 $) . T) ((-1081 #0#) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1081 #1#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| (-420 |#2|) (-361)) ((-1242) . T) ((-1246) -2811 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 (((-933 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-933 |#1|) "failed") $) NIL T ELT)) (-2155 (((-933 |#1|) $) NIL T ELT)) (-1911 (($ (-1292 (-933 |#1|))) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-4402 (((-112) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT) (($ $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2936 (((-112) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-4021 (((-933 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 (-933 |#1|)) $) NIL T ELT) (((-1197 $) $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2144 (((-944) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1948 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3995 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 (-1197 (-933 |#1|)) "failed") $ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1542 (($ $ (-1197 (-933 |#1|))) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-933 |#1|) (-380)) CONST)) (-3251 (($ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4336 (((-981 (-1145))) NIL T ELT)) (-3428 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 (-933 |#1|))) NIL T ELT)) (-2932 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3204 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2729 (((-1292 (-933 |#1|)) $) NIL T ELT) (((-705 (-933 |#1|)) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-933 |#1|)) NIL T ELT)) (-3907 (($ $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT) (((-1292 $) (-944)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT) (($ $ (-933 |#1|)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-933 |#1|)) NIL T ELT) (($ (-933 |#1|) $) NIL T ELT))) -(((-355 |#1| |#2|) (-13 (-340 (-933 |#1|)) (-10 -7 (-15 -4336 ((-981 (-1145)))))) (-944) (-944)) (T -355)) -((-4336 (*1 *2) (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-355 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944))))) -(-13 (-340 (-933 |#1|)) (-10 -7 (-15 -4336 ((-981 (-1145)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 58 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 56 (|has| |#1| (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 142 T ELT)) (-2155 ((|#1| $) 113 T ELT)) (-1911 (($ (-1292 |#1|)) 130 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) 124 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) 160 (|has| |#1| (-380)) ELT)) (-4402 (((-112) $) 66 (|has| |#1| (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) 60 (|has| |#1| (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) 62 T ELT)) (-2189 (($) 162 (|has| |#1| (-380)) ELT)) (-2936 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-4021 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 |#1|) $) 117 T ELT) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-2144 (((-944) $) 171 (|has| |#1| (-380)) ELT)) (-1948 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3995 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1542 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 178 T ELT)) (-3457 (($) NIL (|has| |#1| (-380)) CONST)) (-3251 (($ (-944)) 96 (|has| |#1| (-380)) ELT)) (-1792 (((-112) $) 147 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4336 (((-981 (-1145))) 57 T ELT)) (-3428 (($) 158 (|has| |#1| (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 119 (|has| |#1| (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) 90 T ELT) (((-944)) 91 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) 161 (|has| |#1| (-380)) ELT) (((-3 (-787) "failed") $ $) 154 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 |#1|)) 122 T ELT)) (-2932 (($) 159 (|has| |#1| (-380)) ELT)) (-3204 (($) 167 (|has| |#1| (-380)) ELT)) (-2729 (((-1292 |#1|) $) 77 T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) 174 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 100 T ELT)) (-3907 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) 155 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) 144 T ELT) (((-1292 $) (-944)) 98 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) 67 T CONST)) (-2767 (($) 103 T CONST)) (-1427 (($ $) 107 (|has| |#1| (-380)) ELT) (($ $ (-787)) NIL (|has| |#1| (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) 65 T ELT)) (-3051 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-3042 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 86 T ELT)) (** (($ $ (-944)) 180 T ELT) (($ $ (-787)) 181 T ELT) (($ $ (-577)) 179 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT))) -(((-356 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -4336 ((-981 (-1145)))))) (-361) (-1197 |#1|)) (T -356)) -((-4336 (*1 *2) (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) (-14 *4 (-1197 *3))))) -(-13 (-340 |#1|) (-10 -7 (-15 -4336 ((-981 (-1145)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1911 (($ (-1292 |#1|)) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL (|has| |#1| (-380)) ELT)) (-4402 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| |#1| (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| |#1| (-380)) ELT)) (-2936 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-4021 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 |#1|) $) NIL T ELT) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-2144 (((-944) $) NIL (|has| |#1| (-380)) ELT)) (-1948 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3995 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1542 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| |#1| (-380)) CONST)) (-3251 (($ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4336 (((-981 (-1145))) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 |#1|)) NIL T ELT)) (-2932 (($) NIL (|has| |#1| (-380)) ELT)) (-3204 (($) NIL (|has| |#1| (-380)) ELT)) (-2729 (((-1292 |#1|) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3907 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT) (((-1292 $) (-944)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-787)) NIL (|has| |#1| (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-357 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -4336 ((-981 (-1145)))))) (-361) (-944)) (T -357)) -((-4336 (*1 *2) (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944))))) -(-13 (-340 |#1|) (-10 -7 (-15 -4336 ((-981 (-1145)))))) -((-4153 (((-787) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145)))))) 61 T ELT)) (-4226 (((-981 (-1145)) (-1197 |#1|)) 112 T ELT)) (-2704 (((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) (-1197 |#1|)) 103 T ELT)) (-1461 (((-705 |#1|) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145)))))) 113 T ELT)) (-2472 (((-3 (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) "failed") (-944)) 13 T ELT)) (-4355 (((-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145)))))) (-944)) 18 T ELT))) -(((-358 |#1|) (-10 -7 (-15 -4226 ((-981 (-1145)) (-1197 |#1|))) (-15 -2704 ((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) (-1197 |#1|))) (-15 -1461 ((-705 |#1|) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -4153 ((-787) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -2472 ((-3 (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) "failed") (-944))) (-15 -4355 ((-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145)))))) (-944)))) (-361)) (T -358)) -((-4355 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-3 (-1197 *4) (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145))))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-2472 (*1 *2 *3) (|partial| -12 (-5 *3 (-944)) (-5 *2 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) (-4 *4 (-361)) (-5 *2 (-787)) (-5 *1 (-358 *4)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) (-4 *4 (-361)) (-5 *2 (-705 *4)) (-5 *1 (-358 *4)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) (-5 *1 (-358 *4)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-981 (-1145))) (-5 *1 (-358 *4))))) -(-10 -7 (-15 -4226 ((-981 (-1145)) (-1197 |#1|))) (-15 -2704 ((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) (-1197 |#1|))) (-15 -1461 ((-705 |#1|) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -4153 ((-787) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -2472 ((-3 (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) "failed") (-944))) (-15 -4355 ((-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145)))))) (-944)))) -((-3603 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -3603 (|#3| |#1|)) (-15 -3603 (|#1| |#3|))) (-340 |#2|) (-361) (-340 |#2|)) (T -359)) -((-3603 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *2 *4 *3)) (-4 *3 (-340 *4)))) (-3603 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *3 *4 *2)) (-4 *3 (-340 *4))))) -(-10 -7 (-15 -3603 (|#3| |#1|)) (-15 -3603 (|#1| |#3|))) -((-4402 (((-112) $) 60 T ELT)) (-2536 (((-849 (-944)) $) 23 T ELT) (((-944) $) 64 T ELT)) (-1454 (((-3 $ "failed") $) 18 T ELT)) (-3457 (($) 9 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 114 T ELT)) (-3816 (((-3 (-787) "failed") $ $) 92 T ELT) (((-787) $) 79 T ELT)) (-3362 (($ $) 8 T ELT) (($ $ (-787)) NIL T ELT)) (-2932 (($) 53 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 38 T ELT)) (-3907 (((-3 $ "failed") $) 45 T ELT) (($ $) 44 T ELT))) -(((-360 |#1|) (-10 -8 (-15 -2536 ((-944) |#1|)) (-15 -3816 ((-787) |#1|)) (-15 -4402 ((-112) |#1|)) (-15 -2932 (|#1|)) (-15 -2349 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -3907 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -3816 ((-3 (-787) "failed") |#1| |#1|)) (-15 -2536 ((-849 (-944)) |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) (-361)) (T -360)) -NIL -(-10 -8 (-15 -2536 ((-944) |#1|)) (-15 -3816 ((-787) |#1|)) (-15 -4402 ((-112) |#1|)) (-15 -2932 (|#1|)) (-15 -2349 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -3907 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -3816 ((-3 (-787) "failed") |#1| |#1|)) (-15 -2536 ((-849 (-944)) |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 102 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3373 (((-787)) 112 T ELT)) (-3790 (($) 18 T CONST)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 96 T ELT)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2352 (($) 115 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-1742 (($) 100 T ELT)) (-4402 (((-112) $) 99 T ELT)) (-1865 (($ $) 87 T ELT) (($ $ (-787)) 86 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-2536 (((-849 (-944)) $) 89 T ELT) (((-944) $) 97 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-1454 (((-3 $ "failed") $) 111 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-2144 (((-944) $) 114 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-3457 (($) 110 T CONST)) (-3251 (($ (-944)) 113 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 103 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3816 (((-3 (-787) "failed") $ $) 88 T ELT) (((-787) $) 98 T ELT)) (-3362 (($ $) 109 T ELT) (($ $ (-787)) 107 T ELT)) (-2932 (($) 101 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 104 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-3907 (((-3 $ "failed") $) 90 T ELT) (($ $) 105 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $) 108 T ELT) (($ $ (-787)) 106 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 73 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) +((-2104 (*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1297 *1)) (-4 *1 (-340 *3)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-375)) (-5 *2 (-1297 *1)) (-4 *1 (-340 *4)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1297 *3)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) (-5 *2 (-710 *4)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) (-2346 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) (-4263 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) (-3417 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-2346 (*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1202 *1)) (-4 *1 (-340 *4)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-2318 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-2984 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-4235 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) (-2343 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-1464 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) (-4 *3 (-375)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1202 *3)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1202 *3)))) (-3467 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1202 *3))))) +(-13 (-1316 |t#1|) (-1068 |t#1|) (-10 -8 (-15 -2104 ((-1297 $))) (-15 -2104 ((-1297 $) (-949))) (-15 -3762 ((-1297 |t#1|) $)) (-15 -3762 ((-710 |t#1|) (-1297 $))) (-15 -2385 ($ (-1297 |t#1|))) (-15 -2346 ((-1202 |t#1|) $)) (-15 -4263 ((-1202 |t#1|))) (-15 -3417 ((-949))) (-15 -1597 ((-949) $)) (-15 -2794 (|t#1| $)) (-15 -2318 (|t#1| $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-361)) (-15 -2346 ((-1202 $) $ (-949))) (-15 -2794 ($ $ (-949))) (-15 -2318 ($ $ (-949))) (-15 -2984 ($)) (-15 -4235 ($)) (-15 -3524 ((-112) $)) (-15 -2343 ($)) (-15 -1464 ($ $ (-1202 |t#1|))) (-15 -3200 ((-1202 |t#1|) $)) (-15 -3467 ((-1202 |t#1|) $)) (-15 -3467 ((-3 (-1202 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2867 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-235 $) |has| |#1| (-380)) ((-239) |has| |#1| (-380)) ((-238) |has| |#1| (-380)) ((-249) . T) ((-301) . T) ((-318) . T) ((-1316 |#1|) . T) ((-375) . T) ((-415) -2867 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-380) |has| |#1| (-380)) ((-361) |has| |#1| (-380)) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 |#1|) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-380)) ((-1247) . T) ((-1251) . T) ((-1304 |#1|) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-1498 (($ (-1205) $) 100 T ELT)) (-2893 (($) 89 T ELT)) (-1709 (((-1150) (-1150)) 9 T ELT)) (-1541 (($) 90 T ELT)) (-3873 (($) 104 T ELT) (($ (-327 (-720))) 112 T ELT) (($ (-327 (-722))) 108 T ELT) (($ (-327 (-715))) 116 T ELT) (($ (-327 (-391))) 123 T ELT) (($ (-327 (-577))) 119 T ELT) (($ (-327 (-171 (-391)))) 127 T ELT)) (-4454 (($ (-1205) $) 101 T ELT)) (-3594 (($ (-665 (-885))) 91 T ELT)) (-3268 (((-1302) $) 87 T ELT)) (-3185 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2552 (($ (-1150)) 58 T ELT)) (-2788 (((-1134) $) 30 T ELT)) (-2423 (($ (-1122 (-980 (-577))) $) 97 T ELT) (($ (-1122 (-980 (-577))) (-980 (-577)) $) 98 T ELT)) (-2855 (($ (-1150)) 99 T ELT)) (-1845 (($ (-1205) $) 129 T ELT) (($ (-1205) $ $) 130 T ELT)) (-3333 (($ (-1206) (-665 (-1206))) 88 T ELT)) (-4479 (($ (-1188)) 94 T ELT) (($ (-665 (-1188))) 92 T ELT)) (-3709 (((-885) $) 132 T ELT)) (-1497 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2687 (-112)) (|:| -3254 (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |blockBranch| (-665 $)) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -3433 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -2773 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -2773 $))) (|:| |commonBranch| (-2 (|:| -2758 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885)))) $) 50 T ELT)) (-2230 (($ (-1188)) 202 T ELT)) (-3116 (($ (-665 $)) 128 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2904 (($ (-1206) (-1188)) 135 T ELT) (($ (-1206) (-327 (-722))) 175 T ELT) (($ (-1206) (-327 (-720))) 176 T ELT) (($ (-1206) (-327 (-715))) 177 T ELT) (($ (-1206) (-710 (-722))) 138 T ELT) (($ (-1206) (-710 (-720))) 141 T ELT) (($ (-1206) (-710 (-715))) 144 T ELT) (($ (-1206) (-1297 (-722))) 147 T ELT) (($ (-1206) (-1297 (-720))) 150 T ELT) (($ (-1206) (-1297 (-715))) 153 T ELT) (($ (-1206) (-710 (-327 (-722)))) 156 T ELT) (($ (-1206) (-710 (-327 (-720)))) 159 T ELT) (($ (-1206) (-710 (-327 (-715)))) 162 T ELT) (($ (-1206) (-1297 (-327 (-722)))) 165 T ELT) (($ (-1206) (-1297 (-327 (-720)))) 168 T ELT) (($ (-1206) (-1297 (-327 (-715)))) 171 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-722))) 172 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-720))) 173 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-715))) 174 T ELT) (($ (-1206) (-327 (-577))) 199 T ELT) (($ (-1206) (-327 (-391))) 200 T ELT) (($ (-1206) (-327 (-171 (-391)))) 201 T ELT) (($ (-1206) (-710 (-327 (-577)))) 180 T ELT) (($ (-1206) (-710 (-327 (-391)))) 183 T ELT) (($ (-1206) (-710 (-327 (-171 (-391))))) 186 T ELT) (($ (-1206) (-1297 (-327 (-577)))) 189 T ELT) (($ (-1206) (-1297 (-327 (-391)))) 192 T ELT) (($ (-1206) (-1297 (-327 (-171 (-391))))) 195 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-577))) 196 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-391))) 197 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-171 (-391)))) 198 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-341) (-13 (-1130) (-10 -8 (-15 -2423 ($ (-1122 (-980 (-577))) $)) (-15 -2423 ($ (-1122 (-980 (-577))) (-980 (-577)) $)) (-15 -1498 ($ (-1205) $)) (-15 -4454 ($ (-1205) $)) (-15 -2552 ($ (-1150))) (-15 -2855 ($ (-1150))) (-15 -4479 ($ (-1188))) (-15 -4479 ($ (-665 (-1188)))) (-15 -2230 ($ (-1188))) (-15 -3873 ($)) (-15 -3873 ($ (-327 (-720)))) (-15 -3873 ($ (-327 (-722)))) (-15 -3873 ($ (-327 (-715)))) (-15 -3873 ($ (-327 (-391)))) (-15 -3873 ($ (-327 (-577)))) (-15 -3873 ($ (-327 (-171 (-391))))) (-15 -1845 ($ (-1205) $)) (-15 -1845 ($ (-1205) $ $)) (-15 -2904 ($ (-1206) (-1188))) (-15 -2904 ($ (-1206) (-327 (-722)))) (-15 -2904 ($ (-1206) (-327 (-720)))) (-15 -2904 ($ (-1206) (-327 (-715)))) (-15 -2904 ($ (-1206) (-710 (-722)))) (-15 -2904 ($ (-1206) (-710 (-720)))) (-15 -2904 ($ (-1206) (-710 (-715)))) (-15 -2904 ($ (-1206) (-1297 (-722)))) (-15 -2904 ($ (-1206) (-1297 (-720)))) (-15 -2904 ($ (-1206) (-1297 (-715)))) (-15 -2904 ($ (-1206) (-710 (-327 (-722))))) (-15 -2904 ($ (-1206) (-710 (-327 (-720))))) (-15 -2904 ($ (-1206) (-710 (-327 (-715))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-722))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-720))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-715))))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-722)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-720)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-715)))) (-15 -2904 ($ (-1206) (-327 (-577)))) (-15 -2904 ($ (-1206) (-327 (-391)))) (-15 -2904 ($ (-1206) (-327 (-171 (-391))))) (-15 -2904 ($ (-1206) (-710 (-327 (-577))))) (-15 -2904 ($ (-1206) (-710 (-327 (-391))))) (-15 -2904 ($ (-1206) (-710 (-327 (-171 (-391)))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-577))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-391))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-171 (-391)))))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-577)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-391)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-171 (-391))))) (-15 -3116 ($ (-665 $))) (-15 -2893 ($)) (-15 -1541 ($)) (-15 -3594 ($ (-665 (-885)))) (-15 -3333 ($ (-1206) (-665 (-1206)))) (-15 -3185 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1497 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2687 (-112)) (|:| -3254 (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |blockBranch| (-665 $)) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -3433 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -2773 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -2773 $))) (|:| |commonBranch| (-2 (|:| -2758 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885)))) $)) (-15 -3268 ((-1302) $)) (-15 -2788 ((-1134) $)) (-15 -1709 ((-1150) (-1150)))))) (T -341)) +((-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *1 (-341)))) (-2423 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *3 (-980 (-577))) (-5 *1 (-341)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-4454 (*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341)))) (-2855 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341)))) (-4479 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341)))) (-4479 (*1 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-341)))) (-2230 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341)))) (-3873 (*1 *1) (-5 *1 (-341))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-327 (-720))) (-5 *1 (-341)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-327 (-722))) (-5 *1 (-341)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-1845 (*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-1845 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-722))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-720))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-722))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-720))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-715))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-722))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-720))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-715))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-722)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-720)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-715)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-722)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-720)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-715)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-722))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-720))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-715))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-577)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-391)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-577)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-391)))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-577))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-391))) (-5 *1 (-341)))) (-2904 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-3116 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-5 *1 (-341)))) (-2893 (*1 *1) (-5 *1 (-341))) (-1541 (*1 *1) (-5 *1 (-341))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-341)))) (-3333 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-341)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-341)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| (-341)) (|:| |elseClause| (-341)))) (|:| |returnBranch| (-2 (|:| -2687 (-112)) (|:| -3254 (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |blockBranch| (-665 (-341))) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -3433 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -2773 (-341)))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -2773 (-341)))) (|:| |commonBranch| (-2 (|:| -2758 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885))))) (-5 *1 (-341)))) (-3268 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-341)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-341)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) +(-13 (-1130) (-10 -8 (-15 -2423 ($ (-1122 (-980 (-577))) $)) (-15 -2423 ($ (-1122 (-980 (-577))) (-980 (-577)) $)) (-15 -1498 ($ (-1205) $)) (-15 -4454 ($ (-1205) $)) (-15 -2552 ($ (-1150))) (-15 -2855 ($ (-1150))) (-15 -4479 ($ (-1188))) (-15 -4479 ($ (-665 (-1188)))) (-15 -2230 ($ (-1188))) (-15 -3873 ($)) (-15 -3873 ($ (-327 (-720)))) (-15 -3873 ($ (-327 (-722)))) (-15 -3873 ($ (-327 (-715)))) (-15 -3873 ($ (-327 (-391)))) (-15 -3873 ($ (-327 (-577)))) (-15 -3873 ($ (-327 (-171 (-391))))) (-15 -1845 ($ (-1205) $)) (-15 -1845 ($ (-1205) $ $)) (-15 -2904 ($ (-1206) (-1188))) (-15 -2904 ($ (-1206) (-327 (-722)))) (-15 -2904 ($ (-1206) (-327 (-720)))) (-15 -2904 ($ (-1206) (-327 (-715)))) (-15 -2904 ($ (-1206) (-710 (-722)))) (-15 -2904 ($ (-1206) (-710 (-720)))) (-15 -2904 ($ (-1206) (-710 (-715)))) (-15 -2904 ($ (-1206) (-1297 (-722)))) (-15 -2904 ($ (-1206) (-1297 (-720)))) (-15 -2904 ($ (-1206) (-1297 (-715)))) (-15 -2904 ($ (-1206) (-710 (-327 (-722))))) (-15 -2904 ($ (-1206) (-710 (-327 (-720))))) (-15 -2904 ($ (-1206) (-710 (-327 (-715))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-722))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-720))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-715))))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-722)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-720)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-715)))) (-15 -2904 ($ (-1206) (-327 (-577)))) (-15 -2904 ($ (-1206) (-327 (-391)))) (-15 -2904 ($ (-1206) (-327 (-171 (-391))))) (-15 -2904 ($ (-1206) (-710 (-327 (-577))))) (-15 -2904 ($ (-1206) (-710 (-327 (-391))))) (-15 -2904 ($ (-1206) (-710 (-327 (-171 (-391)))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-577))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-391))))) (-15 -2904 ($ (-1206) (-1297 (-327 (-171 (-391)))))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-577)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-391)))) (-15 -2904 ($ (-1206) (-665 (-980 (-577))) (-327 (-171 (-391))))) (-15 -3116 ($ (-665 $))) (-15 -2893 ($)) (-15 -1541 ($)) (-15 -3594 ($ (-665 (-885)))) (-15 -3333 ($ (-1206) (-665 (-1206)))) (-15 -3185 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1497 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2687 (-112)) (|:| -3254 (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) (|:| |blockBranch| (-665 $)) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -3433 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -2773 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -2773 $))) (|:| |commonBranch| (-2 (|:| -2758 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885)))) $)) (-15 -3268 ((-1302) $)) (-15 -2788 ((-1134) $)) (-15 -1709 ((-1150) (-1150))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3841 (((-112) $) 13 T ELT)) (-2757 (($ |#1|) 10 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2772 (($ |#1|) 12 T ELT)) (-3709 (((-885) $) 19 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3656 ((|#1| $) 14 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 21 T ELT))) +(((-342 |#1|) (-13 (-870) (-10 -8 (-15 -2757 ($ |#1|)) (-15 -2772 ($ |#1|)) (-15 -3841 ((-112) $)) (-15 -3656 (|#1| $)))) (-870)) (T -342)) +((-2757 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) (-2772 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-870)))) (-3656 (*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870))))) +(-13 (-870) (-10 -8 (-15 -2757 ($ |#1|)) (-15 -2772 ($ |#1|)) (-15 -3841 ((-112) $)) (-15 -3656 (|#1| $)))) +((-3998 (((-341) (-1206) (-980 (-577))) 23 T ELT)) (-4441 (((-341) (-1206) (-980 (-577))) 27 T ELT)) (-1490 (((-341) (-1206) (-1122 (-980 (-577))) (-1122 (-980 (-577)))) 26 T ELT) (((-341) (-1206) (-980 (-577)) (-980 (-577))) 24 T ELT)) (-4163 (((-341) (-1206) (-980 (-577))) 31 T ELT))) +(((-343) (-10 -7 (-15 -3998 ((-341) (-1206) (-980 (-577)))) (-15 -1490 ((-341) (-1206) (-980 (-577)) (-980 (-577)))) (-15 -1490 ((-341) (-1206) (-1122 (-980 (-577))) (-1122 (-980 (-577))))) (-15 -4441 ((-341) (-1206) (-980 (-577)))) (-15 -4163 ((-341) (-1206) (-980 (-577)))))) (T -343)) +((-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-4441 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-1122 (-980 (-577)))) (-5 *2 (-341)) (-5 *1 (-343)))) (-1490 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343))))) +(-10 -7 (-15 -3998 ((-341) (-1206) (-980 (-577)))) (-15 -1490 ((-341) (-1206) (-980 (-577)) (-980 (-577)))) (-15 -1490 ((-341) (-1206) (-1122 (-980 (-577))) (-1122 (-980 (-577))))) (-15 -4441 ((-341) (-1206) (-980 (-577)))) (-15 -4163 ((-341) (-1206) (-980 (-577))))) +((-3586 (((-112) $ $) NIL T ELT)) (-1581 (((-519) $) 20 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4099 (((-986 (-792)) $) 18 T ELT)) (-3441 (((-257) $) 7 T ELT)) (-3709 (((-885) $) 26 T ELT)) (-3024 (((-986 (-185 (-140))) $) 16 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3391 (((-665 (-896 (-1211) (-792))) $) 12 T ELT)) (-3018 (((-112) $ $) 22 T ELT))) +(((-344) (-13 (-1130) (-10 -8 (-15 -3441 ((-257) $)) (-15 -3391 ((-665 (-896 (-1211) (-792))) $)) (-15 -4099 ((-986 (-792)) $)) (-15 -3024 ((-986 (-185 (-140))) $)) (-15 -1581 ((-519) $))))) (T -344)) +((-3441 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-1211) (-792)))) (-5 *1 (-344)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-986 (-792))) (-5 *1 (-344)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-986 (-185 (-140)))) (-5 *1 (-344)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) +(-13 (-1130) (-10 -8 (-15 -3441 ((-257) $)) (-15 -3391 ((-665 (-896 (-1211) (-792))) $)) (-15 -4099 ((-986 (-792)) $)) (-15 -3024 ((-986 (-185 (-140))) $)) (-15 -1581 ((-519) $)))) +((-4417 (((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4417 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-375) (-1273 |#5|) (-1273 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -345)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *9 (-375)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-420 *10))) (-5 *2 (-348 *9 *10 *11 *12)) (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-354 *9 *10 *11))))) +(-10 -7 (-15 -4417 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) +((-3683 (((-112) $) 14 T ELT))) +(((-346 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3683 ((-112) |#1|))) (-347 |#2| |#3| |#4| |#5|) (-375) (-1273 |#2|) (-1273 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -346)) +NIL +(-10 -8 (-15 -3683 ((-112) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-2060 (($ $) 29 T ELT)) (-3683 (((-112) $) 28 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-2459 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 35 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2343 (((-3 |#4| "failed") $) 27 T ELT)) (-4157 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 34 T ELT) (($ |#4|) 33 T ELT) (($ |#1| |#1|) 32 T ELT) (($ |#1| |#1| (-577)) 31 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 26 T ELT)) (-4267 (((-2 (|:| -3410 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT))) +(((-347 |#1| |#2| |#3| |#4|) (-141) (-375) (-1273 |t#1|) (-1273 (-420 |t#2|)) (-354 |t#1| |t#2| |t#3|)) (T -347)) +((-2459 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-426 *4 (-420 *4) *5 *6)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) (-4 *1 (-347 *3 *4 *5 *6)))) (-4157 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) (-4157 (*1 *1 *2 *2) (-12 (-4 *2 (-375)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))) (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) (-4157 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1273 *2)) (-4 *5 (-1273 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) (-4 *6 (-354 *2 *4 *5)))) (-4267 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-2 (|:| -3410 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) (-2060 (*1 *1 *1) (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112)))) (-2343 (*1 *2 *1) (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *2 (-354 *3 *4 *5)))) (-4157 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-375)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2459 ((-426 |t#2| (-420 |t#2|) |t#3| |t#4|) $)) (-15 -4157 ($ (-426 |t#2| (-420 |t#2|) |t#3| |t#4|))) (-15 -4157 ($ |t#4|)) (-15 -4157 ($ |t#1| |t#1|)) (-15 -4157 ($ |t#1| |t#1| (-577))) (-15 -4267 ((-2 (|:| -3410 (-426 |t#2| (-420 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2060 ($ $)) (-15 -3683 ((-112) $)) (-15 -2343 ((-3 |t#4| "failed") $)) (-15 -4157 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2060 (($ $) 33 T ELT)) (-3683 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2557 (((-1297 |#4|) $) 134 T ELT)) (-2459 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 31 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (((-3 |#4| "failed") $) 36 T ELT)) (-1372 (((-1297 |#4|) $) 126 T ELT)) (-4157 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-577)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-4267 (((-2 (|:| -3410 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-3709 (((-885) $) 17 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 14 T CONST)) (-3018 (((-112) $ $) 20 T ELT)) (-3128 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 25 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 23 T ELT))) +(((-348 |#1| |#2| |#3| |#4|) (-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1372 ((-1297 |#4|) $)) (-15 -2557 ((-1297 |#4|) $)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -348)) +((-1372 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5)))) (-2557 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5))))) +(-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1372 ((-1297 |#4|) $)) (-15 -2557 ((-1297 |#4|) $)))) +((-3373 (($ $ (-1206) |#2|) NIL T ELT) (($ $ (-665 (-1206)) (-665 |#2|)) 20 T ELT) (($ $ (-665 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL T ELT)) (-2916 (($ $ |#2|) 11 T ELT))) +(((-349 |#1| |#2|) (-10 -8 (-15 -2916 (|#1| |#1| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#2| |#2|)) (-15 -3373 (|#1| |#1| (-305 |#2|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 |#2|))) (-15 -3373 (|#1| |#1| (-1206) |#2|))) (-350 |#2|) (-1130)) (T -349)) +NIL +(-10 -8 (-15 -2916 (|#1| |#1| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#2| |#2|)) (-15 -3373 (|#1| |#1| (-305 |#2|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 |#2|))) (-15 -3373 (|#1| |#1| (-1206) |#2|))) +((-4417 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3373 (($ $ (-1206) |#1|) 17 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 16 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 15 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 12 (|has| |#1| (-320 |#1|)) ELT)) (-2916 (($ $ |#1|) 11 (|has| |#1| (-297 |#1| |#1|)) ELT))) +(((-350 |#1|) (-141) (-1130)) (T -350)) +((-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1130))))) +(-13 (-10 -8 (-15 -4417 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-297 |t#1| |t#1|)) (-6 (-297 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-527 (-1206) |t#1|)) (-6 (-527 (-1206) |t#1|)) |%noBranch|))) +(((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-1247) |has| |#1| (-297 |#1| |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1206)) $) NIL T ELT)) (-1479 (((-112)) 96 T ELT) (((-112) (-112)) 97 T ELT)) (-3613 (((-665 (-630 $)) $) NIL T ELT)) (-1660 (($ $) NIL T ELT)) (-2785 (($ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4313 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-1638 (($ $) NIL T ELT)) (-2757 (($ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 $ "failed") (-327 |#3|)) 76 T ELT) (((-3 $ "failed") (-1206)) 103 T ELT) (((-3 $ "failed") (-327 (-577))) 64 (|has| |#3| (-1068 (-577))) ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 70 (|has| |#3| (-1068 (-577))) ELT) (((-3 $ "failed") (-980 (-577))) 65 (|has| |#3| (-1068 (-577))) ELT) (((-3 $ "failed") (-327 (-391))) 94 (|has| |#3| (-1068 (-391))) ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 88 (|has| |#3| (-1068 (-391))) ELT) (((-3 $ "failed") (-980 (-391))) 83 (|has| |#3| (-1068 (-391))) ELT)) (-3783 (((-630 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-327 |#3|)) 77 T ELT) (($ (-1206)) 104 T ELT) (($ (-327 (-577))) 66 (|has| |#3| (-1068 (-577))) ELT) (($ (-420 (-980 (-577)))) 71 (|has| |#3| (-1068 (-577))) ELT) (($ (-980 (-577))) 67 (|has| |#3| (-1068 (-577))) ELT) (($ (-327 (-391))) 95 (|has| |#3| (-1068 (-391))) ELT) (($ (-420 (-980 (-391)))) 89 (|has| |#3| (-1068 (-391))) ELT) (($ (-980 (-391))) 85 (|has| |#3| (-1068 (-391))) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2450 (($) 101 T ELT)) (-2754 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1529 (((-665 (-115)) $) NIL T ELT)) (-3706 (((-115) (-115)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2310 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-2465 (((-1202 $) (-630 $)) NIL (|has| $ (-1079)) ELT)) (-4417 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-2998 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2445 (($ $) 99 T ELT)) (-3825 (($ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3693 (((-665 (-630 $)) $) NIL T ELT)) (-4399 (($ (-115) $) 98 T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4241 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-2553 (((-792) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3219 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-2355 (($ $) NIL T ELT)) (-2820 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3373 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-2916 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-2106 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3641 (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-4263 (($ $) NIL (|has| $ (-1079)) ELT)) (-1648 (($ $) NIL T ELT)) (-2772 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-577)) NIL T ELT) (((-327 |#3|) $) 102 T ELT)) (-3331 (((-792)) NIL T CONST)) (-2907 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1448 (((-112) (-115)) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2861 (($ $) NIL T ELT)) (-2834 (($ $) NIL T ELT)) (-2847 (($ $) NIL T ELT)) (-2215 (($ $) NIL T ELT)) (-2839 (($) 100 T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) +(((-351 |#1| |#2| |#3|) (-13 (-313) (-38 |#3|) (-1068 |#3|) (-926 (-1206)) (-10 -8 (-15 -3783 ($ (-327 |#3|))) (-15 -4335 ((-3 $ "failed") (-327 |#3|))) (-15 -3783 ($ (-1206))) (-15 -4335 ((-3 $ "failed") (-1206))) (-15 -3709 ((-327 |#3|) $)) (IF (|has| |#3| (-1068 (-577))) (PROGN (-15 -3783 ($ (-327 (-577)))) (-15 -4335 ((-3 $ "failed") (-327 (-577)))) (-15 -3783 ($ (-420 (-980 (-577))))) (-15 -4335 ((-3 $ "failed") (-420 (-980 (-577))))) (-15 -3783 ($ (-980 (-577)))) (-15 -4335 ((-3 $ "failed") (-980 (-577))))) |%noBranch|) (IF (|has| |#3| (-1068 (-391))) (PROGN (-15 -3783 ($ (-327 (-391)))) (-15 -4335 ((-3 $ "failed") (-327 (-391)))) (-15 -3783 ($ (-420 (-980 (-391))))) (-15 -4335 ((-3 $ "failed") (-420 (-980 (-391))))) (-15 -3783 ($ (-980 (-391)))) (-15 -4335 ((-3 $ "failed") (-980 (-391))))) |%noBranch|) (-15 -2215 ($ $)) (-15 -3770 ($ $)) (-15 -2355 ($ $)) (-15 -3825 ($ $)) (-15 -2445 ($ $)) (-15 -2757 ($ $)) (-15 -2772 ($ $)) (-15 -2785 ($ $)) (-15 -2834 ($ $)) (-15 -2847 ($ $)) (-15 -2861 ($ $)) (-15 -1638 ($ $)) (-15 -1648 ($ $)) (-15 -1660 ($ $)) (-15 -2450 ($)) (-15 -3891 ((-665 (-1206)) $)) (-15 -1479 ((-112))) (-15 -1479 ((-112) (-112))))) (-665 (-1206)) (-665 (-1206)) (-400)) (T -351)) +((-3783 (*1 *1 *2) (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 *2)) (-14 *4 (-665 *2)) (-4 *5 (-400)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 *2)) (-14 *4 (-665 *2)) (-4 *5 (-400)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-327 *5)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2215 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-3825 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2445 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2772 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2785 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2834 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2847 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2861 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1638 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2450 (*1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-400)))) (-1479 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400))))) +(-13 (-313) (-38 |#3|) (-1068 |#3|) (-926 (-1206)) (-10 -8 (-15 -3783 ($ (-327 |#3|))) (-15 -4335 ((-3 $ "failed") (-327 |#3|))) (-15 -3783 ($ (-1206))) (-15 -4335 ((-3 $ "failed") (-1206))) (-15 -3709 ((-327 |#3|) $)) (IF (|has| |#3| (-1068 (-577))) (PROGN (-15 -3783 ($ (-327 (-577)))) (-15 -4335 ((-3 $ "failed") (-327 (-577)))) (-15 -3783 ($ (-420 (-980 (-577))))) (-15 -4335 ((-3 $ "failed") (-420 (-980 (-577))))) (-15 -3783 ($ (-980 (-577)))) (-15 -4335 ((-3 $ "failed") (-980 (-577))))) |%noBranch|) (IF (|has| |#3| (-1068 (-391))) (PROGN (-15 -3783 ($ (-327 (-391)))) (-15 -4335 ((-3 $ "failed") (-327 (-391)))) (-15 -3783 ($ (-420 (-980 (-391))))) (-15 -4335 ((-3 $ "failed") (-420 (-980 (-391))))) (-15 -3783 ($ (-980 (-391)))) (-15 -4335 ((-3 $ "failed") (-980 (-391))))) |%noBranch|) (-15 -2215 ($ $)) (-15 -3770 ($ $)) (-15 -2355 ($ $)) (-15 -3825 ($ $)) (-15 -2445 ($ $)) (-15 -2757 ($ $)) (-15 -2772 ($ $)) (-15 -2785 ($ $)) (-15 -2834 ($ $)) (-15 -2847 ($ $)) (-15 -2861 ($ $)) (-15 -1638 ($ $)) (-15 -1648 ($ $)) (-15 -1660 ($ $)) (-15 -2450 ($)) (-15 -3891 ((-665 (-1206)) $)) (-15 -1479 ((-112))) (-15 -1479 ((-112) (-112))))) +((-4417 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-352 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4417 (|#8| (-1 |#5| |#1|) |#4|))) (-1251) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-1251) (-1273 |#5|) (-1273 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -352)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1251)) (-4 *8 (-1251)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *9 (-1273 *8)) (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1273 (-420 *9)))))) +(-10 -7 (-15 -4417 (|#8| (-1 |#5| |#1|) |#4|))) +((-3191 (((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-2385 (($ (-1297 (-420 |#3|)) (-1297 $)) NIL T ELT) (($ (-1297 (-420 |#3|))) NIL T ELT) (($ (-1297 |#3|) |#3|) 173 T ELT)) (-1903 (((-1297 $) (-1297 $)) 156 T ELT)) (-2628 (((-665 (-665 |#2|))) 126 T ELT)) (-3617 (((-112) |#2| |#2|) 76 T ELT)) (-2796 (($ $) 148 T ELT)) (-3603 (((-792)) 172 T ELT)) (-4042 (((-1297 $) (-1297 $)) 218 T ELT)) (-3506 (((-665 (-980 |#2|)) (-1206)) 115 T ELT)) (-3255 (((-112) $) 169 T ELT)) (-2798 (((-112) $) 27 T ELT) (((-112) $ |#2|) 31 T ELT) (((-112) $ |#3|) 222 T ELT)) (-2731 (((-3 |#3| "failed")) 52 T ELT)) (-2918 (((-792)) 184 T ELT)) (-2916 ((|#2| $ |#2| |#2|) 140 T ELT)) (-3585 (((-3 |#3| "failed")) 71 T ELT)) (-3641 (($ $ (-1 (-420 |#3|) (-420 |#3|))) NIL T ELT) (($ $ (-1 (-420 |#3|) (-420 |#3|)) (-792)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 226 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2591 (((-1297 $) (-1297 $)) 162 T ELT)) (-1567 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-3702 (((-112)) 34 T ELT))) +(((-353 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2628 ((-665 (-665 |#2|)))) (-15 -3506 ((-665 (-980 |#2|)) (-1206))) (-15 -1567 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2731 ((-3 |#3| "failed"))) (-15 -3585 ((-3 |#3| "failed"))) (-15 -2916 (|#2| |#1| |#2| |#2|)) (-15 -2796 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2798 ((-112) |#1| |#3|)) (-15 -2798 ((-112) |#1| |#2|)) (-15 -2385 (|#1| (-1297 |#3|) |#3|)) (-15 -3191 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1903 ((-1297 |#1|) (-1297 |#1|))) (-15 -4042 ((-1297 |#1|) (-1297 |#1|))) (-15 -2591 ((-1297 |#1|) (-1297 |#1|))) (-15 -2798 ((-112) |#1|)) (-15 -3255 ((-112) |#1|)) (-15 -3617 ((-112) |#2| |#2|)) (-15 -3702 ((-112))) (-15 -2918 ((-792))) (-15 -3603 ((-792))) (-15 -3641 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-792))) (-15 -3641 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -2385 (|#1| (-1297 (-420 |#3|)))) (-15 -2385 (|#1| (-1297 (-420 |#3|)) (-1297 |#1|)))) (-354 |#2| |#3| |#4|) (-1251) (-1273 |#2|) (-1273 (-420 |#3|))) (T -353)) +((-3603 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-2918 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-3702 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-3617 (*1 *2 *3 *3) (-12 (-4 *3 (-1251)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) (-3585 (*1 *2) (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-2731 (*1 *2) (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-5 *2 (-665 (-980 *5))) (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) (-2628 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-665 (-665 *4))) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6))))) +(-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2628 ((-665 (-665 |#2|)))) (-15 -3506 ((-665 (-980 |#2|)) (-1206))) (-15 -1567 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2731 ((-3 |#3| "failed"))) (-15 -3585 ((-3 |#3| "failed"))) (-15 -2916 (|#2| |#1| |#2| |#2|)) (-15 -2796 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2798 ((-112) |#1| |#3|)) (-15 -2798 ((-112) |#1| |#2|)) (-15 -2385 (|#1| (-1297 |#3|) |#3|)) (-15 -3191 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1903 ((-1297 |#1|) (-1297 |#1|))) (-15 -4042 ((-1297 |#1|) (-1297 |#1|))) (-15 -2591 ((-1297 |#1|) (-1297 |#1|))) (-15 -2798 ((-112) |#1|)) (-15 -3255 ((-112) |#1|)) (-15 -3617 ((-112) |#2| |#2|)) (-15 -3702 ((-112))) (-15 -2918 ((-792))) (-15 -3603 ((-792))) (-15 -3641 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-792))) (-15 -3641 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -2385 (|#1| (-1297 (-420 |#3|)))) (-15 -2385 (|#1| (-1297 (-420 |#3|)) (-1297 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3191 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 211 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 105 (|has| (-420 |#2|) (-375)) ELT)) (-2261 (($ $) 106 (|has| (-420 |#2|) (-375)) ELT)) (-2538 (((-112) $) 108 (|has| (-420 |#2|) (-375)) ELT)) (-2901 (((-710 (-420 |#2|)) (-1297 $)) 53 T ELT) (((-710 (-420 |#2|))) 68 T ELT)) (-2318 (((-420 |#2|) $) 59 T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 158 (|has| (-420 |#2|) (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 125 (|has| (-420 |#2|) (-375)) ELT)) (-3206 (((-431 $) $) 126 (|has| (-420 |#2|) (-375)) ELT)) (-2495 (((-112) $ $) 116 (|has| (-420 |#2|) (-375)) ELT)) (-3005 (((-792)) 99 (|has| (-420 |#2|) (-380)) ELT)) (-2375 (((-112)) 228 T ELT)) (-1929 (((-112) |#1|) 227 T ELT) (((-112) |#2|) 226 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 185 (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) 180 T ELT)) (-3783 (((-577) $) 184 (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-420 (-577)) $) 182 (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-420 |#2|) $) 181 T ELT)) (-2385 (($ (-1297 (-420 |#2|)) (-1297 $)) 55 T ELT) (($ (-1297 (-420 |#2|))) 71 T ELT) (($ (-1297 |#2|) |#2|) 210 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-420 |#2|) (-361)) ELT)) (-3531 (($ $ $) 120 (|has| (-420 |#2|) (-375)) ELT)) (-3921 (((-710 (-420 |#2|)) $ (-1297 $)) 60 T ELT) (((-710 (-420 |#2|)) $) 66 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 177 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 176 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-710 $) (-1297 $)) 175 T ELT) (((-710 (-420 |#2|)) (-710 $)) 174 T ELT)) (-1903 (((-1297 $) (-1297 $)) 216 T ELT)) (-2060 (($ |#3|) 169 T ELT) (((-3 $ "failed") (-420 |#3|)) 166 (|has| (-420 |#2|) (-375)) ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2628 (((-665 (-665 |#1|))) 197 (|has| |#1| (-380)) ELT)) (-3617 (((-112) |#1| |#1|) 232 T ELT)) (-1641 (((-949)) 61 T ELT)) (-1424 (($) 102 (|has| (-420 |#2|) (-380)) ELT)) (-4338 (((-112)) 225 T ELT)) (-2600 (((-112) |#1|) 224 T ELT) (((-112) |#2|) 223 T ELT)) (-3541 (($ $ $) 119 (|has| (-420 |#2|) (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 114 (|has| (-420 |#2|) (-375)) ELT)) (-2796 (($ $) 203 T ELT)) (-2213 (($) 160 (|has| (-420 |#2|) (-361)) ELT)) (-3275 (((-112) $) 161 (|has| (-420 |#2|) (-361)) ELT)) (-3987 (($ $ (-792)) 152 (|has| (-420 |#2|) (-361)) ELT) (($ $) 151 (|has| (-420 |#2|) (-361)) ELT)) (-3567 (((-112) $) 127 (|has| (-420 |#2|) (-375)) ELT)) (-4030 (((-949) $) 163 (|has| (-420 |#2|) (-361)) ELT) (((-854 (-949)) $) 149 (|has| (-420 |#2|) (-361)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-3603 (((-792)) 235 T ELT)) (-4042 (((-1297 $) (-1297 $)) 217 T ELT)) (-2794 (((-420 |#2|) $) 58 T ELT)) (-3506 (((-665 (-980 |#1|)) (-1206)) 198 (|has| |#1| (-375)) ELT)) (-2004 (((-3 $ "failed") $) 153 (|has| (-420 |#2|) (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 123 (|has| (-420 |#2|) (-375)) ELT)) (-2346 ((|#3| $) 51 (|has| (-420 |#2|) (-375)) ELT)) (-2686 (((-949) $) 101 (|has| (-420 |#2|) (-380)) ELT)) (-2047 ((|#3| $) 167 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 179 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 178 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-1297 $) $) 173 T ELT) (((-710 (-420 |#2|)) (-1297 $)) 172 T ELT)) (-3606 (($ (-665 $)) 112 (|has| (-420 |#2|) (-375)) ELT) (($ $ $) 111 (|has| (-420 |#2|) (-375)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1379 (((-710 (-420 |#2|))) 212 T ELT)) (-4201 (((-710 (-420 |#2|))) 214 T ELT)) (-3981 (($ $) 128 (|has| (-420 |#2|) (-375)) ELT)) (-3710 (($ (-1297 |#2|) |#2|) 208 T ELT)) (-4297 (((-710 (-420 |#2|))) 213 T ELT)) (-2999 (((-710 (-420 |#2|))) 215 T ELT)) (-4348 (((-2 (|:| |num| (-710 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207 T ELT)) (-3935 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 209 T ELT)) (-3604 (((-1297 $)) 221 T ELT)) (-2787 (((-1297 $)) 222 T ELT)) (-3255 (((-112) $) 220 T ELT)) (-2798 (((-112) $) 219 T ELT) (((-112) $ |#1|) 206 T ELT) (((-112) $ |#2|) 205 T ELT)) (-2443 (($) 154 (|has| (-420 |#2|) (-361)) CONST)) (-3354 (($ (-949)) 100 (|has| (-420 |#2|) (-380)) ELT)) (-2731 (((-3 |#2| "failed")) 200 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2918 (((-792)) 234 T ELT)) (-2343 (($) 171 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 113 (|has| (-420 |#2|) (-375)) ELT)) (-3642 (($ (-665 $)) 110 (|has| (-420 |#2|) (-375)) ELT) (($ $ $) 109 (|has| (-420 |#2|) (-375)) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 157 (|has| (-420 |#2|) (-361)) ELT)) (-3759 (((-431 $) $) 124 (|has| (-420 |#2|) (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 121 (|has| (-420 |#2|) (-375)) ELT)) (-3574 (((-3 $ "failed") $ $) 104 (|has| (-420 |#2|) (-375)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 115 (|has| (-420 |#2|) (-375)) ELT)) (-4081 (((-792) $) 117 (|has| (-420 |#2|) (-375)) ELT)) (-2916 ((|#1| $ |#1| |#1|) 202 T ELT)) (-3585 (((-3 |#2| "failed")) 201 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 118 (|has| (-420 |#2|) (-375)) ELT)) (-3846 (((-420 |#2|) (-1297 $)) 54 T ELT) (((-420 |#2|)) 67 T ELT)) (-3038 (((-792) $) 162 (|has| (-420 |#2|) (-361)) ELT) (((-3 (-792) "failed") $ $) 150 (|has| (-420 |#2|) (-361)) ELT)) (-3641 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 136 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) 135 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) 204 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 141 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206) (-792)) 140 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-665 (-1206))) 139 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206)) 137 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-792)) 147 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2790 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) 145 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2790 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-4040 (((-710 (-420 |#2|)) (-1297 $) (-1 (-420 |#2|) (-420 |#2|))) 165 (|has| (-420 |#2|) (-375)) ELT)) (-4263 ((|#3|) 170 T ELT)) (-3475 (($) 159 (|has| (-420 |#2|) (-361)) ELT)) (-3762 (((-1297 (-420 |#2|)) $ (-1297 $)) 57 T ELT) (((-710 (-420 |#2|)) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 (-420 |#2|)) $) 73 T ELT) (((-710 (-420 |#2|)) (-1297 $)) 72 T ELT)) (-4463 (((-1297 (-420 |#2|)) $) 70 T ELT) (($ (-1297 (-420 |#2|))) 69 T ELT) ((|#3| $) 186 T ELT) (($ |#3|) 168 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 156 (|has| (-420 |#2|) (-361)) ELT)) (-2591 (((-1297 $) (-1297 $)) 218 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 |#2|)) 44 T ELT) (($ (-420 (-577))) 98 (-2867 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-1068 (-420 (-577))))) ELT) (($ $) 103 (|has| (-420 |#2|) (-375)) ELT)) (-2708 (($ $) 155 (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) 50 (|has| (-420 |#2|) (-146)) ELT)) (-2932 ((|#3| $) 52 T ELT)) (-3331 (((-792)) 32 T CONST)) (-3634 (((-112)) 231 T ELT)) (-4064 (((-112) |#1|) 230 T ELT) (((-112) |#2|) 229 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2104 (((-1297 $)) 74 T ELT)) (-4124 (((-112) $ $) 107 (|has| (-420 |#2|) (-375)) ELT)) (-1567 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199 T ELT)) (-3702 (((-112)) 233 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 134 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) 133 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 144 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206) (-792)) 143 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-665 (-1206))) 142 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206)) 138 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2790 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-792)) 148 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2790 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) 146 (-2867 (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2790 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2790 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 132 (|has| (-420 |#2|) (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 129 (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 |#2|)) 46 T ELT) (($ (-420 |#2|) $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| (-420 |#2|) (-375)) ELT))) +(((-354 |#1| |#2| |#3|) (-141) (-1251) (-1273 |t#1|) (-1273 (-420 |t#2|))) (T -354)) +((-3603 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792)))) (-2918 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792)))) (-3702 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-3617 (*1 *2 *3 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-3634 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-4064 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-4064 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-2375 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-1929 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-1929 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-4338 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2600 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2600 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-2787 (*1 *2) (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)))) (-3604 (*1 *2) (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-4042 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-1903 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-2999 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-4201 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-4297 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-1379 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-2385 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3))))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-3710 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3))))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-2 (|:| |num| (-710 *5)) (|:| |den| *5))))) (-2798 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2798 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-3641 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))))) (-2916 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))))) (-3585 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3)))) (-2731 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3)))) (-1567 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1251)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-354 *4 *5 *6)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *4 (-375)) (-5 *2 (-665 (-980 *4))))) (-2628 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-665 (-665 *3)))))) +(-13 (-745 (-420 |t#2|) |t#3|) (-10 -8 (-15 -3603 ((-792))) (-15 -2918 ((-792))) (-15 -3702 ((-112))) (-15 -3617 ((-112) |t#1| |t#1|)) (-15 -3634 ((-112))) (-15 -4064 ((-112) |t#1|)) (-15 -4064 ((-112) |t#2|)) (-15 -2375 ((-112))) (-15 -1929 ((-112) |t#1|)) (-15 -1929 ((-112) |t#2|)) (-15 -4338 ((-112))) (-15 -2600 ((-112) |t#1|)) (-15 -2600 ((-112) |t#2|)) (-15 -2787 ((-1297 $))) (-15 -3604 ((-1297 $))) (-15 -3255 ((-112) $)) (-15 -2798 ((-112) $)) (-15 -2591 ((-1297 $) (-1297 $))) (-15 -4042 ((-1297 $) (-1297 $))) (-15 -1903 ((-1297 $) (-1297 $))) (-15 -2999 ((-710 (-420 |t#2|)))) (-15 -4201 ((-710 (-420 |t#2|)))) (-15 -4297 ((-710 (-420 |t#2|)))) (-15 -1379 ((-710 (-420 |t#2|)))) (-15 -3191 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2385 ($ (-1297 |t#2|) |t#2|)) (-15 -3935 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3710 ($ (-1297 |t#2|) |t#2|)) (-15 -4348 ((-2 (|:| |num| (-710 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2798 ((-112) $ |t#1|)) (-15 -2798 ((-112) $ |t#2|)) (-15 -3641 ($ $ (-1 |t#2| |t#2|))) (-15 -2796 ($ $)) (-15 -2916 (|t#1| $ |t#1| |t#1|)) (-15 -3585 ((-3 |t#2| "failed"))) (-15 -2731 ((-3 |t#2| "failed"))) (-15 -1567 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-375)) (-15 -3506 ((-665 (-980 |t#1|)) (-1206))) |%noBranch|) (IF (|has| |t#1| (-380)) (-15 -2628 ((-665 (-665 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-38 #1=(-420 |#2|)) . T) ((-38 $) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-102) . T) ((-111 #0# #0#) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-146))) ((-148) |has| (-420 |#2|) (-148)) ((-634 #0#) -2867 (|has| (-420 |#2|) (-1068 (-420 (-577)))) (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-634 #1#) . T) ((-634 (-577)) . T) ((-634 $) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-631 (-885)) . T) ((-174) . T) ((-632 |#3|) . T) ((-235 $) -2867 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-233 #1#) |has| (-420 |#2|) (-375)) ((-239) -2867 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-238) -2867 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-273 #1#) |has| (-420 |#2|) (-375)) ((-249) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-301) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-318) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-375) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-415) |has| (-420 |#2|) (-361)) ((-380) -2867 (|has| (-420 |#2|) (-380)) (|has| (-420 |#2|) (-361))) ((-361) |has| (-420 |#2|) (-361)) ((-382 #1# |#3|) . T) ((-422 #1# |#3|) . T) ((-389 #1#) . T) ((-424 #1#) . T) ((-465) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-569) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-667 #0#) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-667 #1#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-669 #1#) . T) ((-669 #2=(-577)) |has| (-420 |#2|) (-659 (-577))) ((-669 $) . T) ((-661 #0#) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-661 #1#) . T) ((-661 $) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-659 #1#) . T) ((-659 #2#) |has| (-420 |#2|) (-659 (-577))) ((-738 #0#) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-738 #1#) . T) ((-738 $) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-745 #1# |#3|) . T) ((-747) . T) ((-920 $ #3=(-1206)) -2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206))))) ((-926 (-1206)) -12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) ((-928 #3#) -2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206))))) ((-948) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1068 (-420 (-577))) |has| (-420 |#2|) (-1068 (-420 (-577)))) ((-1068 #1#) . T) ((-1068 (-577)) |has| (-420 |#2|) (-1068 (-577))) ((-1081 #0#) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #0#) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| (-420 |#2|) (-361)) ((-1247) . T) ((-1251) -2867 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-938 |#1|) "failed") $) NIL T ELT)) (-3783 (((-938 |#1|) $) NIL T ELT)) (-2385 (($ (-1297 (-938 |#1|))) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3275 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT) (($ $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3524 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2794 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 (-938 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2686 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3200 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3467 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-1202 (-938 |#1|)) "failed") $ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1464 (($ $ (-1202 (-938 |#1|))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-938 |#1|) (-380)) CONST)) (-3354 (($ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3745 (((-986 (-1150))) NIL T ELT)) (-2343 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 (-938 |#1|))) NIL T ELT)) (-3475 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2984 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3762 (((-1297 (-938 |#1|)) $) NIL T ELT) (((-710 (-938 |#1|)) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-938 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT) (($ (-938 |#1|) $) NIL T ELT))) +(((-355 |#1| |#2|) (-13 (-340 (-938 |#1|)) (-10 -7 (-15 -3745 ((-986 (-1150)))))) (-949) (-949)) (T -355)) +((-3745 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-355 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949))))) +(-13 (-340 (-938 |#1|)) (-10 -7 (-15 -3745 ((-986 (-1150)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 58 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 56 (|has| |#1| (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 142 T ELT)) (-3783 ((|#1| $) 113 T ELT)) (-2385 (($ (-1297 |#1|)) 130 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) 124 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) 160 (|has| |#1| (-380)) ELT)) (-3275 (((-112) $) 66 (|has| |#1| (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) 60 (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) 62 T ELT)) (-4235 (($) 162 (|has| |#1| (-380)) ELT)) (-3524 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2794 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 |#1|) $) 117 T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2686 (((-949) $) 171 (|has| |#1| (-380)) ELT)) (-3200 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3467 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1464 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 178 T ELT)) (-2443 (($) NIL (|has| |#1| (-380)) CONST)) (-3354 (($ (-949)) 96 (|has| |#1| (-380)) ELT)) (-2789 (((-112) $) 147 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3745 (((-986 (-1150))) 57 T ELT)) (-2343 (($) 158 (|has| |#1| (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 119 (|has| |#1| (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) 90 T ELT) (((-949)) 91 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) 161 (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) 154 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 |#1|)) 122 T ELT)) (-3475 (($) 159 (|has| |#1| (-380)) ELT)) (-2984 (($) 167 (|has| |#1| (-380)) ELT)) (-3762 (((-1297 |#1|) $) 77 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) 174 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 100 T ELT)) (-2708 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) 155 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) 144 T ELT) (((-1297 $) (-949)) 98 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) 67 T CONST)) (-2853 (($) 103 T CONST)) (-4173 (($ $) 107 (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) 65 T ELT)) (-3139 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-3128 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 86 T ELT)) (** (($ $ (-949)) 180 T ELT) (($ $ (-792)) 181 T ELT) (($ $ (-577)) 179 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT))) +(((-356 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -3745 ((-986 (-1150)))))) (-361) (-1202 |#1|)) (T -356)) +((-3745 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) (-14 *4 (-1202 *3))))) +(-13 (-340 |#1|) (-10 -7 (-15 -3745 ((-986 (-1150)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-2385 (($ (-1297 |#1|)) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL (|has| |#1| (-380)) ELT)) (-3275 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| |#1| (-380)) ELT)) (-3524 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2794 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 |#1|) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2686 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3200 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3467 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1464 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| |#1| (-380)) CONST)) (-3354 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3745 (((-986 (-1150))) NIL T ELT)) (-2343 (($) NIL (|has| |#1| (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 |#1|)) NIL T ELT)) (-3475 (($) NIL (|has| |#1| (-380)) ELT)) (-2984 (($) NIL (|has| |#1| (-380)) ELT)) (-3762 (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2708 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-357 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -3745 ((-986 (-1150)))))) (-361) (-949)) (T -357)) +((-3745 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949))))) +(-13 (-340 |#1|) (-10 -7 (-15 -3745 ((-986 (-1150)))))) +((-1546 (((-792) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150)))))) 61 T ELT)) (-2391 (((-986 (-1150)) (-1202 |#1|)) 112 T ELT)) (-3609 (((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) (-1202 |#1|)) 103 T ELT)) (-3546 (((-710 |#1|) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150)))))) 113 T ELT)) (-4027 (((-3 (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) "failed") (-949)) 13 T ELT)) (-2270 (((-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150)))))) (-949)) 18 T ELT))) +(((-358 |#1|) (-10 -7 (-15 -2391 ((-986 (-1150)) (-1202 |#1|))) (-15 -3609 ((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) (-1202 |#1|))) (-15 -3546 ((-710 |#1|) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -1546 ((-792) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -4027 ((-3 (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) "failed") (-949))) (-15 -2270 ((-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150)))))) (-949)))) (-361)) (T -358)) +((-2270 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-3 (-1202 *4) (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150))))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-4027 (*1 *2 *3) (|partial| -12 (-5 *3 (-949)) (-5 *2 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) (-4 *4 (-361)) (-5 *2 (-792)) (-5 *1 (-358 *4)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) (-4 *4 (-361)) (-5 *2 (-710 *4)) (-5 *1 (-358 *4)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) (-5 *1 (-358 *4)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-986 (-1150))) (-5 *1 (-358 *4))))) +(-10 -7 (-15 -2391 ((-986 (-1150)) (-1202 |#1|))) (-15 -3609 ((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) (-1202 |#1|))) (-15 -3546 ((-710 |#1|) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -1546 ((-792) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -4027 ((-3 (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) "failed") (-949))) (-15 -2270 ((-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150)))))) (-949)))) +((-3709 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -3709 (|#3| |#1|)) (-15 -3709 (|#1| |#3|))) (-340 |#2|) (-361) (-340 |#2|)) (T -359)) +((-3709 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *2 *4 *3)) (-4 *3 (-340 *4)))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *3 *4 *2)) (-4 *3 (-340 *4))))) +(-10 -7 (-15 -3709 (|#3| |#1|)) (-15 -3709 (|#1| |#3|))) +((-3275 (((-112) $) 60 T ELT)) (-4030 (((-854 (-949)) $) 23 T ELT) (((-949) $) 64 T ELT)) (-2004 (((-3 $ "failed") $) 18 T ELT)) (-2443 (($) 9 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 114 T ELT)) (-3038 (((-3 (-792) "failed") $ $) 92 T ELT) (((-792) $) 79 T ELT)) (-3641 (($ $) 8 T ELT) (($ $ (-792)) NIL T ELT)) (-3475 (($) 53 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 38 T ELT)) (-2708 (((-3 $ "failed") $) 45 T ELT) (($ $) 44 T ELT))) +(((-360 |#1|) (-10 -8 (-15 -4030 ((-949) |#1|)) (-15 -3038 ((-792) |#1|)) (-15 -3275 ((-112) |#1|)) (-15 -3475 (|#1|)) (-15 -1676 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -2708 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -3038 ((-3 (-792) "failed") |#1| |#1|)) (-15 -4030 ((-854 (-949)) |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) (-361)) (T -360)) +NIL +(-10 -8 (-15 -4030 ((-949) |#1|)) (-15 -3038 ((-792) |#1|)) (-15 -3275 ((-112) |#1|)) (-15 -3475 (|#1|)) (-15 -1676 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -2708 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -3038 ((-3 (-792) "failed") |#1| |#1|)) (-15 -4030 ((-854 (-949)) |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 102 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-3005 (((-792)) 112 T ELT)) (-2305 (($) 18 T CONST)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 96 T ELT)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1424 (($) 115 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-2213 (($) 100 T ELT)) (-3275 (((-112) $) 99 T ELT)) (-3987 (($ $) 87 T ELT) (($ $ (-792)) 86 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-4030 (((-854 (-949)) $) 89 T ELT) (((-949) $) 97 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2004 (((-3 $ "failed") $) 111 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2686 (((-949) $) 114 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-2443 (($) 110 T CONST)) (-3354 (($ (-949)) 113 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 103 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3038 (((-3 (-792) "failed") $ $) 88 T ELT) (((-792) $) 98 T ELT)) (-3641 (($ $) 109 T ELT) (($ $ (-792)) 107 T ELT)) (-3475 (($) 101 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 104 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-2708 (((-3 $ "failed") $) 90 T ELT) (($ $) 105 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $) 108 T ELT) (($ $ (-792)) 106 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 73 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) (((-361) (-141)) (T -361)) -((-3907 (*1 *1 *1) (-4 *1 (-361))) (-2349 (*1 *2 *3) (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-361)) (-5 *2 (-1292 *1)))) (-3017 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))))) (-1570 (*1 *2 *3) (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1214 (-944) (-787))))) (-2932 (*1 *1) (-4 *1 (-361))) (-1742 (*1 *1) (-4 *1 (-361))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-787)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-944)))) (-2969 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-415) (-380) (-1177) (-239) (-10 -8 (-15 -3907 ($ $)) (-15 -2349 ((-3 (-1292 $) "failed") (-705 $))) (-15 -3017 ((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577)))))) (-15 -1570 ((-1214 (-944) (-787)) (-577))) (-15 -2932 ($)) (-15 -1742 ($)) (-15 -4402 ((-112) $)) (-15 -3816 ((-787) $)) (-15 -2536 ((-944) $)) (-15 -2969 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) . T) ((-380) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) . T) ((-1242) . T) ((-1246) . T)) -((-2139 (((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) |#1|) 55 T ELT)) (-2461 (((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))) 53 T ELT))) -(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -2461 ((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))))) (-15 -2139 ((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) |#1|))) (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $)))) (-1268 |#1|) (-422 |#1| |#2|)) (T -362)) -((-2139 (*1 *2 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *2 (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2461 (*1 *2) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *2 (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(-10 -7 (-15 -2461 ((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))))) (-15 -2139 ((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 (((-933 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-4153 (((-787)) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-933 |#1|) "failed") $) NIL T ELT)) (-2155 (((-933 |#1|) $) NIL T ELT)) (-1911 (($ (-1292 (-933 |#1|))) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-4402 (((-112) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT) (($ $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2936 (((-112) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-4021 (((-933 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 (-933 |#1|)) $) NIL T ELT) (((-1197 $) $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2144 (((-944) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1948 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3995 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 (-1197 (-933 |#1|)) "failed") $ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1542 (($ $ (-1197 (-933 |#1|))) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-933 |#1|) (-380)) CONST)) (-3251 (($ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2586 (((-1292 (-660 (-2 (|:| -3145 (-933 |#1|)) (|:| -3251 (-1145)))))) NIL T ELT)) (-3025 (((-705 (-933 |#1|))) NIL T ELT)) (-3428 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 (-933 |#1|))) NIL T ELT)) (-2932 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3204 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2729 (((-1292 (-933 |#1|)) $) NIL T ELT) (((-705 (-933 |#1|)) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-933 |#1|)) NIL T ELT)) (-3907 (($ $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT) (((-1292 $) (-944)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT) (($ $ (-933 |#1|)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-933 |#1|)) NIL T ELT) (($ (-933 |#1|) $) NIL T ELT))) -(((-363 |#1| |#2|) (-13 (-340 (-933 |#1|)) (-10 -7 (-15 -2586 ((-1292 (-660 (-2 (|:| -3145 (-933 |#1|)) (|:| -3251 (-1145))))))) (-15 -3025 ((-705 (-933 |#1|)))) (-15 -4153 ((-787))))) (-944) (-944)) (T -363)) -((-2586 (*1 *2) (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3145 (-933 *3)) (|:| -3251 (-1145)))))) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-3025 (*1 *2) (-12 (-5 *2 (-705 (-933 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-4153 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944))))) -(-13 (-340 (-933 |#1|)) (-10 -7 (-15 -2586 ((-1292 (-660 (-2 (|:| -3145 (-933 |#1|)) (|:| -3251 (-1145))))))) (-15 -3025 ((-705 (-933 |#1|)))) (-15 -4153 ((-787))))) -((-3489 (((-112) $ $) 73 T ELT)) (-3801 (((-112) $) 88 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 ((|#1| $) 106 T ELT) (($ $ (-944)) 104 (|has| |#1| (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 170 (|has| |#1| (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-4153 (((-787)) 103 T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) 187 (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 127 T ELT)) (-2155 ((|#1| $) 105 T ELT)) (-1911 (($ (-1292 |#1|)) 71 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) 182 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) 171 (|has| |#1| (-380)) ELT)) (-4402 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| |#1| (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) 113 (|has| |#1| (-380)) ELT)) (-2936 (((-112) $) 200 (|has| |#1| (-380)) ELT)) (-4021 ((|#1| $) 108 T ELT) (($ $ (-944)) 107 (|has| |#1| (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 |#1|) $) 214 T ELT) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-2144 (((-944) $) 148 (|has| |#1| (-380)) ELT)) (-1948 (((-1197 |#1|) $) 87 (|has| |#1| (-380)) ELT)) (-3995 (((-1197 |#1|) $) 84 (|has| |#1| (-380)) ELT) (((-3 (-1197 |#1|) "failed") $ $) 96 (|has| |#1| (-380)) ELT)) (-1542 (($ $ (-1197 |#1|)) 83 (|has| |#1| (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 218 T ELT)) (-3457 (($) NIL (|has| |#1| (-380)) CONST)) (-3251 (($ (-944)) 150 (|has| |#1| (-380)) ELT)) (-1792 (((-112) $) 123 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2586 (((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145)))))) 97 T ELT)) (-3025 (((-705 |#1|)) 101 T ELT)) (-3428 (($) 110 (|has| |#1| (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 173 (|has| |#1| (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) 174 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) 75 T ELT)) (-1629 (((-1197 |#1|)) 175 T ELT)) (-2932 (($) 147 (|has| |#1| (-380)) ELT)) (-3204 (($) NIL (|has| |#1| (-380)) ELT)) (-2729 (((-1292 |#1|) $) 121 T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) 140 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 70 T ELT)) (-3907 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) 180 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) 197 T ELT) (((-1292 $) (-944)) 116 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) 186 T CONST)) (-2767 (($) 161 T CONST)) (-1427 (($ $) 122 (|has| |#1| (-380)) ELT) (($ $ (-787)) 114 (|has| |#1| (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) 208 T ELT)) (-3051 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-3042 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-3031 (($ $ $) 204 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 153 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) -(((-364 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -2586 ((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -3025 ((-705 |#1|))) (-15 -4153 ((-787))))) (-361) (-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (T -364)) -((-2586 (*1 *2) (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) *2)))) (-3025 (*1 *2) (-12 (-5 *2 (-705 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145))))))))) (-4153 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145)))))))))) -(-13 (-340 |#1|) (-10 -7 (-15 -2586 ((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -3025 ((-705 |#1|))) (-15 -4153 ((-787))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-4153 (((-787)) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1911 (($ (-1292 |#1|)) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL (|has| |#1| (-380)) ELT)) (-4402 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| |#1| (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| |#1| (-380)) ELT)) (-2936 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-4021 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 |#1|) $) NIL T ELT) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-2144 (((-944) $) NIL (|has| |#1| (-380)) ELT)) (-1948 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3995 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1542 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| |#1| (-380)) CONST)) (-3251 (($ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2586 (((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145)))))) NIL T ELT)) (-3025 (((-705 |#1|)) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 |#1|)) NIL T ELT)) (-2932 (($) NIL (|has| |#1| (-380)) ELT)) (-3204 (($) NIL (|has| |#1| (-380)) ELT)) (-2729 (((-1292 |#1|) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3907 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT) (((-1292 $) (-944)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-787)) NIL (|has| |#1| (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-365 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -2586 ((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -3025 ((-705 |#1|))) (-15 -4153 ((-787))))) (-361) (-944)) (T -365)) -((-2586 (*1 *2) (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145)))))) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944)))) (-3025 (*1 *2) (-12 (-5 *2 (-705 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944)))) (-4153 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944))))) -(-13 (-340 |#1|) (-10 -7 (-15 -2586 ((-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))))) (-15 -3025 ((-705 |#1|))) (-15 -4153 ((-787))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 (((-933 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-933 |#1|) "failed") $) NIL T ELT)) (-2155 (((-933 |#1|) $) NIL T ELT)) (-1911 (($ (-1292 (-933 |#1|))) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-4402 (((-112) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT) (($ $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2936 (((-112) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-4021 (((-933 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 (-933 |#1|)) $) NIL T ELT) (((-1197 $) $ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2144 (((-944) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1948 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3995 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 (-1197 (-933 |#1|)) "failed") $ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1542 (($ $ (-1197 (-933 |#1|))) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-933 |#1|) (-380)) CONST)) (-3251 (($ (-944)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 (-933 |#1|))) NIL T ELT)) (-2932 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3204 (($) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2729 (((-1292 (-933 |#1|)) $) NIL T ELT) (((-705 (-933 |#1|)) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-933 |#1|)) NIL T ELT)) (-3907 (($ $) NIL (|has| (-933 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT) (((-1292 $) (-944)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)) ELT) (($ $) NIL (|has| (-933 |#1|) (-380)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT) (($ $ (-933 |#1|)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-933 |#1|)) NIL T ELT) (($ (-933 |#1|) $) NIL T ELT))) -(((-366 |#1| |#2|) (-340 (-933 |#1|)) (-944) (-944)) (T -366)) -NIL -(-340 (-933 |#1|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 129 (|has| |#1| (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) 155 (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 103 T ELT)) (-2155 ((|#1| $) 100 T ELT)) (-1911 (($ (-1292 |#1|)) 95 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) 92 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) 51 (|has| |#1| (-380)) ELT)) (-4402 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| |#1| (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) 130 (|has| |#1| (-380)) ELT)) (-2936 (((-112) $) 84 (|has| |#1| (-380)) ELT)) (-4021 ((|#1| $) 47 T ELT) (($ $ (-944)) 52 (|has| |#1| (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 |#1|) $) 75 T ELT) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-2144 (((-944) $) 107 (|has| |#1| (-380)) ELT)) (-1948 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3995 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1542 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| |#1| (-380)) CONST)) (-3251 (($ (-944)) 105 (|has| |#1| (-380)) ELT)) (-1792 (((-112) $) 157 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) 44 (|has| |#1| (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 124 (|has| |#1| (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) 154 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) 67 T ELT)) (-1629 (((-1197 |#1|)) 98 T ELT)) (-2932 (($) 135 (|has| |#1| (-380)) ELT)) (-3204 (($) NIL (|has| |#1| (-380)) ELT)) (-2729 (((-1292 |#1|) $) 63 T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) 153 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 97 T ELT)) (-3907 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) 159 T CONST)) (-2726 (((-112) $ $) 161 T ELT)) (-2559 (((-1292 $)) 119 T ELT) (((-1292 $) (-944)) 58 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) 121 T CONST)) (-2767 (($) 40 T CONST)) (-1427 (($ $) 78 (|has| |#1| (-380)) ELT) (($ $ (-787)) NIL (|has| |#1| (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) 117 T ELT)) (-3051 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-3042 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-3031 (($ $ $) 113 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 53 T ELT) (($ $ (-577)) 138 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) -(((-367 |#1| |#2|) (-340 |#1|) (-361) (-1197 |#1|)) (T -367)) +((-2708 (*1 *1 *1) (-4 *1 (-361))) (-1676 (*1 *2 *3) (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-361)) (-5 *2 (-1297 *1)))) (-3718 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))))) (-2061 (*1 *2 *3) (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1219 (-949) (-792))))) (-3475 (*1 *1) (-4 *1 (-361))) (-2213 (*1 *1) (-4 *1 (-361))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) (-3038 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-792)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-949)))) (-2262 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-415) (-380) (-1182) (-239) (-10 -8 (-15 -2708 ($ $)) (-15 -1676 ((-3 (-1297 $) "failed") (-710 $))) (-15 -3718 ((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577)))))) (-15 -2061 ((-1219 (-949) (-792)) (-577))) (-15 -3475 ($)) (-15 -2213 ($)) (-15 -3275 ((-112) $)) (-15 -3038 ((-792) $)) (-15 -4030 ((-949) $)) (-15 -2262 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) . T) ((-380) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) . T) ((-1247) . T) ((-1251) . T)) +((-2387 (((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) |#1|) 55 T ELT)) (-2787 (((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))) 53 T ELT))) +(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -2787 ((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))))) (-15 -2387 ((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) |#1|))) (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $)))) (-1273 |#1|) (-422 |#1| |#2|)) (T -362)) +((-2387 (*1 *2 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2787 (*1 *2) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(-10 -7 (-15 -2787 ((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))))) (-15 -2387 ((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-1546 (((-792)) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-938 |#1|) "failed") $) NIL T ELT)) (-3783 (((-938 |#1|) $) NIL T ELT)) (-2385 (($ (-1297 (-938 |#1|))) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3275 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT) (($ $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3524 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2794 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 (-938 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2686 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3200 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3467 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-1202 (-938 |#1|)) "failed") $ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1464 (($ $ (-1202 (-938 |#1|))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-938 |#1|) (-380)) CONST)) (-3354 (($ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3557 (((-1297 (-665 (-2 (|:| -3254 (-938 |#1|)) (|:| -3354 (-1150)))))) NIL T ELT)) (-1876 (((-710 (-938 |#1|))) NIL T ELT)) (-2343 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 (-938 |#1|))) NIL T ELT)) (-3475 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2984 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3762 (((-1297 (-938 |#1|)) $) NIL T ELT) (((-710 (-938 |#1|)) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-938 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT) (($ (-938 |#1|) $) NIL T ELT))) +(((-363 |#1| |#2|) (-13 (-340 (-938 |#1|)) (-10 -7 (-15 -3557 ((-1297 (-665 (-2 (|:| -3254 (-938 |#1|)) (|:| -3354 (-1150))))))) (-15 -1876 ((-710 (-938 |#1|)))) (-15 -1546 ((-792))))) (-949) (-949)) (T -363)) +((-3557 (*1 *2) (-12 (-5 *2 (-1297 (-665 (-2 (|:| -3254 (-938 *3)) (|:| -3354 (-1150)))))) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-1876 (*1 *2) (-12 (-5 *2 (-710 (-938 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-1546 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949))))) +(-13 (-340 (-938 |#1|)) (-10 -7 (-15 -3557 ((-1297 (-665 (-2 (|:| -3254 (-938 |#1|)) (|:| -3354 (-1150))))))) (-15 -1876 ((-710 (-938 |#1|)))) (-15 -1546 ((-792))))) +((-3586 (((-112) $ $) 73 T ELT)) (-4113 (((-112) $) 88 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 ((|#1| $) 106 T ELT) (($ $ (-949)) 104 (|has| |#1| (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 170 (|has| |#1| (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-1546 (((-792)) 103 T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) 187 (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 127 T ELT)) (-3783 ((|#1| $) 105 T ELT)) (-2385 (($ (-1297 |#1|)) 71 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) 182 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) 171 (|has| |#1| (-380)) ELT)) (-3275 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) 113 (|has| |#1| (-380)) ELT)) (-3524 (((-112) $) 200 (|has| |#1| (-380)) ELT)) (-2794 ((|#1| $) 108 T ELT) (($ $ (-949)) 107 (|has| |#1| (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 |#1|) $) 214 T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2686 (((-949) $) 148 (|has| |#1| (-380)) ELT)) (-3200 (((-1202 |#1|) $) 87 (|has| |#1| (-380)) ELT)) (-3467 (((-1202 |#1|) $) 84 (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) 96 (|has| |#1| (-380)) ELT)) (-1464 (($ $ (-1202 |#1|)) 83 (|has| |#1| (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 218 T ELT)) (-2443 (($) NIL (|has| |#1| (-380)) CONST)) (-3354 (($ (-949)) 150 (|has| |#1| (-380)) ELT)) (-2789 (((-112) $) 123 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3557 (((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150)))))) 97 T ELT)) (-1876 (((-710 |#1|)) 101 T ELT)) (-2343 (($) 110 (|has| |#1| (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 173 (|has| |#1| (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) 174 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) 75 T ELT)) (-4263 (((-1202 |#1|)) 175 T ELT)) (-3475 (($) 147 (|has| |#1| (-380)) ELT)) (-2984 (($) NIL (|has| |#1| (-380)) ELT)) (-3762 (((-1297 |#1|) $) 121 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) 140 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 70 T ELT)) (-2708 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) 180 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) 197 T ELT) (((-1297 $) (-949)) 116 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) 186 T CONST)) (-2853 (($) 161 T CONST)) (-4173 (($ $) 122 (|has| |#1| (-380)) ELT) (($ $ (-792)) 114 (|has| |#1| (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) 208 T ELT)) (-3139 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-3128 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-3114 (($ $ $) 204 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 153 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) +(((-364 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -3557 ((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -1876 ((-710 |#1|))) (-15 -1546 ((-792))))) (-361) (-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (T -364)) +((-3557 (*1 *2) (-12 (-5 *2 (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) *2)))) (-1876 (*1 *2) (-12 (-5 *2 (-710 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150))))))))) (-1546 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150)))))))))) +(-13 (-340 |#1|) (-10 -7 (-15 -3557 ((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -1876 ((-710 |#1|))) (-15 -1546 ((-792))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-1546 (((-792)) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-2385 (($ (-1297 |#1|)) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL (|has| |#1| (-380)) ELT)) (-3275 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| |#1| (-380)) ELT)) (-3524 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2794 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 |#1|) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2686 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3200 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3467 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1464 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| |#1| (-380)) CONST)) (-3354 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3557 (((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150)))))) NIL T ELT)) (-1876 (((-710 |#1|)) NIL T ELT)) (-2343 (($) NIL (|has| |#1| (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 |#1|)) NIL T ELT)) (-3475 (($) NIL (|has| |#1| (-380)) ELT)) (-2984 (($) NIL (|has| |#1| (-380)) ELT)) (-3762 (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2708 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-365 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -3557 ((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -1876 ((-710 |#1|))) (-15 -1546 ((-792))))) (-361) (-949)) (T -365)) +((-3557 (*1 *2) (-12 (-5 *2 (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150)))))) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949)))) (-1876 (*1 *2) (-12 (-5 *2 (-710 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949)))) (-1546 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949))))) +(-13 (-340 |#1|) (-10 -7 (-15 -3557 ((-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))))) (-15 -1876 ((-710 |#1|))) (-15 -1546 ((-792))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-938 |#1|) "failed") $) NIL T ELT)) (-3783 (((-938 |#1|) $) NIL T ELT)) (-2385 (($ (-1297 (-938 |#1|))) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3275 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT) (($ $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3524 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2794 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 (-938 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2686 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3200 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3467 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-1202 (-938 |#1|)) "failed") $ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1464 (($ $ (-1202 (-938 |#1|))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-938 |#1|) (-380)) CONST)) (-3354 (($ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 (-938 |#1|))) NIL T ELT)) (-3475 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2984 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3762 (((-1297 (-938 |#1|)) $) NIL T ELT) (((-710 (-938 |#1|)) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-938 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT) (($ (-938 |#1|) $) NIL T ELT))) +(((-366 |#1| |#2|) (-340 (-938 |#1|)) (-949) (-949)) (T -366)) +NIL +(-340 (-938 |#1|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 129 (|has| |#1| (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) 155 (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 103 T ELT)) (-3783 ((|#1| $) 100 T ELT)) (-2385 (($ (-1297 |#1|)) 95 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) 92 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) 51 (|has| |#1| (-380)) ELT)) (-3275 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) 130 (|has| |#1| (-380)) ELT)) (-3524 (((-112) $) 84 (|has| |#1| (-380)) ELT)) (-2794 ((|#1| $) 47 T ELT) (($ $ (-949)) 52 (|has| |#1| (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 |#1|) $) 75 T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2686 (((-949) $) 107 (|has| |#1| (-380)) ELT)) (-3200 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3467 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1464 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| |#1| (-380)) CONST)) (-3354 (($ (-949)) 105 (|has| |#1| (-380)) ELT)) (-2789 (((-112) $) 157 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) 44 (|has| |#1| (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 124 (|has| |#1| (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) 154 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) 67 T ELT)) (-4263 (((-1202 |#1|)) 98 T ELT)) (-3475 (($) 135 (|has| |#1| (-380)) ELT)) (-2984 (($) NIL (|has| |#1| (-380)) ELT)) (-3762 (((-1297 |#1|) $) 63 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) 153 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 97 T ELT)) (-2708 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) 159 T CONST)) (-2643 (((-112) $ $) 161 T ELT)) (-2104 (((-1297 $)) 119 T ELT) (((-1297 $) (-949)) 58 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) 121 T CONST)) (-2853 (($) 40 T CONST)) (-4173 (($ $) 78 (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) 117 T ELT)) (-3139 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-3128 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-3114 (($ $ $) 113 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 53 T ELT) (($ $ (-577)) 138 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) +(((-367 |#1| |#2|) (-340 |#1|) (-361) (-1202 |#1|)) (T -367)) NIL (-340 |#1|) -((-2113 ((|#1| (-1197 |#2|)) 59 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -2113 (|#1| (-1197 |#2|)))) (-13 (-415) (-10 -7 (-15 -3603 (|#1| |#2|)) (-15 -2144 ((-944) |#1|)) (-15 -2559 ((-1292 |#1|) (-944))) (-15 -1427 (|#1| |#1|)))) (-361)) (T -368)) -((-2113 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-4 *2 (-13 (-415) (-10 -7 (-15 -3603 (*2 *4)) (-15 -2144 ((-944) *2)) (-15 -2559 ((-1292 *2) (-944))) (-15 -1427 (*2 *2))))) (-5 *1 (-368 *2 *4))))) -(-10 -7 (-15 -2113 (|#1| (-1197 |#2|)))) -((-3485 (((-981 (-1197 |#1|)) (-1197 |#1|)) 49 T ELT)) (-2352 (((-1197 |#1|) (-944) (-944)) 154 T ELT) (((-1197 |#1|) (-944)) 150 T ELT)) (-4402 (((-112) (-1197 |#1|)) 107 T ELT)) (-3753 (((-944) (-944)) 85 T ELT)) (-2429 (((-944) (-944)) 92 T ELT)) (-3159 (((-944) (-944)) 83 T ELT)) (-2936 (((-112) (-1197 |#1|)) 111 T ELT)) (-3796 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 135 T ELT)) (-1833 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 140 T ELT)) (-2065 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 139 T ELT)) (-3582 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 138 T ELT)) (-1977 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 131 T ELT)) (-1714 (((-1197 |#1|) (-1197 |#1|)) 71 T ELT)) (-3139 (((-1197 |#1|) (-944)) 145 T ELT)) (-3361 (((-1197 |#1|) (-944)) 148 T ELT)) (-1675 (((-1197 |#1|) (-944)) 147 T ELT)) (-3009 (((-1197 |#1|) (-944)) 146 T ELT)) (-4405 (((-1197 |#1|) (-944)) 143 T ELT))) -(((-369 |#1|) (-10 -7 (-15 -4402 ((-112) (-1197 |#1|))) (-15 -2936 ((-112) (-1197 |#1|))) (-15 -3159 ((-944) (-944))) (-15 -3753 ((-944) (-944))) (-15 -2429 ((-944) (-944))) (-15 -4405 ((-1197 |#1|) (-944))) (-15 -3139 ((-1197 |#1|) (-944))) (-15 -3009 ((-1197 |#1|) (-944))) (-15 -1675 ((-1197 |#1|) (-944))) (-15 -3361 ((-1197 |#1|) (-944))) (-15 -1977 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3796 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3582 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -2065 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -1833 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -2352 ((-1197 |#1|) (-944))) (-15 -2352 ((-1197 |#1|) (-944) (-944))) (-15 -1714 ((-1197 |#1|) (-1197 |#1|))) (-15 -3485 ((-981 (-1197 |#1|)) (-1197 |#1|)))) (-361)) (T -369)) -((-3485 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-981 (-1197 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1197 *4)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-2352 (*1 *2 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1833 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-2065 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3582 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3796 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-1977 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-4405 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-3753 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-3159 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4))))) -(-10 -7 (-15 -4402 ((-112) (-1197 |#1|))) (-15 -2936 ((-112) (-1197 |#1|))) (-15 -3159 ((-944) (-944))) (-15 -3753 ((-944) (-944))) (-15 -2429 ((-944) (-944))) (-15 -4405 ((-1197 |#1|) (-944))) (-15 -3139 ((-1197 |#1|) (-944))) (-15 -3009 ((-1197 |#1|) (-944))) (-15 -1675 ((-1197 |#1|) (-944))) (-15 -3361 ((-1197 |#1|) (-944))) (-15 -1977 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3796 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3582 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -2065 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -1833 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -2352 ((-1197 |#1|) (-944))) (-15 -2352 ((-1197 |#1|) (-944) (-944))) (-15 -1714 ((-1197 |#1|) (-1197 |#1|))) (-15 -3485 ((-981 (-1197 |#1|)) (-1197 |#1|)))) -((-3578 (((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|) 38 T ELT))) -(((-370 |#1| |#2| |#3|) (-10 -7 (-15 -3578 ((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|))) (-361) (-1268 |#1|) (-1268 |#2|)) (T -370)) -((-3578 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3))))) -(-10 -7 (-15 -3578 ((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1911 (($ (-1292 |#1|)) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL (|has| |#1| (-380)) ELT)) (-4402 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| |#1| (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| |#1| (-380)) ELT)) (-2936 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-4021 ((|#1| $) NIL T ELT) (($ $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 |#1|) $) NIL T ELT) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)) ELT)) (-2144 (((-944) $) NIL (|has| |#1| (-380)) ELT)) (-1948 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3995 (((-1197 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1542 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| |#1| (-380)) CONST)) (-3251 (($ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 |#1|)) NIL T ELT)) (-2932 (($) NIL (|has| |#1| (-380)) ELT)) (-3204 (($) NIL (|has| |#1| (-380)) ELT)) (-2729 (((-1292 |#1|) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3907 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT) (((-1292 $) (-944)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-787)) NIL (|has| |#1| (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-371 |#1| |#2|) (-340 |#1|) (-361) (-944)) (T -371)) +((-3532 ((|#1| (-1202 |#2|)) 59 T ELT))) +(((-368 |#1| |#2|) (-10 -7 (-15 -3532 (|#1| (-1202 |#2|)))) (-13 (-415) (-10 -7 (-15 -3709 (|#1| |#2|)) (-15 -2686 ((-949) |#1|)) (-15 -2104 ((-1297 |#1|) (-949))) (-15 -4173 (|#1| |#1|)))) (-361)) (T -368)) +((-3532 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-4 *2 (-13 (-415) (-10 -7 (-15 -3709 (*2 *4)) (-15 -2686 ((-949) *2)) (-15 -2104 ((-1297 *2) (-949))) (-15 -4173 (*2 *2))))) (-5 *1 (-368 *2 *4))))) +(-10 -7 (-15 -3532 (|#1| (-1202 |#2|)))) +((-3697 (((-986 (-1202 |#1|)) (-1202 |#1|)) 49 T ELT)) (-1424 (((-1202 |#1|) (-949) (-949)) 154 T ELT) (((-1202 |#1|) (-949)) 150 T ELT)) (-3275 (((-112) (-1202 |#1|)) 107 T ELT)) (-4182 (((-949) (-949)) 85 T ELT)) (-4359 (((-949) (-949)) 92 T ELT)) (-4265 (((-949) (-949)) 83 T ELT)) (-3524 (((-112) (-1202 |#1|)) 111 T ELT)) (-4273 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 135 T ELT)) (-3023 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 140 T ELT)) (-3795 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 139 T ELT)) (-3151 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 138 T ELT)) (-2365 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 131 T ELT)) (-2579 (((-1202 |#1|) (-1202 |#1|)) 71 T ELT)) (-4390 (((-1202 |#1|) (-949)) 145 T ELT)) (-4195 (((-1202 |#1|) (-949)) 148 T ELT)) (-1418 (((-1202 |#1|) (-949)) 147 T ELT)) (-3457 (((-1202 |#1|) (-949)) 146 T ELT)) (-2537 (((-1202 |#1|) (-949)) 143 T ELT))) +(((-369 |#1|) (-10 -7 (-15 -3275 ((-112) (-1202 |#1|))) (-15 -3524 ((-112) (-1202 |#1|))) (-15 -4265 ((-949) (-949))) (-15 -4182 ((-949) (-949))) (-15 -4359 ((-949) (-949))) (-15 -2537 ((-1202 |#1|) (-949))) (-15 -4390 ((-1202 |#1|) (-949))) (-15 -3457 ((-1202 |#1|) (-949))) (-15 -1418 ((-1202 |#1|) (-949))) (-15 -4195 ((-1202 |#1|) (-949))) (-15 -2365 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -4273 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3151 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3795 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3023 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -1424 ((-1202 |#1|) (-949))) (-15 -1424 ((-1202 |#1|) (-949) (-949))) (-15 -2579 ((-1202 |#1|) (-1202 |#1|))) (-15 -3697 ((-986 (-1202 |#1|)) (-1202 |#1|)))) (-361)) (T -369)) +((-3697 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-986 (-1202 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1202 *4)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-1424 (*1 *2 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3023 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3795 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3151 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-4273 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-2365 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-4359 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-4265 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4))))) +(-10 -7 (-15 -3275 ((-112) (-1202 |#1|))) (-15 -3524 ((-112) (-1202 |#1|))) (-15 -4265 ((-949) (-949))) (-15 -4182 ((-949) (-949))) (-15 -4359 ((-949) (-949))) (-15 -2537 ((-1202 |#1|) (-949))) (-15 -4390 ((-1202 |#1|) (-949))) (-15 -3457 ((-1202 |#1|) (-949))) (-15 -1418 ((-1202 |#1|) (-949))) (-15 -4195 ((-1202 |#1|) (-949))) (-15 -2365 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -4273 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3151 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3795 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3023 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -1424 ((-1202 |#1|) (-949))) (-15 -1424 ((-1202 |#1|) (-949) (-949))) (-15 -2579 ((-1202 |#1|) (-1202 |#1|))) (-15 -3697 ((-986 (-1202 |#1|)) (-1202 |#1|)))) +((-2008 (((-3 (-665 |#3|) "failed") (-665 |#3|) |#3|) 38 T ELT))) +(((-370 |#1| |#2| |#3|) (-10 -7 (-15 -2008 ((-3 (-665 |#3|) "failed") (-665 |#3|) |#3|))) (-361) (-1273 |#1|) (-1273 |#2|)) (T -370)) +((-2008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3))))) +(-10 -7 (-15 -2008 ((-3 (-665 |#3|) "failed") (-665 |#3|) |#3|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-2385 (($ (-1297 |#1|)) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL (|has| |#1| (-380)) ELT)) (-3275 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| |#1| (-380)) ELT)) (-3524 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2794 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 |#1|) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2686 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3200 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3467 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-1464 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| |#1| (-380)) CONST)) (-3354 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) NIL (|has| |#1| (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 |#1|)) NIL T ELT)) (-3475 (($) NIL (|has| |#1| (-380)) ELT)) (-2984 (($) NIL (|has| |#1| (-380)) ELT)) (-3762 (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2708 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-371 |#1| |#2|) (-340 |#1|) (-361) (-949)) (T -371)) NIL (-340 |#1|) -((-3067 (((-112) (-660 (-975 |#1|))) 41 T ELT)) (-1481 (((-660 (-975 |#1|)) (-660 (-975 |#1|))) 53 T ELT)) (-2851 (((-3 (-660 (-975 |#1|)) "failed") (-660 (-975 |#1|))) 48 T ELT))) -(((-372 |#1| |#2|) (-10 -7 (-15 -3067 ((-112) (-660 (-975 |#1|)))) (-15 -2851 ((-3 (-660 (-975 |#1|)) "failed") (-660 (-975 |#1|)))) (-15 -1481 ((-660 (-975 |#1|)) (-660 (-975 |#1|))))) (-465) (-660 (-1201))) (T -372)) -((-1481 (*1 *2 *2) (-12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-660 (-1201))))) (-2851 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-660 (-1201))))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-112)) (-5 *1 (-372 *4 *5)) (-14 *5 (-660 (-1201)))))) -(-10 -7 (-15 -3067 ((-112) (-660 (-975 |#1|)))) (-15 -2851 ((-3 (-660 (-975 |#1|)) "failed") (-660 (-975 |#1|)))) (-15 -1481 ((-660 (-975 |#1|)) (-660 (-975 |#1|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) 17 T ELT)) (-3733 ((|#1| $ (-577)) NIL T ELT)) (-3606 (((-577) $ (-577)) NIL T ELT)) (-3672 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2295 (($ (-1 (-577) (-577)) $) 26 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 28 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1704 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-577)))) $) 30 T ELT)) (-1328 (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-3603 (((-880) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 11 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ |#1| (-577)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-373 |#1|) (-13 (-486) (-1063 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -3373 ((-787) $)) (-15 -3606 ((-577) $ (-577))) (-15 -3733 (|#1| $ (-577))) (-15 -2295 ($ (-1 (-577) (-577)) $)) (-15 -3672 ($ (-1 |#1| |#1|) $)) (-15 -1704 ((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-577)))) $)))) (-1125)) (T -373)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) (-3606 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) (-3733 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) (-3672 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-373 *3)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 (-577))))) (-5 *1 (-373 *3)) (-4 *3 (-1125))))) -(-13 (-486) (-1063 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -3373 ((-787) $)) (-15 -3606 ((-577) $ (-577))) (-15 -3733 (|#1| $ (-577))) (-15 -2295 ($ (-1 (-577) (-577)) $)) (-15 -3672 ($ (-1 |#1| |#1|) $)) (-15 -1704 ((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-577)))) $)))) -((-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 13 T ELT)) (-4122 (($ $) 14 T ELT)) (-3836 (((-431 $) $) 34 T ELT)) (-2182 (((-112) $) 30 T ELT)) (-3318 (($ $) 19 T ELT)) (-3543 (($ $ $) 25 T ELT) (($ (-660 $)) NIL T ELT)) (-3056 (((-431 $) $) 35 T ELT)) (-3478 (((-3 $ "failed") $ $) 24 T ELT)) (-4167 (((-787) $) 28 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 39 T ELT)) (-2174 (((-112) $ $) 16 T ELT)) (-3051 (($ $ $) 37 T ELT))) -(((-374 |#1|) (-10 -8 (-15 -3051 (|#1| |#1| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3039 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -4167 ((-787) |#1|)) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3543 (|#1| |#1| |#1|)) (-15 -2174 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2958 ((-2 (|:| -3426 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|))) (-375)) (T -374)) -NIL -(-10 -8 (-15 -3051 (|#1| |#1| |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3039 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -4167 ((-787) |#1|)) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3543 (|#1| |#1| |#1|)) (-15 -2174 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2958 ((-2 (|:| -3426 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3790 (($) 18 T CONST)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 73 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) +((-2760 (((-112) (-665 (-980 |#1|))) 41 T ELT)) (-1332 (((-665 (-980 |#1|)) (-665 (-980 |#1|))) 53 T ELT)) (-1590 (((-3 (-665 (-980 |#1|)) "failed") (-665 (-980 |#1|))) 48 T ELT))) +(((-372 |#1| |#2|) (-10 -7 (-15 -2760 ((-112) (-665 (-980 |#1|)))) (-15 -1590 ((-3 (-665 (-980 |#1|)) "failed") (-665 (-980 |#1|)))) (-15 -1332 ((-665 (-980 |#1|)) (-665 (-980 |#1|))))) (-465) (-665 (-1206))) (T -372)) +((-1332 (*1 *2 *2) (-12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-665 (-1206))))) (-1590 (*1 *2 *2) (|partial| -12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-665 (-1206))))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-112)) (-5 *1 (-372 *4 *5)) (-14 *5 (-665 (-1206)))))) +(-10 -7 (-15 -2760 ((-112) (-665 (-980 |#1|)))) (-15 -1590 ((-3 (-665 (-980 |#1|)) "failed") (-665 (-980 |#1|)))) (-15 -1332 ((-665 (-980 |#1|)) (-665 (-980 |#1|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) 17 T ELT)) (-1770 ((|#1| $ (-577)) NIL T ELT)) (-1520 (((-577) $ (-577)) NIL T ELT)) (-2399 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-1923 (($ (-1 (-577) (-577)) $) 26 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 28 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2127 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-577)))) $) 30 T ELT)) (-4247 (($ $ $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3709 (((-885) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 11 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ |#1| (-577)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-373 |#1|) (-13 (-486) (-1068 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -3005 ((-792) $)) (-15 -1520 ((-577) $ (-577))) (-15 -1770 (|#1| $ (-577))) (-15 -1923 ($ (-1 (-577) (-577)) $)) (-15 -2399 ($ (-1 |#1| |#1|) $)) (-15 -2127 ((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-577)))) $)))) (-1130)) (T -373)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) (-1520 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (-1923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) (-2399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-373 *3)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 (-577))))) (-5 *1 (-373 *3)) (-4 *3 (-1130))))) +(-13 (-486) (-1068 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -3005 ((-792) $)) (-15 -1520 ((-577) $ (-577))) (-15 -1770 (|#1| $ (-577))) (-15 -1923 ($ (-1 (-577) (-577)) $)) (-15 -2399 ($ (-1 |#1| |#1|) $)) (-15 -2127 ((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-577)))) $)))) +((-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 13 T ELT)) (-2261 (($ $) 14 T ELT)) (-3206 (((-431 $) $) 34 T ELT)) (-3567 (((-112) $) 30 T ELT)) (-3981 (($ $) 19 T ELT)) (-3642 (($ $ $) 25 T ELT) (($ (-665 $)) NIL T ELT)) (-3759 (((-431 $) $) 35 T ELT)) (-3574 (((-3 $ "failed") $ $) 24 T ELT)) (-4081 (((-792) $) 28 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 39 T ELT)) (-4124 (((-112) $ $) 16 T ELT)) (-3139 (($ $ $) 37 T ELT))) +(((-374 |#1|) (-10 -8 (-15 -3139 (|#1| |#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3372 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -4081 ((-792) |#1|)) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3642 (|#1| |#1| |#1|)) (-15 -4124 ((-112) |#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -1758 ((-2 (|:| -3273 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|))) (-375)) (T -374)) +NIL +(-10 -8 (-15 -3139 (|#1| |#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3372 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -4081 ((-792) |#1|)) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3642 (|#1| |#1| |#1|)) (-15 -4124 ((-112) |#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -1758 ((-2 (|:| -3273 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2305 (($) 18 T CONST)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 73 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) (((-375) (-141)) (T -375)) -((-3051 (*1 *1 *1 *1) (-4 *1 (-375)))) -(-13 (-318) (-1246) (-249) (-10 -8 (-15 -3051 ($ $ $)) (-6 -4468) (-6 -4462))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3777 ((|#2| $ |#2|) 14 T ELT)) (-1935 (($ $ (-1183)) 19 T ELT)) (-1776 ((|#2| $) 15 T ELT)) (-3263 (($ |#1|) 21 T ELT) (($ |#1| (-1183)) 20 T ELT)) (-2668 ((|#1| $) 17 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1576 (((-1183) $) 16 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-3349 (($ $) 18 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-376 |#1| |#2|) (-141) (-1125) (-1125)) (T -376)) -((-3263 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-3263 (*1 *1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1125)) (-4 *4 (-1125)))) (-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-3349 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-1183)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-3777 (*1 *2 *1 *2) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -3263 ($ |t#1|)) (-15 -3263 ($ |t#1| (-1183))) (-15 -1935 ($ $ (-1183))) (-15 -3349 ($ $)) (-15 -2668 (|t#1| $)) (-15 -1576 ((-1183) $)) (-15 -1776 (|t#2| $)) (-15 -3777 (|t#2| $ |t#2|)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3777 ((|#1| $ |#1|) 31 T ELT)) (-1935 (($ $ (-1183)) 23 T ELT)) (-3412 (((-3 |#1| "failed") $) 30 T ELT)) (-1776 ((|#1| $) 28 T ELT)) (-3263 (($ (-401)) 22 T ELT) (($ (-401) (-1183)) 21 T ELT)) (-2668 (((-401) $) 25 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1576 (((-1183) $) 26 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 20 T ELT)) (-3349 (($ $) 24 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 19 T ELT))) -(((-377 |#1|) (-13 (-376 (-401) |#1|) (-10 -8 (-15 -3412 ((-3 |#1| "failed") $)))) (-1125)) (T -377)) -((-3412 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1125))))) -(-13 (-376 (-401) |#1|) (-10 -8 (-15 -3412 ((-3 |#1| "failed") $)))) -((-2979 (((-1292 (-705 |#2|)) (-1292 $)) 67 T ELT)) (-2650 (((-705 |#2|) (-1292 $)) 139 T ELT)) (-4204 ((|#2| $) 36 T ELT)) (-1634 (((-705 |#2|) $ (-1292 $)) 142 T ELT)) (-3696 (((-3 $ "failed") $) 89 T ELT)) (-1777 ((|#2| $) 39 T ELT)) (-3282 (((-1197 |#2|) $) 98 T ELT)) (-3927 ((|#2| (-1292 $)) 122 T ELT)) (-3749 (((-1197 |#2|) $) 32 T ELT)) (-2214 (((-112)) 116 T ELT)) (-1911 (($ (-1292 |#2|) (-1292 $)) 132 T ELT)) (-1625 (((-3 $ "failed") $) 93 T ELT)) (-4041 (((-112)) 111 T ELT)) (-1580 (((-112)) 106 T ELT)) (-1451 (((-112)) 58 T ELT)) (-4278 (((-705 |#2|) (-1292 $)) 137 T ELT)) (-2677 ((|#2| $) 35 T ELT)) (-3141 (((-705 |#2|) $ (-1292 $)) 141 T ELT)) (-3473 (((-3 $ "failed") $) 87 T ELT)) (-4419 ((|#2| $) 38 T ELT)) (-3321 (((-1197 |#2|) $) 97 T ELT)) (-3504 ((|#2| (-1292 $)) 120 T ELT)) (-3404 (((-1197 |#2|) $) 30 T ELT)) (-4176 (((-112)) 115 T ELT)) (-3423 (((-112)) 108 T ELT)) (-2742 (((-112)) 56 T ELT)) (-3213 (((-112)) 103 T ELT)) (-3532 (((-112)) 117 T ELT)) (-2729 (((-1292 |#2|) $ (-1292 $)) NIL T ELT) (((-705 |#2|) (-1292 $) (-1292 $)) 128 T ELT)) (-4244 (((-112)) 113 T ELT)) (-2769 (((-660 (-1292 |#2|))) 102 T ELT)) (-4429 (((-112)) 114 T ELT)) (-4347 (((-112)) 112 T ELT)) (-2791 (((-112)) 51 T ELT)) (-3632 (((-112)) 118 T ELT))) -(((-378 |#1| |#2|) (-10 -8 (-15 -3282 ((-1197 |#2|) |#1|)) (-15 -3321 ((-1197 |#2|) |#1|)) (-15 -2769 ((-660 (-1292 |#2|)))) (-15 -3696 ((-3 |#1| "failed") |#1|)) (-15 -3473 ((-3 |#1| "failed") |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 -1580 ((-112))) (-15 -3423 ((-112))) (-15 -4041 ((-112))) (-15 -2742 ((-112))) (-15 -1451 ((-112))) (-15 -3213 ((-112))) (-15 -3632 ((-112))) (-15 -3532 ((-112))) (-15 -2214 ((-112))) (-15 -4176 ((-112))) (-15 -2791 ((-112))) (-15 -4429 ((-112))) (-15 -4347 ((-112))) (-15 -4244 ((-112))) (-15 -3749 ((-1197 |#2|) |#1|)) (-15 -3404 ((-1197 |#2|) |#1|)) (-15 -2650 ((-705 |#2|) (-1292 |#1|))) (-15 -4278 ((-705 |#2|) (-1292 |#1|))) (-15 -3927 (|#2| (-1292 |#1|))) (-15 -3504 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -1777 (|#2| |#1|)) (-15 -4419 (|#2| |#1|)) (-15 -4204 (|#2| |#1|)) (-15 -2677 (|#2| |#1|)) (-15 -1634 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3141 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2979 ((-1292 (-705 |#2|)) (-1292 |#1|)))) (-379 |#2|) (-174)) (T -378)) -((-4244 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-4347 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-4429 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2791 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-4176 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2214 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3532 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3632 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3213 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1451 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2742 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-4041 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3423 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1580 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2769 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-660 (-1292 *4))) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4))))) -(-10 -8 (-15 -3282 ((-1197 |#2|) |#1|)) (-15 -3321 ((-1197 |#2|) |#1|)) (-15 -2769 ((-660 (-1292 |#2|)))) (-15 -3696 ((-3 |#1| "failed") |#1|)) (-15 -3473 ((-3 |#1| "failed") |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 -1580 ((-112))) (-15 -3423 ((-112))) (-15 -4041 ((-112))) (-15 -2742 ((-112))) (-15 -1451 ((-112))) (-15 -3213 ((-112))) (-15 -3632 ((-112))) (-15 -3532 ((-112))) (-15 -2214 ((-112))) (-15 -4176 ((-112))) (-15 -2791 ((-112))) (-15 -4429 ((-112))) (-15 -4347 ((-112))) (-15 -4244 ((-112))) (-15 -3749 ((-1197 |#2|) |#1|)) (-15 -3404 ((-1197 |#2|) |#1|)) (-15 -2650 ((-705 |#2|) (-1292 |#1|))) (-15 -4278 ((-705 |#2|) (-1292 |#1|))) (-15 -3927 (|#2| (-1292 |#1|))) (-15 -3504 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -1777 (|#2| |#1|)) (-15 -4419 (|#2| |#1|)) (-15 -4204 (|#2| |#1|)) (-15 -2677 (|#2| |#1|)) (-15 -1634 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3141 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2979 ((-1292 (-705 |#2|)) (-1292 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3426 (((-3 $ "failed")) 42 (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2979 (((-1292 (-705 |#1|)) (-1292 $)) 83 T ELT)) (-4380 (((-1292 $)) 86 T ELT)) (-3790 (($) 18 T CONST)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) 45 (|has| |#1| (-569)) ELT)) (-3638 (((-3 $ "failed")) 43 (|has| |#1| (-569)) ELT)) (-2650 (((-705 |#1|) (-1292 $)) 70 T ELT)) (-4204 ((|#1| $) 79 T ELT)) (-1634 (((-705 |#1|) $ (-1292 $)) 81 T ELT)) (-3696 (((-3 $ "failed") $) 50 (|has| |#1| (-569)) ELT)) (-1647 (($ $ (-944)) 31 T ELT)) (-1777 ((|#1| $) 77 T ELT)) (-3282 (((-1197 |#1|) $) 47 (|has| |#1| (-569)) ELT)) (-3927 ((|#1| (-1292 $)) 72 T ELT)) (-3749 (((-1197 |#1|) $) 68 T ELT)) (-2214 (((-112)) 62 T ELT)) (-1911 (($ (-1292 |#1|) (-1292 $)) 74 T ELT)) (-1625 (((-3 $ "failed") $) 52 (|has| |#1| (-569)) ELT)) (-3503 (((-944)) 85 T ELT)) (-1825 (((-112)) 59 T ELT)) (-4254 (($ $ (-944)) 38 T ELT)) (-4041 (((-112)) 55 T ELT)) (-1580 (((-112)) 53 T ELT)) (-1451 (((-112)) 57 T ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) 46 (|has| |#1| (-569)) ELT)) (-3370 (((-3 $ "failed")) 44 (|has| |#1| (-569)) ELT)) (-4278 (((-705 |#1|) (-1292 $)) 71 T ELT)) (-2677 ((|#1| $) 80 T ELT)) (-3141 (((-705 |#1|) $ (-1292 $)) 82 T ELT)) (-3473 (((-3 $ "failed") $) 51 (|has| |#1| (-569)) ELT)) (-1954 (($ $ (-944)) 32 T ELT)) (-4419 ((|#1| $) 78 T ELT)) (-3321 (((-1197 |#1|) $) 48 (|has| |#1| (-569)) ELT)) (-3504 ((|#1| (-1292 $)) 73 T ELT)) (-3404 (((-1197 |#1|) $) 69 T ELT)) (-4176 (((-112)) 63 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3423 (((-112)) 54 T ELT)) (-2742 (((-112)) 56 T ELT)) (-3213 (((-112)) 58 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3532 (((-112)) 61 T ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 76 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) 75 T ELT)) (-2518 (((-660 (-975 |#1|)) (-1292 $)) 84 T ELT)) (-3823 (($ $ $) 28 T ELT)) (-4244 (((-112)) 67 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2769 (((-660 (-1292 |#1|))) 49 (|has| |#1| (-569)) ELT)) (-2509 (($ $ $ $) 29 T ELT)) (-4429 (((-112)) 65 T ELT)) (-3223 (($ $ $) 27 T ELT)) (-4347 (((-112)) 66 T ELT)) (-2791 (((-112)) 64 T ELT)) (-3632 (((-112)) 60 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 33 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) +((-3139 (*1 *1 *1 *1) (-4 *1 (-375)))) +(-13 (-318) (-1251) (-249) (-10 -8 (-15 -3139 ($ $ $)) (-6 -4497) (-6 -4491))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-2050 ((|#2| $ |#2|) 14 T ELT)) (-3819 (($ $ (-1188)) 19 T ELT)) (-1494 ((|#2| $) 15 T ELT)) (-3548 (($ |#1|) 21 T ELT) (($ |#1| (-1188)) 20 T ELT)) (-2758 ((|#1| $) 17 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3581 (((-1188) $) 16 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2823 (($ $) 18 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-376 |#1| |#2|) (-141) (-1130) (-1130)) (T -376)) +((-3548 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3548 (*1 *1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1130)) (-4 *4 (-1130)))) (-3819 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-2823 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-1188)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2050 (*1 *2 *1 *2) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3548 ($ |t#1|)) (-15 -3548 ($ |t#1| (-1188))) (-15 -3819 ($ $ (-1188))) (-15 -2823 ($ $)) (-15 -2758 (|t#1| $)) (-15 -3581 ((-1188) $)) (-15 -1494 (|t#2| $)) (-15 -2050 (|t#2| $ |t#2|)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-2050 ((|#1| $ |#1|) 31 T ELT)) (-3819 (($ $ (-1188)) 23 T ELT)) (-2039 (((-3 |#1| "failed") $) 30 T ELT)) (-1494 ((|#1| $) 28 T ELT)) (-3548 (($ (-401)) 22 T ELT) (($ (-401) (-1188)) 21 T ELT)) (-2758 (((-401) $) 25 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3581 (((-1188) $) 26 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 20 T ELT)) (-2823 (($ $) 24 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 19 T ELT))) +(((-377 |#1|) (-13 (-376 (-401) |#1|) (-10 -8 (-15 -2039 ((-3 |#1| "failed") $)))) (-1130)) (T -377)) +((-2039 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1130))))) +(-13 (-376 (-401) |#1|) (-10 -8 (-15 -2039 ((-3 |#1| "failed") $)))) +((-2410 (((-1297 (-710 |#2|)) (-1297 $)) 67 T ELT)) (-3820 (((-710 |#2|) (-1297 $)) 139 T ELT)) (-3009 ((|#2| $) 36 T ELT)) (-3214 (((-710 |#2|) $ (-1297 $)) 142 T ELT)) (-3252 (((-3 $ "failed") $) 89 T ELT)) (-1461 ((|#2| $) 39 T ELT)) (-3747 (((-1202 |#2|) $) 98 T ELT)) (-2501 ((|#2| (-1297 $)) 122 T ELT)) (-4242 (((-1202 |#2|) $) 32 T ELT)) (-2020 (((-112)) 116 T ELT)) (-2385 (($ (-1297 |#2|) (-1297 $)) 132 T ELT)) (-3167 (((-3 $ "failed") $) 93 T ELT)) (-3916 (((-112)) 111 T ELT)) (-1919 (((-112)) 106 T ELT)) (-2732 (((-112)) 58 T ELT)) (-3764 (((-710 |#2|) (-1297 $)) 137 T ELT)) (-3565 ((|#2| $) 35 T ELT)) (-2962 (((-710 |#2|) $ (-1297 $)) 141 T ELT)) (-3535 (((-3 $ "failed") $) 87 T ELT)) (-2799 ((|#2| $) 38 T ELT)) (-2114 (((-1202 |#2|) $) 97 T ELT)) (-3749 ((|#2| (-1297 $)) 120 T ELT)) (-2201 (((-1202 |#2|) $) 30 T ELT)) (-2966 (((-112)) 115 T ELT)) (-2187 (((-112)) 108 T ELT)) (-1465 (((-112)) 56 T ELT)) (-1693 (((-112)) 103 T ELT)) (-2949 (((-112)) 117 T ELT)) (-3762 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) 128 T ELT)) (-3733 (((-112)) 113 T ELT)) (-2274 (((-665 (-1297 |#2|))) 102 T ELT)) (-3678 (((-112)) 114 T ELT)) (-1897 (((-112)) 112 T ELT)) (-3211 (((-112)) 51 T ELT)) (-4146 (((-112)) 118 T ELT))) +(((-378 |#1| |#2|) (-10 -8 (-15 -3747 ((-1202 |#2|) |#1|)) (-15 -2114 ((-1202 |#2|) |#1|)) (-15 -2274 ((-665 (-1297 |#2|)))) (-15 -3252 ((-3 |#1| "failed") |#1|)) (-15 -3535 ((-3 |#1| "failed") |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 -1919 ((-112))) (-15 -2187 ((-112))) (-15 -3916 ((-112))) (-15 -1465 ((-112))) (-15 -2732 ((-112))) (-15 -1693 ((-112))) (-15 -4146 ((-112))) (-15 -2949 ((-112))) (-15 -2020 ((-112))) (-15 -2966 ((-112))) (-15 -3211 ((-112))) (-15 -3678 ((-112))) (-15 -1897 ((-112))) (-15 -3733 ((-112))) (-15 -4242 ((-1202 |#2|) |#1|)) (-15 -2201 ((-1202 |#2|) |#1|)) (-15 -3820 ((-710 |#2|) (-1297 |#1|))) (-15 -3764 ((-710 |#2|) (-1297 |#1|))) (-15 -2501 (|#2| (-1297 |#1|))) (-15 -3749 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1461 (|#2| |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -3009 (|#2| |#1|)) (-15 -3565 (|#2| |#1|)) (-15 -3214 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2962 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2410 ((-1297 (-710 |#2|)) (-1297 |#1|)))) (-379 |#2|) (-174)) (T -378)) +((-3733 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1897 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3678 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3211 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2966 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2020 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2949 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-4146 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1693 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2732 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1465 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3916 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2187 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1919 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2274 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-665 (-1297 *4))) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4))))) +(-10 -8 (-15 -3747 ((-1202 |#2|) |#1|)) (-15 -2114 ((-1202 |#2|) |#1|)) (-15 -2274 ((-665 (-1297 |#2|)))) (-15 -3252 ((-3 |#1| "failed") |#1|)) (-15 -3535 ((-3 |#1| "failed") |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 -1919 ((-112))) (-15 -2187 ((-112))) (-15 -3916 ((-112))) (-15 -1465 ((-112))) (-15 -2732 ((-112))) (-15 -1693 ((-112))) (-15 -4146 ((-112))) (-15 -2949 ((-112))) (-15 -2020 ((-112))) (-15 -2966 ((-112))) (-15 -3211 ((-112))) (-15 -3678 ((-112))) (-15 -1897 ((-112))) (-15 -3733 ((-112))) (-15 -4242 ((-1202 |#2|) |#1|)) (-15 -2201 ((-1202 |#2|) |#1|)) (-15 -3820 ((-710 |#2|) (-1297 |#1|))) (-15 -3764 ((-710 |#2|) (-1297 |#1|))) (-15 -2501 (|#2| (-1297 |#1|))) (-15 -3749 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1461 (|#2| |#1|)) (-15 -2799 (|#2| |#1|)) (-15 -3009 (|#2| |#1|)) (-15 -3565 (|#2| |#1|)) (-15 -3214 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2962 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2410 ((-1297 (-710 |#2|)) (-1297 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3273 (((-3 $ "failed")) 42 (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2410 (((-1297 (-710 |#1|)) (-1297 $)) 83 T ELT)) (-2637 (((-1297 $)) 86 T ELT)) (-2305 (($) 18 T CONST)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) 45 (|has| |#1| (-569)) ELT)) (-2044 (((-3 $ "failed")) 43 (|has| |#1| (-569)) ELT)) (-3820 (((-710 |#1|) (-1297 $)) 70 T ELT)) (-3009 ((|#1| $) 79 T ELT)) (-3214 (((-710 |#1|) $ (-1297 $)) 81 T ELT)) (-3252 (((-3 $ "failed") $) 50 (|has| |#1| (-569)) ELT)) (-3712 (($ $ (-949)) 31 T ELT)) (-1461 ((|#1| $) 77 T ELT)) (-3747 (((-1202 |#1|) $) 47 (|has| |#1| (-569)) ELT)) (-2501 ((|#1| (-1297 $)) 72 T ELT)) (-4242 (((-1202 |#1|) $) 68 T ELT)) (-2020 (((-112)) 62 T ELT)) (-2385 (($ (-1297 |#1|) (-1297 $)) 74 T ELT)) (-3167 (((-3 $ "failed") $) 52 (|has| |#1| (-569)) ELT)) (-1641 (((-949)) 85 T ELT)) (-1547 (((-112)) 59 T ELT)) (-2510 (($ $ (-949)) 38 T ELT)) (-3916 (((-112)) 55 T ELT)) (-1919 (((-112)) 53 T ELT)) (-2732 (((-112)) 57 T ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) 46 (|has| |#1| (-569)) ELT)) (-1740 (((-3 $ "failed")) 44 (|has| |#1| (-569)) ELT)) (-3764 (((-710 |#1|) (-1297 $)) 71 T ELT)) (-3565 ((|#1| $) 80 T ELT)) (-2962 (((-710 |#1|) $ (-1297 $)) 82 T ELT)) (-3535 (((-3 $ "failed") $) 51 (|has| |#1| (-569)) ELT)) (-3744 (($ $ (-949)) 32 T ELT)) (-2799 ((|#1| $) 78 T ELT)) (-2114 (((-1202 |#1|) $) 48 (|has| |#1| (-569)) ELT)) (-3749 ((|#1| (-1297 $)) 73 T ELT)) (-2201 (((-1202 |#1|) $) 69 T ELT)) (-2966 (((-112)) 63 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-2187 (((-112)) 54 T ELT)) (-1465 (((-112)) 56 T ELT)) (-1693 (((-112)) 58 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2949 (((-112)) 61 T ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 75 T ELT)) (-2133 (((-665 (-980 |#1|)) (-1297 $)) 84 T ELT)) (-2486 (($ $ $) 28 T ELT)) (-3733 (((-112)) 67 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2274 (((-665 (-1297 |#1|))) 49 (|has| |#1| (-569)) ELT)) (-2032 (($ $ $ $) 29 T ELT)) (-3678 (((-112)) 65 T ELT)) (-1793 (($ $ $) 27 T ELT)) (-1897 (((-112)) 66 T ELT)) (-3211 (((-112)) 64 T ELT)) (-4146 (((-112)) 60 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) (((-379 |#1|) (-141) (-174)) (T -379)) -((-4380 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-379 *3)))) (-3503 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-944)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-660 (-975 *4))))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1292 (-705 *4))))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-1634 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-4419 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2729 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1292 *4)))) (-2729 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3)))) (-4244 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4347 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4429 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2791 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4176 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2214 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3532 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3632 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1825 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3213 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1451 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2742 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4041 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3423 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1580 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1625 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3473 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3696 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-2769 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-660 (-1292 *3))))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1197 *3)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1197 *3)))) (-1751 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2559 (-660 *1)))) (-4 *1 (-379 *3)))) (-1724 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2559 (-660 *1)))) (-4 *1 (-379 *3)))) (-3370 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-3638 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-3426 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) -(-13 (-760 |t#1|) (-10 -8 (-15 -4380 ((-1292 $))) (-15 -3503 ((-944))) (-15 -2518 ((-660 (-975 |t#1|)) (-1292 $))) (-15 -2979 ((-1292 (-705 |t#1|)) (-1292 $))) (-15 -3141 ((-705 |t#1|) $ (-1292 $))) (-15 -1634 ((-705 |t#1|) $ (-1292 $))) (-15 -2677 (|t#1| $)) (-15 -4204 (|t#1| $)) (-15 -4419 (|t#1| $)) (-15 -1777 (|t#1| $)) (-15 -2729 ((-1292 |t#1|) $ (-1292 $))) (-15 -2729 ((-705 |t#1|) (-1292 $) (-1292 $))) (-15 -1911 ($ (-1292 |t#1|) (-1292 $))) (-15 -3504 (|t#1| (-1292 $))) (-15 -3927 (|t#1| (-1292 $))) (-15 -4278 ((-705 |t#1|) (-1292 $))) (-15 -2650 ((-705 |t#1|) (-1292 $))) (-15 -3404 ((-1197 |t#1|) $)) (-15 -3749 ((-1197 |t#1|) $)) (-15 -4244 ((-112))) (-15 -4347 ((-112))) (-15 -4429 ((-112))) (-15 -2791 ((-112))) (-15 -4176 ((-112))) (-15 -2214 ((-112))) (-15 -3532 ((-112))) (-15 -3632 ((-112))) (-15 -1825 ((-112))) (-15 -3213 ((-112))) (-15 -1451 ((-112))) (-15 -2742 ((-112))) (-15 -4041 ((-112))) (-15 -3423 ((-112))) (-15 -1580 ((-112))) (IF (|has| |t#1| (-569)) (PROGN (-15 -1625 ((-3 $ "failed") $)) (-15 -3473 ((-3 $ "failed") $)) (-15 -3696 ((-3 $ "failed") $)) (-15 -2769 ((-660 (-1292 |t#1|)))) (-15 -3321 ((-1197 |t#1|) $)) (-15 -3282 ((-1197 |t#1|) $)) (-15 -1751 ((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed"))) (-15 -1724 ((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed"))) (-15 -3370 ((-3 $ "failed"))) (-15 -3638 ((-3 $ "failed"))) (-15 -3426 ((-3 $ "failed"))) (-6 -4467)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-736) . T) ((-760 |#1|) . T) ((-777) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3373 (((-787)) 17 T ELT)) (-2352 (($) 14 T ELT)) (-2144 (((-944) $) 15 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3251 (($ (-944)) 16 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +((-2637 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-379 *3)))) (-1641 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-949)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-665 (-980 *4))))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1297 (-710 *4))))) (-2962 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-3214 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1297 *4)))) (-3762 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-2385 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3)))) (-4242 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3)))) (-3733 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1897 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3678 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3211 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2966 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2020 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2949 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4146 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1547 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1693 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2732 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1465 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3916 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2187 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1919 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3167 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3535 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3252 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-2274 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-665 (-1297 *3))))) (-2114 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1202 *3)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1202 *3)))) (-4168 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-665 *1)))) (-4 *1 (-379 *3)))) (-1437 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-665 *1)))) (-4 *1 (-379 *3)))) (-1740 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-2044 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-3273 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) +(-13 (-765 |t#1|) (-10 -8 (-15 -2637 ((-1297 $))) (-15 -1641 ((-949))) (-15 -2133 ((-665 (-980 |t#1|)) (-1297 $))) (-15 -2410 ((-1297 (-710 |t#1|)) (-1297 $))) (-15 -2962 ((-710 |t#1|) $ (-1297 $))) (-15 -3214 ((-710 |t#1|) $ (-1297 $))) (-15 -3565 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -2799 (|t#1| $)) (-15 -1461 (|t#1| $)) (-15 -3762 ((-1297 |t#1|) $ (-1297 $))) (-15 -3762 ((-710 |t#1|) (-1297 $) (-1297 $))) (-15 -2385 ($ (-1297 |t#1|) (-1297 $))) (-15 -3749 (|t#1| (-1297 $))) (-15 -2501 (|t#1| (-1297 $))) (-15 -3764 ((-710 |t#1|) (-1297 $))) (-15 -3820 ((-710 |t#1|) (-1297 $))) (-15 -2201 ((-1202 |t#1|) $)) (-15 -4242 ((-1202 |t#1|) $)) (-15 -3733 ((-112))) (-15 -1897 ((-112))) (-15 -3678 ((-112))) (-15 -3211 ((-112))) (-15 -2966 ((-112))) (-15 -2020 ((-112))) (-15 -2949 ((-112))) (-15 -4146 ((-112))) (-15 -1547 ((-112))) (-15 -1693 ((-112))) (-15 -2732 ((-112))) (-15 -1465 ((-112))) (-15 -3916 ((-112))) (-15 -2187 ((-112))) (-15 -1919 ((-112))) (IF (|has| |t#1| (-569)) (PROGN (-15 -3167 ((-3 $ "failed") $)) (-15 -3535 ((-3 $ "failed") $)) (-15 -3252 ((-3 $ "failed") $)) (-15 -2274 ((-665 (-1297 |t#1|)))) (-15 -2114 ((-1202 |t#1|) $)) (-15 -3747 ((-1202 |t#1|) $)) (-15 -4168 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed"))) (-15 -1437 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed"))) (-15 -1740 ((-3 $ "failed"))) (-15 -2044 ((-3 $ "failed"))) (-15 -3273 ((-3 $ "failed"))) (-6 -4496)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-741) . T) ((-765 |#1|) . T) ((-782) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-3005 (((-792)) 17 T ELT)) (-1424 (($) 14 T ELT)) (-2686 (((-949) $) 15 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3354 (($ (-949)) 16 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-380) (-141)) (T -380)) -((-3373 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-787)))) (-3251 (*1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-380)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-944)))) (-2352 (*1 *1) (-4 *1 (-380)))) -(-13 (-1125) (-10 -8 (-15 -3373 ((-787))) (-15 -3251 ($ (-944))) (-15 -2144 ((-944) $)) (-15 -2352 ($)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-4436 (((-705 |#2|) (-1292 $)) 45 T ELT)) (-1911 (($ (-1292 |#2|) (-1292 $)) 39 T ELT)) (-2678 (((-705 |#2|) $ (-1292 $)) 47 T ELT)) (-4447 ((|#2| (-1292 $)) 13 T ELT)) (-2729 (((-1292 |#2|) $ (-1292 $)) NIL T ELT) (((-705 |#2|) (-1292 $) (-1292 $)) 27 T ELT))) -(((-381 |#1| |#2| |#3|) (-10 -8 (-15 -4436 ((-705 |#2|) (-1292 |#1|))) (-15 -4447 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -2678 ((-705 |#2|) |#1| (-1292 |#1|)))) (-382 |#2| |#3|) (-174) (-1268 |#2|)) (T -381)) -NIL -(-10 -8 (-15 -4436 ((-705 |#2|) (-1292 |#1|))) (-15 -4447 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -2678 ((-705 |#2|) |#1| (-1292 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-4436 (((-705 |#1|) (-1292 $)) 53 T ELT)) (-2219 ((|#1| $) 59 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1911 (($ (-1292 |#1|) (-1292 $)) 55 T ELT)) (-2678 (((-705 |#1|) $ (-1292 $)) 60 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3503 (((-944)) 61 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4021 ((|#1| $) 58 T ELT)) (-3810 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-4447 ((|#1| (-1292 $)) 54 T ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 57 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) 56 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-3907 (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-2600 ((|#2| $) 52 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-382 |#1| |#2|) (-141) (-174) (-1268 |t#1|)) (T -382)) -((-3503 (*1 *2) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-944)))) (-2678 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) (-2729 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *4)))) (-2729 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) (-4 *1 (-382 *4 *5)) (-4 *5 (-1268 *4)))) (-4447 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1268 *2)) (-4 *2 (-174)))) (-4436 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) (-4 *2 (-1268 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3503 ((-944))) (-15 -2678 ((-705 |t#1|) $ (-1292 $))) (-15 -2219 (|t#1| $)) (-15 -4021 (|t#1| $)) (-15 -2729 ((-1292 |t#1|) $ (-1292 $))) (-15 -2729 ((-705 |t#1|) (-1292 $) (-1292 $))) (-15 -1911 ($ (-1292 |t#1|) (-1292 $))) (-15 -4447 (|t#1| (-1292 $))) (-15 -4436 ((-705 |t#1|) (-1292 $))) (-15 -2600 (|t#2| $)) (IF (|has| |t#1| (-375)) (-15 -3810 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-1979 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-2498 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-2124 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2498 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1979 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1242) (-385 |#1|) (-1242) (-385 |#3|)) (T -383)) -((-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) -(-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2498 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1979 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-4438 (((-112) (-1 (-112) |#2| |#2|) $) NIL T ELT) (((-112) $) 18 T ELT)) (-3246 (($ (-1 (-112) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2312 (($ (-1 (-112) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2433 (($ $) 25 T ELT)) (-3728 (((-577) (-1 (-112) |#2|) $) NIL T ELT) (((-577) |#2| $) 11 T ELT) (((-577) |#2| $ (-577)) NIL T ELT)) (-1334 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-384 |#1| |#2|) (-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4438 ((-112) |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -3728 ((-577) |#2| |#1| (-577))) (-15 -3728 ((-577) |#2| |#1|)) (-15 -3728 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4438 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2312 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1334 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1242)) (T -384)) -NIL -(-10 -8 (-15 -3246 (|#1| |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4438 ((-112) |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -1334 (|#1| |#1| |#1|)) (-15 -3728 ((-577) |#2| |#1| (-577))) (-15 -3728 ((-577) |#2| |#1|)) (-15 -3728 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4438 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2312 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1334 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471)) ELT) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-1932 (($ $) 93 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 103 T ELT)) (-3289 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 52 T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) 70 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 85 (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 86 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 43 (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2529 (($ $ |#1|) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1259 (-577))) 71 T ELT)) (-3490 (($ $ (-577)) 64 T ELT) (($ $ (-1259 (-577))) 63 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2875 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 81 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 72 T ELT)) (-1685 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-660 $)) 66 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) 87 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 89 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) 88 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 90 (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-385 |#1|) (-141) (-1242)) (T -385)) -((-1334 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-2433 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)))) (-2312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-4438 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-3728 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) (-5 *2 (-577)))) (-3728 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-577)))) (-3728 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)))) (-1334 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) (-2312 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) (-4438 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-865)) (-5 *2 (-112)))) (-2875 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-1932 (*1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)))) (-3246 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4471)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-3246 (*1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865))))) -(-13 (-667 |t#1|) (-10 -8 (-6 -4470) (-15 -1334 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2433 ($ $)) (-15 -2312 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4438 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3728 ((-577) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -3728 ((-577) |t#1| $)) (-15 -3728 ((-577) |t#1| $ (-577)))) |%noBranch|) (IF (|has| |t#1| (-865)) (PROGN (-6 (-865)) (-15 -1334 ($ $ $)) (-15 -2312 ($ $)) (-15 -4438 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4471)) (PROGN (-15 -2875 ($ $ $ (-577))) (-15 -1932 ($ $)) (-15 -3246 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-865)) (-15 -3246 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1530 (((-660 |#1|) $) 37 T ELT)) (-2014 (($ $ (-787)) 38 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1743 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 41 T ELT)) (-2504 (($ $) 39 T ELT)) (-3411 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 42 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3273 (($ $ |#1| $) 36 T ELT) (($ $ (-660 |#1|) (-660 $)) 35 T ELT)) (-3616 (((-787) $) 43 T ELT)) (-3614 (($ $ $) 34 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ |#1|) 46 T ELT) (((-1307 |#1| |#2|) $) 45 T ELT) (((-1316 |#1| |#2|) $) 44 T ELT)) (-2940 ((|#2| (-1316 |#1| |#2|) $) 47 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-4007 (($ (-688 |#1|)) 40 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#2|) 33 (|has| |#2| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) -(((-386 |#1| |#2|) (-141) (-865) (-174)) (T -386)) -((-2940 (*1 *2 *3 *1) (-12 (-5 *3 (-1316 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-865)) (-4 *2 (-174)))) (-3603 (*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-1307 *3 *4)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-1316 *3 *4)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-787)))) (-3411 (*1 *2 *2 *1) (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-1743 (*1 *2 *2 *1) (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-4007 (*1 *1 *2) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-4 *1 (-386 *3 *4)) (-4 *4 (-174)))) (-2504 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) (-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-660 *3)))) (-3273 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *1)) (-4 *1 (-386 *4 *5)) (-4 *4 (-865)) (-4 *5 (-174))))) -(-13 (-647 |t#2|) (-10 -8 (-15 -2940 (|t#2| (-1316 |t#1| |t#2|) $)) (-15 -3603 ($ |t#1|)) (-15 -3603 ((-1307 |t#1| |t#2|) $)) (-15 -3603 ((-1316 |t#1| |t#2|) $)) (-15 -3616 ((-787) $)) (-15 -3411 ((-1316 |t#1| |t#2|) (-1316 |t#1| |t#2|) $)) (-15 -1743 ((-1316 |t#1| |t#2|) (-1316 |t#1| |t#2|) $)) (-15 -4007 ($ (-688 |t#1|))) (-15 -2504 ($ $)) (-15 -2014 ($ $ (-787))) (-15 -1530 ((-660 |t#1|) $)) (-15 -3273 ($ $ |t#1| $)) (-15 -3273 ($ $ (-660 |t#1|) (-660 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-664 |#2|) . T) ((-647 |#2|) . T) ((-656 |#2|) . T) ((-733 |#2|) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1125) . T) ((-1242) . T)) -((-2057 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40 T ELT)) (-2476 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13 T ELT)) (-2248 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33 T ELT))) -(((-387 |#1| |#2|) (-10 -7 (-15 -2476 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2248 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2057 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1242) (-13 (-385 |#1|) (-10 -7 (-6 -4471)))) (T -387)) -((-2057 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))))) (-2248 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))))) (-2476 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) -(-10 -7 (-15 -2476 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2248 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2057 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2850 (((-705 |#2|) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 22 T ELT) (((-705 (-577)) (-705 $)) 14 T ELT))) -(((-388 |#1| |#2|) (-10 -8 (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 |#2|) (-705 |#1|)))) (-389 |#2|) (-1074)) (T -388)) -NIL -(-10 -8 (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 |#2|) (-705 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2850 (((-705 |#1|) (-705 $)) 30 T ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 29 T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 41 (|has| |#1| (-654 (-577))) ELT) (((-705 (-577)) (-705 $)) 40 (|has| |#1| (-654 (-577))) ELT)) (-1512 (((-705 |#1|) (-1292 $)) 32 T ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 31 T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 39 (|has| |#1| (-654 (-577))) ELT) (((-705 (-577)) (-1292 $)) 38 (|has| |#1| (-654 (-577))) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) -(((-389 |#1|) (-141) (-1074)) (T -389)) -NIL -(-13 (-654 |t#1|) (-10 -7 (IF (|has| |t#1| (-654 (-577))) (-6 (-654 (-577))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 #0=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-654 #0#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-4395 (((-660 (-305 (-975 (-171 |#1|)))) (-305 (-420 (-975 (-171 (-577))))) |#1|) 51 T ELT) (((-660 (-305 (-975 (-171 |#1|)))) (-420 (-975 (-171 (-577)))) |#1|) 50 T ELT) (((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-305 (-420 (-975 (-171 (-577)))))) |#1|) 47 T ELT) (((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-420 (-975 (-171 (-577))))) |#1|) 41 T ELT)) (-3128 (((-660 (-660 (-171 |#1|))) (-660 (-420 (-975 (-171 (-577))))) (-660 (-1201)) |#1|) 30 T ELT) (((-660 (-171 |#1|)) (-420 (-975 (-171 (-577)))) |#1|) 18 T ELT))) -(((-390 |#1|) (-10 -7 (-15 -4395 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -4395 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-305 (-420 (-975 (-171 (-577)))))) |#1|)) (-15 -4395 ((-660 (-305 (-975 (-171 |#1|)))) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -4395 ((-660 (-305 (-975 (-171 |#1|)))) (-305 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -3128 ((-660 (-171 |#1|)) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -3128 ((-660 (-660 (-171 |#1|))) (-660 (-420 (-975 (-171 (-577))))) (-660 (-1201)) |#1|))) (-13 (-375) (-864))) (T -390)) -((-3128 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 (-171 *5)))) (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-864))))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-171 (-577))))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 (-171 (-577)))))) (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-171 (-577))))) (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-420 (-975 (-171 (-577))))))) (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864)))))) -(-10 -7 (-15 -4395 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -4395 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-305 (-420 (-975 (-171 (-577)))))) |#1|)) (-15 -4395 ((-660 (-305 (-975 (-171 |#1|)))) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -4395 ((-660 (-305 (-975 (-171 |#1|)))) (-305 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -3128 ((-660 (-171 |#1|)) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -3128 ((-660 (-660 (-171 |#1|))) (-660 (-420 (-975 (-171 (-577))))) (-660 (-1201)) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 35 T ELT)) (-2829 (((-577) $) 62 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3959 (($ $) 136 T ELT)) (-2642 (($ $) 98 T ELT)) (-2501 (($ $) 90 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3070 (($ $) 47 T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2616 (($ $) 96 T ELT)) (-2471 (($ $) 85 T ELT)) (-2917 (((-577) $) 78 T ELT)) (-2879 (($ $ (-577)) 73 T ELT)) (-2666 (($ $) NIL T ELT)) (-2523 (($ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1609 (($ $) 138 T ELT)) (-2784 (((-3 (-577) "failed") $) 231 T ELT) (((-3 (-420 (-577)) "failed") $) 227 T ELT)) (-2155 (((-577) $) 229 T ELT) (((-420 (-577)) $) 225 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2532 (((-577) $ $) 125 T ELT)) (-1625 (((-3 $ "failed") $) 141 T ELT)) (-3966 (((-420 (-577)) $ (-787)) 232 T ELT) (((-420 (-577)) $ (-787) (-787)) 224 T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3437 (((-944)) 121 T ELT) (((-944) (-944)) 122 (|has| $ (-6 -4461)) ELT)) (-4302 (((-112) $) 130 T ELT)) (-2824 (($) 41 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL T ELT)) (-1787 (((-1297) (-787)) 191 T ELT)) (-3548 (((-1297)) 196 T ELT) (((-1297) (-787)) 197 T ELT)) (-1826 (((-1297)) 198 T ELT) (((-1297) (-787)) 199 T ELT)) (-3583 (((-1297)) 194 T ELT) (((-1297) (-787)) 195 T ELT)) (-2536 (((-577) $) 68 T ELT)) (-3306 (((-112) $) 40 T ELT)) (-4286 (($ $ (-577)) NIL T ELT)) (-2030 (($ $) 51 T ELT)) (-4021 (($ $) NIL T ELT)) (-2178 (((-112) $) 37 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL (-12 (-2686 (|has| $ (-6 -4453))) (-2686 (|has| $ (-6 -4461)))) ELT)) (-1457 (($ $ $) NIL T ELT) (($) NIL (-12 (-2686 (|has| $ (-6 -4453))) (-2686 (|has| $ (-6 -4461)))) ELT)) (-1595 (((-577) $) 17 T ELT)) (-2241 (($) 106 T ELT) (($ $) 113 T ELT)) (-2337 (($) 112 T ELT) (($ $) 114 T ELT)) (-3716 (($ $) 101 T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 143 T ELT)) (-4115 (((-944) (-577)) 46 (|has| $ (-6 -4461)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) 60 T ELT)) (-1374 (($ $) 135 T ELT)) (-3068 (($ (-577) (-577)) 131 T ELT) (($ (-577) (-577) (-944)) 132 T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1527 (((-577) $) 19 T ELT)) (-3628 (($) 115 T ELT)) (-2079 (($ $) 95 T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3453 (((-944)) 123 T ELT) (((-944) (-944)) 124 (|has| $ (-6 -4461)) ELT)) (-3362 (($ $) 142 T ELT) (($ $ (-787)) NIL T ELT)) (-4315 (((-944) (-577)) 50 (|has| $ (-6 -4461)) ELT)) (-2680 (($ $) NIL T ELT)) (-2535 (($ $) NIL T ELT)) (-2655 (($ $) NIL T ELT)) (-2512 (($ $) NIL T ELT)) (-2631 (($ $) 97 T ELT)) (-2486 (($ $) 89 T ELT)) (-2176 (((-391) $) 216 T ELT) (((-228) $) 218 T ELT) (((-911 (-391)) $) NIL T ELT) (((-1183) $) 202 T ELT) (((-549) $) 214 T ELT) (($ (-228)) 223 T ELT)) (-3603 (((-880) $) 206 T ELT) (($ (-577)) 228 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) 228 T ELT) (($ (-420 (-577))) NIL T ELT) (((-228) $) 219 T ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (($ $) 137 T ELT)) (-2716 (((-944)) 61 T ELT) (((-944) (-944)) 80 (|has| $ (-6 -4461)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (((-944)) 126 T ELT)) (-2722 (($ $) 104 T ELT)) (-2570 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2694 (($ $) 102 T ELT)) (-2546 (($ $) 39 T ELT)) (-2748 (($ $) NIL T ELT)) (-2592 (($ $) NIL T ELT)) (-2897 (($ $) NIL T ELT)) (-2604 (($ $) NIL T ELT)) (-2734 (($ $) NIL T ELT)) (-2581 (($ $) NIL T ELT)) (-2708 (($ $) 103 T ELT)) (-2558 (($ $) 52 T ELT)) (-4318 (($ $) 58 T ELT)) (-2754 (($) 36 T CONST)) (-2767 (($) 43 T CONST)) (-1422 (((-1183) $) 27 T ELT) (((-1183) $ (-112)) 29 T ELT) (((-1297) (-838) $) 30 T ELT) (((-1297) (-838) $ (-112)) 31 T ELT)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3001 (((-112) $ $) 203 T ELT)) (-2978 (((-112) $ $) 45 T ELT)) (-2949 (((-112) $ $) 56 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 57 T ELT)) (-3051 (($ $ $) 48 T ELT) (($ $ (-577)) 42 T ELT)) (-3042 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-3031 (($ $ $) 72 T ELT)) (** (($ $ (-944)) 83 T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 107 T ELT) (($ $ (-420 (-577))) 154 T ELT) (($ $ $) 145 T ELT)) (* (($ (-944) $) 79 T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 84 T ELT) (($ $ $) 71 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-391) (-13 (-417) (-239) (-627 (-1183)) (-844) (-626 (-228)) (-1227) (-627 (-549)) (-631 (-228)) (-10 -8 (-15 -3051 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -2030 ($ $)) (-15 -2532 ((-577) $ $)) (-15 -2879 ($ $ (-577))) (-15 -3966 ((-420 (-577)) $ (-787))) (-15 -3966 ((-420 (-577)) $ (-787) (-787))) (-15 -2241 ($)) (-15 -2337 ($)) (-15 -3628 ($)) (-15 -2570 ($ $ $)) (-15 -2241 ($ $)) (-15 -2337 ($ $)) (-15 -1826 ((-1297))) (-15 -1826 ((-1297) (-787))) (-15 -3583 ((-1297))) (-15 -3583 ((-1297) (-787))) (-15 -3548 ((-1297))) (-15 -3548 ((-1297) (-787))) (-15 -1787 ((-1297) (-787))) (-6 -4461) (-6 -4453)))) (T -391)) -((** (*1 *1 *1 *1) (-5 *1 (-391))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-2030 (*1 *1 *1) (-5 *1 (-391))) (-2532 (*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-2879 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-3966 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-3966 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-2241 (*1 *1) (-5 *1 (-391))) (-2337 (*1 *1) (-5 *1 (-391))) (-3628 (*1 *1) (-5 *1 (-391))) (-2570 (*1 *1 *1 *1) (-5 *1 (-391))) (-2241 (*1 *1 *1) (-5 *1 (-391))) (-2337 (*1 *1 *1) (-5 *1 (-391))) (-1826 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) (-3583 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) (-3548 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391))))) -(-13 (-417) (-239) (-627 (-1183)) (-844) (-626 (-228)) (-1227) (-627 (-549)) (-631 (-228)) (-10 -8 (-15 -3051 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -2030 ($ $)) (-15 -2532 ((-577) $ $)) (-15 -2879 ($ $ (-577))) (-15 -3966 ((-420 (-577)) $ (-787))) (-15 -3966 ((-420 (-577)) $ (-787) (-787))) (-15 -2241 ($)) (-15 -2337 ($)) (-15 -3628 ($)) (-15 -2570 ($ $ $)) (-15 -2241 ($ $)) (-15 -2337 ($ $)) (-15 -1826 ((-1297))) (-15 -1826 ((-1297) (-787))) (-15 -3583 ((-1297))) (-15 -3583 ((-1297) (-787))) (-15 -3548 ((-1297))) (-15 -3548 ((-1297) (-787))) (-15 -1787 ((-1297) (-787))) (-6 -4461) (-6 -4453))) -((-2773 (((-660 (-305 (-975 |#1|))) (-305 (-420 (-975 (-577)))) |#1|) 46 T ELT) (((-660 (-305 (-975 |#1|))) (-420 (-975 (-577))) |#1|) 45 T ELT) (((-660 (-660 (-305 (-975 |#1|)))) (-660 (-305 (-420 (-975 (-577))))) |#1|) 42 T ELT) (((-660 (-660 (-305 (-975 |#1|)))) (-660 (-420 (-975 (-577)))) |#1|) 36 T ELT)) (-4098 (((-660 |#1|) (-420 (-975 (-577))) |#1|) 20 T ELT) (((-660 (-660 |#1|)) (-660 (-420 (-975 (-577)))) (-660 (-1201)) |#1|) 30 T ELT))) -(((-392 |#1|) (-10 -7 (-15 -2773 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-420 (-975 (-577)))) |#1|)) (-15 -2773 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-305 (-420 (-975 (-577))))) |#1|)) (-15 -2773 ((-660 (-305 (-975 |#1|))) (-420 (-975 (-577))) |#1|)) (-15 -2773 ((-660 (-305 (-975 |#1|))) (-305 (-420 (-975 (-577)))) |#1|)) (-15 -4098 ((-660 (-660 |#1|)) (-660 (-420 (-975 (-577)))) (-660 (-1201)) |#1|)) (-15 -4098 ((-660 |#1|) (-420 (-975 (-577))) |#1|))) (-13 (-864) (-375))) (T -392)) -((-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-4098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-420 (-975 (-577))))) (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 *5))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-864) (-375))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 (-577))))) (-5 *2 (-660 (-305 (-975 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 (-305 (-975 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-420 (-975 (-577)))))) (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 (-577))))) (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375)))))) -(-10 -7 (-15 -2773 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-420 (-975 (-577)))) |#1|)) (-15 -2773 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-305 (-420 (-975 (-577))))) |#1|)) (-15 -2773 ((-660 (-305 (-975 |#1|))) (-420 (-975 (-577))) |#1|)) (-15 -2773 ((-660 (-305 (-975 |#1|))) (-305 (-420 (-975 (-577)))) |#1|)) (-15 -4098 ((-660 (-660 |#1|)) (-660 (-420 (-975 (-577)))) (-660 (-1201)) |#1|)) (-15 -4098 ((-660 |#1|) (-420 (-975 (-577))) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 30 T ELT)) (-2155 ((|#2| $) 32 T ELT)) (-3391 (($ $) NIL T ELT)) (-2011 (((-787) $) 11 T ELT)) (-4242 (((-660 $) $) 23 T ELT)) (-2148 (((-112) $) NIL T ELT)) (-1740 (($ |#2| |#1|) 21 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3662 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3354 ((|#2| $) 18 T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 51 T ELT) (($ |#2|) 31 T ELT)) (-4198 (((-660 |#1|) $) 20 T ELT)) (-3421 ((|#1| $ |#2|) 55 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 33 T CONST)) (-2994 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) 36 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 39 T ELT) (($ |#2| |#1|) 40 T ELT))) -(((-393 |#1| |#2|) (-13 (-394 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1074) (-865)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865))))) +((-3005 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-792)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-380)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-949)))) (-1424 (*1 *1) (-4 *1 (-380)))) +(-13 (-1130) (-10 -8 (-15 -3005 ((-792))) (-15 -3354 ($ (-949))) (-15 -2686 ((-949) $)) (-15 -1424 ($)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-2901 (((-710 |#2|) (-1297 $)) 45 T ELT)) (-2385 (($ (-1297 |#2|) (-1297 $)) 39 T ELT)) (-3921 (((-710 |#2|) $ (-1297 $)) 47 T ELT)) (-3846 ((|#2| (-1297 $)) 13 T ELT)) (-3762 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) 27 T ELT))) +(((-381 |#1| |#2| |#3|) (-10 -8 (-15 -2901 ((-710 |#2|) (-1297 |#1|))) (-15 -3846 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3921 ((-710 |#2|) |#1| (-1297 |#1|)))) (-382 |#2| |#3|) (-174) (-1273 |#2|)) (T -381)) +NIL +(-10 -8 (-15 -2901 ((-710 |#2|) (-1297 |#1|))) (-15 -3846 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3921 ((-710 |#2|) |#1| (-1297 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2901 (((-710 |#1|) (-1297 $)) 53 T ELT)) (-2318 ((|#1| $) 59 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-2385 (($ (-1297 |#1|) (-1297 $)) 55 T ELT)) (-3921 (((-710 |#1|) $ (-1297 $)) 60 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1641 (((-949)) 61 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2794 ((|#1| $) 58 T ELT)) (-2346 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3846 ((|#1| (-1297 $)) 54 T ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-2708 (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-2932 ((|#2| $) 52 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-382 |#1| |#2|) (-141) (-174) (-1273 |t#1|)) (T -382)) +((-1641 (*1 *2) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-949)))) (-3921 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) (-3762 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-2385 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) (-4 *1 (-382 *4 *5)) (-4 *5 (-1273 *4)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1273 *2)) (-4 *2 (-174)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) (-2346 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) (-4 *2 (-1273 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -1641 ((-949))) (-15 -3921 ((-710 |t#1|) $ (-1297 $))) (-15 -2318 (|t#1| $)) (-15 -2794 (|t#1| $)) (-15 -3762 ((-1297 |t#1|) $ (-1297 $))) (-15 -3762 ((-710 |t#1|) (-1297 $) (-1297 $))) (-15 -2385 ($ (-1297 |t#1|) (-1297 $))) (-15 -3846 (|t#1| (-1297 $))) (-15 -2901 ((-710 |t#1|) (-1297 $))) (-15 -2932 (|t#2| $)) (IF (|has| |t#1| (-375)) (-15 -2346 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4256 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-2060 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4417 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2060 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1247) (-385 |#1|) (-1247) (-385 |#3|)) (T -383)) +((-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) +(-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2060 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3279 (((-112) (-1 (-112) |#2| |#2|) $) NIL T ELT) (((-112) $) 18 T ELT)) (-2629 (($ (-1 (-112) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-1381 (($ (-1 (-112) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2100 (($ $) 25 T ELT)) (-3948 (((-577) (-1 (-112) |#2|) $) NIL T ELT) (((-577) |#2| $) 11 T ELT) (((-577) |#2| $ (-577)) NIL T ELT)) (-3771 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-384 |#1| |#2|) (-10 -8 (-15 -2629 (|#1| |#1|)) (-15 -2629 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3279 ((-112) |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3948 ((-577) |#2| |#1| (-577))) (-15 -3948 ((-577) |#2| |#1|)) (-15 -3948 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3279 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -3771 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1247)) (T -384)) +NIL +(-10 -8 (-15 -2629 (|#1| |#1|)) (-15 -2629 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3279 ((-112) |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3948 ((-577) |#2| |#1| (-577))) (-15 -3948 ((-577) |#2| |#1|)) (-15 -3948 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3279 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1381 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -3771 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2609 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 103 T ELT)) (-3589 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 52 T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) 70 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2561 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-3587 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2338 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 72 T ELT)) (-1702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-385 |#1|) (-141) (-1247)) (T -385)) +((-3771 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-2100 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-1381 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-3279 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-3948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-577)))) (-3948 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-577)))) (-3948 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) (-1381 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) (-3279 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-870)) (-5 *2 (-112)))) (-2338 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-2609 (*1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-2629 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4500)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-2629 (*1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870))))) +(-13 (-672 |t#1|) (-10 -8 (-6 -4499) (-15 -3771 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2100 ($ $)) (-15 -1381 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3279 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3948 ((-577) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -3948 ((-577) |t#1| $)) (-15 -3948 ((-577) |t#1| $ (-577)))) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-6 (-870)) (-15 -3771 ($ $ $)) (-15 -1381 ($ $)) (-15 -3279 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2338 ($ $ $ (-577))) (-15 -2609 ($ $)) (-15 -2629 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-870)) (-15 -2629 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-4294 (((-665 |#1|) $) 37 T ELT)) (-4249 (($ $ (-792)) 38 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-1471 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 41 T ELT)) (-2714 (($ $) 39 T ELT)) (-2511 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 42 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3373 (($ $ |#1| $) 36 T ELT) (($ $ (-665 |#1|) (-665 $)) 35 T ELT)) (-1597 (((-792) $) 43 T ELT)) (-3722 (($ $ $) 34 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ |#1|) 46 T ELT) (((-1312 |#1| |#2|) $) 45 T ELT) (((-1321 |#1| |#2|) $) 44 T ELT)) (-4473 ((|#2| (-1321 |#1| |#2|) $) 47 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2993 (($ (-693 |#1|)) 40 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#2|) 33 (|has| |#2| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) +(((-386 |#1| |#2|) (-141) (-870) (-174)) (T -386)) +((-4473 (*1 *2 *3 *1) (-12 (-5 *3 (-1321 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-870)) (-4 *2 (-174)))) (-3709 (*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-1312 *3 *4)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-1321 *3 *4)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-792)))) (-2511 (*1 *2 *2 *1) (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-1471 (*1 *2 *2 *1) (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-2993 (*1 *1 *2) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-4 *1 (-386 *3 *4)) (-4 *4 (-174)))) (-2714 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-665 *3)))) (-3373 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *1)) (-4 *1 (-386 *4 *5)) (-4 *4 (-870)) (-4 *5 (-174))))) +(-13 (-652 |t#2|) (-10 -8 (-15 -4473 (|t#2| (-1321 |t#1| |t#2|) $)) (-15 -3709 ($ |t#1|)) (-15 -3709 ((-1312 |t#1| |t#2|) $)) (-15 -3709 ((-1321 |t#1| |t#2|) $)) (-15 -1597 ((-792) $)) (-15 -2511 ((-1321 |t#1| |t#2|) (-1321 |t#1| |t#2|) $)) (-15 -1471 ((-1321 |t#1| |t#2|) (-1321 |t#1| |t#2|) $)) (-15 -2993 ($ (-693 |t#1|))) (-15 -2714 ($ $)) (-15 -4249 ($ $ (-792))) (-15 -4294 ((-665 |t#1|) $)) (-15 -3373 ($ $ |t#1| $)) (-15 -3373 ($ $ (-665 |t#1|) (-665 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-669 |#2|) . T) ((-652 |#2|) . T) ((-661 |#2|) . T) ((-738 |#2|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1130) . T) ((-1247) . T)) +((-1691 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40 T ELT)) (-3090 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13 T ELT)) (-3861 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33 T ELT))) +(((-387 |#1| |#2|) (-10 -7 (-15 -3090 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3861 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1691 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1247) (-13 (-385 |#1|) (-10 -7 (-6 -4500)))) (T -387)) +((-1691 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))))) (-3861 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))))) (-3090 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) +(-10 -7 (-15 -3090 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3861 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1691 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-3187 (((-710 |#2|) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 22 T ELT) (((-710 (-577)) (-710 $)) 14 T ELT))) +(((-388 |#1| |#2|) (-10 -8 (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 |#2|) (-710 |#1|)))) (-389 |#2|) (-1079)) (T -388)) +NIL +(-10 -8 (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 |#2|) (-710 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3187 (((-710 |#1|) (-710 $)) 30 T ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 29 T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 41 (|has| |#1| (-659 (-577))) ELT) (((-710 (-577)) (-710 $)) 40 (|has| |#1| (-659 (-577))) ELT)) (-3163 (((-710 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 39 (|has| |#1| (-659 (-577))) ELT) (((-710 (-577)) (-1297 $)) 38 (|has| |#1| (-659 (-577))) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) +(((-389 |#1|) (-141) (-1079)) (T -389)) +NIL +(-13 (-659 |t#1|) (-10 -7 (IF (|has| |t#1| (-659 (-577))) (-6 (-659 (-577))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 #0=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-659 #0#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-2260 (((-665 (-305 (-980 (-171 |#1|)))) (-305 (-420 (-980 (-171 (-577))))) |#1|) 51 T ELT) (((-665 (-305 (-980 (-171 |#1|)))) (-420 (-980 (-171 (-577)))) |#1|) 50 T ELT) (((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-305 (-420 (-980 (-171 (-577)))))) |#1|) 47 T ELT) (((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-420 (-980 (-171 (-577))))) |#1|) 41 T ELT)) (-2634 (((-665 (-665 (-171 |#1|))) (-665 (-420 (-980 (-171 (-577))))) (-665 (-1206)) |#1|) 30 T ELT) (((-665 (-171 |#1|)) (-420 (-980 (-171 (-577)))) |#1|) 18 T ELT))) +(((-390 |#1|) (-10 -7 (-15 -2260 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -2260 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-305 (-420 (-980 (-171 (-577)))))) |#1|)) (-15 -2260 ((-665 (-305 (-980 (-171 |#1|)))) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -2260 ((-665 (-305 (-980 (-171 |#1|)))) (-305 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -2634 ((-665 (-171 |#1|)) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -2634 ((-665 (-665 (-171 |#1|))) (-665 (-420 (-980 (-171 (-577))))) (-665 (-1206)) |#1|))) (-13 (-375) (-869))) (T -390)) +((-2634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 (-171 *5)))) (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-869))))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-171 (-577))))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 (-171 (-577)))))) (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-171 (-577))))) (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-305 (-420 (-980 (-171 (-577))))))) (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869)))))) +(-10 -7 (-15 -2260 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -2260 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-305 (-420 (-980 (-171 (-577)))))) |#1|)) (-15 -2260 ((-665 (-305 (-980 (-171 |#1|)))) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -2260 ((-665 (-305 (-980 (-171 |#1|)))) (-305 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -2634 ((-665 (-171 |#1|)) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -2634 ((-665 (-665 (-171 |#1|))) (-665 (-420 (-980 (-171 (-577))))) (-665 (-1206)) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 35 T ELT)) (-1363 (((-577) $) 62 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3610 (($ $) 136 T ELT)) (-1660 (($ $) 98 T ELT)) (-2785 (($ $) 90 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-3770 (($ $) 47 T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-1638 (($ $) 96 T ELT)) (-2757 (($ $) 85 T ELT)) (-2578 (((-577) $) 78 T ELT)) (-4387 (($ $ (-577)) 73 T ELT)) (-1682 (($ $) NIL T ELT)) (-2809 (($ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3260 (($ $) 138 T ELT)) (-4335 (((-3 (-577) "failed") $) 231 T ELT) (((-3 (-420 (-577)) "failed") $) 227 T ELT)) (-3783 (((-577) $) 229 T ELT) (((-420 (-577)) $) 225 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3695 (((-577) $ $) 125 T ELT)) (-3167 (((-3 $ "failed") $) 141 T ELT)) (-4412 (((-420 (-577)) $ (-792)) 232 T ELT) (((-420 (-577)) $ (-792) (-792)) 224 T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-1847 (((-949)) 121 T ELT) (((-949) (-949)) 122 (|has| $ (-6 -4490)) ELT)) (-4339 (((-112) $) 130 T ELT)) (-2450 (($) 41 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL T ELT)) (-2721 (((-1302) (-792)) 191 T ELT)) (-3911 (((-1302)) 196 T ELT) (((-1302) (-792)) 197 T ELT)) (-2848 (((-1302)) 198 T ELT) (((-1302) (-792)) 199 T ELT)) (-1943 (((-1302)) 194 T ELT) (((-1302) (-792)) 195 T ELT)) (-4030 (((-577) $) 68 T ELT)) (-3357 (((-112) $) 40 T ELT)) (-3368 (($ $ (-577)) NIL T ELT)) (-4237 (($ $) 51 T ELT)) (-2794 (($ $) NIL T ELT)) (-2649 (((-112) $) 37 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL (-12 (-2779 (|has| $ (-6 -4482))) (-2779 (|has| $ (-6 -4490)))) ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL (-12 (-2779 (|has| $ (-6 -4482))) (-2779 (|has| $ (-6 -4490)))) ELT)) (-3079 (((-577) $) 17 T ELT)) (-3591 (($) 106 T ELT) (($ $) 113 T ELT)) (-2445 (($) 112 T ELT) (($ $) 114 T ELT)) (-3825 (($ $) 101 T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 143 T ELT)) (-2110 (((-949) (-577)) 46 (|has| $ (-6 -4490)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) 60 T ELT)) (-3941 (($ $) 135 T ELT)) (-3172 (($ (-577) (-577)) 131 T ELT) (($ (-577) (-577) (-949)) 132 T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2328 (((-577) $) 19 T ELT)) (-1466 (($) 115 T ELT)) (-2355 (($ $) 95 T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3046 (((-949)) 123 T ELT) (((-949) (-949)) 124 (|has| $ (-6 -4490)) ELT)) (-3641 (($ $) 142 T ELT) (($ $ (-792)) NIL T ELT)) (-4326 (((-949) (-577)) 50 (|has| $ (-6 -4490)) ELT)) (-1692 (($ $) NIL T ELT)) (-2821 (($ $) NIL T ELT)) (-1671 (($ $) NIL T ELT)) (-2797 (($ $) NIL T ELT)) (-1648 (($ $) 97 T ELT)) (-2772 (($ $) 89 T ELT)) (-4463 (((-391) $) 216 T ELT) (((-228) $) 218 T ELT) (((-916 (-391)) $) NIL T ELT) (((-1188) $) 202 T ELT) (((-549) $) 214 T ELT) (($ (-228)) 223 T ELT)) (-3709 (((-885) $) 206 T ELT) (($ (-577)) 228 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) 228 T ELT) (($ (-420 (-577))) NIL T ELT) (((-228) $) 219 T ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (($ $) 137 T ELT)) (-1480 (((-949)) 61 T ELT) (((-949) (-949)) 80 (|has| $ (-6 -4490)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (((-949)) 126 T ELT)) (-1727 (($ $) 104 T ELT)) (-2861 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-1703 (($ $) 102 T ELT)) (-2834 (($ $) 39 T ELT)) (-1748 (($ $) NIL T ELT)) (-1616 (($ $) NIL T ELT)) (-4468 (($ $) NIL T ELT)) (-1626 (($ $) NIL T ELT)) (-1737 (($ $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-1715 (($ $) 103 T ELT)) (-2847 (($ $) 52 T ELT)) (-2215 (($ $) 58 T ELT)) (-2839 (($) 36 T CONST)) (-2853 (($) 43 T CONST)) (-4136 (((-1188) $) 27 T ELT) (((-1188) $ (-112)) 29 T ELT) (((-1302) (-843) $) 30 T ELT) (((-1302) (-843) $ (-112)) 31 T ELT)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3078 (((-112) $ $) 203 T ELT)) (-3054 (((-112) $ $) 45 T ELT)) (-3018 (((-112) $ $) 56 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 57 T ELT)) (-3139 (($ $ $) 48 T ELT) (($ $ (-577)) 42 T ELT)) (-3128 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-3114 (($ $ $) 72 T ELT)) (** (($ $ (-949)) 83 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 107 T ELT) (($ $ (-420 (-577))) 154 T ELT) (($ $ $) 145 T ELT)) (* (($ (-949) $) 79 T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 84 T ELT) (($ $ $) 71 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-391) (-13 (-417) (-239) (-632 (-1188)) (-849) (-631 (-228)) (-1232) (-632 (-549)) (-636 (-228)) (-10 -8 (-15 -3139 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -4237 ($ $)) (-15 -3695 ((-577) $ $)) (-15 -4387 ($ $ (-577))) (-15 -4412 ((-420 (-577)) $ (-792))) (-15 -4412 ((-420 (-577)) $ (-792) (-792))) (-15 -3591 ($)) (-15 -2445 ($)) (-15 -1466 ($)) (-15 -2861 ($ $ $)) (-15 -3591 ($ $)) (-15 -2445 ($ $)) (-15 -2848 ((-1302))) (-15 -2848 ((-1302) (-792))) (-15 -1943 ((-1302))) (-15 -1943 ((-1302) (-792))) (-15 -3911 ((-1302))) (-15 -3911 ((-1302) (-792))) (-15 -2721 ((-1302) (-792))) (-6 -4490) (-6 -4482)))) (T -391)) +((** (*1 *1 *1 *1) (-5 *1 (-391))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-4237 (*1 *1 *1) (-5 *1 (-391))) (-3695 (*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-4387 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-4412 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-4412 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-3591 (*1 *1) (-5 *1 (-391))) (-2445 (*1 *1) (-5 *1 (-391))) (-1466 (*1 *1) (-5 *1 (-391))) (-2861 (*1 *1 *1 *1) (-5 *1 (-391))) (-3591 (*1 *1 *1) (-5 *1 (-391))) (-2445 (*1 *1 *1) (-5 *1 (-391))) (-2848 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) (-1943 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) (-3911 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391))))) +(-13 (-417) (-239) (-632 (-1188)) (-849) (-631 (-228)) (-1232) (-632 (-549)) (-636 (-228)) (-10 -8 (-15 -3139 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -4237 ($ $)) (-15 -3695 ((-577) $ $)) (-15 -4387 ($ $ (-577))) (-15 -4412 ((-420 (-577)) $ (-792))) (-15 -4412 ((-420 (-577)) $ (-792) (-792))) (-15 -3591 ($)) (-15 -2445 ($)) (-15 -1466 ($)) (-15 -2861 ($ $ $)) (-15 -3591 ($ $)) (-15 -2445 ($ $)) (-15 -2848 ((-1302))) (-15 -2848 ((-1302) (-792))) (-15 -1943 ((-1302))) (-15 -1943 ((-1302) (-792))) (-15 -3911 ((-1302))) (-15 -3911 ((-1302) (-792))) (-15 -2721 ((-1302) (-792))) (-6 -4490) (-6 -4482))) +((-2205 (((-665 (-305 (-980 |#1|))) (-305 (-420 (-980 (-577)))) |#1|) 46 T ELT) (((-665 (-305 (-980 |#1|))) (-420 (-980 (-577))) |#1|) 45 T ELT) (((-665 (-665 (-305 (-980 |#1|)))) (-665 (-305 (-420 (-980 (-577))))) |#1|) 42 T ELT) (((-665 (-665 (-305 (-980 |#1|)))) (-665 (-420 (-980 (-577)))) |#1|) 36 T ELT)) (-4007 (((-665 |#1|) (-420 (-980 (-577))) |#1|) 20 T ELT) (((-665 (-665 |#1|)) (-665 (-420 (-980 (-577)))) (-665 (-1206)) |#1|) 30 T ELT))) +(((-392 |#1|) (-10 -7 (-15 -2205 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-420 (-980 (-577)))) |#1|)) (-15 -2205 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-305 (-420 (-980 (-577))))) |#1|)) (-15 -2205 ((-665 (-305 (-980 |#1|))) (-420 (-980 (-577))) |#1|)) (-15 -2205 ((-665 (-305 (-980 |#1|))) (-305 (-420 (-980 (-577)))) |#1|)) (-15 -4007 ((-665 (-665 |#1|)) (-665 (-420 (-980 (-577)))) (-665 (-1206)) |#1|)) (-15 -4007 ((-665 |#1|) (-420 (-980 (-577))) |#1|))) (-13 (-869) (-375))) (T -392)) +((-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-4007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-420 (-980 (-577))))) (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 *5))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-869) (-375))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 (-577))))) (-5 *2 (-665 (-305 (-980 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 (-305 (-980 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-305 (-420 (-980 (-577)))))) (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 (-577))))) (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375)))))) +(-10 -7 (-15 -2205 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-420 (-980 (-577)))) |#1|)) (-15 -2205 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-305 (-420 (-980 (-577))))) |#1|)) (-15 -2205 ((-665 (-305 (-980 |#1|))) (-420 (-980 (-577))) |#1|)) (-15 -2205 ((-665 (-305 (-980 |#1|))) (-305 (-420 (-980 (-577)))) |#1|)) (-15 -4007 ((-665 (-665 |#1|)) (-665 (-420 (-980 (-577)))) (-665 (-1206)) |#1|)) (-15 -4007 ((-665 |#1|) (-420 (-980 (-577))) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) 30 T ELT)) (-3783 ((|#2| $) 32 T ELT)) (-4048 (($ $) NIL T ELT)) (-2662 (((-792) $) 11 T ELT)) (-2102 (((-665 $) $) 23 T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3305 (($ |#2| |#1|) 21 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3649 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-4014 ((|#2| $) 18 T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 51 T ELT) (($ |#2|) 31 T ELT)) (-4343 (((-665 |#1|) $) 20 T ELT)) (-4171 ((|#1| $ |#2|) 55 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 33 T CONST)) (-2535 (((-665 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) 36 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 39 T ELT) (($ |#2| |#1|) 40 T ELT))) +(((-393 |#1| |#2|) (-13 (-394 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1079) (-870)) (T -393)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870))))) (-13 (-394 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#2| "failed") $) 49 T ELT)) (-2155 ((|#2| $) 50 T ELT)) (-3391 (($ $) 35 T ELT)) (-2011 (((-787) $) 39 T ELT)) (-4242 (((-660 $) $) 40 T ELT)) (-2148 (((-112) $) 43 T ELT)) (-1740 (($ |#2| |#1|) 44 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 45 T ELT)) (-3662 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36 T ELT)) (-3354 ((|#2| $) 38 T ELT)) (-3365 ((|#1| $) 37 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ |#2|) 48 T ELT)) (-4198 (((-660 |#1|) $) 41 T ELT)) (-3421 ((|#1| $ |#2|) 46 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2994 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT) (($ |#1| |#2|) 47 T ELT))) -(((-394 |#1| |#2|) (-141) (-1074) (-1125)) (T -394)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125)))) (-3421 (*1 *2 *1 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)))) (-1740 (*1 *1 *2 *3) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-112)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 *3)))) (-4242 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-394 *3 *4)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-787)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125))))) -(-13 (-111 |t#1| |t#1|) (-1063 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3421 (|t#1| $ |t#2|)) (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (-15 -1740 ($ |t#2| |t#1|)) (-15 -2148 ((-112) $)) (-15 -2994 ((-660 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4198 ((-660 |t#1|) $)) (-15 -4242 ((-660 $) $)) (-15 -2011 ((-787) $)) (-15 -3354 (|t#2| $)) (-15 -3365 (|t#1| $)) (-15 -3662 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3391 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-733 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-1063 |#2|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3794 (((-1297) $) 7 T ELT)) (-3603 (((-880) $) 8 T ELT) (($ (-705 (-715))) 14 T ELT) (($ (-660 (-341))) 13 T ELT) (($ (-341)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 11 T ELT))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#2| "failed") $) 49 T ELT)) (-3783 ((|#2| $) 50 T ELT)) (-4048 (($ $) 35 T ELT)) (-2662 (((-792) $) 39 T ELT)) (-2102 (((-665 $) $) 40 T ELT)) (-2696 (((-112) $) 43 T ELT)) (-3305 (($ |#2| |#1|) 44 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 45 T ELT)) (-3649 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36 T ELT)) (-4014 ((|#2| $) 38 T ELT)) (-4025 ((|#1| $) 37 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ |#2|) 48 T ELT)) (-4343 (((-665 |#1|) $) 41 T ELT)) (-4171 ((|#1| $ |#2|) 46 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2535 (((-665 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT) (($ |#1| |#2|) 47 T ELT))) +(((-394 |#1| |#2|) (-141) (-1079) (-1130)) (T -394)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130)))) (-4171 (*1 *2 *1 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)))) (-3305 (*1 *1 *2 *3) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-112)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 *3)))) (-2102 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-394 *3 *4)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-792)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130))))) +(-13 (-111 |t#1| |t#1|) (-1068 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4171 (|t#1| $ |t#2|)) (-15 -4417 ($ (-1 |t#1| |t#1|) $)) (-15 -3305 ($ |t#2| |t#1|)) (-15 -2696 ((-112) $)) (-15 -2535 ((-665 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4343 ((-665 |t#1|) $)) (-15 -2102 ((-665 $) $)) (-15 -2662 ((-792) $)) (-15 -4014 (|t#2| $)) (-15 -4025 (|t#1| $)) (-15 -3649 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4048 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-738 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-1068 |#2|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3495 (((-1302) $) 7 T ELT)) (-3709 (((-885) $) 8 T ELT) (($ (-710 (-720))) 14 T ELT) (($ (-665 (-341))) 13 T ELT) (($ (-341)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 11 T ELT))) (((-395) (-141)) (T -395)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-705 (-715))) (-4 *1 (-395)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-395)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-395)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) (-4 *1 (-395))))) -(-13 (-408) (-10 -8 (-15 -3603 ($ (-705 (-715)))) (-15 -3603 ($ (-660 (-341)))) (-15 -3603 ($ (-341))) (-15 -3603 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341)))))))) -(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) -((-2784 (((-3 $ "failed") (-705 (-327 (-391)))) 21 T ELT) (((-3 $ "failed") (-705 (-327 (-577)))) 19 T ELT) (((-3 $ "failed") (-705 (-975 (-391)))) 17 T ELT) (((-3 $ "failed") (-705 (-975 (-577)))) 15 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 13 T ELT) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 11 T ELT)) (-2155 (($ (-705 (-327 (-391)))) 22 T ELT) (($ (-705 (-327 (-577)))) 20 T ELT) (($ (-705 (-975 (-391)))) 18 T ELT) (($ (-705 (-975 (-577)))) 16 T ELT) (($ (-705 (-420 (-975 (-391))))) 14 T ELT) (($ (-705 (-420 (-975 (-577))))) 12 T ELT)) (-3794 (((-1297) $) 7 T ELT)) (-3603 (((-880) $) 8 T ELT) (($ (-660 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 23 T ELT))) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-710 (-720))) (-4 *1 (-395)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-395)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-395)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-395))))) +(-13 (-408) (-10 -8 (-15 -3709 ($ (-710 (-720)))) (-15 -3709 ($ (-665 (-341)))) (-15 -3709 ($ (-341))) (-15 -3709 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341)))))))) +(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) +((-4335 (((-3 $ "failed") (-710 (-327 (-391)))) 21 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 19 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 17 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 15 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 13 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 11 T ELT)) (-3783 (($ (-710 (-327 (-391)))) 22 T ELT) (($ (-710 (-327 (-577)))) 20 T ELT) (($ (-710 (-980 (-391)))) 18 T ELT) (($ (-710 (-980 (-577)))) 16 T ELT) (($ (-710 (-420 (-980 (-391))))) 14 T ELT) (($ (-710 (-420 (-980 (-577))))) 12 T ELT)) (-3495 (((-1302) $) 7 T ELT)) (-3709 (((-885) $) 8 T ELT) (($ (-665 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 23 T ELT))) (((-396) (-141)) (T -396)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-396)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-396)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) (-4 *1 (-396)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396))))) -(-13 (-408) (-10 -8 (-15 -3603 ($ (-660 (-341)))) (-15 -3603 ($ (-341))) (-15 -3603 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341)))))) (-15 -2155 ($ (-705 (-327 (-391))))) (-15 -2784 ((-3 $ "failed") (-705 (-327 (-391))))) (-15 -2155 ($ (-705 (-327 (-577))))) (-15 -2784 ((-3 $ "failed") (-705 (-327 (-577))))) (-15 -2155 ($ (-705 (-975 (-391))))) (-15 -2784 ((-3 $ "failed") (-705 (-975 (-391))))) (-15 -2155 ($ (-705 (-975 (-577))))) (-15 -2784 ((-3 $ "failed") (-705 (-975 (-577))))) (-15 -2155 ($ (-705 (-420 (-975 (-391)))))) (-15 -2784 ((-3 $ "failed") (-705 (-420 (-975 (-391)))))) (-15 -2155 ($ (-705 (-420 (-975 (-577)))))) (-15 -2784 ((-3 $ "failed") (-705 (-420 (-975 (-577)))))))) -(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3229 (((-660 (-891 |#2| |#1|)) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-3180 (($ |#1| |#2|) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4219 ((|#2| $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 33 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 12 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-397 |#1| |#2|) (-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|))) (-1074) (-868)) (T -397)) -NIL -(-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3373 (((-787) $) 35 T ELT)) (-3790 (($) 19 T CONST)) (-1743 (((-3 $ "failed") $ $) 38 T ELT)) (-2784 (((-3 |#1| "failed") $) 46 T ELT)) (-2155 ((|#1| $) 47 T ELT)) (-1625 (((-3 $ "failed") $) 16 T ELT)) (-3462 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36 T ELT)) (-3306 (((-112) $) 18 T ELT)) (-3733 ((|#1| $ (-577)) 32 T ELT)) (-3606 (((-787) $ (-577)) 33 T ELT)) (-2900 (($ $ $) 24 (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) 25 (|has| |#1| (-865)) ELT)) (-3672 (($ (-1 |#1| |#1|) $) 30 T ELT)) (-2295 (($ (-1 (-787) (-787)) $) 31 T ELT)) (-3411 (((-3 $ "failed") $ $) 39 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2070 (($ $ $) 40 T ELT)) (-3884 (($ $ $) 41 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1704 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-787)))) $) 34 T ELT)) (-3039 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ |#1|) 45 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2767 (($) 20 T CONST)) (-3001 (((-112) $ $) 26 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 28 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 27 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 29 (|has| |#1| (-865)) ELT)) (** (($ $ (-944)) 14 T ELT) (($ $ (-787)) 17 T ELT) (($ |#1| (-787)) 42 T ELT)) (* (($ $ $) 15 T ELT) (($ |#1| $) 44 T ELT) (($ $ |#1|) 43 T ELT))) -(((-398 |#1|) (-141) (-1125)) (T -398)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-3884 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-2070 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-3411 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-1743 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-3039 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1125)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-3462 (*1 *2 *1 *1) (-12 (-4 *3 (-1125)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) (-5 *2 (-787)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 (-787))))))) (-3606 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1125)) (-5 *2 (-787)))) (-3733 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-787) (-787))) (-4 *1 (-398 *3)) (-4 *3 (-1125)))) (-3672 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1125))))) -(-13 (-742) (-1063 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-787))) (-15 -3884 ($ $ $)) (-15 -2070 ($ $ $)) (-15 -3411 ((-3 $ "failed") $ $)) (-15 -1743 ((-3 $ "failed") $ $)) (-15 -3039 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3462 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3373 ((-787) $)) (-15 -1704 ((-660 (-2 (|:| |gen| |t#1|) (|:| -2079 (-787)))) $)) (-15 -3606 ((-787) $ (-577))) (-15 -3733 (|t#1| $ (-577))) (-15 -2295 ($ (-1 (-787) (-787)) $)) (-15 -3672 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|))) -(((-102) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-742) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1063 |#1|) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787) $) 74 T ELT)) (-3790 (($) NIL T CONST)) (-1743 (((-3 $ "failed") $ $) 77 T ELT)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3462 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-3306 (((-112) $) 17 T ELT)) (-3733 ((|#1| $ (-577)) NIL T ELT)) (-3606 (((-787) $ (-577)) NIL T ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-3672 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2295 (($ (-1 (-787) (-787)) $) 37 T ELT)) (-3411 (((-3 $ "failed") $ $) 60 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2070 (($ $ $) 28 T ELT)) (-3884 (($ $ $) 26 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1704 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-787)))) $) 34 T ELT)) (-3039 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70 T ELT)) (-3603 (((-880) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 11 T CONST)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 84 (|has| |#1| (-865)) ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ |#1| (-787)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-399 |#1|) (-398 |#1|) (-1125)) (T -399)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-396)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-396)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-396)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396))))) +(-13 (-408) (-10 -8 (-15 -3709 ($ (-665 (-341)))) (-15 -3709 ($ (-341))) (-15 -3709 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341)))))) (-15 -3783 ($ (-710 (-327 (-391))))) (-15 -4335 ((-3 $ "failed") (-710 (-327 (-391))))) (-15 -3783 ($ (-710 (-327 (-577))))) (-15 -4335 ((-3 $ "failed") (-710 (-327 (-577))))) (-15 -3783 ($ (-710 (-980 (-391))))) (-15 -4335 ((-3 $ "failed") (-710 (-980 (-391))))) (-15 -3783 ($ (-710 (-980 (-577))))) (-15 -4335 ((-3 $ "failed") (-710 (-980 (-577))))) (-15 -3783 ($ (-710 (-420 (-980 (-391)))))) (-15 -4335 ((-3 $ "failed") (-710 (-420 (-980 (-391)))))) (-15 -3783 ($ (-710 (-420 (-980 (-577)))))) (-15 -4335 ((-3 $ "failed") (-710 (-420 (-980 (-577)))))))) +(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2072 (((-665 (-896 |#2| |#1|)) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3872 (($ |#1| |#2|) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1560 ((|#2| $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 33 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 12 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-397 |#1| |#2|) (-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|))) (-1079) (-873)) (T -397)) +NIL +(-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3005 (((-792) $) 35 T ELT)) (-2305 (($) 19 T CONST)) (-1471 (((-3 $ "failed") $ $) 38 T ELT)) (-4335 (((-3 |#1| "failed") $) 46 T ELT)) (-3783 ((|#1| $) 47 T ELT)) (-3167 (((-3 $ "failed") $) 16 T ELT)) (-3792 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36 T ELT)) (-3357 (((-112) $) 18 T ELT)) (-1770 ((|#1| $ (-577)) 32 T ELT)) (-1520 (((-792) $ (-577)) 33 T ELT)) (-3237 (($ $ $) 24 (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) 25 (|has| |#1| (-870)) ELT)) (-2399 (($ (-1 |#1| |#1|) $) 30 T ELT)) (-1923 (($ (-1 (-792) (-792)) $) 31 T ELT)) (-2511 (((-3 $ "failed") $ $) 39 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-4350 (($ $ $) 40 T ELT)) (-2505 (($ $ $) 41 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2127 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-792)))) $) 34 T ELT)) (-3372 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ |#1|) 45 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2853 (($) 20 T CONST)) (-3078 (((-112) $ $) 26 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 28 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 27 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 29 (|has| |#1| (-870)) ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT) (($ |#1| (-792)) 42 T ELT)) (* (($ $ $) 15 T ELT) (($ |#1| $) 44 T ELT) (($ $ |#1|) 43 T ELT))) +(((-398 |#1|) (-141) (-1130)) (T -398)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-2505 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-4350 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-2511 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-1471 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-3372 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1130)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-3792 (*1 *2 *1 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) (-5 *2 (-792)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 (-792))))))) (-1520 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1130)) (-5 *2 (-792)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-1923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-792) (-792))) (-4 *1 (-398 *3)) (-4 *3 (-1130)))) (-2399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1130))))) +(-13 (-747) (-1068 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-792))) (-15 -2505 ($ $ $)) (-15 -4350 ($ $ $)) (-15 -2511 ((-3 $ "failed") $ $)) (-15 -1471 ((-3 $ "failed") $ $)) (-15 -3372 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3792 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3005 ((-792) $)) (-15 -2127 ((-665 (-2 (|:| |gen| |t#1|) (|:| -2355 (-792)))) $)) (-15 -1520 ((-792) $ (-577))) (-15 -1770 (|t#1| $ (-577))) (-15 -1923 ($ (-1 (-792) (-792)) $)) (-15 -2399 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|))) +(((-102) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-747) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1068 |#1|) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792) $) 74 T ELT)) (-2305 (($) NIL T CONST)) (-1471 (((-3 $ "failed") $ $) 77 T ELT)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3792 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-3357 (((-112) $) 17 T ELT)) (-1770 ((|#1| $ (-577)) NIL T ELT)) (-1520 (((-792) $ (-577)) NIL T ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2399 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-1923 (($ (-1 (-792) (-792)) $) 37 T ELT)) (-2511 (((-3 $ "failed") $ $) 60 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4350 (($ $ $) 28 T ELT)) (-2505 (($ $ $) 26 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2127 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-792)))) $) 34 T ELT)) (-3372 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70 T ELT)) (-3709 (((-885) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 11 T CONST)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 84 (|has| |#1| (-870)) ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ |#1| (-792)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-399 |#1|) (-398 |#1|) (-1130)) (T -399)) NIL (-398 |#1|) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 54 T ELT)) (-2155 (((-577) $) 55 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2900 (($ $ $) 56 T ELT)) (-1457 (($ $ $) 57 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 53 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-3001 (((-112) $ $) 58 T ELT)) (-2978 (((-112) $ $) 60 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 59 T ELT)) (-2971 (((-112) $ $) 61 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 54 T ELT)) (-3783 (((-577) $) 55 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3237 (($ $ $) 56 T ELT)) (-2930 (($ $ $) 57 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 53 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3078 (((-112) $ $) 58 T ELT)) (-3054 (((-112) $ $) 60 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 59 T ELT)) (-3042 (((-112) $ $) 61 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-400) (-141)) (T -400)) NIL -(-13 (-569) (-865) (-1063 (-577))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-865) . T) ((-868) . T) ((-1063 (-577)) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2473 (((-112) $) 25 T ELT)) (-2537 (((-112) $) 22 T ELT)) (-4223 (($ (-1183) (-1183) (-1183)) 26 T ELT)) (-2668 (((-1183) $) 16 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4344 (($ (-1183) (-1183) (-1183)) 14 T ELT)) (-4164 (((-1183) $) 17 T ELT)) (-2309 (((-112) $) 18 T ELT)) (-2243 (((-1183) $) 15 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-1183)) 13 T ELT) (((-1183) $) 9 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 7 T ELT))) +(-13 (-569) (-870) (-1068 (-577))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-870) . T) ((-873) . T) ((-1068 (-577)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $) 25 T ELT)) (-1921 (((-112) $) 22 T ELT)) (-3236 (($ (-1188) (-1188) (-1188)) 26 T ELT)) (-2758 (((-1188) $) 16 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4392 (($ (-1188) (-1188) (-1188)) 14 T ELT)) (-1863 (((-1188) $) 17 T ELT)) (-2690 (((-112) $) 18 T ELT)) (-2485 (((-1188) $) 15 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-1188)) 13 T ELT) (((-1188) $) 9 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 7 T ELT))) (((-401) (-402)) (T -401)) NIL (-402) -((-3489 (((-112) $ $) 7 T ELT)) (-2473 (((-112) $) 17 T ELT)) (-2537 (((-112) $) 18 T ELT)) (-4223 (($ (-1183) (-1183) (-1183)) 16 T ELT)) (-2668 (((-1183) $) 21 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-4344 (($ (-1183) (-1183) (-1183)) 23 T ELT)) (-4164 (((-1183) $) 20 T ELT)) (-2309 (((-112) $) 19 T ELT)) (-2243 (((-1183) $) 22 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-1183)) 25 T ELT) (((-1183) $) 24 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +((-3586 (((-112) $ $) 7 T ELT)) (-2174 (((-112) $) 17 T ELT)) (-1921 (((-112) $) 18 T ELT)) (-3236 (($ (-1188) (-1188) (-1188)) 16 T ELT)) (-2758 (((-1188) $) 21 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4392 (($ (-1188) (-1188) (-1188)) 23 T ELT)) (-1863 (((-1188) $) 20 T ELT)) (-2690 (((-112) $) 19 T ELT)) (-2485 (((-1188) $) 22 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-1188)) 25 T ELT) (((-1188) $) 24 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-402) (-141)) (T -402)) -((-4344 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-4223 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402))))) -(-13 (-1125) (-503 (-1183)) (-10 -8 (-15 -4344 ($ (-1183) (-1183) (-1183))) (-15 -2243 ((-1183) $)) (-15 -2668 ((-1183) $)) (-15 -4164 ((-1183) $)) (-15 -2309 ((-112) $)) (-15 -2537 ((-112) $)) (-15 -2473 ((-112) $)) (-15 -4223 ($ (-1183) (-1183) (-1183))))) -(((-102) . T) ((-629 #0=(-1183)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2753 (((-880) $) 63 T ELT)) (-3790 (($) NIL T CONST)) (-1647 (($ $ (-944)) NIL T ELT)) (-4254 (($ $ (-944)) NIL T ELT)) (-1954 (($ $ (-944)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($ (-787)) 38 T ELT)) (-3941 (((-787)) 18 T ELT)) (-1406 (((-880) $) 65 T ELT)) (-3823 (($ $ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2509 (($ $ $ $) NIL T ELT)) (-3223 (($ $ $) NIL T ELT)) (-2754 (($) 24 T CONST)) (-2949 (((-112) $ $) 41 T ELT)) (-3042 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3031 (($ $ $) 51 T ELT)) (** (($ $ (-944)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-403 |#1| |#2| |#3|) (-13 (-760 |#3|) (-10 -8 (-15 -3941 ((-787))) (-15 -1406 ((-880) $)) (-15 -2753 ((-880) $)) (-15 -3428 ($ (-787))))) (-787) (-787) (-174)) (T -403)) -((-3941 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) (-14 *4 (-787)) (-4 *5 (-174)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) (-14 *4 (-787)) (-4 *5 (-174)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-760 |#3|) (-10 -8 (-15 -3941 ((-787))) (-15 -1406 ((-880) $)) (-15 -2753 ((-880) $)) (-15 -3428 ($ (-787))))) -((-3865 (((-1183)) 12 T ELT)) (-2146 (((-1172 (-1183))) 30 T ELT)) (-3771 (((-1297) (-1183)) 27 T ELT) (((-1297) (-401)) 26 T ELT)) (-3783 (((-1297)) 28 T ELT)) (-2402 (((-1172 (-1183))) 29 T ELT))) -(((-404) (-10 -7 (-15 -2402 ((-1172 (-1183)))) (-15 -2146 ((-1172 (-1183)))) (-15 -3783 ((-1297))) (-15 -3771 ((-1297) (-401))) (-15 -3771 ((-1297) (-1183))) (-15 -3865 ((-1183))))) (T -404)) -((-3865 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-404)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-404)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-404)))) (-3783 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-404)))) (-2146 (*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404)))) (-2402 (*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404))))) -(-10 -7 (-15 -2402 ((-1172 (-1183)))) (-15 -2146 ((-1172 (-1183)))) (-15 -3783 ((-1297))) (-15 -3771 ((-1297) (-401))) (-15 -3771 ((-1297) (-1183))) (-15 -3865 ((-1183)))) -((-2536 (((-787) (-348 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-405 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2536 ((-787) (-348 |#1| |#2| |#3| |#4|)))) (-13 (-380) (-375)) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -405)) -((-2536 (*1 *2 *3) (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) (-5 *2 (-787)) (-5 *1 (-405 *4 *5 *6 *7))))) -(-10 -7 (-15 -2536 ((-787) (-348 |#1| |#2| |#3| |#4|)))) -((-3603 (((-407) |#1|) 11 T ELT))) -(((-406 |#1|) (-10 -7 (-15 -3603 ((-407) |#1|))) (-1125)) (T -406)) -((-3603 (*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1125))))) -(-10 -7 (-15 -3603 ((-407) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-1486 (((-660 (-1183)) $ (-660 (-1183))) 42 T ELT)) (-2344 (((-660 (-1183)) $ (-660 (-1183))) 43 T ELT)) (-2676 (((-660 (-1183)) $ (-660 (-1183))) 44 T ELT)) (-4271 (((-660 (-1183)) $) 39 T ELT)) (-4223 (($) 30 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3980 (((-660 (-1183)) $) 40 T ELT)) (-3939 (((-660 (-1183)) $) 41 T ELT)) (-1992 (((-1297) $ (-577)) 37 T ELT) (((-1297) $) 38 T ELT)) (-2176 (($ (-880) (-577)) 35 T ELT)) (-3603 (((-880) $) 49 T ELT) (($ (-880)) 32 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-407) (-13 (-1125) (-629 (-880)) (-10 -8 (-15 -2176 ($ (-880) (-577))) (-15 -1992 ((-1297) $ (-577))) (-15 -1992 ((-1297) $)) (-15 -3939 ((-660 (-1183)) $)) (-15 -3980 ((-660 (-1183)) $)) (-15 -4223 ($)) (-15 -4271 ((-660 (-1183)) $)) (-15 -2676 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2344 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -1486 ((-660 (-1183)) $ (-660 (-1183))))))) (T -407)) -((-2176 (*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-407)))) (-1992 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-407)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-407)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-4223 (*1 *1) (-5 *1 (-407))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-2676 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-2344 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-1486 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407))))) -(-13 (-1125) (-629 (-880)) (-10 -8 (-15 -2176 ($ (-880) (-577))) (-15 -1992 ((-1297) $ (-577))) (-15 -1992 ((-1297) $)) (-15 -3939 ((-660 (-1183)) $)) (-15 -3980 ((-660 (-1183)) $)) (-15 -4223 ($)) (-15 -4271 ((-660 (-1183)) $)) (-15 -2676 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2344 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -1486 ((-660 (-1183)) $ (-660 (-1183)))))) -((-3794 (((-1297) $) 7 T ELT)) (-3603 (((-880) $) 8 T ELT))) +((-4392 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-3236 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402))))) +(-13 (-1130) (-503 (-1188)) (-10 -8 (-15 -4392 ($ (-1188) (-1188) (-1188))) (-15 -2485 ((-1188) $)) (-15 -2758 ((-1188) $)) (-15 -1863 ((-1188) $)) (-15 -2690 ((-112) $)) (-15 -1921 ((-112) $)) (-15 -2174 ((-112) $)) (-15 -3236 ($ (-1188) (-1188) (-1188))))) +(((-102) . T) ((-634 #0=(-1188)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4418 (((-885) $) 63 T ELT)) (-2305 (($) NIL T CONST)) (-3712 (($ $ (-949)) NIL T ELT)) (-2510 (($ $ (-949)) NIL T ELT)) (-3744 (($ $ (-949)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($ (-792)) 38 T ELT)) (-4366 (((-792)) 18 T ELT)) (-2565 (((-885) $) 65 T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2032 (($ $ $ $) NIL T ELT)) (-1793 (($ $ $) NIL T ELT)) (-2839 (($) 24 T CONST)) (-3018 (((-112) $ $) 41 T ELT)) (-3128 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3114 (($ $ $) 51 T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-403 |#1| |#2| |#3|) (-13 (-765 |#3|) (-10 -8 (-15 -4366 ((-792))) (-15 -2565 ((-885) $)) (-15 -4418 ((-885) $)) (-15 -2343 ($ (-792))))) (-792) (-792) (-174)) (T -403)) +((-4366 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) (-14 *4 (-792)) (-4 *5 (-174)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) (-14 *4 (-792)) (-4 *5 (-174)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-765 |#3|) (-10 -8 (-15 -4366 ((-792))) (-15 -2565 ((-885) $)) (-15 -4418 ((-885) $)) (-15 -2343 ($ (-792))))) +((-1747 (((-1188)) 12 T ELT)) (-2476 (((-1177 (-1188))) 30 T ELT)) (-3469 (((-1302) (-1188)) 27 T ELT) (((-1302) (-401)) 26 T ELT)) (-3481 (((-1302)) 28 T ELT)) (-3384 (((-1177 (-1188))) 29 T ELT))) +(((-404) (-10 -7 (-15 -3384 ((-1177 (-1188)))) (-15 -2476 ((-1177 (-1188)))) (-15 -3481 ((-1302))) (-15 -3469 ((-1302) (-401))) (-15 -3469 ((-1302) (-1188))) (-15 -1747 ((-1188))))) (T -404)) +((-1747 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-404)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-404)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-404)))) (-3481 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-404)))) (-2476 (*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404)))) (-3384 (*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404))))) +(-10 -7 (-15 -3384 ((-1177 (-1188)))) (-15 -2476 ((-1177 (-1188)))) (-15 -3481 ((-1302))) (-15 -3469 ((-1302) (-401))) (-15 -3469 ((-1302) (-1188))) (-15 -1747 ((-1188)))) +((-4030 (((-792) (-348 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-405 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4030 ((-792) (-348 |#1| |#2| |#3| |#4|)))) (-13 (-380) (-375)) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -405)) +((-4030 (*1 *2 *3) (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) (-5 *2 (-792)) (-5 *1 (-405 *4 *5 *6 *7))))) +(-10 -7 (-15 -4030 ((-792) (-348 |#1| |#2| |#3| |#4|)))) +((-3709 (((-407) |#1|) 11 T ELT))) +(((-406 |#1|) (-10 -7 (-15 -3709 ((-407) |#1|))) (-1130)) (T -406)) +((-3709 (*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1130))))) +(-10 -7 (-15 -3709 ((-407) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-1621 (((-665 (-1188)) $ (-665 (-1188))) 42 T ELT)) (-2306 (((-665 (-1188)) $ (-665 (-1188))) 43 T ELT)) (-2141 (((-665 (-1188)) $ (-665 (-1188))) 44 T ELT)) (-3623 (((-665 (-1188)) $) 39 T ELT)) (-3236 (($) 30 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2367 (((-665 (-1188)) $) 40 T ELT)) (-2542 (((-665 (-1188)) $) 41 T ELT)) (-2064 (((-1302) $ (-577)) 37 T ELT) (((-1302) $) 38 T ELT)) (-4463 (($ (-885) (-577)) 35 T ELT)) (-3709 (((-885) $) 49 T ELT) (($ (-885)) 32 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-407) (-13 (-1130) (-634 (-885)) (-10 -8 (-15 -4463 ($ (-885) (-577))) (-15 -2064 ((-1302) $ (-577))) (-15 -2064 ((-1302) $)) (-15 -2542 ((-665 (-1188)) $)) (-15 -2367 ((-665 (-1188)) $)) (-15 -3236 ($)) (-15 -3623 ((-665 (-1188)) $)) (-15 -2141 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -2306 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1621 ((-665 (-1188)) $ (-665 (-1188))))))) (T -407)) +((-4463 (*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-407)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-407)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-407)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-3236 (*1 *1) (-5 *1 (-407))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-2141 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-2306 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-1621 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407))))) +(-13 (-1130) (-634 (-885)) (-10 -8 (-15 -4463 ($ (-885) (-577))) (-15 -2064 ((-1302) $ (-577))) (-15 -2064 ((-1302) $)) (-15 -2542 ((-665 (-1188)) $)) (-15 -2367 ((-665 (-1188)) $)) (-15 -3236 ($)) (-15 -3623 ((-665 (-1188)) $)) (-15 -2141 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -2306 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1621 ((-665 (-1188)) $ (-665 (-1188)))))) +((-3495 (((-1302) $) 7 T ELT)) (-3709 (((-885) $) 8 T ELT))) (((-408) (-141)) (T -408)) -((-3794 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1297))))) -(-13 (-1242) (-626 (-880)) (-10 -8 (-15 -3794 ((-1297) $)))) -(((-626 (-880)) . T) ((-1242) . T)) -((-2784 (((-3 $ "failed") (-327 (-391))) 21 T ELT) (((-3 $ "failed") (-327 (-577))) 19 T ELT) (((-3 $ "failed") (-975 (-391))) 17 T ELT) (((-3 $ "failed") (-975 (-577))) 15 T ELT) (((-3 $ "failed") (-420 (-975 (-391)))) 13 T ELT) (((-3 $ "failed") (-420 (-975 (-577)))) 11 T ELT)) (-2155 (($ (-327 (-391))) 22 T ELT) (($ (-327 (-577))) 20 T ELT) (($ (-975 (-391))) 18 T ELT) (($ (-975 (-577))) 16 T ELT) (($ (-420 (-975 (-391)))) 14 T ELT) (($ (-420 (-975 (-577)))) 12 T ELT)) (-3794 (((-1297) $) 7 T ELT)) (-3603 (((-880) $) 8 T ELT) (($ (-660 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 23 T ELT))) +((-3495 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1302))))) +(-13 (-1247) (-631 (-885)) (-10 -8 (-15 -3495 ((-1302) $)))) +(((-631 (-885)) . T) ((-1247) . T)) +((-4335 (((-3 $ "failed") (-327 (-391))) 21 T ELT) (((-3 $ "failed") (-327 (-577))) 19 T ELT) (((-3 $ "failed") (-980 (-391))) 17 T ELT) (((-3 $ "failed") (-980 (-577))) 15 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 13 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 11 T ELT)) (-3783 (($ (-327 (-391))) 22 T ELT) (($ (-327 (-577))) 20 T ELT) (($ (-980 (-391))) 18 T ELT) (($ (-980 (-577))) 16 T ELT) (($ (-420 (-980 (-391)))) 14 T ELT) (($ (-420 (-980 (-577)))) 12 T ELT)) (-3495 (((-1302) $) 7 T ELT)) (-3709 (((-885) $) 8 T ELT) (($ (-665 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 23 T ELT))) (((-409) (-141)) (T -409)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-409)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-409)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) (-4 *1 (-409)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409))))) -(-13 (-408) (-10 -8 (-15 -3603 ($ (-660 (-341)))) (-15 -3603 ($ (-341))) (-15 -3603 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341)))))) (-15 -2155 ($ (-327 (-391)))) (-15 -2784 ((-3 $ "failed") (-327 (-391)))) (-15 -2155 ($ (-327 (-577)))) (-15 -2784 ((-3 $ "failed") (-327 (-577)))) (-15 -2155 ($ (-975 (-391)))) (-15 -2784 ((-3 $ "failed") (-975 (-391)))) (-15 -2155 ($ (-975 (-577)))) (-15 -2784 ((-3 $ "failed") (-975 (-577)))) (-15 -2155 ($ (-420 (-975 (-391))))) (-15 -2784 ((-3 $ "failed") (-420 (-975 (-391))))) (-15 -2155 ($ (-420 (-975 (-577))))) (-15 -2784 ((-3 $ "failed") (-420 (-975 (-577))))))) -(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) -((-3806 (((-660 (-1183)) (-660 (-1183))) 9 T ELT)) (-3794 (((-1297) (-401)) 26 T ELT)) (-2111 (((-1129) (-1201) (-660 (-1201)) (-1204) (-660 (-1201))) 59 T ELT) (((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)) (-1201)) 34 T ELT) (((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201))) 33 T ELT))) -(((-410) (-10 -7 (-15 -2111 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)))) (-15 -2111 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)) (-1201))) (-15 -2111 ((-1129) (-1201) (-660 (-1201)) (-1204) (-660 (-1201)))) (-15 -3794 ((-1297) (-401))) (-15 -3806 ((-660 (-1183)) (-660 (-1183)))))) (T -410)) -((-3806 (*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-410)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-410)))) (-2111 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-660 (-1201))) (-5 *5 (-1204)) (-5 *3 (-1201)) (-5 *2 (-1129)) (-5 *1 (-410)))) (-2111 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) (-5 *1 (-410)))) (-2111 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) (-5 *1 (-410))))) -(-10 -7 (-15 -2111 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)))) (-15 -2111 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)) (-1201))) (-15 -2111 ((-1129) (-1201) (-660 (-1201)) (-1204) (-660 (-1201)))) (-15 -3794 ((-1297) (-401))) (-15 -3806 ((-660 (-1183)) (-660 (-1183))))) -((-3794 (((-1297) $) 35 T ELT)) (-3603 (((-880) $) 97 T ELT) (($ (-341)) 99 T ELT) (($ (-660 (-341))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 96 T ELT) (($ (-327 (-717))) 52 T ELT) (($ (-327 (-715))) 72 T ELT) (($ (-327 (-710))) 85 T ELT) (($ (-305 (-327 (-717)))) 67 T ELT) (($ (-305 (-327 (-715)))) 80 T ELT) (($ (-305 (-327 (-710)))) 93 T ELT) (($ (-327 (-577))) 104 T ELT) (($ (-327 (-391))) 117 T ELT) (($ (-327 (-171 (-391)))) 130 T ELT) (($ (-305 (-327 (-577)))) 112 T ELT) (($ (-305 (-327 (-391)))) 125 T ELT) (($ (-305 (-327 (-171 (-391))))) 138 T ELT))) -(((-411 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -3603 ($ (-341))) (-15 -3603 ($ (-660 (-341)))) (-15 -3603 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341)))))) (-15 -3603 ($ (-327 (-717)))) (-15 -3603 ($ (-327 (-715)))) (-15 -3603 ($ (-327 (-710)))) (-15 -3603 ($ (-305 (-327 (-717))))) (-15 -3603 ($ (-305 (-327 (-715))))) (-15 -3603 ($ (-305 (-327 (-710))))) (-15 -3603 ($ (-327 (-577)))) (-15 -3603 ($ (-327 (-391)))) (-15 -3603 ($ (-327 (-171 (-391))))) (-15 -3603 ($ (-305 (-327 (-577))))) (-15 -3603 ($ (-305 (-327 (-391))))) (-15 -3603 ($ (-305 (-327 (-171 (-391)))))))) (-1201) (-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-660 (-1201)) (-1205)) (T -411)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-327 (-717))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-327 (-710))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-717)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-715)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-710)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-577)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-171 (-391))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205))))) -(-13 (-408) (-10 -8 (-15 -3603 ($ (-341))) (-15 -3603 ($ (-660 (-341)))) (-15 -3603 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341)))))) (-15 -3603 ($ (-327 (-717)))) (-15 -3603 ($ (-327 (-715)))) (-15 -3603 ($ (-327 (-710)))) (-15 -3603 ($ (-305 (-327 (-717))))) (-15 -3603 ($ (-305 (-327 (-715))))) (-15 -3603 ($ (-305 (-327 (-710))))) (-15 -3603 ($ (-327 (-577)))) (-15 -3603 ($ (-327 (-391)))) (-15 -3603 ($ (-327 (-171 (-391))))) (-15 -3603 ($ (-305 (-327 (-577))))) (-15 -3603 ($ (-305 (-327 (-391))))) (-15 -3603 ($ (-305 (-327 (-171 (-391)))))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3487 ((|#2| $) 38 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3222 (($ (-420 |#2|)) 93 T ELT)) (-1744 (((-660 (-2 (|:| -1527 (-787)) (|:| -4269 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3362 (($ $ (-787)) 36 T ELT) (($ $) 34 T ELT)) (-2176 (((-420 |#2|) $) 49 T ELT)) (-3614 (($ (-660 (-2 (|:| -1527 (-787)) (|:| -4269 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3603 (((-880) $) 131 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2136 (($ $ (-787)) 37 T ELT) (($ $) 35 T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3031 (($ |#2| $) 41 T ELT))) -(((-412 |#1| |#2|) (-13 (-1125) (-238) (-627 (-420 |#2|)) (-10 -8 (-15 -3031 ($ |#2| $)) (-15 -3222 ($ (-420 |#2|))) (-15 -3487 (|#2| $)) (-15 -1744 ((-660 (-2 (|:| -1527 (-787)) (|:| -4269 |#2|) (|:| |num| |#2|))) $)) (-15 -3614 ($ (-660 (-2 (|:| -1527 (-787)) (|:| -4269 |#2|) (|:| |num| |#2|))))))) (-13 (-375) (-148)) (-1268 |#1|)) (T -412)) -((-3031 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *2)) (-4 *2 (-1268 *3)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) (-3487 (*1 *2 *1) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-412 *3 *2)) (-4 *3 (-13 (-375) (-148))))) (-1744 (*1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *2 (-660 (-2 (|:| -1527 (-787)) (|:| -4269 *4) (|:| |num| *4)))) (-5 *1 (-412 *3 *4)) (-4 *4 (-1268 *3)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -1527 (-787)) (|:| -4269 *4) (|:| |num| *4)))) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4))))) -(-13 (-1125) (-238) (-627 (-420 |#2|)) (-10 -8 (-15 -3031 ($ |#2| $)) (-15 -3222 ($ (-420 |#2|))) (-15 -3487 (|#2| $)) (-15 -1744 ((-660 (-2 (|:| -1527 (-787)) (|:| -4269 |#2|) (|:| |num| |#2|))) $)) (-15 -3614 ($ (-660 (-2 (|:| -1527 (-787)) (|:| -4269 |#2|) (|:| |num| |#2|))))))) -((-3489 (((-112) $ $) 10 (-2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 16 (|has| |#1| (-905 (-391))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 15 (|has| |#1| (-905 (-577))) ELT)) (-2045 (((-1183) $) 14 (-2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ELT)) (-1440 (((-1145) $) 13 (-2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ELT)) (-3603 (((-880) $) 12 (-2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ELT)) (-2726 (((-112) $ $) 11 (-2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ELT)) (-2949 (((-112) $ $) 9 (-2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ELT))) -(((-413 |#1|) (-141) (-1242)) (T -413)) -NIL -(-13 (-1242) (-10 -7 (IF (|has| |t#1| (-905 (-577))) (-6 (-905 (-577))) |%noBranch|) (IF (|has| |t#1| (-905 (-391))) (-6 (-905 (-391))) |%noBranch|))) -(((-102) -2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ((-626 (-880)) -2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-1125) -2811 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ((-1242) . T)) -((-1865 (($ $) 10 T ELT) (($ $ (-787)) 12 T ELT))) -(((-414 |#1|) (-10 -8 (-15 -1865 (|#1| |#1| (-787))) (-15 -1865 (|#1| |#1|))) (-415)) (T -414)) -NIL -(-10 -8 (-15 -1865 (|#1| |#1| (-787))) (-15 -1865 (|#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3790 (($) 18 T CONST)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-1865 (($ $) 87 T ELT) (($ $ (-787)) 86 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-2536 (((-849 (-944)) $) 89 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3816 (((-3 (-787) "failed") $ $) 88 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-3907 (((-3 $ "failed") $) 90 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 73 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-409)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-409)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-409)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409))))) +(-13 (-408) (-10 -8 (-15 -3709 ($ (-665 (-341)))) (-15 -3709 ($ (-341))) (-15 -3709 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341)))))) (-15 -3783 ($ (-327 (-391)))) (-15 -4335 ((-3 $ "failed") (-327 (-391)))) (-15 -3783 ($ (-327 (-577)))) (-15 -4335 ((-3 $ "failed") (-327 (-577)))) (-15 -3783 ($ (-980 (-391)))) (-15 -4335 ((-3 $ "failed") (-980 (-391)))) (-15 -3783 ($ (-980 (-577)))) (-15 -4335 ((-3 $ "failed") (-980 (-577)))) (-15 -3783 ($ (-420 (-980 (-391))))) (-15 -4335 ((-3 $ "failed") (-420 (-980 (-391))))) (-15 -3783 ($ (-420 (-980 (-577))))) (-15 -4335 ((-3 $ "failed") (-420 (-980 (-577))))))) +(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) +((-1798 (((-665 (-1188)) (-665 (-1188))) 9 T ELT)) (-3495 (((-1302) (-401)) 26 T ELT)) (-4395 (((-1134) (-1206) (-665 (-1206)) (-1209) (-665 (-1206))) 59 T ELT) (((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)) (-1206)) 34 T ELT) (((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206))) 33 T ELT))) +(((-410) (-10 -7 (-15 -4395 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)))) (-15 -4395 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)) (-1206))) (-15 -4395 ((-1134) (-1206) (-665 (-1206)) (-1209) (-665 (-1206)))) (-15 -3495 ((-1302) (-401))) (-15 -1798 ((-665 (-1188)) (-665 (-1188)))))) (T -410)) +((-1798 (*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-410)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-410)))) (-4395 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-665 (-1206))) (-5 *5 (-1209)) (-5 *3 (-1206)) (-5 *2 (-1134)) (-5 *1 (-410)))) (-4395 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) (-5 *1 (-410)))) (-4395 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) (-5 *1 (-410))))) +(-10 -7 (-15 -4395 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)))) (-15 -4395 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)) (-1206))) (-15 -4395 ((-1134) (-1206) (-665 (-1206)) (-1209) (-665 (-1206)))) (-15 -3495 ((-1302) (-401))) (-15 -1798 ((-665 (-1188)) (-665 (-1188))))) +((-3495 (((-1302) $) 35 T ELT)) (-3709 (((-885) $) 97 T ELT) (($ (-341)) 99 T ELT) (($ (-665 (-341))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 96 T ELT) (($ (-327 (-722))) 52 T ELT) (($ (-327 (-720))) 72 T ELT) (($ (-327 (-715))) 85 T ELT) (($ (-305 (-327 (-722)))) 67 T ELT) (($ (-305 (-327 (-720)))) 80 T ELT) (($ (-305 (-327 (-715)))) 93 T ELT) (($ (-327 (-577))) 104 T ELT) (($ (-327 (-391))) 117 T ELT) (($ (-327 (-171 (-391)))) 130 T ELT) (($ (-305 (-327 (-577)))) 112 T ELT) (($ (-305 (-327 (-391)))) 125 T ELT) (($ (-305 (-327 (-171 (-391))))) 138 T ELT))) +(((-411 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -3709 ($ (-341))) (-15 -3709 ($ (-665 (-341)))) (-15 -3709 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341)))))) (-15 -3709 ($ (-327 (-722)))) (-15 -3709 ($ (-327 (-720)))) (-15 -3709 ($ (-327 (-715)))) (-15 -3709 ($ (-305 (-327 (-722))))) (-15 -3709 ($ (-305 (-327 (-720))))) (-15 -3709 ($ (-305 (-327 (-715))))) (-15 -3709 ($ (-327 (-577)))) (-15 -3709 ($ (-327 (-391)))) (-15 -3709 ($ (-327 (-171 (-391))))) (-15 -3709 ($ (-305 (-327 (-577))))) (-15 -3709 ($ (-305 (-327 (-391))))) (-15 -3709 ($ (-305 (-327 (-171 (-391)))))))) (-1206) (-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-665 (-1206)) (-1210)) (T -411)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-327 (-722))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-327 (-720))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-722)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-720)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-715)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-577)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-171 (-391))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210))))) +(-13 (-408) (-10 -8 (-15 -3709 ($ (-341))) (-15 -3709 ($ (-665 (-341)))) (-15 -3709 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341)))))) (-15 -3709 ($ (-327 (-722)))) (-15 -3709 ($ (-327 (-720)))) (-15 -3709 ($ (-327 (-715)))) (-15 -3709 ($ (-305 (-327 (-722))))) (-15 -3709 ($ (-305 (-327 (-720))))) (-15 -3709 ($ (-305 (-327 (-715))))) (-15 -3709 ($ (-327 (-577)))) (-15 -3709 ($ (-327 (-391)))) (-15 -3709 ($ (-327 (-171 (-391))))) (-15 -3709 ($ (-305 (-327 (-577))))) (-15 -3709 ($ (-305 (-327 (-391))))) (-15 -3709 ($ (-305 (-327 (-171 (-391)))))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2045 ((|#2| $) 38 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3601 (($ (-420 |#2|)) 93 T ELT)) (-3883 (((-665 (-2 (|:| -2328 (-792)) (|:| -1343 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3641 (($ $ (-792)) 36 T ELT) (($ $) 34 T ELT)) (-4463 (((-420 |#2|) $) 49 T ELT)) (-3722 (($ (-665 (-2 (|:| -2328 (-792)) (|:| -1343 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3709 (((-885) $) 131 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2389 (($ $ (-792)) 37 T ELT) (($ $) 35 T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3114 (($ |#2| $) 41 T ELT))) +(((-412 |#1| |#2|) (-13 (-1130) (-238) (-632 (-420 |#2|)) (-10 -8 (-15 -3114 ($ |#2| $)) (-15 -3601 ($ (-420 |#2|))) (-15 -2045 (|#2| $)) (-15 -3883 ((-665 (-2 (|:| -2328 (-792)) (|:| -1343 |#2|) (|:| |num| |#2|))) $)) (-15 -3722 ($ (-665 (-2 (|:| -2328 (-792)) (|:| -1343 |#2|) (|:| |num| |#2|))))))) (-13 (-375) (-148)) (-1273 |#1|)) (T -412)) +((-3114 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *2)) (-4 *2 (-1273 *3)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) (-2045 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-412 *3 *2)) (-4 *3 (-13 (-375) (-148))))) (-3883 (*1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *2 (-665 (-2 (|:| -2328 (-792)) (|:| -1343 *4) (|:| |num| *4)))) (-5 *1 (-412 *3 *4)) (-4 *4 (-1273 *3)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -2328 (-792)) (|:| -1343 *4) (|:| |num| *4)))) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4))))) +(-13 (-1130) (-238) (-632 (-420 |#2|)) (-10 -8 (-15 -3114 ($ |#2| $)) (-15 -3601 ($ (-420 |#2|))) (-15 -2045 (|#2| $)) (-15 -3883 ((-665 (-2 (|:| -2328 (-792)) (|:| -1343 |#2|) (|:| |num| |#2|))) $)) (-15 -3722 ($ (-665 (-2 (|:| -2328 (-792)) (|:| -1343 |#2|) (|:| |num| |#2|))))))) +((-3586 (((-112) $ $) 10 (-2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 16 (|has| |#1| (-910 (-391))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 15 (|has| |#1| (-910 (-577))) ELT)) (-3235 (((-1188) $) 14 (-2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-1470 (((-1150) $) 13 (-2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-3709 (((-885) $) 12 (-2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-2643 (((-112) $ $) 11 (-2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-3018 (((-112) $ $) 9 (-2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT))) +(((-413 |#1|) (-141) (-1247)) (T -413)) +NIL +(-13 (-1247) (-10 -7 (IF (|has| |t#1| (-910 (-577))) (-6 (-910 (-577))) |%noBranch|) (IF (|has| |t#1| (-910 (-391))) (-6 (-910 (-391))) |%noBranch|))) +(((-102) -2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ((-631 (-885)) -2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-1130) -2867 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ((-1247) . T)) +((-3987 (($ $) 10 T ELT) (($ $ (-792)) 12 T ELT))) +(((-414 |#1|) (-10 -8 (-15 -3987 (|#1| |#1| (-792))) (-15 -3987 (|#1| |#1|))) (-415)) (T -414)) +NIL +(-10 -8 (-15 -3987 (|#1| |#1| (-792))) (-15 -3987 (|#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2305 (($) 18 T CONST)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3987 (($ $) 87 T ELT) (($ $ (-792)) 86 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-4030 (((-854 (-949)) $) 89 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3038 (((-3 (-792) "failed") $ $) 88 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-2708 (((-3 $ "failed") $) 90 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 73 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) (((-415) (-141)) (T -415)) -((-2536 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-849 (-944))))) (-3816 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-787)))) (-1865 (*1 *1 *1) (-4 *1 (-415))) (-1865 (*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-787))))) -(-13 (-375) (-146) (-10 -8 (-15 -2536 ((-849 (-944)) $)) (-15 -3816 ((-3 (-787) "failed") $ $)) (-15 -1865 ($ $)) (-15 -1865 ($ $ (-787))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-3068 (($ (-577) (-577)) 11 T ELT) (($ (-577) (-577) (-944)) NIL T ELT)) (-3453 (((-944)) 19 T ELT) (((-944) (-944)) NIL T ELT))) -(((-416 |#1|) (-10 -8 (-15 -3453 ((-944) (-944))) (-15 -3453 ((-944))) (-15 -3068 (|#1| (-577) (-577) (-944))) (-15 -3068 (|#1| (-577) (-577)))) (-417)) (T -416)) -((-3453 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417))))) -(-10 -8 (-15 -3453 ((-944) (-944))) (-15 -3453 ((-944))) (-15 -3068 (|#1| (-577) (-577) (-944))) (-15 -3068 (|#1| (-577) (-577)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2829 (((-577) $) 98 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-3959 (($ $) 96 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-3070 (($ $) 106 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-2917 (((-577) $) 123 T ELT)) (-3790 (($) 18 T CONST)) (-1609 (($ $) 95 T ELT)) (-2784 (((-3 (-577) "failed") $) 111 T ELT) (((-3 (-420 (-577)) "failed") $) 108 T ELT)) (-2155 (((-577) $) 112 T ELT) (((-420 (-577)) $) 109 T ELT)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-3437 (((-944)) 139 T ELT) (((-944) (-944)) 136 (|has| $ (-6 -4461)) ELT)) (-4302 (((-112) $) 121 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 102 T ELT)) (-2536 (((-577) $) 145 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 105 T ELT)) (-4021 (($ $) 101 T ELT)) (-2178 (((-112) $) 122 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-2900 (($ $ $) 115 T ELT) (($) 133 (-12 (-2686 (|has| $ (-6 -4461))) (-2686 (|has| $ (-6 -4453)))) ELT)) (-1457 (($ $ $) 116 T ELT) (($) 132 (-12 (-2686 (|has| $ (-6 -4461))) (-2686 (|has| $ (-6 -4453)))) ELT)) (-1595 (((-577) $) 142 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-4115 (((-944) (-577)) 135 (|has| $ (-6 -4461)) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3053 (($ $) 97 T ELT)) (-1374 (($ $) 99 T ELT)) (-3068 (($ (-577) (-577)) 147 T ELT) (($ (-577) (-577) (-944)) 146 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-1527 (((-577) $) 143 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3453 (((-944)) 140 T ELT) (((-944) (-944)) 137 (|has| $ (-6 -4461)) ELT)) (-4315 (((-944) (-577)) 134 (|has| $ (-6 -4461)) ELT)) (-2176 (((-391) $) 114 T ELT) (((-228) $) 113 T ELT) (((-911 (-391)) $) 103 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-577)) 110 T ELT) (($ (-420 (-577))) 107 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2360 (($ $) 100 T ELT)) (-2716 (((-944)) 141 T ELT) (((-944) (-944)) 138 (|has| $ (-6 -4461)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2762 (((-944)) 144 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-4318 (($ $) 124 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-3001 (((-112) $ $) 117 T ELT)) (-2978 (((-112) $ $) 119 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 118 T ELT)) (-2971 (((-112) $ $) 120 T ELT)) (-3051 (($ $ $) 73 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 104 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) +((-4030 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-854 (-949))))) (-3038 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-792)))) (-3987 (*1 *1 *1) (-4 *1 (-415))) (-3987 (*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-792))))) +(-13 (-375) (-146) (-10 -8 (-15 -4030 ((-854 (-949)) $)) (-15 -3038 ((-3 (-792) "failed") $ $)) (-15 -3987 ($ $)) (-15 -3987 ($ $ (-792))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-3172 (($ (-577) (-577)) 11 T ELT) (($ (-577) (-577) (-949)) NIL T ELT)) (-3046 (((-949)) 19 T ELT) (((-949) (-949)) NIL T ELT))) +(((-416 |#1|) (-10 -8 (-15 -3046 ((-949) (-949))) (-15 -3046 ((-949))) (-15 -3172 (|#1| (-577) (-577) (-949))) (-15 -3172 (|#1| (-577) (-577)))) (-417)) (T -416)) +((-3046 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417))))) +(-10 -8 (-15 -3046 ((-949) (-949))) (-15 -3046 ((-949))) (-15 -3172 (|#1| (-577) (-577) (-949))) (-15 -3172 (|#1| (-577) (-577)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1363 (((-577) $) 98 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-3610 (($ $) 96 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-3770 (($ $) 106 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2578 (((-577) $) 123 T ELT)) (-2305 (($) 18 T CONST)) (-3260 (($ $) 95 T ELT)) (-4335 (((-3 (-577) "failed") $) 111 T ELT) (((-3 (-420 (-577)) "failed") $) 108 T ELT)) (-3783 (((-577) $) 112 T ELT) (((-420 (-577)) $) 109 T ELT)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-1847 (((-949)) 139 T ELT) (((-949) (-949)) 136 (|has| $ (-6 -4490)) ELT)) (-4339 (((-112) $) 121 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 102 T ELT)) (-4030 (((-577) $) 145 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 105 T ELT)) (-2794 (($ $) 101 T ELT)) (-2649 (((-112) $) 122 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3237 (($ $ $) 115 T ELT) (($) 133 (-12 (-2779 (|has| $ (-6 -4490))) (-2779 (|has| $ (-6 -4482)))) ELT)) (-2930 (($ $ $) 116 T ELT) (($) 132 (-12 (-2779 (|has| $ (-6 -4490))) (-2779 (|has| $ (-6 -4482)))) ELT)) (-3079 (((-577) $) 142 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-2110 (((-949) (-577)) 135 (|has| $ (-6 -4490)) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-4378 (($ $) 97 T ELT)) (-3941 (($ $) 99 T ELT)) (-3172 (($ (-577) (-577)) 147 T ELT) (($ (-577) (-577) (-949)) 146 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2328 (((-577) $) 143 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3046 (((-949)) 140 T ELT) (((-949) (-949)) 137 (|has| $ (-6 -4490)) ELT)) (-4326 (((-949) (-577)) 134 (|has| $ (-6 -4490)) ELT)) (-4463 (((-391) $) 114 T ELT) (((-228) $) 113 T ELT) (((-916 (-391)) $) 103 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-577)) 110 T ELT) (($ (-420 (-577))) 107 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2431 (($ $) 100 T ELT)) (-1480 (((-949)) 141 T ELT) (((-949) (-949)) 138 (|has| $ (-6 -4490)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4356 (((-949)) 144 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2215 (($ $) 124 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3078 (((-112) $ $) 117 T ELT)) (-3054 (((-112) $ $) 119 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 118 T ELT)) (-3042 (((-112) $ $) 120 T ELT)) (-3139 (($ $ $) 73 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 104 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) (((-417) (-141)) (T -417)) -((-3068 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) (-3068 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-4 *1 (-417)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-2762 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-2716 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-3453 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-3437 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-2716 (*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) (-5 *2 (-944)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) (-5 *2 (-944)))) (-2900 (*1 *1) (-12 (-4 *1 (-417)) (-2686 (|has| *1 (-6 -4461))) (-2686 (|has| *1 (-6 -4453))))) (-1457 (*1 *1) (-12 (-4 *1 (-417)) (-2686 (|has| *1 (-6 -4461))) (-2686 (|has| *1 (-6 -4453)))))) -(-13 (-1085) (-10 -8 (-6 -4142) (-15 -3068 ($ (-577) (-577))) (-15 -3068 ($ (-577) (-577) (-944))) (-15 -2536 ((-577) $)) (-15 -2762 ((-944))) (-15 -1527 ((-577) $)) (-15 -1595 ((-577) $)) (-15 -2716 ((-944))) (-15 -3453 ((-944))) (-15 -3437 ((-944))) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2716 ((-944) (-944))) (-15 -3453 ((-944) (-944))) (-15 -3437 ((-944) (-944))) (-15 -4115 ((-944) (-577))) (-15 -4315 ((-944) (-577)))) |%noBranch|) (IF (|has| $ (-6 -4453)) |%noBranch| (IF (|has| $ (-6 -4461)) |%noBranch| (PROGN (-15 -2900 ($)) (-15 -1457 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-228)) . T) ((-627 (-391)) . T) ((-627 (-911 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-905 (-391)) . T) ((-943) . T) ((-1027) . T) ((-1047) . T) ((-1085) . T) ((-1063 (-420 (-577))) . T) ((-1063 (-577)) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-2124 (((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)) 20 T ELT))) -(((-418 |#1| |#2|) (-10 -7 (-15 -2124 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) (-569) (-569)) (T -418)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -2124 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) -((-2124 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 13 T ELT))) -(((-419 |#1| |#2|) (-10 -7 (-15 -2124 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-569) (-569)) (T -419)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6))))) -(-10 -7 (-15 -2124 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 13 T ELT)) (-2829 ((|#1| $) 21 (|has| |#1| (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| |#1| (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 17 T ELT) (((-3 (-1201) "failed") $) NIL (|has| |#1| (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT)) (-2155 ((|#1| $) 15 T ELT) (((-1201) $) NIL (|has| |#1| (-1063 (-1201))) ELT) (((-420 (-577)) $) 69 (|has| |#1| (-1063 (-577))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) 51 T ELT)) (-2352 (($) NIL (|has| |#1| (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| |#1| (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| |#1| (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| |#1| (-905 (-391))) ELT)) (-3306 (((-112) $) 57 T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 ((|#1| $) 73 T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| |#1| (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| |#1| (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 100 T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| |#1| (-318)) ELT)) (-1374 ((|#1| $) 28 (|has| |#1| (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 145 (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 138 (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 ((|#1| $) 75 T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| |#1| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| |#1| (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT) (((-391) $) NIL (|has| |#1| (-1047)) ELT) (((-228) $) NIL (|has| |#1| (-1047)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1201)) NIL (|has| |#1| (-1063 (-1201))) ELT)) (-3907 (((-3 $ "failed") $) 102 (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 103 T CONST)) (-2360 ((|#1| $) 26 (|has| |#1| (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| |#1| (-836)) ELT)) (-2754 (($) 22 T CONST)) (-2767 (($) 8 T CONST)) (-1422 (((-1183) $) 44 (-12 (|has| |#1| (-558)) (|has| |#1| (-844))) ELT) (((-1183) $ (-112)) 45 (-12 (|has| |#1| (-558)) (|has| |#1| (-844))) ELT) (((-1297) (-838) $) 46 (-12 (|has| |#1| (-558)) (|has| |#1| (-844))) ELT) (((-1297) (-838) $ (-112)) 47 (-12 (|has| |#1| (-558)) (|has| |#1| (-844))) ELT)) (-2136 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 66 T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 24 (|has| |#1| (-865)) ELT)) (-3051 (($ $ $) 133 T ELT) (($ |#1| |#1|) 53 T ELT)) (-3042 (($ $) 25 T ELT) (($ $ $) 56 T ELT)) (-3031 (($ $ $) 54 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 132 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 61 T ELT) (($ $ $) 58 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) 88 T ELT))) -(((-420 |#1|) (-13 (-1017 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4468)) (-6 -4457) |%noBranch|) |%noBranch|) |%noBranch|))) (-569)) (T -420)) -NIL -(-13 (-1017 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4468)) (-6 -4457) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4436 (((-705 |#2|) (-1292 $)) NIL T ELT) (((-705 |#2|)) 18 T ELT)) (-1911 (($ (-1292 |#2|) (-1292 $)) NIL T ELT) (($ (-1292 |#2|)) 24 T ELT)) (-2678 (((-705 |#2|) $ (-1292 $)) NIL T ELT) (((-705 |#2|) $) 40 T ELT)) (-3810 ((|#3| $) 69 T ELT)) (-4447 ((|#2| (-1292 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-2729 (((-1292 |#2|) $ (-1292 $)) NIL T ELT) (((-705 |#2|) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 |#2|) $) 22 T ELT) (((-705 |#2|) (-1292 $)) 38 T ELT)) (-2176 (((-1292 |#2|) $) 11 T ELT) (($ (-1292 |#2|)) 13 T ELT)) (-2600 ((|#3| $) 55 T ELT))) -(((-421 |#1| |#2| |#3|) (-10 -8 (-15 -2678 ((-705 |#2|) |#1|)) (-15 -4447 (|#2|)) (-15 -4436 ((-705 |#2|))) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -1911 (|#1| (-1292 |#2|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3810 (|#3| |#1|)) (-15 -2600 (|#3| |#1|)) (-15 -4436 ((-705 |#2|) (-1292 |#1|))) (-15 -4447 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -2678 ((-705 |#2|) |#1| (-1292 |#1|)))) (-422 |#2| |#3|) (-174) (-1268 |#2|)) (T -421)) -((-4436 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-4447 (*1 *2) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) -(-10 -8 (-15 -2678 ((-705 |#2|) |#1|)) (-15 -4447 (|#2|)) (-15 -4436 ((-705 |#2|))) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -1911 (|#1| (-1292 |#2|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3810 (|#3| |#1|)) (-15 -2600 (|#3| |#1|)) (-15 -4436 ((-705 |#2|) (-1292 |#1|))) (-15 -4447 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -2678 ((-705 |#2|) |#1| (-1292 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-4436 (((-705 |#1|) (-1292 $)) 53 T ELT) (((-705 |#1|)) 68 T ELT)) (-2219 ((|#1| $) 59 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1911 (($ (-1292 |#1|) (-1292 $)) 55 T ELT) (($ (-1292 |#1|)) 71 T ELT)) (-2678 (((-705 |#1|) $ (-1292 $)) 60 T ELT) (((-705 |#1|) $) 66 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3503 (((-944)) 61 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4021 ((|#1| $) 58 T ELT)) (-3810 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-4447 ((|#1| (-1292 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 57 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) 56 T ELT) (((-1292 |#1|) $) 73 T ELT) (((-705 |#1|) (-1292 $)) 72 T ELT)) (-2176 (((-1292 |#1|) $) 70 T ELT) (($ (-1292 |#1|)) 69 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-3907 (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-2600 ((|#2| $) 52 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2559 (((-1292 $)) 74 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-422 |#1| |#2|) (-141) (-174) (-1268 |t#1|)) (T -422)) -((-2559 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *1)) (-4 *1 (-422 *3 *4)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *3)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1268 *3)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *3)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1268 *3)))) (-4436 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-705 *3)))) (-4447 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-705 *3))))) -(-13 (-382 |t#1| |t#2|) (-10 -8 (-15 -2559 ((-1292 $))) (-15 -2729 ((-1292 |t#1|) $)) (-15 -2729 ((-705 |t#1|) (-1292 $))) (-15 -1911 ($ (-1292 |t#1|))) (-15 -2176 ((-1292 |t#1|) $)) (-15 -2176 ($ (-1292 |t#1|))) (-15 -4436 ((-705 |t#1|))) (-15 -4447 (|t#1|)) (-15 -2678 ((-705 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-382 |#1| |#2|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) 27 T ELT) (((-3 (-577) "failed") $) 19 T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-420 (-577)) $) 24 T ELT) (((-577) $) 14 T ELT)) (-3603 (($ |#2|) NIL T ELT) (($ (-420 (-577))) 22 T ELT) (($ (-577)) 11 T ELT))) -(((-423 |#1| |#2|) (-10 -8 (-15 -3603 (|#1| (-577))) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|))) (-424 |#2|) (-1242)) (T -423)) -NIL -(-10 -8 (-15 -3603 (|#1| (-577))) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|))) -((-2784 (((-3 |#1| "failed") $) 9 T ELT) (((-3 (-420 (-577)) "failed") $) 16 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 13 (|has| |#1| (-1063 (-577))) ELT)) (-2155 ((|#1| $) 8 T ELT) (((-420 (-577)) $) 17 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) 14 (|has| |#1| (-1063 (-577))) ELT)) (-3603 (($ |#1|) 6 T ELT) (($ (-420 (-577))) 15 (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ (-577)) 12 (|has| |#1| (-1063 (-577))) ELT))) -(((-424 |#1|) (-141) (-1242)) (T -424)) -NIL -(-13 (-1063 |t#1|) (-10 -7 (IF (|has| |t#1| (-1063 (-577))) (-6 (-1063 (-577))) |%noBranch|) (IF (|has| |t#1| (-1063 (-420 (-577)))) (-6 (-1063 (-420 (-577)))) |%noBranch|))) -(((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 #1=(-577)) |has| |#1| (-1063 (-577))) ((-629 |#1|) . T) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 #1#) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T)) -((-2124 (((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-425 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2124 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) (-318) (-1017 |#1|) (-1268 |#2|) (-13 (-422 |#2| |#3|) (-1063 |#2|)) (-318) (-1017 |#5|) (-1268 |#6|) (-13 (-422 |#6| |#7|) (-1063 |#6|))) (T -425)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) (-4 *6 (-1017 *5)) (-4 *7 (-1268 *6)) (-4 *8 (-13 (-422 *6 *7) (-1063 *6))) (-4 *9 (-318)) (-4 *10 (-1017 *9)) (-4 *11 (-1268 *10)) (-5 *2 (-426 *9 *10 *11 *12)) (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1063 *10)))))) -(-10 -7 (-15 -2124 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-4207 ((|#4| (-787) (-1292 |#4|)) 55 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2781 (((-1292 |#4|) $) 15 T ELT)) (-4021 ((|#2| $) 53 T ELT)) (-2550 (($ $) 157 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 103 T ELT)) (-2756 (($ (-1292 |#4|)) 102 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2797 ((|#1| $) 16 T ELT)) (-1328 (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-3603 (((-880) $) 148 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 |#4|) $) 141 T ELT)) (-2767 (($) 11 T CONST)) (-2949 (((-112) $ $) 39 T ELT)) (-3051 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 134 T ELT)) (* (($ $ $) 130 T ELT))) -(((-426 |#1| |#2| |#3| |#4|) (-13 (-486) (-10 -8 (-15 -2756 ($ (-1292 |#4|))) (-15 -2559 ((-1292 |#4|) $)) (-15 -4021 (|#2| $)) (-15 -2781 ((-1292 |#4|) $)) (-15 -2797 (|#1| $)) (-15 -2550 ($ $)) (-15 -4207 (|#4| (-787) (-1292 |#4|))))) (-318) (-1017 |#1|) (-1268 |#2|) (-13 (-422 |#2| |#3|) (-1063 |#2|))) (T -426)) -((-2756 (*1 *1 *2) (-12 (-5 *2 (-1292 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *3 (-318)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2559 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) (-4021 (*1 *2 *1) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1063 *2))))) (-2781 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) (-2797 (*1 *2 *1) (-12 (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) (-4 *2 (-318)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3))))) (-2550 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3))))) (-4207 (*1 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-1292 *2)) (-4 *5 (-318)) (-4 *6 (-1017 *5)) (-4 *2 (-13 (-422 *6 *7) (-1063 *6))) (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1268 *6))))) -(-13 (-486) (-10 -8 (-15 -2756 ($ (-1292 |#4|))) (-15 -2559 ((-1292 |#4|) $)) (-15 -4021 (|#2| $)) (-15 -2781 ((-1292 |#4|) $)) (-15 -2797 (|#1| $)) (-15 -2550 ($ $)) (-15 -4207 (|#4| (-787) (-1292 |#4|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4021 ((|#2| $) 71 T ELT)) (-2006 (($ (-1292 |#4|)) 27 T ELT) (($ (-426 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1063 |#2|)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 37 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 |#4|) $) 28 T ELT)) (-2767 (($) 25 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ $ $) 82 T ELT))) -(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-742) (-10 -8 (-15 -2559 ((-1292 |#4|) $)) (-15 -4021 (|#2| $)) (-15 -2006 ($ (-1292 |#4|))) (IF (|has| |#4| (-1063 |#2|)) (-15 -2006 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-318) (-1017 |#1|) (-1268 |#2|) (-422 |#2| |#3|) (-1292 |#4|)) (T -427)) -((-2559 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-4021 (*1 *2 *1) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1292 *5)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-1292 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1063 *4)) (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) -(-13 (-742) (-10 -8 (-15 -2559 ((-1292 |#4|) $)) (-15 -4021 (|#2| $)) (-15 -2006 ($ (-1292 |#4|))) (IF (|has| |#4| (-1063 |#2|)) (-15 -2006 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2124 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-174) (-430 |#4|) (-174)) (T -428)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) -(-10 -7 (-15 -2124 (|#3| (-1 |#4| |#2|) |#1|))) -((-3426 (((-3 $ "failed")) 98 T ELT)) (-2979 (((-1292 (-705 |#2|)) (-1292 $)) NIL T ELT) (((-1292 (-705 |#2|))) 103 T ELT)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) 96 T ELT)) (-3638 (((-3 $ "failed")) 95 T ELT)) (-2650 (((-705 |#2|) (-1292 $)) NIL T ELT) (((-705 |#2|)) 114 T ELT)) (-1634 (((-705 |#2|) $ (-1292 $)) NIL T ELT) (((-705 |#2|) $) 122 T ELT)) (-3403 (((-1197 (-975 |#2|))) 63 T ELT)) (-3927 ((|#2| (-1292 $)) NIL T ELT) ((|#2|) 118 T ELT)) (-1911 (($ (-1292 |#2|) (-1292 $)) NIL T ELT) (($ (-1292 |#2|)) 124 T ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) 94 T ELT)) (-3370 (((-3 $ "failed")) 86 T ELT)) (-4278 (((-705 |#2|) (-1292 $)) NIL T ELT) (((-705 |#2|)) 112 T ELT)) (-3141 (((-705 |#2|) $ (-1292 $)) NIL T ELT) (((-705 |#2|) $) 120 T ELT)) (-3287 (((-1197 (-975 |#2|))) 62 T ELT)) (-3504 ((|#2| (-1292 $)) NIL T ELT) ((|#2|) 116 T ELT)) (-2729 (((-1292 |#2|) $ (-1292 $)) NIL T ELT) (((-705 |#2|) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 |#2|) $) 123 T ELT) (((-705 |#2|) (-1292 $)) 132 T ELT)) (-2176 (((-1292 |#2|) $) 108 T ELT) (($ (-1292 |#2|)) 110 T ELT)) (-2518 (((-660 (-975 |#2|)) (-1292 $)) NIL T ELT) (((-660 (-975 |#2|))) 106 T ELT)) (-1640 (($ (-705 |#2|) $) 102 T ELT))) -(((-429 |#1| |#2|) (-10 -8 (-15 -1640 (|#1| (-705 |#2|) |#1|)) (-15 -3403 ((-1197 (-975 |#2|)))) (-15 -3287 ((-1197 (-975 |#2|)))) (-15 -1634 ((-705 |#2|) |#1|)) (-15 -3141 ((-705 |#2|) |#1|)) (-15 -2650 ((-705 |#2|))) (-15 -4278 ((-705 |#2|))) (-15 -3927 (|#2|)) (-15 -3504 (|#2|)) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -1911 (|#1| (-1292 |#2|))) (-15 -2518 ((-660 (-975 |#2|)))) (-15 -2979 ((-1292 (-705 |#2|)))) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3426 ((-3 |#1| "failed"))) (-15 -3638 ((-3 |#1| "failed"))) (-15 -3370 ((-3 |#1| "failed"))) (-15 -1724 ((-3 (-2 (|:| |particular| |#1|) (|:| -2559 (-660 |#1|))) "failed"))) (-15 -1751 ((-3 (-2 (|:| |particular| |#1|) (|:| -2559 (-660 |#1|))) "failed"))) (-15 -2650 ((-705 |#2|) (-1292 |#1|))) (-15 -4278 ((-705 |#2|) (-1292 |#1|))) (-15 -3927 (|#2| (-1292 |#1|))) (-15 -3504 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -1634 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3141 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2979 ((-1292 (-705 |#2|)) (-1292 |#1|))) (-15 -2518 ((-660 (-975 |#2|)) (-1292 |#1|)))) (-430 |#2|) (-174)) (T -429)) -((-2979 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2518 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-660 (-975 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3504 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-3927 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-4278 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2650 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3287 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3403 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -(-10 -8 (-15 -1640 (|#1| (-705 |#2|) |#1|)) (-15 -3403 ((-1197 (-975 |#2|)))) (-15 -3287 ((-1197 (-975 |#2|)))) (-15 -1634 ((-705 |#2|) |#1|)) (-15 -3141 ((-705 |#2|) |#1|)) (-15 -2650 ((-705 |#2|))) (-15 -4278 ((-705 |#2|))) (-15 -3927 (|#2|)) (-15 -3504 (|#2|)) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -1911 (|#1| (-1292 |#2|))) (-15 -2518 ((-660 (-975 |#2|)))) (-15 -2979 ((-1292 (-705 |#2|)))) (-15 -2729 ((-705 |#2|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1|)) (-15 -3426 ((-3 |#1| "failed"))) (-15 -3638 ((-3 |#1| "failed"))) (-15 -3370 ((-3 |#1| "failed"))) (-15 -1724 ((-3 (-2 (|:| |particular| |#1|) (|:| -2559 (-660 |#1|))) "failed"))) (-15 -1751 ((-3 (-2 (|:| |particular| |#1|) (|:| -2559 (-660 |#1|))) "failed"))) (-15 -2650 ((-705 |#2|) (-1292 |#1|))) (-15 -4278 ((-705 |#2|) (-1292 |#1|))) (-15 -3927 (|#2| (-1292 |#1|))) (-15 -3504 (|#2| (-1292 |#1|))) (-15 -1911 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2729 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2729 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -1634 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3141 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2979 ((-1292 (-705 |#2|)) (-1292 |#1|))) (-15 -2518 ((-660 (-975 |#2|)) (-1292 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3426 (((-3 $ "failed")) 42 (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2979 (((-1292 (-705 |#1|)) (-1292 $)) 83 T ELT) (((-1292 (-705 |#1|))) 106 T ELT)) (-4380 (((-1292 $)) 86 T ELT)) (-3790 (($) 18 T CONST)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) 45 (|has| |#1| (-569)) ELT)) (-3638 (((-3 $ "failed")) 43 (|has| |#1| (-569)) ELT)) (-2650 (((-705 |#1|) (-1292 $)) 70 T ELT) (((-705 |#1|)) 98 T ELT)) (-4204 ((|#1| $) 79 T ELT)) (-1634 (((-705 |#1|) $ (-1292 $)) 81 T ELT) (((-705 |#1|) $) 96 T ELT)) (-3696 (((-3 $ "failed") $) 50 (|has| |#1| (-569)) ELT)) (-3403 (((-1197 (-975 |#1|))) 94 (|has| |#1| (-375)) ELT)) (-1647 (($ $ (-944)) 31 T ELT)) (-1777 ((|#1| $) 77 T ELT)) (-3282 (((-1197 |#1|) $) 47 (|has| |#1| (-569)) ELT)) (-3927 ((|#1| (-1292 $)) 72 T ELT) ((|#1|) 100 T ELT)) (-3749 (((-1197 |#1|) $) 68 T ELT)) (-2214 (((-112)) 62 T ELT)) (-1911 (($ (-1292 |#1|) (-1292 $)) 74 T ELT) (($ (-1292 |#1|)) 104 T ELT)) (-1625 (((-3 $ "failed") $) 52 (|has| |#1| (-569)) ELT)) (-3503 (((-944)) 85 T ELT)) (-1825 (((-112)) 59 T ELT)) (-4254 (($ $ (-944)) 38 T ELT)) (-4041 (((-112)) 55 T ELT)) (-1580 (((-112)) 53 T ELT)) (-1451 (((-112)) 57 T ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) 46 (|has| |#1| (-569)) ELT)) (-3370 (((-3 $ "failed")) 44 (|has| |#1| (-569)) ELT)) (-4278 (((-705 |#1|) (-1292 $)) 71 T ELT) (((-705 |#1|)) 99 T ELT)) (-2677 ((|#1| $) 80 T ELT)) (-3141 (((-705 |#1|) $ (-1292 $)) 82 T ELT) (((-705 |#1|) $) 97 T ELT)) (-3473 (((-3 $ "failed") $) 51 (|has| |#1| (-569)) ELT)) (-3287 (((-1197 (-975 |#1|))) 95 (|has| |#1| (-375)) ELT)) (-1954 (($ $ (-944)) 32 T ELT)) (-4419 ((|#1| $) 78 T ELT)) (-3321 (((-1197 |#1|) $) 48 (|has| |#1| (-569)) ELT)) (-3504 ((|#1| (-1292 $)) 73 T ELT) ((|#1|) 101 T ELT)) (-3404 (((-1197 |#1|) $) 69 T ELT)) (-4176 (((-112)) 63 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3423 (((-112)) 54 T ELT)) (-2742 (((-112)) 56 T ELT)) (-3213 (((-112)) 58 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3532 (((-112)) 61 T ELT)) (-2837 ((|#1| $ (-577)) 110 T ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 76 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) 75 T ELT) (((-1292 |#1|) $) 108 T ELT) (((-705 |#1|) (-1292 $)) 107 T ELT)) (-2176 (((-1292 |#1|) $) 103 T ELT) (($ (-1292 |#1|)) 102 T ELT)) (-2518 (((-660 (-975 |#1|)) (-1292 $)) 84 T ELT) (((-660 (-975 |#1|))) 105 T ELT)) (-3823 (($ $ $) 28 T ELT)) (-4244 (((-112)) 67 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2559 (((-1292 $)) 109 T ELT)) (-2769 (((-660 (-1292 |#1|))) 49 (|has| |#1| (-569)) ELT)) (-2509 (($ $ $ $) 29 T ELT)) (-4429 (((-112)) 65 T ELT)) (-1640 (($ (-705 |#1|) $) 93 T ELT)) (-3223 (($ $ $) 27 T ELT)) (-4347 (((-112)) 66 T ELT)) (-2791 (((-112)) 64 T ELT)) (-3632 (((-112)) 60 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 33 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) +((-3172 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) (-3172 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-4 *1 (-417)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-4356 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-1480 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-3046 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-1847 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) (-5 *2 (-949)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) (-5 *2 (-949)))) (-3237 (*1 *1) (-12 (-4 *1 (-417)) (-2779 (|has| *1 (-6 -4490))) (-2779 (|has| *1 (-6 -4482))))) (-2930 (*1 *1) (-12 (-4 *1 (-417)) (-2779 (|has| *1 (-6 -4490))) (-2779 (|has| *1 (-6 -4482)))))) +(-13 (-1090) (-10 -8 (-6 -4215) (-15 -3172 ($ (-577) (-577))) (-15 -3172 ($ (-577) (-577) (-949))) (-15 -4030 ((-577) $)) (-15 -4356 ((-949))) (-15 -2328 ((-577) $)) (-15 -3079 ((-577) $)) (-15 -1480 ((-949))) (-15 -3046 ((-949))) (-15 -1847 ((-949))) (IF (|has| $ (-6 -4490)) (PROGN (-15 -1480 ((-949) (-949))) (-15 -3046 ((-949) (-949))) (-15 -1847 ((-949) (-949))) (-15 -2110 ((-949) (-577))) (-15 -4326 ((-949) (-577)))) |%noBranch|) (IF (|has| $ (-6 -4482)) |%noBranch| (IF (|has| $ (-6 -4490)) |%noBranch| (PROGN (-15 -3237 ($)) (-15 -2930 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-228)) . T) ((-632 (-391)) . T) ((-632 (-916 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-391)) . T) ((-948) . T) ((-1032) . T) ((-1052) . T) ((-1090) . T) ((-1068 (-420 (-577))) . T) ((-1068 (-577)) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-4417 (((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)) 20 T ELT))) +(((-418 |#1| |#2|) (-10 -7 (-15 -4417 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) (-569) (-569)) (T -418)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6))))) +(-10 -7 (-15 -4417 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) +((-4417 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 13 T ELT))) +(((-419 |#1| |#2|) (-10 -7 (-15 -4417 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-569) (-569)) (T -419)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6))))) +(-10 -7 (-15 -4417 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 13 T ELT)) (-1363 ((|#1| $) 21 (|has| |#1| (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| |#1| (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 17 T ELT) (((-3 (-1206) "failed") $) NIL (|has| |#1| (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT)) (-3783 ((|#1| $) 15 T ELT) (((-1206) $) NIL (|has| |#1| (-1068 (-1206))) ELT) (((-420 (-577)) $) 69 (|has| |#1| (-1068 (-577))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) 51 T ELT)) (-1424 (($) NIL (|has| |#1| (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| |#1| (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-910 (-391))) ELT)) (-3357 (((-112) $) 57 T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 ((|#1| $) 73 T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| |#1| (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| |#1| (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 100 T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| |#1| (-318)) ELT)) (-3941 ((|#1| $) 28 (|has| |#1| (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 145 (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 138 (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 ((|#1| $) 75 T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT) (((-391) $) NIL (|has| |#1| (-1052)) ELT) (((-228) $) NIL (|has| |#1| (-1052)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1206)) NIL (|has| |#1| (-1068 (-1206))) ELT)) (-2708 (((-3 $ "failed") $) 102 (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 103 T CONST)) (-2431 ((|#1| $) 26 (|has| |#1| (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| |#1| (-841)) ELT)) (-2839 (($) 22 T CONST)) (-2853 (($) 8 T CONST)) (-4136 (((-1188) $) 44 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT) (((-1188) $ (-112)) 45 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT) (((-1302) (-843) $) 46 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT) (((-1302) (-843) $ (-112)) 47 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT)) (-2389 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 66 T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 24 (|has| |#1| (-870)) ELT)) (-3139 (($ $ $) 133 T ELT) (($ |#1| |#1|) 53 T ELT)) (-3128 (($ $) 25 T ELT) (($ $ $) 56 T ELT)) (-3114 (($ $ $) 54 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 132 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 61 T ELT) (($ $ $) 58 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) 88 T ELT))) +(((-420 |#1|) (-13 (-1022 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4486)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4497)) (-6 -4486) |%noBranch|) |%noBranch|) |%noBranch|))) (-569)) (T -420)) +NIL +(-13 (-1022 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4486)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4497)) (-6 -4486) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2901 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-710 |#2|)) 18 T ELT)) (-2385 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 24 T ELT)) (-3921 (((-710 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) $) 40 T ELT)) (-2346 ((|#3| $) 69 T ELT)) (-3846 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3762 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 22 T ELT) (((-710 |#2|) (-1297 $)) 38 T ELT)) (-4463 (((-1297 |#2|) $) 11 T ELT) (($ (-1297 |#2|)) 13 T ELT)) (-2932 ((|#3| $) 55 T ELT))) +(((-421 |#1| |#2| |#3|) (-10 -8 (-15 -3921 ((-710 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -2901 ((-710 |#2|))) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -2385 (|#1| (-1297 |#2|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -2346 (|#3| |#1|)) (-15 -2932 (|#3| |#1|)) (-15 -2901 ((-710 |#2|) (-1297 |#1|))) (-15 -3846 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3921 ((-710 |#2|) |#1| (-1297 |#1|)))) (-422 |#2| |#3|) (-174) (-1273 |#2|)) (T -421)) +((-2901 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-3846 (*1 *2) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) +(-10 -8 (-15 -3921 ((-710 |#2|) |#1|)) (-15 -3846 (|#2|)) (-15 -2901 ((-710 |#2|))) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -2385 (|#1| (-1297 |#2|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -2346 (|#3| |#1|)) (-15 -2932 (|#3| |#1|)) (-15 -2901 ((-710 |#2|) (-1297 |#1|))) (-15 -3846 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3921 ((-710 |#2|) |#1| (-1297 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2901 (((-710 |#1|) (-1297 $)) 53 T ELT) (((-710 |#1|)) 68 T ELT)) (-2318 ((|#1| $) 59 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-2385 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-3921 (((-710 |#1|) $ (-1297 $)) 60 T ELT) (((-710 |#1|) $) 66 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1641 (((-949)) 61 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2794 ((|#1| $) 58 T ELT)) (-2346 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3846 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-710 |#1|) (-1297 $)) 72 T ELT)) (-4463 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-2708 (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-2932 ((|#2| $) 52 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2104 (((-1297 $)) 74 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-422 |#1| |#2|) (-141) (-174) (-1273 |t#1|)) (T -422)) +((-2104 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) (-4 *1 (-422 *3 *4)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1273 *3)))) (-4463 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1273 *3)))) (-2901 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-710 *3)))) (-3846 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-710 *3))))) +(-13 (-382 |t#1| |t#2|) (-10 -8 (-15 -2104 ((-1297 $))) (-15 -3762 ((-1297 |t#1|) $)) (-15 -3762 ((-710 |t#1|) (-1297 $))) (-15 -2385 ($ (-1297 |t#1|))) (-15 -4463 ((-1297 |t#1|) $)) (-15 -4463 ($ (-1297 |t#1|))) (-15 -2901 ((-710 |t#1|))) (-15 -3846 (|t#1|)) (-15 -3921 ((-710 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-382 |#1| |#2|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) 27 T ELT) (((-3 (-577) "failed") $) 19 T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-420 (-577)) $) 24 T ELT) (((-577) $) 14 T ELT)) (-3709 (($ |#2|) NIL T ELT) (($ (-420 (-577))) 22 T ELT) (($ (-577)) 11 T ELT))) +(((-423 |#1| |#2|) (-10 -8 (-15 -3709 (|#1| (-577))) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|))) (-424 |#2|) (-1247)) (T -423)) +NIL +(-10 -8 (-15 -3709 (|#1| (-577))) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|))) +((-4335 (((-3 |#1| "failed") $) 9 T ELT) (((-3 (-420 (-577)) "failed") $) 16 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 13 (|has| |#1| (-1068 (-577))) ELT)) (-3783 ((|#1| $) 8 T ELT) (((-420 (-577)) $) 17 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 14 (|has| |#1| (-1068 (-577))) ELT)) (-3709 (($ |#1|) 6 T ELT) (($ (-420 (-577))) 15 (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ (-577)) 12 (|has| |#1| (-1068 (-577))) ELT))) +(((-424 |#1|) (-141) (-1247)) (T -424)) +NIL +(-13 (-1068 |t#1|) (-10 -7 (IF (|has| |t#1| (-1068 (-577))) (-6 (-1068 (-577))) |%noBranch|) (IF (|has| |t#1| (-1068 (-420 (-577)))) (-6 (-1068 (-420 (-577)))) |%noBranch|))) +(((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 #1=(-577)) |has| |#1| (-1068 (-577))) ((-634 |#1|) . T) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 #1#) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T)) +((-4417 (((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-425 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4417 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) (-318) (-1022 |#1|) (-1273 |#2|) (-13 (-422 |#2| |#3|) (-1068 |#2|)) (-318) (-1022 |#5|) (-1273 |#6|) (-13 (-422 |#6| |#7|) (-1068 |#6|))) (T -425)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6)) (-4 *8 (-13 (-422 *6 *7) (-1068 *6))) (-4 *9 (-318)) (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10)) (-5 *2 (-426 *9 *10 *11 *12)) (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1068 *10)))))) +(-10 -7 (-15 -4417 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2331 ((|#4| (-792) (-1297 |#4|)) 55 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2417 (((-1297 |#4|) $) 15 T ELT)) (-2794 ((|#2| $) 53 T ELT)) (-4158 (($ $) 157 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 103 T ELT)) (-2459 (($ (-1297 |#4|)) 102 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2429 ((|#1| $) 16 T ELT)) (-4247 (($ $ $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3709 (((-885) $) 148 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 |#4|) $) 141 T ELT)) (-2853 (($) 11 T CONST)) (-3018 (((-112) $ $) 39 T ELT)) (-3139 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 134 T ELT)) (* (($ $ $) 130 T ELT))) +(((-426 |#1| |#2| |#3| |#4|) (-13 (-486) (-10 -8 (-15 -2459 ($ (-1297 |#4|))) (-15 -2104 ((-1297 |#4|) $)) (-15 -2794 (|#2| $)) (-15 -2417 ((-1297 |#4|) $)) (-15 -2429 (|#1| $)) (-15 -4158 ($ $)) (-15 -2331 (|#4| (-792) (-1297 |#4|))))) (-318) (-1022 |#1|) (-1273 |#2|) (-13 (-422 |#2| |#3|) (-1068 |#2|))) (T -426)) +((-2459 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-318)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2104 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) (-2794 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1068 *2))))) (-2417 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) (-2429 (*1 *2 *1) (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-318)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) (-4158 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-1297 *2)) (-4 *5 (-318)) (-4 *6 (-1022 *5)) (-4 *2 (-13 (-422 *6 *7) (-1068 *6))) (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1273 *6))))) +(-13 (-486) (-10 -8 (-15 -2459 ($ (-1297 |#4|))) (-15 -2104 ((-1297 |#4|) $)) (-15 -2794 (|#2| $)) (-15 -2417 ((-1297 |#4|) $)) (-15 -2429 (|#1| $)) (-15 -4158 ($ $)) (-15 -2331 (|#4| (-792) (-1297 |#4|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2794 ((|#2| $) 71 T ELT)) (-4143 (($ (-1297 |#4|)) 27 T ELT) (($ (-426 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1068 |#2|)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 37 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 |#4|) $) 28 T ELT)) (-2853 (($) 25 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ $ $) 82 T ELT))) +(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-747) (-10 -8 (-15 -2104 ((-1297 |#4|) $)) (-15 -2794 (|#2| $)) (-15 -4143 ($ (-1297 |#4|))) (IF (|has| |#4| (-1068 |#2|)) (-15 -4143 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-318) (-1022 |#1|) (-1273 |#2|) (-422 |#2| |#3|) (-1297 |#4|)) (T -427)) +((-2104 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-2794 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1297 *5)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1068 *4)) (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) +(-13 (-747) (-10 -8 (-15 -2104 ((-1297 |#4|) $)) (-15 -2794 (|#2| $)) (-15 -4143 ($ (-1297 |#4|))) (IF (|has| |#4| (-1068 |#2|)) (-15 -4143 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4417 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-174) (-430 |#4|) (-174)) (T -428)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) +(-10 -7 (-15 -4417 (|#3| (-1 |#4| |#2|) |#1|))) +((-3273 (((-3 $ "failed")) 98 T ELT)) (-2410 (((-1297 (-710 |#2|)) (-1297 $)) NIL T ELT) (((-1297 (-710 |#2|))) 103 T ELT)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) 96 T ELT)) (-2044 (((-3 $ "failed")) 95 T ELT)) (-3820 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-710 |#2|)) 114 T ELT)) (-3214 (((-710 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) $) 122 T ELT)) (-3769 (((-1202 (-980 |#2|))) 63 T ELT)) (-2501 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 118 T ELT)) (-2385 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 124 T ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) 94 T ELT)) (-1740 (((-3 $ "failed")) 86 T ELT)) (-3764 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-710 |#2|)) 112 T ELT)) (-2962 (((-710 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) $) 120 T ELT)) (-2276 (((-1202 (-980 |#2|))) 62 T ELT)) (-3749 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 116 T ELT)) (-3762 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 123 T ELT) (((-710 |#2|) (-1297 $)) 132 T ELT)) (-4463 (((-1297 |#2|) $) 108 T ELT) (($ (-1297 |#2|)) 110 T ELT)) (-2133 (((-665 (-980 |#2|)) (-1297 $)) NIL T ELT) (((-665 (-980 |#2|))) 106 T ELT)) (-4382 (($ (-710 |#2|) $) 102 T ELT))) +(((-429 |#1| |#2|) (-10 -8 (-15 -4382 (|#1| (-710 |#2|) |#1|)) (-15 -3769 ((-1202 (-980 |#2|)))) (-15 -2276 ((-1202 (-980 |#2|)))) (-15 -3214 ((-710 |#2|) |#1|)) (-15 -2962 ((-710 |#2|) |#1|)) (-15 -3820 ((-710 |#2|))) (-15 -3764 ((-710 |#2|))) (-15 -2501 (|#2|)) (-15 -3749 (|#2|)) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -2385 (|#1| (-1297 |#2|))) (-15 -2133 ((-665 (-980 |#2|)))) (-15 -2410 ((-1297 (-710 |#2|)))) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -3273 ((-3 |#1| "failed"))) (-15 -2044 ((-3 |#1| "failed"))) (-15 -1740 ((-3 |#1| "failed"))) (-15 -1437 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-665 |#1|))) "failed"))) (-15 -4168 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-665 |#1|))) "failed"))) (-15 -3820 ((-710 |#2|) (-1297 |#1|))) (-15 -3764 ((-710 |#2|) (-1297 |#1|))) (-15 -2501 (|#2| (-1297 |#1|))) (-15 -3749 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3214 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2962 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2410 ((-1297 (-710 |#2|)) (-1297 |#1|))) (-15 -2133 ((-665 (-980 |#2|)) (-1297 |#1|)))) (-430 |#2|) (-174)) (T -429)) +((-2410 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2133 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-665 (-980 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3749 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-2501 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-3764 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3820 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2276 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3769 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +(-10 -8 (-15 -4382 (|#1| (-710 |#2|) |#1|)) (-15 -3769 ((-1202 (-980 |#2|)))) (-15 -2276 ((-1202 (-980 |#2|)))) (-15 -3214 ((-710 |#2|) |#1|)) (-15 -2962 ((-710 |#2|) |#1|)) (-15 -3820 ((-710 |#2|))) (-15 -3764 ((-710 |#2|))) (-15 -2501 (|#2|)) (-15 -3749 (|#2|)) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -2385 (|#1| (-1297 |#2|))) (-15 -2133 ((-665 (-980 |#2|)))) (-15 -2410 ((-1297 (-710 |#2|)))) (-15 -3762 ((-710 |#2|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1|)) (-15 -3273 ((-3 |#1| "failed"))) (-15 -2044 ((-3 |#1| "failed"))) (-15 -1740 ((-3 |#1| "failed"))) (-15 -1437 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-665 |#1|))) "failed"))) (-15 -4168 ((-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-665 |#1|))) "failed"))) (-15 -3820 ((-710 |#2|) (-1297 |#1|))) (-15 -3764 ((-710 |#2|) (-1297 |#1|))) (-15 -2501 (|#2| (-1297 |#1|))) (-15 -3749 (|#2| (-1297 |#1|))) (-15 -2385 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -3762 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -3762 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3214 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2962 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -2410 ((-1297 (-710 |#2|)) (-1297 |#1|))) (-15 -2133 ((-665 (-980 |#2|)) (-1297 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3273 (((-3 $ "failed")) 42 (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2410 (((-1297 (-710 |#1|)) (-1297 $)) 83 T ELT) (((-1297 (-710 |#1|))) 106 T ELT)) (-2637 (((-1297 $)) 86 T ELT)) (-2305 (($) 18 T CONST)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) 45 (|has| |#1| (-569)) ELT)) (-2044 (((-3 $ "failed")) 43 (|has| |#1| (-569)) ELT)) (-3820 (((-710 |#1|) (-1297 $)) 70 T ELT) (((-710 |#1|)) 98 T ELT)) (-3009 ((|#1| $) 79 T ELT)) (-3214 (((-710 |#1|) $ (-1297 $)) 81 T ELT) (((-710 |#1|) $) 96 T ELT)) (-3252 (((-3 $ "failed") $) 50 (|has| |#1| (-569)) ELT)) (-3769 (((-1202 (-980 |#1|))) 94 (|has| |#1| (-375)) ELT)) (-3712 (($ $ (-949)) 31 T ELT)) (-1461 ((|#1| $) 77 T ELT)) (-3747 (((-1202 |#1|) $) 47 (|has| |#1| (-569)) ELT)) (-2501 ((|#1| (-1297 $)) 72 T ELT) ((|#1|) 100 T ELT)) (-4242 (((-1202 |#1|) $) 68 T ELT)) (-2020 (((-112)) 62 T ELT)) (-2385 (($ (-1297 |#1|) (-1297 $)) 74 T ELT) (($ (-1297 |#1|)) 104 T ELT)) (-3167 (((-3 $ "failed") $) 52 (|has| |#1| (-569)) ELT)) (-1641 (((-949)) 85 T ELT)) (-1547 (((-112)) 59 T ELT)) (-2510 (($ $ (-949)) 38 T ELT)) (-3916 (((-112)) 55 T ELT)) (-1919 (((-112)) 53 T ELT)) (-2732 (((-112)) 57 T ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) 46 (|has| |#1| (-569)) ELT)) (-1740 (((-3 $ "failed")) 44 (|has| |#1| (-569)) ELT)) (-3764 (((-710 |#1|) (-1297 $)) 71 T ELT) (((-710 |#1|)) 99 T ELT)) (-3565 ((|#1| $) 80 T ELT)) (-2962 (((-710 |#1|) $ (-1297 $)) 82 T ELT) (((-710 |#1|) $) 97 T ELT)) (-3535 (((-3 $ "failed") $) 51 (|has| |#1| (-569)) ELT)) (-2276 (((-1202 (-980 |#1|))) 95 (|has| |#1| (-375)) ELT)) (-3744 (($ $ (-949)) 32 T ELT)) (-2799 ((|#1| $) 78 T ELT)) (-2114 (((-1202 |#1|) $) 48 (|has| |#1| (-569)) ELT)) (-3749 ((|#1| (-1297 $)) 73 T ELT) ((|#1|) 101 T ELT)) (-2201 (((-1202 |#1|) $) 69 T ELT)) (-2966 (((-112)) 63 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-2187 (((-112)) 54 T ELT)) (-1465 (((-112)) 56 T ELT)) (-1693 (((-112)) 58 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2949 (((-112)) 61 T ELT)) (-2916 ((|#1| $ (-577)) 110 T ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 75 T ELT) (((-1297 |#1|) $) 108 T ELT) (((-710 |#1|) (-1297 $)) 107 T ELT)) (-4463 (((-1297 |#1|) $) 103 T ELT) (($ (-1297 |#1|)) 102 T ELT)) (-2133 (((-665 (-980 |#1|)) (-1297 $)) 84 T ELT) (((-665 (-980 |#1|))) 105 T ELT)) (-2486 (($ $ $) 28 T ELT)) (-3733 (((-112)) 67 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2104 (((-1297 $)) 109 T ELT)) (-2274 (((-665 (-1297 |#1|))) 49 (|has| |#1| (-569)) ELT)) (-2032 (($ $ $ $) 29 T ELT)) (-3678 (((-112)) 65 T ELT)) (-4382 (($ (-710 |#1|) $) 93 T ELT)) (-1793 (($ $ $) 27 T ELT)) (-1897 (((-112)) 66 T ELT)) (-3211 (((-112)) 64 T ELT)) (-4146 (((-112)) 60 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) (((-430 |#1|) (-141) (-174)) (T -430)) -((-2559 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-430 *3)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-2979 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 (-705 *3))))) (-2518 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-660 (-975 *3))))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-3504 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-3927 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-4278 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-2650 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-3287 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1197 (-975 *3))))) (-3403 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1197 (-975 *3))))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-705 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174))))) -(-13 (-379 |t#1|) (-297 (-577) |t#1|) (-10 -8 (-15 -2559 ((-1292 $))) (-15 -2729 ((-1292 |t#1|) $)) (-15 -2729 ((-705 |t#1|) (-1292 $))) (-15 -2979 ((-1292 (-705 |t#1|)))) (-15 -2518 ((-660 (-975 |t#1|)))) (-15 -1911 ($ (-1292 |t#1|))) (-15 -2176 ((-1292 |t#1|) $)) (-15 -2176 ($ (-1292 |t#1|))) (-15 -3504 (|t#1|)) (-15 -3927 (|t#1|)) (-15 -4278 ((-705 |t#1|))) (-15 -2650 ((-705 |t#1|))) (-15 -3141 ((-705 |t#1|) $)) (-15 -1634 ((-705 |t#1|) $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -3287 ((-1197 (-975 |t#1|)))) (-15 -3403 ((-1197 (-975 |t#1|))))) |%noBranch|) (-15 -1640 ($ (-705 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-297 (-577) |#1|) . T) ((-379 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-736) . T) ((-760 |#1|) . T) ((-777) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 60 T ELT)) (-1428 (($ $) 78 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 192 T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) 48 T ELT)) (-3426 ((|#1| $) 16 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#1| (-1246)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-1246)) ELT)) (-4008 (($ |#1| (-577)) 42 T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 149 T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 74 T ELT)) (-1625 (((-3 $ "failed") $) 165 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 85 (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) 81 (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) 92 (|has| |#1| (-558)) ELT)) (-2553 (($ |#1| (-577)) 44 T ELT)) (-2182 (((-112) $) 212 (|has| |#1| (-1246)) ELT)) (-3306 (((-112) $) 62 T ELT)) (-3374 (((-787) $) 51 T ELT)) (-1384 (((-3 "nil" "sqfr" "irred" "prime") $ (-577)) 176 T ELT)) (-3733 ((|#1| $ (-577)) 175 T ELT)) (-3094 (((-577) $ (-577)) 174 T ELT)) (-3304 (($ |#1| (-577)) 41 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 184 T ELT)) (-3041 (($ |#1| (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577))))) 79 T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3381 (($ |#1| (-577)) 43 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) 193 (|has| |#1| (-465)) ELT)) (-4304 (($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime")) 40 T ELT)) (-1704 (((-660 (-2 (|:| -3056 |#1|) (|:| -1527 (-577)))) $) 73 T ELT)) (-1930 (((-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $) 12 T ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-1246)) ELT)) (-3478 (((-3 $ "failed") $ $) 177 T ELT)) (-1527 (((-577) $) 168 T ELT)) (-3694 ((|#1| $) 75 T ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 101 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) 107 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) $) NIL (|has| |#1| (-527 (-1201) $)) ELT) (($ $ (-660 (-1201)) (-660 $)) 108 (|has| |#1| (-527 (-1201) $)) ELT) (($ $ (-660 (-305 $))) 104 (|has| |#1| (-320 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-320 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-320 $)) ELT) (($ $ (-660 $) (-660 $)) NIL (|has| |#1| (-320 $)) ELT)) (-2837 (($ $ |#1|) 93 (|has| |#1| (-297 |#1| |#1|)) ELT) (($ $ $) 94 (|has| |#1| (-297 $ $)) ELT)) (-3362 (($ $ (-1 |#1| |#1|)) 183 T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-2176 (((-549) $) 39 (|has| |#1| (-627 (-549))) ELT) (((-391) $) 114 (|has| |#1| (-1047)) ELT) (((-228) $) 120 (|has| |#1| (-1047)) ELT)) (-3603 (((-880) $) 147 T ELT) (($ (-577)) 65 T ELT) (($ $) NIL T ELT) (($ |#1|) 64 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT)) (-1920 (((-787)) 67 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) 53 T CONST)) (-2767 (($) 52 T CONST)) (-2136 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) 160 T ELT)) (-3042 (($ $) 162 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 181 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 126 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 69 T ELT) (($ $ $) 68 T ELT) (($ |#1| $) 70 T ELT) (($ $ |#1|) NIL T ELT))) -(((-431 |#1|) (-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -3694 (|#1| $)) (-15 -1527 ((-577) $)) (-15 -3041 ($ |#1| (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -1930 ((-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -3304 ($ |#1| (-577))) (-15 -1704 ((-660 (-2 (|:| -3056 |#1|) (|:| -1527 (-577)))) $)) (-15 -3381 ($ |#1| (-577))) (-15 -3094 ((-577) $ (-577))) (-15 -3733 (|#1| $ (-577))) (-15 -1384 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -3374 ((-787) $)) (-15 -2553 ($ |#1| (-577))) (-15 -4008 ($ |#1| (-577))) (-15 -4304 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3426 (|#1| $)) (-15 -1428 ($ $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1047)) (-6 (-1047)) |%noBranch|) (IF (|has| |#1| (-1246)) (-6 (-1246)) |%noBranch|) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1201) $)) (-6 (-527 (-1201) $)) |%noBranch|))) (-569)) (T -431)) -((-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) (-3694 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3041 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-577))))) (-4 *2 (-569)) (-5 *1 (-431 *2)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3304 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -3056 *3) (|:| -1527 (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3381 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3094 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3733 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1384 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *4)) (-4 *4 (-569)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-4008 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-4304 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3426 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1428 (*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-1493 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569))))) -(-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -3694 (|#1| $)) (-15 -1527 ((-577) $)) (-15 -3041 ($ |#1| (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -1930 ((-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -3304 ($ |#1| (-577))) (-15 -1704 ((-660 (-2 (|:| -3056 |#1|) (|:| -1527 (-577)))) $)) (-15 -3381 ($ |#1| (-577))) (-15 -3094 ((-577) $ (-577))) (-15 -3733 (|#1| $ (-577))) (-15 -1384 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -3374 ((-787) $)) (-15 -2553 ($ |#1| (-577))) (-15 -4008 ($ |#1| (-577))) (-15 -4304 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3426 (|#1| $)) (-15 -1428 ($ $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1047)) (-6 (-1047)) |%noBranch|) (IF (|has| |#1| (-1246)) (-6 (-1246)) |%noBranch|) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1201) $)) (-6 (-527 (-1201) $)) |%noBranch|))) -((-2256 (((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|)) 28 T ELT)) (-1677 (((-431 |#1|) (-431 |#1|) (-431 |#1|)) 17 T ELT))) -(((-432 |#1|) (-10 -7 (-15 -2256 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -1677 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) (-569)) (T -432)) -((-1677 (*1 *2 *2 *2) (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) (-5 *1 (-432 *4))))) -(-10 -7 (-15 -2256 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -1677 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) -((-4048 ((|#2| |#2|) 183 T ELT)) (-3043 (((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112)) 60 T ELT))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3043 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112))) (-15 -4048 (|#2| |#2|))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|)) (-1201) |#2|) (T -433)) -((-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1227) (-443 *3))) (-14 *4 (-1201)) (-14 *5 *2))) (-3043 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-14 *6 (-1201)) (-14 *7 *3)))) -(-10 -7 (-15 -3043 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112))) (-15 -4048 (|#2| |#2|))) -((-2124 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|))) (-1074) (-443 |#1|) (-1074) (-443 |#3|)) (T -434)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5))))) -(-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|))) -((-4048 ((|#2| |#2|) 106 T ELT)) (-2802 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183)) 52 T ELT)) (-1333 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183)) 170 T ELT))) -(((-435 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2802 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -1333 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -4048 (|#2| |#2|))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|) (-10 -8 (-15 -3603 ($ |#3|)))) (-864) (-13 (-1270 |#2| |#3|) (-375) (-1227) (-10 -8 (-15 -3362 ($ $)) (-15 -4129 ($ $)))) (-1008 |#4|) (-1201)) (T -435)) -((-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *2 (-13 (-27) (-1227) (-443 *3) (-10 -8 (-15 -3603 ($ *4))))) (-4 *4 (-864)) (-4 *5 (-13 (-1270 *2 *4) (-375) (-1227) (-10 -8 (-15 -3362 ($ $)) (-15 -4129 ($ $))))) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1008 *5)) (-14 *7 (-1201)))) (-1333 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3603 ($ *7))))) (-4 *7 (-864)) (-4 *8 (-13 (-1270 *3 *7) (-375) (-1227) (-10 -8 (-15 -3362 ($ $)) (-15 -4129 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) (-14 *10 (-1201)))) (-2802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3603 ($ *7))))) (-4 *7 (-864)) (-4 *8 (-13 (-1270 *3 *7) (-375) (-1227) (-10 -8 (-15 -3362 ($ $)) (-15 -4129 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) (-14 *10 (-1201))))) -(-10 -7 (-15 -2802 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -1333 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -4048 (|#2| |#2|))) -((-1979 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-2498 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-2124 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2498 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1979 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1125) (-438 |#1|) (-1125) (-438 |#3|)) (T -436)) -((-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1125)) (-4 *5 (-1125)) (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) -(-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2498 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1979 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1596 (($) 51 T ELT)) (-1872 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3470 (($ $ $) 46 T ELT)) (-2401 (((-112) $ $) 35 T ELT)) (-3373 (((-787)) 55 T ELT)) (-2096 (($ (-660 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2352 (($) 66 T ELT)) (-2394 (((-112) $ $) 15 T ELT)) (-2900 ((|#2| $) 77 T ELT)) (-1457 ((|#2| $) 75 T ELT)) (-2144 (((-944) $) 70 T ELT)) (-4056 (($ $ $) 42 T ELT)) (-3251 (($ (-944)) 60 T ELT)) (-3127 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) NIL T ELT) (((-787) |#2| $) 31 T ELT)) (-3614 (($ (-660 |#2|)) 27 T ELT)) (-1597 (($ $) 53 T ELT)) (-3603 (((-880) $) 40 T ELT)) (-3227 (((-787) $) 24 T ELT)) (-3122 (($ (-660 |#2|)) 22 T ELT) (($) NIL T ELT)) (-2949 (((-112) $ $) 19 T ELT))) -(((-437 |#1| |#2|) (-10 -8 (-15 -3373 ((-787))) (-15 -3251 (|#1| (-944))) (-15 -2144 ((-944) |#1|)) (-15 -2352 (|#1|)) (-15 -2900 (|#2| |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -1596 (|#1|)) (-15 -1597 (|#1| |#1|)) (-15 -3227 ((-787) |#1|)) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2394 ((-112) |#1| |#1|)) (-15 -3122 (|#1|)) (-15 -3122 (|#1| (-660 |#2|))) (-15 -2096 (|#1|)) (-15 -2096 (|#1| (-660 |#2|))) (-15 -4056 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#2|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -2401 ((-112) |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -1872 (|#1| |#1| |#2|)) (-15 -1872 (|#1| |#2| |#1|)) (-15 -3614 (|#1| (-660 |#2|))) (-15 -1452 ((-787) |#2| |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|))) (-438 |#2|) (-1125)) (T -437)) -((-3373 (*1 *2) (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) -(-10 -8 (-15 -3373 ((-787))) (-15 -3251 (|#1| (-944))) (-15 -2144 ((-944) |#1|)) (-15 -2352 (|#1|)) (-15 -2900 (|#2| |#1|)) (-15 -1457 (|#2| |#1|)) (-15 -1596 (|#1|)) (-15 -1597 (|#1| |#1|)) (-15 -3227 ((-787) |#1|)) (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2394 ((-112) |#1| |#1|)) (-15 -3122 (|#1|)) (-15 -3122 (|#1| (-660 |#2|))) (-15 -2096 (|#1|)) (-15 -2096 (|#1| (-660 |#2|))) (-15 -4056 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#2|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -2401 ((-112) |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -1872 (|#1| |#1| |#2|)) (-15 -1872 (|#1| |#2| |#1|)) (-15 -3614 (|#1| (-660 |#2|))) (-15 -1452 ((-787) |#2| |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|))) -((-3489 (((-112) $ $) 20 T ELT)) (-1596 (($) 68 (|has| |#1| (-380)) ELT)) (-1872 (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-3470 (($ $ $) 79 T ELT)) (-2401 (((-112) $ $) 80 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3373 (((-787)) 62 (|has| |#1| (-380)) ELT)) (-2096 (($ (-660 |#1|)) 75 T ELT) (($) 74 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3289 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ |#1| $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)) ELT)) (-2352 (($) 65 (|has| |#1| (-380)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-2394 (((-112) $ $) 71 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2900 ((|#1| $) 66 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1457 ((|#1| $) 67 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-2144 (((-944) $) 64 (|has| |#1| (-380)) ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 T ELT)) (-4056 (($ $ $) 76 T ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-3251 (($ (-944)) 63 (|has| |#1| (-380)) ELT)) (-1440 (((-1145) $) 22 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-3127 (($ $ |#1|) 78 T ELT) (($ $ $) 77 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 |#1|)) 49 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 51 T ELT)) (-1597 (($ $) 69 (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) 18 T ELT)) (-3227 (((-787) $) 70 T ELT)) (-3122 (($ (-660 |#1|)) 73 T ELT) (($) 72 T ELT)) (-2726 (((-112) $ $) 21 T ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 T ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-438 |#1|) (-141) (-1125)) (T -438)) -((-3227 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1125)) (-5 *2 (-787)))) (-1597 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-380)))) (-1596 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1125)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865))))) -(-13 (-232 |t#1|) (-1123 |t#1|) (-10 -8 (-6 -4470) (-15 -3227 ((-787) $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-380)) (-15 -1597 ($ $)) (-15 -1596 ($))) |%noBranch|) (IF (|has| |t#1| (-865)) (PROGN (-15 -1457 (|t#1| $)) (-15 -2900 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-232 |#1|) . T) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-380) |has| |#1| (-380)) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1123 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-1781 (((-599 |#2|) |#2| (-1201)) 36 T ELT)) (-2520 (((-599 |#2|) |#2| (-1201)) 21 T ELT)) (-4051 ((|#2| |#2| (-1201)) 26 T ELT))) -(((-439 |#1| |#2|) (-10 -7 (-15 -2520 ((-599 |#2|) |#2| (-1201))) (-15 -1781 ((-599 |#2|) |#2| (-1201))) (-15 -4051 (|#2| |#2| (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-29 |#1|))) (T -439)) -((-4051 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1227) (-29 *4))))) (-1781 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1227) (-29 *5))))) (-2520 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1227) (-29 *5)))))) -(-10 -7 (-15 -2520 ((-599 |#2|) |#2| (-1201))) (-15 -1781 ((-599 |#2|) |#2| (-1201))) (-15 -4051 (|#2| |#2| (-1201)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3085 (($ |#2| |#1|) 37 T ELT)) (-1448 (($ |#2| |#1|) 35 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-342 |#2|)) 25 T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 10 T CONST)) (-2767 (($) 16 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 36 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-440 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4457)) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (-15 -3603 ($ |#1|)) (-15 -3603 ($ (-342 |#2|))) (-15 -3085 ($ |#2| |#1|)) (-15 -1448 ($ |#2| |#1|)))) (-13 (-174) (-38 (-420 (-577)))) (-13 (-865) (-21))) (T -440)) -((-3603 (*1 *1 *2) (-12 (-5 *1 (-440 *2 *3)) (-4 *2 (-13 (-174) (-38 (-420 (-577))))) (-4 *3 (-13 (-865) (-21))))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-865) (-21))) (-5 *1 (-440 *3 *4)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))))) (-3085 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-865) (-21))))) (-1448 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-865) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4457)) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (-15 -3603 ($ |#1|)) (-15 -3603 ($ (-342 |#2|))) (-15 -3085 ($ |#2| |#1|)) (-15 -1448 ($ |#2| |#1|)))) -((-4129 (((-3 |#2| (-660 |#2|)) |#2| (-1201)) 115 T ELT))) -(((-441 |#1| |#2|) (-10 -7 (-15 -4129 ((-3 |#2| (-660 |#2|)) |#2| (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-29 |#1|))) (T -441)) -((-4129 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 *3 (-660 *3))) (-5 *1 (-441 *5 *3)) (-4 *3 (-13 (-1227) (-982) (-29 *5)))))) -(-10 -7 (-15 -4129 ((-3 |#2| (-660 |#2|)) |#2| (-1201)))) -((-3206 (((-660 (-1201)) $) 81 T ELT)) (-3024 (((-420 (-1197 $)) $ (-625 $)) 313 T ELT)) (-2692 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) 277 T ELT)) (-2784 (((-3 (-625 $) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) 84 T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 273 T ELT) (((-3 (-420 (-975 |#2|)) "failed") $) 363 T ELT) (((-3 (-975 |#2|) "failed") $) 275 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2155 (((-625 $) $) NIL T ELT) (((-1201) $) 28 T ELT) (((-577) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-420 (-975 |#2|)) $) 345 T ELT) (((-975 |#2|) $) 272 T ELT) (((-420 (-577)) $) NIL T ELT)) (-2085 (((-115) (-115)) 47 T ELT)) (-3116 (($ $) 99 T ELT)) (-3215 (((-3 (-625 $) "failed") $) 268 T ELT)) (-2074 (((-660 (-625 $)) $) 269 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 287 T ELT)) (-2998 (((-3 (-2 (|:| |val| $) (|:| -1527 (-577))) "failed") $) 294 T ELT)) (-3910 (((-3 (-660 $) "failed") $) 285 T ELT)) (-1400 (((-3 (-2 (|:| -2940 (-577)) (|:| |var| (-625 $))) "failed") $) 304 T ELT)) (-1966 (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-1201)) 257 T ELT)) (-3327 (((-112) $) 17 T ELT)) (-3340 ((|#2| $) 19 T ELT)) (-3273 (($ $ (-625 $) $) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) 276 T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 109 T ELT) (($ $ (-1201) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1201) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1201)) 62 T ELT) (($ $ (-660 (-1201))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1201)) 65 T ELT) (($ $ (-660 (-115)) (-660 $) (-1201)) 72 T ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) 120 T ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) 282 T ELT) (($ $ (-1201) (-787) (-1 $ (-660 $))) 105 T ELT) (($ $ (-1201) (-787) (-1 $ $)) 104 T ELT)) (-2837 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) 119 T ELT)) (-3362 (($ $ (-1201)) 278 T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-3069 (($ $) 324 T ELT)) (-2176 (((-911 (-577)) $) 297 T ELT) (((-911 (-391)) $) 301 T ELT) (($ (-431 $)) 359 T ELT) (((-549) $) NIL T ELT)) (-3603 (((-880) $) 279 T ELT) (($ (-625 $)) 93 T ELT) (($ (-1201)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1150 |#2| (-625 $))) NIL T ELT) (($ (-420 |#2|)) 329 T ELT) (($ (-975 (-420 |#2|))) 368 T ELT) (($ (-420 (-975 (-420 |#2|)))) 341 T ELT) (($ (-420 (-975 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-975 |#2|)) 216 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) 373 T ELT)) (-1920 (((-787)) 88 T ELT)) (-3123 (((-112) (-115)) 42 T ELT)) (-2792 (($ (-1201) $) 31 T ELT) (($ (-1201) $ $) 32 T ELT) (($ (-1201) $ $ $) 33 T ELT) (($ (-1201) $ $ $ $) 34 T ELT) (($ (-1201) (-660 $)) 39 T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-944) $) NIL T ELT))) -(((-442 |#1| |#2|) (-10 -8 (-15 * (|#1| (-944) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3603 (|#1| (-577))) (-15 -1920 ((-787))) (-15 * (|#1| |#2| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -3603 (|#1| (-975 |#2|))) (-15 -2784 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -2155 ((-975 |#2|) |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 * (|#1| |#1| |#2|)) (-15 -3603 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3603 (|#1| (-420 (-975 |#2|)))) (-15 -2784 ((-3 (-420 (-975 |#2|)) "failed") |#1|)) (-15 -2155 ((-420 (-975 |#2|)) |#1|)) (-15 -3024 ((-420 (-1197 |#1|)) |#1| (-625 |#1|))) (-15 -3603 (|#1| (-420 (-975 (-420 |#2|))))) (-15 -3603 (|#1| (-975 (-420 |#2|)))) (-15 -3603 (|#1| (-420 |#2|))) (-15 -3069 (|#1| |#1|)) (-15 -2176 (|#1| (-431 |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-787) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-787) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| |#1|)))) (-15 -2998 ((-3 (-2 (|:| |val| |#1|) (|:| -1527 (-577))) "failed") |#1|)) (-15 -1966 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -1527 (-577))) "failed") |#1| (-1201))) (-15 -1966 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -1527 (-577))) "failed") |#1| (-115))) (-15 -3116 (|#1| |#1|)) (-15 -3603 (|#1| (-1150 |#2| (-625 |#1|)))) (-15 -1400 ((-3 (-2 (|:| -2940 (-577)) (|:| |var| (-625 |#1|))) "failed") |#1|)) (-15 -3910 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -1966 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -1527 (-577))) "failed") |#1|)) (-15 -3484 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 |#1|) (-1201))) (-15 -3273 (|#1| |#1| (-115) |#1| (-1201))) (-15 -3273 (|#1| |#1|)) (-15 -3273 (|#1| |#1| (-660 (-1201)))) (-15 -3273 (|#1| |#1| (-1201))) (-15 -2792 (|#1| (-1201) (-660 |#1|))) (-15 -2792 (|#1| (-1201) |#1| |#1| |#1| |#1|)) (-15 -2792 (|#1| (-1201) |#1| |#1| |#1|)) (-15 -2792 (|#1| (-1201) |#1| |#1|)) (-15 -2792 (|#1| (-1201) |#1|)) (-15 -3206 ((-660 (-1201)) |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -3603 (|#1| (-1201))) (-15 -2784 ((-3 (-1201) "failed") |#1|)) (-15 -2155 ((-1201) |#1|)) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -2074 ((-660 (-625 |#1|)) |#1|)) (-15 -3215 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2692 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -2692 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2692 (|#1| |#1| (-305 |#1|))) (-15 -2837 (|#1| (-115) (-660 |#1|))) (-15 -2837 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3273 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -3603 (|#1| (-625 |#1|))) (-15 -2784 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2155 ((-625 |#1|) |#1|)) (-15 -3603 ((-880) |#1|))) (-443 |#2|) (-1125)) (T -442)) -((-2085 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1125)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) (-1920 (*1 *2) (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4))))) -(-10 -8 (-15 * (|#1| (-944) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3603 (|#1| (-577))) (-15 -1920 ((-787))) (-15 * (|#1| |#2| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -3603 (|#1| (-975 |#2|))) (-15 -2784 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -2155 ((-975 |#2|) |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 * (|#1| |#1| |#2|)) (-15 -3603 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3603 (|#1| (-420 (-975 |#2|)))) (-15 -2784 ((-3 (-420 (-975 |#2|)) "failed") |#1|)) (-15 -2155 ((-420 (-975 |#2|)) |#1|)) (-15 -3024 ((-420 (-1197 |#1|)) |#1| (-625 |#1|))) (-15 -3603 (|#1| (-420 (-975 (-420 |#2|))))) (-15 -3603 (|#1| (-975 (-420 |#2|)))) (-15 -3603 (|#1| (-420 |#2|))) (-15 -3069 (|#1| |#1|)) (-15 -2176 (|#1| (-431 |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-787) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-787) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| |#1|)))) (-15 -2998 ((-3 (-2 (|:| |val| |#1|) (|:| -1527 (-577))) "failed") |#1|)) (-15 -1966 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -1527 (-577))) "failed") |#1| (-1201))) (-15 -1966 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -1527 (-577))) "failed") |#1| (-115))) (-15 -3116 (|#1| |#1|)) (-15 -3603 (|#1| (-1150 |#2| (-625 |#1|)))) (-15 -1400 ((-3 (-2 (|:| -2940 (-577)) (|:| |var| (-625 |#1|))) "failed") |#1|)) (-15 -3910 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -1966 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -1527 (-577))) "failed") |#1|)) (-15 -3484 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 |#1|) (-1201))) (-15 -3273 (|#1| |#1| (-115) |#1| (-1201))) (-15 -3273 (|#1| |#1|)) (-15 -3273 (|#1| |#1| (-660 (-1201)))) (-15 -3273 (|#1| |#1| (-1201))) (-15 -2792 (|#1| (-1201) (-660 |#1|))) (-15 -2792 (|#1| (-1201) |#1| |#1| |#1| |#1|)) (-15 -2792 (|#1| (-1201) |#1| |#1| |#1|)) (-15 -2792 (|#1| (-1201) |#1| |#1|)) (-15 -2792 (|#1| (-1201) |#1|)) (-15 -3206 ((-660 (-1201)) |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -3327 ((-112) |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -3603 (|#1| (-1201))) (-15 -2784 ((-3 (-1201) "failed") |#1|)) (-15 -2155 ((-1201) |#1|)) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3273 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3273 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -2074 ((-660 (-625 |#1|)) |#1|)) (-15 -3215 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2692 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -2692 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2692 (|#1| |#1| (-305 |#1|))) (-15 -2837 (|#1| (-115) (-660 |#1|))) (-15 -2837 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1| |#1|)) (-15 -2837 (|#1| (-115) |#1|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3273 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3273 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -3603 (|#1| (-625 |#1|))) (-15 -2784 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2155 ((-625 |#1|) |#1|)) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 117 (|has| |#1| (-25)) ELT)) (-3206 (((-660 (-1201)) $) 208 T ELT)) (-3024 (((-420 (-1197 $)) $ (-625 $)) 176 (|has| |#1| (-569)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 148 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 149 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 151 (|has| |#1| (-569)) ELT)) (-2002 (((-660 (-625 $)) $) 39 T ELT)) (-1771 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)) ELT)) (-2692 (($ $ (-305 $)) 51 T ELT) (($ $ (-660 (-305 $))) 50 T ELT) (($ $ (-660 (-625 $)) (-660 $)) 49 T ELT)) (-2001 (($ $) 168 (|has| |#1| (-569)) ELT)) (-3836 (((-431 $) $) 169 (|has| |#1| (-569)) ELT)) (-2435 (((-112) $ $) 159 (|has| |#1| (-569)) ELT)) (-3790 (($) 105 (-2811 (|has| |#1| (-1137)) (|has| |#1| (-25))) CONST)) (-2784 (((-3 (-625 $) "failed") $) 64 T ELT) (((-3 (-1201) "failed") $) 221 T ELT) (((-3 (-577) "failed") $) 215 (|has| |#1| (-1063 (-577))) ELT) (((-3 |#1| "failed") $) 212 T ELT) (((-3 (-420 (-975 |#1|)) "failed") $) 174 (|has| |#1| (-569)) ELT) (((-3 (-975 |#1|) "failed") $) 124 (|has| |#1| (-1074)) ELT) (((-3 (-420 (-577)) "failed") $) 99 (-2811 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-2155 (((-625 $) $) 65 T ELT) (((-1201) $) 222 T ELT) (((-577) $) 214 (|has| |#1| (-1063 (-577))) ELT) ((|#1| $) 213 T ELT) (((-420 (-975 |#1|)) $) 175 (|has| |#1| (-569)) ELT) (((-975 |#1|) $) 125 (|has| |#1| (-1074)) ELT) (((-420 (-577)) $) 100 (-2811 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3436 (($ $ $) 163 (|has| |#1| (-569)) ELT)) (-2850 (((-705 (-577)) (-705 $)) 141 (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 140 (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 139 (|has| |#1| (-1074)) ELT) (((-705 |#1|) (-705 $)) 138 (|has| |#1| (-1074)) ELT)) (-1625 (((-3 $ "failed") $) 107 (|has| |#1| (-1137)) ELT)) (-3447 (($ $ $) 162 (|has| |#1| (-569)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 157 (|has| |#1| (-569)) ELT)) (-2182 (((-112) $) 170 (|has| |#1| (-569)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 217 (|has| |#1| (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 216 (|has| |#1| (-905 (-391))) ELT)) (-4301 (($ $) 46 T ELT) (($ (-660 $)) 45 T ELT)) (-1653 (((-660 (-115)) $) 38 T ELT)) (-2085 (((-115) (-115)) 37 T ELT)) (-3306 (((-112) $) 106 (|has| |#1| (-1137)) ELT)) (-2238 (((-112) $) 17 (|has| $ (-1063 (-577))) ELT)) (-3116 (($ $) 191 (|has| |#1| (-1074)) ELT)) (-2781 (((-1150 |#1| (-625 $)) $) 192 (|has| |#1| (-1074)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 166 (|has| |#1| (-569)) ELT)) (-3348 (((-1197 $) (-625 $)) 20 (|has| $ (-1074)) ELT)) (-2124 (($ (-1 $ $) (-625 $)) 31 T ELT)) (-3215 (((-3 (-625 $) "failed") $) 41 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 143 (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 142 (-2700 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 137 (|has| |#1| (-1074)) ELT) (((-705 |#1|) (-1292 $)) 136 (|has| |#1| (-1074)) ELT)) (-3508 (($ (-660 $)) 155 (|has| |#1| (-569)) ELT) (($ $ $) 154 (|has| |#1| (-569)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2074 (((-660 (-625 $)) $) 40 T ELT)) (-2869 (($ (-115) $) 33 T ELT) (($ (-115) (-660 $)) 32 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 197 (|has| |#1| (-1137)) ELT)) (-2998 (((-3 (-2 (|:| |val| $) (|:| -1527 (-577))) "failed") $) 188 (|has| |#1| (-1074)) ELT)) (-3910 (((-3 (-660 $) "failed") $) 195 (|has| |#1| (-25)) ELT)) (-1400 (((-3 (-2 (|:| -2940 (-577)) (|:| |var| (-625 $))) "failed") $) 194 (|has| |#1| (-25)) ELT)) (-1966 (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $) 196 (|has| |#1| (-1137)) ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-115)) 190 (|has| |#1| (-1074)) ELT) (((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-1201)) 189 (|has| |#1| (-1074)) ELT)) (-3152 (((-112) $ (-115)) 35 T ELT) (((-112) $ (-1201)) 34 T ELT)) (-3318 (($ $) 109 (-2811 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-4181 (((-787) $) 42 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3327 (((-112) $) 210 T ELT)) (-3340 ((|#1| $) 209 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 156 (|has| |#1| (-569)) ELT)) (-3543 (($ (-660 $)) 153 (|has| |#1| (-569)) ELT) (($ $ $) 152 (|has| |#1| (-569)) ELT)) (-1859 (((-112) $ $) 30 T ELT) (((-112) $ (-1201)) 29 T ELT)) (-3056 (((-431 $) $) 167 (|has| |#1| (-569)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 164 (|has| |#1| (-569)) ELT)) (-3478 (((-3 $ "failed") $ $) 147 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 158 (|has| |#1| (-569)) ELT)) (-3861 (((-112) $) 18 (|has| $ (-1063 (-577))) ELT)) (-3273 (($ $ (-625 $) $) 62 T ELT) (($ $ (-660 (-625 $)) (-660 $)) 61 T ELT) (($ $ (-660 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-660 $) (-660 $)) 57 T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 28 T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 27 T ELT) (($ $ (-1201) (-1 $ (-660 $))) 26 T ELT) (($ $ (-1201) (-1 $ $)) 25 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 24 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-660 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT) (($ $ (-1201)) 202 (|has| |#1| (-627 (-549))) ELT) (($ $ (-660 (-1201))) 201 (|has| |#1| (-627 (-549))) ELT) (($ $) 200 (|has| |#1| (-627 (-549))) ELT) (($ $ (-115) $ (-1201)) 199 (|has| |#1| (-627 (-549))) ELT) (($ $ (-660 (-115)) (-660 $) (-1201)) 198 (|has| |#1| (-627 (-549))) ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) 187 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) 186 (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787) (-1 $ (-660 $))) 185 (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787) (-1 $ $)) 184 (|has| |#1| (-1074)) ELT)) (-4167 (((-787) $) 160 (|has| |#1| (-569)) ELT)) (-2837 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-660 $)) 52 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 161 (|has| |#1| (-569)) ELT)) (-1746 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-3362 (($ $ (-1201)) 134 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201))) 132 (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787)) 131 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 130 (|has| |#1| (-1074)) ELT)) (-3069 (($ $) 181 (|has| |#1| (-569)) ELT)) (-2797 (((-1150 |#1| (-625 $)) $) 182 (|has| |#1| (-569)) ELT)) (-1629 (($ $) 19 (|has| $ (-1074)) ELT)) (-2176 (((-911 (-577)) $) 219 (|has| |#1| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) 218 (|has| |#1| (-627 (-911 (-391)))) ELT) (($ (-431 $)) 183 (|has| |#1| (-569)) ELT) (((-549) $) 101 (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $ $) 112 (|has| |#1| (-486)) ELT)) (-3823 (($ $ $) 113 (|has| |#1| (-486)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-625 $)) 63 T ELT) (($ (-1201)) 220 T ELT) (($ |#1|) 211 T ELT) (($ (-1150 |#1| (-625 $))) 193 (|has| |#1| (-1074)) ELT) (($ (-420 |#1|)) 179 (|has| |#1| (-569)) ELT) (($ (-975 (-420 |#1|))) 178 (|has| |#1| (-569)) ELT) (($ (-420 (-975 (-420 |#1|)))) 177 (|has| |#1| (-569)) ELT) (($ (-420 (-975 |#1|))) 173 (|has| |#1| (-569)) ELT) (($ $) 146 (|has| |#1| (-569)) ELT) (($ (-975 |#1|)) 123 (|has| |#1| (-1074)) ELT) (($ (-420 (-577))) 98 (-2811 (|has| |#1| (-569)) (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ (-577)) 97 (-2811 (|has| |#1| (-1074)) (|has| |#1| (-1063 (-577)))) ELT)) (-3907 (((-3 $ "failed") $) 144 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 126 (|has| |#1| (-1074)) CONST)) (-1866 (($ $) 48 T ELT) (($ (-660 $)) 47 T ELT)) (-3123 (((-112) (-115)) 36 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 150 (|has| |#1| (-569)) ELT)) (-2792 (($ (-1201) $) 207 T ELT) (($ (-1201) $ $) 206 T ELT) (($ (-1201) $ $ $) 205 T ELT) (($ (-1201) $ $ $ $) 204 T ELT) (($ (-1201) (-660 $)) 203 T ELT)) (-2754 (($) 116 (|has| |#1| (-25)) CONST)) (-2767 (($) 104 (|has| |#1| (-1137)) CONST)) (-2136 (($ $ (-1201)) 133 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201))) 129 (|has| |#1| (-1074)) ELT) (($ $ (-1201) (-787)) 128 (|has| |#1| (-1074)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 127 (|has| |#1| (-1074)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ (-1150 |#1| (-625 $)) (-1150 |#1| (-625 $))) 180 (|has| |#1| (-569)) ELT) (($ $ $) 110 (-2811 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-3042 (($ $ $) 122 (|has| |#1| (-21)) ELT) (($ $) 121 (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) 114 (|has| |#1| (-25)) ELT)) (** (($ $ (-577)) 111 (-2811 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT) (($ $ (-787)) 108 (|has| |#1| (-1137)) ELT) (($ $ (-944)) 103 (|has| |#1| (-1137)) ELT)) (* (($ (-420 (-577)) $) 172 (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) 171 (|has| |#1| (-569)) ELT) (($ $ |#1|) 145 (|has| |#1| (-174)) ELT) (($ |#1| $) 135 (|has| |#1| (-1074)) ELT) (($ (-577) $) 120 (|has| |#1| (-21)) ELT) (($ (-787) $) 118 (|has| |#1| (-25)) ELT) (($ (-944) $) 115 (|has| |#1| (-25)) ELT) (($ $ $) 102 (|has| |#1| (-1137)) ELT))) -(((-443 |#1|) (-141) (-1125)) (T -443)) -((-3327 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-1201))))) (-2792 (*1 *1 *2 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-2792 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-2792 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-2792 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-660 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1125)))) (-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-4 *3 (-627 (-549))))) (-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1201))) (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-4 *3 (-627 (-549))))) (-3273 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-627 (-549))))) (-3273 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1201)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) (-4 *4 (-627 (-549))))) (-3273 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 *1)) (-5 *4 (-1201)) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-627 (-549))))) (-3484 (*1 *2 *1) (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-443 *3)))) (-1966 (*1 *2 *1) (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -1527 (-577)))) (-4 *1 (-443 *3)))) (-3910 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-443 *3)))) (-1400 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) (-5 *2 (-2 (|:| -2940 (-577)) (|:| |var| (-625 *1)))) (-4 *1 (-443 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-1074)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-2781 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) (-4 *1 (-443 *3)))) (-3116 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-1074)))) (-1966 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1074)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -1527 (-577)))) (-4 *1 (-443 *4)))) (-1966 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-1074)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -1527 (-577)))) (-4 *1 (-443 *4)))) (-2998 (*1 *2 *1) (|partial| -12 (-4 *3 (-1074)) (-4 *3 (-1125)) (-5 *2 (-2 (|:| |val| *1) (|:| -1527 (-577)))) (-4 *1 (-443 *3)))) (-3273 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) (-5 *4 (-660 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-3273 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) (-5 *4 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-3273 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 (-660 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-3273 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 *1)) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) (-4 *3 (-1125)))) (-2797 (*1 *2 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) (-4 *1 (-443 *3)))) (-3069 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-569)))) (-3051 (*1 *1 *2 *2) (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-975 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-3024 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) (-4 *4 (-569)) (-5 *2 (-420 (-1197 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-4 *3 (-1137))))) -(-13 (-313) (-1063 (-1201)) (-903 |t#1|) (-413 |t#1|) (-424 |t#1|) (-10 -8 (-15 -3327 ((-112) $)) (-15 -3340 (|t#1| $)) (-15 -3206 ((-660 (-1201)) $)) (-15 -2792 ($ (-1201) $)) (-15 -2792 ($ (-1201) $ $)) (-15 -2792 ($ (-1201) $ $ $)) (-15 -2792 ($ (-1201) $ $ $ $)) (-15 -2792 ($ (-1201) (-660 $))) (IF (|has| |t#1| (-627 (-549))) (PROGN (-6 (-627 (-549))) (-15 -3273 ($ $ (-1201))) (-15 -3273 ($ $ (-660 (-1201)))) (-15 -3273 ($ $)) (-15 -3273 ($ $ (-115) $ (-1201))) (-15 -3273 ($ $ (-660 (-115)) (-660 $) (-1201)))) |%noBranch|) (IF (|has| |t#1| (-1137)) (PROGN (-6 (-742)) (-15 ** ($ $ (-787))) (-15 -3484 ((-3 (-660 $) "failed") $)) (-15 -1966 ((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-486)) (-6 (-486)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3910 ((-3 (-660 $) "failed") $)) (-15 -1400 ((-3 (-2 (|:| -2940 (-577)) (|:| |var| (-625 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-1063 (-975 |t#1|))) (-6 (-921 (-1201))) (-6 (-389 |t#1|)) (-15 -3603 ($ (-1150 |t#1| (-625 $)))) (-15 -2781 ((-1150 |t#1| (-625 $)) $)) (-15 -3116 ($ $)) (-15 -1966 ((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-115))) (-15 -1966 ((-3 (-2 (|:| |var| (-625 $)) (|:| -1527 (-577))) "failed") $ (-1201))) (-15 -2998 ((-3 (-2 (|:| |val| $) (|:| -1527 (-577))) "failed") $)) (-15 -3273 ($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $)))) (-15 -3273 ($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $))))) (-15 -3273 ($ $ (-1201) (-787) (-1 $ (-660 $)))) (-15 -3273 ($ $ (-1201) (-787) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-375)) (-6 (-1063 (-420 (-975 |t#1|)))) (-15 -2176 ($ (-431 $))) (-15 -2797 ((-1150 |t#1| (-625 $)) $)) (-15 -3069 ($ $)) (-15 -3051 ($ (-1150 |t#1| (-625 $)) (-1150 |t#1| (-625 $)))) (-15 -3603 ($ (-420 |t#1|))) (-15 -3603 ($ (-975 (-420 |t#1|)))) (-15 -3603 ($ (-420 (-975 (-420 |t#1|))))) (-15 -3024 ((-420 (-1197 $)) $ (-625 $))) (IF (|has| |t#1| (-1063 (-577))) (-6 (-1063 (-420 (-577)))) |%noBranch|)) |%noBranch|))) -(((-21) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-420 (-577))) |has| |#1| (-569)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-569)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-569)) ((-132) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-569))) ((-629 #1=(-420 (-975 |#1|))) |has| |#1| (-569)) ((-629 (-577)) -2811 (|has| |#1| (-1074)) (|has| |#1| (-1063 (-577))) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-629 #2=(-625 $)) . T) ((-629 #3=(-975 |#1|)) |has| |#1| (-1074)) ((-629 #4=(-1201)) . T) ((-629 |#1|) . T) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) |has| |#1| (-569)) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-249) |has| |#1| (-569)) ((-301) |has| |#1| (-569)) ((-318) |has| |#1| (-569)) ((-320 $) . T) ((-313) . T) ((-375) |has| |#1| (-569)) ((-389 |#1|) |has| |#1| (-1074)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) |has| |#1| (-569)) ((-486) |has| |#1| (-486)) ((-527 (-625 $) $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-569)) ((-662 (-577)) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-662 |#1|) -2811 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-662 $) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-664 #0#) |has| |#1| (-569)) ((-664 #5=(-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-664 |#1|) -2811 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-664 $) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-656 #0#) |has| |#1| (-569)) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-654 #5#) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-654 |#1|) |has| |#1| (-1074)) ((-733 #0#) |has| |#1| (-569)) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) -2811 (|has| |#1| (-1137)) (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-915 $ #6=(-1201)) |has| |#1| (-1074)) ((-921 #6#) |has| |#1| (-1074)) ((-923 #6#) |has| |#1| (-1074)) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-943) |has| |#1| (-569)) ((-1063 (-420 (-577))) -2811 (|has| |#1| (-1063 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))))) ((-1063 #1#) |has| |#1| (-569)) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #2#) . T) ((-1063 #3#) |has| |#1| (-1074)) ((-1063 #4#) . T) ((-1063 |#1|) . T) ((-1076 #0#) |has| |#1| (-569)) ((-1076 |#1|) |has| |#1| (-174)) ((-1076 $) |has| |#1| (-569)) ((-1081 #0#) |has| |#1| (-569)) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) |has| |#1| (-569)) ((-1074) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1083) -2811 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1137) -2811 (|has| |#1| (-1137)) (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-569))) -((-3512 ((|#2| |#2| |#2|) 31 T ELT)) (-2085 (((-115) (-115)) 43 T ELT)) (-2991 ((|#2| |#2|) 63 T ELT)) (-4317 ((|#2| |#2|) 66 T ELT)) (-1666 ((|#2| |#2|) 30 T ELT)) (-2920 ((|#2| |#2| |#2|) 33 T ELT)) (-3241 ((|#2| |#2| |#2|) 35 T ELT)) (-4291 ((|#2| |#2| |#2|) 32 T ELT)) (-1586 ((|#2| |#2| |#2|) 34 T ELT)) (-3123 (((-112) (-115)) 41 T ELT)) (-3691 ((|#2| |#2|) 37 T ELT)) (-1888 ((|#2| |#2|) 36 T ELT)) (-4318 ((|#2| |#2|) 25 T ELT)) (-2345 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3072 ((|#2| |#2| |#2|) 29 T ELT))) -(((-444 |#1| |#2|) (-10 -7 (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -4318 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2345 (|#2| |#2| |#2|)) (-15 -3072 (|#2| |#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -3512 (|#2| |#2| |#2|)) (-15 -4291 (|#2| |#2| |#2|)) (-15 -2920 (|#2| |#2| |#2|)) (-15 -1586 (|#2| |#2| |#2|)) (-15 -3241 (|#2| |#2| |#2|)) (-15 -1888 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -2991 (|#2| |#2|))) (-569) (-443 |#1|)) (T -444)) -((-2991 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4317 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1888 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3241 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1586 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2920 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4291 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3512 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1666 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3072 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2345 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) (-4 *4 (-443 *3)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4))))) -(-10 -7 (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -4318 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2345 (|#2| |#2| |#2|)) (-15 -3072 (|#2| |#2| |#2|)) (-15 -1666 (|#2| |#2|)) (-15 -3512 (|#2| |#2| |#2|)) (-15 -4291 (|#2| |#2| |#2|)) (-15 -2920 (|#2| |#2| |#2|)) (-15 -1586 (|#2| |#2| |#2|)) (-15 -3241 (|#2| |#2| |#2|)) (-15 -1888 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -2991 (|#2| |#2|))) -((-1742 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1197 |#2|)) (|:| |pol2| (-1197 |#2|)) (|:| |prim| (-1197 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1197 |#2|))) (|:| |prim| (-1197 |#2|))) (-660 |#2|)) 65 T ELT))) -(((-445 |#1| |#2|) (-10 -7 (-15 -1742 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1197 |#2|))) (|:| |prim| (-1197 |#2|))) (-660 |#2|))) (IF (|has| |#2| (-27)) (-15 -1742 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1197 |#2|)) (|:| |pol2| (-1197 |#2|)) (|:| |prim| (-1197 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-569) (-148)) (-443 |#1|)) (T -445)) -((-1742 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1197 *3)) (|:| |pol2| (-1197 *3)) (|:| |prim| (-1197 *3)))) (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-660 (-1197 *5))) (|:| |prim| (-1197 *5)))) (-5 *1 (-445 *4 *5))))) -(-10 -7 (-15 -1742 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1197 |#2|))) (|:| |prim| (-1197 |#2|))) (-660 |#2|))) (IF (|has| |#2| (-27)) (-15 -1742 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1197 |#2|)) (|:| |pol2| (-1197 |#2|)) (|:| |prim| (-1197 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2110 (((-1297)) 18 T ELT)) (-2342 (((-1197 (-420 (-577))) |#2| (-625 |#2|)) 40 T ELT) (((-420 (-577)) |#2|) 24 T ELT))) -(((-446 |#1| |#2|) (-10 -7 (-15 -2342 ((-420 (-577)) |#2|)) (-15 -2342 ((-1197 (-420 (-577))) |#2| (-625 |#2|))) (-15 -2110 ((-1297)))) (-13 (-569) (-1063 (-577))) (-443 |#1|)) (T -446)) -((-2110 (*1 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1297)) (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-443 *5)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-446 *5 *3)))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4))))) -(-10 -7 (-15 -2342 ((-420 (-577)) |#2|)) (-15 -2342 ((-1197 (-420 (-577))) |#2| (-625 |#2|))) (-15 -2110 ((-1297)))) -((-3236 (((-112) $) 33 T ELT)) (-3859 (((-112) $) 35 T ELT)) (-3789 (((-112) $) 36 T ELT)) (-3118 (((-112) $) 39 T ELT)) (-1593 (((-112) $) 34 T ELT)) (-3004 (((-112) $) 38 T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-1183)) 32 T ELT) (($ (-1201)) 30 T ELT) (((-1201) $) 24 T ELT) (((-1129) $) 23 T ELT)) (-2338 (((-112) $) 37 T ELT)) (-2949 (((-112) $ $) 17 T ELT))) -(((-447) (-13 (-626 (-880)) (-10 -8 (-15 -3603 ($ (-1183))) (-15 -3603 ($ (-1201))) (-15 -3603 ((-1201) $)) (-15 -3603 ((-1129) $)) (-15 -3236 ((-112) $)) (-15 -1593 ((-112) $)) (-15 -3789 ((-112) $)) (-15 -3004 ((-112) $)) (-15 -3118 ((-112) $)) (-15 -2338 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -2949 ((-112) $ $))))) (T -447)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-447)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3603 ($ (-1183))) (-15 -3603 ($ (-1201))) (-15 -3603 ((-1201) $)) (-15 -3603 ((-1129) $)) (-15 -3236 ((-112) $)) (-15 -1593 ((-112) $)) (-15 -3789 ((-112) $)) (-15 -3004 ((-112) $)) (-15 -3118 ((-112) $)) (-15 -2338 ((-112) $)) (-15 -3859 ((-112) $)) (-15 -2949 ((-112) $ $)))) -((-1864 (((-3 (-431 (-1197 (-420 (-577)))) "failed") |#3|) 72 T ELT)) (-3360 (((-431 |#3|) |#3|) 34 T ELT)) (-3328 (((-3 (-431 (-1197 (-48))) "failed") |#3|) 46 (|has| |#2| (-1063 (-48))) ELT)) (-1579 (((-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4197 (-112))) |#3|) 37 T ELT))) -(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -3360 ((-431 |#3|) |#3|)) (-15 -1864 ((-3 (-431 (-1197 (-420 (-577)))) "failed") |#3|)) (-15 -1579 ((-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4197 (-112))) |#3|)) (IF (|has| |#2| (-1063 (-48))) (-15 -3328 ((-3 (-431 (-1197 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-569) (-1063 (-577))) (-443 |#1|) (-1268 |#2|)) (T -448)) -((-3328 (*1 *2 *3) (|partial| -12 (-4 *5 (-1063 (-48))) (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1197 (-48)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-1579 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4197 (-112)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-1864 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1197 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-3360 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5))))) -(-10 -7 (-15 -3360 ((-431 |#3|) |#3|)) (-15 -1864 ((-3 (-431 (-1197 (-420 (-577)))) "failed") |#3|)) (-15 -1579 ((-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4197 (-112))) |#3|)) (IF (|has| |#2| (-1063 (-48))) (-15 -3328 ((-3 (-431 (-1197 (-48))) "failed") |#3|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3777 (((-1183) $ (-1183)) NIL T ELT)) (-1935 (($ $ (-1183)) NIL T ELT)) (-1776 (((-1183) $) NIL T ELT)) (-1794 (((-401) (-401) (-401)) 17 T ELT) (((-401) (-401)) 15 T ELT)) (-3263 (($ (-401)) NIL T ELT) (($ (-401) (-1183)) NIL T ELT)) (-2668 (((-401) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1576 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2152 (((-1297) (-1183)) 9 T ELT)) (-2362 (((-1297) (-1183)) 10 T ELT)) (-3944 (((-1297)) 11 T ELT)) (-3603 (((-880) $) NIL T ELT)) (-3349 (($ $) 39 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-449) (-13 (-376 (-401) (-1183)) (-10 -7 (-15 -1794 ((-401) (-401) (-401))) (-15 -1794 ((-401) (-401))) (-15 -2152 ((-1297) (-1183))) (-15 -2362 ((-1297) (-1183))) (-15 -3944 ((-1297)))))) (T -449)) -((-1794 (*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449)))) (-3944 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-449))))) -(-13 (-376 (-401) (-1183)) (-10 -7 (-15 -1794 ((-401) (-401) (-401))) (-15 -1794 ((-401) (-401))) (-15 -2152 ((-1297) (-1183))) (-15 -2362 ((-1297) (-1183))) (-15 -3944 ((-1297))))) -((-3489 (((-112) $ $) NIL T ELT)) (-4335 (((-3 (|:| |fst| (-447)) (|:| -4154 "void")) $) 11 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4042 (($) 35 T ELT)) (-1778 (($) 41 T ELT)) (-1412 (($) 37 T ELT)) (-3649 (($) 39 T ELT)) (-2300 (($) 36 T ELT)) (-3358 (($) 38 T ELT)) (-1944 (($) 40 T ELT)) (-2493 (((-112) $) 8 T ELT)) (-2540 (((-660 (-975 (-577))) $) 19 T ELT)) (-3614 (($ (-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-660 (-1201)) (-112)) 29 T ELT) (($ (-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-660 (-975 (-577))) (-112)) 30 T ELT)) (-3603 (((-880) $) 24 T ELT) (($ (-447)) 32 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-450) (-13 (-1125) (-10 -8 (-15 -3603 ($ (-447))) (-15 -4335 ((-3 (|:| |fst| (-447)) (|:| -4154 "void")) $)) (-15 -2540 ((-660 (-975 (-577))) $)) (-15 -2493 ((-112) $)) (-15 -3614 ($ (-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-660 (-1201)) (-112))) (-15 -3614 ($ (-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-660 (-975 (-577))) (-112))) (-15 -4042 ($)) (-15 -2300 ($)) (-15 -1412 ($)) (-15 -1778 ($)) (-15 -3358 ($)) (-15 -3649 ($)) (-15 -1944 ($))))) (T -450)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-450)))) (-4335 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *1 (-450)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-660 (-975 (-577)))) (-5 *1 (-450)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450)))) (-3614 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *3 (-660 (-1201))) (-5 *4 (-112)) (-5 *1 (-450)))) (-3614 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) (-4042 (*1 *1) (-5 *1 (-450))) (-2300 (*1 *1) (-5 *1 (-450))) (-1412 (*1 *1) (-5 *1 (-450))) (-1778 (*1 *1) (-5 *1 (-450))) (-3358 (*1 *1) (-5 *1 (-450))) (-3649 (*1 *1) (-5 *1 (-450))) (-1944 (*1 *1) (-5 *1 (-450)))) -(-13 (-1125) (-10 -8 (-15 -3603 ($ (-447))) (-15 -4335 ((-3 (|:| |fst| (-447)) (|:| -4154 "void")) $)) (-15 -2540 ((-660 (-975 (-577))) $)) (-15 -2493 ((-112) $)) (-15 -3614 ($ (-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-660 (-1201)) (-112))) (-15 -3614 ($ (-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-660 (-975 (-577))) (-112))) (-15 -4042 ($)) (-15 -2300 ($)) (-15 -1412 ($)) (-15 -1778 ($)) (-15 -3358 ($)) (-15 -3649 ($)) (-15 -1944 ($)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2668 (((-1201) $) 8 T ELT)) (-2045 (((-1183) $) 17 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 14 T ELT))) -(((-451 |#1|) (-13 (-1125) (-10 -8 (-15 -2668 ((-1201) $)))) (-1201)) (T -451)) -((-2668 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-451 *3)) (-14 *3 *2)))) -(-13 (-1125) (-10 -8 (-15 -2668 ((-1201) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2698 (((-1143) $) 7 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 9 T ELT))) -(((-452) (-13 (-1125) (-10 -8 (-15 -2698 ((-1143) $))))) (T -452)) -((-2698 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-452))))) -(-13 (-1125) (-10 -8 (-15 -2698 ((-1143) $)))) -((-3794 (((-1297) $) 7 T ELT)) (-3603 (((-880) $) 8 T ELT) (($ (-1292 (-715))) 14 T ELT) (($ (-660 (-341))) 13 T ELT) (($ (-341)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 11 T ELT))) +((-2104 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-430 *3)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-2410 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 (-710 *3))))) (-2133 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-665 (-980 *3))))) (-2385 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-4463 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-3749 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-2501 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-3764 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-3820 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-2276 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1202 (-980 *3))))) (-3769 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1202 (-980 *3))))) (-4382 (*1 *1 *2 *1) (-12 (-5 *2 (-710 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174))))) +(-13 (-379 |t#1|) (-297 (-577) |t#1|) (-10 -8 (-15 -2104 ((-1297 $))) (-15 -3762 ((-1297 |t#1|) $)) (-15 -3762 ((-710 |t#1|) (-1297 $))) (-15 -2410 ((-1297 (-710 |t#1|)))) (-15 -2133 ((-665 (-980 |t#1|)))) (-15 -2385 ($ (-1297 |t#1|))) (-15 -4463 ((-1297 |t#1|) $)) (-15 -4463 ($ (-1297 |t#1|))) (-15 -3749 (|t#1|)) (-15 -2501 (|t#1|)) (-15 -3764 ((-710 |t#1|))) (-15 -3820 ((-710 |t#1|))) (-15 -2962 ((-710 |t#1|) $)) (-15 -3214 ((-710 |t#1|) $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -2276 ((-1202 (-980 |t#1|)))) (-15 -3769 ((-1202 (-980 |t#1|))))) |%noBranch|) (-15 -4382 ($ (-710 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-297 (-577) |#1|) . T) ((-379 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-741) . T) ((-765 |#1|) . T) ((-782) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 60 T ELT)) (-2513 (($ $) 78 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 192 T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) 48 T ELT)) (-3273 ((|#1| $) 16 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#1| (-1251)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-1251)) ELT)) (-1860 (($ |#1| (-577)) 42 T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 149 T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 74 T ELT)) (-3167 (((-3 $ "failed") $) 165 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 85 (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) 81 (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) 92 (|has| |#1| (-558)) ELT)) (-2401 (($ |#1| (-577)) 44 T ELT)) (-3567 (((-112) $) 212 (|has| |#1| (-1251)) ELT)) (-3357 (((-112) $) 62 T ELT)) (-1556 (((-792) $) 51 T ELT)) (-2728 (((-3 "nil" "sqfr" "irred" "prime") $ (-577)) 176 T ELT)) (-1770 ((|#1| $ (-577)) 175 T ELT)) (-2887 (((-577) $ (-577)) 174 T ELT)) (-3464 (($ |#1| (-577)) 41 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 184 T ELT)) (-1699 (($ |#1| (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577))))) 79 T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3360 (($ |#1| (-577)) 43 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) 193 (|has| |#1| (-465)) ELT)) (-4010 (($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime")) 40 T ELT)) (-2127 (((-665 (-2 (|:| -3759 |#1|) (|:| -2328 (-577)))) $) 73 T ELT)) (-3413 (((-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $) 12 T ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-1251)) ELT)) (-3574 (((-3 $ "failed") $ $) 177 T ELT)) (-2328 (((-577) $) 168 T ELT)) (-3138 ((|#1| $) 75 T ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 101 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 107 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) $) NIL (|has| |#1| (-527 (-1206) $)) ELT) (($ $ (-665 (-1206)) (-665 $)) 108 (|has| |#1| (-527 (-1206) $)) ELT) (($ $ (-665 (-305 $))) 104 (|has| |#1| (-320 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-320 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-320 $)) ELT) (($ $ (-665 $) (-665 $)) NIL (|has| |#1| (-320 $)) ELT)) (-2916 (($ $ |#1|) 93 (|has| |#1| (-297 |#1| |#1|)) ELT) (($ $ $) 94 (|has| |#1| (-297 $ $)) ELT)) (-3641 (($ $ (-1 |#1| |#1|)) 183 T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-4463 (((-549) $) 39 (|has| |#1| (-632 (-549))) ELT) (((-391) $) 114 (|has| |#1| (-1052)) ELT) (((-228) $) 120 (|has| |#1| (-1052)) ELT)) (-3709 (((-885) $) 147 T ELT) (($ (-577)) 65 T ELT) (($ $) NIL T ELT) (($ |#1|) 64 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT)) (-3331 (((-792)) 67 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) 53 T CONST)) (-2853 (($) 52 T CONST)) (-2389 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) 160 T ELT)) (-3128 (($ $) 162 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 181 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 126 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 69 T ELT) (($ $ $) 68 T ELT) (($ |#1| $) 70 T ELT) (($ $ |#1|) NIL T ELT))) +(((-431 |#1|) (-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -3138 (|#1| $)) (-15 -2328 ((-577) $)) (-15 -1699 ($ |#1| (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -3413 ((-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -3464 ($ |#1| (-577))) (-15 -2127 ((-665 (-2 (|:| -3759 |#1|) (|:| -2328 (-577)))) $)) (-15 -3360 ($ |#1| (-577))) (-15 -2887 ((-577) $ (-577))) (-15 -1770 (|#1| $ (-577))) (-15 -2728 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -1556 ((-792) $)) (-15 -2401 ($ |#1| (-577))) (-15 -1860 ($ |#1| (-577))) (-15 -4010 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3273 (|#1| $)) (-15 -2513 ($ $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-1251)) (-6 (-1251)) |%noBranch|) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1206) $)) (-6 (-527 (-1206) $)) |%noBranch|))) (-569)) (T -431)) +((-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) (-3138 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-577))))) (-4 *2 (-569)) (-5 *1 (-431 *2)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -3759 *3) (|:| -2328 (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3360 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2887 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2728 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *4)) (-4 *4 (-569)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-2401 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1860 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-4010 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3273 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2513 (*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-1902 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569))))) +(-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -3138 (|#1| $)) (-15 -2328 ((-577) $)) (-15 -1699 ($ |#1| (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -3413 ((-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -3464 ($ |#1| (-577))) (-15 -2127 ((-665 (-2 (|:| -3759 |#1|) (|:| -2328 (-577)))) $)) (-15 -3360 ($ |#1| (-577))) (-15 -2887 ((-577) $ (-577))) (-15 -1770 (|#1| $ (-577))) (-15 -2728 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -1556 ((-792) $)) (-15 -2401 ($ |#1| (-577))) (-15 -1860 ($ |#1| (-577))) (-15 -4010 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3273 (|#1| $)) (-15 -2513 ($ $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-1251)) (-6 (-1251)) |%noBranch|) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1206) $)) (-6 (-527 (-1206) $)) |%noBranch|))) +((-2109 (((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|)) 28 T ELT)) (-4298 (((-431 |#1|) (-431 |#1|) (-431 |#1|)) 17 T ELT))) +(((-432 |#1|) (-10 -7 (-15 -2109 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -4298 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) (-569)) (T -432)) +((-4298 (*1 *2 *2 *2) (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) (-5 *1 (-432 *4))))) +(-10 -7 (-15 -2109 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -4298 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) +((-2606 ((|#2| |#2|) 183 T ELT)) (-3468 (((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112)) 60 T ELT))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3468 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112))) (-15 -2606 (|#2| |#2|))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|)) (-1206) |#2|) (T -433)) +((-2606 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1232) (-443 *3))) (-14 *4 (-1206)) (-14 *5 *2))) (-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-14 *6 (-1206)) (-14 *7 *3)))) +(-10 -7 (-15 -3468 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112))) (-15 -2606 (|#2| |#2|))) +((-4417 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|))) (-1079) (-443 |#1|) (-1079) (-443 |#3|)) (T -434)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5))))) +(-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|))) +((-2606 ((|#2| |#2|) 106 T ELT)) (-3719 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188)) 52 T ELT)) (-3412 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188)) 170 T ELT))) +(((-435 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3719 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -3412 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -2606 (|#2| |#2|))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|) (-10 -8 (-15 -3709 ($ |#3|)))) (-869) (-13 (-1275 |#2| |#3|) (-375) (-1232) (-10 -8 (-15 -3641 ($ $)) (-15 -1869 ($ $)))) (-1013 |#4|) (-1206)) (T -435)) +((-2606 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *2 (-13 (-27) (-1232) (-443 *3) (-10 -8 (-15 -3709 ($ *4))))) (-4 *4 (-869)) (-4 *5 (-13 (-1275 *2 *4) (-375) (-1232) (-10 -8 (-15 -3641 ($ $)) (-15 -1869 ($ $))))) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1013 *5)) (-14 *7 (-1206)))) (-3412 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -3709 ($ *7))))) (-4 *7 (-869)) (-4 *8 (-13 (-1275 *3 *7) (-375) (-1232) (-10 -8 (-15 -3641 ($ $)) (-15 -1869 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) (-14 *10 (-1206)))) (-3719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -3709 ($ *7))))) (-4 *7 (-869)) (-4 *8 (-13 (-1275 *3 *7) (-375) (-1232) (-10 -8 (-15 -3641 ($ $)) (-15 -1869 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) (-14 *10 (-1206))))) +(-10 -7 (-15 -3719 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -3412 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -2606 (|#2| |#2|))) +((-4256 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-2060 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4417 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2060 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1130) (-438 |#1|) (-1130) (-438 |#3|)) (T -436)) +((-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) +(-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2060 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4256 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3170 (($) 51 T ELT)) (-1931 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-2481 (($ $ $) 46 T ELT)) (-2710 (((-112) $ $) 35 T ELT)) (-3005 (((-792)) 55 T ELT)) (-2181 (($ (-665 |#2|)) 23 T ELT) (($) NIL T ELT)) (-1424 (($) 66 T ELT)) (-2049 (((-112) $ $) 15 T ELT)) (-3237 ((|#2| $) 77 T ELT)) (-2930 ((|#2| $) 75 T ELT)) (-2686 (((-949) $) 70 T ELT)) (-1565 (($ $ $) 42 T ELT)) (-3354 (($ (-949)) 60 T ELT)) (-3165 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) NIL T ELT) (((-792) |#2| $) 31 T ELT)) (-3722 (($ (-665 |#2|)) 27 T ELT)) (-3435 (($ $) 53 T ELT)) (-3709 (((-885) $) 40 T ELT)) (-4408 (((-792) $) 24 T ELT)) (-3823 (($ (-665 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3018 (((-112) $ $) 19 T ELT))) +(((-437 |#1| |#2|) (-10 -8 (-15 -3005 ((-792))) (-15 -3354 (|#1| (-949))) (-15 -2686 ((-949) |#1|)) (-15 -1424 (|#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2930 (|#2| |#1|)) (-15 -3170 (|#1|)) (-15 -3435 (|#1| |#1|)) (-15 -4408 ((-792) |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -2049 ((-112) |#1| |#1|)) (-15 -3823 (|#1|)) (-15 -3823 (|#1| (-665 |#2|))) (-15 -2181 (|#1|)) (-15 -2181 (|#1| (-665 |#2|))) (-15 -1565 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#2|)) (-15 -2481 (|#1| |#1| |#1|)) (-15 -2710 ((-112) |#1| |#1|)) (-15 -1931 (|#1| |#1| |#1|)) (-15 -1931 (|#1| |#1| |#2|)) (-15 -1931 (|#1| |#2| |#1|)) (-15 -3722 (|#1| (-665 |#2|))) (-15 -1481 ((-792) |#2| |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|))) (-438 |#2|) (-1130)) (T -437)) +((-3005 (*1 *2) (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) +(-10 -8 (-15 -3005 ((-792))) (-15 -3354 (|#1| (-949))) (-15 -2686 ((-949) |#1|)) (-15 -1424 (|#1|)) (-15 -3237 (|#2| |#1|)) (-15 -2930 (|#2| |#1|)) (-15 -3170 (|#1|)) (-15 -3435 (|#1| |#1|)) (-15 -4408 ((-792) |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -2049 ((-112) |#1| |#1|)) (-15 -3823 (|#1|)) (-15 -3823 (|#1| (-665 |#2|))) (-15 -2181 (|#1|)) (-15 -2181 (|#1| (-665 |#2|))) (-15 -1565 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#2|)) (-15 -2481 (|#1| |#1| |#1|)) (-15 -2710 ((-112) |#1| |#1|)) (-15 -1931 (|#1| |#1| |#1|)) (-15 -1931 (|#1| |#1| |#2|)) (-15 -1931 (|#1| |#2| |#1|)) (-15 -3722 (|#1| (-665 |#2|))) (-15 -1481 ((-792) |#2| |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|))) +((-3586 (((-112) $ $) 20 T ELT)) (-3170 (($) 68 (|has| |#1| (-380)) ELT)) (-1931 (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-2481 (($ $ $) 79 T ELT)) (-2710 (((-112) $ $) 80 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-3005 (((-792)) 62 (|has| |#1| (-380)) ELT)) (-2181 (($ (-665 |#1|)) 75 T ELT) (($) 74 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-3589 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1424 (($) 65 (|has| |#1| (-380)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2049 (((-112) $ $) 71 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-3237 ((|#1| $) 66 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2930 ((|#1| $) 67 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-2686 (((-949) $) 64 (|has| |#1| (-380)) ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 T ELT)) (-1565 (($ $ $) 76 T ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-3354 (($ (-949)) 63 (|has| |#1| (-380)) ELT)) (-1470 (((-1150) $) 22 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-3165 (($ $ |#1|) 78 T ELT) (($ $ $) 77 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 51 T ELT)) (-3435 (($ $) 69 (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) 18 T ELT)) (-4408 (((-792) $) 70 T ELT)) (-3823 (($ (-665 |#1|)) 73 T ELT) (($) 72 T ELT)) (-2643 (((-112) $ $) 21 T ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 T ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-438 |#1|) (-141) (-1130)) (T -438)) +((-4408 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1130)) (-5 *2 (-792)))) (-3435 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-380)))) (-3170 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1130)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870))))) +(-13 (-232 |t#1|) (-1128 |t#1|) (-10 -8 (-6 -4499) (-15 -4408 ((-792) $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-380)) (-15 -3435 ($ $)) (-15 -3170 ($))) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-15 -2930 (|t#1| $)) (-15 -3237 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-232 |#1|) . T) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-380) |has| |#1| (-380)) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1128 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-4253 (((-599 |#2|) |#2| (-1206)) 36 T ELT)) (-2960 (((-599 |#2|) |#2| (-1206)) 21 T ELT)) (-3827 ((|#2| |#2| (-1206)) 26 T ELT))) +(((-439 |#1| |#2|) (-10 -7 (-15 -2960 ((-599 |#2|) |#2| (-1206))) (-15 -4253 ((-599 |#2|) |#2| (-1206))) (-15 -3827 (|#2| |#2| (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-29 |#1|))) (T -439)) +((-3827 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1232) (-29 *4))))) (-4253 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1232) (-29 *5))))) (-2960 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1232) (-29 *5)))))) +(-10 -7 (-15 -2960 ((-599 |#2|) |#2| (-1206))) (-15 -4253 ((-599 |#2|) |#2| (-1206))) (-15 -3827 (|#2| |#2| (-1206)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-4306 (($ |#2| |#1|) 37 T ELT)) (-4430 (($ |#2| |#1|) 35 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-342 |#2|)) 25 T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 10 T CONST)) (-2853 (($) 16 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 36 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-440 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4486)) (IF (|has| |#1| (-6 -4486)) (-6 -4486) |%noBranch|) |%noBranch|) (-15 -3709 ($ |#1|)) (-15 -3709 ($ (-342 |#2|))) (-15 -4306 ($ |#2| |#1|)) (-15 -4430 ($ |#2| |#1|)))) (-13 (-174) (-38 (-420 (-577)))) (-13 (-870) (-21))) (T -440)) +((-3709 (*1 *1 *2) (-12 (-5 *1 (-440 *2 *3)) (-4 *2 (-13 (-174) (-38 (-420 (-577))))) (-4 *3 (-13 (-870) (-21))))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-870) (-21))) (-5 *1 (-440 *3 *4)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))))) (-4306 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-870) (-21))))) (-4430 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-870) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4486)) (IF (|has| |#1| (-6 -4486)) (-6 -4486) |%noBranch|) |%noBranch|) (-15 -3709 ($ |#1|)) (-15 -3709 ($ (-342 |#2|))) (-15 -4306 ($ |#2| |#1|)) (-15 -4430 ($ |#2| |#1|)))) +((-1869 (((-3 |#2| (-665 |#2|)) |#2| (-1206)) 115 T ELT))) +(((-441 |#1| |#2|) (-10 -7 (-15 -1869 ((-3 |#2| (-665 |#2|)) |#2| (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-29 |#1|))) (T -441)) +((-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 *3 (-665 *3))) (-5 *1 (-441 *5 *3)) (-4 *3 (-13 (-1232) (-987) (-29 *5)))))) +(-10 -7 (-15 -1869 ((-3 |#2| (-665 |#2|)) |#2| (-1206)))) +((-3891 (((-665 (-1206)) $) 81 T ELT)) (-3732 (((-420 (-1202 $)) $ (-630 $)) 313 T ELT)) (-4313 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) 277 T ELT)) (-4335 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) 84 T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 273 T ELT) (((-3 (-420 (-980 |#2|)) "failed") $) 363 T ELT) (((-3 (-980 |#2|) "failed") $) 275 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3783 (((-630 $) $) NIL T ELT) (((-1206) $) 28 T ELT) (((-577) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-420 (-980 |#2|)) $) 345 T ELT) (((-980 |#2|) $) 272 T ELT) (((-420 (-577)) $) NIL T ELT)) (-3706 (((-115) (-115)) 47 T ELT)) (-3608 (($ $) 99 T ELT)) (-2998 (((-3 (-630 $) "failed") $) 268 T ELT)) (-3693 (((-665 (-630 $)) $) 269 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 287 T ELT)) (-2646 (((-3 (-2 (|:| |val| $) (|:| -2328 (-577))) "failed") $) 294 T ELT)) (-1796 (((-3 (-665 $) "failed") $) 285 T ELT)) (-1901 (((-3 (-2 (|:| -4473 (-577)) (|:| |var| (-630 $))) "failed") $) 304 T ELT)) (-2547 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-1206)) 257 T ELT)) (-3988 (((-112) $) 17 T ELT)) (-3999 ((|#2| $) 19 T ELT)) (-3373 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) 276 T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 109 T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1206)) 62 T ELT) (($ $ (-665 (-1206))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1206)) 65 T ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 72 T ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) 120 T ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) 282 T ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) 105 T ELT) (($ $ (-1206) (-792) (-1 $ $)) 104 T ELT)) (-2916 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) 119 T ELT)) (-3641 (($ $ (-1206)) 278 T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-1674 (($ $) 324 T ELT)) (-4463 (((-916 (-577)) $) 297 T ELT) (((-916 (-391)) $) 301 T ELT) (($ (-431 $)) 359 T ELT) (((-549) $) NIL T ELT)) (-3709 (((-885) $) 279 T ELT) (($ (-630 $)) 93 T ELT) (($ (-1206)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1155 |#2| (-630 $))) NIL T ELT) (($ (-420 |#2|)) 329 T ELT) (($ (-980 (-420 |#2|))) 368 T ELT) (($ (-420 (-980 (-420 |#2|)))) 341 T ELT) (($ (-420 (-980 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-980 |#2|)) 216 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) 373 T ELT)) (-3331 (((-792)) 88 T ELT)) (-1448 (((-112) (-115)) 42 T ELT)) (-1781 (($ (-1206) $) 31 T ELT) (($ (-1206) $ $) 32 T ELT) (($ (-1206) $ $ $) 33 T ELT) (($ (-1206) $ $ $ $) 34 T ELT) (($ (-1206) (-665 $)) 39 T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) +(((-442 |#1| |#2|) (-10 -8 (-15 * (|#1| (-949) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3709 (|#1| (-577))) (-15 -3331 ((-792))) (-15 * (|#1| |#2| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -3709 (|#1| (-980 |#2|))) (-15 -4335 ((-3 (-980 |#2|) "failed") |#1|)) (-15 -3783 ((-980 |#2|) |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 * (|#1| |#1| |#2|)) (-15 -3709 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3709 (|#1| (-420 (-980 |#2|)))) (-15 -4335 ((-3 (-420 (-980 |#2|)) "failed") |#1|)) (-15 -3783 ((-420 (-980 |#2|)) |#1|)) (-15 -3732 ((-420 (-1202 |#1|)) |#1| (-630 |#1|))) (-15 -3709 (|#1| (-420 (-980 (-420 |#2|))))) (-15 -3709 (|#1| (-980 (-420 |#2|)))) (-15 -3709 (|#1| (-420 |#2|))) (-15 -1674 (|#1| |#1|)) (-15 -4463 (|#1| (-431 |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-792) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-792) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| |#1|)))) (-15 -2646 ((-3 (-2 (|:| |val| |#1|) (|:| -2328 (-577))) "failed") |#1|)) (-15 -2547 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2328 (-577))) "failed") |#1| (-1206))) (-15 -2547 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2328 (-577))) "failed") |#1| (-115))) (-15 -3608 (|#1| |#1|)) (-15 -3709 (|#1| (-1155 |#2| (-630 |#1|)))) (-15 -1901 ((-3 (-2 (|:| -4473 (-577)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -1796 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -2547 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2328 (-577))) "failed") |#1|)) (-15 -1426 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 |#1|) (-1206))) (-15 -3373 (|#1| |#1| (-115) |#1| (-1206))) (-15 -3373 (|#1| |#1|)) (-15 -3373 (|#1| |#1| (-665 (-1206)))) (-15 -3373 (|#1| |#1| (-1206))) (-15 -1781 (|#1| (-1206) (-665 |#1|))) (-15 -1781 (|#1| (-1206) |#1| |#1| |#1| |#1|)) (-15 -1781 (|#1| (-1206) |#1| |#1| |#1|)) (-15 -1781 (|#1| (-1206) |#1| |#1|)) (-15 -1781 (|#1| (-1206) |#1|)) (-15 -3891 ((-665 (-1206)) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -3709 (|#1| (-1206))) (-15 -4335 ((-3 (-1206) "failed") |#1|)) (-15 -3783 ((-1206) |#1|)) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -3693 ((-665 (-630 |#1|)) |#1|)) (-15 -2998 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -4313 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -4313 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -4313 (|#1| |#1| (-305 |#1|))) (-15 -2916 (|#1| (-115) (-665 |#1|))) (-15 -2916 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3373 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3709 (|#1| (-630 |#1|))) (-15 -4335 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3783 ((-630 |#1|) |#1|)) (-15 -3709 ((-885) |#1|))) (-443 |#2|) (-1130)) (T -442)) +((-3706 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1130)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) (-3331 (*1 *2) (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4))))) +(-10 -8 (-15 * (|#1| (-949) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3709 (|#1| (-577))) (-15 -3331 ((-792))) (-15 * (|#1| |#2| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -3709 (|#1| (-980 |#2|))) (-15 -4335 ((-3 (-980 |#2|) "failed") |#1|)) (-15 -3783 ((-980 |#2|) |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 * (|#1| |#1| |#2|)) (-15 -3709 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3709 (|#1| (-420 (-980 |#2|)))) (-15 -4335 ((-3 (-420 (-980 |#2|)) "failed") |#1|)) (-15 -3783 ((-420 (-980 |#2|)) |#1|)) (-15 -3732 ((-420 (-1202 |#1|)) |#1| (-630 |#1|))) (-15 -3709 (|#1| (-420 (-980 (-420 |#2|))))) (-15 -3709 (|#1| (-980 (-420 |#2|)))) (-15 -3709 (|#1| (-420 |#2|))) (-15 -1674 (|#1| |#1|)) (-15 -4463 (|#1| (-431 |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-792) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-792) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| |#1|)))) (-15 -2646 ((-3 (-2 (|:| |val| |#1|) (|:| -2328 (-577))) "failed") |#1|)) (-15 -2547 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2328 (-577))) "failed") |#1| (-1206))) (-15 -2547 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2328 (-577))) "failed") |#1| (-115))) (-15 -3608 (|#1| |#1|)) (-15 -3709 (|#1| (-1155 |#2| (-630 |#1|)))) (-15 -1901 ((-3 (-2 (|:| -4473 (-577)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -1796 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -2547 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2328 (-577))) "failed") |#1|)) (-15 -1426 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 |#1|) (-1206))) (-15 -3373 (|#1| |#1| (-115) |#1| (-1206))) (-15 -3373 (|#1| |#1|)) (-15 -3373 (|#1| |#1| (-665 (-1206)))) (-15 -3373 (|#1| |#1| (-1206))) (-15 -1781 (|#1| (-1206) (-665 |#1|))) (-15 -1781 (|#1| (-1206) |#1| |#1| |#1| |#1|)) (-15 -1781 (|#1| (-1206) |#1| |#1| |#1|)) (-15 -1781 (|#1| (-1206) |#1| |#1|)) (-15 -1781 (|#1| (-1206) |#1|)) (-15 -3891 ((-665 (-1206)) |#1|)) (-15 -3999 (|#2| |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -3709 (|#1| (-1206))) (-15 -4335 ((-3 (-1206) "failed") |#1|)) (-15 -3783 ((-1206) |#1|)) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3373 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3373 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -3693 ((-665 (-630 |#1|)) |#1|)) (-15 -2998 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -4313 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -4313 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -4313 (|#1| |#1| (-305 |#1|))) (-15 -2916 (|#1| (-115) (-665 |#1|))) (-15 -2916 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1| |#1|)) (-15 -2916 (|#1| (-115) |#1|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3373 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3373 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3709 (|#1| (-630 |#1|))) (-15 -4335 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3783 ((-630 |#1|) |#1|)) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 117 (|has| |#1| (-25)) ELT)) (-3891 (((-665 (-1206)) $) 208 T ELT)) (-3732 (((-420 (-1202 $)) $ (-630 $)) 176 (|has| |#1| (-569)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 148 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 149 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 151 (|has| |#1| (-569)) ELT)) (-3613 (((-665 (-630 $)) $) 39 T ELT)) (-2478 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)) ELT)) (-4313 (($ $ (-305 $)) 51 T ELT) (($ $ (-665 (-305 $))) 50 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 49 T ELT)) (-2612 (($ $) 168 (|has| |#1| (-569)) ELT)) (-3206 (((-431 $) $) 169 (|has| |#1| (-569)) ELT)) (-2495 (((-112) $ $) 159 (|has| |#1| (-569)) ELT)) (-2305 (($) 105 (-2867 (|has| |#1| (-1142)) (|has| |#1| (-25))) CONST)) (-4335 (((-3 (-630 $) "failed") $) 64 T ELT) (((-3 (-1206) "failed") $) 221 T ELT) (((-3 (-577) "failed") $) 215 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#1| "failed") $) 212 T ELT) (((-3 (-420 (-980 |#1|)) "failed") $) 174 (|has| |#1| (-569)) ELT) (((-3 (-980 |#1|) "failed") $) 124 (|has| |#1| (-1079)) ELT) (((-3 (-420 (-577)) "failed") $) 99 (-2867 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3783 (((-630 $) $) 65 T ELT) (((-1206) $) 222 T ELT) (((-577) $) 214 (|has| |#1| (-1068 (-577))) ELT) ((|#1| $) 213 T ELT) (((-420 (-980 |#1|)) $) 175 (|has| |#1| (-569)) ELT) (((-980 |#1|) $) 125 (|has| |#1| (-1079)) ELT) (((-420 (-577)) $) 100 (-2867 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3531 (($ $ $) 163 (|has| |#1| (-569)) ELT)) (-3187 (((-710 (-577)) (-710 $)) 141 (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 140 (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 139 (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-710 $)) 138 (|has| |#1| (-1079)) ELT)) (-3167 (((-3 $ "failed") $) 107 (|has| |#1| (-1142)) ELT)) (-3541 (($ $ $) 162 (|has| |#1| (-569)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 157 (|has| |#1| (-569)) ELT)) (-3567 (((-112) $) 170 (|has| |#1| (-569)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 217 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 216 (|has| |#1| (-910 (-391))) ELT)) (-2754 (($ $) 46 T ELT) (($ (-665 $)) 45 T ELT)) (-1529 (((-665 (-115)) $) 38 T ELT)) (-3706 (((-115) (-115)) 37 T ELT)) (-3357 (((-112) $) 106 (|has| |#1| (-1142)) ELT)) (-2310 (((-112) $) 17 (|has| $ (-1068 (-577))) ELT)) (-3608 (($ $) 191 (|has| |#1| (-1079)) ELT)) (-2417 (((-1155 |#1| (-630 $)) $) 192 (|has| |#1| (-1079)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 166 (|has| |#1| (-569)) ELT)) (-2465 (((-1202 $) (-630 $)) 20 (|has| $ (-1079)) ELT)) (-4417 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-2998 (((-3 (-630 $) "failed") $) 41 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 143 (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 142 (-2790 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 137 (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-1297 $)) 136 (|has| |#1| (-1079)) ELT)) (-3606 (($ (-665 $)) 155 (|has| |#1| (-569)) ELT) (($ $ $) 154 (|has| |#1| (-569)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3693 (((-665 (-630 $)) $) 40 T ELT)) (-4399 (($ (-115) $) 33 T ELT) (($ (-115) (-665 $)) 32 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 197 (|has| |#1| (-1142)) ELT)) (-2646 (((-3 (-2 (|:| |val| $) (|:| -2328 (-577))) "failed") $) 188 (|has| |#1| (-1079)) ELT)) (-1796 (((-3 (-665 $) "failed") $) 195 (|has| |#1| (-25)) ELT)) (-1901 (((-3 (-2 (|:| -4473 (-577)) (|:| |var| (-630 $))) "failed") $) 194 (|has| |#1| (-25)) ELT)) (-2547 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $) 196 (|has| |#1| (-1142)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-115)) 190 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-1206)) 189 (|has| |#1| (-1079)) ELT)) (-4241 (((-112) $ (-115)) 35 T ELT) (((-112) $ (-1206)) 34 T ELT)) (-3981 (($ $) 109 (-2867 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-2553 (((-792) $) 42 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3988 (((-112) $) 210 T ELT)) (-3999 ((|#1| $) 209 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 156 (|has| |#1| (-569)) ELT)) (-3642 (($ (-665 $)) 153 (|has| |#1| (-569)) ELT) (($ $ $) 152 (|has| |#1| (-569)) ELT)) (-3219 (((-112) $ $) 30 T ELT) (((-112) $ (-1206)) 29 T ELT)) (-3759 (((-431 $) $) 167 (|has| |#1| (-569)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 164 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") $ $) 147 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 158 (|has| |#1| (-569)) ELT)) (-2820 (((-112) $) 18 (|has| $ (-1068 (-577))) ELT)) (-3373 (($ $ (-630 $) $) 62 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 61 T ELT) (($ $ (-665 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-665 $) (-665 $)) 57 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 28 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 27 T ELT) (($ $ (-1206) (-1 $ (-665 $))) 26 T ELT) (($ $ (-1206) (-1 $ $)) 25 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 24 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-665 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT) (($ $ (-1206)) 202 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206))) 201 (|has| |#1| (-632 (-549))) ELT) (($ $) 200 (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) $ (-1206)) 199 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 198 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) 187 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) 186 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) 185 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ $)) 184 (|has| |#1| (-1079)) ELT)) (-4081 (((-792) $) 160 (|has| |#1| (-569)) ELT)) (-2916 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-665 $)) 52 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 161 (|has| |#1| (-569)) ELT)) (-2106 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-3641 (($ $ (-1206)) 134 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 132 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 131 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 130 (|has| |#1| (-1079)) ELT)) (-1674 (($ $) 181 (|has| |#1| (-569)) ELT)) (-2429 (((-1155 |#1| (-630 $)) $) 182 (|has| |#1| (-569)) ELT)) (-4263 (($ $) 19 (|has| $ (-1079)) ELT)) (-4463 (((-916 (-577)) $) 219 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 218 (|has| |#1| (-632 (-916 (-391)))) ELT) (($ (-431 $)) 183 (|has| |#1| (-569)) ELT) (((-549) $) 101 (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $ $) 112 (|has| |#1| (-486)) ELT)) (-2486 (($ $ $) 113 (|has| |#1| (-486)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-630 $)) 63 T ELT) (($ (-1206)) 220 T ELT) (($ |#1|) 211 T ELT) (($ (-1155 |#1| (-630 $))) 193 (|has| |#1| (-1079)) ELT) (($ (-420 |#1|)) 179 (|has| |#1| (-569)) ELT) (($ (-980 (-420 |#1|))) 178 (|has| |#1| (-569)) ELT) (($ (-420 (-980 (-420 |#1|)))) 177 (|has| |#1| (-569)) ELT) (($ (-420 (-980 |#1|))) 173 (|has| |#1| (-569)) ELT) (($ $) 146 (|has| |#1| (-569)) ELT) (($ (-980 |#1|)) 123 (|has| |#1| (-1079)) ELT) (($ (-420 (-577))) 98 (-2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ (-577)) 97 (-2867 (|has| |#1| (-1079)) (|has| |#1| (-1068 (-577)))) ELT)) (-2708 (((-3 $ "failed") $) 144 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 126 (|has| |#1| (-1079)) CONST)) (-2907 (($ $) 48 T ELT) (($ (-665 $)) 47 T ELT)) (-1448 (((-112) (-115)) 36 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 150 (|has| |#1| (-569)) ELT)) (-1781 (($ (-1206) $) 207 T ELT) (($ (-1206) $ $) 206 T ELT) (($ (-1206) $ $ $) 205 T ELT) (($ (-1206) $ $ $ $) 204 T ELT) (($ (-1206) (-665 $)) 203 T ELT)) (-2839 (($) 116 (|has| |#1| (-25)) CONST)) (-2853 (($) 104 (|has| |#1| (-1142)) CONST)) (-2389 (($ $ (-1206)) 133 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 129 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 128 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 127 (|has| |#1| (-1079)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ (-1155 |#1| (-630 $)) (-1155 |#1| (-630 $))) 180 (|has| |#1| (-569)) ELT) (($ $ $) 110 (-2867 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-3128 (($ $ $) 122 (|has| |#1| (-21)) ELT) (($ $) 121 (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) 114 (|has| |#1| (-25)) ELT)) (** (($ $ (-577)) 111 (-2867 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT) (($ $ (-792)) 108 (|has| |#1| (-1142)) ELT) (($ $ (-949)) 103 (|has| |#1| (-1142)) ELT)) (* (($ (-420 (-577)) $) 172 (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) 171 (|has| |#1| (-569)) ELT) (($ $ |#1|) 145 (|has| |#1| (-174)) ELT) (($ |#1| $) 135 (|has| |#1| (-1079)) ELT) (($ (-577) $) 120 (|has| |#1| (-21)) ELT) (($ (-792) $) 118 (|has| |#1| (-25)) ELT) (($ (-949) $) 115 (|has| |#1| (-25)) ELT) (($ $ $) 102 (|has| |#1| (-1142)) ELT))) +(((-443 |#1|) (-141) (-1130)) (T -443)) +((-3988 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-1206))))) (-1781 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1781 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1781 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1781 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-665 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1130)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-4 *3 (-632 (-549))))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1206))) (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-4 *3 (-632 (-549))))) (-3373 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-632 (-549))))) (-3373 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1206)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) (-4 *4 (-632 (-549))))) (-3373 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 *1)) (-5 *4 (-1206)) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-632 (-549))))) (-1426 (*1 *2 *1) (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-443 *3)))) (-2547 (*1 *2 *1) (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2328 (-577)))) (-4 *1 (-443 *3)))) (-1796 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-443 *3)))) (-1901 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) (-5 *2 (-2 (|:| -4473 (-577)) (|:| |var| (-630 *1)))) (-4 *1 (-443 *3)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-1079)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-2417 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) (-4 *1 (-443 *3)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-1079)))) (-2547 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1079)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2328 (-577)))) (-4 *1 (-443 *4)))) (-2547 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-1079)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2328 (-577)))) (-4 *1 (-443 *4)))) (-2646 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-1130)) (-5 *2 (-2 (|:| |val| *1) (|:| -2328 (-577)))) (-4 *1 (-443 *3)))) (-3373 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) (-5 *4 (-665 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-3373 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) (-5 *4 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-3373 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 (-665 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-3373 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 *1)) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) (-4 *3 (-1130)))) (-2429 (*1 *2 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) (-4 *1 (-443 *3)))) (-1674 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-569)))) (-3139 (*1 *1 *2 *2) (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-980 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-3732 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) (-4 *4 (-569)) (-5 *2 (-420 (-1202 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-4 *3 (-1142))))) +(-13 (-313) (-1068 (-1206)) (-908 |t#1|) (-413 |t#1|) (-424 |t#1|) (-10 -8 (-15 -3988 ((-112) $)) (-15 -3999 (|t#1| $)) (-15 -3891 ((-665 (-1206)) $)) (-15 -1781 ($ (-1206) $)) (-15 -1781 ($ (-1206) $ $)) (-15 -1781 ($ (-1206) $ $ $)) (-15 -1781 ($ (-1206) $ $ $ $)) (-15 -1781 ($ (-1206) (-665 $))) (IF (|has| |t#1| (-632 (-549))) (PROGN (-6 (-632 (-549))) (-15 -3373 ($ $ (-1206))) (-15 -3373 ($ $ (-665 (-1206)))) (-15 -3373 ($ $)) (-15 -3373 ($ $ (-115) $ (-1206))) (-15 -3373 ($ $ (-665 (-115)) (-665 $) (-1206)))) |%noBranch|) (IF (|has| |t#1| (-1142)) (PROGN (-6 (-747)) (-15 ** ($ $ (-792))) (-15 -1426 ((-3 (-665 $) "failed") $)) (-15 -2547 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-486)) (-6 (-486)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1796 ((-3 (-665 $) "failed") $)) (-15 -1901 ((-3 (-2 (|:| -4473 (-577)) (|:| |var| (-630 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-1068 (-980 |t#1|))) (-6 (-926 (-1206))) (-6 (-389 |t#1|)) (-15 -3709 ($ (-1155 |t#1| (-630 $)))) (-15 -2417 ((-1155 |t#1| (-630 $)) $)) (-15 -3608 ($ $)) (-15 -2547 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-115))) (-15 -2547 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2328 (-577))) "failed") $ (-1206))) (-15 -2646 ((-3 (-2 (|:| |val| $) (|:| -2328 (-577))) "failed") $)) (-15 -3373 ($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $)))) (-15 -3373 ($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $))))) (-15 -3373 ($ $ (-1206) (-792) (-1 $ (-665 $)))) (-15 -3373 ($ $ (-1206) (-792) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-375)) (-6 (-1068 (-420 (-980 |t#1|)))) (-15 -4463 ($ (-431 $))) (-15 -2429 ((-1155 |t#1| (-630 $)) $)) (-15 -1674 ($ $)) (-15 -3139 ($ (-1155 |t#1| (-630 $)) (-1155 |t#1| (-630 $)))) (-15 -3709 ($ (-420 |t#1|))) (-15 -3709 ($ (-980 (-420 |t#1|)))) (-15 -3709 ($ (-420 (-980 (-420 |t#1|))))) (-15 -3732 ((-420 (-1202 $)) $ (-630 $))) (IF (|has| |t#1| (-1068 (-577))) (-6 (-1068 (-420 (-577)))) |%noBranch|)) |%noBranch|))) +(((-21) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-420 (-577))) |has| |#1| (-569)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-569)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-569)) ((-132) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-569))) ((-634 #1=(-420 (-980 |#1|))) |has| |#1| (-569)) ((-634 (-577)) -2867 (|has| |#1| (-1079)) (|has| |#1| (-1068 (-577))) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-634 #2=(-630 $)) . T) ((-634 #3=(-980 |#1|)) |has| |#1| (-1079)) ((-634 #4=(-1206)) . T) ((-634 |#1|) . T) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) |has| |#1| (-569)) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-249) |has| |#1| (-569)) ((-301) |has| |#1| (-569)) ((-318) |has| |#1| (-569)) ((-320 $) . T) ((-313) . T) ((-375) |has| |#1| (-569)) ((-389 |#1|) |has| |#1| (-1079)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) |has| |#1| (-569)) ((-486) |has| |#1| (-486)) ((-527 (-630 $) $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-569)) ((-667 (-577)) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-667 |#1|) -2867 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-667 $) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-669 #0#) |has| |#1| (-569)) ((-669 #5=(-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-669 |#1|) -2867 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-669 $) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-661 #0#) |has| |#1| (-569)) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-659 #5#) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-659 |#1|) |has| |#1| (-1079)) ((-738 #0#) |has| |#1| (-569)) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) -2867 (|has| |#1| (-1142)) (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-920 $ #6=(-1206)) |has| |#1| (-1079)) ((-926 #6#) |has| |#1| (-1079)) ((-928 #6#) |has| |#1| (-1079)) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-948) |has| |#1| (-569)) ((-1068 (-420 (-577))) -2867 (|has| |#1| (-1068 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577))))) ((-1068 #1#) |has| |#1| (-569)) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #2#) . T) ((-1068 #3#) |has| |#1| (-1079)) ((-1068 #4#) . T) ((-1068 |#1|) . T) ((-1081 #0#) |has| |#1| (-569)) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) |has| |#1| (-569)) ((-1086 #0#) |has| |#1| (-569)) ((-1086 |#1|) |has| |#1| (-174)) ((-1086 $) |has| |#1| (-569)) ((-1079) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1088) -2867 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1142) -2867 (|has| |#1| (-1142)) (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-569))) +((-4172 ((|#2| |#2| |#2|) 31 T ELT)) (-3706 (((-115) (-115)) 43 T ELT)) (-1785 ((|#2| |#2|) 63 T ELT)) (-1486 ((|#2| |#2|) 66 T ELT)) (-2843 ((|#2| |#2|) 30 T ELT)) (-2830 ((|#2| |#2| |#2|) 33 T ELT)) (-2238 ((|#2| |#2| |#2|) 35 T ELT)) (-3923 ((|#2| |#2| |#2|) 32 T ELT)) (-3026 ((|#2| |#2| |#2|) 34 T ELT)) (-1448 (((-112) (-115)) 41 T ELT)) (-4089 ((|#2| |#2|) 37 T ELT)) (-1889 ((|#2| |#2|) 36 T ELT)) (-2215 ((|#2| |#2|) 25 T ELT)) (-3802 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3012 ((|#2| |#2| |#2|) 29 T ELT))) +(((-444 |#1| |#2|) (-10 -7 (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -2215 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3802 (|#2| |#2| |#2|)) (-15 -3012 (|#2| |#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -4172 (|#2| |#2| |#2|)) (-15 -3923 (|#2| |#2| |#2|)) (-15 -2830 (|#2| |#2| |#2|)) (-15 -3026 (|#2| |#2| |#2|)) (-15 -2238 (|#2| |#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -1785 (|#2| |#2|))) (-569) (-443 |#1|)) (T -444)) +((-1785 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1889 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2238 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3026 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2830 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3923 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4172 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2843 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3012 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3802 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2215 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) (-4 *4 (-443 *3)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4))))) +(-10 -7 (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -2215 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3802 (|#2| |#2| |#2|)) (-15 -3012 (|#2| |#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -4172 (|#2| |#2| |#2|)) (-15 -3923 (|#2| |#2| |#2|)) (-15 -2830 (|#2| |#2| |#2|)) (-15 -3026 (|#2| |#2| |#2|)) (-15 -2238 (|#2| |#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -1785 (|#2| |#2|))) +((-2213 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1202 |#2|)) (|:| |pol2| (-1202 |#2|)) (|:| |prim| (-1202 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-665 (-1202 |#2|))) (|:| |prim| (-1202 |#2|))) (-665 |#2|)) 65 T ELT))) +(((-445 |#1| |#2|) (-10 -7 (-15 -2213 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-665 (-1202 |#2|))) (|:| |prim| (-1202 |#2|))) (-665 |#2|))) (IF (|has| |#2| (-27)) (-15 -2213 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1202 |#2|)) (|:| |pol2| (-1202 |#2|)) (|:| |prim| (-1202 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-569) (-148)) (-443 |#1|)) (T -445)) +((-2213 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1202 *3)) (|:| |pol2| (-1202 *3)) (|:| |prim| (-1202 *3)))) (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-665 (-1202 *5))) (|:| |prim| (-1202 *5)))) (-5 *1 (-445 *4 *5))))) +(-10 -7 (-15 -2213 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-665 (-1202 |#2|))) (|:| |prim| (-1202 |#2|))) (-665 |#2|))) (IF (|has| |#2| (-27)) (-15 -2213 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1202 |#2|)) (|:| |pol2| (-1202 |#2|)) (|:| |prim| (-1202 |#2|))) |#2| |#2|)) |%noBranch|)) +((-1690 (((-1302)) 18 T ELT)) (-3932 (((-1202 (-420 (-577))) |#2| (-630 |#2|)) 40 T ELT) (((-420 (-577)) |#2|) 24 T ELT))) +(((-446 |#1| |#2|) (-10 -7 (-15 -3932 ((-420 (-577)) |#2|)) (-15 -3932 ((-1202 (-420 (-577))) |#2| (-630 |#2|))) (-15 -1690 ((-1302)))) (-13 (-569) (-1068 (-577))) (-443 |#1|)) (T -446)) +((-1690 (*1 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1302)) (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-443 *5)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-446 *5 *3)))) (-3932 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4))))) +(-10 -7 (-15 -3932 ((-420 (-577)) |#2|)) (-15 -3932 ((-1202 (-420 (-577))) |#2| (-630 |#2|))) (-15 -1690 ((-1302)))) +((-3122 (((-112) $) 33 T ELT)) (-1472 (((-112) $) 35 T ELT)) (-1861 (((-112) $) 36 T ELT)) (-4148 (((-112) $) 39 T ELT)) (-1601 (((-112) $) 34 T ELT)) (-3887 (((-112) $) 38 T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-1188)) 32 T ELT) (($ (-1206)) 30 T ELT) (((-1206) $) 24 T ELT) (((-1134) $) 23 T ELT)) (-1352 (((-112) $) 37 T ELT)) (-3018 (((-112) $ $) 17 T ELT))) +(((-447) (-13 (-631 (-885)) (-10 -8 (-15 -3709 ($ (-1188))) (-15 -3709 ($ (-1206))) (-15 -3709 ((-1206) $)) (-15 -3709 ((-1134) $)) (-15 -3122 ((-112) $)) (-15 -1601 ((-112) $)) (-15 -1861 ((-112) $)) (-15 -3887 ((-112) $)) (-15 -4148 ((-112) $)) (-15 -1352 ((-112) $)) (-15 -1472 ((-112) $)) (-15 -3018 ((-112) $ $))))) (T -447)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-447)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-447)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-3018 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(-13 (-631 (-885)) (-10 -8 (-15 -3709 ($ (-1188))) (-15 -3709 ($ (-1206))) (-15 -3709 ((-1206) $)) (-15 -3709 ((-1134) $)) (-15 -3122 ((-112) $)) (-15 -1601 ((-112) $)) (-15 -1861 ((-112) $)) (-15 -3887 ((-112) $)) (-15 -4148 ((-112) $)) (-15 -1352 ((-112) $)) (-15 -1472 ((-112) $)) (-15 -3018 ((-112) $ $)))) +((-2829 (((-3 (-431 (-1202 (-420 (-577)))) "failed") |#3|) 72 T ELT)) (-2348 (((-431 |#3|) |#3|) 34 T ELT)) (-2931 (((-3 (-431 (-1202 (-48))) "failed") |#3|) 46 (|has| |#2| (-1068 (-48))) ELT)) (-2927 (((-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -4262 (-112))) |#3|) 37 T ELT))) +(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2348 ((-431 |#3|) |#3|)) (-15 -2829 ((-3 (-431 (-1202 (-420 (-577)))) "failed") |#3|)) (-15 -2927 ((-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -4262 (-112))) |#3|)) (IF (|has| |#2| (-1068 (-48))) (-15 -2931 ((-3 (-431 (-1202 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-569) (-1068 (-577))) (-443 |#1|) (-1273 |#2|)) (T -448)) +((-2931 (*1 *2 *3) (|partial| -12 (-4 *5 (-1068 (-48))) (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1202 (-48)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -4262 (-112)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2829 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1202 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2348 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -2348 ((-431 |#3|) |#3|)) (-15 -2829 ((-3 (-431 (-1202 (-420 (-577)))) "failed") |#3|)) (-15 -2927 ((-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -4262 (-112))) |#3|)) (IF (|has| |#2| (-1068 (-48))) (-15 -2931 ((-3 (-431 (-1202 (-48))) "failed") |#3|)) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-2050 (((-1188) $ (-1188)) NIL T ELT)) (-3819 (($ $ (-1188)) NIL T ELT)) (-1494 (((-1188) $) NIL T ELT)) (-1415 (((-401) (-401) (-401)) 17 T ELT) (((-401) (-401)) 15 T ELT)) (-3548 (($ (-401)) NIL T ELT) (($ (-401) (-1188)) NIL T ELT)) (-2758 (((-401) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3581 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1463 (((-1302) (-1188)) 9 T ELT)) (-2596 (((-1302) (-1188)) 10 T ELT)) (-1585 (((-1302)) 11 T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2823 (($ $) 39 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-449) (-13 (-376 (-401) (-1188)) (-10 -7 (-15 -1415 ((-401) (-401) (-401))) (-15 -1415 ((-401) (-401))) (-15 -1463 ((-1302) (-1188))) (-15 -2596 ((-1302) (-1188))) (-15 -1585 ((-1302)))))) (T -449)) +((-1415 (*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449)))) (-1585 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-449))))) +(-13 (-376 (-401) (-1188)) (-10 -7 (-15 -1415 ((-401) (-401) (-401))) (-15 -1415 ((-401) (-401))) (-15 -1463 ((-1302) (-1188))) (-15 -2596 ((-1302) (-1188))) (-15 -1585 ((-1302))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3431 (((-3 (|:| |fst| (-447)) (|:| -1900 "void")) $) 11 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2180 (($) 35 T ELT)) (-1716 (($) 41 T ELT)) (-1657 (($) 37 T ELT)) (-3750 (($) 39 T ELT)) (-1832 (($) 36 T ELT)) (-1717 (($) 38 T ELT)) (-4330 (($) 40 T ELT)) (-2650 (((-112) $) 8 T ELT)) (-1362 (((-665 (-980 (-577))) $) 19 T ELT)) (-3722 (($ (-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-665 (-1206)) (-112)) 29 T ELT) (($ (-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-665 (-980 (-577))) (-112)) 30 T ELT)) (-3709 (((-885) $) 24 T ELT) (($ (-447)) 32 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-450) (-13 (-1130) (-10 -8 (-15 -3709 ($ (-447))) (-15 -3431 ((-3 (|:| |fst| (-447)) (|:| -1900 "void")) $)) (-15 -1362 ((-665 (-980 (-577))) $)) (-15 -2650 ((-112) $)) (-15 -3722 ($ (-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-665 (-1206)) (-112))) (-15 -3722 ($ (-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-665 (-980 (-577))) (-112))) (-15 -2180 ($)) (-15 -1832 ($)) (-15 -1657 ($)) (-15 -1716 ($)) (-15 -1717 ($)) (-15 -3750 ($)) (-15 -4330 ($))))) (T -450)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-450)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *1 (-450)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-665 (-980 (-577)))) (-5 *1 (-450)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450)))) (-3722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *3 (-665 (-1206))) (-5 *4 (-112)) (-5 *1 (-450)))) (-3722 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) (-2180 (*1 *1) (-5 *1 (-450))) (-1832 (*1 *1) (-5 *1 (-450))) (-1657 (*1 *1) (-5 *1 (-450))) (-1716 (*1 *1) (-5 *1 (-450))) (-1717 (*1 *1) (-5 *1 (-450))) (-3750 (*1 *1) (-5 *1 (-450))) (-4330 (*1 *1) (-5 *1 (-450)))) +(-13 (-1130) (-10 -8 (-15 -3709 ($ (-447))) (-15 -3431 ((-3 (|:| |fst| (-447)) (|:| -1900 "void")) $)) (-15 -1362 ((-665 (-980 (-577))) $)) (-15 -2650 ((-112) $)) (-15 -3722 ($ (-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-665 (-1206)) (-112))) (-15 -3722 ($ (-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-665 (-980 (-577))) (-112))) (-15 -2180 ($)) (-15 -1832 ($)) (-15 -1657 ($)) (-15 -1716 ($)) (-15 -1717 ($)) (-15 -3750 ($)) (-15 -4330 ($)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2758 (((-1206) $) 8 T ELT)) (-3235 (((-1188) $) 17 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 14 T ELT))) +(((-451 |#1|) (-13 (-1130) (-10 -8 (-15 -2758 ((-1206) $)))) (-1206)) (T -451)) +((-2758 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-451 *3)) (-14 *3 *2)))) +(-13 (-1130) (-10 -8 (-15 -2758 ((-1206) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2978 (((-1148) $) 7 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 9 T ELT))) +(((-452) (-13 (-1130) (-10 -8 (-15 -2978 ((-1148) $))))) (T -452)) +((-2978 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-452))))) +(-13 (-1130) (-10 -8 (-15 -2978 ((-1148) $)))) +((-3495 (((-1302) $) 7 T ELT)) (-3709 (((-885) $) 8 T ELT) (($ (-1297 (-720))) 14 T ELT) (($ (-665 (-341))) 13 T ELT) (($ (-341)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 11 T ELT))) (((-453) (-141)) (T -453)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-715))) (-4 *1 (-453)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-453)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-453)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) (-4 *1 (-453))))) -(-13 (-408) (-10 -8 (-15 -3603 ($ (-1292 (-715)))) (-15 -3603 ($ (-660 (-341)))) (-15 -3603 ($ (-341))) (-15 -3603 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341)))))))) -(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) -((-2784 (((-3 $ "failed") (-1292 (-327 (-391)))) 21 T ELT) (((-3 $ "failed") (-1292 (-327 (-577)))) 19 T ELT) (((-3 $ "failed") (-1292 (-975 (-391)))) 17 T ELT) (((-3 $ "failed") (-1292 (-975 (-577)))) 15 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 13 T ELT) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 11 T ELT)) (-2155 (($ (-1292 (-327 (-391)))) 22 T ELT) (($ (-1292 (-327 (-577)))) 20 T ELT) (($ (-1292 (-975 (-391)))) 18 T ELT) (($ (-1292 (-975 (-577)))) 16 T ELT) (($ (-1292 (-420 (-975 (-391))))) 14 T ELT) (($ (-1292 (-420 (-975 (-577))))) 12 T ELT)) (-3794 (((-1297) $) 7 T ELT)) (-3603 (((-880) $) 8 T ELT) (($ (-660 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) 23 T ELT))) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-720))) (-4 *1 (-453)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-453)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-453)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-453))))) +(-13 (-408) (-10 -8 (-15 -3709 ($ (-1297 (-720)))) (-15 -3709 ($ (-665 (-341)))) (-15 -3709 ($ (-341))) (-15 -3709 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341)))))))) +(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) +((-4335 (((-3 $ "failed") (-1297 (-327 (-391)))) 21 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 19 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 17 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 15 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 13 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 11 T ELT)) (-3783 (($ (-1297 (-327 (-391)))) 22 T ELT) (($ (-1297 (-327 (-577)))) 20 T ELT) (($ (-1297 (-980 (-391)))) 18 T ELT) (($ (-1297 (-980 (-577)))) 16 T ELT) (($ (-1297 (-420 (-980 (-391))))) 14 T ELT) (($ (-1297 (-420 (-980 (-577))))) 12 T ELT)) (-3495 (((-1302) $) 7 T ELT)) (-3709 (((-885) $) 8 T ELT) (($ (-665 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) 23 T ELT))) (((-454) (-141)) (T -454)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-454)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-454)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) (-4 *1 (-454)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454))))) -(-13 (-408) (-10 -8 (-15 -3603 ($ (-660 (-341)))) (-15 -3603 ($ (-341))) (-15 -3603 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341)))))) (-15 -2155 ($ (-1292 (-327 (-391))))) (-15 -2784 ((-3 $ "failed") (-1292 (-327 (-391))))) (-15 -2155 ($ (-1292 (-327 (-577))))) (-15 -2784 ((-3 $ "failed") (-1292 (-327 (-577))))) (-15 -2155 ($ (-1292 (-975 (-391))))) (-15 -2784 ((-3 $ "failed") (-1292 (-975 (-391))))) (-15 -2155 ($ (-1292 (-975 (-577))))) (-15 -2784 ((-3 $ "failed") (-1292 (-975 (-577))))) (-15 -2155 ($ (-1292 (-420 (-975 (-391)))))) (-15 -2784 ((-3 $ "failed") (-1292 (-420 (-975 (-391)))))) (-15 -2155 ($ (-1292 (-420 (-975 (-577)))))) (-15 -2784 ((-3 $ "failed") (-1292 (-420 (-975 (-577)))))))) -(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) -((-1560 (((-112)) 18 T ELT)) (-4208 (((-112) (-112)) 19 T ELT)) (-2606 (((-112)) 14 T ELT)) (-3561 (((-112) (-112)) 15 T ELT)) (-1499 (((-112)) 16 T ELT)) (-3129 (((-112) (-112)) 17 T ELT)) (-4260 (((-944) (-944)) 22 T ELT) (((-944)) 21 T ELT)) (-3374 (((-787) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577))))) 52 T ELT)) (-1921 (((-944) (-944)) 24 T ELT) (((-944)) 23 T ELT)) (-1877 (((-2 (|:| -2786 (-577)) (|:| -1704 (-660 |#1|))) |#1|) 94 T ELT)) (-3041 (((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577))))))) 174 T ELT)) (-2169 (((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112)) 207 T ELT)) (-2503 (((-431 |#1|) |#1| (-787) (-787)) 222 T ELT) (((-431 |#1|) |#1| (-660 (-787)) (-787)) 219 T ELT) (((-431 |#1|) |#1| (-660 (-787))) 221 T ELT) (((-431 |#1|) |#1| (-787)) 220 T ELT) (((-431 |#1|) |#1|) 218 T ELT)) (-3514 (((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787) (-112)) 224 T ELT) (((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787)) 225 T ELT) (((-3 |#1| "failed") (-944) |#1| (-660 (-787))) 227 T ELT) (((-3 |#1| "failed") (-944) |#1| (-787)) 226 T ELT) (((-3 |#1| "failed") (-944) |#1|) 228 T ELT)) (-3056 (((-431 |#1|) |#1| (-787) (-787)) 217 T ELT) (((-431 |#1|) |#1| (-660 (-787)) (-787)) 213 T ELT) (((-431 |#1|) |#1| (-660 (-787))) 215 T ELT) (((-431 |#1|) |#1| (-787)) 214 T ELT) (((-431 |#1|) |#1|) 212 T ELT)) (-1922 (((-112) |#1|) 44 T ELT)) (-3770 (((-753 (-787)) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577))))) 99 T ELT)) (-2896 (((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112) (-1127 (-787)) (-787)) 211 T ELT))) -(((-455 |#1|) (-10 -7 (-15 -3041 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))))) (-15 -3770 ((-753 (-787)) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))))) (-15 -1921 ((-944))) (-15 -1921 ((-944) (-944))) (-15 -4260 ((-944))) (-15 -4260 ((-944) (-944))) (-15 -3374 ((-787) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))))) (-15 -1877 ((-2 (|:| -2786 (-577)) (|:| -1704 (-660 |#1|))) |#1|)) (-15 -1560 ((-112))) (-15 -4208 ((-112) (-112))) (-15 -2606 ((-112))) (-15 -3561 ((-112) (-112))) (-15 -1922 ((-112) |#1|)) (-15 -1499 ((-112))) (-15 -3129 ((-112) (-112))) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3056 ((-431 |#1|) |#1| (-787))) (-15 -3056 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -3056 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -3056 ((-431 |#1|) |#1| (-787) (-787))) (-15 -2503 ((-431 |#1|) |#1|)) (-15 -2503 ((-431 |#1|) |#1| (-787))) (-15 -2503 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -2503 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -2503 ((-431 |#1|) |#1| (-787) (-787))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1|)) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-787))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787) (-112))) (-15 -2169 ((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112))) (-15 -2896 ((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112) (-1127 (-787)) (-787)))) (-1268 (-577))) (T -455)) -((-2896 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1127 (-787))) (-5 *6 (-787)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2169 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3514 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-3514 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-3514 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-3514 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-787)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-3514 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-944)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-2503 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2503 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2503 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3056 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3056 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3129 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1499 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1922 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2606 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-4208 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1560 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1877 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2786 (-577)) (|:| -1704 (-660 *3)))) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3056 *4) (|:| -3616 (-577))))) (-4 *4 (-1268 (-577))) (-5 *2 (-787)) (-5 *1 (-455 *4)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-4260 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1921 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3056 *4) (|:| -3616 (-577))))) (-4 *4 (-1268 (-577))) (-5 *2 (-753 (-787))) (-5 *1 (-455 *4)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| *4) (|:| -2087 (-577))))))) (-4 *4 (-1268 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) -(-10 -7 (-15 -3041 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))))) (-15 -3770 ((-753 (-787)) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))))) (-15 -1921 ((-944))) (-15 -1921 ((-944) (-944))) (-15 -4260 ((-944))) (-15 -4260 ((-944) (-944))) (-15 -3374 ((-787) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))))) (-15 -1877 ((-2 (|:| -2786 (-577)) (|:| -1704 (-660 |#1|))) |#1|)) (-15 -1560 ((-112))) (-15 -4208 ((-112) (-112))) (-15 -2606 ((-112))) (-15 -3561 ((-112) (-112))) (-15 -1922 ((-112) |#1|)) (-15 -1499 ((-112))) (-15 -3129 ((-112) (-112))) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3056 ((-431 |#1|) |#1| (-787))) (-15 -3056 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -3056 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -3056 ((-431 |#1|) |#1| (-787) (-787))) (-15 -2503 ((-431 |#1|) |#1|)) (-15 -2503 ((-431 |#1|) |#1| (-787))) (-15 -2503 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -2503 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -2503 ((-431 |#1|) |#1| (-787) (-787))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1|)) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-787))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787))) (-15 -3514 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787) (-112))) (-15 -2169 ((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112))) (-15 -2896 ((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112) (-1127 (-787)) (-787)))) -((-1585 (((-577) |#2|) 52 T ELT) (((-577) |#2| (-787)) 51 T ELT)) (-1871 (((-577) |#2|) 64 T ELT)) (-3011 ((|#3| |#2|) 26 T ELT)) (-4021 ((|#3| |#2| (-944)) 15 T ELT)) (-3762 ((|#3| |#2|) 16 T ELT)) (-2778 ((|#3| |#2|) 9 T ELT)) (-4181 ((|#3| |#2|) 10 T ELT)) (-4026 ((|#3| |#2| (-944)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-4437 (((-577) |#2|) 66 T ELT))) -(((-456 |#1| |#2| |#3|) (-10 -7 (-15 -4437 ((-577) |#2|)) (-15 -4026 (|#3| |#2|)) (-15 -4026 (|#3| |#2| (-944))) (-15 -1871 ((-577) |#2|)) (-15 -1585 ((-577) |#2| (-787))) (-15 -1585 ((-577) |#2|)) (-15 -4021 (|#3| |#2| (-944))) (-15 -3011 (|#3| |#2|)) (-15 -2778 (|#3| |#2|)) (-15 -4181 (|#3| |#2|)) (-15 -3762 (|#3| |#2|))) (-1074) (-1268 |#1|) (-13 (-417) (-1063 |#1|) (-375) (-1227) (-295))) (T -456)) -((-3762 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-3011 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5)))) (-1585 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1268 *4)) (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1268 *5)) (-4 *6 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1268 *4)) (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))))) (-4026 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5)))) (-4026 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-4437 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1268 *4)) (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) -(-10 -7 (-15 -4437 ((-577) |#2|)) (-15 -4026 (|#3| |#2|)) (-15 -4026 (|#3| |#2| (-944))) (-15 -1871 ((-577) |#2|)) (-15 -1585 ((-577) |#2| (-787))) (-15 -1585 ((-577) |#2|)) (-15 -4021 (|#3| |#2| (-944))) (-15 -3011 (|#3| |#2|)) (-15 -2778 (|#3| |#2|)) (-15 -4181 (|#3| |#2|)) (-15 -3762 (|#3| |#2|))) -((-2270 ((|#2| (-1292 |#1|)) 42 T ELT)) (-4024 ((|#2| |#2| |#1|) 58 T ELT)) (-4371 ((|#2| |#2| |#1|) 49 T ELT)) (-2433 ((|#2| |#2|) 44 T ELT)) (-3496 (((-112) |#2|) 32 T ELT)) (-1607 (((-660 |#2|) (-944) (-431 |#2|)) 21 T ELT)) (-3514 ((|#2| (-944) (-431 |#2|)) 25 T ELT)) (-3770 (((-753 (-787)) (-431 |#2|)) 29 T ELT))) -(((-457 |#1| |#2|) (-10 -7 (-15 -3496 ((-112) |#2|)) (-15 -2270 (|#2| (-1292 |#1|))) (-15 -2433 (|#2| |#2|)) (-15 -4371 (|#2| |#2| |#1|)) (-15 -4024 (|#2| |#2| |#1|)) (-15 -3770 ((-753 (-787)) (-431 |#2|))) (-15 -3514 (|#2| (-944) (-431 |#2|))) (-15 -1607 ((-660 |#2|) (-944) (-431 |#2|)))) (-1074) (-1268 |#1|)) (T -457)) -((-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-431 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-1074)) (-5 *2 (-660 *6)) (-5 *1 (-457 *5 *6)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-431 *2)) (-4 *2 (-1268 *5)) (-5 *1 (-457 *5 *2)) (-4 *5 (-1074)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-431 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1074)) (-5 *2 (-753 (-787))) (-5 *1 (-457 *4 *5)))) (-4024 (*1 *2 *2 *3) (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) (-4371 (*1 *2 *2 *3) (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-1074)) (-4 *2 (-1268 *4)) (-5 *1 (-457 *4 *2)))) (-3496 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -3496 ((-112) |#2|)) (-15 -2270 (|#2| (-1292 |#1|))) (-15 -2433 (|#2| |#2|)) (-15 -4371 (|#2| |#2| |#1|)) (-15 -4024 (|#2| |#2| |#1|)) (-15 -3770 ((-753 (-787)) (-431 |#2|))) (-15 -3514 (|#2| (-944) (-431 |#2|))) (-15 -1607 ((-660 |#2|) (-944) (-431 |#2|)))) -((-3006 (((-787)) 59 T ELT)) (-1462 (((-787)) 29 (|has| |#1| (-417)) ELT) (((-787) (-787)) 28 (|has| |#1| (-417)) ELT)) (-2873 (((-577) |#1|) 25 (|has| |#1| (-417)) ELT)) (-3100 (((-577) |#1|) 27 (|has| |#1| (-417)) ELT)) (-1351 (((-787)) 58 T ELT) (((-787) (-787)) 57 T ELT)) (-2813 ((|#1| (-787) (-577)) 37 T ELT)) (-1509 (((-1297)) 61 T ELT))) -(((-458 |#1|) (-10 -7 (-15 -2813 (|#1| (-787) (-577))) (-15 -1351 ((-787) (-787))) (-15 -1351 ((-787))) (-15 -3006 ((-787))) (-15 -1509 ((-1297))) (IF (|has| |#1| (-417)) (PROGN (-15 -3100 ((-577) |#1|)) (-15 -2873 ((-577) |#1|)) (-15 -1462 ((-787) (-787))) (-15 -1462 ((-787)))) |%noBranch|)) (-1074)) (T -458)) -((-1462 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-2873 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-3100 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-1509 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-3006 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-1351 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-1351 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1074))))) -(-10 -7 (-15 -2813 (|#1| (-787) (-577))) (-15 -1351 ((-787) (-787))) (-15 -1351 ((-787))) (-15 -3006 ((-787))) (-15 -1509 ((-1297))) (IF (|has| |#1| (-417)) (PROGN (-15 -3100 ((-577) |#1|)) (-15 -2873 ((-577) |#1|)) (-15 -1462 ((-787) (-787))) (-15 -1462 ((-787)))) |%noBranch|)) -((-3096 (((-660 (-577)) (-577)) 76 T ELT)) (-2182 (((-112) (-171 (-577))) 82 T ELT)) (-3056 (((-431 (-171 (-577))) (-171 (-577))) 75 T ELT))) -(((-459) (-10 -7 (-15 -3056 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -3096 ((-660 (-577)) (-577))) (-15 -2182 ((-112) (-171 (-577)))))) (T -459)) -((-2182 (*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) (-3096 (*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-459)) (-5 *3 (-577)))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) (-5 *3 (-171 (-577)))))) -(-10 -7 (-15 -3056 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -3096 ((-660 (-577)) (-577))) (-15 -2182 ((-112) (-171 (-577))))) -((-2752 ((|#4| |#4| (-660 |#4|)) 82 T ELT)) (-2341 (((-660 |#4|) (-660 |#4|) (-1183) (-1183)) 22 T ELT) (((-660 |#4|) (-660 |#4|) (-1183)) 21 T ELT) (((-660 |#4|) (-660 |#4|)) 13 T ELT))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2752 (|#4| |#4| (-660 |#4|))) (-15 -2341 ((-660 |#4|) (-660 |#4|))) (-15 -2341 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -2341 ((-660 |#4|) (-660 |#4|) (-1183) (-1183)))) (-318) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -460)) -((-2341 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2341 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2341 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *2))))) -(-10 -7 (-15 -2752 (|#4| |#4| (-660 |#4|))) (-15 -2341 ((-660 |#4|) (-660 |#4|))) (-15 -2341 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -2341 ((-660 |#4|) (-660 |#4|) (-1183) (-1183)))) -((-2427 (((-660 (-660 |#4|)) (-660 |#4|) (-112)) 89 T ELT) (((-660 (-660 |#4|)) (-660 |#4|)) 88 T ELT) (((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-112)) 82 T ELT) (((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|)) 83 T ELT)) (-4018 (((-660 (-660 |#4|)) (-660 |#4|) (-112)) 55 T ELT) (((-660 (-660 |#4|)) (-660 |#4|)) 77 T ELT))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -4018 ((-660 (-660 |#4|)) (-660 |#4|) (-112))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-112))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|) (-112)))) (-13 (-318) (-148)) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -461)) -((-2427 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-2427 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2427 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-2427 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) -(-10 -7 (-15 -4018 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -4018 ((-660 (-660 |#4|)) (-660 |#4|) (-112))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-112))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -2427 ((-660 (-660 |#4|)) (-660 |#4|) (-112)))) -((-4039 (((-787) |#4|) 12 T ELT)) (-1851 (((-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|))) |#4| (-787) (-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|)))) 39 T ELT)) (-4136 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1441 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-3724 ((|#4| |#4| (-660 |#4|)) 54 T ELT)) (-1473 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|)) 96 T ELT)) (-1604 (((-1297) |#4|) 59 T ELT)) (-2499 (((-1297) (-660 |#4|)) 69 T ELT)) (-3027 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577)) 66 T ELT)) (-3888 (((-1297) (-577)) 110 T ELT)) (-2418 (((-660 |#4|) (-660 |#4|)) 104 T ELT)) (-4329 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|)) |#4| (-787)) 31 T ELT)) (-1998 (((-577) |#4|) 109 T ELT)) (-4087 ((|#4| |#4|) 37 T ELT)) (-3334 (((-660 |#4|) (-660 |#4|) (-577) (-577)) 74 T ELT)) (-4063 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577)) 123 T ELT)) (-2755 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2889 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1801 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-3444 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-4440 (((-112) |#2| |#2|) 75 T ELT)) (-3803 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-2179 (((-112) |#2| |#2| |#2| |#2|) 80 T ELT)) (-2112 ((|#4| |#4| (-660 |#4|)) 97 T ELT))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2112 (|#4| |#4| (-660 |#4|))) (-15 -3724 (|#4| |#4| (-660 |#4|))) (-15 -3334 ((-660 |#4|) (-660 |#4|) (-577) (-577))) (-15 -2889 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4440 ((-112) |#2| |#2|)) (-15 -2179 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3803 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3444 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1801 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1473 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|))) (-15 -4087 (|#4| |#4|)) (-15 -1851 ((-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|))) |#4| (-787) (-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|))))) (-15 -1441 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4136 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2418 ((-660 |#4|) (-660 |#4|))) (-15 -1998 ((-577) |#4|)) (-15 -1604 ((-1297) |#4|)) (-15 -3027 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -4063 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -2499 ((-1297) (-660 |#4|))) (-15 -3888 ((-1297) (-577))) (-15 -2755 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4329 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|)) |#4| (-787))) (-15 -4039 ((-787) |#4|))) (-465) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -462)) -((-4039 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-4329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-787)) (|:| -2364 *4))) (-5 *5 (-787)) (-4 *4 (-972 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-2755 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *7)))) (-4063 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *4)))) (-3027 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *4)))) (-1604 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-1998 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-577)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6)))) (-4136 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6)))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-809)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-465)) (-4 *6 (-865)))) (-1851 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 *3)))) (-5 *4 (-787)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *3)))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) (-1473 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-1801 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-787)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-809)) (-4 *6 (-972 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-865)) (-5 *1 (-462 *4 *3 *5 *6)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6)))) (-3803 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-809)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *3)))) (-2179 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5)))) (-4440 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3334 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3724 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2112 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2))))) -(-10 -7 (-15 -2112 (|#4| |#4| (-660 |#4|))) (-15 -3724 (|#4| |#4| (-660 |#4|))) (-15 -3334 ((-660 |#4|) (-660 |#4|) (-577) (-577))) (-15 -2889 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4440 ((-112) |#2| |#2|)) (-15 -2179 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3803 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3444 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1801 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1473 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|))) (-15 -4087 (|#4| |#4|)) (-15 -1851 ((-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|))) |#4| (-787) (-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|))))) (-15 -1441 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4136 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2418 ((-660 |#4|) (-660 |#4|))) (-15 -1998 ((-577) |#4|)) (-15 -1604 ((-1297) |#4|)) (-15 -3027 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -4063 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -2499 ((-1297) (-660 |#4|))) (-15 -3888 ((-1297) (-577))) (-15 -2755 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4329 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-787)) (|:| -2364 |#4|)) |#4| (-787))) (-15 -4039 ((-787) |#4|))) -((-3862 ((|#4| |#4| (-660 |#4|)) 20 (|has| |#1| (-375)) ELT)) (-1481 (((-660 |#4|) (-660 |#4|) (-1183) (-1183)) 46 T ELT) (((-660 |#4|) (-660 |#4|) (-1183)) 45 T ELT) (((-660 |#4|) (-660 |#4|)) 34 T ELT))) -(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1481 ((-660 |#4|) (-660 |#4|))) (-15 -1481 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -1481 ((-660 |#4|) (-660 |#4|) (-1183) (-1183))) (IF (|has| |#1| (-375)) (-15 -3862 (|#4| |#4| (-660 |#4|))) |%noBranch|)) (-465) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -463)) -((-3862 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-375)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-463 *4 *5 *6 *2)))) (-1481 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-463 *4 *5 *6 *7)))) (-1481 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-463 *4 *5 *6 *7)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-463 *3 *4 *5 *6))))) -(-10 -7 (-15 -1481 ((-660 |#4|) (-660 |#4|))) (-15 -1481 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -1481 ((-660 |#4|) (-660 |#4|) (-1183) (-1183))) (IF (|has| |#1| (-375)) (-15 -3862 (|#4| |#4| (-660 |#4|))) |%noBranch|)) -((-3508 (($ $ $) 14 T ELT) (($ (-660 $)) 21 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 46 T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) 22 T ELT))) -(((-464 |#1|) (-10 -8 (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3508 (|#1| (-660 |#1|))) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3543 (|#1| |#1| |#1|))) (-465)) (T -464)) -NIL -(-10 -8 (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3508 (|#1| (-660 |#1|))) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3543 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-454)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-454)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-454)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454))))) +(-13 (-408) (-10 -8 (-15 -3709 ($ (-665 (-341)))) (-15 -3709 ($ (-341))) (-15 -3709 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341)))))) (-15 -3783 ($ (-1297 (-327 (-391))))) (-15 -4335 ((-3 $ "failed") (-1297 (-327 (-391))))) (-15 -3783 ($ (-1297 (-327 (-577))))) (-15 -4335 ((-3 $ "failed") (-1297 (-327 (-577))))) (-15 -3783 ($ (-1297 (-980 (-391))))) (-15 -4335 ((-3 $ "failed") (-1297 (-980 (-391))))) (-15 -3783 ($ (-1297 (-980 (-577))))) (-15 -4335 ((-3 $ "failed") (-1297 (-980 (-577))))) (-15 -3783 ($ (-1297 (-420 (-980 (-391)))))) (-15 -4335 ((-3 $ "failed") (-1297 (-420 (-980 (-391)))))) (-15 -3783 ($ (-1297 (-420 (-980 (-577)))))) (-15 -4335 ((-3 $ "failed") (-1297 (-420 (-980 (-577)))))))) +(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) +((-2358 (((-112)) 18 T ELT)) (-1871 (((-112) (-112)) 19 T ELT)) (-3756 (((-112)) 14 T ELT)) (-2559 (((-112) (-112)) 15 T ELT)) (-1790 (((-112)) 16 T ELT)) (-1734 (((-112) (-112)) 17 T ELT)) (-4094 (((-949) (-949)) 22 T ELT) (((-949)) 21 T ELT)) (-1556 (((-792) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577))))) 52 T ELT)) (-2264 (((-949) (-949)) 24 T ELT) (((-949)) 23 T ELT)) (-1960 (((-2 (|:| -2058 (-577)) (|:| -2127 (-665 |#1|))) |#1|) 94 T ELT)) (-1699 (((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577))))))) 174 T ELT)) (-3414 (((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112)) 207 T ELT)) (-3332 (((-431 |#1|) |#1| (-792) (-792)) 222 T ELT) (((-431 |#1|) |#1| (-665 (-792)) (-792)) 219 T ELT) (((-431 |#1|) |#1| (-665 (-792))) 221 T ELT) (((-431 |#1|) |#1| (-792)) 220 T ELT) (((-431 |#1|) |#1|) 218 T ELT)) (-4193 (((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792) (-112)) 224 T ELT) (((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792)) 225 T ELT) (((-3 |#1| "failed") (-949) |#1| (-665 (-792))) 227 T ELT) (((-3 |#1| "failed") (-949) |#1| (-792)) 226 T ELT) (((-3 |#1| "failed") (-949) |#1|) 228 T ELT)) (-3759 (((-431 |#1|) |#1| (-792) (-792)) 217 T ELT) (((-431 |#1|) |#1| (-665 (-792)) (-792)) 213 T ELT) (((-431 |#1|) |#1| (-665 (-792))) 215 T ELT) (((-431 |#1|) |#1| (-792)) 214 T ELT) (((-431 |#1|) |#1|) 212 T ELT)) (-1483 (((-112) |#1|) 44 T ELT)) (-1967 (((-758 (-792)) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577))))) 99 T ELT)) (-3193 (((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112) (-1132 (-792)) (-792)) 211 T ELT))) +(((-455 |#1|) (-10 -7 (-15 -1699 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))))) (-15 -1967 ((-758 (-792)) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))))) (-15 -2264 ((-949))) (-15 -2264 ((-949) (-949))) (-15 -4094 ((-949))) (-15 -4094 ((-949) (-949))) (-15 -1556 ((-792) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))))) (-15 -1960 ((-2 (|:| -2058 (-577)) (|:| -2127 (-665 |#1|))) |#1|)) (-15 -2358 ((-112))) (-15 -1871 ((-112) (-112))) (-15 -3756 ((-112))) (-15 -2559 ((-112) (-112))) (-15 -1483 ((-112) |#1|)) (-15 -1790 ((-112))) (-15 -1734 ((-112) (-112))) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3759 ((-431 |#1|) |#1| (-792))) (-15 -3759 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -3759 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -3759 ((-431 |#1|) |#1| (-792) (-792))) (-15 -3332 ((-431 |#1|) |#1|)) (-15 -3332 ((-431 |#1|) |#1| (-792))) (-15 -3332 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -3332 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -3332 ((-431 |#1|) |#1| (-792) (-792))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1|)) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-792))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792) (-112))) (-15 -3414 ((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112))) (-15 -3193 ((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112) (-1132 (-792)) (-792)))) (-1273 (-577))) (T -455)) +((-3193 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1132 (-792))) (-5 *6 (-792)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4193 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-4193 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-4193 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-4193 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-792)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-4193 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-949)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-3332 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3332 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3332 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3332 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3332 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3759 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3759 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1790 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1483 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3756 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2358 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1960 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2058 (-577)) (|:| -2127 (-665 *3)))) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3759 *4) (|:| -1597 (-577))))) (-4 *4 (-1273 (-577))) (-5 *2 (-792)) (-5 *1 (-455 *4)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4094 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2264 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3759 *4) (|:| -1597 (-577))))) (-4 *4 (-1273 (-577))) (-5 *2 (-758 (-792))) (-5 *1 (-455 *4)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| *4) (|:| -2243 (-577))))))) (-4 *4 (-1273 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) +(-10 -7 (-15 -1699 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))))) (-15 -1967 ((-758 (-792)) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))))) (-15 -2264 ((-949))) (-15 -2264 ((-949) (-949))) (-15 -4094 ((-949))) (-15 -4094 ((-949) (-949))) (-15 -1556 ((-792) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))))) (-15 -1960 ((-2 (|:| -2058 (-577)) (|:| -2127 (-665 |#1|))) |#1|)) (-15 -2358 ((-112))) (-15 -1871 ((-112) (-112))) (-15 -3756 ((-112))) (-15 -2559 ((-112) (-112))) (-15 -1483 ((-112) |#1|)) (-15 -1790 ((-112))) (-15 -1734 ((-112) (-112))) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3759 ((-431 |#1|) |#1| (-792))) (-15 -3759 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -3759 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -3759 ((-431 |#1|) |#1| (-792) (-792))) (-15 -3332 ((-431 |#1|) |#1|)) (-15 -3332 ((-431 |#1|) |#1| (-792))) (-15 -3332 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -3332 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -3332 ((-431 |#1|) |#1| (-792) (-792))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1|)) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-792))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792))) (-15 -4193 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792) (-112))) (-15 -3414 ((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112))) (-15 -3193 ((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112) (-1132 (-792)) (-792)))) +((-4032 (((-577) |#2|) 52 T ELT) (((-577) |#2| (-792)) 51 T ELT)) (-3590 (((-577) |#2|) 64 T ELT)) (-2421 ((|#3| |#2|) 26 T ELT)) (-2794 ((|#3| |#2| (-949)) 15 T ELT)) (-4166 ((|#3| |#2|) 16 T ELT)) (-2120 ((|#3| |#2|) 9 T ELT)) (-2553 ((|#3| |#2|) 10 T ELT)) (-2200 ((|#3| |#2| (-949)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-3266 (((-577) |#2|) 66 T ELT))) +(((-456 |#1| |#2| |#3|) (-10 -7 (-15 -3266 ((-577) |#2|)) (-15 -2200 (|#3| |#2|)) (-15 -2200 (|#3| |#2| (-949))) (-15 -3590 ((-577) |#2|)) (-15 -4032 ((-577) |#2| (-792))) (-15 -4032 ((-577) |#2|)) (-15 -2794 (|#3| |#2| (-949))) (-15 -2421 (|#3| |#2|)) (-15 -2120 (|#3| |#2|)) (-15 -2553 (|#3| |#2|)) (-15 -4166 (|#3| |#2|))) (-1079) (-1273 |#1|) (-13 (-417) (-1068 |#1|) (-375) (-1232) (-295))) (T -456)) +((-4166 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2553 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2120 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2421 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-4032 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))))) (-4032 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1273 *5)) (-4 *6 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))))) (-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-2200 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-3266 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) +(-10 -7 (-15 -3266 ((-577) |#2|)) (-15 -2200 (|#3| |#2|)) (-15 -2200 (|#3| |#2| (-949))) (-15 -3590 ((-577) |#2|)) (-15 -4032 ((-577) |#2| (-792))) (-15 -4032 ((-577) |#2|)) (-15 -2794 (|#3| |#2| (-949))) (-15 -2421 (|#3| |#2|)) (-15 -2120 (|#3| |#2|)) (-15 -2553 (|#3| |#2|)) (-15 -4166 (|#3| |#2|))) +((-3344 ((|#2| (-1297 |#1|)) 42 T ELT)) (-1562 ((|#2| |#2| |#1|) 58 T ELT)) (-2029 ((|#2| |#2| |#1|) 49 T ELT)) (-2100 ((|#2| |#2|) 44 T ELT)) (-2682 (((-112) |#2|) 32 T ELT)) (-4287 (((-665 |#2|) (-949) (-431 |#2|)) 21 T ELT)) (-4193 ((|#2| (-949) (-431 |#2|)) 25 T ELT)) (-1967 (((-758 (-792)) (-431 |#2|)) 29 T ELT))) +(((-457 |#1| |#2|) (-10 -7 (-15 -2682 ((-112) |#2|)) (-15 -3344 (|#2| (-1297 |#1|))) (-15 -2100 (|#2| |#2|)) (-15 -2029 (|#2| |#2| |#1|)) (-15 -1562 (|#2| |#2| |#1|)) (-15 -1967 ((-758 (-792)) (-431 |#2|))) (-15 -4193 (|#2| (-949) (-431 |#2|))) (-15 -4287 ((-665 |#2|) (-949) (-431 |#2|)))) (-1079) (-1273 |#1|)) (T -457)) +((-4287 (*1 *2 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-431 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-1079)) (-5 *2 (-665 *6)) (-5 *1 (-457 *5 *6)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-431 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-457 *5 *2)) (-4 *5 (-1079)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-431 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1079)) (-5 *2 (-758 (-792))) (-5 *1 (-457 *4 *5)))) (-1562 (*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) (-2029 (*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1079)) (-4 *2 (-1273 *4)) (-5 *1 (-457 *4 *2)))) (-2682 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -2682 ((-112) |#2|)) (-15 -3344 (|#2| (-1297 |#1|))) (-15 -2100 (|#2| |#2|)) (-15 -2029 (|#2| |#2| |#1|)) (-15 -1562 (|#2| |#2| |#1|)) (-15 -1967 ((-758 (-792)) (-431 |#2|))) (-15 -4193 (|#2| (-949) (-431 |#2|))) (-15 -4287 ((-665 |#2|) (-949) (-431 |#2|)))) +((-3936 (((-792)) 59 T ELT)) (-3312 (((-792)) 29 (|has| |#1| (-417)) ELT) (((-792) (-792)) 28 (|has| |#1| (-417)) ELT)) (-1890 (((-577) |#1|) 25 (|has| |#1| (-417)) ELT)) (-3639 (((-577) |#1|) 27 (|has| |#1| (-417)) ELT)) (-2567 (((-792)) 58 T ELT) (((-792) (-792)) 57 T ELT)) (-2908 ((|#1| (-792) (-577)) 37 T ELT)) (-1973 (((-1302)) 61 T ELT))) +(((-458 |#1|) (-10 -7 (-15 -2908 (|#1| (-792) (-577))) (-15 -2567 ((-792) (-792))) (-15 -2567 ((-792))) (-15 -3936 ((-792))) (-15 -1973 ((-1302))) (IF (|has| |#1| (-417)) (PROGN (-15 -3639 ((-577) |#1|)) (-15 -1890 ((-577) |#1|)) (-15 -3312 ((-792) (-792))) (-15 -3312 ((-792)))) |%noBranch|)) (-1079)) (T -458)) +((-3312 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-1890 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-3639 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-1973 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-3936 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-2567 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1079))))) +(-10 -7 (-15 -2908 (|#1| (-792) (-577))) (-15 -2567 ((-792) (-792))) (-15 -2567 ((-792))) (-15 -3936 ((-792))) (-15 -1973 ((-1302))) (IF (|has| |#1| (-417)) (PROGN (-15 -3639 ((-577) |#1|)) (-15 -1890 ((-577) |#1|)) (-15 -3312 ((-792) (-792))) (-15 -3312 ((-792)))) |%noBranch|)) +((-2826 (((-665 (-577)) (-577)) 76 T ELT)) (-3567 (((-112) (-171 (-577))) 82 T ELT)) (-3759 (((-431 (-171 (-577))) (-171 (-577))) 75 T ELT))) +(((-459) (-10 -7 (-15 -3759 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -2826 ((-665 (-577)) (-577))) (-15 -3567 ((-112) (-171 (-577)))))) (T -459)) +((-3567 (*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) (-2826 (*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-459)) (-5 *3 (-577)))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) (-5 *3 (-171 (-577)))))) +(-10 -7 (-15 -3759 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -2826 ((-665 (-577)) (-577))) (-15 -3567 ((-112) (-171 (-577))))) +((-1916 ((|#4| |#4| (-665 |#4|)) 82 T ELT)) (-2563 (((-665 |#4|) (-665 |#4|) (-1188) (-1188)) 22 T ELT) (((-665 |#4|) (-665 |#4|) (-1188)) 21 T ELT) (((-665 |#4|) (-665 |#4|)) 13 T ELT))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 (|#4| |#4| (-665 |#4|))) (-15 -2563 ((-665 |#4|) (-665 |#4|))) (-15 -2563 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -2563 ((-665 |#4|) (-665 |#4|) (-1188) (-1188)))) (-318) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -460)) +((-2563 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2563 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2563 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-460 *3 *4 *5 *6)))) (-1916 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *2))))) +(-10 -7 (-15 -1916 (|#4| |#4| (-665 |#4|))) (-15 -2563 ((-665 |#4|) (-665 |#4|))) (-15 -2563 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -2563 ((-665 |#4|) (-665 |#4|) (-1188) (-1188)))) +((-2084 (((-665 (-665 |#4|)) (-665 |#4|) (-112)) 89 T ELT) (((-665 (-665 |#4|)) (-665 |#4|)) 88 T ELT) (((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|) (-112)) 82 T ELT) (((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|)) 83 T ELT)) (-2792 (((-665 (-665 |#4|)) (-665 |#4|) (-112)) 55 T ELT) (((-665 (-665 |#4|)) (-665 |#4|)) 77 T ELT))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2792 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -2792 ((-665 (-665 |#4|)) (-665 |#4|) (-112))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|) (-112))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|) (-112)))) (-13 (-318) (-148)) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -461)) +((-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) (-2084 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-2084 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) (-2084 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) (-2792 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) +(-10 -7 (-15 -2792 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -2792 ((-665 (-665 |#4|)) (-665 |#4|) (-112))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|) (-112))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -2084 ((-665 (-665 |#4|)) (-665 |#4|) (-112)))) +((-4079 (((-792) |#4|) 12 T ELT)) (-2078 (((-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|))) |#4| (-792) (-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|)))) 39 T ELT)) (-1517 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-3274 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-2659 ((|#4| |#4| (-665 |#4|)) 54 T ELT)) (-4204 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-665 |#4|)) 96 T ELT)) (-2094 (((-1302) |#4|) 59 T ELT)) (-4072 (((-1302) (-665 |#4|)) 69 T ELT)) (-1667 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577)) 66 T ELT)) (-3162 (((-1302) (-577)) 110 T ELT)) (-4285 (((-665 |#4|) (-665 |#4|)) 104 T ELT)) (-2314 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|)) |#4| (-792)) 31 T ELT)) (-2807 (((-577) |#4|) 109 T ELT)) (-2677 ((|#4| |#4|) 37 T ELT)) (-1664 (((-665 |#4|) (-665 |#4|) (-577) (-577)) 74 T ELT)) (-2121 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577)) 123 T ELT)) (-2272 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1622 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-3050 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1834 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-4259 (((-112) |#2| |#2|) 75 T ELT)) (-1618 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-3324 (((-112) |#2| |#2| |#2| |#2|) 80 T ELT)) (-3579 ((|#4| |#4| (-665 |#4|)) 97 T ELT))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3579 (|#4| |#4| (-665 |#4|))) (-15 -2659 (|#4| |#4| (-665 |#4|))) (-15 -1664 ((-665 |#4|) (-665 |#4|) (-577) (-577))) (-15 -1622 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4259 ((-112) |#2| |#2|)) (-15 -3324 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1618 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1834 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3050 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4204 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-665 |#4|))) (-15 -2677 (|#4| |#4|)) (-15 -2078 ((-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|))) |#4| (-792) (-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|))))) (-15 -3274 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1517 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4285 ((-665 |#4|) (-665 |#4|))) (-15 -2807 ((-577) |#4|)) (-15 -2094 ((-1302) |#4|)) (-15 -1667 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -2121 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -4072 ((-1302) (-665 |#4|))) (-15 -3162 ((-1302) (-577))) (-15 -2272 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2314 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|)) |#4| (-792))) (-15 -4079 ((-792) |#4|))) (-465) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -462)) +((-4079 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-792)) (|:| -4181 *4))) (-5 *5 (-792)) (-4 *4 (-977 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-2272 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3162 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2121 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *4)))) (-1667 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2094 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-577)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-1517 (*1 *2 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-814)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-465)) (-4 *6 (-870)))) (-2078 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 *3)))) (-5 *4 (-792)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *3)))) (-2677 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) (-4204 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-3050 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-792)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-814)) (-4 *6 (-977 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-870)) (-5 *1 (-462 *4 *3 *5 *6)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-814)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *3)))) (-3324 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5)))) (-4259 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-1664 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2659 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2)))) (-3579 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) +(-10 -7 (-15 -3579 (|#4| |#4| (-665 |#4|))) (-15 -2659 (|#4| |#4| (-665 |#4|))) (-15 -1664 ((-665 |#4|) (-665 |#4|) (-577) (-577))) (-15 -1622 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4259 ((-112) |#2| |#2|)) (-15 -3324 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1618 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1834 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3050 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4204 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-665 |#4|))) (-15 -2677 (|#4| |#4|)) (-15 -2078 ((-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|))) |#4| (-792) (-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|))))) (-15 -3274 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1517 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4285 ((-665 |#4|) (-665 |#4|))) (-15 -2807 ((-577) |#4|)) (-15 -2094 ((-1302) |#4|)) (-15 -1667 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -2121 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -4072 ((-1302) (-665 |#4|))) (-15 -3162 ((-1302) (-577))) (-15 -2272 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2314 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-792)) (|:| -4181 |#4|)) |#4| (-792))) (-15 -4079 ((-792) |#4|))) +((-2070 ((|#4| |#4| (-665 |#4|)) 20 (|has| |#1| (-375)) ELT)) (-1332 (((-665 |#4|) (-665 |#4|) (-1188) (-1188)) 46 T ELT) (((-665 |#4|) (-665 |#4|) (-1188)) 45 T ELT) (((-665 |#4|) (-665 |#4|)) 34 T ELT))) +(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1332 ((-665 |#4|) (-665 |#4|))) (-15 -1332 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -1332 ((-665 |#4|) (-665 |#4|) (-1188) (-1188))) (IF (|has| |#1| (-375)) (-15 -2070 (|#4| |#4| (-665 |#4|))) |%noBranch|)) (-465) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -463)) +((-2070 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-375)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-463 *4 *5 *6 *2)))) (-1332 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-463 *4 *5 *6 *7)))) (-1332 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-463 *4 *5 *6 *7)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-463 *3 *4 *5 *6))))) +(-10 -7 (-15 -1332 ((-665 |#4|) (-665 |#4|))) (-15 -1332 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -1332 ((-665 |#4|) (-665 |#4|) (-1188) (-1188))) (IF (|has| |#1| (-375)) (-15 -2070 (|#4| |#4| (-665 |#4|))) |%noBranch|)) +((-3606 (($ $ $) 14 T ELT) (($ (-665 $)) 21 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 46 T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) 22 T ELT))) +(((-464 |#1|) (-10 -8 (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -3606 (|#1| (-665 |#1|))) (-15 -3606 (|#1| |#1| |#1|)) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3642 (|#1| |#1| |#1|))) (-465)) (T -464)) +NIL +(-10 -8 (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -3606 (|#1| (-665 |#1|))) (-15 -3606 (|#1| |#1| |#1|)) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3642 (|#1| |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-465) (-141)) (T -465)) -((-3543 (*1 *1 *1 *1) (-4 *1 (-465))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) (-3508 (*1 *1 *1 *1) (-4 *1 (-465))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) (-3502 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-465))))) -(-13 (-569) (-10 -8 (-15 -3543 ($ $ $)) (-15 -3543 ($ (-660 $))) (-15 -3508 ($ $ $)) (-15 -3508 ($ (-660 $))) (-15 -3502 ((-1197 $) (-1197 $) (-1197 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3426 (((-3 $ "failed")) NIL (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2979 (((-1292 (-705 (-420 (-975 |#1|)))) (-1292 $)) NIL T ELT) (((-1292 (-705 (-420 (-975 |#1|))))) NIL T ELT)) (-4380 (((-1292 $)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL T ELT)) (-3638 (((-3 $ "failed")) NIL (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-2650 (((-705 (-420 (-975 |#1|))) (-1292 $)) NIL T ELT) (((-705 (-420 (-975 |#1|)))) NIL T ELT)) (-4204 (((-420 (-975 |#1|)) $) NIL T ELT)) (-1634 (((-705 (-420 (-975 |#1|))) $ (-1292 $)) NIL T ELT) (((-705 (-420 (-975 |#1|))) $) NIL T ELT)) (-3696 (((-3 $ "failed") $) NIL (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-3403 (((-1197 (-975 (-420 (-975 |#1|))))) NIL (|has| (-420 (-975 |#1|)) (-375)) ELT) (((-1197 (-420 (-975 |#1|)))) 90 (|has| |#1| (-569)) ELT)) (-1647 (($ $ (-944)) NIL T ELT)) (-1777 (((-420 (-975 |#1|)) $) NIL T ELT)) (-3282 (((-1197 (-420 (-975 |#1|))) $) 88 (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-3927 (((-420 (-975 |#1|)) (-1292 $)) NIL T ELT) (((-420 (-975 |#1|))) NIL T ELT)) (-3749 (((-1197 (-420 (-975 |#1|))) $) NIL T ELT)) (-2214 (((-112)) NIL T ELT)) (-1911 (($ (-1292 (-420 (-975 |#1|))) (-1292 $)) 114 T ELT) (($ (-1292 (-420 (-975 |#1|)))) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-3503 (((-944)) NIL T ELT)) (-1825 (((-112)) NIL T ELT)) (-4254 (($ $ (-944)) NIL T ELT)) (-4041 (((-112)) NIL T ELT)) (-1580 (((-112)) NIL T ELT)) (-1451 (((-112)) NIL T ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL T ELT)) (-3370 (((-3 $ "failed")) NIL (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-4278 (((-705 (-420 (-975 |#1|))) (-1292 $)) NIL T ELT) (((-705 (-420 (-975 |#1|)))) NIL T ELT)) (-2677 (((-420 (-975 |#1|)) $) NIL T ELT)) (-3141 (((-705 (-420 (-975 |#1|))) $ (-1292 $)) NIL T ELT) (((-705 (-420 (-975 |#1|))) $) NIL T ELT)) (-3473 (((-3 $ "failed") $) NIL (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-3287 (((-1197 (-975 (-420 (-975 |#1|))))) NIL (|has| (-420 (-975 |#1|)) (-375)) ELT) (((-1197 (-420 (-975 |#1|)))) 89 (|has| |#1| (-569)) ELT)) (-1954 (($ $ (-944)) NIL T ELT)) (-4419 (((-420 (-975 |#1|)) $) NIL T ELT)) (-3321 (((-1197 (-420 (-975 |#1|))) $) 85 (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-3504 (((-420 (-975 |#1|)) (-1292 $)) NIL T ELT) (((-420 (-975 |#1|))) NIL T ELT)) (-3404 (((-1197 (-420 (-975 |#1|))) $) NIL T ELT)) (-4176 (((-112)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3423 (((-112)) NIL T ELT)) (-2742 (((-112)) NIL T ELT)) (-3213 (((-112)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3759 (((-420 (-975 |#1|)) $ $) 76 (|has| |#1| (-569)) ELT)) (-1658 (((-420 (-975 |#1|)) $) 100 (|has| |#1| (-569)) ELT)) (-3826 (((-420 (-975 |#1|)) $) 104 (|has| |#1| (-569)) ELT)) (-1537 (((-1197 (-420 (-975 |#1|))) $) 94 (|has| |#1| (-569)) ELT)) (-2278 (((-420 (-975 |#1|))) 77 (|has| |#1| (-569)) ELT)) (-3466 (((-420 (-975 |#1|)) $ $) 69 (|has| |#1| (-569)) ELT)) (-2451 (((-420 (-975 |#1|)) $) 99 (|has| |#1| (-569)) ELT)) (-3780 (((-420 (-975 |#1|)) $) 103 (|has| |#1| (-569)) ELT)) (-1407 (((-1197 (-420 (-975 |#1|))) $) 93 (|has| |#1| (-569)) ELT)) (-3540 (((-420 (-975 |#1|))) 73 (|has| |#1| (-569)) ELT)) (-1904 (($) 110 T ELT) (($ (-1201)) 118 T ELT) (($ (-1292 (-1201))) 117 T ELT) (($ (-1292 $)) 105 T ELT) (($ (-1201) (-1292 $)) 116 T ELT) (($ (-1292 (-1201)) (-1292 $)) 115 T ELT)) (-3532 (((-112)) NIL T ELT)) (-2837 (((-420 (-975 |#1|)) $ (-577)) NIL T ELT)) (-2729 (((-1292 (-420 (-975 |#1|))) $ (-1292 $)) 107 T ELT) (((-705 (-420 (-975 |#1|))) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 (-420 (-975 |#1|))) $) 43 T ELT) (((-705 (-420 (-975 |#1|))) (-1292 $)) NIL T ELT)) (-2176 (((-1292 (-420 (-975 |#1|))) $) NIL T ELT) (($ (-1292 (-420 (-975 |#1|)))) 40 T ELT)) (-2518 (((-660 (-975 (-420 (-975 |#1|)))) (-1292 $)) NIL T ELT) (((-660 (-975 (-420 (-975 |#1|))))) NIL T ELT) (((-660 (-975 |#1|)) (-1292 $)) 108 (|has| |#1| (-569)) ELT) (((-660 (-975 |#1|))) 109 (|has| |#1| (-569)) ELT)) (-3823 (($ $ $) NIL T ELT)) (-4244 (((-112)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-1292 (-420 (-975 |#1|)))) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) 65 T ELT)) (-2769 (((-660 (-1292 (-420 (-975 |#1|))))) NIL (|has| (-420 (-975 |#1|)) (-569)) ELT)) (-2509 (($ $ $ $) NIL T ELT)) (-4429 (((-112)) NIL T ELT)) (-1640 (($ (-705 (-420 (-975 |#1|))) $) NIL T ELT)) (-3223 (($ $ $) NIL T ELT)) (-4347 (((-112)) NIL T ELT)) (-2791 (((-112)) NIL T ELT)) (-3632 (((-112)) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) 106 T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 61 T ELT) (($ $ (-420 (-975 |#1|))) NIL T ELT) (($ (-420 (-975 |#1|)) $) NIL T ELT) (($ (-1167 |#2| (-420 (-975 |#1|))) $) NIL T ELT))) -(((-466 |#1| |#2| |#3| |#4|) (-13 (-430 (-420 (-975 |#1|))) (-664 (-1167 |#2| (-420 (-975 |#1|)))) (-10 -8 (-15 -3603 ($ (-1292 (-420 (-975 |#1|))))) (-15 -1751 ((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed"))) (-15 -1724 ((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed"))) (-15 -1904 ($)) (-15 -1904 ($ (-1201))) (-15 -1904 ($ (-1292 (-1201)))) (-15 -1904 ($ (-1292 $))) (-15 -1904 ($ (-1201) (-1292 $))) (-15 -1904 ($ (-1292 (-1201)) (-1292 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -3287 ((-1197 (-420 (-975 |#1|))))) (-15 -1407 ((-1197 (-420 (-975 |#1|))) $)) (-15 -2451 ((-420 (-975 |#1|)) $)) (-15 -3780 ((-420 (-975 |#1|)) $)) (-15 -3403 ((-1197 (-420 (-975 |#1|))))) (-15 -1537 ((-1197 (-420 (-975 |#1|))) $)) (-15 -1658 ((-420 (-975 |#1|)) $)) (-15 -3826 ((-420 (-975 |#1|)) $)) (-15 -3466 ((-420 (-975 |#1|)) $ $)) (-15 -3540 ((-420 (-975 |#1|)))) (-15 -3759 ((-420 (-975 |#1|)) $ $)) (-15 -2278 ((-420 (-975 |#1|)))) (-15 -2518 ((-660 (-975 |#1|)) (-1292 $))) (-15 -2518 ((-660 (-975 |#1|))))) |%noBranch|))) (-174) (-944) (-660 (-1201)) (-1292 (-705 |#1|))) (T -466)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 *3)))) (-4 *3 (-174)) (-14 *6 (-1292 (-705 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))))) (-1751 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -2559 (-660 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-1724 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -2559 (-660 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-1904 (*1 *1) (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-944)) (-14 *4 (-660 (-1201))) (-14 *5 (-1292 (-705 *2))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 *2)) (-14 *6 (-1292 (-705 *3))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1292 (-1201))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1292 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) (-14 *6 (-660 *2)) (-14 *7 (-1292 (-705 *4))))) (-1904 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 (-1201))) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4))))) (-3287 (*1 *2) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2451 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-3403 (*1 *2) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-3466 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-3540 (*1 *2) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-3759 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2278 (*1 *2) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *2 (-660 (-975 *4))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) (-14 *5 (-944)) (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4))))) (-2518 (*1 *2) (-12 (-5 *2 (-660 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(-13 (-430 (-420 (-975 |#1|))) (-664 (-1167 |#2| (-420 (-975 |#1|)))) (-10 -8 (-15 -3603 ($ (-1292 (-420 (-975 |#1|))))) (-15 -1751 ((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed"))) (-15 -1724 ((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed"))) (-15 -1904 ($)) (-15 -1904 ($ (-1201))) (-15 -1904 ($ (-1292 (-1201)))) (-15 -1904 ($ (-1292 $))) (-15 -1904 ($ (-1201) (-1292 $))) (-15 -1904 ($ (-1292 (-1201)) (-1292 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -3287 ((-1197 (-420 (-975 |#1|))))) (-15 -1407 ((-1197 (-420 (-975 |#1|))) $)) (-15 -2451 ((-420 (-975 |#1|)) $)) (-15 -3780 ((-420 (-975 |#1|)) $)) (-15 -3403 ((-1197 (-420 (-975 |#1|))))) (-15 -1537 ((-1197 (-420 (-975 |#1|))) $)) (-15 -1658 ((-420 (-975 |#1|)) $)) (-15 -3826 ((-420 (-975 |#1|)) $)) (-15 -3466 ((-420 (-975 |#1|)) $ $)) (-15 -3540 ((-420 (-975 |#1|)))) (-15 -3759 ((-420 (-975 |#1|)) $ $)) (-15 -2278 ((-420 (-975 |#1|)))) (-15 -2518 ((-660 (-975 |#1|)) (-1292 $))) (-15 -2518 ((-660 (-975 |#1|))))) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 18 T ELT)) (-3206 (((-660 (-882 |#1|)) $) 87 T ELT)) (-3024 (((-1197 $) $ (-882 |#1|)) 52 T ELT) (((-1197 |#2|) $) 138 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#2| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3036 (((-787) $) 27 T ELT) (((-787) $ (-660 (-882 |#1|))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 50 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-882 |#1|) "failed") $) NIL T ELT)) (-2155 ((|#2| $) 48 T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-882 |#1|) $) NIL T ELT)) (-2653 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-1835 (($ $ (-660 (-577))) 93 T ELT)) (-3391 (($ $) 80 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#2| (-932)) ELT)) (-3367 (($ $ |#2| |#3| $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) 65 T ELT)) (-3194 (($ (-1197 |#2|) (-882 |#1|)) 143 T ELT) (($ (-1197 $) (-882 |#1|)) 58 T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) 68 T ELT)) (-3180 (($ |#2| |#3|) 35 T ELT) (($ $ (-882 |#1|) (-787)) 37 T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-882 |#1|)) NIL T ELT)) (-2643 ((|#3| $) NIL T ELT) (((-787) $ (-882 |#1|)) 56 T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) 63 T ELT)) (-4373 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4038 (((-3 (-882 |#1|) "failed") $) 45 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#2| $) 47 T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) 46 T ELT)) (-3340 ((|#2| $) 136 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) 149 (|has| |#2| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#2| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-882 |#1|) |#2|) 100 T ELT) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) 106 T ELT) (($ $ (-882 |#1|) $) 98 T ELT) (($ $ (-660 (-882 |#1|)) (-660 $)) 124 T ELT)) (-4447 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3362 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) 59 T ELT)) (-3616 ((|#3| $) 79 T ELT) (((-787) $ (-882 |#1|)) 42 T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) 62 T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))) ELT)) (-2240 ((|#2| $) 145 (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))) ELT)) (-3603 (((-880) $) 173 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 99 T ELT) (($ (-882 |#1|)) 39 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ |#3|) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#2| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2754 (($) 22 T CONST)) (-2767 (($) 31 T CONST)) (-2136 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#2|) 76 (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 131 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 129 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) -(((-467 |#1| |#2| |#3|) (-13 (-972 |#2| |#3| (-882 |#1|)) (-10 -8 (-15 -1835 ($ $ (-660 (-577)))))) (-660 (-1201)) (-1074) (-244 (-3501 |#1|) (-787))) (T -467)) -((-1835 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-14 *3 (-660 (-1201))) (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-244 (-3501 *3) (-787)))))) -(-13 (-972 |#2| |#3| (-882 |#1|)) (-10 -8 (-15 -1835 ($ $ (-660 (-577)))))) -((-3579 (((-112) |#1| (-660 |#2|)) 91 T ELT)) (-3233 (((-3 (-1292 (-660 |#2|)) "failed") (-787) |#1| (-660 |#2|)) 100 T ELT)) (-1780 (((-3 (-660 |#2|) "failed") |#2| |#1| (-1292 (-660 |#2|))) 102 T ELT)) (-2871 ((|#2| |#2| |#1|) 35 T ELT)) (-3500 (((-787) |#2| (-660 |#2|)) 26 T ELT))) -(((-468 |#1| |#2|) (-10 -7 (-15 -2871 (|#2| |#2| |#1|)) (-15 -3500 ((-787) |#2| (-660 |#2|))) (-15 -3233 ((-3 (-1292 (-660 |#2|)) "failed") (-787) |#1| (-660 |#2|))) (-15 -1780 ((-3 (-660 |#2|) "failed") |#2| |#1| (-1292 (-660 |#2|)))) (-15 -3579 ((-112) |#1| (-660 |#2|)))) (-318) (-1268 |#1|)) (T -468)) -((-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *5)) (-4 *5 (-1268 *3)) (-4 *3 (-318)) (-5 *2 (-112)) (-5 *1 (-468 *3 *5)))) (-1780 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1292 (-660 *3))) (-4 *4 (-318)) (-5 *2 (-660 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1268 *4)))) (-3233 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-787)) (-4 *4 (-318)) (-4 *6 (-1268 *4)) (-5 *2 (-1292 (-660 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-660 *6)))) (-3500 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-318)) (-5 *2 (-787)) (-5 *1 (-468 *5 *3)))) (-2871 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1268 *3))))) -(-10 -7 (-15 -2871 (|#2| |#2| |#1|)) (-15 -3500 ((-787) |#2| (-660 |#2|))) (-15 -3233 ((-3 (-1292 (-660 |#2|)) "failed") (-787) |#1| (-660 |#2|))) (-15 -1780 ((-3 (-660 |#2|) "failed") |#2| |#1| (-1292 (-660 |#2|)))) (-15 -3579 ((-112) |#1| (-660 |#2|)))) -((-3056 (((-431 |#5|) |#5|) 24 T ELT))) -(((-469 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3056 ((-431 |#5|) |#5|))) (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201))))) (-809) (-569) (-569) (-972 |#4| |#2| |#1|)) (T -469)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201)))))) (-4 *5 (-809)) (-4 *7 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-972 *7 *5 *4))))) -(-10 -7 (-15 -3056 ((-431 |#5|) |#5|))) -((-2638 ((|#3|) 38 T ELT)) (-3502 (((-1197 |#4|) (-1197 |#4|) (-1197 |#4|)) 34 T ELT))) -(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3502 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -2638 (|#3|))) (-809) (-865) (-932) (-972 |#3| |#1| |#2|)) (T -470)) -((-2638 (*1 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-972 *2 *3 *4)))) (-3502 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-932)) (-5 *1 (-470 *3 *4 *5 *6))))) -(-10 -7 (-15 -3502 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -2638 (|#3|))) -((-3056 (((-431 (-1197 |#1|)) (-1197 |#1|)) 43 T ELT))) -(((-471 |#1|) (-10 -7 (-15 -3056 ((-431 (-1197 |#1|)) (-1197 |#1|)))) (-318)) (T -471)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1197 *4))) (-5 *1 (-471 *4)) (-5 *3 (-1197 *4))))) -(-10 -7 (-15 -3056 ((-431 (-1197 |#1|)) (-1197 |#1|)))) -((-3268 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-787))) 44 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-787))) 43 T ELT) (((-52) |#2| (-1201) (-305 |#2|)) 36 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 29 T ELT)) (-2857 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 88 T ELT) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 87 T ELT) (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577))) 86 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577))) 85 T ELT) (((-52) |#2| (-1201) (-305 |#2|)) 80 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 79 T ELT)) (-3293 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 74 T ELT) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 72 T ELT)) (-3281 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577))) 51 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577))) 50 T ELT))) -(((-472 |#1| |#2|) (-10 -7 (-15 -3268 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3268 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -3268 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-787)))) (-15 -3268 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-787)))) (-15 -3281 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -3281 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -3293 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -3293 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -2857 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -2857 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -2857 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -2857 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -2857 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -2857 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))))) (-13 (-569) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -472)) -((-2857 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-2857 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-2857 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-2857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) (-4 *7 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-2857 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6)))) (-3293 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-3293 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-3281 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3281 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) (-4 *7 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3268 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-787))) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3268 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-787))) (-4 *7 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6))))) -(-10 -7 (-15 -3268 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3268 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -3268 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-787)))) (-15 -3268 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-787)))) (-15 -3281 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -3281 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -3293 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -3293 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -2857 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -2857 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -2857 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -2857 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -2857 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -2857 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))))) -((-2871 ((|#2| |#2| |#1|) 15 T ELT)) (-4125 (((-660 |#2|) |#2| (-660 |#2|) |#1| (-944)) 82 T ELT)) (-2264 (((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-944)) 72 T ELT))) -(((-473 |#1| |#2|) (-10 -7 (-15 -2264 ((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-944))) (-15 -4125 ((-660 |#2|) |#2| (-660 |#2|) |#1| (-944))) (-15 -2871 (|#2| |#2| |#1|))) (-318) (-1268 |#1|)) (T -473)) -((-2871 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1268 *3)))) (-4125 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-660 *3)) (-5 *5 (-944)) (-4 *3 (-1268 *4)) (-4 *4 (-318)) (-5 *1 (-473 *4 *3)))) (-2264 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-944)) (-4 *5 (-318)) (-4 *3 (-1268 *5)) (-5 *2 (-2 (|:| |plist| (-660 *3)) (|:| |modulo| *5))) (-5 *1 (-473 *5 *3)) (-5 *4 (-660 *3))))) -(-10 -7 (-15 -2264 ((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-944))) (-15 -4125 ((-660 |#2|) |#2| (-660 |#2|) |#1| (-944))) (-15 -2871 (|#2| |#2| |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 28 T ELT)) (-3303 (($ |#3|) 25 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) 32 T ELT)) (-2731 (($ |#2| |#4| $) 33 T ELT)) (-3180 (($ |#2| (-729 |#3| |#4| |#5|)) 24 T ELT)) (-3354 (((-729 |#3| |#4| |#5|) $) 15 T ELT)) (-3187 ((|#3| $) 19 T ELT)) (-1834 ((|#4| $) 17 T ELT)) (-3365 ((|#2| $) 29 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-1438 (($ |#2| |#3| |#4|) 26 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 36 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 34 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-474 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-733 |#6|) (-733 |#2|) (-10 -8 (-15 -3365 (|#2| $)) (-15 -3354 ((-729 |#3| |#4| |#5|) $)) (-15 -1834 (|#4| $)) (-15 -3187 (|#3| $)) (-15 -3391 ($ $)) (-15 -3180 ($ |#2| (-729 |#3| |#4| |#5|))) (-15 -3303 ($ |#3|)) (-15 -1438 ($ |#2| |#3| |#4|)) (-15 -2731 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-660 (-1201)) (-174) (-865) (-244 (-3501 |#1|) (-787)) (-1 (-112) (-2 (|:| -3251 |#3|) (|:| -1527 |#4|)) (-2 (|:| -3251 |#3|) (|:| -1527 |#4|))) (-972 |#2| |#4| (-882 |#1|))) (T -474)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *6 (-244 (-3501 *3) (-787))) (-14 *7 (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *6)) (-2 (|:| -3251 *5) (|:| -1527 *6)))) (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-865)) (-4 *2 (-972 *4 *6 (-882 *3))))) (-3365 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *5 (-244 (-3501 *3) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3251 *4) (|:| -1527 *5)) (-2 (|:| -3251 *4) (|:| -1527 *5)))) (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-865)) (-4 *7 (-972 *2 *5 (-882 *3))))) (-3354 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *6 (-244 (-3501 *3) (-787))) (-14 *7 (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *6)) (-2 (|:| -3251 *5) (|:| -1527 *6)))) (-5 *2 (-729 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) (-4 *5 (-865)) (-4 *8 (-972 *4 *6 (-882 *3))))) (-1834 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *2)) (-2 (|:| -3251 *5) (|:| -1527 *2)))) (-4 *2 (-244 (-3501 *3) (-787))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) (-4 *5 (-865)) (-4 *7 (-972 *4 *2 (-882 *3))))) (-3187 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *5 (-244 (-3501 *3) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *5)) (-2 (|:| -3251 *2) (|:| -1527 *5)))) (-4 *2 (-865)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *7 (-972 *4 *5 (-882 *3))))) (-3391 (*1 *1 *1) (-12 (-14 *2 (-660 (-1201))) (-4 *3 (-174)) (-4 *5 (-244 (-3501 *2) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3251 *4) (|:| -1527 *5)) (-2 (|:| -3251 *4) (|:| -1527 *5)))) (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-865)) (-4 *7 (-972 *3 *5 (-882 *2))))) (-3180 (*1 *1 *2 *3) (-12 (-5 *3 (-729 *5 *6 *7)) (-4 *5 (-865)) (-4 *6 (-244 (-3501 *4) (-787))) (-14 *7 (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *6)) (-2 (|:| -3251 *5) (|:| -1527 *6)))) (-14 *4 (-660 (-1201))) (-4 *2 (-174)) (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-972 *2 *6 (-882 *4))))) (-3303 (*1 *1 *2) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *5 (-244 (-3501 *3) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *5)) (-2 (|:| -3251 *2) (|:| -1527 *5)))) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-865)) (-4 *7 (-972 *4 *5 (-882 *3))))) (-1438 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-660 (-1201))) (-4 *2 (-174)) (-4 *4 (-244 (-3501 *5) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3251 *3) (|:| -1527 *4)) (-2 (|:| -3251 *3) (|:| -1527 *4)))) (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-865)) (-4 *7 (-972 *2 *4 (-882 *5))))) (-2731 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-660 (-1201))) (-4 *2 (-174)) (-4 *3 (-244 (-3501 *4) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *3)) (-2 (|:| -3251 *5) (|:| -1527 *3)))) (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-865)) (-4 *7 (-972 *2 *3 (-882 *4)))))) -(-13 (-733 |#6|) (-733 |#2|) (-10 -8 (-15 -3365 (|#2| $)) (-15 -3354 ((-729 |#3| |#4| |#5|) $)) (-15 -1834 (|#4| $)) (-15 -3187 (|#3| $)) (-15 -3391 ($ $)) (-15 -3180 ($ |#2| (-729 |#3| |#4| |#5|))) (-15 -3303 ($ |#3|)) (-15 -1438 ($ |#2| |#3| |#4|)) (-15 -2731 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3615 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-475 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3615 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-809) (-865) (-569) (-972 |#3| |#1| |#2|) (-13 (-1063 (-420 (-577))) (-375) (-10 -8 (-15 -3603 ($ |#4|)) (-15 -2781 (|#4| $)) (-15 -2797 (|#4| $))))) (T -475)) -((-3615 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-865)) (-4 *5 (-809)) (-4 *6 (-569)) (-4 *7 (-972 *6 *5 *3)) (-5 *1 (-475 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1063 (-420 (-577))) (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $)))))))) -(-10 -7 (-15 -3615 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3206 (((-660 |#3|) $) 41 T ELT)) (-1905 (((-112) $) NIL T ELT)) (-1421 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3730 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-4046 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) 49 T ELT)) (-2155 (($ (-660 |#4|)) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-3920 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)) ELT)) (-1940 ((|#3| $) 47 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#4|) $) 14 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-1365 (((-660 |#3|) $) NIL T ELT)) (-2639 (((-112) |#3| $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 39 T ELT)) (-2693 (($) 17 T ELT)) (-1452 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 16 T ELT)) (-2176 (((-549) $) NIL (|has| |#4| (-627 (-549))) ELT) (($ (-660 |#4|)) 51 T ELT)) (-3614 (($ (-660 |#4|)) 13 T ELT)) (-3620 (($ $ |#3|) NIL T ELT)) (-2003 (($ $ |#3|) NIL T ELT)) (-3344 (($ $ |#3|) NIL T ELT)) (-3603 (((-880) $) 38 T ELT) (((-660 |#4|) $) 50 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 30 T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-476 |#1| |#2| |#3| |#4|) (-13 (-1001 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2176 ($ (-660 |#4|))) (-6 -4470) (-6 -4471))) (-1074) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -476)) -((-2176 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-476 *3 *4 *5 *6))))) -(-13 (-1001 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2176 ($ (-660 |#4|))) (-6 -4470) (-6 -4471))) -((-2754 (($) 11 T ELT)) (-2767 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2767 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2754 (|#1|))) (-478 |#2| |#3|) (-174) (-23)) (T -477)) -NIL -(-10 -8 (-15 -2767 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2754 (|#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2784 (((-3 |#1| "failed") $) 27 T ELT)) (-2155 ((|#1| $) 28 T ELT)) (-1439 (($ $ $) 24 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3616 ((|#2| $) 20 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ |#1|) 26 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 25 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) +((-3642 (*1 *1 *1 *1) (-4 *1 (-465))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) (-3606 (*1 *1 *1 *1) (-4 *1 (-465))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) (-3945 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-465))))) +(-13 (-569) (-10 -8 (-15 -3642 ($ $ $)) (-15 -3642 ($ (-665 $))) (-15 -3606 ($ $ $)) (-15 -3606 ($ (-665 $))) (-15 -3945 ((-1202 $) (-1202 $) (-1202 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3273 (((-3 $ "failed")) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2410 (((-1297 (-710 (-420 (-980 |#1|)))) (-1297 $)) NIL T ELT) (((-1297 (-710 (-420 (-980 |#1|))))) NIL T ELT)) (-2637 (((-1297 $)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL T ELT)) (-2044 (((-3 $ "failed")) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3820 (((-710 (-420 (-980 |#1|))) (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|)))) NIL T ELT)) (-3009 (((-420 (-980 |#1|)) $) NIL T ELT)) (-3214 (((-710 (-420 (-980 |#1|))) $ (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|))) $) NIL T ELT)) (-3252 (((-3 $ "failed") $) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3769 (((-1202 (-980 (-420 (-980 |#1|))))) NIL (|has| (-420 (-980 |#1|)) (-375)) ELT) (((-1202 (-420 (-980 |#1|)))) 90 (|has| |#1| (-569)) ELT)) (-3712 (($ $ (-949)) NIL T ELT)) (-1461 (((-420 (-980 |#1|)) $) NIL T ELT)) (-3747 (((-1202 (-420 (-980 |#1|))) $) 88 (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-2501 (((-420 (-980 |#1|)) (-1297 $)) NIL T ELT) (((-420 (-980 |#1|))) NIL T ELT)) (-4242 (((-1202 (-420 (-980 |#1|))) $) NIL T ELT)) (-2020 (((-112)) NIL T ELT)) (-2385 (($ (-1297 (-420 (-980 |#1|))) (-1297 $)) 114 T ELT) (($ (-1297 (-420 (-980 |#1|)))) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-1641 (((-949)) NIL T ELT)) (-1547 (((-112)) NIL T ELT)) (-2510 (($ $ (-949)) NIL T ELT)) (-3916 (((-112)) NIL T ELT)) (-1919 (((-112)) NIL T ELT)) (-2732 (((-112)) NIL T ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL T ELT)) (-1740 (((-3 $ "failed")) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3764 (((-710 (-420 (-980 |#1|))) (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|)))) NIL T ELT)) (-3565 (((-420 (-980 |#1|)) $) NIL T ELT)) (-2962 (((-710 (-420 (-980 |#1|))) $ (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|))) $) NIL T ELT)) (-3535 (((-3 $ "failed") $) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-2276 (((-1202 (-980 (-420 (-980 |#1|))))) NIL (|has| (-420 (-980 |#1|)) (-375)) ELT) (((-1202 (-420 (-980 |#1|)))) 89 (|has| |#1| (-569)) ELT)) (-3744 (($ $ (-949)) NIL T ELT)) (-2799 (((-420 (-980 |#1|)) $) NIL T ELT)) (-2114 (((-1202 (-420 (-980 |#1|))) $) 85 (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3749 (((-420 (-980 |#1|)) (-1297 $)) NIL T ELT) (((-420 (-980 |#1|))) NIL T ELT)) (-2201 (((-1202 (-420 (-980 |#1|))) $) NIL T ELT)) (-2966 (((-112)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2187 (((-112)) NIL T ELT)) (-1465 (((-112)) NIL T ELT)) (-1693 (((-112)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1423 (((-420 (-980 |#1|)) $ $) 76 (|has| |#1| (-569)) ELT)) (-4175 (((-420 (-980 |#1|)) $) 100 (|has| |#1| (-569)) ELT)) (-1588 (((-420 (-980 |#1|)) $) 104 (|has| |#1| (-569)) ELT)) (-2954 (((-1202 (-420 (-980 |#1|))) $) 94 (|has| |#1| (-569)) ELT)) (-3095 (((-420 (-980 |#1|))) 77 (|has| |#1| (-569)) ELT)) (-1760 (((-420 (-980 |#1|)) $ $) 69 (|has| |#1| (-569)) ELT)) (-1524 (((-420 (-980 |#1|)) $) 99 (|has| |#1| (-569)) ELT)) (-1997 (((-420 (-980 |#1|)) $) 103 (|has| |#1| (-569)) ELT)) (-2427 (((-1202 (-420 (-980 |#1|))) $) 93 (|has| |#1| (-569)) ELT)) (-3270 (((-420 (-980 |#1|))) 73 (|has| |#1| (-569)) ELT)) (-2872 (($) 110 T ELT) (($ (-1206)) 118 T ELT) (($ (-1297 (-1206))) 117 T ELT) (($ (-1297 $)) 105 T ELT) (($ (-1206) (-1297 $)) 116 T ELT) (($ (-1297 (-1206)) (-1297 $)) 115 T ELT)) (-2949 (((-112)) NIL T ELT)) (-2916 (((-420 (-980 |#1|)) $ (-577)) NIL T ELT)) (-3762 (((-1297 (-420 (-980 |#1|))) $ (-1297 $)) 107 T ELT) (((-710 (-420 (-980 |#1|))) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-420 (-980 |#1|))) $) 43 T ELT) (((-710 (-420 (-980 |#1|))) (-1297 $)) NIL T ELT)) (-4463 (((-1297 (-420 (-980 |#1|))) $) NIL T ELT) (($ (-1297 (-420 (-980 |#1|)))) 40 T ELT)) (-2133 (((-665 (-980 (-420 (-980 |#1|)))) (-1297 $)) NIL T ELT) (((-665 (-980 (-420 (-980 |#1|))))) NIL T ELT) (((-665 (-980 |#1|)) (-1297 $)) 108 (|has| |#1| (-569)) ELT) (((-665 (-980 |#1|))) 109 (|has| |#1| (-569)) ELT)) (-2486 (($ $ $) NIL T ELT)) (-3733 (((-112)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-1297 (-420 (-980 |#1|)))) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) 65 T ELT)) (-2274 (((-665 (-1297 (-420 (-980 |#1|))))) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-2032 (($ $ $ $) NIL T ELT)) (-3678 (((-112)) NIL T ELT)) (-4382 (($ (-710 (-420 (-980 |#1|))) $) NIL T ELT)) (-1793 (($ $ $) NIL T ELT)) (-1897 (((-112)) NIL T ELT)) (-3211 (((-112)) NIL T ELT)) (-4146 (((-112)) NIL T ELT)) (-2839 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) 106 T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 61 T ELT) (($ $ (-420 (-980 |#1|))) NIL T ELT) (($ (-420 (-980 |#1|)) $) NIL T ELT) (($ (-1172 |#2| (-420 (-980 |#1|))) $) NIL T ELT))) +(((-466 |#1| |#2| |#3| |#4|) (-13 (-430 (-420 (-980 |#1|))) (-669 (-1172 |#2| (-420 (-980 |#1|)))) (-10 -8 (-15 -3709 ($ (-1297 (-420 (-980 |#1|))))) (-15 -4168 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed"))) (-15 -1437 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed"))) (-15 -2872 ($)) (-15 -2872 ($ (-1206))) (-15 -2872 ($ (-1297 (-1206)))) (-15 -2872 ($ (-1297 $))) (-15 -2872 ($ (-1206) (-1297 $))) (-15 -2872 ($ (-1297 (-1206)) (-1297 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2276 ((-1202 (-420 (-980 |#1|))))) (-15 -2427 ((-1202 (-420 (-980 |#1|))) $)) (-15 -1524 ((-420 (-980 |#1|)) $)) (-15 -1997 ((-420 (-980 |#1|)) $)) (-15 -3769 ((-1202 (-420 (-980 |#1|))))) (-15 -2954 ((-1202 (-420 (-980 |#1|))) $)) (-15 -4175 ((-420 (-980 |#1|)) $)) (-15 -1588 ((-420 (-980 |#1|)) $)) (-15 -1760 ((-420 (-980 |#1|)) $ $)) (-15 -3270 ((-420 (-980 |#1|)))) (-15 -1423 ((-420 (-980 |#1|)) $ $)) (-15 -3095 ((-420 (-980 |#1|)))) (-15 -2133 ((-665 (-980 |#1|)) (-1297 $))) (-15 -2133 ((-665 (-980 |#1|))))) |%noBranch|))) (-174) (-949) (-665 (-1206)) (-1297 (-710 |#1|))) (T -466)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 *3)))) (-4 *3 (-174)) (-14 *6 (-1297 (-710 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))))) (-4168 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -2104 (-665 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1437 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -2104 (-665 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2872 (*1 *1) (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-949)) (-14 *4 (-665 (-1206))) (-14 *5 (-1297 (-710 *2))))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 *2)) (-14 *6 (-1297 (-710 *3))))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-1297 (-1206))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-1297 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2872 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) (-14 *6 (-665 *2)) (-14 *7 (-1297 (-710 *4))))) (-2872 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 (-1206))) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4))))) (-2276 (*1 *2) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3769 (*1 *2) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-4175 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1760 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3270 (*1 *2) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1423 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3095 (*1 *2) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *2 (-665 (-980 *4))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) (-14 *5 (-949)) (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4))))) (-2133 (*1 *2) (-12 (-5 *2 (-665 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(-13 (-430 (-420 (-980 |#1|))) (-669 (-1172 |#2| (-420 (-980 |#1|)))) (-10 -8 (-15 -3709 ($ (-1297 (-420 (-980 |#1|))))) (-15 -4168 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed"))) (-15 -1437 ((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed"))) (-15 -2872 ($)) (-15 -2872 ($ (-1206))) (-15 -2872 ($ (-1297 (-1206)))) (-15 -2872 ($ (-1297 $))) (-15 -2872 ($ (-1206) (-1297 $))) (-15 -2872 ($ (-1297 (-1206)) (-1297 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2276 ((-1202 (-420 (-980 |#1|))))) (-15 -2427 ((-1202 (-420 (-980 |#1|))) $)) (-15 -1524 ((-420 (-980 |#1|)) $)) (-15 -1997 ((-420 (-980 |#1|)) $)) (-15 -3769 ((-1202 (-420 (-980 |#1|))))) (-15 -2954 ((-1202 (-420 (-980 |#1|))) $)) (-15 -4175 ((-420 (-980 |#1|)) $)) (-15 -1588 ((-420 (-980 |#1|)) $)) (-15 -1760 ((-420 (-980 |#1|)) $ $)) (-15 -3270 ((-420 (-980 |#1|)))) (-15 -1423 ((-420 (-980 |#1|)) $ $)) (-15 -3095 ((-420 (-980 |#1|)))) (-15 -2133 ((-665 (-980 |#1|)) (-1297 $))) (-15 -2133 ((-665 (-980 |#1|))))) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 18 T ELT)) (-3891 (((-665 (-887 |#1|)) $) 87 T ELT)) (-3732 (((-1202 $) $ (-887 |#1|)) 52 T ELT) (((-1202 |#2|) $) 138 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-4176 (((-792) $) 27 T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) 50 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3783 ((|#2| $) 48 T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3868 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-2014 (($ $ (-665 (-577))) 93 T ELT)) (-4048 (($ $) 80 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4365 (($ $ |#2| |#3| $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) 65 T ELT)) (-3882 (($ (-1202 |#2|) (-887 |#1|)) 143 T ELT) (($ (-1202 $) (-887 |#1|)) 58 T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) 68 T ELT)) (-3872 (($ |#2| |#3|) 35 T ELT) (($ $ (-887 |#1|) (-792)) 37 T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-887 |#1|)) NIL T ELT)) (-4340 ((|#3| $) NIL T ELT) (((-792) $ (-887 |#1|)) 56 T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) 63 T ELT)) (-4329 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3946 (((-3 (-887 |#1|) "failed") $) 45 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#2| $) 47 T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) 46 T ELT)) (-3999 ((|#2| $) 136 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) 149 (|has| |#2| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) 100 T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) 106 T ELT) (($ $ (-887 |#1|) $) 98 T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) 124 T ELT)) (-3846 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3641 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) 59 T ELT)) (-1597 ((|#3| $) 79 T ELT) (((-792) $ (-887 |#1|)) 42 T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) 62 T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2407 ((|#2| $) 145 (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-3709 (((-885) $) 173 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 99 T ELT) (($ (-887 |#1|)) 39 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ |#3|) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2839 (($) 22 T CONST)) (-2853 (($) 31 T CONST)) (-2389 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#2|) 76 (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 131 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 129 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) +(((-467 |#1| |#2| |#3|) (-13 (-977 |#2| |#3| (-887 |#1|)) (-10 -8 (-15 -2014 ($ $ (-665 (-577)))))) (-665 (-1206)) (-1079) (-244 (-3600 |#1|) (-792))) (T -467)) +((-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-14 *3 (-665 (-1206))) (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-244 (-3600 *3) (-792)))))) +(-13 (-977 |#2| |#3| (-887 |#1|)) (-10 -8 (-15 -2014 ($ $ (-665 (-577)))))) +((-3930 (((-112) |#1| (-665 |#2|)) 91 T ELT)) (-3168 (((-3 (-1297 (-665 |#2|)) "failed") (-792) |#1| (-665 |#2|)) 100 T ELT)) (-3048 (((-3 (-665 |#2|) "failed") |#2| |#1| (-1297 (-665 |#2|))) 102 T ELT)) (-3530 ((|#2| |#2| |#1|) 35 T ELT)) (-1783 (((-792) |#2| (-665 |#2|)) 26 T ELT))) +(((-468 |#1| |#2|) (-10 -7 (-15 -3530 (|#2| |#2| |#1|)) (-15 -1783 ((-792) |#2| (-665 |#2|))) (-15 -3168 ((-3 (-1297 (-665 |#2|)) "failed") (-792) |#1| (-665 |#2|))) (-15 -3048 ((-3 (-665 |#2|) "failed") |#2| |#1| (-1297 (-665 |#2|)))) (-15 -3930 ((-112) |#1| (-665 |#2|)))) (-318) (-1273 |#1|)) (T -468)) +((-3930 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-318)) (-5 *2 (-112)) (-5 *1 (-468 *3 *5)))) (-3048 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1297 (-665 *3))) (-4 *4 (-318)) (-5 *2 (-665 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1273 *4)))) (-3168 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-792)) (-4 *4 (-318)) (-4 *6 (-1273 *4)) (-5 *2 (-1297 (-665 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-665 *6)))) (-1783 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-318)) (-5 *2 (-792)) (-5 *1 (-468 *5 *3)))) (-3530 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -3530 (|#2| |#2| |#1|)) (-15 -1783 ((-792) |#2| (-665 |#2|))) (-15 -3168 ((-3 (-1297 (-665 |#2|)) "failed") (-792) |#1| (-665 |#2|))) (-15 -3048 ((-3 (-665 |#2|) "failed") |#2| |#1| (-1297 (-665 |#2|)))) (-15 -3930 ((-112) |#1| (-665 |#2|)))) +((-3759 (((-431 |#5|) |#5|) 24 T ELT))) +(((-469 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3759 ((-431 |#5|) |#5|))) (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206))))) (-814) (-569) (-569) (-977 |#4| |#2| |#1|)) (T -469)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206)))))) (-4 *5 (-814)) (-4 *7 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-977 *7 *5 *4))))) +(-10 -7 (-15 -3759 ((-431 |#5|) |#5|))) +((-1816 ((|#3|) 38 T ELT)) (-3945 (((-1202 |#4|) (-1202 |#4|) (-1202 |#4|)) 34 T ELT))) +(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3945 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -1816 (|#3|))) (-814) (-870) (-937) (-977 |#3| |#1| |#2|)) (T -470)) +((-1816 (*1 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-977 *2 *3 *4)))) (-3945 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-937)) (-5 *1 (-470 *3 *4 *5 *6))))) +(-10 -7 (-15 -3945 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -1816 (|#3|))) +((-3759 (((-431 (-1202 |#1|)) (-1202 |#1|)) 43 T ELT))) +(((-471 |#1|) (-10 -7 (-15 -3759 ((-431 (-1202 |#1|)) (-1202 |#1|)))) (-318)) (T -471)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1202 *4))) (-5 *1 (-471 *4)) (-5 *3 (-1202 *4))))) +(-10 -7 (-15 -3759 ((-431 (-1202 |#1|)) (-1202 |#1|)))) +((-3938 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-792))) 44 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-792))) 43 T ELT) (((-52) |#2| (-1206) (-305 |#2|)) 36 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 29 T ELT)) (-3190 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 88 T ELT) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 87 T ELT) (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577))) 86 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577))) 85 T ELT) (((-52) |#2| (-1206) (-305 |#2|)) 80 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 79 T ELT)) (-3960 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 74 T ELT) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 72 T ELT)) (-3949 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577))) 51 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577))) 50 T ELT))) +(((-472 |#1| |#2|) (-10 -7 (-15 -3938 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3938 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -3938 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-792)))) (-15 -3938 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-792)))) (-15 -3949 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -3949 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -3960 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3960 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3190 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3190 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -3190 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -3190 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -3190 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3190 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))))) (-13 (-569) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -472)) +((-3190 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-3190 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-3190 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) (-4 *7 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3190 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-3190 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6)))) (-3960 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-3960 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-3949 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) (-4 *7 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-792))) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-792))) (-4 *7 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6))))) +(-10 -7 (-15 -3938 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3938 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -3938 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-792)))) (-15 -3938 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-792)))) (-15 -3949 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -3949 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -3960 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3960 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3190 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3190 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -3190 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -3190 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -3190 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3190 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))))) +((-3530 ((|#2| |#2| |#1|) 15 T ELT)) (-2332 (((-665 |#2|) |#2| (-665 |#2|) |#1| (-949)) 82 T ELT)) (-2034 (((-2 (|:| |plist| (-665 |#2|)) (|:| |modulo| |#1|)) |#2| (-665 |#2|) |#1| (-949)) 72 T ELT))) +(((-473 |#1| |#2|) (-10 -7 (-15 -2034 ((-2 (|:| |plist| (-665 |#2|)) (|:| |modulo| |#1|)) |#2| (-665 |#2|) |#1| (-949))) (-15 -2332 ((-665 |#2|) |#2| (-665 |#2|) |#1| (-949))) (-15 -3530 (|#2| |#2| |#1|))) (-318) (-1273 |#1|)) (T -473)) +((-3530 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1273 *3)))) (-2332 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-665 *3)) (-5 *5 (-949)) (-4 *3 (-1273 *4)) (-4 *4 (-318)) (-5 *1 (-473 *4 *3)))) (-2034 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-949)) (-4 *5 (-318)) (-4 *3 (-1273 *5)) (-5 *2 (-2 (|:| |plist| (-665 *3)) (|:| |modulo| *5))) (-5 *1 (-473 *5 *3)) (-5 *4 (-665 *3))))) +(-10 -7 (-15 -2034 ((-2 (|:| |plist| (-665 |#2|)) (|:| |modulo| |#1|)) |#2| (-665 |#2|) |#1| (-949))) (-15 -2332 ((-665 |#2|) |#2| (-665 |#2|) |#1| (-949))) (-15 -3530 (|#2| |#2| |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 28 T ELT)) (-1385 (($ |#3|) 25 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) 32 T ELT)) (-4187 (($ |#2| |#4| $) 33 T ELT)) (-3872 (($ |#2| (-734 |#3| |#4| |#5|)) 24 T ELT)) (-4014 (((-734 |#3| |#4| |#5|) $) 15 T ELT)) (-2051 ((|#3| $) 19 T ELT)) (-1544 ((|#4| $) 17 T ELT)) (-4025 ((|#2| $) 29 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-1708 (($ |#2| |#3| |#4|) 26 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 36 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 34 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-474 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-738 |#6|) (-738 |#2|) (-10 -8 (-15 -4025 (|#2| $)) (-15 -4014 ((-734 |#3| |#4| |#5|) $)) (-15 -1544 (|#4| $)) (-15 -2051 (|#3| $)) (-15 -4048 ($ $)) (-15 -3872 ($ |#2| (-734 |#3| |#4| |#5|))) (-15 -1385 ($ |#3|)) (-15 -1708 ($ |#2| |#3| |#4|)) (-15 -4187 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-665 (-1206)) (-174) (-870) (-244 (-3600 |#1|) (-792)) (-1 (-112) (-2 (|:| -3354 |#3|) (|:| -2328 |#4|)) (-2 (|:| -3354 |#3|) (|:| -2328 |#4|))) (-977 |#2| |#4| (-887 |#1|))) (T -474)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *6 (-244 (-3600 *3) (-792))) (-14 *7 (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *6)) (-2 (|:| -3354 *5) (|:| -2328 *6)))) (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-870)) (-4 *2 (-977 *4 *6 (-887 *3))))) (-4025 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *5 (-244 (-3600 *3) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -3354 *4) (|:| -2328 *5)) (-2 (|:| -3354 *4) (|:| -2328 *5)))) (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-870)) (-4 *7 (-977 *2 *5 (-887 *3))))) (-4014 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *6 (-244 (-3600 *3) (-792))) (-14 *7 (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *6)) (-2 (|:| -3354 *5) (|:| -2328 *6)))) (-5 *2 (-734 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870)) (-4 *8 (-977 *4 *6 (-887 *3))))) (-1544 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *2)) (-2 (|:| -3354 *5) (|:| -2328 *2)))) (-4 *2 (-244 (-3600 *3) (-792))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) (-4 *5 (-870)) (-4 *7 (-977 *4 *2 (-887 *3))))) (-2051 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *5 (-244 (-3600 *3) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *5)) (-2 (|:| -3354 *2) (|:| -2328 *5)))) (-4 *2 (-870)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *7 (-977 *4 *5 (-887 *3))))) (-4048 (*1 *1 *1) (-12 (-14 *2 (-665 (-1206))) (-4 *3 (-174)) (-4 *5 (-244 (-3600 *2) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -3354 *4) (|:| -2328 *5)) (-2 (|:| -3354 *4) (|:| -2328 *5)))) (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-870)) (-4 *7 (-977 *3 *5 (-887 *2))))) (-3872 (*1 *1 *2 *3) (-12 (-5 *3 (-734 *5 *6 *7)) (-4 *5 (-870)) (-4 *6 (-244 (-3600 *4) (-792))) (-14 *7 (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *6)) (-2 (|:| -3354 *5) (|:| -2328 *6)))) (-14 *4 (-665 (-1206))) (-4 *2 (-174)) (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-977 *2 *6 (-887 *4))))) (-1385 (*1 *1 *2) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *5 (-244 (-3600 *3) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *5)) (-2 (|:| -3354 *2) (|:| -2328 *5)))) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-870)) (-4 *7 (-977 *4 *5 (-887 *3))))) (-1708 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-665 (-1206))) (-4 *2 (-174)) (-4 *4 (-244 (-3600 *5) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -3354 *3) (|:| -2328 *4)) (-2 (|:| -3354 *3) (|:| -2328 *4)))) (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-870)) (-4 *7 (-977 *2 *4 (-887 *5))))) (-4187 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-665 (-1206))) (-4 *2 (-174)) (-4 *3 (-244 (-3600 *4) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *3)) (-2 (|:| -3354 *5) (|:| -2328 *3)))) (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-870)) (-4 *7 (-977 *2 *3 (-887 *4)))))) +(-13 (-738 |#6|) (-738 |#2|) (-10 -8 (-15 -4025 (|#2| $)) (-15 -4014 ((-734 |#3| |#4| |#5|) $)) (-15 -1544 (|#4| $)) (-15 -2051 (|#3| $)) (-15 -4048 ($ $)) (-15 -3872 ($ |#2| (-734 |#3| |#4| |#5|))) (-15 -1385 ($ |#3|)) (-15 -1708 ($ |#2| |#3| |#4|)) (-15 -4187 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-1451 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-475 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1451 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-814) (-870) (-569) (-977 |#3| |#1| |#2|) (-13 (-1068 (-420 (-577))) (-375) (-10 -8 (-15 -3709 ($ |#4|)) (-15 -2417 (|#4| $)) (-15 -2429 (|#4| $))))) (T -475)) +((-1451 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-870)) (-4 *5 (-814)) (-4 *6 (-569)) (-4 *7 (-977 *6 *5 *3)) (-5 *1 (-475 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1068 (-420 (-577))) (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $)))))))) +(-10 -7 (-15 -1451 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3891 (((-665 |#3|) $) 41 T ELT)) (-1507 (((-112) $) NIL T ELT)) (-2221 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1440 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-1603 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) 49 T ELT)) (-3783 (($ (-665 |#4|)) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4004 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-1429 ((|#3| $) 47 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#4|) $) 14 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-1683 (((-665 |#3|) $) NIL T ELT)) (-3692 (((-112) |#3| $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 39 T ELT)) (-2833 (($) 17 T ELT)) (-1481 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 16 T ELT)) (-4463 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT) (($ (-665 |#4|)) 51 T ELT)) (-3722 (($ (-665 |#4|)) 13 T ELT)) (-1336 (($ $ |#3|) NIL T ELT)) (-3076 (($ $ |#3|) NIL T ELT)) (-2951 (($ $ |#3|) NIL T ELT)) (-3709 (((-885) $) 38 T ELT) (((-665 |#4|) $) 50 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 30 T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-476 |#1| |#2| |#3| |#4|) (-13 (-1006 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4463 ($ (-665 |#4|))) (-6 -4499) (-6 -4500))) (-1079) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -476)) +((-4463 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-476 *3 *4 *5 *6))))) +(-13 (-1006 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4463 ($ (-665 |#4|))) (-6 -4499) (-6 -4500))) +((-2839 (($) 11 T ELT)) (-2853 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2853 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2839 (|#1|))) (-478 |#2| |#3|) (-174) (-23)) (T -477)) +NIL +(-10 -8 (-15 -2853 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2839 (|#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4335 (((-3 |#1| "failed") $) 27 T ELT)) (-3783 ((|#1| $) 28 T ELT)) (-2801 (($ $ $) 24 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-1597 ((|#2| $) 20 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ |#1|) 26 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 25 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) (((-478 |#1| |#2|) (-141) (-174) (-23)) (T -478)) -((-2767 (*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-1439 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-483 |t#1| |t#2|) (-1063 |t#1|) (-10 -8 (-15 (-2767) ($) -2609) (-15 -1439 ($ $ $)))) -(((-102) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-483 |#1| |#2|) . T) ((-1063 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3399 (((-1292 (-1292 (-577))) (-1292 (-1292 (-577))) (-944)) 26 T ELT)) (-2009 (((-1292 (-1292 (-577))) (-944)) 21 T ELT))) -(((-479) (-10 -7 (-15 -3399 ((-1292 (-1292 (-577))) (-1292 (-1292 (-577))) (-944))) (-15 -2009 ((-1292 (-1292 (-577))) (-944))))) (T -479)) -((-2009 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 (-577)))) (-5 *1 (-479)))) (-3399 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 (-1292 (-577)))) (-5 *3 (-944)) (-5 *1 (-479))))) -(-10 -7 (-15 -3399 ((-1292 (-1292 (-577))) (-1292 (-1292 (-577))) (-944))) (-15 -2009 ((-1292 (-1292 (-577))) (-944)))) -((-2145 (((-577) (-577)) 32 T ELT) (((-577)) 24 T ELT)) (-3022 (((-577) (-577)) 28 T ELT) (((-577)) 20 T ELT)) (-2685 (((-577) (-577)) 30 T ELT) (((-577)) 22 T ELT)) (-2328 (((-112) (-112)) 14 T ELT) (((-112)) 12 T ELT)) (-3840 (((-112) (-112)) 13 T ELT) (((-112)) 11 T ELT)) (-3414 (((-112) (-112)) 26 T ELT) (((-112)) 17 T ELT))) -(((-480) (-10 -7 (-15 -3840 ((-112))) (-15 -2328 ((-112))) (-15 -3840 ((-112) (-112))) (-15 -2328 ((-112) (-112))) (-15 -3414 ((-112))) (-15 -2685 ((-577))) (-15 -3022 ((-577))) (-15 -2145 ((-577))) (-15 -3414 ((-112) (-112))) (-15 -2685 ((-577) (-577))) (-15 -3022 ((-577) (-577))) (-15 -2145 ((-577) (-577))))) (T -480)) -((-2145 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-2685 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-2145 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3022 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-2685 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3414 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-2328 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-3840 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) -(-10 -7 (-15 -3840 ((-112))) (-15 -2328 ((-112))) (-15 -3840 ((-112) (-112))) (-15 -2328 ((-112) (-112))) (-15 -3414 ((-112))) (-15 -2685 ((-577))) (-15 -3022 ((-577))) (-15 -2145 ((-577))) (-15 -3414 ((-112) (-112))) (-15 -2685 ((-577) (-577))) (-15 -3022 ((-577) (-577))) (-15 -2145 ((-577) (-577)))) -((-3489 (((-112) $ $) NIL T ELT)) (-4385 (((-660 (-391)) $) 34 T ELT) (((-660 (-391)) $ (-660 (-391))) 146 T ELT)) (-3819 (((-660 (-1119 (-391))) $) 16 T ELT) (((-660 (-1119 (-391))) $ (-660 (-1119 (-391)))) 142 T ELT)) (-3781 (((-660 (-660 (-966 (-228)))) (-660 (-660 (-966 (-228)))) (-660 (-892))) 58 T ELT)) (-1767 (((-660 (-660 (-966 (-228)))) $) 137 T ELT)) (-2820 (((-1297) $ (-966 (-228)) (-892)) 163 T ELT)) (-3633 (($ $) 136 T ELT) (($ (-660 (-660 (-966 (-228))))) 149 T ELT) (($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944))) 148 T ELT) (($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)) (-660 (-271))) 150 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4323 (((-577) $) 110 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3509 (($) 147 T ELT)) (-1960 (((-660 (-228)) (-660 (-660 (-966 (-228))))) 89 T ELT)) (-2131 (((-1297) $ (-660 (-966 (-228))) (-892) (-892) (-944)) 155 T ELT) (((-1297) $ (-966 (-228))) 157 T ELT) (((-1297) $ (-966 (-228)) (-892) (-892) (-944)) 156 T ELT)) (-3603 (((-880) $) 169 T ELT) (($ (-660 (-660 (-966 (-228))))) 164 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3546 (((-1297) $ (-966 (-228))) 162 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-481) (-13 (-1125) (-10 -8 (-15 -3509 ($)) (-15 -3633 ($ $)) (-15 -3633 ($ (-660 (-660 (-966 (-228)))))) (-15 -3633 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)))) (-15 -3633 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)) (-660 (-271)))) (-15 -1767 ((-660 (-660 (-966 (-228)))) $)) (-15 -4323 ((-577) $)) (-15 -3819 ((-660 (-1119 (-391))) $)) (-15 -3819 ((-660 (-1119 (-391))) $ (-660 (-1119 (-391))))) (-15 -4385 ((-660 (-391)) $)) (-15 -4385 ((-660 (-391)) $ (-660 (-391)))) (-15 -2131 ((-1297) $ (-660 (-966 (-228))) (-892) (-892) (-944))) (-15 -2131 ((-1297) $ (-966 (-228)))) (-15 -2131 ((-1297) $ (-966 (-228)) (-892) (-892) (-944))) (-15 -3546 ((-1297) $ (-966 (-228)))) (-15 -2820 ((-1297) $ (-966 (-228)) (-892))) (-15 -3603 ($ (-660 (-660 (-966 (-228)))))) (-15 -3603 ((-880) $)) (-15 -3781 ((-660 (-660 (-966 (-228)))) (-660 (-660 (-966 (-228)))) (-660 (-892)))) (-15 -1960 ((-660 (-228)) (-660 (-660 (-966 (-228))))))))) (T -481)) -((-3603 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-481)))) (-3509 (*1 *1) (-5 *1 (-481))) (-3633 (*1 *1 *1) (-5 *1 (-481))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) (-3633 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) (-5 *4 (-660 (-944))) (-5 *1 (-481)))) (-3633 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) (-5 *4 (-660 (-944))) (-5 *5 (-660 (-271))) (-5 *1 (-481)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481)))) (-3819 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) (-4385 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) (-2131 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *2 (-1297)) (-5 *1 (-481)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481)))) (-2131 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *2 (-1297)) (-5 *1 (-481)))) (-3546 (*1 *2 *1 *3) (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481)))) (-2820 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-481)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) (-3781 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) (-5 *1 (-481)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-660 (-228))) (-5 *1 (-481))))) -(-13 (-1125) (-10 -8 (-15 -3509 ($)) (-15 -3633 ($ $)) (-15 -3633 ($ (-660 (-660 (-966 (-228)))))) (-15 -3633 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)))) (-15 -3633 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)) (-660 (-271)))) (-15 -1767 ((-660 (-660 (-966 (-228)))) $)) (-15 -4323 ((-577) $)) (-15 -3819 ((-660 (-1119 (-391))) $)) (-15 -3819 ((-660 (-1119 (-391))) $ (-660 (-1119 (-391))))) (-15 -4385 ((-660 (-391)) $)) (-15 -4385 ((-660 (-391)) $ (-660 (-391)))) (-15 -2131 ((-1297) $ (-660 (-966 (-228))) (-892) (-892) (-944))) (-15 -2131 ((-1297) $ (-966 (-228)))) (-15 -2131 ((-1297) $ (-966 (-228)) (-892) (-892) (-944))) (-15 -3546 ((-1297) $ (-966 (-228)))) (-15 -2820 ((-1297) $ (-966 (-228)) (-892))) (-15 -3603 ($ (-660 (-660 (-966 (-228)))))) (-15 -3603 ((-880) $)) (-15 -3781 ((-660 (-660 (-966 (-228)))) (-660 (-660 (-966 (-228)))) (-660 (-892)))) (-15 -1960 ((-660 (-228)) (-660 (-660 (-966 (-228)))))))) -((-3042 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-482 |#1| |#2| |#3|) (-10 -8 (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|))) (-483 |#2| |#3|) (-174) (-23)) (T -482)) -NIL -(-10 -8 (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3616 ((|#2| $) 20 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) +((-2853 (*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2801 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-483 |t#1| |t#2|) (-1068 |t#1|) (-10 -8 (-15 (-2853) ($) -4212) (-15 -2801 ($ $ $)))) +(((-102) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-483 |#1| |#2|) . T) ((-1068 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3318 (((-1297 (-1297 (-577))) (-1297 (-1297 (-577))) (-949)) 26 T ELT)) (-3419 (((-1297 (-1297 (-577))) (-949)) 21 T ELT))) +(((-479) (-10 -7 (-15 -3318 ((-1297 (-1297 (-577))) (-1297 (-1297 (-577))) (-949))) (-15 -3419 ((-1297 (-1297 (-577))) (-949))))) (T -479)) +((-3419 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 (-577)))) (-5 *1 (-479)))) (-3318 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 (-1297 (-577)))) (-5 *3 (-949)) (-5 *1 (-479))))) +(-10 -7 (-15 -3318 ((-1297 (-1297 (-577))) (-1297 (-1297 (-577))) (-949))) (-15 -3419 ((-1297 (-1297 (-577))) (-949)))) +((-4159 (((-577) (-577)) 32 T ELT) (((-577)) 24 T ELT)) (-1619 (((-577) (-577)) 28 T ELT) (((-577)) 20 T ELT)) (-3963 (((-577) (-577)) 30 T ELT) (((-577)) 22 T ELT)) (-3860 (((-112) (-112)) 14 T ELT) (((-112)) 12 T ELT)) (-4439 (((-112) (-112)) 13 T ELT) (((-112)) 11 T ELT)) (-2638 (((-112) (-112)) 26 T ELT) (((-112)) 17 T ELT))) +(((-480) (-10 -7 (-15 -4439 ((-112))) (-15 -3860 ((-112))) (-15 -4439 ((-112) (-112))) (-15 -3860 ((-112) (-112))) (-15 -2638 ((-112))) (-15 -3963 ((-577))) (-15 -1619 ((-577))) (-15 -4159 ((-577))) (-15 -2638 ((-112) (-112))) (-15 -3963 ((-577) (-577))) (-15 -1619 ((-577) (-577))) (-15 -4159 ((-577) (-577))))) (T -480)) +((-4159 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4159 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-1619 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3963 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-2638 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4439 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-3860 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4439 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) +(-10 -7 (-15 -4439 ((-112))) (-15 -3860 ((-112))) (-15 -4439 ((-112) (-112))) (-15 -3860 ((-112) (-112))) (-15 -2638 ((-112))) (-15 -3963 ((-577))) (-15 -1619 ((-577))) (-15 -4159 ((-577))) (-15 -2638 ((-112) (-112))) (-15 -3963 ((-577) (-577))) (-15 -1619 ((-577) (-577))) (-15 -4159 ((-577) (-577)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1445 (((-665 (-391)) $) 34 T ELT) (((-665 (-391)) $ (-665 (-391))) 146 T ELT)) (-3308 (((-665 (-1124 (-391))) $) 16 T ELT) (((-665 (-1124 (-391))) $ (-665 (-1124 (-391)))) 142 T ELT)) (-2223 (((-665 (-665 (-971 (-228)))) (-665 (-665 (-971 (-228)))) (-665 (-897))) 58 T ELT)) (-4403 (((-665 (-665 (-971 (-228)))) $) 137 T ELT)) (-3159 (((-1302) $ (-971 (-228)) (-897)) 163 T ELT)) (-3539 (($ $) 136 T ELT) (($ (-665 (-665 (-971 (-228))))) 149 T ELT) (($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949))) 148 T ELT) (($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)) (-665 (-271))) 150 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4376 (((-577) $) 110 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3181 (($) 147 T ELT)) (-2054 (((-665 (-228)) (-665 (-665 (-971 (-228))))) 89 T ELT)) (-3831 (((-1302) $ (-665 (-971 (-228))) (-897) (-897) (-949)) 155 T ELT) (((-1302) $ (-971 (-228))) 157 T ELT) (((-1302) $ (-971 (-228)) (-897) (-897) (-949)) 156 T ELT)) (-3709 (((-885) $) 169 T ELT) (($ (-665 (-665 (-971 (-228))))) 164 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2096 (((-1302) $ (-971 (-228))) 162 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-481) (-13 (-1130) (-10 -8 (-15 -3181 ($)) (-15 -3539 ($ $)) (-15 -3539 ($ (-665 (-665 (-971 (-228)))))) (-15 -3539 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)))) (-15 -3539 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)) (-665 (-271)))) (-15 -4403 ((-665 (-665 (-971 (-228)))) $)) (-15 -4376 ((-577) $)) (-15 -3308 ((-665 (-1124 (-391))) $)) (-15 -3308 ((-665 (-1124 (-391))) $ (-665 (-1124 (-391))))) (-15 -1445 ((-665 (-391)) $)) (-15 -1445 ((-665 (-391)) $ (-665 (-391)))) (-15 -3831 ((-1302) $ (-665 (-971 (-228))) (-897) (-897) (-949))) (-15 -3831 ((-1302) $ (-971 (-228)))) (-15 -3831 ((-1302) $ (-971 (-228)) (-897) (-897) (-949))) (-15 -2096 ((-1302) $ (-971 (-228)))) (-15 -3159 ((-1302) $ (-971 (-228)) (-897))) (-15 -3709 ($ (-665 (-665 (-971 (-228)))))) (-15 -3709 ((-885) $)) (-15 -2223 ((-665 (-665 (-971 (-228)))) (-665 (-665 (-971 (-228)))) (-665 (-897)))) (-15 -2054 ((-665 (-228)) (-665 (-665 (-971 (-228))))))))) (T -481)) +((-3709 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-481)))) (-3181 (*1 *1) (-5 *1 (-481))) (-3539 (*1 *1 *1) (-5 *1 (-481))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) (-3539 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) (-5 *4 (-665 (-949))) (-5 *1 (-481)))) (-3539 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) (-5 *4 (-665 (-949))) (-5 *5 (-665 (-271))) (-5 *1 (-481)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481)))) (-3308 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) (-1445 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) (-3831 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *2 (-1302)) (-5 *1 (-481)))) (-3831 (*1 *2 *1 *3) (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481)))) (-3831 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *2 (-1302)) (-5 *1 (-481)))) (-2096 (*1 *2 *1 *3) (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481)))) (-3159 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-481)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) (-2223 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) (-5 *1 (-481)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-665 (-228))) (-5 *1 (-481))))) +(-13 (-1130) (-10 -8 (-15 -3181 ($)) (-15 -3539 ($ $)) (-15 -3539 ($ (-665 (-665 (-971 (-228)))))) (-15 -3539 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)))) (-15 -3539 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)) (-665 (-271)))) (-15 -4403 ((-665 (-665 (-971 (-228)))) $)) (-15 -4376 ((-577) $)) (-15 -3308 ((-665 (-1124 (-391))) $)) (-15 -3308 ((-665 (-1124 (-391))) $ (-665 (-1124 (-391))))) (-15 -1445 ((-665 (-391)) $)) (-15 -1445 ((-665 (-391)) $ (-665 (-391)))) (-15 -3831 ((-1302) $ (-665 (-971 (-228))) (-897) (-897) (-949))) (-15 -3831 ((-1302) $ (-971 (-228)))) (-15 -3831 ((-1302) $ (-971 (-228)) (-897) (-897) (-949))) (-15 -2096 ((-1302) $ (-971 (-228)))) (-15 -3159 ((-1302) $ (-971 (-228)) (-897))) (-15 -3709 ($ (-665 (-665 (-971 (-228)))))) (-15 -3709 ((-885) $)) (-15 -2223 ((-665 (-665 (-971 (-228)))) (-665 (-665 (-971 (-228)))) (-665 (-897)))) (-15 -2054 ((-665 (-228)) (-665 (-665 (-971 (-228)))))))) +((-3128 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-482 |#1| |#2| |#3|) (-10 -8 (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|))) (-483 |#2| |#3|) (-174) (-23)) (T -482)) +NIL +(-10 -8 (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-1597 ((|#2| $) 20 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) (((-483 |#1| |#2|) (-141) (-174) (-23)) (T -483)) -((-3616 (*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2754 (*1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3042 (*1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3031 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3042 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1125) (-10 -8 (-15 -3616 (|t#2| $)) (-15 (-2754) ($) -2609) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3042 ($ $)) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3772 (((-3 (-660 (-494 |#1| |#2|)) "failed") (-660 (-494 |#1| |#2|)) (-660 (-882 |#1|))) 134 T ELT)) (-1978 (((-660 (-660 (-254 |#1| |#2|))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))) 131 T ELT)) (-1797 (((-2 (|:| |dpolys| (-660 (-254 |#1| |#2|))) (|:| |coords| (-660 (-577)))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))) 86 T ELT))) -(((-484 |#1| |#2| |#3|) (-10 -7 (-15 -1978 ((-660 (-660 (-254 |#1| |#2|))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -3772 ((-3 (-660 (-494 |#1| |#2|)) "failed") (-660 (-494 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -1797 ((-2 (|:| |dpolys| (-660 (-254 |#1| |#2|))) (|:| |coords| (-660 (-577)))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))))) (-660 (-1201)) (-465) (-465)) (T -484)) -((-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-2 (|:| |dpolys| (-660 (-254 *5 *6))) (|:| |coords| (-660 (-577))))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465)))) (-3772 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-660 (-882 *4))) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) (-4 *6 (-465)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-660 (-660 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465))))) -(-10 -7 (-15 -1978 ((-660 (-660 (-254 |#1| |#2|))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -3772 ((-3 (-660 (-494 |#1| |#2|)) "failed") (-660 (-494 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -1797 ((-2 (|:| |dpolys| (-660 (-254 |#1| |#2|))) (|:| |coords| (-660 (-577)))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))))) -((-1625 (((-3 $ "failed") $) 11 T ELT)) (-1328 (($ $ $) 23 T ELT)) (-3823 (($ $ $) 24 T ELT)) (-3051 (($ $ $) 9 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 22 T ELT))) -(((-485 |#1|) (-10 -8 (-15 -3823 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3051 (|#1| |#1| |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) (-486)) (T -485)) -NIL -(-10 -8 (-15 -3823 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3051 (|#1| |#1| |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3790 (($) 19 T CONST)) (-1625 (((-3 $ "failed") $) 16 T ELT)) (-3306 (((-112) $) 18 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 25 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1328 (($ $ $) 22 T ELT)) (-3823 (($ $ $) 21 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2767 (($) 20 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 24 T ELT)) (** (($ $ (-944)) 14 T ELT) (($ $ (-787)) 17 T ELT) (($ $ (-577)) 23 T ELT)) (* (($ $ $) 15 T ELT))) +((-1597 (*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2839 (*1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3114 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3128 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1130) (-10 -8 (-15 -1597 (|t#2| $)) (-15 (-2839) ($) -4212) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3128 ($ $)) (-15 -3114 ($ $ $)) (-15 -3128 ($ $ $)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-2415 (((-3 (-665 (-494 |#1| |#2|)) "failed") (-665 (-494 |#1| |#2|)) (-665 (-887 |#1|))) 134 T ELT)) (-3982 (((-665 (-665 (-254 |#1| |#2|))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))) 131 T ELT)) (-4470 (((-2 (|:| |dpolys| (-665 (-254 |#1| |#2|))) (|:| |coords| (-665 (-577)))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))) 86 T ELT))) +(((-484 |#1| |#2| |#3|) (-10 -7 (-15 -3982 ((-665 (-665 (-254 |#1| |#2|))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -2415 ((-3 (-665 (-494 |#1| |#2|)) "failed") (-665 (-494 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -4470 ((-2 (|:| |dpolys| (-665 (-254 |#1| |#2|))) (|:| |coords| (-665 (-577)))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))))) (-665 (-1206)) (-465) (-465)) (T -484)) +((-4470 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-2 (|:| |dpolys| (-665 (-254 *5 *6))) (|:| |coords| (-665 (-577))))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465)))) (-2415 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-665 (-887 *4))) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) (-4 *6 (-465)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-665 (-665 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465))))) +(-10 -7 (-15 -3982 ((-665 (-665 (-254 |#1| |#2|))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -2415 ((-3 (-665 (-494 |#1| |#2|)) "failed") (-665 (-494 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -4470 ((-2 (|:| |dpolys| (-665 (-254 |#1| |#2|))) (|:| |coords| (-665 (-577)))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))))) +((-3167 (((-3 $ "failed") $) 11 T ELT)) (-4247 (($ $ $) 23 T ELT)) (-2486 (($ $ $) 24 T ELT)) (-3139 (($ $ $) 9 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 22 T ELT))) +(((-485 |#1|) (-10 -8 (-15 -2486 (|#1| |#1| |#1|)) (-15 -4247 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) (-486)) (T -485)) +NIL +(-10 -8 (-15 -2486 (|#1| |#1| |#1|)) (-15 -4247 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) +((-3586 (((-112) $ $) 7 T ELT)) (-2305 (($) 19 T CONST)) (-3167 (((-3 $ "failed") $) 16 T ELT)) (-3357 (((-112) $) 18 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 25 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4247 (($ $ $) 22 T ELT)) (-2486 (($ $ $) 21 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2853 (($) 20 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 24 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT) (($ $ (-577)) 23 T ELT)) (* (($ $ $) 15 T ELT))) (((-486) (-141)) (T -486)) -((-3318 (*1 *1 *1) (-4 *1 (-486))) (-3051 (*1 *1 *1 *1) (-4 *1 (-486))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-486)) (-5 *2 (-577)))) (-1328 (*1 *1 *1 *1) (-4 *1 (-486))) (-3823 (*1 *1 *1 *1) (-4 *1 (-486)))) -(-13 (-742) (-10 -8 (-15 -3318 ($ $)) (-15 -3051 ($ $ $)) (-15 ** ($ $ (-577))) (-6 -4467) (-15 -1328 ($ $ $)) (-15 -3823 ($ $ $)))) -(((-102) . T) ((-626 (-880)) . T) ((-742) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 18 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-2642 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-2666 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-420 (-577))) NIL T ELT) (($ $ (-1107) (-420 (-577))) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3716 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4129 (($ $) 29 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 35 (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT) (($ $ (-1288 |#2|)) 30 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-420 (-577))) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2079 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) 28 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1288 |#2|)) 16 T ELT)) (-3616 (((-420 (-577)) $) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1288 |#2|)) NIL T ELT) (($ (-1277 |#1| |#2| |#3|)) 9 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-420 (-577))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) 21 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1288 |#2|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-487 |#1| |#2| |#3|) (-13 (-1273 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1288 |#2|))) (-15 -3603 ($ (-1277 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -487)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-487 *3 *4 *5)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(-13 (-1273 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1288 |#2|))) (-15 -3603 ($ (-1277 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2790 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#2| $ |#1| |#2|) 18 T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) 19 T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) 16 T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-3740 (((-660 |#1|) $) NIL T ELT)) (-2490 (((-112) |#1| $) NIL T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3445 (((-660 |#1|) $) NIL T ELT)) (-2187 (((-112) |#1| $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#2| $) NIL (|has| |#1| (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-488 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2|) (-1125) (-1125) (-1218 |#1| |#2|) |#2|) (T -488)) -NIL -(-1218 |#1| |#2|) -((-3489 (((-112) $ $) NIL T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-1568 (((-660 $) (-660 |#4|)) NIL T ELT)) (-3206 (((-660 |#3|) $) NIL T ELT)) (-1905 (((-112) $) NIL T ELT)) (-1421 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3924 ((|#4| |#4| $) NIL T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3730 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-3790 (($) NIL T CONST)) (-4046 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) NIL T ELT)) (-2155 (($ (-660 |#4|)) NIL T ELT)) (-1663 (((-3 $ "failed") $) 45 T ELT)) (-2801 ((|#4| |#4| $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-3920 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3270 ((|#4| |#4| $) NIL T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) NIL T ELT)) (-3692 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1940 ((|#3| $) 38 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#4|) $) 19 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1365 (((-660 |#3|) $) NIL T ELT)) (-2639 (((-112) |#3| $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3942 (((-3 |#4| "failed") $) 42 T ELT)) (-3425 (((-660 |#4|) $) NIL T ELT)) (-4233 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1458 ((|#4| |#4| $) NIL T ELT)) (-2928 (((-112) $ $) NIL T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2108 ((|#4| |#4| $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-3 |#4| "failed") $) 40 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 58 T ELT)) (-1987 (($ $ |#4|) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 17 T ELT)) (-2693 (($) 14 T ELT)) (-3616 (((-787) $) NIL T ELT)) (-1452 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) NIL (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 22 T ELT)) (-3620 (($ $ |#3|) 52 T ELT)) (-2003 (($ $ |#3|) 54 T ELT)) (-3307 (($ $) NIL T ELT)) (-3344 (($ $ |#3|) NIL T ELT)) (-3603 (((-880) $) 35 T ELT) (((-660 |#4|) $) 46 T ELT)) (-2272 (((-787) $) NIL (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) NIL T ELT)) (-1401 (((-112) |#3| $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-489 |#1| |#2| |#3| |#4|) (-1235 |#1| |#2| |#3| |#4|) (-569) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -489)) -NIL -(-1235 |#1| |#2| |#3| |#4|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-2824 (($) 17 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-2176 (((-391) $) 21 T ELT) (((-228) $) 24 T ELT) (((-420 (-1197 (-577))) $) 18 T ELT) (((-549) $) 53 T ELT)) (-3603 (((-880) $) 51 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (((-228) $) 23 T ELT) (((-391) $) 20 T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) 37 T CONST)) (-2767 (($) 8 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-490) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))) (-1047) (-626 (-228)) (-626 (-391)) (-627 (-420 (-1197 (-577)))) (-627 (-549)) (-10 -8 (-15 -2824 ($))))) (T -490)) -((-2824 (*1 *1) (-5 *1 (-490)))) -(-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))) (-1047) (-626 (-228)) (-626 (-391)) (-627 (-420 (-1197 (-577)))) (-627 (-549)) (-10 -8 (-15 -2824 ($)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2171 (((-1160) $) 11 T ELT)) (-2159 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 17 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-491) (-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $))))) (T -491)) -((-2159 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491))))) -(-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $)))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2790 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#2| $ |#1| |#2|) 16 T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) 20 T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) 18 T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-3740 (((-660 |#1|) $) 13 T ELT)) (-2490 (((-112) |#1| $) NIL T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3445 (((-660 |#1|) $) NIL T ELT)) (-2187 (((-112) |#1| $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#2| $) NIL (|has| |#1| (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 19 T ELT)) (-2837 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 11 (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3501 (((-787) $) 15 (|has| $ (-6 -4470)) ELT))) -(((-492 |#1| |#2| |#3|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125) (-1183)) (T -492)) -NIL -(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) -((-3568 (((-577) (-577) (-577)) 19 T ELT)) (-2744 (((-112) (-577) (-577) (-577) (-577)) 28 T ELT)) (-3661 (((-1292 (-660 (-577))) (-787) (-787)) 41 T ELT))) -(((-493) (-10 -7 (-15 -3568 ((-577) (-577) (-577))) (-15 -2744 ((-112) (-577) (-577) (-577) (-577))) (-15 -3661 ((-1292 (-660 (-577))) (-787) (-787))))) (T -493)) -((-3661 (*1 *2 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1292 (-660 (-577)))) (-5 *1 (-493)))) (-2744 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493)))) (-3568 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) -(-10 -7 (-15 -3568 ((-577) (-577) (-577))) (-15 -2744 ((-112) (-577) (-577) (-577) (-577))) (-15 -3661 ((-1292 (-660 (-577))) (-787) (-787)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-882 |#1|)) $) NIL T ELT)) (-3024 (((-1197 $) $ (-882 |#1|)) NIL T ELT) (((-1197 |#2|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#2| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-882 |#1|))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-882 |#1|) "failed") $) NIL T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-882 |#1|) $) NIL T ELT)) (-2653 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-1835 (($ $ (-660 (-577))) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#2| (-932)) ELT)) (-3367 (($ $ |#2| (-495 (-3501 |#1|) (-787)) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-3194 (($ (-1197 |#2|) (-882 |#1|)) NIL T ELT) (($ (-1197 $) (-882 |#1|)) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#2| (-495 (-3501 |#1|) (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-882 |#1|)) NIL T ELT)) (-2643 (((-495 (-3501 |#1|) (-787)) $) NIL T ELT) (((-787) $ (-882 |#1|)) NIL T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL T ELT)) (-4373 (($ (-1 (-495 (-3501 |#1|) (-787)) (-495 (-3501 |#1|) (-787))) $) NIL T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4038 (((-3 (-882 |#1|) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#2| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#2| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#2| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-882 |#1|) |#2|) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) NIL T ELT) (($ $ (-882 |#1|) $) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 $)) NIL T ELT)) (-4447 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3362 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT)) (-3616 (((-495 (-3501 |#1|) (-787)) $) NIL T ELT) (((-787) $ (-882 |#1|)) NIL T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))) ELT)) (-2240 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-882 |#1|)) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-495 (-3501 |#1|) (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#2| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-494 |#1| |#2|) (-13 (-972 |#2| (-495 (-3501 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1835 ($ $ (-660 (-577)))))) (-660 (-1201)) (-1074)) (T -494)) -((-1835 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-494 *3 *4)) (-14 *3 (-660 (-1201))) (-4 *4 (-1074))))) -(-13 (-972 |#2| (-495 (-3501 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1835 ($ $ (-660 (-577)))))) -((-3489 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3801 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-3303 (($ (-944)) NIL (|has| |#2| (-1074)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2510 (($ $ $) NIL (|has| |#2| (-809)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#2| (-380)) ELT)) (-1895 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1125)) ELT)) (-2155 (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) ((|#2| $) NIL (|has| |#2| (-1125)) ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-705 $)) NIL (|has| |#2| (-1074)) ELT)) (-1625 (((-3 $ "failed") $) NIL (|has| |#2| (-1074)) ELT)) (-2352 (($) NIL (|has| |#2| (-380)) ELT)) (-2840 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ (-577)) 11 T ELT)) (-3692 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL (|has| |#2| (-1074)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-2434 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-2826 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#2| (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-1292 $)) NIL (|has| |#2| (-1074)) ELT)) (-2045 (((-1183) $) NIL (|has| |#2| (-1125)) ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-3251 (($ (-944)) NIL (|has| |#2| (-380)) ELT)) (-1440 (((-1145) $) NIL (|has| |#2| (-1125)) ELT)) (-1652 ((|#2| $) NIL (|has| (-577) (-865)) ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1074)) ELT)) (-3097 (($ (-1292 |#2|)) NIL T ELT)) (-3941 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-3362 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-1292 |#2|) $) NIL T ELT) (($ (-577)) NIL (-2811 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (($ |#2|) NIL (|has| |#2| (-1125)) ELT) (((-880) $) NIL (|has| |#2| (-626 (-880))) ELT)) (-1920 (((-787)) NIL (|has| |#2| (-1074)) CONST)) (-2726 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2754 (($) NIL (|has| |#2| (-23)) CONST)) (-2767 (($) NIL (|has| |#2| (-1074)) CONST)) (-2136 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2971 (((-112) $ $) 17 (|has| |#2| (-865)) ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3031 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-787)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-944)) NIL (|has| |#2| (-1074)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1074)) ELT) (($ $ |#2|) NIL (|has| |#2| (-742)) ELT) (($ |#2| $) NIL (|has| |#2| (-742)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-787) $) NIL (|has| |#2| (-23)) ELT) (($ (-944) $) NIL (|has| |#2| (-25)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-495 |#1| |#2|) (-244 |#1| |#2|) (-787) (-809)) (T -495)) +((-3981 (*1 *1 *1) (-4 *1 (-486))) (-3139 (*1 *1 *1 *1) (-4 *1 (-486))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-486)) (-5 *2 (-577)))) (-4247 (*1 *1 *1 *1) (-4 *1 (-486))) (-2486 (*1 *1 *1 *1) (-4 *1 (-486)))) +(-13 (-747) (-10 -8 (-15 -3981 ($ $)) (-15 -3139 ($ $ $)) (-15 ** ($ $ (-577))) (-6 -4496) (-15 -4247 ($ $ $)) (-15 -2486 ($ $ $)))) +(((-102) . T) ((-631 (-885)) . T) ((-747) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 18 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-1660 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1682 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-420 (-577))) NIL T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3825 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-1869 (($ $) 29 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 35 (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 30 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-420 (-577))) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2355 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) 28 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) 16 T ELT)) (-1597 (((-420 (-577)) $) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1293 |#2|)) NIL T ELT) (($ (-1282 |#1| |#2| |#3|)) 9 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-420 (-577))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) 21 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-487 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1293 |#2|))) (-15 -3709 ($ (-1282 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -487)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-487 *3 *4 *5)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1278 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1293 |#2|))) (-15 -3709 ($ (-1282 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1935 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#2| $ |#1| |#2|) 18 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) 19 T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 16 T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4001 (((-665 |#1|) $) NIL T ELT)) (-4065 (((-112) |#1| $) NIL T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2233 (((-665 |#1|) $) NIL T ELT)) (-3972 (((-112) |#1| $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-488 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2|) (-1130) (-1130) (-1223 |#1| |#2|) |#2|) (T -488)) +NIL +(-1223 |#1| |#2|) +((-3586 (((-112) $ $) NIL T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-1795 (((-665 $) (-665 |#4|)) NIL T ELT)) (-3891 (((-665 |#3|) $) NIL T ELT)) (-1507 (((-112) $) NIL T ELT)) (-2221 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3800 ((|#4| |#4| $) NIL T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1440 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1603 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3783 (($ (-665 |#4|)) NIL T ELT)) (-4410 (((-3 $ "failed") $) 45 T ELT)) (-3145 ((|#4| |#4| $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4004 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3947 ((|#4| |#4| $) NIL T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) NIL T ELT)) (-2118 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1429 ((|#3| $) 38 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#4|) $) 19 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1683 (((-665 |#3|) $) NIL T ELT)) (-3692 (((-112) |#3| $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4026 (((-3 |#4| "failed") $) 42 T ELT)) (-1602 (((-665 |#4|) $) NIL T ELT)) (-1768 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2477 ((|#4| |#4| $) NIL T ELT)) (-2852 (((-112) $ $) NIL T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3881 ((|#4| |#4| $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-3 |#4| "failed") $) 40 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 58 T ELT)) (-2568 (($ $ |#4|) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 17 T ELT)) (-2833 (($) 14 T ELT)) (-1597 (((-792) $) NIL T ELT)) (-1481 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 22 T ELT)) (-1336 (($ $ |#3|) 52 T ELT)) (-3076 (($ $ |#3|) 54 T ELT)) (-2138 (($ $) NIL T ELT)) (-2951 (($ $ |#3|) NIL T ELT)) (-3709 (((-885) $) 35 T ELT) (((-665 |#4|) $) 46 T ELT)) (-3534 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) NIL T ELT)) (-2066 (((-112) |#3| $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-489 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|) (-569) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -489)) +NIL +(-1240 |#1| |#2| |#3| |#4|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-2450 (($) 17 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-4463 (((-391) $) 21 T ELT) (((-228) $) 24 T ELT) (((-420 (-1202 (-577))) $) 18 T ELT) (((-549) $) 53 T ELT)) (-3709 (((-885) $) 51 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (((-228) $) 23 T ELT) (((-391) $) 20 T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) 37 T CONST)) (-2853 (($) 8 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-490) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))) (-1052) (-631 (-228)) (-631 (-391)) (-632 (-420 (-1202 (-577)))) (-632 (-549)) (-10 -8 (-15 -2450 ($))))) (T -490)) +((-2450 (*1 *1) (-5 *1 (-490)))) +(-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))) (-1052) (-631 (-228)) (-631 (-391)) (-632 (-420 (-1202 (-577)))) (-632 (-549)) (-10 -8 (-15 -2450 ($)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2416 (((-1165) $) 11 T ELT)) (-2404 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-491) (-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $))))) (T -491)) +((-2404 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491))))) +(-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $)))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1935 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#2| $ |#1| |#2|) 16 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) 20 T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 18 T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4001 (((-665 |#1|) $) 13 T ELT)) (-4065 (((-112) |#1| $) NIL T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2233 (((-665 |#1|) $) NIL T ELT)) (-3972 (((-112) |#1| $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 19 T ELT)) (-2916 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 11 (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3600 (((-792) $) 15 (|has| $ (-6 -4499)) ELT))) +(((-492 |#1| |#2| |#3|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130) (-1188)) (T -492)) +NIL +(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) +((-2452 (((-577) (-577) (-577)) 19 T ELT)) (-1414 (((-112) (-577) (-577) (-577) (-577)) 28 T ELT)) (-2475 (((-1297 (-665 (-577))) (-792) (-792)) 41 T ELT))) +(((-493) (-10 -7 (-15 -2452 ((-577) (-577) (-577))) (-15 -1414 ((-112) (-577) (-577) (-577) (-577))) (-15 -2475 ((-1297 (-665 (-577))) (-792) (-792))))) (T -493)) +((-2475 (*1 *2 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1297 (-665 (-577)))) (-5 *1 (-493)))) (-1414 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493)))) (-2452 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) +(-10 -7 (-15 -2452 ((-577) (-577) (-577))) (-15 -1414 ((-112) (-577) (-577) (-577) (-577))) (-15 -2475 ((-1297 (-665 (-577))) (-792) (-792)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-887 |#1|)) $) NIL T ELT)) (-3732 (((-1202 $) $ (-887 |#1|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3868 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-2014 (($ $ (-665 (-577))) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4365 (($ $ |#2| (-495 (-3600 |#1|) (-792)) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-3882 (($ (-1202 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1202 $) (-887 |#1|)) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#2| (-495 (-3600 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-887 |#1|)) NIL T ELT)) (-4340 (((-495 (-3600 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4329 (($ (-1 (-495 (-3600 |#1|) (-792)) (-495 (-3600 |#1|) (-792))) $) NIL T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3946 (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#2| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) NIL T ELT)) (-3846 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3641 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-1597 (((-495 (-3600 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2407 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-495 (-3600 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-494 |#1| |#2|) (-13 (-977 |#2| (-495 (-3600 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -2014 ($ $ (-665 (-577)))))) (-665 (-1206)) (-1079)) (T -494)) +((-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-494 *3 *4)) (-14 *3 (-665 (-1206))) (-4 *4 (-1079))))) +(-13 (-977 |#2| (-495 (-3600 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -2014 ($ $ (-665 (-577)))))) +((-3586 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-4113 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-1385 (($ (-949)) NIL (|has| |#2| (-1079)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-4208 (($ $ $) NIL (|has| |#2| (-814)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#2| (-380)) ELT)) (-1957 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1130)) ELT)) (-3783 (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) NIL (|has| |#2| (-1130)) ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) NIL (|has| |#2| (-1079)) ELT)) (-3167 (((-3 $ "failed") $) NIL (|has| |#2| (-1079)) ELT)) (-1424 (($) NIL (|has| |#2| (-380)) ELT)) (-4420 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ (-577)) 11 T ELT)) (-2118 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL (|has| |#2| (-1079)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-2152 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4409 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#2| (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3235 (((-1188) $) NIL (|has| |#2| (-1130)) ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-3354 (($ (-949)) NIL (|has| |#2| (-380)) ELT)) (-1470 (((-1150) $) NIL (|has| |#2| (-1130)) ELT)) (-4397 ((|#2| $) NIL (|has| (-577) (-870)) ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT)) (-4047 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-3805 (($ (-1297 |#2|)) NIL T ELT)) (-4366 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-3641 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-1297 |#2|) $) NIL T ELT) (($ (-577)) NIL (-2867 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) NIL (|has| |#2| (-1130)) ELT) (((-885) $) NIL (|has| |#2| (-631 (-885))) ELT)) (-3331 (((-792)) NIL (|has| |#2| (-1079)) CONST)) (-2643 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2839 (($) NIL (|has| |#2| (-23)) CONST)) (-2853 (($) NIL (|has| |#2| (-1079)) CONST)) (-2389 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3042 (((-112) $ $) 17 (|has| |#2| (-870)) ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3114 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1079)) ELT) (($ $ |#2|) NIL (|has| |#2| (-747)) ELT) (($ |#2| $) NIL (|has| |#2| (-747)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-792) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-495 |#1| |#2|) (-244 |#1| |#2|) (-792) (-814)) (T -495)) NIL (-244 |#1| |#2|) -((-3489 (((-112) $ $) NIL T ELT)) (-1506 (((-660 (-894)) $) 15 T ELT)) (-2668 (((-519) $) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3648 (($ (-519) (-660 (-894))) 11 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 22 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-496) (-13 (-1108) (-10 -8 (-15 -3648 ($ (-519) (-660 (-894)))) (-15 -2668 ((-519) $)) (-15 -1506 ((-660 (-894)) $))))) (T -496)) -((-3648 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-894))) (-5 *1 (-496)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-496)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-660 (-894))) (-5 *1 (-496))))) -(-13 (-1108) (-10 -8 (-15 -3648 ($ (-519) (-660 (-894)))) (-15 -2668 ((-519) $)) (-15 -1506 ((-660 (-894)) $)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-1615 (($ $ $) 48 T ELT)) (-1334 (($ $ $) 47 T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1457 ((|#1| $) 40 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 41 T ELT)) (-4345 (($ |#1| $) 18 T ELT)) (-3468 (($ (-660 |#1|)) 19 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-3439 ((|#1| $) 34 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 11 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 45 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 29 (|has| $ (-6 -4470)) ELT))) -(((-497 |#1|) (-13 (-993 |#1|) (-10 -8 (-15 -3468 ($ (-660 |#1|))))) (-865)) (T -497)) -((-3468 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-497 *3))))) -(-13 (-993 |#1|) (-10 -8 (-15 -3468 ($ (-660 |#1|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2498 (($ $) 71 T ELT)) (-3316 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2756 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 45 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (((-3 |#4| "failed") $) 117 T ELT)) (-2084 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 81 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-577)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-4337 (((-2 (|:| -3163 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3603 (((-880) $) 110 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 32 T CONST)) (-2949 (((-112) $ $) 121 T ELT)) (-3042 (($ $) 77 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 72 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 78 T ELT))) -(((-498 |#1| |#2| |#3| |#4|) (-347 |#1| |#2| |#3| |#4|) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -498)) +((-3586 (((-112) $ $) NIL T ELT)) (-1826 (((-665 (-899)) $) 15 T ELT)) (-2758 (((-519) $) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1673 (($ (-519) (-665 (-899))) 11 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 22 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-496) (-13 (-1113) (-10 -8 (-15 -1673 ($ (-519) (-665 (-899)))) (-15 -2758 ((-519) $)) (-15 -1826 ((-665 (-899)) $))))) (T -496)) +((-1673 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-899))) (-5 *1 (-496)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-496)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-665 (-899))) (-5 *1 (-496))))) +(-13 (-1113) (-10 -8 (-15 -1673 ($ (-519) (-665 (-899)))) (-15 -2758 ((-519) $)) (-15 -1826 ((-665 (-899)) $)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-3836 (($ $ $) 48 T ELT)) (-3771 (($ $ $) 47 T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2930 ((|#1| $) 40 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 41 T ELT)) (-4375 (($ |#1| $) 18 T ELT)) (-3817 (($ (-665 |#1|)) 19 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3205 ((|#1| $) 34 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 11 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 45 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 29 (|has| $ (-6 -4499)) ELT))) +(((-497 |#1|) (-13 (-998 |#1|) (-10 -8 (-15 -3817 ($ (-665 |#1|))))) (-870)) (T -497)) +((-3817 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-497 *3))))) +(-13 (-998 |#1|) (-10 -8 (-15 -3817 ($ (-665 |#1|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2060 (($ $) 71 T ELT)) (-3683 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2459 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 45 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (((-3 |#4| "failed") $) 117 T ELT)) (-4157 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 81 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-577)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-4267 (((-2 (|:| -3410 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3709 (((-885) $) 110 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 32 T CONST)) (-3018 (((-112) $ $) 121 T ELT)) (-3128 (($ $) 77 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 72 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 78 T ELT))) +(((-498 |#1| |#2| |#3| |#4|) (-347 |#1| |#2| |#3| |#4|) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -498)) NIL (-347 |#1| |#2| |#3| |#4|) -((-1605 (((-577) (-660 (-577))) 53 T ELT)) (-3868 ((|#1| (-660 |#1|)) 94 T ELT)) (-1937 (((-660 |#1|) (-660 |#1|)) 95 T ELT)) (-3498 (((-660 |#1|) (-660 |#1|)) 97 T ELT)) (-3543 ((|#1| (-660 |#1|)) 96 T ELT)) (-2240 (((-660 (-577)) (-660 |#1|)) 56 T ELT))) -(((-499 |#1|) (-10 -7 (-15 -3543 (|#1| (-660 |#1|))) (-15 -3868 (|#1| (-660 |#1|))) (-15 -3498 ((-660 |#1|) (-660 |#1|))) (-15 -1937 ((-660 |#1|) (-660 |#1|))) (-15 -2240 ((-660 (-577)) (-660 |#1|))) (-15 -1605 ((-577) (-660 (-577))))) (-1268 (-577))) (T -499)) -((-1605 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) (-4 *4 (-1268 *2)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1268 (-577))) (-5 *2 (-660 (-577))) (-5 *1 (-499 *4)))) (-1937 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577))))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577)))))) -(-10 -7 (-15 -3543 (|#1| (-660 |#1|))) (-15 -3868 (|#1| (-660 |#1|))) (-15 -3498 ((-660 |#1|) (-660 |#1|))) (-15 -1937 ((-660 |#1|) (-660 |#1|))) (-15 -2240 ((-660 (-577)) (-660 |#1|))) (-15 -1605 ((-577) (-660 (-577))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| (-577) (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1063 (-577))) ELT)) (-2155 (((-577) $) NIL T ELT) (((-1201) $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1063 (-577))) ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-577) (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 (((-577) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-2124 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-577) (-1177)) CONST)) (-4280 (($ (-420 (-577))) 9 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-1374 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577))) ELT) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 (((-577) $) NIL T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-627 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1047)) ELT) (((-228) $) NIL (|has| (-577) (-1047)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1029 16) $) 10 T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| (-577) (-836)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-3051 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) -(((-500) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 16)) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -4280 ($ (-420 (-577))))))) (T -500)) -((-3053 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) (-4280 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) -(-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 16)) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -4280 ($ (-420 (-577)))))) -((-2434 (((-660 |#2|) $) 31 T ELT)) (-1645 (((-112) |#2| $) 39 T ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 26 T ELT)) (-3273 (($ $ (-660 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) 30 T ELT) (((-787) |#2| $) 37 T ELT)) (-3603 (((-880) $) 45 T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-2949 (((-112) $ $) 35 T ELT)) (-3501 (((-787) $) 18 T ELT))) -(((-501 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#2| |#2|)) (-15 -3273 (|#1| |#1| (-305 |#2|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -1645 ((-112) |#2| |#1|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -2434 ((-660 |#2|) |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3501 ((-787) |#1|))) (-502 |#2|) (-1242)) (T -501)) -NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#2| |#2|)) (-15 -3273 (|#1| |#1| (-305 |#2|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -1645 ((-112) |#2| |#1|)) (-15 -1452 ((-787) |#2| |#1|)) (-15 -2434 ((-660 |#2|) |#1|)) (-15 -1452 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3501 ((-787) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3790 (($) 7 T CONST)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-502 |#1|) (-141) (-1242)) (T -502)) -((-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1242)))) (-2826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4471)) (-4 *1 (-502 *3)) (-4 *3 (-1242)))) (-2285 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-2659 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-1452 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) (-4 *4 (-1242)) (-5 *2 (-787)))) (-3692 (*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3)))) (-2434 (*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3)))) (-1452 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-787)))) (-1645 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |t#1| (-1125)) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4471)) (-15 -2826 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4470)) (PROGN (-15 -2285 ((-112) (-1 (-112) |t#1|) $)) (-15 -2659 ((-112) (-1 (-112) |t#1|) $)) (-15 -1452 ((-787) (-1 (-112) |t#1|) $)) (-15 -3692 ((-660 |t#1|) $)) (-15 -2434 ((-660 |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -1452 ((-787) |t#1| $)) (-15 -1645 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3603 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-503 |#1|) (-141) (-1242)) (T -503)) -NIL -(-13 (-626 |t#1|) (-629 |t#1|)) -(((-629 |#1|) . T) ((-626 |#1|) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2250 (($ (-1183)) 8 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 15 T ELT) (((-1183) $) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 11 T ELT))) -(((-504) (-13 (-1125) (-626 (-1183)) (-10 -8 (-15 -2250 ($ (-1183)))))) (T -504)) -((-2250 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-504))))) -(-13 (-1125) (-626 (-1183)) (-10 -8 (-15 -2250 ($ (-1183))))) -((-2642 (($ $) 15 T ELT)) (-2616 (($ $) 24 T ELT)) (-2666 (($ $) 12 T ELT)) (-2680 (($ $) 10 T ELT)) (-2655 (($ $) 17 T ELT)) (-2631 (($ $) 22 T ELT))) -(((-505 |#1|) (-10 -8 (-15 -2631 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2642 (|#1| |#1|))) (-506)) (T -505)) -NIL -(-10 -8 (-15 -2631 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2642 (|#1| |#1|))) -((-2642 (($ $) 11 T ELT)) (-2616 (($ $) 10 T ELT)) (-2666 (($ $) 9 T ELT)) (-2680 (($ $) 8 T ELT)) (-2655 (($ $) 7 T ELT)) (-2631 (($ $) 6 T ELT))) +((-2038 (((-577) (-665 (-577))) 53 T ELT)) (-4011 ((|#1| (-665 |#1|)) 94 T ELT)) (-4445 (((-665 |#1|) (-665 |#1|)) 95 T ELT)) (-3240 (((-665 |#1|) (-665 |#1|)) 97 T ELT)) (-3642 ((|#1| (-665 |#1|)) 96 T ELT)) (-2407 (((-665 (-577)) (-665 |#1|)) 56 T ELT))) +(((-499 |#1|) (-10 -7 (-15 -3642 (|#1| (-665 |#1|))) (-15 -4011 (|#1| (-665 |#1|))) (-15 -3240 ((-665 |#1|) (-665 |#1|))) (-15 -4445 ((-665 |#1|) (-665 |#1|))) (-15 -2407 ((-665 (-577)) (-665 |#1|))) (-15 -2038 ((-577) (-665 (-577))))) (-1273 (-577))) (T -499)) +((-2038 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) (-4 *4 (-1273 *2)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1273 (-577))) (-5 *2 (-665 (-577))) (-5 *1 (-499 *4)))) (-4445 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3)))) (-3240 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577))))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577)))))) +(-10 -7 (-15 -3642 (|#1| (-665 |#1|))) (-15 -4011 (|#1| (-665 |#1|))) (-15 -3240 ((-665 |#1|) (-665 |#1|))) (-15 -4445 ((-665 |#1|) (-665 |#1|))) (-15 -2407 ((-665 (-577)) (-665 |#1|))) (-15 -2038 ((-577) (-665 (-577))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3783 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-577) (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 (((-577) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4417 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-577) (-1182)) CONST)) (-3810 (($ (-420 (-577))) 9 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-3941 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 (((-577) $) NIL T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1034 16) $) 10 T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) +(((-500) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 16)) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -3810 ($ (-420 (-577))))))) (T -500)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) (-3810 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) +(-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 16)) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -3810 ($ (-420 (-577)))))) +((-2152 (((-665 |#2|) $) 31 T ELT)) (-3519 (((-112) |#2| $) 39 T ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 26 T ELT)) (-3373 (($ $ (-665 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) 30 T ELT) (((-792) |#2| $) 37 T ELT)) (-3709 (((-885) $) 45 T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-3018 (((-112) $ $) 35 T ELT)) (-3600 (((-792) $) 18 T ELT))) +(((-501 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#2| |#2|)) (-15 -3373 (|#1| |#1| (-305 |#2|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3519 ((-112) |#2| |#1|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -2152 ((-665 |#2|) |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3600 ((-792) |#1|))) (-502 |#2|) (-1247)) (T -501)) +NIL +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#2| |#2|)) (-15 -3373 (|#1| |#1| (-305 |#2|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3519 ((-112) |#2| |#1|)) (-15 -1481 ((-792) |#2| |#1|)) (-15 -2152 ((-665 |#2|) |#1|)) (-15 -1481 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3600 ((-792) |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2305 (($) 7 T CONST)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-502 |#1|) (-141) (-1247)) (T -502)) +((-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1247)))) (-4409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4500)) (-4 *1 (-502 *3)) (-4 *3 (-1247)))) (-1474 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-3446 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-1481 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) (-4 *4 (-1247)) (-5 *2 (-792)))) (-2118 (*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3)))) (-2152 (*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3)))) (-1481 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-792)))) (-3519 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |t#1| (-1130)) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4417 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4500)) (-15 -4409 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4499)) (PROGN (-15 -1474 ((-112) (-1 (-112) |t#1|) $)) (-15 -3446 ((-112) (-1 (-112) |t#1|) $)) (-15 -1481 ((-792) (-1 (-112) |t#1|) $)) (-15 -2118 ((-665 |t#1|) $)) (-15 -2152 ((-665 |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -1481 ((-792) |t#1| $)) (-15 -3519 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3709 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-503 |#1|) (-141) (-1247)) (T -503)) +NIL +(-13 (-631 |t#1|) (-634 |t#1|)) +(((-634 |#1|) . T) ((-631 |#1|) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2182 (($ (-1188)) 8 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 15 T ELT) (((-1188) $) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 11 T ELT))) +(((-504) (-13 (-1130) (-631 (-1188)) (-10 -8 (-15 -2182 ($ (-1188)))))) (T -504)) +((-2182 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-504))))) +(-13 (-1130) (-631 (-1188)) (-10 -8 (-15 -2182 ($ (-1188))))) +((-1660 (($ $) 15 T ELT)) (-1638 (($ $) 24 T ELT)) (-1682 (($ $) 12 T ELT)) (-1692 (($ $) 10 T ELT)) (-1671 (($ $) 17 T ELT)) (-1648 (($ $) 22 T ELT))) +(((-505 |#1|) (-10 -8 (-15 -1648 (|#1| |#1|)) (-15 -1671 (|#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1660 (|#1| |#1|))) (-506)) (T -505)) +NIL +(-10 -8 (-15 -1648 (|#1| |#1|)) (-15 -1671 (|#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1660 (|#1| |#1|))) +((-1660 (($ $) 11 T ELT)) (-1638 (($ $) 10 T ELT)) (-1682 (($ $) 9 T ELT)) (-1692 (($ $) 8 T ELT)) (-1671 (($ $) 7 T ELT)) (-1648 (($ $) 6 T ELT))) (((-506) (-141)) (T -506)) -((-2642 (*1 *1 *1) (-4 *1 (-506))) (-2616 (*1 *1 *1) (-4 *1 (-506))) (-2666 (*1 *1 *1) (-4 *1 (-506))) (-2680 (*1 *1 *1) (-4 *1 (-506))) (-2655 (*1 *1 *1) (-4 *1 (-506))) (-2631 (*1 *1 *1) (-4 *1 (-506)))) -(-13 (-10 -8 (-15 -2631 ($ $)) (-15 -2655 ($ $)) (-15 -2680 ($ $)) (-15 -2666 ($ $)) (-15 -2616 ($ $)) (-15 -2642 ($ $)))) -((-3056 (((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)) 54 T ELT))) -(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) (-375) (-1268 |#1|) (-13 (-375) (-148) (-740 |#1| |#2|)) (-1268 |#3|)) (T -507)) -((-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-4 *7 (-13 (-375) (-148) (-740 *5 *6))) (-5 *2 (-431 *3)) (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1268 *7))))) -(-10 -7 (-15 -3056 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1884 (((-660 $) (-1197 $) (-1201)) NIL T ELT) (((-660 $) (-1197 $)) NIL T ELT) (((-660 $) (-975 $)) NIL T ELT)) (-2690 (($ (-1197 $) (-1201)) NIL T ELT) (($ (-1197 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-3801 (((-112) $) 39 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3886 (((-112) $ $) 73 T ELT)) (-2002 (((-660 (-625 $)) $) 50 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2692 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3070 (($ $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1344 (((-660 $) (-1197 $) (-1201)) NIL T ELT) (((-660 $) (-1197 $)) NIL T ELT) (((-660 $) (-975 $)) NIL T ELT)) (-3400 (($ (-1197 $) (-1201)) NIL T ELT) (($ (-1197 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2784 (((-3 (-625 $) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2155 (((-625 $) $) NIL T ELT) (((-577) $) NIL T ELT) (((-420 (-577)) $) 55 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-420 (-577))) (-705 $)) NIL T ELT)) (-2498 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4301 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1653 (((-660 (-115)) $) NIL T ELT)) (-2085 (((-115) (-115)) NIL T ELT)) (-3306 (((-112) $) 42 T ELT)) (-2238 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-2781 (((-1150 (-577) (-625 $)) $) 37 T ELT)) (-4286 (($ $ (-577)) NIL T ELT)) (-4021 (((-1197 $) (-1197 $) (-625 $)) 87 T ELT) (((-1197 $) (-1197 $) (-660 (-625 $))) 62 T ELT) (($ $ (-625 $)) 76 T ELT) (($ $ (-660 (-625 $))) 77 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3348 (((-1197 $) (-625 $)) 74 (|has| $ (-1074)) ELT)) (-2124 (($ (-1 $ $) (-625 $)) NIL T ELT)) (-3215 (((-3 (-625 $) "failed") $) NIL T ELT)) (-1512 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-1292 $) $) NIL T ELT) (((-705 (-420 (-577))) (-1292 $)) NIL T ELT)) (-3508 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2074 (((-660 (-625 $)) $) NIL T ELT)) (-2869 (($ (-115) $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3152 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1201)) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-4181 (((-787) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1859 (((-112) $ $) NIL T ELT) (((-112) $ (-1201)) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3861 (((-112) $) NIL (|has| $ (-1063 (-577))) ELT)) (-3273 (($ $ (-625 $) $) NIL T ELT) (($ $ (-660 (-625 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1201) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1201) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3362 (($ $) 36 T ELT) (($ $ (-787)) NIL T ELT)) (-2797 (((-1150 (-577) (-625 $)) $) 20 T ELT)) (-1629 (($ $) NIL (|has| $ (-1074)) ELT)) (-2176 (((-391) $) 101 T ELT) (((-228) $) 109 T ELT) (((-171 (-391)) $) 117 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-625 $)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1150 (-577) (-625 $))) 21 T ELT)) (-1920 (((-787)) NIL T CONST)) (-1866 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3123 (((-112) (-115)) 93 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) 10 T CONST)) (-2767 (($) 22 T CONST)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2949 (((-112) $ $) 24 T ELT)) (-3051 (($ $ $) 44 T ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-420 (-577))) NIL T ELT) (($ $ (-577)) 48 T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-577) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-944) $) NIL T ELT))) -(((-508) (-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3603 ($ (-1150 (-577) (-625 $)))) (-15 -2781 ((-1150 (-577) (-625 $)) $)) (-15 -2797 ((-1150 (-577) (-625 $)) $)) (-15 -2498 ($ $)) (-15 -3886 ((-112) $ $)) (-15 -4021 ((-1197 $) (-1197 $) (-625 $))) (-15 -4021 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4021 ($ $ (-625 $))) (-15 -4021 ($ $ (-660 (-625 $))))))) (T -508)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) (-2498 (*1 *1 *1) (-5 *1 (-508))) (-3886 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508)))) (-4021 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-625 (-508))) (-5 *1 (-508)))) (-4021 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-660 (-625 (-508)))) (-5 *1 (-508)))) (-4021 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-508))) (-5 *1 (-508)))) (-4021 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-508)))) (-5 *1 (-508))))) -(-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3603 ($ (-1150 (-577) (-625 $)))) (-15 -2781 ((-1150 (-577) (-625 $)) $)) (-15 -2797 ((-1150 (-577) (-625 $)) $)) (-15 -2498 ($ $)) (-15 -3886 ((-112) $ $)) (-15 -4021 ((-1197 $) (-1197 $) (-625 $))) (-15 -4021 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4021 ($ $ (-625 $))) (-15 -4021 ($ $ (-660 (-625 $)))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) |#1|) 44 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 39 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 38 T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) 21 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 17 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) 41 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) 15 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 19 T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 43 T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 24 T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 11 (|has| $ (-6 -4470)) ELT))) -(((-509 |#1| |#2|) (-19 |#1|) (-1242) (-577)) (T -509)) +((-1660 (*1 *1 *1) (-4 *1 (-506))) (-1638 (*1 *1 *1) (-4 *1 (-506))) (-1682 (*1 *1 *1) (-4 *1 (-506))) (-1692 (*1 *1 *1) (-4 *1 (-506))) (-1671 (*1 *1 *1) (-4 *1 (-506))) (-1648 (*1 *1 *1) (-4 *1 (-506)))) +(-13 (-10 -8 (-15 -1648 ($ $)) (-15 -1671 ($ $)) (-15 -1692 ($ $)) (-15 -1682 ($ $)) (-15 -1638 ($ $)) (-15 -1660 ($ $)))) +((-3759 (((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)) 54 T ELT))) +(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) (-375) (-1273 |#1|) (-13 (-375) (-148) (-745 |#1| |#2|)) (-1273 |#3|)) (T -507)) +((-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-4 *7 (-13 (-375) (-148) (-745 *5 *6))) (-5 *2 (-431 *3)) (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1273 *7))))) +(-10 -7 (-15 -3759 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4006 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-2370 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-4113 (((-112) $) 39 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-1844 (((-112) $ $) 73 T ELT)) (-3613 (((-665 (-630 $)) $) 50 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4313 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3390 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-1940 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-4335 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3783 (((-630 $) $) NIL T ELT) (((-577) $) NIL T ELT) (((-420 (-577)) $) 55 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 (-577))) (-710 $)) NIL T ELT)) (-2060 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-2754 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1529 (((-665 (-115)) $) NIL T ELT)) (-3706 (((-115) (-115)) NIL T ELT)) (-3357 (((-112) $) 42 T ELT)) (-2310 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-2417 (((-1155 (-577) (-630 $)) $) 37 T ELT)) (-3368 (($ $ (-577)) NIL T ELT)) (-2794 (((-1202 $) (-1202 $) (-630 $)) 87 T ELT) (((-1202 $) (-1202 $) (-665 (-630 $))) 62 T ELT) (($ $ (-630 $)) 76 T ELT) (($ $ (-665 (-630 $))) 77 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2465 (((-1202 $) (-630 $)) 74 (|has| $ (-1079)) ELT)) (-4417 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-2998 (((-3 (-630 $) "failed") $) NIL T ELT)) (-3163 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-1297 $) $) NIL T ELT) (((-710 (-420 (-577))) (-1297 $)) NIL T ELT)) (-3606 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3693 (((-665 (-630 $)) $) NIL T ELT)) (-4399 (($ (-115) $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4241 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2553 (((-792) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3219 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2820 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3373 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-2106 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3641 (($ $) 36 T ELT) (($ $ (-792)) NIL T ELT)) (-2429 (((-1155 (-577) (-630 $)) $) 20 T ELT)) (-4263 (($ $) NIL (|has| $ (-1079)) ELT)) (-4463 (((-391) $) 101 T ELT) (((-228) $) 109 T ELT) (((-171 (-391)) $) 117 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1155 (-577) (-630 $))) 21 T ELT)) (-3331 (((-792)) NIL T CONST)) (-2907 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1448 (((-112) (-115)) 93 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) 10 T CONST)) (-2853 (($) 22 T CONST)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3018 (((-112) $ $) 24 T ELT)) (-3139 (($ $ $) 44 T ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-420 (-577))) NIL T ELT) (($ $ (-577)) 48 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) +(((-508) (-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -3709 ($ (-1155 (-577) (-630 $)))) (-15 -2417 ((-1155 (-577) (-630 $)) $)) (-15 -2429 ((-1155 (-577) (-630 $)) $)) (-15 -2060 ($ $)) (-15 -1844 ((-112) $ $)) (-15 -2794 ((-1202 $) (-1202 $) (-630 $))) (-15 -2794 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2794 ($ $ (-630 $))) (-15 -2794 ($ $ (-665 (-630 $))))))) (T -508)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) (-2060 (*1 *1 *1) (-5 *1 (-508))) (-1844 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-630 (-508))) (-5 *1 (-508)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-665 (-630 (-508)))) (-5 *1 (-508)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-508))) (-5 *1 (-508)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-508)))) (-5 *1 (-508))))) +(-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -3709 ($ (-1155 (-577) (-630 $)))) (-15 -2417 ((-1155 (-577) (-630 $)) $)) (-15 -2429 ((-1155 (-577) (-630 $)) $)) (-15 -2060 ($ $)) (-15 -1844 ((-112) $ $)) (-15 -2794 ((-1202 $) (-1202 $) (-630 $))) (-15 -2794 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2794 ($ $ (-630 $))) (-15 -2794 ($ $ (-665 (-630 $)))))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) |#1|) 44 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 39 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 38 T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) 21 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 17 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) 41 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) 15 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 19 T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 43 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 24 T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 11 (|has| $ (-6 -4499)) ELT))) +(((-509 |#1| |#2|) (-19 |#1|) (-1247) (-577)) (T -509)) NIL (-19 |#1|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2937 (($ $ (-577) (-509 |#1| |#3|)) NIL T ELT)) (-2025 (($ $ (-577) (-509 |#1| |#2|)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1578 (((-509 |#1| |#3|) $ (-577)) NIL T ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2759 ((|#1| $ (-577) (-577)) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL T ELT)) (-4022 (((-787) $) NIL T ELT)) (-4223 (($ (-787) (-787) |#1|) NIL T ELT)) (-4033 (((-787) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4250 (((-577) $) NIL T ELT)) (-2952 (((-577) $) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1484 (((-577) $) NIL T ELT)) (-3329 (((-577) $) NIL T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2859 (((-509 |#1| |#2|) $ (-577)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-510 |#1| |#2| |#3|) (-57 |#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) (-1242) (-577) (-577)) (T -510)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2699 (($ $ (-577) (-509 |#1| |#3|)) NIL T ELT)) (-1969 (($ $ (-577) (-509 |#1| |#2|)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4448 (((-509 |#1| |#3|) $ (-577)) NIL T ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-4353 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL T ELT)) (-2408 (((-792) $) NIL T ELT)) (-3236 (($ (-792) (-792) |#1|) NIL T ELT)) (-2420 (((-792) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-4051 (((-577) $) NIL T ELT)) (-3232 (((-577) $) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1766 (((-577) $) NIL T ELT)) (-3371 (((-577) $) NIL T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-1455 (((-509 |#1| |#2|) $ (-577)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-510 |#1| |#2| |#3|) (-57 |#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) (-1247) (-577) (-577)) (T -510)) NIL (-57 |#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) -((-3718 (((-660 (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-787) (-787)) 32 T ELT)) (-1930 (((-660 (-1197 |#1|)) |#1| (-787) (-787) (-787)) 43 T ELT)) (-1999 (((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-660 |#3|) (-660 (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-787)) 107 T ELT))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -1930 ((-660 (-1197 |#1|)) |#1| (-787) (-787) (-787))) (-15 -3718 ((-660 (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-787) (-787))) (-15 -1999 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-660 |#3|) (-660 (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-787)))) (-361) (-1268 |#1|) (-1268 |#2|)) (T -511)) -((-1999 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-2 (|:| -2559 (-705 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-705 *7))))) (-5 *5 (-787)) (-4 *8 (-1268 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-361)) (-5 *2 (-2 (|:| -2559 (-705 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-705 *7)))) (-5 *1 (-511 *6 *7 *8)))) (-3718 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-787)) (-4 *5 (-361)) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -2559 (-705 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-705 *6))))) (-5 *1 (-511 *5 *6 *7)) (-5 *3 (-2 (|:| -2559 (-705 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-705 *6)))) (-4 *7 (-1268 *6)))) (-1930 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-787)) (-4 *3 (-361)) (-4 *5 (-1268 *3)) (-5 *2 (-660 (-1197 *3))) (-5 *1 (-511 *3 *5 *6)) (-4 *6 (-1268 *5))))) -(-10 -7 (-15 -1930 ((-660 (-1197 |#1|)) |#1| (-787) (-787) (-787))) (-15 -3718 ((-660 (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-787) (-787))) (-15 -1999 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-660 |#3|) (-660 (-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-787)))) -((-2287 (((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))) 70 T ELT)) (-2388 ((|#1| (-705 |#1|) |#1| (-787)) 24 T ELT)) (-4065 (((-787) (-787) (-787)) 34 T ELT)) (-3655 (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 50 T ELT)) (-1807 (((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|) 58 T ELT) (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 55 T ELT)) (-2257 ((|#1| (-705 |#1|) (-705 |#1|) |#1| (-577)) 28 T ELT)) (-3294 ((|#1| (-705 |#1|)) 18 T ELT))) -(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -3294 (|#1| (-705 |#1|))) (-15 -2388 (|#1| (-705 |#1|) |#1| (-787))) (-15 -2257 (|#1| (-705 |#1|) (-705 |#1|) |#1| (-577))) (-15 -4065 ((-787) (-787) (-787))) (-15 -1807 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1807 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -3655 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -2287 ((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))))) (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $)))) (-1268 |#1|) (-422 |#1| |#2|)) (T -512)) -((-2287 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-3655 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1807 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1807 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4065 (*1 *2 *2 *2) (-12 (-5 *2 (-787)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2257 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-705 *2)) (-5 *4 (-577)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-2388 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-705 *2)) (-5 *4 (-787)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-705 *2)) (-4 *4 (-1268 *2)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) -(-10 -7 (-15 -3294 (|#1| (-705 |#1|))) (-15 -2388 (|#1| (-705 |#1|) |#1| (-787))) (-15 -2257 (|#1| (-705 |#1|) (-705 |#1|) |#1| (-577))) (-15 -4065 ((-787) (-787) (-787))) (-15 -1807 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1807 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -3655 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -2287 ((-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -2559 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3516 (($ $) NIL T ELT)) (-2727 (($ $ $) 40 T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) $) NIL (|has| (-112) (-865)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-3246 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-112) (-865))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2312 (($ $) NIL (|has| (-112) (-865)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 (((-112) $ (-1259 (-577)) (-112)) NIL (|has| $ (-6 -4471)) ELT) (((-112) $ (-577) (-112)) 42 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-3920 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-2498 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-2840 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4471)) ELT)) (-2759 (((-112) $ (-577)) NIL T ELT)) (-3728 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1125)) ELT) (((-577) (-112) $) NIL (|has| (-112) (-1125)) ELT) (((-577) (-1 (-112) (-112)) $) NIL T ELT)) (-3692 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2713 (($ $ $) 38 T ELT)) (-2686 (($ $) NIL T ELT)) (-1721 (($ $ $) NIL T ELT)) (-4223 (($ (-787) (-112)) 27 T ELT)) (-2906 (($ $ $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 8 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL T ELT)) (-1334 (($ $ $) NIL (|has| (-112) (-865)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-2434 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL T ELT)) (-2826 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-112) (-112) (-112)) $ $) 35 T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2218 (($ $ $ (-577)) NIL T ELT) (($ (-112) $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-112) $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-2529 (($ $ (-112)) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-112)) (-660 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT) (($ $ (-660 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT)) (-3908 (((-660 (-112)) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 28 T ELT)) (-2837 (($ $ (-1259 (-577))) NIL T ELT) (((-112) $ (-577)) 22 T ELT) (((-112) $ (-577) (-112)) NIL T ELT)) (-3490 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1452 (((-787) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))) ELT) (((-787) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 29 T ELT)) (-2176 (((-549) $) NIL (|has| (-112) (-627 (-549))) ELT)) (-3614 (($ (-660 (-112))) NIL T ELT)) (-1685 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-3603 (((-880) $) 26 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2700 (($ $ $) 36 T ELT)) (-3559 (($ $ $) NIL T ELT)) (-3863 (($ $ $) 45 T ELT)) (-3875 (($ $) 43 T ELT)) (-3853 (($ $ $) 44 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 30 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 31 T ELT)) (-3549 (($ $ $) NIL T ELT)) (-3501 (((-787) $) 13 (|has| $ (-6 -4470)) ELT))) -(((-513 |#1|) (-13 (-124) (-10 -8 (-15 -3875 ($ $)) (-15 -3863 ($ $ $)) (-15 -3853 ($ $ $)))) (-577)) (T -513)) -((-3875 (*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-3863 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-3853 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577))))) -(-13 (-124) (-10 -8 (-15 -3875 ($ $)) (-15 -3863 ($ $ $)) (-15 -3853 ($ $ $)))) -((-3992 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1197 |#4|)) 35 T ELT)) (-2028 (((-1197 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1197 |#4|)) 22 T ELT)) (-1348 (((-3 (-705 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-705 (-1197 |#4|))) 46 T ELT)) (-3132 (((-1197 (-1197 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2028 (|#2| (-1 |#1| |#4|) (-1197 |#4|))) (-15 -2028 ((-1197 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3992 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1197 |#4|))) (-15 -1348 ((-3 (-705 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-705 (-1197 |#4|)))) (-15 -3132 ((-1197 (-1197 |#4|)) (-1 |#4| |#1|) |#3|))) (-1074) (-1268 |#1|) (-1268 |#2|) (-1074)) (T -514)) -((-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *6 (-1268 *5)) (-5 *2 (-1197 (-1197 *7))) (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1268 *6)))) (-1348 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-705 (-1197 *8))) (-4 *5 (-1074)) (-4 *8 (-1074)) (-4 *6 (-1268 *5)) (-5 *2 (-705 *6)) (-5 *1 (-514 *5 *6 *7 *8)) (-4 *7 (-1268 *6)))) (-3992 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1197 *7)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1268 *2)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *4 (-1268 *5)) (-5 *2 (-1197 *7)) (-5 *1 (-514 *5 *4 *6 *7)) (-4 *6 (-1268 *4)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1197 *7)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1268 *2))))) -(-10 -7 (-15 -2028 (|#2| (-1 |#1| |#4|) (-1197 |#4|))) (-15 -2028 ((-1197 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3992 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1197 |#4|))) (-15 -1348 ((-3 (-705 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-705 (-1197 |#4|)))) (-15 -3132 ((-1197 (-1197 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2032 (((-1297) $) 25 T ELT)) (-2837 (((-1183) $ (-1201)) 30 T ELT)) (-1992 (((-1297) $) 17 T ELT)) (-3603 (((-880) $) 27 T ELT) (($ (-1183)) 26 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 11 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 9 T ELT))) -(((-515) (-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $)) (-15 -3603 ($ (-1183)))))) (T -515)) -((-2837 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1183)) (-5 *1 (-515)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-515))))) -(-13 (-865) (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) (-15 -2032 ((-1297) $)) (-15 -3603 ($ (-1183))))) -((-3773 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3034 ((|#1| |#4|) 10 T ELT)) (-2785 ((|#3| |#4|) 17 T ELT))) -(((-516 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3034 (|#1| |#4|)) (-15 -2785 (|#3| |#4|)) (-15 -3773 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-569) (-1017 |#1|) (-385 |#1|) (-385 |#2|)) (T -516)) -((-3773 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-2785 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-4 *2 (-385 *4)) (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) -(-10 -7 (-15 -3034 (|#1| |#4|)) (-15 -2785 (|#3| |#4|)) (-15 -3773 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3489 (((-112) $ $) NIL T ELT)) (-4389 (((-112) $ (-660 |#3|)) 126 T ELT) (((-112) $) 127 T ELT)) (-3801 (((-112) $) 178 T ELT)) (-2562 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-660 |#3|)) 121 T ELT)) (-3962 (((-1190 (-660 (-975 |#1|)) (-660 (-305 (-975 |#1|)))) (-660 |#4|)) 171 (|has| |#3| (-627 (-1201))) ELT)) (-2669 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-3306 (((-112) $) 177 T ELT)) (-1449 (($ $) 131 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4056 (($ $ $) 99 T ELT) (($ (-660 $)) 101 T ELT)) (-3023 (((-112) |#4| $) 129 T ELT)) (-2907 (((-112) $ $) 82 T ELT)) (-2756 (($ (-660 |#4|)) 106 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4170 (($ (-660 |#4|)) 175 T ELT)) (-4427 (((-112) $) 176 T ELT)) (-1481 (($ $) 85 T ELT)) (-2629 (((-660 |#4|) $) 73 T ELT)) (-2927 (((-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|)) NIL T ELT)) (-1504 (((-112) |#4| $) 89 T ELT)) (-3941 (((-577) $ (-660 |#3|)) 133 T ELT) (((-577) $) 134 T ELT)) (-3603 (((-880) $) 174 T ELT) (($ (-660 |#4|)) 102 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3160 (($ (-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-2949 (((-112) $ $) 84 T ELT)) (-3031 (($ $ $) 109 T ELT)) (** (($ $ (-787)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-517 |#1| |#2| |#3| |#4|) (-13 (-1125) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 -3031 ($ $ $)) (-15 -3306 ((-112) $)) (-15 -3801 ((-112) $)) (-15 -1504 ((-112) |#4| $)) (-15 -2907 ((-112) $ $)) (-15 -3023 ((-112) |#4| $)) (-15 -4389 ((-112) $ (-660 |#3|))) (-15 -4389 ((-112) $)) (-15 -4056 ($ $ $)) (-15 -4056 ($ (-660 $))) (-15 -2669 ($ $ $)) (-15 -2669 ($ $ |#4|)) (-15 -1481 ($ $)) (-15 -2927 ((-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|))) (-15 -3160 ($ (-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)))) (-15 -3941 ((-577) $ (-660 |#3|))) (-15 -3941 ((-577) $)) (-15 -1449 ($ $)) (-15 -2756 ($ (-660 |#4|))) (-15 -4170 ($ (-660 |#4|))) (-15 -4427 ((-112) $)) (-15 -2629 ((-660 |#4|) $)) (-15 -3603 ($ (-660 |#4|))) (-15 -2562 ($ $ |#4|)) (-15 -2562 ($ $ |#4| (-660 |#3|))) (IF (|has| |#3| (-627 (-1201))) (-15 -3962 ((-1190 (-660 (-975 |#1|)) (-660 (-305 (-975 |#1|)))) (-660 |#4|))) |%noBranch|))) (-375) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -517)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3031 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-3306 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3801 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-1504 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-2907 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3023 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-4389 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-4389 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-4056 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-660 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-2669 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-2669 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) (-1481 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-2927 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *2 (-2 (|:| |mval| (-705 *4)) (|:| |invmval| (-705 *4)) (|:| |genIdeal| (-517 *4 *5 *6 *7)))) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-3160 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-705 *3)) (|:| |invmval| (-705 *3)) (|:| |genIdeal| (-517 *3 *4 *5 *6)))) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3941 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-3941 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-1449 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-2756 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) (-4170 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) (-4427 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-2629 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *6)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) (-2562 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) (-2562 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-972 *4 *5 *6)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *6 (-627 (-1201))) (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1190 (-660 (-975 *4)) (-660 (-305 (-975 *4))))) (-5 *1 (-517 *4 *5 *6 *7))))) -(-13 (-1125) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 -3031 ($ $ $)) (-15 -3306 ((-112) $)) (-15 -3801 ((-112) $)) (-15 -1504 ((-112) |#4| $)) (-15 -2907 ((-112) $ $)) (-15 -3023 ((-112) |#4| $)) (-15 -4389 ((-112) $ (-660 |#3|))) (-15 -4389 ((-112) $)) (-15 -4056 ($ $ $)) (-15 -4056 ($ (-660 $))) (-15 -2669 ($ $ $)) (-15 -2669 ($ $ |#4|)) (-15 -1481 ($ $)) (-15 -2927 ((-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|))) (-15 -3160 ($ (-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)))) (-15 -3941 ((-577) $ (-660 |#3|))) (-15 -3941 ((-577) $)) (-15 -1449 ($ $)) (-15 -2756 ($ (-660 |#4|))) (-15 -4170 ($ (-660 |#4|))) (-15 -4427 ((-112) $)) (-15 -2629 ((-660 |#4|) $)) (-15 -3603 ($ (-660 |#4|))) (-15 -2562 ($ $ |#4|)) (-15 -2562 ($ $ |#4| (-660 |#3|))) (IF (|has| |#3| (-627 (-1201))) (-15 -3962 ((-1190 (-660 (-975 |#1|)) (-660 (-305 (-975 |#1|)))) (-660 |#4|))) |%noBranch|))) -((-4281 (((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 176 T ELT)) (-4325 (((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 177 T ELT)) (-2992 (((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 129 T ELT)) (-2182 (((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) NIL T ELT)) (-4171 (((-660 (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 179 T ELT)) (-2803 (((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-660 (-882 |#1|))) 195 T ELT))) -(((-518 |#1| |#2|) (-10 -7 (-15 -4281 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4325 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2182 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2992 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4171 ((-660 (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2803 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-660 (-882 |#1|))))) (-660 (-1201)) (-787)) (T -518)) -((-2803 (*1 *2 *2 *3) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-5 *3 (-660 (-882 *4))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *1 (-518 *4 *5)))) (-4171 (*1 *2 *3) (-12 (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-660 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577)))))) (-5 *1 (-518 *4 *5)) (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))))) (-2992 (*1 *2 *2) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *4 (-787)) (-882 *3) (-254 *3 (-420 (-577))))) (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-518 *3 *4)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5))))) -(-10 -7 (-15 -4281 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4325 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2182 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2992 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4171 ((-660 (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2803 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-660 (-882 |#1|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1331 (($) 6 T ELT)) (-3603 (((-880) $) 14 T ELT) (((-1201) $) 10 T ELT) (((-1183) $) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-519) (-13 (-1125) (-626 (-1201)) (-626 (-1183)) (-10 -8 (-15 -1331 ($))))) (T -519)) -((-1331 (*1 *1) (-5 *1 (-519)))) -(-13 (-1125) (-626 (-1201)) (-626 (-1183)) (-10 -8 (-15 -1331 ($)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3229 (((-660 (-891 |#2| |#1|)) $) 12 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-3180 (($ |#1| |#2|) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4219 ((|#2| $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 16 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 26 T ELT))) -(((-520 |#1| |#2|) (-13 (-21) (-522 |#1| |#2|)) (-21) (-868)) (T -520)) +((-1500 (((-665 (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-792) (-792)) 32 T ELT)) (-3413 (((-665 (-1202 |#1|)) |#1| (-792) (-792) (-792)) 43 T ELT)) (-2965 (((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-665 |#3|) (-665 (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-792)) 107 T ELT))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3413 ((-665 (-1202 |#1|)) |#1| (-792) (-792) (-792))) (-15 -1500 ((-665 (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-792) (-792))) (-15 -2965 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-665 |#3|) (-665 (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-792)))) (-361) (-1273 |#1|) (-1273 |#2|)) (T -511)) +((-2965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-2 (|:| -2104 (-710 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-710 *7))))) (-5 *5 (-792)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-361)) (-5 *2 (-2 (|:| -2104 (-710 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-710 *7)))) (-5 *1 (-511 *6 *7 *8)))) (-1500 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-792)) (-4 *5 (-361)) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -2104 (-710 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-710 *6))))) (-5 *1 (-511 *5 *6 *7)) (-5 *3 (-2 (|:| -2104 (-710 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-710 *6)))) (-4 *7 (-1273 *6)))) (-3413 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-792)) (-4 *3 (-361)) (-4 *5 (-1273 *3)) (-5 *2 (-665 (-1202 *3))) (-5 *1 (-511 *3 *5 *6)) (-4 *6 (-1273 *5))))) +(-10 -7 (-15 -3413 ((-665 (-1202 |#1|)) |#1| (-792) (-792) (-792))) (-15 -1500 ((-665 (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-792) (-792))) (-15 -2965 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-665 |#3|) (-665 (-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-792)))) +((-4436 (((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))) 70 T ELT)) (-3030 ((|#1| (-710 |#1|) |#1| (-792)) 24 T ELT)) (-1607 (((-792) (-792) (-792)) 34 T ELT)) (-3228 (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 50 T ELT)) (-4043 (((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|) 58 T ELT) (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 55 T ELT)) (-1694 ((|#1| (-710 |#1|) (-710 |#1|) |#1| (-577)) 28 T ELT)) (-1566 ((|#1| (-710 |#1|)) 18 T ELT))) +(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -1566 (|#1| (-710 |#1|))) (-15 -3030 (|#1| (-710 |#1|) |#1| (-792))) (-15 -1694 (|#1| (-710 |#1|) (-710 |#1|) |#1| (-577))) (-15 -1607 ((-792) (-792) (-792))) (-15 -4043 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -4043 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -3228 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -4436 ((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))))) (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $)))) (-1273 |#1|) (-422 |#1| |#2|)) (T -512)) +((-4436 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-3228 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4043 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4043 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1607 (*1 *2 *2 *2) (-12 (-5 *2 (-792)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1694 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-710 *2)) (-5 *4 (-577)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-3030 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-710 *2)) (-5 *4 (-792)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-710 *2)) (-4 *4 (-1273 *2)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) +(-10 -7 (-15 -1566 (|#1| (-710 |#1|))) (-15 -3030 (|#1| (-710 |#1|) |#1| (-792))) (-15 -1694 (|#1| (-710 |#1|) (-710 |#1|) |#1| (-577))) (-15 -1607 ((-792) (-792) (-792))) (-15 -4043 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -4043 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -3228 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -4436 ((-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2104 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) NIL T ELT)) (-2814 (($ $ $) 40 T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) $) NIL (|has| (-112) (-870)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-2629 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-870))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1381 (($ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 (((-112) $ (-1264 (-577)) (-112)) NIL (|has| $ (-6 -4500)) ELT) (((-112) $ (-577) (-112)) 42 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-4004 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-2060 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-4420 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-4353 (((-112) $ (-577)) NIL T ELT)) (-3948 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1130)) ELT) (((-577) (-112) $) NIL (|has| (-112) (-1130)) ELT) (((-577) (-1 (-112) (-112)) $) NIL T ELT)) (-2118 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2802 (($ $ $) 38 T ELT)) (-2779 (($ $) NIL T ELT)) (-2933 (($ $ $) NIL T ELT)) (-3236 (($ (-792) (-112)) 27 T ELT)) (-3551 (($ $ $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 8 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL T ELT)) (-3771 (($ $ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-2152 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL T ELT)) (-4409 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-112) (-112) (-112)) $ $) 35 T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2317 (($ $ $ (-577)) NIL T ELT) (($ (-112) $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-112) $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-2561 (($ $ (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-112)) (-665 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-665 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-4059 (((-665 (-112)) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 28 T ELT)) (-2916 (($ $ (-1264 (-577))) NIL T ELT) (((-112) $ (-577)) 22 T ELT) (((-112) $ (-577) (-112)) NIL T ELT)) (-3587 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1481 (((-792) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT) (((-792) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 29 T ELT)) (-4463 (((-549) $) NIL (|has| (-112) (-632 (-549))) ELT)) (-3722 (($ (-665 (-112))) NIL T ELT)) (-1702 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-3709 (((-885) $) 26 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2790 (($ $ $) 36 T ELT)) (-3660 (($ $ $) NIL T ELT)) (-4114 (($ $ $) 45 T ELT)) (-4125 (($ $) 43 T ELT)) (-4103 (($ $ $) 44 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 30 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 31 T ELT)) (-3647 (($ $ $) NIL T ELT)) (-3600 (((-792) $) 13 (|has| $ (-6 -4499)) ELT))) +(((-513 |#1|) (-13 (-124) (-10 -8 (-15 -4125 ($ $)) (-15 -4114 ($ $ $)) (-15 -4103 ($ $ $)))) (-577)) (T -513)) +((-4125 (*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-4114 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-4103 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577))))) +(-13 (-124) (-10 -8 (-15 -4125 ($ $)) (-15 -4114 ($ $ $)) (-15 -4103 ($ $ $)))) +((-2514 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1202 |#4|)) 35 T ELT)) (-1435 (((-1202 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1202 |#4|)) 22 T ELT)) (-2303 (((-3 (-710 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-710 (-1202 |#4|))) 46 T ELT)) (-1678 (((-1202 (-1202 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1435 (|#2| (-1 |#1| |#4|) (-1202 |#4|))) (-15 -1435 ((-1202 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2514 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1202 |#4|))) (-15 -2303 ((-3 (-710 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-710 (-1202 |#4|)))) (-15 -1678 ((-1202 (-1202 |#4|)) (-1 |#4| |#1|) |#3|))) (-1079) (-1273 |#1|) (-1273 |#2|) (-1079)) (T -514)) +((-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *6 (-1273 *5)) (-5 *2 (-1202 (-1202 *7))) (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1273 *6)))) (-2303 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-710 (-1202 *8))) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-1273 *5)) (-5 *2 (-710 *6)) (-5 *1 (-514 *5 *6 *7 *8)) (-4 *7 (-1273 *6)))) (-2514 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1202 *7)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *4 (-1273 *5)) (-5 *2 (-1202 *7)) (-5 *1 (-514 *5 *4 *6 *7)) (-4 *6 (-1273 *4)))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1202 *7)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1273 *2))))) +(-10 -7 (-15 -1435 (|#2| (-1 |#1| |#4|) (-1202 |#4|))) (-15 -1435 ((-1202 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2514 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1202 |#4|))) (-15 -2303 ((-3 (-710 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-710 (-1202 |#4|)))) (-15 -1678 ((-1202 (-1202 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3699 (((-1302) $) 25 T ELT)) (-2916 (((-1188) $ (-1206)) 30 T ELT)) (-2064 (((-1302) $) 17 T ELT)) (-3709 (((-885) $) 27 T ELT) (($ (-1188)) 26 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 11 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 9 T ELT))) +(((-515) (-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $)) (-15 -3709 ($ (-1188)))))) (T -515)) +((-2916 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1188)) (-5 *1 (-515)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-515))))) +(-13 (-870) (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) (-15 -3699 ((-1302) $)) (-15 -3709 ($ (-1188))))) +((-1411 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3632 ((|#1| |#4|) 10 T ELT)) (-2668 ((|#3| |#4|) 17 T ELT))) +(((-516 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3632 (|#1| |#4|)) (-15 -2668 (|#3| |#4|)) (-15 -1411 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-569) (-1022 |#1|) (-385 |#1|) (-385 |#2|)) (T -516)) +((-1411 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-2668 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-4 *2 (-385 *4)) (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) +(-10 -7 (-15 -3632 (|#1| |#4|)) (-15 -2668 (|#3| |#4|)) (-15 -1411 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3586 (((-112) $ $) NIL T ELT)) (-1454 (((-112) $ (-665 |#3|)) 126 T ELT) (((-112) $) 127 T ELT)) (-4113 (((-112) $) 178 T ELT)) (-1830 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-665 |#3|)) 121 T ELT)) (-4121 (((-1195 (-665 (-980 |#1|)) (-665 (-305 (-980 |#1|)))) (-665 |#4|)) 171 (|has| |#3| (-632 (-1206))) ELT)) (-2203 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-3357 (((-112) $) 177 T ELT)) (-3776 (($ $) 131 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1565 (($ $ $) 99 T ELT) (($ (-665 $)) 101 T ELT)) (-3559 (((-112) |#4| $) 129 T ELT)) (-1752 (((-112) $ $) 82 T ELT)) (-2459 (($ (-665 |#4|)) 106 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1911 (($ (-665 |#4|)) 175 T ELT)) (-2098 (((-112) $) 176 T ELT)) (-1332 (($ $) 85 T ELT)) (-2164 (((-665 |#4|) $) 73 T ELT)) (-1730 (((-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)) $ (-665 |#3|)) NIL T ELT)) (-2929 (((-112) |#4| $) 89 T ELT)) (-4366 (((-577) $ (-665 |#3|)) 133 T ELT) (((-577) $) 134 T ELT)) (-3709 (((-885) $) 174 T ELT) (($ (-665 |#4|)) 102 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3068 (($ (-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3018 (((-112) $ $) 84 T ELT)) (-3114 (($ $ $) 109 T ELT)) (** (($ $ (-792)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-517 |#1| |#2| |#3| |#4|) (-13 (-1130) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 -3114 ($ $ $)) (-15 -3357 ((-112) $)) (-15 -4113 ((-112) $)) (-15 -2929 ((-112) |#4| $)) (-15 -1752 ((-112) $ $)) (-15 -3559 ((-112) |#4| $)) (-15 -1454 ((-112) $ (-665 |#3|))) (-15 -1454 ((-112) $)) (-15 -1565 ($ $ $)) (-15 -1565 ($ (-665 $))) (-15 -2203 ($ $ $)) (-15 -2203 ($ $ |#4|)) (-15 -1332 ($ $)) (-15 -1730 ((-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)) $ (-665 |#3|))) (-15 -3068 ($ (-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)))) (-15 -4366 ((-577) $ (-665 |#3|))) (-15 -4366 ((-577) $)) (-15 -3776 ($ $)) (-15 -2459 ($ (-665 |#4|))) (-15 -1911 ($ (-665 |#4|))) (-15 -2098 ((-112) $)) (-15 -2164 ((-665 |#4|) $)) (-15 -3709 ($ (-665 |#4|))) (-15 -1830 ($ $ |#4|)) (-15 -1830 ($ $ |#4| (-665 |#3|))) (IF (|has| |#3| (-632 (-1206))) (-15 -4121 ((-1195 (-665 (-980 |#1|)) (-665 (-305 (-980 |#1|)))) (-665 |#4|))) |%noBranch|))) (-375) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -517)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-3114 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-3357 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-4113 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-2929 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-1752 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-3559 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-1454 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-1454 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-1565 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-665 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-2203 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-2203 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) (-1332 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-1730 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *2 (-2 (|:| |mval| (-710 *4)) (|:| |invmval| (-710 *4)) (|:| |genIdeal| (-517 *4 *5 *6 *7)))) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-710 *3)) (|:| |invmval| (-710 *3)) (|:| |genIdeal| (-517 *3 *4 *5 *6)))) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-4366 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-3776 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-2459 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) (-2098 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-2164 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *6)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) (-1830 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) (-1830 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-977 *4 *5 *6)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *6 (-632 (-1206))) (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1195 (-665 (-980 *4)) (-665 (-305 (-980 *4))))) (-5 *1 (-517 *4 *5 *6 *7))))) +(-13 (-1130) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 -3114 ($ $ $)) (-15 -3357 ((-112) $)) (-15 -4113 ((-112) $)) (-15 -2929 ((-112) |#4| $)) (-15 -1752 ((-112) $ $)) (-15 -3559 ((-112) |#4| $)) (-15 -1454 ((-112) $ (-665 |#3|))) (-15 -1454 ((-112) $)) (-15 -1565 ($ $ $)) (-15 -1565 ($ (-665 $))) (-15 -2203 ($ $ $)) (-15 -2203 ($ $ |#4|)) (-15 -1332 ($ $)) (-15 -1730 ((-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)) $ (-665 |#3|))) (-15 -3068 ($ (-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)))) (-15 -4366 ((-577) $ (-665 |#3|))) (-15 -4366 ((-577) $)) (-15 -3776 ($ $)) (-15 -2459 ($ (-665 |#4|))) (-15 -1911 ($ (-665 |#4|))) (-15 -2098 ((-112) $)) (-15 -2164 ((-665 |#4|) $)) (-15 -3709 ($ (-665 |#4|))) (-15 -1830 ($ $ |#4|)) (-15 -1830 ($ $ |#4| (-665 |#3|))) (IF (|has| |#3| (-632 (-1206))) (-15 -4121 ((-1195 (-665 (-980 |#1|)) (-665 (-305 (-980 |#1|)))) (-665 |#4|))) |%noBranch|))) +((-3144 (((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 176 T ELT)) (-4336 (((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 177 T ELT)) (-2674 (((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 129 T ELT)) (-3567 (((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) NIL T ELT)) (-1990 (((-665 (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 179 T ELT)) (-4360 (((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-665 (-887 |#1|))) 195 T ELT))) +(((-518 |#1| |#2|) (-10 -7 (-15 -3144 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4336 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3567 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2674 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1990 ((-665 (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4360 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-665 (-887 |#1|))))) (-665 (-1206)) (-792)) (T -518)) +((-4360 (*1 *2 *2 *3) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-5 *3 (-665 (-887 *4))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *1 (-518 *4 *5)))) (-1990 (*1 *2 *3) (-12 (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-665 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577)))))) (-5 *1 (-518 *4 *5)) (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))))) (-2674 (*1 *2 *2) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *4 (-792)) (-887 *3) (-254 *3 (-420 (-577))))) (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-518 *3 *4)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5))))) +(-10 -7 (-15 -3144 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4336 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3567 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2674 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1990 ((-665 (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -4360 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-665 (-887 |#1|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1739 (($) 6 T ELT)) (-3709 (((-885) $) 14 T ELT) (((-1206) $) 10 T ELT) (((-1188) $) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-519) (-13 (-1130) (-631 (-1206)) (-631 (-1188)) (-10 -8 (-15 -1739 ($))))) (T -519)) +((-1739 (*1 *1) (-5 *1 (-519)))) +(-13 (-1130) (-631 (-1206)) (-631 (-1188)) (-10 -8 (-15 -1739 ($)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2072 (((-665 (-896 |#2| |#1|)) $) 12 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3872 (($ |#1| |#2|) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1560 ((|#2| $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 16 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 26 T ELT))) +(((-520 |#1| |#2|) (-13 (-21) (-522 |#1| |#2|)) (-21) (-873)) (T -520)) NIL (-13 (-21) (-522 |#1| |#2|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3229 (((-660 (-891 |#2| |#1|)) $) 14 T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) 44 T ELT)) (-3180 (($ |#1| |#2|) 41 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-4219 ((|#2| $) NIL T ELT)) (-3365 ((|#1| $) 45 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 13 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3031 (($ $ $) 31 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) 40 T ELT))) -(((-521 |#1| |#2|) (-13 (-23) (-522 |#1| |#2|)) (-23) (-868)) (T -521)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2072 (((-665 (-896 |#2| |#1|)) $) 14 T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) 44 T ELT)) (-3872 (($ |#1| |#2|) 41 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1560 ((|#2| $) NIL T ELT)) (-4025 ((|#1| $) 45 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 13 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3114 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 40 T ELT))) +(((-521 |#1| |#2|) (-13 (-23) (-522 |#1| |#2|)) (-23) (-873)) (T -521)) NIL (-13 (-23) (-522 |#1| |#2|)) -((-3489 (((-112) $ $) 7 T ELT)) (-3229 (((-660 (-891 |#2| |#1|)) $) 14 T ELT)) (-3391 (($ $) 15 T ELT)) (-3180 (($ |#1| |#2|) 18 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 19 T ELT)) (-4219 ((|#2| $) 16 T ELT)) (-3365 ((|#1| $) 17 T ELT)) (-2045 (((-1183) $) 13 (-12 (|has| |#2| (-1125)) (|has| |#1| (-1125))) ELT)) (-1440 (((-1145) $) 12 (-12 (|has| |#2| (-1125)) (|has| |#1| (-1125))) ELT)) (-3603 (((-880) $) 11 (-12 (|has| |#2| (-1125)) (|has| |#1| (-1125))) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-522 |#1| |#2|) (-141) (-102) (-868)) (T -522)) -((-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-868)))) (-3180 (*1 *1 *2 *3) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-868)) (-4 *2 (-102)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-868)))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-868)) (-5 *2 (-660 (-891 *4 *3)))))) -(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1125)) (IF (|has| |t#2| (-1125)) (-6 (-1125)) |%noBranch|) |%noBranch|) (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (-15 -3180 ($ |t#1| |t#2|)) (-15 -3365 (|t#1| $)) (-15 -4219 (|t#2| $)) (-15 -3391 ($ $)) (-15 -3229 ((-660 (-891 |t#2| |t#1|)) $)))) -(((-102) . T) ((-626 (-880)) -12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ((-1125) -12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3229 (((-660 (-891 |#2| |#1|)) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-3180 (($ |#1| |#2|) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4219 ((|#2| $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 22 T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT))) -(((-523 |#1| |#2|) (-13 (-808) (-522 |#1| |#2|)) (-808) (-868)) (T -523)) -NIL -(-13 (-808) (-522 |#1| |#2|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3229 (((-660 (-891 |#2| |#1|)) $) NIL T ELT)) (-2510 (($ $ $) 23 T ELT)) (-1771 (((-3 $ "failed") $ $) 19 T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-3180 (($ |#1| |#2|) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4219 ((|#2| $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT))) -(((-524 |#1| |#2|) (-13 (-809) (-522 |#1| |#2|)) (-809) (-865)) (T -524)) -NIL -(-13 (-809) (-522 |#1| |#2|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3229 (((-660 (-891 |#2| |#1|)) $) 39 T ELT)) (-3391 (($ $) 34 T ELT)) (-3180 (($ |#1| |#2|) 30 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-4219 ((|#2| $) 38 T ELT)) (-3365 ((|#1| $) 37 T ELT)) (-2045 (((-1183) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT)) (-1440 (((-1145) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT)) (-3603 (((-880) $) 28 (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 21 T ELT))) -(((-525 |#1| |#2|) (-522 |#1| |#2|) (-102) (-868)) (T -525)) +((-3586 (((-112) $ $) 7 T ELT)) (-2072 (((-665 (-896 |#2| |#1|)) $) 14 T ELT)) (-4048 (($ $) 15 T ELT)) (-3872 (($ |#1| |#2|) 18 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 19 T ELT)) (-1560 ((|#2| $) 16 T ELT)) (-4025 ((|#1| $) 17 T ELT)) (-3235 (((-1188) $) 13 (-12 (|has| |#2| (-1130)) (|has| |#1| (-1130))) ELT)) (-1470 (((-1150) $) 12 (-12 (|has| |#2| (-1130)) (|has| |#1| (-1130))) ELT)) (-3709 (((-885) $) 11 (-12 (|has| |#2| (-1130)) (|has| |#1| (-1130))) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-522 |#1| |#2|) (-141) (-102) (-873)) (T -522)) +((-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)))) (-3872 (*1 *1 *2 *3) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-873)) (-4 *2 (-102)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-873)))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)) (-5 *2 (-665 (-896 *4 *3)))))) +(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1130)) (IF (|has| |t#2| (-1130)) (-6 (-1130)) |%noBranch|) |%noBranch|) (-15 -4417 ($ (-1 |t#1| |t#1|) $)) (-15 -3872 ($ |t#1| |t#2|)) (-15 -4025 (|t#1| $)) (-15 -1560 (|t#2| $)) (-15 -4048 ($ $)) (-15 -2072 ((-665 (-896 |t#2| |t#1|)) $)))) +(((-102) . T) ((-631 (-885)) -12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ((-1130) -12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2072 (((-665 (-896 |#2| |#1|)) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3872 (($ |#1| |#2|) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1560 ((|#2| $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 22 T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT))) +(((-523 |#1| |#2|) (-13 (-813) (-522 |#1| |#2|)) (-813) (-873)) (T -523)) +NIL +(-13 (-813) (-522 |#1| |#2|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2072 (((-665 (-896 |#2| |#1|)) $) NIL T ELT)) (-4208 (($ $ $) 23 T ELT)) (-2478 (((-3 $ "failed") $ $) 19 T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3872 (($ |#1| |#2|) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1560 ((|#2| $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT))) +(((-524 |#1| |#2|) (-13 (-814) (-522 |#1| |#2|)) (-814) (-870)) (T -524)) +NIL +(-13 (-814) (-522 |#1| |#2|)) +((-3586 (((-112) $ $) NIL T ELT)) (-2072 (((-665 (-896 |#2| |#1|)) $) 39 T ELT)) (-4048 (($ $) 34 T ELT)) (-3872 (($ |#1| |#2|) 30 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1560 ((|#2| $) 38 T ELT)) (-4025 ((|#1| $) 37 T ELT)) (-3235 (((-1188) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-1470 (((-1150) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-3709 (((-885) $) 28 (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 21 T ELT))) +(((-525 |#1| |#2|) (-522 |#1| |#2|) (-102) (-873)) (T -525)) NIL (-522 |#1| |#2|) -((-3273 (($ $ (-660 |#2|) (-660 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-526 |#1| |#2| |#3|) (-10 -8 (-15 -3273 (|#1| |#1| |#2| |#3|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#3|)))) (-527 |#2| |#3|) (-1125) (-1242)) (T -526)) +((-3373 (($ $ (-665 |#2|) (-665 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-526 |#1| |#2| |#3|) (-10 -8 (-15 -3373 (|#1| |#1| |#2| |#3|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#3|)))) (-527 |#2| |#3|) (-1130) (-1247)) (T -526)) NIL -(-10 -8 (-15 -3273 (|#1| |#1| |#2| |#3|)) (-15 -3273 (|#1| |#1| (-660 |#2|) (-660 |#3|)))) -((-3273 (($ $ (-660 |#1|) (-660 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-527 |#1| |#2|) (-141) (-1125) (-1242)) (T -527)) -((-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *5)) (-4 *1 (-527 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1242)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1242))))) -(-13 (-10 -8 (-15 -3273 ($ $ |t#1| |t#2|)) (-15 -3273 ($ $ (-660 |t#1|) (-660 |t#2|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3229 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|))) $) 19 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3373 (((-787) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-3733 ((|#1| $ (-577)) 24 T ELT)) (-3870 ((|#2| $ (-577)) 22 T ELT)) (-3672 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-4330 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2862 (($ $ $) 55 (|has| |#2| (-808)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3421 ((|#2| |#1| $) 51 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 11 T CONST)) (-2949 (((-112) $ $) 30 T ELT)) (-3031 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-528 |#1| |#2| |#3|) (-334 |#1| |#2|) (-1125) (-132) |#2|) (T -528)) +(-10 -8 (-15 -3373 (|#1| |#1| |#2| |#3|)) (-15 -3373 (|#1| |#1| (-665 |#2|) (-665 |#3|)))) +((-3373 (($ $ (-665 |#1|) (-665 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-527 |#1| |#2|) (-141) (-1130) (-1247)) (T -527)) +((-3373 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *5)) (-4 *1 (-527 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1247)))) (-3373 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1247))))) +(-13 (-10 -8 (-15 -3373 ($ $ |t#1| |t#2|)) (-15 -3373 ($ $ (-665 |t#1|) (-665 |t#2|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2072 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|))) $) 19 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3005 (((-792) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-1770 ((|#1| $ (-577)) 24 T ELT)) (-2806 ((|#2| $ (-577)) 22 T ELT)) (-2399 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1613 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2500 (($ $ $) 55 (|has| |#2| (-813)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-4171 ((|#2| |#1| $) 51 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 11 T CONST)) (-3018 (((-112) $ $) 30 T ELT)) (-3114 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-528 |#1| |#2| |#3|) (-334 |#1| |#2|) (-1130) (-132) |#2|) (T -528)) NIL (-334 |#1| |#2|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-4094 (((-112) (-112)) 32 T ELT)) (-1895 ((|#1| $ (-577) |#1|) 42 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) |#1|) $) 77 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3699 (($ $) 81 (|has| |#1| (-1125)) ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) NIL (|has| |#1| (-1125)) ELT) (($ (-1 (-112) |#1|) $) 64 T ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-2665 (($ $ (-577)) 19 T ELT)) (-2332 (((-787) $) 13 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) 31 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 29 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1615 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 55 T ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) 56 T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) 28 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-4345 (($ $ $ (-577)) 73 T ELT) (($ |#1| $ (-577)) 57 T ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-4257 (($ (-660 |#1|)) 43 T ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) 24 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 60 T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 21 T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 53 T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3839 (($ $ (-1259 (-577))) 71 T ELT) (($ $ (-577)) 65 T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) 61 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 51 T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) NIL T ELT)) (-1584 (($ $ $) 62 T ELT) (($ $ |#1|) 59 T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) 58 T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 22 (|has| $ (-6 -4470)) ELT))) -(((-529 |#1| |#2|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -4257 ($ (-660 |#1|))) (-15 -2332 ((-787) $)) (-15 -2665 ($ $ (-577))) (-15 -4094 ((-112) (-112))))) (-1242) (-577)) (T -529)) -((-4257 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-529 *3 *4)) (-14 *4 (-577)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 (-577)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 *2))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 (-577))))) -(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -4257 ($ (-660 |#1|))) (-15 -2332 ((-787) $)) (-15 -2665 ($ $ (-577))) (-15 -4094 ((-112) (-112))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1715 (((-1160) $) 11 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3016 (((-1160) $) 13 T ELT)) (-3219 (((-1160) $) 9 T ELT)) (-3603 (((-880) $) 19 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-530) (-13 (-1108) (-10 -8 (-15 -3219 ((-1160) $)) (-15 -1715 ((-1160) $)) (-15 -3016 ((-1160) $))))) (T -530)) -((-3219 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530))))) -(-13 (-1108) (-10 -8 (-15 -3219 ((-1160) $)) (-15 -1715 ((-1160) $)) (-15 -3016 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 (((-594 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-594 |#1|) "failed") $) NIL T ELT)) (-2155 (((-594 |#1|) $) NIL T ELT)) (-1911 (($ (-1292 (-594 |#1|))) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-4402 (((-112) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1865 (($ $ (-787)) NIL (-2811 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT) (($ $) NIL (-2811 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-944) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-849 (-944)) $) NIL (-2811 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2936 (((-112) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-4021 (((-594 |#1|) $) NIL T ELT) (($ $ (-944)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 (-594 |#1|)) $) NIL T ELT) (((-1197 $) $ (-944)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2144 (((-944) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1948 (((-1197 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3995 (((-1197 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 (-1197 (-594 |#1|)) "failed") $ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1542 (($ $ (-1197 (-594 |#1|))) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-594 |#1|) (-380)) CONST)) (-3251 (($ (-944)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-849 (-944))) NIL T ELT) (((-944)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-787) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 (-787) "failed") $ $) NIL (-2811 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $ (-787)) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3616 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-1629 (((-1197 (-594 |#1|))) NIL T ELT)) (-2932 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3204 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2729 (((-1292 (-594 |#1|)) $) NIL T ELT) (((-705 (-594 |#1|)) (-1292 $)) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-594 |#1|)) NIL T ELT)) (-3907 (($ $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2811 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT) (((-1292 $) (-944)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $ (-787)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2136 (($ $ (-787)) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT) (($ $ (-594 |#1|)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-594 |#1|)) NIL T ELT) (($ (-594 |#1|) $) NIL T ELT))) -(((-531 |#1| |#2|) (-340 (-594 |#1|)) (-944) (-944)) (T -531)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2766 (((-112) (-112)) 32 T ELT)) (-1957 ((|#1| $ (-577) |#1|) 42 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 77 T ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-2697 (($ $) 81 (|has| |#1| (-1130)) ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) 64 T ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2885 (($ $ (-577)) 19 T ELT)) (-2088 (((-792) $) 13 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) 31 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 29 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 55 T ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) 56 T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) 28 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4375 (($ $ $ (-577)) 73 T ELT) (($ |#1| $ (-577)) 57 T ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2756 (($ (-665 |#1|)) 43 T ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) 24 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 60 T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 21 T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 53 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4068 (($ $ (-1264 (-577))) 71 T ELT) (($ $ (-577)) 65 T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) 61 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 51 T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) NIL T ELT)) (-2562 (($ $ $) 62 T ELT) (($ $ |#1|) 59 T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) 58 T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 22 (|has| $ (-6 -4499)) ELT))) +(((-529 |#1| |#2|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -2756 ($ (-665 |#1|))) (-15 -2088 ((-792) $)) (-15 -2885 ($ $ (-577))) (-15 -2766 ((-112) (-112))))) (-1247) (-577)) (T -529)) +((-2756 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-529 *3 *4)) (-14 *4 (-577)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-577)))) (-2885 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-577))))) +(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -2756 ($ (-665 |#1|))) (-15 -2088 ((-792) $)) (-15 -2885 ($ $ (-577))) (-15 -2766 ((-112) (-112))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2403 (((-1165) $) 11 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3787 (((-1165) $) 13 T ELT)) (-2236 (((-1165) $) 9 T ELT)) (-3709 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-530) (-13 (-1113) (-10 -8 (-15 -2236 ((-1165) $)) (-15 -2403 ((-1165) $)) (-15 -3787 ((-1165) $))))) (T -530)) +((-2236 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530)))) (-2403 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530))))) +(-13 (-1113) (-10 -8 (-15 -2236 ((-1165) $)) (-15 -2403 ((-1165) $)) (-15 -3787 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 (((-594 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-594 |#1|) "failed") $) NIL T ELT)) (-3783 (((-594 |#1|) $) NIL T ELT)) (-2385 (($ (-1297 (-594 |#1|))) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3275 (((-112) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3987 (($ $ (-792)) NIL (-2867 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT) (($ $) NIL (-2867 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-949) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2867 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3524 (((-112) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2794 (((-594 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 (-594 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2686 (((-949) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3200 (((-1202 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3467 (((-1202 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 (-1202 (-594 |#1|)) "failed") $ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1464 (($ $ (-1202 (-594 |#1|))) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-594 |#1|) (-380)) CONST)) (-3354 (($ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-792) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2867 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $ (-792)) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1597 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-4263 (((-1202 (-594 |#1|))) NIL T ELT)) (-3475 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2984 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3762 (((-1297 (-594 |#1|)) $) NIL T ELT) (((-710 (-594 |#1|)) (-1297 $)) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-594 |#1|)) NIL T ELT)) (-2708 (($ $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2867 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2389 (($ $ (-792)) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ $ (-594 |#1|)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-594 |#1|)) NIL T ELT) (($ (-594 |#1|) $) NIL T ELT))) +(((-531 |#1| |#2|) (-340 (-594 |#1|)) (-949) (-949)) (T -531)) NIL (-340 (-594 |#1|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) 51 T ELT)) (-2937 (($ $ (-577) |#4|) NIL T ELT)) (-2025 (($ $ (-577) |#5|) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1578 ((|#4| $ (-577)) NIL T ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) 50 T ELT)) (-2759 ((|#1| $ (-577) (-577)) 45 T ELT)) (-3692 (((-660 |#1|) $) NIL T ELT)) (-4022 (((-787) $) 33 T ELT)) (-4223 (($ (-787) (-787) |#1|) 30 T ELT)) (-4033 (((-787) $) 38 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4250 (((-577) $) 31 T ELT)) (-2952 (((-577) $) 32 T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1484 (((-577) $) 37 T ELT)) (-3329 (((-577) $) 39 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) 55 (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 14 T ELT)) (-2693 (($) 16 T ELT)) (-2837 ((|#1| $ (-577) (-577)) 48 T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2859 ((|#5| $ (-577)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-532 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1242) (-577) (-577) (-385 |#1|) (-385 |#1|)) (T -532)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) 51 T ELT)) (-2699 (($ $ (-577) |#4|) NIL T ELT)) (-1969 (($ $ (-577) |#5|) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4448 ((|#4| $ (-577)) NIL T ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) 50 T ELT)) (-4353 ((|#1| $ (-577) (-577)) 45 T ELT)) (-2118 (((-665 |#1|) $) NIL T ELT)) (-2408 (((-792) $) 33 T ELT)) (-3236 (($ (-792) (-792) |#1|) 30 T ELT)) (-2420 (((-792) $) 38 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-4051 (((-577) $) 31 T ELT)) (-3232 (((-577) $) 32 T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1766 (((-577) $) 37 T ELT)) (-3371 (((-577) $) 39 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) 55 (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 14 T ELT)) (-2833 (($) 16 T ELT)) (-2916 ((|#1| $ (-577) (-577)) 48 T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-1455 ((|#5| $ (-577)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-532 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1247) (-577) (-577) (-385 |#1|) (-385 |#1|)) (T -532)) NIL (-57 |#1| |#4| |#5|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) NIL T ELT)) (-4148 ((|#1| $) NIL T ELT)) (-3063 (($ $) NIL T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) 70 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) $) NIL (|has| |#1| (-865)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-3246 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4471)) ELT)) (-2312 (($ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 23 (|has| $ (-6 -4471)) ELT)) (-2946 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) 21 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) 24 (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4135 ((|#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) 28 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 29 T ELT)) (-1663 (($ $) 18 T ELT) (($ $ (-787)) 32 T ELT)) (-3699 (($ $) 62 (|has| |#1| (-1125)) ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) NIL (|has| |#1| (-1125)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3920 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3919 (((-112) $) NIL T ELT)) (-3728 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-3692 (((-660 |#1|) $) 27 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 31 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1615 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 65 T ELT)) (-1334 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2880 (($ |#1|) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) 58 (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-4345 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2218 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 13 T ELT) (($ $ (-787)) NIL T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1861 (((-112) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 12 T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) 17 T ELT)) (-2693 (($) 16 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") 15 T ELT) (($ $ "rest") 20 T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3839 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3490 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3834 (((-112) $) 35 T ELT)) (-4243 (($ $) NIL T ELT)) (-1839 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) NIL T ELT)) (-3855 (($ $) 40 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 36 T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 26 T ELT)) (-1584 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-1685 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-660 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3603 (((-880) $) 50 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 54 (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 9 (|has| $ (-6 -4470)) ELT))) -(((-533 |#1| |#2|) (-682 |#1|) (-1242) (-577)) (T -533)) -NIL -(-682 |#1|) -((-1863 ((|#4| |#4|) 38 T ELT)) (-3503 (((-787) |#4|) 44 T ELT)) (-3225 (((-787) |#4|) 45 T ELT)) (-1404 (((-660 |#3|) |#4|) 55 (|has| |#3| (-6 -4471)) ELT)) (-3564 (((-3 |#4| "failed") |#4|) 67 T ELT)) (-3566 ((|#4| |#4|) 59 T ELT)) (-2534 ((|#1| |#4|) 58 T ELT))) -(((-534 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#4| |#4|)) (-15 -3503 ((-787) |#4|)) (-15 -3225 ((-787) |#4|)) (IF (|has| |#3| (-6 -4471)) (-15 -1404 ((-660 |#3|) |#4|)) |%noBranch|) (-15 -2534 (|#1| |#4|)) (-15 -3566 (|#4| |#4|)) (-15 -3564 ((-3 |#4| "failed") |#4|))) (-375) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -534)) -((-3564 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-3566 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) (-1404 (*1 *2 *3) (-12 (|has| *6 (-6 -4471)) (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3503 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-1863 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) -(-10 -7 (-15 -1863 (|#4| |#4|)) (-15 -3503 ((-787) |#4|)) (-15 -3225 ((-787) |#4|)) (IF (|has| |#3| (-6 -4471)) (-15 -1404 ((-660 |#3|) |#4|)) |%noBranch|) (-15 -2534 (|#1| |#4|)) (-15 -3566 (|#4| |#4|)) (-15 -3564 ((-3 |#4| "failed") |#4|))) -((-1863 ((|#8| |#4|) 20 T ELT)) (-1404 (((-660 |#3|) |#4|) 29 (|has| |#7| (-6 -4471)) ELT)) (-3564 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-535 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1863 (|#8| |#4|)) (-15 -3564 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4471)) (-15 -1404 ((-660 |#3|) |#4|)) |%noBranch|)) (-569) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|) (-1017 |#1|) (-385 |#5|) (-385 |#5|) (-703 |#5| |#6| |#7|)) (T -535)) -((-1404 (*1 *2 *3) (-12 (|has| *9 (-6 -4471)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-660 *6)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-703 *4 *5 *6)) (-4 *10 (-703 *7 *8 *9)))) (-3564 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) -(-10 -7 (-15 -1863 (|#8| |#4|)) (-15 -3564 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4471)) (-15 -1404 ((-660 |#3|) |#4|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3832 (($ (-787) (-787)) NIL T ELT)) (-3871 (($ $ $) NIL T ELT)) (-2660 (($ (-615 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3755 (((-112) $) NIL T ELT)) (-1915 (($ $ (-577) (-577)) 21 T ELT)) (-2953 (($ $ (-577) (-577)) NIL T ELT)) (-2457 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-4173 (($ $) NIL T ELT)) (-2010 (((-112) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3914 (($ $ (-577) (-577) $) NIL T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577)) $) NIL T ELT)) (-2937 (($ $ (-577) (-615 |#1| |#3|)) NIL T ELT)) (-2025 (($ $ (-577) (-615 |#1| |#2|)) NIL T ELT)) (-1390 (($ (-787) |#1|) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1863 (($ $) 30 (|has| |#1| (-318)) ELT)) (-1578 (((-615 |#1| |#3|) $ (-577)) NIL T ELT)) (-3503 (((-787) $) 33 (|has| |#1| (-569)) ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-2759 ((|#1| $ (-577) (-577)) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL T ELT)) (-3225 (((-787) $) 35 (|has| |#1| (-569)) ELT)) (-1404 (((-660 (-615 |#1| |#2|)) $) 38 (|has| |#1| (-569)) ELT)) (-4022 (((-787) $) NIL T ELT)) (-4223 (($ (-787) (-787) |#1|) NIL T ELT)) (-4033 (((-787) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-3979 ((|#1| $) 28 (|has| |#1| (-6 (-4472 "*"))) ELT)) (-4250 (((-577) $) 10 T ELT)) (-2952 (((-577) $) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1484 (((-577) $) 13 T ELT)) (-3329 (((-577) $) NIL T ELT)) (-4307 (($ (-660 (-660 |#1|))) NIL T ELT) (($ (-787) (-787) (-1 |#1| (-577) (-577))) NIL T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2347 (((-660 (-660 |#1|)) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3564 (((-3 $ "failed") $) 42 (|has| |#1| (-375)) ELT)) (-2310 (($ $ $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577))) NIL T ELT)) (-3937 (($ (-660 |#1|)) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3534 (((-112) $) NIL T ELT)) (-2534 ((|#1| $) 26 (|has| |#1| (-6 (-4472 "*"))) ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2859 (((-615 |#1| |#2|) $ (-577)) NIL T ELT)) (-3603 (($ (-615 |#1| |#2|)) NIL T ELT) (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) NIL T ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-615 |#1| |#2|) $ (-615 |#1| |#2|)) NIL T ELT) (((-615 |#1| |#3|) (-615 |#1| |#3|) $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-536 |#1| |#2| |#3|) (-703 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) (-1074) (-577) (-577)) (T -536)) -NIL -(-703 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2208 (((-660 (-1241)) $) 13 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 19 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT) (($ (-660 (-1241))) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-537) (-13 (-1108) (-10 -8 (-15 -3603 ($ (-660 (-1241)))) (-15 -2208 ((-660 (-1241)) $))))) (T -537)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537))))) -(-13 (-1108) (-10 -8 (-15 -3603 ($ (-660 (-1241)))) (-15 -2208 ((-660 (-1241)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-4027 (((-1160) $) 14 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1405 (((-519) $) 11 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 21 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-538) (-13 (-1108) (-10 -8 (-15 -1405 ((-519) $)) (-15 -4027 ((-1160) $))))) (T -538)) -((-1405 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) (-4027 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-538))))) -(-13 (-1108) (-10 -8 (-15 -1405 ((-519) $)) (-15 -4027 ((-1160) $)))) -((-2339 (((-707 (-1250)) $) 15 T ELT)) (-4379 (((-707 (-1248)) $) 38 T ELT)) (-1836 (((-707 (-1247)) $) 29 T ELT)) (-2128 (((-707 (-562)) $) 12 T ELT)) (-3064 (((-707 (-560)) $) 42 T ELT)) (-1699 (((-707 (-559)) $) 33 T ELT)) (-2621 (((-787) $ (-129)) 54 T ELT))) -(((-539 |#1|) (-10 -8 (-15 -2621 ((-787) |#1| (-129))) (-15 -4379 ((-707 (-1248)) |#1|)) (-15 -3064 ((-707 (-560)) |#1|)) (-15 -1836 ((-707 (-1247)) |#1|)) (-15 -1699 ((-707 (-559)) |#1|)) (-15 -2339 ((-707 (-1250)) |#1|)) (-15 -2128 ((-707 (-562)) |#1|))) (-540)) (T -539)) -NIL -(-10 -8 (-15 -2621 ((-787) |#1| (-129))) (-15 -4379 ((-707 (-1248)) |#1|)) (-15 -3064 ((-707 (-560)) |#1|)) (-15 -1836 ((-707 (-1247)) |#1|)) (-15 -1699 ((-707 (-559)) |#1|)) (-15 -2339 ((-707 (-1250)) |#1|)) (-15 -2128 ((-707 (-562)) |#1|))) -((-2339 (((-707 (-1250)) $) 12 T ELT)) (-4379 (((-707 (-1248)) $) 8 T ELT)) (-1836 (((-707 (-1247)) $) 10 T ELT)) (-2128 (((-707 (-562)) $) 13 T ELT)) (-3064 (((-707 (-560)) $) 9 T ELT)) (-1699 (((-707 (-559)) $) 11 T ELT)) (-2621 (((-787) $ (-129)) 7 T ELT)) (-1893 (((-707 (-130)) $) 14 T ELT)) (-3349 (($ $) 6 T ELT))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) NIL T ELT)) (-1893 ((|#1| $) NIL T ELT)) (-2688 (($ $) NIL T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) 70 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) $) NIL (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-2629 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4500)) ELT)) (-1381 (($ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 23 (|has| $ (-6 -4500)) ELT)) (-1968 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) 21 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 24 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1883 ((|#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) 28 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 29 T ELT)) (-4410 (($ $) 18 T ELT) (($ $ (-792)) 32 T ELT)) (-2697 (($ $) 62 (|has| |#1| (-1130)) ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4004 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-4236 (((-112) $) NIL T ELT)) (-3948 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-2118 (((-665 |#1|) $) 27 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 31 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 65 T ELT)) (-3771 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4415 (($ |#1|) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) 58 (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-4375 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2317 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 13 T ELT) (($ $ (-792)) NIL T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3661 (((-112) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 12 T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) 17 T ELT)) (-2833 (($) 16 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") 15 T ELT) (($ $ "rest") 20 T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-4068 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3587 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-2625 (((-112) $) 35 T ELT)) (-1659 (($ $) NIL T ELT)) (-1697 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) NIL T ELT)) (-2554 (($ $) 40 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 36 T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 26 T ELT)) (-2562 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-1702 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-665 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3709 (((-885) $) 50 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 54 (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 9 (|has| $ (-6 -4499)) ELT))) +(((-533 |#1| |#2|) (-687 |#1|) (-1247) (-577)) (T -533)) +NIL +(-687 |#1|) +((-3280 ((|#4| |#4|) 38 T ELT)) (-1641 (((-792) |#4|) 44 T ELT)) (-3480 (((-792) |#4|) 45 T ELT)) (-4202 (((-665 |#3|) |#4|) 55 (|has| |#3| (-6 -4500)) ELT)) (-1767 (((-3 |#4| "failed") |#4|) 67 T ELT)) (-2894 ((|#4| |#4|) 59 T ELT)) (-3422 ((|#1| |#4|) 58 T ELT))) +(((-534 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3280 (|#4| |#4|)) (-15 -1641 ((-792) |#4|)) (-15 -3480 ((-792) |#4|)) (IF (|has| |#3| (-6 -4500)) (-15 -4202 ((-665 |#3|) |#4|)) |%noBranch|) (-15 -3422 (|#1| |#4|)) (-15 -2894 (|#4| |#4|)) (-15 -1767 ((-3 |#4| "failed") |#4|))) (-375) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -534)) +((-1767 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2894 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3422 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-4202 (*1 *2 *3) (-12 (|has| *6 (-6 -4500)) (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) +(-10 -7 (-15 -3280 (|#4| |#4|)) (-15 -1641 ((-792) |#4|)) (-15 -3480 ((-792) |#4|)) (IF (|has| |#3| (-6 -4500)) (-15 -4202 ((-665 |#3|) |#4|)) |%noBranch|) (-15 -3422 (|#1| |#4|)) (-15 -2894 (|#4| |#4|)) (-15 -1767 ((-3 |#4| "failed") |#4|))) +((-3280 ((|#8| |#4|) 20 T ELT)) (-4202 (((-665 |#3|) |#4|) 29 (|has| |#7| (-6 -4500)) ELT)) (-1767 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-535 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3280 (|#8| |#4|)) (-15 -1767 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4500)) (-15 -4202 ((-665 |#3|) |#4|)) |%noBranch|)) (-569) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1022 |#1|) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -535)) +((-4202 (*1 *2 *3) (-12 (|has| *9 (-6 -4500)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-665 *6)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) (-4 *10 (-708 *7 *8 *9)))) (-1767 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-3280 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) +(-10 -7 (-15 -3280 (|#8| |#4|)) (-15 -1767 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4500)) (-15 -4202 ((-665 |#3|) |#4|)) |%noBranch|)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4084 (($ (-792) (-792)) NIL T ELT)) (-3813 (($ $ $) NIL T ELT)) (-2444 (($ (-615 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-4140 (((-112) $) NIL T ELT)) (-3674 (($ $ (-577) (-577)) 21 T ELT)) (-4459 (($ $ (-577) (-577)) NIL T ELT)) (-2660 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-2422 (($ $) NIL T ELT)) (-2671 (((-112) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2956 (($ $ (-577) (-577) $) NIL T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) NIL T ELT)) (-2699 (($ $ (-577) (-615 |#1| |#3|)) NIL T ELT)) (-1969 (($ $ (-577) (-615 |#1| |#2|)) NIL T ELT)) (-4316 (($ (-792) |#1|) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3280 (($ $) 30 (|has| |#1| (-318)) ELT)) (-4448 (((-615 |#1| |#3|) $ (-577)) NIL T ELT)) (-1641 (((-792) $) 33 (|has| |#1| (-569)) ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-4353 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL T ELT)) (-3480 (((-792) $) 35 (|has| |#1| (-569)) ELT)) (-4202 (((-665 (-615 |#1| |#2|)) $) 38 (|has| |#1| (-569)) ELT)) (-2408 (((-792) $) NIL T ELT)) (-3236 (($ (-792) (-792) |#1|) NIL T ELT)) (-2420 (((-792) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2607 ((|#1| $) 28 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4051 (((-577) $) 10 T ELT)) (-3232 (((-577) $) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1766 (((-577) $) 13 T ELT)) (-3371 (((-577) $) NIL T ELT)) (-2374 (($ (-665 (-665 |#1|))) NIL T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) NIL T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2905 (((-665 (-665 |#1|)) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1767 (((-3 $ "failed") $) 42 (|has| |#1| (-375)) ELT)) (-2010 (($ $ $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) NIL T ELT)) (-3650 (($ (-665 |#1|)) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4101 (((-112) $) NIL T ELT)) (-3422 ((|#1| $) 26 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-1455 (((-615 |#1| |#2|) $ (-577)) NIL T ELT)) (-3709 (($ (-615 |#1| |#2|)) NIL T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) NIL T ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-615 |#1| |#2|) $ (-615 |#1| |#2|)) NIL T ELT) (((-615 |#1| |#3|) (-615 |#1| |#3|) $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-536 |#1| |#2| |#3|) (-708 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) (-1079) (-577) (-577)) (T -536)) +NIL +(-708 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3917 (((-665 (-1246)) $) 13 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) (($ (-665 (-1246))) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-537) (-13 (-1113) (-10 -8 (-15 -3709 ($ (-665 (-1246)))) (-15 -3917 ((-665 (-1246)) $))))) (T -537)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537))))) +(-13 (-1113) (-10 -8 (-15 -3709 ($ (-665 (-1246)))) (-15 -3917 ((-665 (-1246)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1791 (((-1165) $) 14 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2147 (((-519) $) 11 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 21 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-538) (-13 (-1113) (-10 -8 (-15 -2147 ((-519) $)) (-15 -1791 ((-1165) $))))) (T -538)) +((-2147 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-538))))) +(-13 (-1113) (-10 -8 (-15 -2147 ((-519) $)) (-15 -1791 ((-1165) $)))) +((-1954 (((-712 (-1255)) $) 15 T ELT)) (-2336 (((-712 (-1253)) $) 38 T ELT)) (-2666 (((-712 (-1252)) $) 29 T ELT)) (-3772 (((-712 (-562)) $) 12 T ELT)) (-1870 (((-712 (-560)) $) 42 T ELT)) (-1504 (((-712 (-559)) $) 33 T ELT)) (-4074 (((-792) $ (-129)) 54 T ELT))) +(((-539 |#1|) (-10 -8 (-15 -4074 ((-792) |#1| (-129))) (-15 -2336 ((-712 (-1253)) |#1|)) (-15 -1870 ((-712 (-560)) |#1|)) (-15 -2666 ((-712 (-1252)) |#1|)) (-15 -1504 ((-712 (-559)) |#1|)) (-15 -1954 ((-712 (-1255)) |#1|)) (-15 -3772 ((-712 (-562)) |#1|))) (-540)) (T -539)) +NIL +(-10 -8 (-15 -4074 ((-792) |#1| (-129))) (-15 -2336 ((-712 (-1253)) |#1|)) (-15 -1870 ((-712 (-560)) |#1|)) (-15 -2666 ((-712 (-1252)) |#1|)) (-15 -1504 ((-712 (-559)) |#1|)) (-15 -1954 ((-712 (-1255)) |#1|)) (-15 -3772 ((-712 (-562)) |#1|))) +((-1954 (((-712 (-1255)) $) 12 T ELT)) (-2336 (((-712 (-1253)) $) 8 T ELT)) (-2666 (((-712 (-1252)) $) 10 T ELT)) (-3772 (((-712 (-562)) $) 13 T ELT)) (-1870 (((-712 (-560)) $) 9 T ELT)) (-1504 (((-712 (-559)) $) 11 T ELT)) (-4074 (((-792) $ (-129)) 7 T ELT)) (-1554 (((-712 (-130)) $) 14 T ELT)) (-2823 (($ $) 6 T ELT))) (((-540) (-141)) (T -540)) -((-1893 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-130))))) (-2128 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-562))))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1250))))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-559))))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1247))))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-560))))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1248))))) (-2621 (*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-787))))) -(-13 (-175) (-10 -8 (-15 -1893 ((-707 (-130)) $)) (-15 -2128 ((-707 (-562)) $)) (-15 -2339 ((-707 (-1250)) $)) (-15 -1699 ((-707 (-559)) $)) (-15 -1836 ((-707 (-1247)) $)) (-15 -3064 ((-707 (-560)) $)) (-15 -4379 ((-707 (-1248)) $)) (-15 -2621 ((-787) $ (-129))))) +((-1554 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-130))))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-562))))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1255))))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-559))))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1252))))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-560))))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1253))))) (-4074 (*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-792))))) +(-13 (-175) (-10 -8 (-15 -1554 ((-712 (-130)) $)) (-15 -3772 ((-712 (-562)) $)) (-15 -1954 ((-712 (-1255)) $)) (-15 -1504 ((-712 (-559)) $)) (-15 -2666 ((-712 (-1252)) $)) (-15 -1870 ((-712 (-560)) $)) (-15 -2336 ((-712 (-1253)) $)) (-15 -4074 ((-792) $ (-129))))) (((-175) . T)) -((-2051 (((-1197 |#1|) (-787)) 115 T ELT)) (-2219 (((-1292 |#1|) (-1292 |#1|) (-944)) 108 T ELT)) (-3812 (((-1297) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) |#1|) 123 T ELT)) (-4387 (((-1292 |#1|) (-1292 |#1|) (-787)) 53 T ELT)) (-2352 (((-1292 |#1|) (-944)) 110 T ELT)) (-3626 (((-1292 |#1|) (-1292 |#1|) (-577)) 30 T ELT)) (-2364 (((-1197 |#1|) (-1292 |#1|)) 116 T ELT)) (-2189 (((-1292 |#1|) (-944)) 137 T ELT)) (-2936 (((-112) (-1292 |#1|)) 120 T ELT)) (-4021 (((-1292 |#1|) (-1292 |#1|) (-944)) 100 T ELT)) (-3810 (((-1197 |#1|) (-1292 |#1|)) 131 T ELT)) (-2144 (((-944) (-1292 |#1|)) 96 T ELT)) (-3318 (((-1292 |#1|) (-1292 |#1|)) 38 T ELT)) (-3251 (((-1292 |#1|) (-944) (-944)) 140 T ELT)) (-3879 (((-1292 |#1|) (-1292 |#1|) (-1145) (-1145)) 29 T ELT)) (-1719 (((-1292 |#1|) (-1292 |#1|) (-787) (-1145)) 54 T ELT)) (-2559 (((-1292 (-1292 |#1|)) (-944)) 136 T ELT)) (-3051 (((-1292 |#1|) (-1292 |#1|) (-1292 |#1|)) 121 T ELT)) (** (((-1292 |#1|) (-1292 |#1|) (-577)) 67 T ELT)) (* (((-1292 |#1|) (-1292 |#1|) (-1292 |#1|)) 31 T ELT))) -(((-541 |#1|) (-10 -7 (-15 -3812 ((-1297) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) |#1|)) (-15 -2352 ((-1292 |#1|) (-944))) (-15 -3251 ((-1292 |#1|) (-944) (-944))) (-15 -2364 ((-1197 |#1|) (-1292 |#1|))) (-15 -2051 ((-1197 |#1|) (-787))) (-15 -1719 ((-1292 |#1|) (-1292 |#1|) (-787) (-1145))) (-15 -4387 ((-1292 |#1|) (-1292 |#1|) (-787))) (-15 -3879 ((-1292 |#1|) (-1292 |#1|) (-1145) (-1145))) (-15 -3626 ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 ** ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 * ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -3051 ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -4021 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -2219 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -3318 ((-1292 |#1|) (-1292 |#1|))) (-15 -2144 ((-944) (-1292 |#1|))) (-15 -2936 ((-112) (-1292 |#1|))) (-15 -2559 ((-1292 (-1292 |#1|)) (-944))) (-15 -2189 ((-1292 |#1|) (-944))) (-15 -3810 ((-1197 |#1|) (-1292 |#1|)))) (-361)) (T -541)) -((-3810 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 *4))) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-541 *4)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-944)) (-5 *1 (-541 *4)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (-2219 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-4021 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3626 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3879 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1145)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-4387 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-1719 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1292 *5)) (-5 *3 (-787)) (-5 *4 (-1145)) (-4 *5 (-361)) (-5 *1 (-541 *5)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)))) (-3251 (*1 *2 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) (-4 *4 (-361)) (-5 *2 (-1297)) (-5 *1 (-541 *4))))) -(-10 -7 (-15 -3812 ((-1297) (-1292 (-660 (-2 (|:| -3145 |#1|) (|:| -3251 (-1145))))) |#1|)) (-15 -2352 ((-1292 |#1|) (-944))) (-15 -3251 ((-1292 |#1|) (-944) (-944))) (-15 -2364 ((-1197 |#1|) (-1292 |#1|))) (-15 -2051 ((-1197 |#1|) (-787))) (-15 -1719 ((-1292 |#1|) (-1292 |#1|) (-787) (-1145))) (-15 -4387 ((-1292 |#1|) (-1292 |#1|) (-787))) (-15 -3879 ((-1292 |#1|) (-1292 |#1|) (-1145) (-1145))) (-15 -3626 ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 ** ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 * ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -3051 ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -4021 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -2219 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -3318 ((-1292 |#1|) (-1292 |#1|))) (-15 -2144 ((-944) (-1292 |#1|))) (-15 -2936 ((-112) (-1292 |#1|))) (-15 -2559 ((-1292 (-1292 |#1|)) (-944))) (-15 -2189 ((-1292 |#1|) (-944))) (-15 -3810 ((-1197 |#1|) (-1292 |#1|)))) -((-2339 (((-707 (-1250)) $) NIL T ELT)) (-4379 (((-707 (-1248)) $) NIL T ELT)) (-1836 (((-707 (-1247)) $) NIL T ELT)) (-2128 (((-707 (-562)) $) NIL T ELT)) (-3064 (((-707 (-560)) $) NIL T ELT)) (-1699 (((-707 (-559)) $) NIL T ELT)) (-2621 (((-787) $ (-129)) NIL T ELT)) (-1893 (((-707 (-130)) $) 26 T ELT)) (-3385 (((-1145) $ (-1145)) 31 T ELT)) (-3728 (((-1145) $) 30 T ELT)) (-3324 (((-112) $) 20 T ELT)) (-1659 (($ (-401)) 14 T ELT) (($ (-1183)) 16 T ELT)) (-1878 (((-112) $) 27 T ELT)) (-3603 (((-880) $) 34 T ELT)) (-3349 (($ $) 28 T ELT))) -(((-542) (-13 (-540) (-626 (-880)) (-10 -8 (-15 -1659 ($ (-401))) (-15 -1659 ($ (-1183))) (-15 -1878 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -3728 ((-1145) $)) (-15 -3385 ((-1145) $ (-1145)))))) (T -542)) -((-1659 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542)))) (-1659 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-542)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-542)))) (-3385 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-542))))) -(-13 (-540) (-626 (-880)) (-10 -8 (-15 -1659 ($ (-401))) (-15 -1659 ($ (-1183))) (-15 -1878 ((-112) $)) (-15 -3324 ((-112) $)) (-15 -3728 ((-1145) $)) (-15 -3385 ((-1145) $ (-1145))))) -((-3682 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-1392 (((-1 |#1| |#1|)) 10 T ELT))) -(((-543 |#1|) (-10 -7 (-15 -1392 ((-1 |#1| |#1|))) (-15 -3682 ((-1 |#1| |#1|) |#1|))) (-13 (-742) (-25))) (T -543)) -((-3682 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25))))) (-1392 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25)))))) -(-10 -7 (-15 -1392 ((-1 |#1| |#1|))) (-15 -3682 ((-1 |#1| |#1|) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3229 (((-660 (-891 |#1| (-787))) $) NIL T ELT)) (-2510 (($ $ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-3180 (($ (-787) |#1|) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2124 (($ (-1 (-787) (-787)) $) NIL T ELT)) (-4219 ((|#1| $) NIL T ELT)) (-3365 (((-787) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 27 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT))) -(((-544 |#1|) (-13 (-809) (-522 (-787) |#1|)) (-865)) (T -544)) -NIL -(-13 (-809) (-522 (-787) |#1|)) -((-3113 (((-660 |#2|) (-1197 |#1|) |#3|) 98 T ELT)) (-2575 (((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#2|))))) (-705 |#1|) |#3| (-1 (-431 (-1197 |#1|)) (-1197 |#1|))) 114 T ELT)) (-4328 (((-1197 |#1|) (-705 |#1|)) 110 T ELT))) -(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -4328 ((-1197 |#1|) (-705 |#1|))) (-15 -3113 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -2575 ((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#2|))))) (-705 |#1|) |#3| (-1 (-431 (-1197 |#1|)) (-1197 |#1|))))) (-375) (-375) (-13 (-375) (-864))) (T -545)) -((-2575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *6)) (-5 *5 (-1 (-431 (-1197 *6)) (-1197 *6))) (-4 *6 (-375)) (-5 *2 (-660 (-2 (|:| |outval| *7) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 *7)))))) (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-864))))) (-3113 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *5)) (-4 *5 (-375)) (-5 *2 (-660 *6)) (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864))))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-705 *4)) (-4 *4 (-375)) (-5 *2 (-1197 *4)) (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-864)))))) -(-10 -7 (-15 -4328 ((-1197 |#1|) (-705 |#1|))) (-15 -3113 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -2575 ((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#2|))))) (-705 |#1|) |#3| (-1 (-431 (-1197 |#1|)) (-1197 |#1|))))) -((-4114 (((-707 (-1250)) $ (-1250)) NIL T ELT)) (-2688 (((-707 (-562)) $ (-562)) NIL T ELT)) (-4376 (((-787) $ (-129)) 39 T ELT)) (-1626 (((-707 (-130)) $ (-130)) 40 T ELT)) (-2339 (((-707 (-1250)) $) NIL T ELT)) (-4379 (((-707 (-1248)) $) NIL T ELT)) (-1836 (((-707 (-1247)) $) NIL T ELT)) (-2128 (((-707 (-562)) $) NIL T ELT)) (-3064 (((-707 (-560)) $) NIL T ELT)) (-1699 (((-707 (-559)) $) NIL T ELT)) (-2621 (((-787) $ (-129)) 35 T ELT)) (-1893 (((-707 (-130)) $) 37 T ELT)) (-2877 (((-112) $) 27 T ELT)) (-1469 (((-707 $) (-592) (-977)) 18 T ELT) (((-707 $) (-504) (-977)) 24 T ELT)) (-3603 (((-880) $) 48 T ELT)) (-3349 (($ $) 42 T ELT))) -(((-546) (-13 (-783 (-592)) (-626 (-880)) (-10 -8 (-15 -1469 ((-707 $) (-504) (-977)))))) (T -546)) -((-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-504)) (-5 *4 (-977)) (-5 *2 (-707 (-546))) (-5 *1 (-546))))) -(-13 (-783 (-592)) (-626 (-880)) (-10 -8 (-15 -1469 ((-707 $) (-504) (-977))))) -((-2955 (((-859 (-577))) 12 T ELT)) (-2965 (((-859 (-577))) 14 T ELT)) (-2836 (((-849 (-577))) 9 T ELT))) -(((-547) (-10 -7 (-15 -2836 ((-849 (-577)))) (-15 -2955 ((-859 (-577)))) (-15 -2965 ((-859 (-577)))))) (T -547)) -((-2965 (*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) (-2955 (*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) (-2836 (*1 *2) (-12 (-5 *2 (-849 (-577))) (-5 *1 (-547))))) -(-10 -7 (-15 -2836 ((-849 (-577)))) (-15 -2955 ((-859 (-577)))) (-15 -2965 ((-859 (-577))))) -((-3375 (((-549) (-1201)) 15 T ELT)) (-3239 ((|#1| (-549)) 20 T ELT))) -(((-548 |#1|) (-10 -7 (-15 -3375 ((-549) (-1201))) (-15 -3239 (|#1| (-549)))) (-1242)) (T -548)) -((-3239 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1242)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-549)) (-5 *1 (-548 *4)) (-4 *4 (-1242))))) -(-10 -7 (-15 -3375 ((-549) (-1201))) (-15 -3239 (|#1| (-549)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1883 (((-1183) $) 55 T ELT)) (-3364 (((-112) $) 51 T ELT)) (-3188 (((-1201) $) 52 T ELT)) (-1848 (((-112) $) 49 T ELT)) (-1355 (((-1183) $) 50 T ELT)) (-4392 (($ (-1183)) 56 T ELT)) (-3074 (((-112) $) NIL T ELT)) (-2557 (((-112) $) NIL T ELT)) (-1539 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2721 (($ $ (-660 (-1201))) 21 T ELT)) (-3239 (((-52) $) 23 T ELT)) (-3789 (((-112) $) NIL T ELT)) (-3214 (((-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3386 (($ $ (-660 (-1201)) (-1201)) 73 T ELT)) (-2156 (((-112) $) NIL T ELT)) (-3068 (((-228) $) NIL T ELT)) (-3488 (($ $) 44 T ELT)) (-3010 (((-880) $) NIL T ELT)) (-2007 (((-112) $ $) NIL T ELT)) (-2837 (($ $ (-577)) NIL T ELT) (($ $ (-660 (-577))) NIL T ELT)) (-3133 (((-660 $) $) 30 T ELT)) (-3642 (((-1201) (-660 $)) 57 T ELT)) (-2176 (($ (-1183)) NIL T ELT) (($ (-1201)) 19 T ELT) (($ (-577)) 8 T ELT) (($ (-228)) 28 T ELT) (($ (-880)) NIL T ELT) (($ (-660 $)) 65 T ELT) (((-1129) $) 12 T ELT) (($ (-1129)) 13 T ELT)) (-2120 (((-1201) (-1201) (-660 $)) 60 T ELT)) (-3603 (((-880) $) 54 T ELT)) (-1617 (($ $) 59 T ELT)) (-4290 (($ $) 58 T ELT)) (-1644 (($ $ (-660 $)) 66 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-4105 (((-112) $) 29 T ELT)) (-2754 (($) 9 T CONST)) (-2767 (($) 11 T CONST)) (-2949 (((-112) $ $) 74 T ELT)) (-3051 (($ $ $) 82 T ELT)) (-3031 (($ $ $) 75 T ELT)) (** (($ $ (-787)) 81 T ELT) (($ $ (-577)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3501 (((-577) $) NIL T ELT))) -(((-549) (-13 (-1128 (-1183) (-1201) (-577) (-228) (-880)) (-627 (-1129)) (-10 -8 (-15 -3239 ((-52) $)) (-15 -2176 ($ (-1129))) (-15 -1644 ($ $ (-660 $))) (-15 -3386 ($ $ (-660 (-1201)) (-1201))) (-15 -2721 ($ $ (-660 (-1201)))) (-15 -3031 ($ $ $)) (-15 * ($ $ $)) (-15 -3051 ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ (-577))) (-15 0 ($) -2609) (-15 1 ($) -2609) (-15 -3488 ($ $)) (-15 -1883 ((-1183) $)) (-15 -4392 ($ (-1183))) (-15 -3642 ((-1201) (-660 $))) (-15 -2120 ((-1201) (-1201) (-660 $)))))) (T -549)) -((-3239 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-549)))) (-1644 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-549))) (-5 *1 (-549)))) (-3386 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1201)) (-5 *1 (-549)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-549)))) (-3031 (*1 *1 *1 *1) (-5 *1 (-549))) (* (*1 *1 *1 *1) (-5 *1 (-549))) (-3051 (*1 *1 *1 *1) (-5 *1 (-549))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-549)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-549)))) (-2754 (*1 *1) (-5 *1 (-549))) (-2767 (*1 *1) (-5 *1 (-549))) (-3488 (*1 *1 *1) (-5 *1 (-549))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-549)))) (-4392 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-549)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-660 (-549))) (-5 *2 (-1201)) (-5 *1 (-549)))) (-2120 (*1 *2 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-549))) (-5 *1 (-549))))) -(-13 (-1128 (-1183) (-1201) (-577) (-228) (-880)) (-627 (-1129)) (-10 -8 (-15 -3239 ((-52) $)) (-15 -2176 ($ (-1129))) (-15 -1644 ($ $ (-660 $))) (-15 -3386 ($ $ (-660 (-1201)) (-1201))) (-15 -2721 ($ $ (-660 (-1201)))) (-15 -3031 ($ $ $)) (-15 * ($ $ $)) (-15 -3051 ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ (-577))) (-15 (-2754) ($) -2609) (-15 (-2767) ($) -2609) (-15 -3488 ($ $)) (-15 -1883 ((-1183) $)) (-15 -4392 ($ (-1183))) (-15 -3642 ((-1201) (-660 $))) (-15 -2120 ((-1201) (-1201) (-660 $))))) -((-2511 ((|#2| |#2|) 17 T ELT)) (-4097 ((|#2| |#2|) 13 T ELT)) (-2381 ((|#2| |#2| (-577) (-577)) 20 T ELT)) (-3947 ((|#2| |#2|) 15 T ELT))) -(((-550 |#1| |#2|) (-10 -7 (-15 -4097 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2381 (|#2| |#2| (-577) (-577)))) (-13 (-569) (-148)) (-1283 |#1|)) (T -550)) -((-2381 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) (-4 *2 (-1283 *4)))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1283 *3)))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1283 *3)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1283 *3))))) -(-10 -7 (-15 -4097 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2381 (|#2| |#2| (-577) (-577)))) -((-2671 (((-660 (-305 (-975 |#2|))) (-660 |#2|) (-660 (-1201))) 32 T ELT)) (-2023 (((-660 |#2|) (-975 |#1|) |#3|) 54 T ELT) (((-660 |#2|) (-1197 |#1|) |#3|) 53 T ELT)) (-3951 (((-660 (-660 |#2|)) (-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)) |#3|) 106 T ELT))) -(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -2023 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -2023 ((-660 |#2|) (-975 |#1|) |#3|)) (-15 -3951 ((-660 (-660 |#2|)) (-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)) |#3|)) (-15 -2671 ((-660 (-305 (-975 |#2|))) (-660 |#2|) (-660 (-1201))))) (-465) (-375) (-13 (-375) (-864))) (T -551)) -((-2671 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1201))) (-4 *6 (-375)) (-5 *2 (-660 (-305 (-975 *6)))) (-5 *1 (-551 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-13 (-375) (-864))))) (-3951 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) (-4 *5 (-13 (-375) (-864))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864)))))) -(-10 -7 (-15 -2023 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -2023 ((-660 |#2|) (-975 |#1|) |#3|)) (-15 -3951 ((-660 (-660 |#2|)) (-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)) |#3|)) (-15 -2671 ((-660 (-305 (-975 |#2|))) (-660 |#2|) (-660 (-1201))))) -((-2871 ((|#2| |#2| |#1|) 17 T ELT)) (-1388 ((|#2| (-660 |#2|)) 31 T ELT)) (-3000 ((|#2| (-660 |#2|)) 52 T ELT))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1388 (|#2| (-660 |#2|))) (-15 -3000 (|#2| (-660 |#2|))) (-15 -2871 (|#2| |#2| |#1|))) (-318) (-1268 |#1|) |#1| (-1 |#1| |#1| (-787))) (T -552)) -((-2871 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-787))) (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1268 *3)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787))))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787)))))) -(-10 -7 (-15 -1388 (|#2| (-660 |#2|))) (-15 -3000 (|#2| (-660 |#2|))) (-15 -2871 (|#2| |#2| |#1|))) -((-3056 (((-431 (-1197 |#4|)) (-1197 |#4|) (-1 (-431 (-1197 |#3|)) (-1197 |#3|))) 89 T ELT) (((-431 |#4|) |#4| (-1 (-431 (-1197 |#3|)) (-1197 |#3|))) 210 T ELT))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-431 |#4|) |#4| (-1 (-431 (-1197 |#3|)) (-1197 |#3|)))) (-15 -3056 ((-431 (-1197 |#4|)) (-1197 |#4|) (-1 (-431 (-1197 |#3|)) (-1197 |#3|))))) (-865) (-809) (-13 (-318) (-148)) (-972 |#3| |#2| |#1|)) (T -553)) -((-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *8 (-972 *7 *6 *5)) (-5 *2 (-431 (-1197 *8))) (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1197 *8)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) (-4 *3 (-972 *7 *6 *5))))) -(-10 -7 (-15 -3056 ((-431 |#4|) |#4| (-1 (-431 (-1197 |#3|)) (-1197 |#3|)))) (-15 -3056 ((-431 (-1197 |#4|)) (-1197 |#4|) (-1 (-431 (-1197 |#3|)) (-1197 |#3|))))) -((-2511 ((|#4| |#4|) 74 T ELT)) (-4097 ((|#4| |#4|) 70 T ELT)) (-2381 ((|#4| |#4| (-577) (-577)) 76 T ELT)) (-3947 ((|#4| |#4|) 72 T ELT))) -(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4097 (|#4| |#4|)) (-15 -3947 (|#4| |#4|)) (-15 -2511 (|#4| |#4|)) (-15 -2381 (|#4| |#4| (-577) (-577)))) (-13 (-375) (-380) (-627 (-577))) (-1268 |#1|) (-740 |#1| |#2|) (-1283 |#3|)) (T -554)) -((-2381 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) (-4 *5 (-1268 *4)) (-4 *6 (-740 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) (-4 *2 (-1283 *6)))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5))))) -(-10 -7 (-15 -4097 (|#4| |#4|)) (-15 -3947 (|#4| |#4|)) (-15 -2511 (|#4| |#4|)) (-15 -2381 (|#4| |#4| (-577) (-577)))) -((-2511 ((|#2| |#2|) 27 T ELT)) (-4097 ((|#2| |#2|) 23 T ELT)) (-2381 ((|#2| |#2| (-577) (-577)) 29 T ELT)) (-3947 ((|#2| |#2|) 25 T ELT))) -(((-555 |#1| |#2|) (-10 -7 (-15 -4097 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2381 (|#2| |#2| (-577) (-577)))) (-13 (-375) (-380) (-627 (-577))) (-1283 |#1|)) (T -555)) -((-2381 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) (-5 *1 (-555 *4 *2)) (-4 *2 (-1283 *4)))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1283 *3)))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1283 *3)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1283 *3))))) -(-10 -7 (-15 -4097 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2381 (|#2| |#2| (-577) (-577)))) -((-1547 (((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)) 18 T ELT) (((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|)) 14 T ELT) (((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|)) 32 T ELT))) -(((-556 |#1| |#2|) (-10 -7 (-15 -1547 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -1547 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -1547 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) (-1074) (-1268 |#1|)) (T -556)) -((-1547 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4)))) (-1547 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4)))) (-1547 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1074)) (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1268 *5))))) -(-10 -7 (-15 -1547 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -1547 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -1547 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) -((-2199 (($ $ $) 84 T ELT)) (-3836 (((-431 $) $) 52 T ELT)) (-2784 (((-3 (-577) "failed") $) 64 T ELT)) (-2155 (((-577) $) 42 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 79 T ELT)) (-2828 (((-112) $) 26 T ELT)) (-2950 (((-420 (-577)) $) 77 T ELT)) (-2182 (((-112) $) 55 T ELT)) (-3248 (($ $ $ $) 92 T ELT)) (-4302 (((-112) $) 17 T ELT)) (-2738 (($ $ $) 62 T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 74 T ELT)) (-1454 (((-3 $ "failed") $) 69 T ELT)) (-3510 (($ $) 24 T ELT)) (-3371 (($ $ $) 90 T ELT)) (-3457 (($) 65 T ELT)) (-1968 (($ $) 58 T ELT)) (-3056 (((-431 $) $) 50 T ELT)) (-3861 (((-112) $) 15 T ELT)) (-4167 (((-787) $) 32 T ELT)) (-3362 (($ $) 11 T ELT) (($ $ (-787)) NIL T ELT)) (-1914 (($ $) 18 T ELT)) (-2176 (((-577) $) NIL T ELT) (((-549) $) 41 T ELT) (((-911 (-577)) $) 45 T ELT) (((-391) $) 35 T ELT) (((-228) $) 38 T ELT)) (-1920 (((-787)) 9 T ELT)) (-1784 (((-112) $ $) 21 T ELT)) (-1774 (($ $ $) 60 T ELT))) -(((-557 |#1|) (-10 -8 (-15 -3371 (|#1| |#1| |#1|)) (-15 -3248 (|#1| |#1| |#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -1914 (|#1| |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1784 ((-112) |#1| |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -2176 ((-228) |#1|)) (-15 -2176 ((-391) |#1|)) (-15 -2738 (|#1| |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -1774 (|#1| |#1| |#1|)) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2176 ((-577) |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -4302 ((-112) |#1|)) (-15 -4167 ((-787) |#1|)) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -1920 ((-787)))) (-558)) (T -557)) -((-1920 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-557 *3)) (-4 *3 (-558))))) -(-10 -8 (-15 -3371 (|#1| |#1| |#1|)) (-15 -3248 (|#1| |#1| |#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -1914 (|#1| |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1784 ((-112) |#1| |#1|)) (-15 -3861 ((-112) |#1|)) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -2176 ((-228) |#1|)) (-15 -2176 ((-391) |#1|)) (-15 -2738 (|#1| |#1| |#1|)) (-15 -1968 (|#1| |#1|)) (-15 -1774 (|#1| |#1| |#1|)) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2176 ((-577) |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -4302 ((-112) |#1|)) (-15 -4167 ((-787) |#1|)) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -2182 ((-112) |#1|)) (-15 -1920 ((-787)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-2199 (($ $ $) 93 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3720 (($ $ $ $) 82 T ELT)) (-2001 (($ $) 57 T ELT)) (-3836 (((-431 $) $) 58 T ELT)) (-2435 (((-112) $ $) 136 T ELT)) (-2917 (((-577) $) 125 T ELT)) (-2879 (($ $ $) 96 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 117 T ELT)) (-2155 (((-577) $) 118 T ELT)) (-3436 (($ $ $) 140 T ELT)) (-2850 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 115 T ELT) (((-705 (-577)) (-705 $)) 114 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 90 T ELT)) (-2828 (((-112) $) 92 T ELT)) (-2950 (((-420 (-577)) $) 91 T ELT)) (-2352 (($) 89 T ELT) (($ $) 88 T ELT)) (-3447 (($ $ $) 139 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 134 T ELT)) (-2182 (((-112) $) 59 T ELT)) (-3248 (($ $ $ $) 80 T ELT)) (-3309 (($ $ $) 94 T ELT)) (-4302 (((-112) $) 127 T ELT)) (-2738 (($ $ $) 105 T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 108 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2238 (((-112) $) 100 T ELT)) (-1454 (((-3 $ "failed") $) 102 T ELT)) (-2178 (((-112) $) 126 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 143 T ELT)) (-1912 (($ $ $ $) 81 T ELT)) (-2900 (($ $ $) 133 T ELT)) (-1457 (($ $ $) 132 T ELT)) (-3510 (($ $) 84 T ELT)) (-3762 (($ $) 97 T ELT)) (-1512 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 113 T ELT) (((-705 (-577)) (-1292 $)) 112 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3371 (($ $ $) 79 T ELT)) (-3457 (($) 101 T CONST)) (-2470 (($ $) 86 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-1968 (($ $) 106 T ELT)) (-3056 (((-431 $) $) 56 T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 141 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 135 T ELT)) (-3861 (((-112) $) 99 T ELT)) (-4167 (((-787) $) 137 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 138 T ELT)) (-3362 (($ $) 123 T ELT) (($ $ (-787)) 121 T ELT)) (-2322 (($ $) 85 T ELT)) (-1914 (($ $) 87 T ELT)) (-2176 (((-577) $) 119 T ELT) (((-549) $) 110 T ELT) (((-911 (-577)) $) 109 T ELT) (((-391) $) 104 T ELT) (((-228) $) 103 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 116 T ELT)) (-1920 (((-787)) 32 T CONST)) (-1784 (((-112) $ $) 95 T ELT)) (-1774 (($ $ $) 107 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2762 (($) 98 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-3585 (($ $ $ $) 83 T ELT)) (-4318 (($ $) 124 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $) 122 T ELT) (($ $ (-787)) 120 T ELT)) (-3001 (((-112) $ $) 131 T ELT)) (-2978 (((-112) $ $) 129 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 130 T ELT)) (-2971 (((-112) $ $) 128 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-577) $) 111 T ELT))) +((-4152 (((-1202 |#1|) (-792)) 115 T ELT)) (-2318 (((-1297 |#1|) (-1297 |#1|) (-949)) 108 T ELT)) (-2150 (((-1302) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) |#1|) 123 T ELT)) (-3686 (((-1297 |#1|) (-1297 |#1|) (-792)) 53 T ELT)) (-1424 (((-1297 |#1|) (-949)) 110 T ELT)) (-3927 (((-1297 |#1|) (-1297 |#1|) (-577)) 30 T ELT)) (-4181 (((-1202 |#1|) (-1297 |#1|)) 116 T ELT)) (-4235 (((-1297 |#1|) (-949)) 137 T ELT)) (-3524 (((-112) (-1297 |#1|)) 120 T ELT)) (-2794 (((-1297 |#1|) (-1297 |#1|) (-949)) 100 T ELT)) (-2346 (((-1202 |#1|) (-1297 |#1|)) 131 T ELT)) (-2686 (((-949) (-1297 |#1|)) 96 T ELT)) (-3981 (((-1297 |#1|) (-1297 |#1|)) 38 T ELT)) (-3354 (((-1297 |#1|) (-949) (-949)) 140 T ELT)) (-3177 (((-1297 |#1|) (-1297 |#1|) (-1150) (-1150)) 29 T ELT)) (-2247 (((-1297 |#1|) (-1297 |#1|) (-792) (-1150)) 54 T ELT)) (-2104 (((-1297 (-1297 |#1|)) (-949)) 136 T ELT)) (-3139 (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 121 T ELT)) (** (((-1297 |#1|) (-1297 |#1|) (-577)) 67 T ELT)) (* (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 31 T ELT))) +(((-541 |#1|) (-10 -7 (-15 -2150 ((-1302) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) |#1|)) (-15 -1424 ((-1297 |#1|) (-949))) (-15 -3354 ((-1297 |#1|) (-949) (-949))) (-15 -4181 ((-1202 |#1|) (-1297 |#1|))) (-15 -4152 ((-1202 |#1|) (-792))) (-15 -2247 ((-1297 |#1|) (-1297 |#1|) (-792) (-1150))) (-15 -3686 ((-1297 |#1|) (-1297 |#1|) (-792))) (-15 -3177 ((-1297 |#1|) (-1297 |#1|) (-1150) (-1150))) (-15 -3927 ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -3139 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2794 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -2318 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -3981 ((-1297 |#1|) (-1297 |#1|))) (-15 -2686 ((-949) (-1297 |#1|))) (-15 -3524 ((-112) (-1297 |#1|))) (-15 -2104 ((-1297 (-1297 |#1|)) (-949))) (-15 -4235 ((-1297 |#1|) (-949))) (-15 -2346 ((-1202 |#1|) (-1297 |#1|)))) (-361)) (T -541)) +((-2346 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)))) (-4235 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-541 *4)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-949)) (-5 *1 (-541 *4)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (-2318 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3139 (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3927 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3177 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1150)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3686 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-2247 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1297 *5)) (-5 *3 (-792)) (-5 *4 (-1150)) (-4 *5 (-361)) (-5 *1 (-541 *5)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)))) (-3354 (*1 *2 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) (-4 *4 (-361)) (-5 *2 (-1302)) (-5 *1 (-541 *4))))) +(-10 -7 (-15 -2150 ((-1302) (-1297 (-665 (-2 (|:| -3254 |#1|) (|:| -3354 (-1150))))) |#1|)) (-15 -1424 ((-1297 |#1|) (-949))) (-15 -3354 ((-1297 |#1|) (-949) (-949))) (-15 -4181 ((-1202 |#1|) (-1297 |#1|))) (-15 -4152 ((-1202 |#1|) (-792))) (-15 -2247 ((-1297 |#1|) (-1297 |#1|) (-792) (-1150))) (-15 -3686 ((-1297 |#1|) (-1297 |#1|) (-792))) (-15 -3177 ((-1297 |#1|) (-1297 |#1|) (-1150) (-1150))) (-15 -3927 ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -3139 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2794 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -2318 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -3981 ((-1297 |#1|) (-1297 |#1|))) (-15 -2686 ((-949) (-1297 |#1|))) (-15 -3524 ((-112) (-1297 |#1|))) (-15 -2104 ((-1297 (-1297 |#1|)) (-949))) (-15 -4235 ((-1297 |#1|) (-949))) (-15 -2346 ((-1202 |#1|) (-1297 |#1|)))) +((-1954 (((-712 (-1255)) $) NIL T ELT)) (-2336 (((-712 (-1253)) $) NIL T ELT)) (-2666 (((-712 (-1252)) $) NIL T ELT)) (-3772 (((-712 (-562)) $) NIL T ELT)) (-1870 (((-712 (-560)) $) NIL T ELT)) (-1504 (((-712 (-559)) $) NIL T ELT)) (-4074 (((-792) $ (-129)) NIL T ELT)) (-1554 (((-712 (-130)) $) 26 T ELT)) (-4135 (((-1150) $ (-1150)) 31 T ELT)) (-3948 (((-1150) $) 30 T ELT)) (-1552 (((-112) $) 20 T ELT)) (-2160 (($ (-401)) 14 T ELT) (($ (-1188)) 16 T ELT)) (-3321 (((-112) $) 27 T ELT)) (-3709 (((-885) $) 34 T ELT)) (-2823 (($ $) 28 T ELT))) +(((-542) (-13 (-540) (-631 (-885)) (-10 -8 (-15 -2160 ($ (-401))) (-15 -2160 ($ (-1188))) (-15 -3321 ((-112) $)) (-15 -1552 ((-112) $)) (-15 -3948 ((-1150) $)) (-15 -4135 ((-1150) $ (-1150)))))) (T -542)) +((-2160 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-542)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-542)))) (-4135 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-542))))) +(-13 (-540) (-631 (-885)) (-10 -8 (-15 -2160 ($ (-401))) (-15 -2160 ($ (-1188))) (-15 -3321 ((-112) $)) (-15 -1552 ((-112) $)) (-15 -3948 ((-1150) $)) (-15 -4135 ((-1150) $ (-1150))))) +((-4170 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-3768 (((-1 |#1| |#1|)) 10 T ELT))) +(((-543 |#1|) (-10 -7 (-15 -3768 ((-1 |#1| |#1|))) (-15 -4170 ((-1 |#1| |#1|) |#1|))) (-13 (-747) (-25))) (T -543)) +((-4170 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25))))) (-3768 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25)))))) +(-10 -7 (-15 -3768 ((-1 |#1| |#1|))) (-15 -4170 ((-1 |#1| |#1|) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2072 (((-665 (-896 |#1| (-792))) $) NIL T ELT)) (-4208 (($ $ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3872 (($ (-792) |#1|) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4417 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-1560 ((|#1| $) NIL T ELT)) (-4025 (((-792) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 27 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT))) +(((-544 |#1|) (-13 (-814) (-522 (-792) |#1|)) (-870)) (T -544)) +NIL +(-13 (-814) (-522 (-792) |#1|)) +((-1499 (((-665 |#2|) (-1202 |#1|) |#3|) 98 T ELT)) (-2545 (((-665 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#2|))))) (-710 |#1|) |#3| (-1 (-431 (-1202 |#1|)) (-1202 |#1|))) 114 T ELT)) (-2065 (((-1202 |#1|) (-710 |#1|)) 110 T ELT))) +(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -2065 ((-1202 |#1|) (-710 |#1|))) (-15 -1499 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -2545 ((-665 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#2|))))) (-710 |#1|) |#3| (-1 (-431 (-1202 |#1|)) (-1202 |#1|))))) (-375) (-375) (-13 (-375) (-869))) (T -545)) +((-2545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *6)) (-5 *5 (-1 (-431 (-1202 *6)) (-1202 *6))) (-4 *6 (-375)) (-5 *2 (-665 (-2 (|:| |outval| *7) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 *7)))))) (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-869))))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *5)) (-4 *5 (-375)) (-5 *2 (-665 *6)) (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869))))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-710 *4)) (-4 *4 (-375)) (-5 *2 (-1202 *4)) (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-869)))))) +(-10 -7 (-15 -2065 ((-1202 |#1|) (-710 |#1|))) (-15 -1499 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -2545 ((-665 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#2|))))) (-710 |#1|) |#3| (-1 (-431 (-1202 |#1|)) (-1202 |#1|))))) +((-1904 (((-712 (-1255)) $ (-1255)) NIL T ELT)) (-2082 (((-712 (-562)) $ (-562)) NIL T ELT)) (-2209 (((-792) $ (-129)) 39 T ELT)) (-3970 (((-712 (-130)) $ (-130)) 40 T ELT)) (-1954 (((-712 (-1255)) $) NIL T ELT)) (-2336 (((-712 (-1253)) $) NIL T ELT)) (-2666 (((-712 (-1252)) $) NIL T ELT)) (-3772 (((-712 (-562)) $) NIL T ELT)) (-1870 (((-712 (-560)) $) NIL T ELT)) (-1504 (((-712 (-559)) $) NIL T ELT)) (-4074 (((-792) $ (-129)) 35 T ELT)) (-1554 (((-712 (-130)) $) 37 T ELT)) (-2913 (((-112) $) 27 T ELT)) (-4050 (((-712 $) (-592) (-982)) 18 T ELT) (((-712 $) (-504) (-982)) 24 T ELT)) (-3709 (((-885) $) 48 T ELT)) (-2823 (($ $) 42 T ELT))) +(((-546) (-13 (-788 (-592)) (-631 (-885)) (-10 -8 (-15 -4050 ((-712 $) (-504) (-982)))))) (T -546)) +((-4050 (*1 *2 *3 *4) (-12 (-5 *3 (-504)) (-5 *4 (-982)) (-5 *2 (-712 (-546))) (-5 *1 (-546))))) +(-13 (-788 (-592)) (-631 (-885)) (-10 -8 (-15 -4050 ((-712 $) (-504) (-982))))) +((-3049 (((-864 (-577))) 12 T ELT)) (-3061 (((-864 (-577))) 14 T ELT)) (-2461 (((-854 (-577))) 9 T ELT))) +(((-547) (-10 -7 (-15 -2461 ((-854 (-577)))) (-15 -3049 ((-864 (-577)))) (-15 -3061 ((-864 (-577)))))) (T -547)) +((-3061 (*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) (-3049 (*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) (-2461 (*1 *2) (-12 (-5 *2 (-854 (-577))) (-5 *1 (-547))))) +(-10 -7 (-15 -2461 ((-854 (-577)))) (-15 -3049 ((-864 (-577)))) (-15 -3061 ((-864 (-577))))) +((-1633 (((-549) (-1206)) 15 T ELT)) (-2257 ((|#1| (-549)) 20 T ELT))) +(((-548 |#1|) (-10 -7 (-15 -1633 ((-549) (-1206))) (-15 -2257 (|#1| (-549)))) (-1247)) (T -548)) +((-2257 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1247)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-549)) (-5 *1 (-548 *4)) (-4 *4 (-1247))))) +(-10 -7 (-15 -1633 ((-549) (-1206))) (-15 -2257 (|#1| (-549)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3326 (((-1188) $) 55 T ELT)) (-1457 (((-112) $) 51 T ELT)) (-3465 (((-1206) $) 52 T ELT)) (-3195 (((-112) $) 49 T ELT)) (-1378 (((-1188) $) 50 T ELT)) (-3319 (($ (-1188)) 56 T ELT)) (-4277 (((-112) $) NIL T ELT)) (-4141 (((-112) $) NIL T ELT)) (-3282 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1880 (($ $ (-665 (-1206))) 21 T ELT)) (-2257 (((-52) $) 23 T ELT)) (-1861 (((-112) $) NIL T ELT)) (-3492 (((-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3483 (($ $ (-665 (-1206)) (-1206)) 73 T ELT)) (-3315 (((-112) $) NIL T ELT)) (-3172 (((-228) $) NIL T ELT)) (-3131 (($ $) 44 T ELT)) (-3295 (((-885) $) NIL T ELT)) (-2281 (((-112) $ $) NIL T ELT)) (-2916 (($ $ (-577)) NIL T ELT) (($ $ (-665 (-577))) NIL T ELT)) (-3833 (((-665 $) $) 30 T ELT)) (-2013 (((-1206) (-665 $)) 57 T ELT)) (-4463 (($ (-1188)) NIL T ELT) (($ (-1206)) 19 T ELT) (($ (-577)) 8 T ELT) (($ (-228)) 28 T ELT) (($ (-885)) NIL T ELT) (($ (-665 $)) 65 T ELT) (((-1134) $) 12 T ELT) (($ (-1134)) 13 T ELT)) (-2398 (((-1206) (-1206) (-665 $)) 60 T ELT)) (-3709 (((-885) $) 54 T ELT)) (-2451 (($ $) 59 T ELT)) (-2313 (($ $) 58 T ELT)) (-2551 (($ $ (-665 $)) 66 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1788 (((-112) $) 29 T ELT)) (-2839 (($) 9 T CONST)) (-2853 (($) 11 T CONST)) (-3018 (((-112) $ $) 74 T ELT)) (-3139 (($ $ $) 82 T ELT)) (-3114 (($ $ $) 75 T ELT)) (** (($ $ (-792)) 81 T ELT) (($ $ (-577)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3600 (((-577) $) NIL T ELT))) +(((-549) (-13 (-1133 (-1188) (-1206) (-577) (-228) (-885)) (-632 (-1134)) (-10 -8 (-15 -2257 ((-52) $)) (-15 -4463 ($ (-1134))) (-15 -2551 ($ $ (-665 $))) (-15 -3483 ($ $ (-665 (-1206)) (-1206))) (-15 -1880 ($ $ (-665 (-1206)))) (-15 -3114 ($ $ $)) (-15 * ($ $ $)) (-15 -3139 ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ (-577))) (-15 0 ($) -4212) (-15 1 ($) -4212) (-15 -3131 ($ $)) (-15 -3326 ((-1188) $)) (-15 -3319 ($ (-1188))) (-15 -2013 ((-1206) (-665 $))) (-15 -2398 ((-1206) (-1206) (-665 $)))))) (T -549)) +((-2257 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549)))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549)))) (-2551 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-549))) (-5 *1 (-549)))) (-3483 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1206)) (-5 *1 (-549)))) (-1880 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-549)))) (-3114 (*1 *1 *1 *1) (-5 *1 (-549))) (* (*1 *1 *1 *1) (-5 *1 (-549))) (-3139 (*1 *1 *1 *1) (-5 *1 (-549))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-549)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-549)))) (-2839 (*1 *1) (-5 *1 (-549))) (-2853 (*1 *1) (-5 *1 (-549))) (-3131 (*1 *1 *1) (-5 *1 (-549))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-549)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-549)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-665 (-549))) (-5 *2 (-1206)) (-5 *1 (-549)))) (-2398 (*1 *2 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-549))) (-5 *1 (-549))))) +(-13 (-1133 (-1188) (-1206) (-577) (-228) (-885)) (-632 (-1134)) (-10 -8 (-15 -2257 ((-52) $)) (-15 -4463 ($ (-1134))) (-15 -2551 ($ $ (-665 $))) (-15 -3483 ($ $ (-665 (-1206)) (-1206))) (-15 -1880 ($ $ (-665 (-1206)))) (-15 -3114 ($ $ $)) (-15 * ($ $ $)) (-15 -3139 ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ (-577))) (-15 (-2839) ($) -4212) (-15 (-2853) ($) -4212) (-15 -3131 ($ $)) (-15 -3326 ((-1188) $)) (-15 -3319 ($ (-1188))) (-15 -2013 ((-1206) (-665 $))) (-15 -2398 ((-1206) (-1206) (-665 $))))) +((-2161 ((|#2| |#2|) 17 T ELT)) (-3952 ((|#2| |#2|) 13 T ELT)) (-1952 ((|#2| |#2| (-577) (-577)) 20 T ELT)) (-1843 ((|#2| |#2|) 15 T ELT))) +(((-550 |#1| |#2|) (-10 -7 (-15 -3952 (|#2| |#2|)) (-15 -1843 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -1952 (|#2| |#2| (-577) (-577)))) (-13 (-569) (-148)) (-1288 |#1|)) (T -550)) +((-1952 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) (-4 *2 (-1288 *4)))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1288 *3)))) (-1843 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1288 *3)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1288 *3))))) +(-10 -7 (-15 -3952 (|#2| |#2|)) (-15 -1843 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -1952 (|#2| |#2| (-577) (-577)))) +((-4186 (((-665 (-305 (-980 |#2|))) (-665 |#2|) (-665 (-1206))) 32 T ELT)) (-2700 (((-665 |#2|) (-980 |#1|) |#3|) 54 T ELT) (((-665 |#2|) (-1202 |#1|) |#3|) 53 T ELT)) (-3454 (((-665 (-665 |#2|)) (-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)) |#3|) 106 T ELT))) +(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -2700 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -2700 ((-665 |#2|) (-980 |#1|) |#3|)) (-15 -3454 ((-665 (-665 |#2|)) (-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)) |#3|)) (-15 -4186 ((-665 (-305 (-980 |#2|))) (-665 |#2|) (-665 (-1206))))) (-465) (-375) (-13 (-375) (-869))) (T -551)) +((-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1206))) (-4 *6 (-375)) (-5 *2 (-665 (-305 (-980 *6)))) (-5 *1 (-551 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-13 (-375) (-869))))) (-3454 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) (-4 *5 (-13 (-375) (-869))))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-980 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869))))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869)))))) +(-10 -7 (-15 -2700 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -2700 ((-665 |#2|) (-980 |#1|) |#3|)) (-15 -3454 ((-665 (-665 |#2|)) (-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)) |#3|)) (-15 -4186 ((-665 (-305 (-980 |#2|))) (-665 |#2|) (-665 (-1206))))) +((-3530 ((|#2| |#2| |#1|) 17 T ELT)) (-2898 ((|#2| (-665 |#2|)) 31 T ELT)) (-4248 ((|#2| (-665 |#2|)) 52 T ELT))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2898 (|#2| (-665 |#2|))) (-15 -4248 (|#2| (-665 |#2|))) (-15 -3530 (|#2| |#2| |#1|))) (-318) (-1273 |#1|) |#1| (-1 |#1| |#1| (-792))) (T -552)) +((-3530 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-792))) (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1273 *3)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792))))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792)))))) +(-10 -7 (-15 -2898 (|#2| (-665 |#2|))) (-15 -4248 (|#2| (-665 |#2|))) (-15 -3530 (|#2| |#2| |#1|))) +((-3759 (((-431 (-1202 |#4|)) (-1202 |#4|) (-1 (-431 (-1202 |#3|)) (-1202 |#3|))) 89 T ELT) (((-431 |#4|) |#4| (-1 (-431 (-1202 |#3|)) (-1202 |#3|))) 210 T ELT))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 ((-431 |#4|) |#4| (-1 (-431 (-1202 |#3|)) (-1202 |#3|)))) (-15 -3759 ((-431 (-1202 |#4|)) (-1202 |#4|) (-1 (-431 (-1202 |#3|)) (-1202 |#3|))))) (-870) (-814) (-13 (-318) (-148)) (-977 |#3| |#2| |#1|)) (T -553)) +((-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *8 (-977 *7 *6 *5)) (-5 *2 (-431 (-1202 *8))) (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1202 *8)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) (-4 *3 (-977 *7 *6 *5))))) +(-10 -7 (-15 -3759 ((-431 |#4|) |#4| (-1 (-431 (-1202 |#3|)) (-1202 |#3|)))) (-15 -3759 ((-431 (-1202 |#4|)) (-1202 |#4|) (-1 (-431 (-1202 |#3|)) (-1202 |#3|))))) +((-2161 ((|#4| |#4|) 74 T ELT)) (-3952 ((|#4| |#4|) 70 T ELT)) (-1952 ((|#4| |#4| (-577) (-577)) 76 T ELT)) (-1843 ((|#4| |#4|) 72 T ELT))) +(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| |#4|)) (-15 -1843 (|#4| |#4|)) (-15 -2161 (|#4| |#4|)) (-15 -1952 (|#4| |#4| (-577) (-577)))) (-13 (-375) (-380) (-632 (-577))) (-1273 |#1|) (-745 |#1| |#2|) (-1288 |#3|)) (T -554)) +((-1952 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) (-4 *5 (-1273 *4)) (-4 *6 (-745 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) (-4 *2 (-1288 *6)))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) (-1843 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5))))) +(-10 -7 (-15 -3952 (|#4| |#4|)) (-15 -1843 (|#4| |#4|)) (-15 -2161 (|#4| |#4|)) (-15 -1952 (|#4| |#4| (-577) (-577)))) +((-2161 ((|#2| |#2|) 27 T ELT)) (-3952 ((|#2| |#2|) 23 T ELT)) (-1952 ((|#2| |#2| (-577) (-577)) 29 T ELT)) (-1843 ((|#2| |#2|) 25 T ELT))) +(((-555 |#1| |#2|) (-10 -7 (-15 -3952 (|#2| |#2|)) (-15 -1843 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -1952 (|#2| |#2| (-577) (-577)))) (-13 (-375) (-380) (-632 (-577))) (-1288 |#1|)) (T -555)) +((-1952 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) (-5 *1 (-555 *4 *2)) (-4 *2 (-1288 *4)))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1288 *3)))) (-1843 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1288 *3)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1288 *3))))) +(-10 -7 (-15 -3952 (|#2| |#2|)) (-15 -1843 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -1952 (|#2| |#2| (-577) (-577)))) +((-4478 (((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)) 18 T ELT) (((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|)) 14 T ELT) (((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|)) 32 T ELT))) +(((-556 |#1| |#2|) (-10 -7 (-15 -4478 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -4478 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -4478 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) (-1079) (-1273 |#1|)) (T -556)) +((-4478 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4)))) (-4478 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4)))) (-4478 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1079)) (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -4478 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -4478 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -4478 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) +((-2940 (($ $ $) 84 T ELT)) (-3206 (((-431 $) $) 52 T ELT)) (-4335 (((-3 (-577) "failed") $) 64 T ELT)) (-3783 (((-577) $) 42 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 79 T ELT)) (-1356 (((-112) $) 26 T ELT)) (-4035 (((-420 (-577)) $) 77 T ELT)) (-3567 (((-112) $) 55 T ELT)) (-1714 (($ $ $ $) 92 T ELT)) (-4339 (((-112) $) 17 T ELT)) (-2381 (($ $ $) 62 T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 74 T ELT)) (-2004 (((-3 $ "failed") $) 69 T ELT)) (-3106 (($ $) 24 T ELT)) (-4097 (($ $ $) 90 T ELT)) (-2443 (($) 65 T ELT)) (-2964 (($ $) 58 T ELT)) (-3759 (((-431 $) $) 50 T ELT)) (-2820 (((-112) $) 15 T ELT)) (-4081 (((-792) $) 32 T ELT)) (-3641 (($ $) 11 T ELT) (($ $ (-792)) NIL T ELT)) (-1977 (($ $) 18 T ELT)) (-4463 (((-577) $) NIL T ELT) (((-549) $) 41 T ELT) (((-916 (-577)) $) 45 T ELT) (((-391) $) 35 T ELT) (((-228) $) 38 T ELT)) (-3331 (((-792)) 9 T ELT)) (-3790 (((-112) $ $) 21 T ELT)) (-2990 (($ $ $) 60 T ELT))) +(((-557 |#1|) (-10 -8 (-15 -4097 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -3790 ((-112) |#1| |#1|)) (-15 -2820 ((-112) |#1|)) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -4463 ((-228) |#1|)) (-15 -4463 ((-391) |#1|)) (-15 -2381 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -2990 (|#1| |#1| |#1|)) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4463 ((-577) |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4081 ((-792) |#1|)) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -3331 ((-792)))) (-558)) (T -557)) +((-3331 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-557 *3)) (-4 *3 (-558))))) +(-10 -8 (-15 -4097 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -1977 (|#1| |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -3790 ((-112) |#1| |#1|)) (-15 -2820 ((-112) |#1|)) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -4463 ((-228) |#1|)) (-15 -4463 ((-391) |#1|)) (-15 -2381 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -2990 (|#1| |#1| |#1|)) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4463 ((-577) |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -4339 ((-112) |#1|)) (-15 -4081 ((-792) |#1|)) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -3331 ((-792)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2940 (($ $ $) 93 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-4002 (($ $ $ $) 82 T ELT)) (-2612 (($ $) 57 T ELT)) (-3206 (((-431 $) $) 58 T ELT)) (-2495 (((-112) $ $) 136 T ELT)) (-2578 (((-577) $) 125 T ELT)) (-4387 (($ $ $) 96 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 117 T ELT)) (-3783 (((-577) $) 118 T ELT)) (-3531 (($ $ $) 140 T ELT)) (-3187 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 115 T ELT) (((-710 (-577)) (-710 $)) 114 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 90 T ELT)) (-1356 (((-112) $) 92 T ELT)) (-4035 (((-420 (-577)) $) 91 T ELT)) (-1424 (($) 89 T ELT) (($ $) 88 T ELT)) (-3541 (($ $ $) 139 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 134 T ELT)) (-3567 (((-112) $) 59 T ELT)) (-1714 (($ $ $ $) 80 T ELT)) (-3215 (($ $ $) 94 T ELT)) (-4339 (((-112) $) 127 T ELT)) (-2381 (($ $ $) 105 T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 108 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2310 (((-112) $) 100 T ELT)) (-2004 (((-3 $ "failed") $) 102 T ELT)) (-2649 (((-112) $) 126 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 143 T ELT)) (-4098 (($ $ $ $) 81 T ELT)) (-3237 (($ $ $) 133 T ELT)) (-2930 (($ $ $) 132 T ELT)) (-3106 (($ $) 84 T ELT)) (-4166 (($ $) 97 T ELT)) (-3163 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 113 T ELT) (((-710 (-577)) (-1297 $)) 112 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-4097 (($ $ $) 79 T ELT)) (-2443 (($) 101 T CONST)) (-2143 (($ $) 86 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2964 (($ $) 106 T ELT)) (-3759 (((-431 $) $) 56 T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 141 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 135 T ELT)) (-2820 (((-112) $) 99 T ELT)) (-4081 (((-792) $) 137 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 138 T ELT)) (-3641 (($ $) 123 T ELT) (($ $ (-792)) 121 T ELT)) (-2593 (($ $) 85 T ELT)) (-1977 (($ $) 87 T ELT)) (-4463 (((-577) $) 119 T ELT) (((-549) $) 110 T ELT) (((-916 (-577)) $) 109 T ELT) (((-391) $) 104 T ELT) (((-228) $) 103 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 116 T ELT)) (-3331 (((-792)) 32 T CONST)) (-3790 (((-112) $ $) 95 T ELT)) (-2990 (($ $ $) 107 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4356 (($) 98 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2449 (($ $ $ $) 83 T ELT)) (-2215 (($ $) 124 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $) 122 T ELT) (($ $ (-792)) 120 T ELT)) (-3078 (((-112) $ $) 131 T ELT)) (-3054 (((-112) $ $) 129 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 130 T ELT)) (-3042 (((-112) $ $) 128 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-577) $) 111 T ELT))) (((-558) (-141)) (T -558)) -((-2238 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-2762 (*1 *1) (-4 *1 (-558))) (-3762 (*1 *1 *1) (-4 *1 (-558))) (-2879 (*1 *1 *1 *1) (-4 *1 (-558))) (-1784 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-3309 (*1 *1 *1 *1) (-4 *1 (-558))) (-2199 (*1 *1 *1 *1) (-4 *1 (-558))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-1493 (*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-2352 (*1 *1) (-4 *1 (-558))) (-2352 (*1 *1 *1) (-4 *1 (-558))) (-1914 (*1 *1 *1) (-4 *1 (-558))) (-2470 (*1 *1 *1) (-4 *1 (-558))) (-2322 (*1 *1 *1) (-4 *1 (-558))) (-3510 (*1 *1 *1) (-4 *1 (-558))) (-3585 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3720 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-1912 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3248 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3371 (*1 *1 *1 *1) (-4 *1 (-558)))) -(-13 (-1246) (-318) (-836) (-239) (-627 (-577)) (-1063 (-577)) (-654 (-577)) (-627 (-549)) (-627 (-911 (-577))) (-905 (-577)) (-144) (-1047) (-148) (-1177) (-10 -8 (-15 -2238 ((-112) $)) (-15 -3861 ((-112) $)) (-6 -4469) (-15 -2762 ($)) (-15 -3762 ($ $)) (-15 -2879 ($ $ $)) (-15 -1784 ((-112) $ $)) (-15 -3309 ($ $ $)) (-15 -2199 ($ $ $)) (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $)) (-15 -2352 ($)) (-15 -2352 ($ $)) (-15 -1914 ($ $)) (-15 -2470 ($ $)) (-15 -2322 ($ $)) (-15 -3510 ($ $)) (-15 -3585 ($ $ $ $)) (-15 -3720 ($ $ $ $)) (-15 -1912 ($ $ $ $)) (-15 -3248 ($ $ $ $)) (-15 -3371 ($ $ $)) (-6 -4468))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-144) . T) ((-174) . T) ((-627 (-228)) . T) ((-627 (-391)) . T) ((-627 (-549)) . T) ((-627 (-577)) . T) ((-627 (-911 (-577))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0=(-577)) . T) ((-664 $) . T) ((-656 $) . T) ((-654 #0#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-836) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-905 (-577)) . T) ((-943) . T) ((-1047) . T) ((-1063 (-577)) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) . T) ((-1242) . T) ((-1246) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-559) (-13 (-860) (-10 -8 (-15 -3790 ($) -2609)))) (T -559)) -((-3790 (*1 *1) (-5 *1 (-559)))) -(-13 (-860) (-10 -8 (-15 -3790 ($) -2609))) +((-2310 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-4356 (*1 *1) (-4 *1 (-558))) (-4166 (*1 *1 *1) (-4 *1 (-558))) (-4387 (*1 *1 *1 *1) (-4 *1 (-558))) (-3790 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-3215 (*1 *1 *1 *1) (-4 *1 (-558))) (-2940 (*1 *1 *1 *1) (-4 *1 (-558))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-1424 (*1 *1) (-4 *1 (-558))) (-1424 (*1 *1 *1) (-4 *1 (-558))) (-1977 (*1 *1 *1) (-4 *1 (-558))) (-2143 (*1 *1 *1) (-4 *1 (-558))) (-2593 (*1 *1 *1) (-4 *1 (-558))) (-3106 (*1 *1 *1) (-4 *1 (-558))) (-2449 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-4002 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-4098 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-1714 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-4097 (*1 *1 *1 *1) (-4 *1 (-558)))) +(-13 (-1251) (-318) (-841) (-239) (-632 (-577)) (-1068 (-577)) (-659 (-577)) (-632 (-549)) (-632 (-916 (-577))) (-910 (-577)) (-144) (-1052) (-148) (-1182) (-10 -8 (-15 -2310 ((-112) $)) (-15 -2820 ((-112) $)) (-6 -4498) (-15 -4356 ($)) (-15 -4166 ($ $)) (-15 -4387 ($ $ $)) (-15 -3790 ((-112) $ $)) (-15 -3215 ($ $ $)) (-15 -2940 ($ $ $)) (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $)) (-15 -1424 ($)) (-15 -1424 ($ $)) (-15 -1977 ($ $)) (-15 -2143 ($ $)) (-15 -2593 ($ $)) (-15 -3106 ($ $)) (-15 -2449 ($ $ $ $)) (-15 -4002 ($ $ $ $)) (-15 -4098 ($ $ $ $)) (-15 -1714 ($ $ $ $)) (-15 -4097 ($ $ $)) (-6 -4497))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-144) . T) ((-174) . T) ((-632 (-228)) . T) ((-632 (-391)) . T) ((-632 (-549)) . T) ((-632 (-577)) . T) ((-632 (-916 (-577))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0=(-577)) . T) ((-669 $) . T) ((-661 $) . T) ((-659 #0#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-841) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-577)) . T) ((-948) . T) ((-1052) . T) ((-1068 (-577)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) . T) ((-1247) . T) ((-1251) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-559) (-13 (-865) (-10 -8 (-15 -2305 ($) -4212)))) (T -559)) +((-2305 (*1 *1) (-5 *1 (-559)))) +(-13 (-865) (-10 -8 (-15 -2305 ($) -4212))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-560) (-13 (-860) (-10 -8 (-15 -3790 ($) -2609)))) (T -560)) -((-3790 (*1 *1) (-5 *1 (-560)))) -(-13 (-860) (-10 -8 (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-560) (-13 (-865) (-10 -8 (-15 -2305 ($) -4212)))) (T -560)) +((-2305 (*1 *1) (-5 *1 (-560)))) +(-13 (-865) (-10 -8 (-15 -2305 ($) -4212))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-561) (-13 (-860) (-10 -8 (-15 -3790 ($) -2609)))) (T -561)) -((-3790 (*1 *1) (-5 *1 (-561)))) -(-13 (-860) (-10 -8 (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-561) (-13 (-865) (-10 -8 (-15 -2305 ($) -4212)))) (T -561)) +((-2305 (*1 *1) (-5 *1 (-561)))) +(-13 (-865) (-10 -8 (-15 -2305 ($) -4212))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-562) (-13 (-860) (-10 -8 (-15 -3790 ($) -2609)))) (T -562)) -((-3790 (*1 *1) (-5 *1 (-562)))) -(-13 (-860) (-10 -8 (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-562) (-13 (-865) (-10 -8 (-15 -2305 ($) -4212)))) (T -562)) +((-2305 (*1 *1) (-5 *1 (-562)))) +(-13 (-865) (-10 -8 (-15 -2305 ($) -4212))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2790 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#2| $ |#1| |#2|) NIL T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-3740 (((-660 |#1|) $) NIL T ELT)) (-2490 (((-112) |#1| $) NIL T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3445 (((-660 |#1|) $) NIL T ELT)) (-2187 (((-112) |#1| $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#2| $) NIL (|has| |#1| (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-563 |#1| |#2| |#3|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470)))) (T -563)) -NIL -(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) -((-1564 (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-1 (-1197 |#2|) (-1197 |#2|))) 50 T ELT))) -(((-564 |#1| |#2|) (-10 -7 (-15 -1564 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-1 (-1197 |#2|) (-1197 |#2|))))) (-569) (-13 (-27) (-443 |#1|))) (T -564)) -((-1564 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-625 *3)) (-5 *5 (-1 (-1197 *3) (-1197 *3))) (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) (-5 *1 (-564 *6 *3))))) -(-10 -7 (-15 -1564 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-1 (-1197 |#2|) (-1197 |#2|))))) -((-1753 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 216 T ELT)) (-1513 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212 T ELT)) (-3240 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 220 T ELT))) -(((-565 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3240 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1753 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1513 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-569) (-1063 (-577))) (-13 (-27) (-443 |#1|)) (-1268 |#2|) (-1268 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -565)) -((-1513 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *7 (-1268 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-354 *5 *6 *7)))) (-1753 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) -(-10 -7 (-15 -3240 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1753 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1513 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3057 (((-112) (-577) (-577)) 12 T ELT)) (-1340 (((-577) (-577)) 7 T ELT)) (-4276 (((-577) (-577) (-577)) 10 T ELT))) -(((-566) (-10 -7 (-15 -1340 ((-577) (-577))) (-15 -4276 ((-577) (-577) (-577))) (-15 -3057 ((-112) (-577) (-577))))) (T -566)) -((-3057 (*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566)))) (-4276 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) -(-10 -7 (-15 -1340 ((-577) (-577))) (-15 -4276 ((-577) (-577) (-577))) (-15 -3057 ((-112) (-577) (-577)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2193 ((|#1| $) 68 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-2642 (($ $) 98 T ELT)) (-2501 (($ $) 81 T ELT)) (-2510 ((|#1| $) 69 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3070 (($ $) 80 T ELT)) (-2616 (($ $) 97 T ELT)) (-2471 (($ $) 82 T ELT)) (-2666 (($ $) 96 T ELT)) (-2523 (($ $) 83 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 76 T ELT)) (-2155 (((-577) $) 77 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2015 (($ |#1| |#1|) 73 T ELT)) (-4302 (((-112) $) 67 T ELT)) (-2824 (($) 108 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 79 T ELT)) (-2178 (((-112) $) 66 T ELT)) (-2900 (($ $ $) 109 T ELT)) (-1457 (($ $ $) 110 T ELT)) (-3716 (($ $) 105 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3687 (($ |#1| |#1|) 74 T ELT) (($ |#1|) 72 T ELT) (($ (-420 (-577))) 71 T ELT)) (-1341 ((|#1| $) 70 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2079 (($ $) 106 T ELT)) (-2680 (($ $) 95 T ELT)) (-2535 (($ $) 84 T ELT)) (-2655 (($ $) 94 T ELT)) (-2512 (($ $) 85 T ELT)) (-2631 (($ $) 93 T ELT)) (-2486 (($ $) 86 T ELT)) (-2517 (((-112) $ |#1|) 65 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 75 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2722 (($ $) 104 T ELT)) (-2570 (($ $) 92 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2694 (($ $) 103 T ELT)) (-2546 (($ $) 91 T ELT)) (-2748 (($ $) 102 T ELT)) (-2592 (($ $) 90 T ELT)) (-2897 (($ $) 101 T ELT)) (-2604 (($ $) 89 T ELT)) (-2734 (($ $) 100 T ELT)) (-2581 (($ $) 88 T ELT)) (-2708 (($ $) 99 T ELT)) (-2558 (($ $) 87 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-3001 (((-112) $ $) 111 T ELT)) (-2978 (((-112) $ $) 113 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 112 T ELT)) (-2971 (((-112) $ $) 114 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ $) 107 T ELT) (($ $ (-420 (-577))) 78 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-567 |#1|) (-141) (-13 (-417) (-1227))) (T -567)) -((-3687 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-2015 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-3687 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))))) (-1341 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) (-2517 (*1 *2 *1 *3) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112))))) -(-13 (-465) (-865) (-1227) (-1027) (-1063 (-577)) (-10 -8 (-6 -4142) (-15 -3687 ($ |t#1| |t#1|)) (-15 -2015 ($ |t#1| |t#1|)) (-15 -3687 ($ |t#1|)) (-15 -3687 ($ (-420 (-577)))) (-15 -1341 (|t#1| $)) (-15 -2510 (|t#1| $)) (-15 -2193 (|t#1| $)) (-15 -4302 ((-112) $)) (-15 -2178 ((-112) $)) (-15 -2517 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-295) . T) ((-301) . T) ((-465) . T) ((-506) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-865) . T) ((-868) . T) ((-1027) . T) ((-1063 (-577)) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) . T) ((-1230) . T) ((-1242) . T)) -((-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 9 T ELT)) (-4122 (($ $) 11 T ELT)) (-3547 (((-112) $) 20 T ELT)) (-1625 (((-3 $ "failed") $) 16 T ELT)) (-2174 (((-112) $ $) 22 T ELT))) -(((-568 |#1|) (-10 -8 (-15 -3547 ((-112) |#1|)) (-15 -2174 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2958 ((-2 (|:| -3426 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|))) (-569)) (T -568)) -NIL -(-10 -8 (-15 -3547 ((-112) |#1|)) (-15 -2174 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2958 ((-2 (|:| -3426 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1935 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4001 (((-665 |#1|) $) NIL T ELT)) (-4065 (((-112) |#1| $) NIL T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2233 (((-665 |#1|) $) NIL T ELT)) (-3972 (((-112) |#1| $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-563 |#1| |#2| |#3|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499)))) (T -563)) +NIL +(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) +((-1525 (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1202 |#2|) (-1202 |#2|))) 50 T ELT))) +(((-564 |#1| |#2|) (-10 -7 (-15 -1525 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1202 |#2|) (-1202 |#2|))))) (-569) (-13 (-27) (-443 |#1|))) (T -564)) +((-1525 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1202 *3) (-1202 *3))) (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) (-5 *1 (-564 *6 *3))))) +(-10 -7 (-15 -1525 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1202 |#2|) (-1202 |#2|))))) +((-4334 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 216 T ELT)) (-3950 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212 T ELT)) (-3366 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 220 T ELT))) +(((-565 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4334 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3950 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-569) (-1068 (-577))) (-13 (-27) (-443 |#1|)) (-1273 |#2|) (-1273 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -565)) +((-3950 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *7 (-1273 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-354 *5 *6 *7)))) (-4334 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8)))) (-3366 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) +(-10 -7 (-15 -3366 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4334 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3950 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1582 (((-112) (-577) (-577)) 12 T ELT)) (-1815 (((-577) (-577)) 7 T ELT)) (-3888 (((-577) (-577) (-577)) 10 T ELT))) +(((-566) (-10 -7 (-15 -1815 ((-577) (-577))) (-15 -3888 ((-577) (-577) (-577))) (-15 -1582 ((-112) (-577) (-577))))) (T -566)) +((-1582 (*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566)))) (-3888 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566)))) (-1815 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) +(-10 -7 (-15 -1815 ((-577) (-577))) (-15 -3888 ((-577) (-577) (-577))) (-15 -1582 ((-112) (-577) (-577)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2437 ((|#1| $) 68 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-1660 (($ $) 98 T ELT)) (-2785 (($ $) 81 T ELT)) (-4208 ((|#1| $) 69 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3770 (($ $) 80 T ELT)) (-1638 (($ $) 97 T ELT)) (-2757 (($ $) 82 T ELT)) (-1682 (($ $) 96 T ELT)) (-2809 (($ $) 83 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 76 T ELT)) (-3783 (((-577) $) 77 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3092 (($ |#1| |#1|) 73 T ELT)) (-4339 (((-112) $) 67 T ELT)) (-2450 (($) 108 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 79 T ELT)) (-2649 (((-112) $) 66 T ELT)) (-3237 (($ $ $) 109 T ELT)) (-2930 (($ $ $) 110 T ELT)) (-3825 (($ $) 105 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1587 (($ |#1| |#1|) 74 T ELT) (($ |#1|) 72 T ELT) (($ (-420 (-577))) 71 T ELT)) (-3847 ((|#1| $) 70 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-2355 (($ $) 106 T ELT)) (-1692 (($ $) 95 T ELT)) (-2821 (($ $) 84 T ELT)) (-1671 (($ $) 94 T ELT)) (-2797 (($ $) 85 T ELT)) (-1648 (($ $) 93 T ELT)) (-2772 (($ $) 86 T ELT)) (-3844 (((-112) $ |#1|) 65 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 75 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-1727 (($ $) 104 T ELT)) (-2861 (($ $) 92 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-1703 (($ $) 103 T ELT)) (-2834 (($ $) 91 T ELT)) (-1748 (($ $) 102 T ELT)) (-1616 (($ $) 90 T ELT)) (-4468 (($ $) 101 T ELT)) (-1626 (($ $) 89 T ELT)) (-1737 (($ $) 100 T ELT)) (-2874 (($ $) 88 T ELT)) (-1715 (($ $) 99 T ELT)) (-2847 (($ $) 87 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3078 (((-112) $ $) 111 T ELT)) (-3054 (((-112) $ $) 113 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 112 T ELT)) (-3042 (((-112) $ $) 114 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ $) 107 T ELT) (($ $ (-420 (-577))) 78 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-567 |#1|) (-141) (-13 (-417) (-1232))) (T -567)) +((-1587 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-3092 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-1587 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-1587 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) (-3844 (*1 *2 *1 *3) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112))))) +(-13 (-465) (-870) (-1232) (-1032) (-1068 (-577)) (-10 -8 (-6 -4215) (-15 -1587 ($ |t#1| |t#1|)) (-15 -3092 ($ |t#1| |t#1|)) (-15 -1587 ($ |t#1|)) (-15 -1587 ($ (-420 (-577)))) (-15 -3847 (|t#1| $)) (-15 -4208 (|t#1| $)) (-15 -2437 (|t#1| $)) (-15 -4339 ((-112) $)) (-15 -2649 ((-112) $)) (-15 -3844 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-295) . T) ((-301) . T) ((-465) . T) ((-506) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-870) . T) ((-873) . T) ((-1032) . T) ((-1068 (-577)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) . T) ((-1235) . T) ((-1247) . T)) +((-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 9 T ELT)) (-2261 (($ $) 11 T ELT)) (-2538 (((-112) $) 20 T ELT)) (-3167 (((-3 $ "failed") $) 16 T ELT)) (-4124 (((-112) $ $) 22 T ELT))) +(((-568 |#1|) (-10 -8 (-15 -2538 ((-112) |#1|)) (-15 -4124 ((-112) |#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -1758 ((-2 (|:| -3273 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|))) (-569)) (T -568)) +NIL +(-10 -8 (-15 -2538 ((-112) |#1|)) (-15 -4124 ((-112) |#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -1758 ((-2 (|:| -3273 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) (((-569) (-141)) (T -569)) -((-3478 (*1 *1 *1 *1) (|partial| -4 *1 (-569))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3426 *1) (|:| -4457 *1) (|:| |associate| *1))) (-4 *1 (-569)))) (-4122 (*1 *1 *1) (-4 *1 (-569))) (-2174 (*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-301) (-10 -8 (-15 -3478 ((-3 $ "failed") $ $)) (-15 -2958 ((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $)) (-15 -4122 ($ $)) (-15 -2174 ((-112) $ $)) (-15 -3547 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3290 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1201) (-660 |#2|)) 38 T ELT)) (-3938 (((-599 |#2|) |#2| (-1201)) 63 T ELT)) (-2020 (((-3 |#2| "failed") |#2| (-1201)) 156 T ELT)) (-2413 (((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) (-625 |#2|) (-660 (-625 |#2|))) 159 T ELT)) (-3624 (((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) |#2|) 41 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -3624 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) |#2|)) (-15 -3290 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1201) (-660 |#2|))) (-15 -2020 ((-3 |#2| "failed") |#2| (-1201))) (-15 -3938 ((-599 |#2|) |#2| (-1201))) (-15 -2413 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) (-625 |#2|) (-660 (-625 |#2|))))) (-13 (-465) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -570)) -((-2413 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1201)) (-5 *6 (-660 (-625 *3))) (-5 *5 (-625 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2020 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-3290 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3)))) (-3624 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) -(-10 -7 (-15 -3624 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) |#2|)) (-15 -3290 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1201) (-660 |#2|))) (-15 -2020 ((-3 |#2| "failed") |#2| (-1201))) (-15 -3938 ((-599 |#2|) |#2| (-1201))) (-15 -2413 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) (-625 |#2|) (-660 (-625 |#2|))))) -((-3836 (((-431 |#1|) |#1|) 19 T ELT)) (-3056 (((-431 |#1|) |#1|) 34 T ELT)) (-1972 (((-3 |#1| "failed") |#1|) 49 T ELT)) (-3424 (((-431 |#1|) |#1|) 60 T ELT))) -(((-571 |#1|) (-10 -7 (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -3424 ((-431 |#1|) |#1|)) (-15 -1972 ((-3 |#1| "failed") |#1|))) (-558)) (T -571)) -((-1972 (*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-3836 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) -(-10 -7 (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -3424 ((-431 |#1|) |#1|)) (-15 -1972 ((-3 |#1| "failed") |#1|))) -((-3791 (($) 9 T ELT)) (-2652 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 34 T ELT)) (-3740 (((-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 31 T ELT)) (-4345 (($ (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28 T ELT)) (-3887 (($ (-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26 T ELT)) (-2438 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 38 T ELT)) (-3908 (((-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36 T ELT)) (-2164 (((-1297)) 11 T ELT))) -(((-572) (-10 -8 (-15 -3791 ($)) (-15 -2164 ((-1297))) (-15 -3740 ((-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -3887 ($ (-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4345 ($ (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2652 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3908 ((-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2438 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -572)) -((-2438 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-2652 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-4345 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-572)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-572)))) (-2164 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-572)))) (-3791 (*1 *1) (-5 *1 (-572)))) -(-10 -8 (-15 -3791 ($)) (-15 -2164 ((-1297))) (-15 -3740 ((-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -3887 ($ (-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4345 ($ (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2652 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3908 ((-660 (-2 (|:| -4323 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2438 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2097 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-3024 (((-1197 (-420 (-1197 |#2|))) |#2| (-625 |#2|) (-625 |#2|) (-1197 |#2|)) 35 T ELT)) (-4442 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) |#2| (-1197 |#2|)) 115 T ELT)) (-3520 (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 85 T ELT) (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|)) 55 T ELT)) (-2930 (((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| (-625 |#2|) |#2| (-420 (-1197 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| |#2| (-1197 |#2|)) 114 T ELT)) (-4079 (((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 110 T ELT) (((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) |#2| (-1197 |#2|)) 116 T ELT)) (-2409 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 133 (|has| |#3| (-672 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|)) 132 (|has| |#3| (-672 |#2|)) ELT)) (-3194 ((|#2| (-1197 (-420 (-1197 |#2|))) (-625 |#2|) |#2|) 53 T ELT)) (-2482 (((-1197 (-420 (-1197 |#2|))) (-1197 |#2|) (-625 |#2|)) 34 T ELT))) -(((-573 |#1| |#2| |#3|) (-10 -7 (-15 -3520 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -3520 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -2930 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| |#2| (-1197 |#2|))) (-15 -2930 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -4442 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) |#2| (-1197 |#2|))) (-15 -4442 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) |#2| (-1197 |#2|))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3024 ((-1197 (-420 (-1197 |#2|))) |#2| (-625 |#2|) (-625 |#2|) (-1197 |#2|))) (-15 -3194 (|#2| (-1197 (-420 (-1197 |#2|))) (-625 |#2|) |#2|)) (-15 -2482 ((-1197 (-420 (-1197 |#2|))) (-1197 |#2|) (-625 |#2|))) (IF (|has| |#3| (-672 |#2|)) (PROGN (-15 -2409 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -2409 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))))) |%noBranch|)) (-13 (-465) (-1063 (-577)) (-148) (-654 (-577))) (-13 (-443 |#1|) (-27) (-1227)) (-1125)) (T -573)) -((-2409 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-625 *4)) (-5 *6 (-420 (-1197 *4))) (-4 *4 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) (-2409 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-625 *4)) (-5 *6 (-1197 *4)) (-4 *4 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-1197 (-420 (-1197 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1197 *6)) (-4 *7 (-1125)))) (-3194 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1197 (-420 (-1197 *2)))) (-5 *4 (-625 *2)) (-4 *2 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1125)))) (-3024 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-1197 (-420 (-1197 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1197 *3)) (-4 *7 (-1125)))) (-4079 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-5 *5 (-420 (-1197 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125)))) (-4079 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-5 *5 (-1197 *2)) (-4 *2 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125)))) (-4442 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-5 *6 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125)))) (-4442 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-5 *6 (-1197 *3)) (-4 *3 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125)))) (-2930 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) (-2930 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) (-3520 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) (-3520 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125))))) -(-10 -7 (-15 -3520 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -3520 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -2930 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| |#2| (-1197 |#2|))) (-15 -2930 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -4442 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) |#2| (-1197 |#2|))) (-15 -4442 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) |#2| (-1197 |#2|))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3024 ((-1197 (-420 (-1197 |#2|))) |#2| (-625 |#2|) (-625 |#2|) (-1197 |#2|))) (-15 -3194 (|#2| (-1197 (-420 (-1197 |#2|))) (-625 |#2|) |#2|)) (-15 -2482 ((-1197 (-420 (-1197 |#2|))) (-1197 |#2|) (-625 |#2|))) (IF (|has| |#3| (-672 |#2|)) (PROGN (-15 -2409 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -2409 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))))) |%noBranch|)) -((-3798 (((-577) (-577) (-787)) 85 T ELT)) (-2209 (((-577) (-577)) 83 T ELT)) (-2419 (((-577) (-577)) 81 T ELT)) (-3977 (((-577) (-577)) 87 T ELT)) (-1927 (((-577) (-577) (-577)) 65 T ELT)) (-2244 (((-577) (-577) (-577)) 62 T ELT)) (-4399 (((-420 (-577)) (-577)) 30 T ELT)) (-2750 (((-577) (-577)) 34 T ELT)) (-3185 (((-577) (-577)) 74 T ELT)) (-2766 (((-577) (-577)) 46 T ELT)) (-1690 (((-660 (-577)) (-577)) 80 T ELT)) (-1999 (((-577) (-577) (-577) (-577) (-577)) 58 T ELT)) (-3709 (((-420 (-577)) (-577)) 55 T ELT))) -(((-574) (-10 -7 (-15 -3709 ((-420 (-577)) (-577))) (-15 -1999 ((-577) (-577) (-577) (-577) (-577))) (-15 -1690 ((-660 (-577)) (-577))) (-15 -2766 ((-577) (-577))) (-15 -3185 ((-577) (-577))) (-15 -2750 ((-577) (-577))) (-15 -4399 ((-420 (-577)) (-577))) (-15 -2244 ((-577) (-577) (-577))) (-15 -1927 ((-577) (-577) (-577))) (-15 -3977 ((-577) (-577))) (-15 -2419 ((-577) (-577))) (-15 -2209 ((-577) (-577))) (-15 -3798 ((-577) (-577) (-787))))) (T -574)) -((-3798 (*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-787)) (-5 *1 (-574)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-1927 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2244 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-4399 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-1690 (*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-1999 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) -(-10 -7 (-15 -3709 ((-420 (-577)) (-577))) (-15 -1999 ((-577) (-577) (-577) (-577) (-577))) (-15 -1690 ((-660 (-577)) (-577))) (-15 -2766 ((-577) (-577))) (-15 -3185 ((-577) (-577))) (-15 -2750 ((-577) (-577))) (-15 -4399 ((-420 (-577)) (-577))) (-15 -2244 ((-577) (-577) (-577))) (-15 -1927 ((-577) (-577) (-577))) (-15 -3977 ((-577) (-577))) (-15 -2419 ((-577) (-577))) (-15 -2209 ((-577) (-577))) (-15 -3798 ((-577) (-577) (-787)))) -((-4449 (((-2 (|:| |answer| |#4|) (|:| -3788 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4449 ((-2 (|:| |answer| |#4|) (|:| -3788 |#4|)) |#4| (-1 |#2| |#2|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -575)) -((-4449 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-4 *7 (-1268 (-420 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3788 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7))))) -(-10 -7 (-15 -4449 ((-2 (|:| |answer| |#4|) (|:| -3788 |#4|)) |#4| (-1 |#2| |#2|)))) -((-4449 (((-2 (|:| |answer| (-420 |#2|)) (|:| -3788 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-576 |#1| |#2|) (-10 -7 (-15 -4449 ((-2 (|:| |answer| (-420 |#2|)) (|:| -3788 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1268 |#1|)) (T -576)) -((-4449 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| (-420 *6)) (|:| -3788 (-420 *6)) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) -(-10 -7 (-15 -4449 ((-2 (|:| |answer| (-420 |#2|)) (|:| -3788 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 30 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 96 T ELT)) (-4122 (($ $) 97 T ELT)) (-3547 (((-112) $) NIL T ELT)) (-2199 (($ $ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($ $ $ $) 52 T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL T ELT)) (-2879 (($ $ $) 91 T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL T ELT)) (-3436 (($ $ $) 53 T ELT)) (-2850 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 76 T ELT) (((-705 (-577)) (-705 $)) 72 T ELT)) (-1625 (((-3 $ "failed") $) 93 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2828 (((-112) $) NIL T ELT)) (-2950 (((-420 (-577)) $) NIL T ELT)) (-2352 (($) 78 T ELT) (($ $) 79 T ELT)) (-3447 (($ $ $) 90 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3248 (($ $ $ $) NIL T ELT)) (-3309 (($ $ $) 69 T ELT)) (-4302 (((-112) $) NIL T ELT)) (-2738 (($ $ $) NIL T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL T ELT)) (-3306 (((-112) $) 34 T ELT)) (-2238 (((-112) $) 85 T ELT)) (-1454 (((-3 $ "failed") $) NIL T ELT)) (-2178 (((-112) $) 43 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1912 (($ $ $ $) 54 T ELT)) (-2900 (($ $ $) 87 T ELT)) (-1457 (($ $ $) 86 T ELT)) (-3510 (($ $) NIL T ELT)) (-3762 (($ $) 49 T ELT)) (-1512 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) 68 T ELT)) (-3371 (($ $ $) NIL T ELT)) (-3457 (($) NIL T CONST)) (-2470 (($ $) 38 T ELT)) (-1440 (((-1145) $) 42 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 128 T ELT)) (-3543 (($ $ $) 94 T ELT) (($ (-660 $)) NIL T ELT)) (-1968 (($ $) NIL T ELT)) (-3056 (((-431 $) $) 114 T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) 112 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3861 (((-112) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 89 T ELT)) (-3362 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2322 (($ $) 40 T ELT)) (-1914 (($ $) 36 T ELT)) (-2176 (((-577) $) 48 T ELT) (((-549) $) 63 T ELT) (((-911 (-577)) $) NIL T ELT) (((-391) $) 57 T ELT) (((-228) $) 60 T ELT) (((-1183) $) 65 T ELT)) (-3603 (((-880) $) 46 T ELT) (($ (-577)) 47 T ELT) (($ $) NIL T ELT) (($ (-577)) 47 T ELT)) (-1920 (((-787)) NIL T CONST)) (-1784 (((-112) $ $) NIL T ELT)) (-1774 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (($) 35 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-3585 (($ $ $ $) 51 T ELT)) (-4318 (($ $) 77 T ELT)) (-2754 (($) 6 T CONST)) (-2767 (($) 31 T CONST)) (-1422 (((-1183) $) 26 T ELT) (((-1183) $ (-112)) 27 T ELT) (((-1297) (-838) $) 28 T ELT) (((-1297) (-838) $ (-112)) 29 T ELT)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3001 (((-112) $ $) 50 T ELT)) (-2978 (((-112) $ $) 80 T ELT)) (-2949 (((-112) $ $) 33 T ELT)) (-2988 (((-112) $ $) 81 T ELT)) (-2971 (((-112) $ $) 10 T ELT)) (-3042 (($ $) 16 T ELT) (($ $ $) 39 T ELT)) (-3031 (($ $ $) 37 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 84 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 83 T ELT) (($ $ $) 82 T ELT) (($ (-577) $) 83 T ELT))) -(((-577) (-13 (-558) (-627 (-1183)) (-844) (-10 -7 (-6 -4457) (-6 -4462) (-6 -4458) (-6 -4452)))) (T -577)) -NIL -(-13 (-558) (-627 (-1183)) (-844) (-10 -7 (-6 -4457) (-6 -4462) (-6 -4458) (-6 -4452))) -((-4391 (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785) (-1088)) 116 T ELT) (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785)) 118 T ELT)) (-4129 (((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1201)) 195 T ELT) (((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1183)) 194 T ELT) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391) (-1088)) 199 T ELT) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391)) 200 T ELT) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391)) 201 T ELT) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391))))) 202 T ELT) (((-1060) (-327 (-391)) (-1119 (-859 (-391)))) 190 T ELT) (((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391)) 189 T ELT) (((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391)) 185 T ELT) (((-1060) (-785)) 177 T ELT) (((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391) (-1088)) 184 T ELT))) -(((-578) (-10 -7 (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391) (-1088))) (-15 -4129 ((-1060) (-785))) (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391) (-1088))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785) (-1088))) (-15 -4129 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1183))) (-15 -4129 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1201))))) (T -578)) -((-4129 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) (-5 *5 (-1201)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) (-5 *5 (-1183)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-785)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) (-5 *1 (-578)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-785)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-785)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4129 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578))))) -(-10 -7 (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391) (-1088))) (-15 -4129 ((-1060) (-785))) (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-1119 (-859 (-391))))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391))) (-15 -4129 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391) (-1088))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785) (-1088))) (-15 -4129 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1183))) (-15 -4129 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1201)))) -((-2576 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|)) 195 T ELT)) (-4428 (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|)) 97 T ELT)) (-4090 (((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2|) 191 T ELT)) (-4288 (((-3 |#2| "failed") |#2| |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201))) 200 T ELT)) (-3949 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-1201)) 209 (|has| |#3| (-672 |#2|)) ELT))) -(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -4428 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|))) (-15 -4090 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2|)) (-15 -2576 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|))) (-15 -4288 ((-3 |#2| "failed") |#2| |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)))) (IF (|has| |#3| (-672 |#2|)) (-15 -3949 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-1201))) |%noBranch|)) (-13 (-465) (-1063 (-577)) (-148) (-654 (-577))) (-13 (-443 |#1|) (-27) (-1227)) (-1125)) (T -579)) -((-3949 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-625 *4)) (-5 *6 (-1201)) (-4 *4 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) (-4288 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-4 *2 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1125)))) (-2576 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1125)))) (-4090 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125)))) (-4428 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125))))) -(-10 -7 (-15 -4428 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|))) (-15 -4090 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2|)) (-15 -2576 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|))) (-15 -4288 ((-3 |#2| "failed") |#2| |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)))) (IF (|has| |#3| (-672 |#2|)) (-15 -3949 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2559 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-1201))) |%noBranch|)) -((-2488 (((-2 (|:| -1907 |#2|) (|:| |nconst| |#2|)) |#2| (-1201)) 64 T ELT)) (-2943 (((-3 |#2| "failed") |#2| (-1201) (-859 |#2|) (-859 |#2|)) 175 (-12 (|has| |#2| (-1164)) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-905 (-577)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)) 154 (-12 (|has| |#2| (-642)) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-905 (-577)))) ELT)) (-2445 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)) 156 (-12 (|has| |#2| (-642)) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-905 (-577)))) ELT))) -(((-580 |#1| |#2|) (-10 -7 (-15 -2488 ((-2 (|:| -1907 |#2|) (|:| |nconst| |#2|)) |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (PROGN (IF (|has| |#2| (-642)) (PROGN (-15 -2445 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201))) (-15 -2943 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) (IF (|has| |#2| (-1164)) (-15 -2943 ((-3 |#2| "failed") |#2| (-1201) (-859 |#2|) (-859 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1063 (-577)) (-465) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -580)) -((-2943 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1201)) (-5 *4 (-859 *2)) (-4 *2 (-1164)) (-4 *2 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *1 (-580 *5 *2)))) (-2943 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *2 (-2 (|:| -1907 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) -(-10 -7 (-15 -2488 ((-2 (|:| -1907 |#2|) (|:| |nconst| |#2|)) |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (PROGN (IF (|has| |#2| (-642)) (PROGN (-15 -2445 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201))) (-15 -2943 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) (IF (|has| |#2| (-1164)) (-15 -2943 ((-3 |#2| "failed") |#2| (-1201) (-859 |#2|) (-859 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3234 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-660 (-420 |#2|))) 41 T ELT)) (-4129 (((-599 (-420 |#2|)) (-420 |#2|)) 28 T ELT)) (-1808 (((-3 (-420 |#2|) "failed") (-420 |#2|)) 17 T ELT)) (-1602 (((-3 (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|)) 48 T ELT))) -(((-581 |#1| |#2|) (-10 -7 (-15 -4129 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -1808 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -1602 ((-3 (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -3234 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-660 (-420 |#2|))))) (-13 (-375) (-148) (-1063 (-577))) (-1268 |#1|)) (T -581)) -((-3234 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-660 (-420 *6))) (-5 *3 (-420 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-581 *5 *6)))) (-1602 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -2845 (-420 *5)) (|:| |coeff| (-420 *5)))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) (-1808 (*1 *2 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148) (-1063 (-577)))) (-5 *1 (-581 *3 *4)))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) -(-10 -7 (-15 -4129 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -1808 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -1602 ((-3 (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -3234 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-660 (-420 |#2|))))) -((-1910 (((-3 (-577) "failed") |#1|) 14 T ELT)) (-3789 (((-112) |#1|) 13 T ELT)) (-3214 (((-577) |#1|) 9 T ELT))) -(((-582 |#1|) (-10 -7 (-15 -3214 ((-577) |#1|)) (-15 -3789 ((-112) |#1|)) (-15 -1910 ((-3 (-577) "failed") |#1|))) (-1063 (-577))) (T -582)) -((-1910 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2)))) (-3789 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1063 (-577))))) (-3214 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2))))) -(-10 -7 (-15 -3214 ((-577) |#1|)) (-15 -3789 ((-112) |#1|)) (-15 -1910 ((-3 (-577) "failed") |#1|))) -((-4261 (((-3 (-2 (|:| |mainpart| (-420 (-975 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 (-975 |#1|))) (|:| |logand| (-420 (-975 |#1|))))))) "failed") (-420 (-975 |#1|)) (-1201) (-660 (-420 (-975 |#1|)))) 48 T ELT)) (-2520 (((-599 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-1201)) 28 T ELT)) (-4384 (((-3 (-420 (-975 |#1|)) "failed") (-420 (-975 |#1|)) (-1201)) 23 T ELT)) (-2780 (((-3 (-2 (|:| -2845 (-420 (-975 |#1|))) (|:| |coeff| (-420 (-975 |#1|)))) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))) 35 T ELT))) -(((-583 |#1|) (-10 -7 (-15 -2520 ((-599 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4384 ((-3 (-420 (-975 |#1|)) "failed") (-420 (-975 |#1|)) (-1201))) (-15 -4261 ((-3 (-2 (|:| |mainpart| (-420 (-975 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 (-975 |#1|))) (|:| |logand| (-420 (-975 |#1|))))))) "failed") (-420 (-975 |#1|)) (-1201) (-660 (-420 (-975 |#1|))))) (-15 -2780 ((-3 (-2 (|:| -2845 (-420 (-975 |#1|))) (|:| |coeff| (-420 (-975 |#1|)))) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))))) (-13 (-569) (-1063 (-577)) (-148))) (T -583)) -((-2780 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) (-5 *2 (-2 (|:| -2845 (-420 (-975 *5))) (|:| |coeff| (-420 (-975 *5))))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-975 *5))))) (-4261 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 (-420 (-975 *6)))) (-5 *3 (-420 (-975 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-583 *6)))) (-4384 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-148))) (-5 *1 (-583 *4)))) (-2520 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) (-5 *2 (-599 (-420 (-975 *5)))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-975 *5)))))) -(-10 -7 (-15 -2520 ((-599 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4384 ((-3 (-420 (-975 |#1|)) "failed") (-420 (-975 |#1|)) (-1201))) (-15 -4261 ((-3 (-2 (|:| |mainpart| (-420 (-975 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 (-975 |#1|))) (|:| |logand| (-420 (-975 |#1|))))))) "failed") (-420 (-975 |#1|)) (-1201) (-660 (-420 (-975 |#1|))))) (-15 -2780 ((-3 (-2 (|:| -2845 (-420 (-975 |#1|))) (|:| |coeff| (-420 (-975 |#1|)))) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))))) -((-3489 (((-112) $ $) 75 T ELT)) (-3801 (((-112) $) 48 T ELT)) (-2193 ((|#1| $) 39 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) 79 T ELT)) (-2642 (($ $) 139 T ELT)) (-2501 (($ $) 118 T ELT)) (-2510 ((|#1| $) 37 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $) NIL T ELT)) (-2616 (($ $) 141 T ELT)) (-2471 (($ $) 114 T ELT)) (-2666 (($ $) 143 T ELT)) (-2523 (($ $) 122 T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) 93 T ELT)) (-2155 (((-577) $) 95 T ELT)) (-1625 (((-3 $ "failed") $) 78 T ELT)) (-2015 (($ |#1| |#1|) 35 T ELT)) (-4302 (((-112) $) 44 T ELT)) (-2824 (($) 104 T ELT)) (-3306 (((-112) $) 55 T ELT)) (-4286 (($ $ (-577)) NIL T ELT)) (-2178 (((-112) $) 45 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-3716 (($ $) 106 T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3687 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-420 (-577))) 92 T ELT)) (-1341 ((|#1| $) 36 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) 81 T ELT) (($ (-660 $)) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) 80 T ELT)) (-2079 (($ $) 108 T ELT)) (-2680 (($ $) 147 T ELT)) (-2535 (($ $) 120 T ELT)) (-2655 (($ $) 149 T ELT)) (-2512 (($ $) 124 T ELT)) (-2631 (($ $) 145 T ELT)) (-2486 (($ $) 116 T ELT)) (-2517 (((-112) $ |#1|) 42 T ELT)) (-3603 (((-880) $) 100 T ELT) (($ (-577)) 83 T ELT) (($ $) NIL T ELT) (($ (-577)) 83 T ELT)) (-1920 (((-787)) 102 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) 161 T ELT)) (-2570 (($ $) 130 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2694 (($ $) 159 T ELT)) (-2546 (($ $) 126 T ELT)) (-2748 (($ $) 157 T ELT)) (-2592 (($ $) 137 T ELT)) (-2897 (($ $) 155 T ELT)) (-2604 (($ $) 135 T ELT)) (-2734 (($ $) 153 T ELT)) (-2581 (($ $) 132 T ELT)) (-2708 (($ $) 151 T ELT)) (-2558 (($ $) 128 T ELT)) (-2754 (($) 30 T CONST)) (-2767 (($) 10 T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 49 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 47 T ELT)) (-3042 (($ $) 53 T ELT) (($ $ $) 54 T ELT)) (-3031 (($ $ $) 52 T ELT)) (** (($ $ (-944)) 71 T ELT) (($ $ (-787)) NIL T ELT) (($ $ $) 110 T ELT) (($ $ (-420 (-577))) 163 T ELT)) (* (($ (-944) $) 66 T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 65 T ELT) (($ $ $) 61 T ELT))) -(((-584 |#1|) (-567 |#1|) (-13 (-417) (-1227))) (T -584)) +((-3574 (*1 *1 *1 *1) (|partial| -4 *1 (-569))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3273 *1) (|:| -4486 *1) (|:| |associate| *1))) (-4 *1 (-569)))) (-2261 (*1 *1 *1) (-4 *1 (-569))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-301) (-10 -8 (-15 -3574 ((-3 $ "failed") $ $)) (-15 -1758 ((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $)) (-15 -2261 ($ $)) (-15 -4124 ((-112) $ $)) (-15 -2538 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3864 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1206) (-665 |#2|)) 38 T ELT)) (-3957 (((-599 |#2|) |#2| (-1206)) 63 T ELT)) (-3953 (((-3 |#2| "failed") |#2| (-1206)) 156 T ELT)) (-3826 (((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) (-630 |#2|) (-665 (-630 |#2|))) 159 T ELT)) (-3775 (((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) |#2|) 41 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -3775 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) |#2|)) (-15 -3864 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1206) (-665 |#2|))) (-15 -3953 ((-3 |#2| "failed") |#2| (-1206))) (-15 -3957 ((-599 |#2|) |#2| (-1206))) (-15 -3826 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) (-630 |#2|) (-665 (-630 |#2|))))) (-13 (-465) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -570)) +((-3826 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1206)) (-5 *6 (-665 (-630 *3))) (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3953 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-3864 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3)))) (-3775 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) +(-10 -7 (-15 -3775 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) |#2|)) (-15 -3864 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1206) (-665 |#2|))) (-15 -3953 ((-3 |#2| "failed") |#2| (-1206))) (-15 -3957 ((-599 |#2|) |#2| (-1206))) (-15 -3826 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) (-630 |#2|) (-665 (-630 |#2|))))) +((-3206 (((-431 |#1|) |#1|) 19 T ELT)) (-3759 (((-431 |#1|) |#1|) 34 T ELT)) (-3434 (((-3 |#1| "failed") |#1|) 49 T ELT)) (-1443 (((-431 |#1|) |#1|) 60 T ELT))) +(((-571 |#1|) (-10 -7 (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -1443 ((-431 |#1|) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|))) (-558)) (T -571)) +((-3434 (*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558)))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-3206 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) +(-10 -7 (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -1443 ((-431 |#1|) |#1|)) (-15 -3434 ((-3 |#1| "failed") |#1|))) +((-3289 (($) 9 T ELT)) (-2740 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 34 T ELT)) (-4001 (((-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 31 T ELT)) (-4375 (($ (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28 T ELT)) (-2086 (($ (-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26 T ELT)) (-2727 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 38 T ELT)) (-4059 (((-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36 T ELT)) (-2241 (((-1302)) 11 T ELT))) +(((-572) (-10 -8 (-15 -3289 ($)) (-15 -2241 ((-1302))) (-15 -4001 ((-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -2086 ($ (-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4375 ($ (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2740 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4059 ((-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2727 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -572)) +((-2727 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-2740 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-572)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-572)))) (-2241 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-572)))) (-3289 (*1 *1) (-5 *1 (-572)))) +(-10 -8 (-15 -3289 ($)) (-15 -2241 ((-1302))) (-15 -4001 ((-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -2086 ($ (-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4375 ($ (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2740 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4059 ((-665 (-2 (|:| -4376 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2727 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-3732 (((-1202 (-420 (-1202 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1202 |#2|)) 35 T ELT)) (-1831 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) |#2| (-1202 |#2|)) 115 T ELT)) (-1665 (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 85 T ELT) (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|)) 55 T ELT)) (-1467 (((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-420 (-1202 |#2|))) 92 T ELT) (((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1202 |#2|)) 114 T ELT)) (-1389 (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 110 T ELT) (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) |#2| (-1202 |#2|)) 116 T ELT)) (-1978 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 133 (|has| |#3| (-677 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|)) 132 (|has| |#3| (-677 |#2|)) ELT)) (-3882 ((|#2| (-1202 (-420 (-1202 |#2|))) (-630 |#2|) |#2|) 53 T ELT)) (-2047 (((-1202 (-420 (-1202 |#2|))) (-1202 |#2|) (-630 |#2|)) 34 T ELT))) +(((-573 |#1| |#2| |#3|) (-10 -7 (-15 -1665 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -1665 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -1467 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1202 |#2|))) (-15 -1467 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -1831 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) |#2| (-1202 |#2|))) (-15 -1831 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -1389 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) |#2| (-1202 |#2|))) (-15 -1389 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -3732 ((-1202 (-420 (-1202 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1202 |#2|))) (-15 -3882 (|#2| (-1202 (-420 (-1202 |#2|))) (-630 |#2|) |#2|)) (-15 -2047 ((-1202 (-420 (-1202 |#2|))) (-1202 |#2|) (-630 |#2|))) (IF (|has| |#3| (-677 |#2|)) (PROGN (-15 -1978 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -1978 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))))) |%noBranch|)) (-13 (-465) (-1068 (-577)) (-148) (-659 (-577))) (-13 (-443 |#1|) (-27) (-1232)) (-1130)) (T -573)) +((-1978 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-420 (-1202 *4))) (-4 *4 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) (-1978 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1202 *4)) (-4 *4 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) (-2047 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-1202 (-420 (-1202 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1202 *6)) (-4 *7 (-1130)))) (-3882 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1202 (-420 (-1202 *2)))) (-5 *4 (-630 *2)) (-4 *2 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1130)))) (-3732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-1202 (-420 (-1202 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1202 *3)) (-4 *7 (-1130)))) (-1389 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-5 *5 (-420 (-1202 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130)))) (-1389 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-5 *5 (-1202 *2)) (-4 *2 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130)))) (-1831 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-5 *6 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130)))) (-1831 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-5 *6 (-1202 *3)) (-4 *3 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130)))) (-1467 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) (-1467 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) (-1665 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) (-1665 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130))))) +(-10 -7 (-15 -1665 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -1665 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -1467 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1202 |#2|))) (-15 -1467 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -1831 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) |#2| (-1202 |#2|))) (-15 -1831 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -1389 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) |#2| (-1202 |#2|))) (-15 -1389 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -3732 ((-1202 (-420 (-1202 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1202 |#2|))) (-15 -3882 (|#2| (-1202 (-420 (-1202 |#2|))) (-630 |#2|) |#2|)) (-15 -2047 ((-1202 (-420 (-1202 |#2|))) (-1202 |#2|) (-630 |#2|))) (IF (|has| |#3| (-677 |#2|)) (PROGN (-15 -1978 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -1978 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))))) |%noBranch|)) +((-2090 (((-577) (-577) (-792)) 85 T ELT)) (-2171 (((-577) (-577)) 83 T ELT)) (-3199 (((-577) (-577)) 81 T ELT)) (-3293 (((-577) (-577)) 87 T ELT)) (-2955 (((-577) (-577) (-577)) 65 T ELT)) (-2810 (((-577) (-577) (-577)) 62 T ELT)) (-2644 (((-420 (-577)) (-577)) 30 T ELT)) (-1999 (((-577) (-577)) 34 T ELT)) (-3430 (((-577) (-577)) 74 T ELT)) (-3681 (((-577) (-577)) 46 T ELT)) (-2546 (((-665 (-577)) (-577)) 80 T ELT)) (-2965 (((-577) (-577) (-577) (-577) (-577)) 58 T ELT)) (-2805 (((-420 (-577)) (-577)) 55 T ELT))) +(((-574) (-10 -7 (-15 -2805 ((-420 (-577)) (-577))) (-15 -2965 ((-577) (-577) (-577) (-577) (-577))) (-15 -2546 ((-665 (-577)) (-577))) (-15 -3681 ((-577) (-577))) (-15 -3430 ((-577) (-577))) (-15 -1999 ((-577) (-577))) (-15 -2644 ((-420 (-577)) (-577))) (-15 -2810 ((-577) (-577) (-577))) (-15 -2955 ((-577) (-577) (-577))) (-15 -3293 ((-577) (-577))) (-15 -3199 ((-577) (-577))) (-15 -2171 ((-577) (-577))) (-15 -2090 ((-577) (-577) (-792))))) (T -574)) +((-2090 (*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-792)) (-5 *1 (-574)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3199 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3293 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2955 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2810 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2644 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-1999 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3681 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2546 (*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-2965 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) +(-10 -7 (-15 -2805 ((-420 (-577)) (-577))) (-15 -2965 ((-577) (-577) (-577) (-577) (-577))) (-15 -2546 ((-665 (-577)) (-577))) (-15 -3681 ((-577) (-577))) (-15 -3430 ((-577) (-577))) (-15 -1999 ((-577) (-577))) (-15 -2644 ((-420 (-577)) (-577))) (-15 -2810 ((-577) (-577) (-577))) (-15 -2955 ((-577) (-577) (-577))) (-15 -3293 ((-577) (-577))) (-15 -3199 ((-577) (-577))) (-15 -2171 ((-577) (-577))) (-15 -2090 ((-577) (-577) (-792)))) +((-1489 (((-2 (|:| |answer| |#4|) (|:| -4233 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1489 ((-2 (|:| |answer| |#4|) (|:| -4233 |#4|)) |#4| (-1 |#2| |#2|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -575)) +((-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-4 *7 (-1273 (-420 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4233 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7))))) +(-10 -7 (-15 -1489 ((-2 (|:| |answer| |#4|) (|:| -4233 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1489 (((-2 (|:| |answer| (-420 |#2|)) (|:| -4233 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-576 |#1| |#2|) (-10 -7 (-15 -1489 ((-2 (|:| |answer| (-420 |#2|)) (|:| -4233 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1273 |#1|)) (T -576)) +((-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| (-420 *6)) (|:| -4233 (-420 *6)) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) +(-10 -7 (-15 -1489 ((-2 (|:| |answer| (-420 |#2|)) (|:| -4233 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 30 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 96 T ELT)) (-2261 (($ $) 97 T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2940 (($ $ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4002 (($ $ $ $) 52 T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL T ELT)) (-4387 (($ $ $) 91 T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL T ELT)) (-3531 (($ $ $) 53 T ELT)) (-3187 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 76 T ELT) (((-710 (-577)) (-710 $)) 72 T ELT)) (-3167 (((-3 $ "failed") $) 93 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-1356 (((-112) $) NIL T ELT)) (-4035 (((-420 (-577)) $) NIL T ELT)) (-1424 (($) 78 T ELT) (($ $) 79 T ELT)) (-3541 (($ $ $) 90 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-1714 (($ $ $ $) NIL T ELT)) (-3215 (($ $ $) 69 T ELT)) (-4339 (((-112) $) NIL T ELT)) (-2381 (($ $ $) NIL T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-3357 (((-112) $) 34 T ELT)) (-2310 (((-112) $) 85 T ELT)) (-2004 (((-3 $ "failed") $) NIL T ELT)) (-2649 (((-112) $) 43 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4098 (($ $ $ $) 54 T ELT)) (-3237 (($ $ $) 87 T ELT)) (-2930 (($ $ $) 86 T ELT)) (-3106 (($ $) NIL T ELT)) (-4166 (($ $) 49 T ELT)) (-3163 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) 68 T ELT)) (-4097 (($ $ $) NIL T ELT)) (-2443 (($) NIL T CONST)) (-2143 (($ $) 38 T ELT)) (-1470 (((-1150) $) 42 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 128 T ELT)) (-3642 (($ $ $) 94 T ELT) (($ (-665 $)) NIL T ELT)) (-2964 (($ $) NIL T ELT)) (-3759 (((-431 $) $) 114 T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) 112 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2820 (((-112) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 89 T ELT)) (-3641 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2593 (($ $) 40 T ELT)) (-1977 (($ $) 36 T ELT)) (-4463 (((-577) $) 48 T ELT) (((-549) $) 63 T ELT) (((-916 (-577)) $) NIL T ELT) (((-391) $) 57 T ELT) (((-228) $) 60 T ELT) (((-1188) $) 65 T ELT)) (-3709 (((-885) $) 46 T ELT) (($ (-577)) 47 T ELT) (($ $) NIL T ELT) (($ (-577)) 47 T ELT)) (-3331 (((-792)) NIL T CONST)) (-3790 (((-112) $ $) NIL T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (($) 35 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2449 (($ $ $ $) 51 T ELT)) (-2215 (($ $) 77 T ELT)) (-2839 (($) 6 T CONST)) (-2853 (($) 31 T CONST)) (-4136 (((-1188) $) 26 T ELT) (((-1188) $ (-112)) 27 T ELT) (((-1302) (-843) $) 28 T ELT) (((-1302) (-843) $ (-112)) 29 T ELT)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3078 (((-112) $ $) 50 T ELT)) (-3054 (((-112) $ $) 80 T ELT)) (-3018 (((-112) $ $) 33 T ELT)) (-3067 (((-112) $ $) 81 T ELT)) (-3042 (((-112) $ $) 10 T ELT)) (-3128 (($ $) 16 T ELT) (($ $ $) 39 T ELT)) (-3114 (($ $ $) 37 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 84 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 83 T ELT) (($ $ $) 82 T ELT) (($ (-577) $) 83 T ELT))) +(((-577) (-13 (-558) (-632 (-1188)) (-849) (-10 -7 (-6 -4486) (-6 -4491) (-6 -4487) (-6 -4481)))) (T -577)) +NIL +(-13 (-558) (-632 (-1188)) (-849) (-10 -7 (-6 -4486) (-6 -4491) (-6 -4487) (-6 -4481))) +((-4423 (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790) (-1093)) 116 T ELT) (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790)) 118 T ELT)) (-1869 (((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1206)) 195 T ELT) (((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1188)) 194 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391) (-1093)) 199 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391)) 200 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391)) 201 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391))))) 202 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391)))) 190 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391)) 189 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391)) 185 T ELT) (((-1065) (-790)) 177 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391) (-1093)) 184 T ELT))) +(((-578) (-10 -7 (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391) (-1093))) (-15 -1869 ((-1065) (-790))) (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391) (-1093))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790) (-1093))) (-15 -1869 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1188))) (-15 -1869 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1206))))) (T -578)) +((-1869 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) (-5 *5 (-1206)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) (-5 *5 (-1188)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-4423 (*1 *2 *3 *4) (-12 (-5 *3 (-790)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *1 (-578)))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-1869 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578))))) +(-10 -7 (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391) (-1093))) (-15 -1869 ((-1065) (-790))) (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-1124 (-864 (-391))))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391))) (-15 -1869 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391) (-1093))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790) (-1093))) (-15 -1869 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1188))) (-15 -1869 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1206)))) +((-2698 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|)) 195 T ELT)) (-3447 (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|)) 97 T ELT)) (-3915 (((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|) 191 T ELT)) (-3408 (((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206))) 200 T ELT)) (-2211 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1206)) 209 (|has| |#3| (-677 |#2|)) ELT))) +(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -3447 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3915 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -2698 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|))) (-15 -3408 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)))) (IF (|has| |#3| (-677 |#2|)) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1206))) |%noBranch|)) (-13 (-465) (-1068 (-577)) (-148) (-659 (-577))) (-13 (-443 |#1|) (-27) (-1232)) (-1130)) (T -579)) +((-2211 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1206)) (-4 *4 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) (-3408 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-4 *2 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1130)))) (-2698 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1130)))) (-3915 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130)))) (-3447 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130))))) +(-10 -7 (-15 -3447 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3915 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -2698 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|))) (-15 -3408 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)))) (IF (|has| |#3| (-677 |#2|)) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2104 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1206))) |%noBranch|)) +((-4474 (((-2 (|:| -3031 |#2|) (|:| |nconst| |#2|)) |#2| (-1206)) 64 T ELT)) (-2199 (((-3 |#2| "failed") |#2| (-1206) (-864 |#2|) (-864 |#2|)) 175 (-12 (|has| |#2| (-1169)) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-910 (-577)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)) 154 (-12 (|has| |#2| (-647)) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-910 (-577)))) ELT)) (-2560 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)) 156 (-12 (|has| |#2| (-647)) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-910 (-577)))) ELT))) +(((-580 |#1| |#2|) (-10 -7 (-15 -4474 ((-2 (|:| -3031 |#2|) (|:| |nconst| |#2|)) |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (PROGN (IF (|has| |#2| (-647)) (PROGN (-15 -2560 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206))) (-15 -2199 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) (IF (|has| |#2| (-1169)) (-15 -2199 ((-3 |#2| "failed") |#2| (-1206) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1068 (-577)) (-465) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -580)) +((-2199 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1206)) (-5 *4 (-864 *2)) (-4 *2 (-1169)) (-4 *2 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *1 (-580 *5 *2)))) (-2199 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-2560 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-4474 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *2 (-2 (|:| -3031 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) +(-10 -7 (-15 -4474 ((-2 (|:| -3031 |#2|) (|:| |nconst| |#2|)) |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (PROGN (IF (|has| |#2| (-647)) (PROGN (-15 -2560 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206))) (-15 -2199 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) (IF (|has| |#2| (-1169)) (-15 -2199 ((-3 |#2| "failed") |#2| (-1206) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-4446 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-665 (-420 |#2|))) 41 T ELT)) (-1869 (((-599 (-420 |#2|)) (-420 |#2|)) 28 T ELT)) (-2055 (((-3 (-420 |#2|) "failed") (-420 |#2|)) 17 T ELT)) (-1874 (((-3 (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|)) 48 T ELT))) +(((-581 |#1| |#2|) (-10 -7 (-15 -1869 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -2055 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -1874 ((-3 (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -4446 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-665 (-420 |#2|))))) (-13 (-375) (-148) (-1068 (-577))) (-1273 |#1|)) (T -581)) +((-4446 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-665 (-420 *6))) (-5 *3 (-420 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-581 *5 *6)))) (-1874 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -3398 (-420 *5)) (|:| |coeff| (-420 *5)))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) (-2055 (*1 *2 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148) (-1068 (-577)))) (-5 *1 (-581 *3 *4)))) (-1869 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) +(-10 -7 (-15 -1869 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -2055 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -1874 ((-3 (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -4446 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-665 (-420 |#2|))))) +((-2226 (((-3 (-577) "failed") |#1|) 14 T ELT)) (-1861 (((-112) |#1|) 13 T ELT)) (-3492 (((-577) |#1|) 9 T ELT))) +(((-582 |#1|) (-10 -7 (-15 -3492 ((-577) |#1|)) (-15 -1861 ((-112) |#1|)) (-15 -2226 ((-3 (-577) "failed") |#1|))) (-1068 (-577))) (T -582)) +((-2226 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2)))) (-1861 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1068 (-577))))) (-3492 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2))))) +(-10 -7 (-15 -3492 ((-577) |#1|)) (-15 -1861 ((-112) |#1|)) (-15 -2226 ((-3 (-577) "failed") |#1|))) +((-2881 (((-3 (-2 (|:| |mainpart| (-420 (-980 |#1|))) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 (-980 |#1|))) (|:| |logand| (-420 (-980 |#1|))))))) "failed") (-420 (-980 |#1|)) (-1206) (-665 (-420 (-980 |#1|)))) 48 T ELT)) (-2960 (((-599 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-1206)) 28 T ELT)) (-1355 (((-3 (-420 (-980 |#1|)) "failed") (-420 (-980 |#1|)) (-1206)) 23 T ELT)) (-4427 (((-3 (-2 (|:| -3398 (-420 (-980 |#1|))) (|:| |coeff| (-420 (-980 |#1|)))) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))) 35 T ELT))) +(((-583 |#1|) (-10 -7 (-15 -2960 ((-599 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -1355 ((-3 (-420 (-980 |#1|)) "failed") (-420 (-980 |#1|)) (-1206))) (-15 -2881 ((-3 (-2 (|:| |mainpart| (-420 (-980 |#1|))) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 (-980 |#1|))) (|:| |logand| (-420 (-980 |#1|))))))) "failed") (-420 (-980 |#1|)) (-1206) (-665 (-420 (-980 |#1|))))) (-15 -4427 ((-3 (-2 (|:| -3398 (-420 (-980 |#1|))) (|:| |coeff| (-420 (-980 |#1|)))) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))))) (-13 (-569) (-1068 (-577)) (-148))) (T -583)) +((-4427 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) (-5 *2 (-2 (|:| -3398 (-420 (-980 *5))) (|:| |coeff| (-420 (-980 *5))))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-980 *5))))) (-2881 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 (-420 (-980 *6)))) (-5 *3 (-420 (-980 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-583 *6)))) (-1355 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-148))) (-5 *1 (-583 *4)))) (-2960 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) (-5 *2 (-599 (-420 (-980 *5)))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-980 *5)))))) +(-10 -7 (-15 -2960 ((-599 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -1355 ((-3 (-420 (-980 |#1|)) "failed") (-420 (-980 |#1|)) (-1206))) (-15 -2881 ((-3 (-2 (|:| |mainpart| (-420 (-980 |#1|))) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 (-980 |#1|))) (|:| |logand| (-420 (-980 |#1|))))))) "failed") (-420 (-980 |#1|)) (-1206) (-665 (-420 (-980 |#1|))))) (-15 -4427 ((-3 (-2 (|:| -3398 (-420 (-980 |#1|))) (|:| |coeff| (-420 (-980 |#1|)))) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))))) +((-3586 (((-112) $ $) 75 T ELT)) (-4113 (((-112) $) 48 T ELT)) (-2437 ((|#1| $) 39 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) 79 T ELT)) (-1660 (($ $) 139 T ELT)) (-2785 (($ $) 118 T ELT)) (-4208 ((|#1| $) 37 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-1638 (($ $) 141 T ELT)) (-2757 (($ $) 114 T ELT)) (-1682 (($ $) 143 T ELT)) (-2809 (($ $) 122 T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) 93 T ELT)) (-3783 (((-577) $) 95 T ELT)) (-3167 (((-3 $ "failed") $) 78 T ELT)) (-3092 (($ |#1| |#1|) 35 T ELT)) (-4339 (((-112) $) 44 T ELT)) (-2450 (($) 104 T ELT)) (-3357 (((-112) $) 55 T ELT)) (-3368 (($ $ (-577)) NIL T ELT)) (-2649 (((-112) $) 45 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3825 (($ $) 106 T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1587 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-420 (-577))) 92 T ELT)) (-3847 ((|#1| $) 36 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) 81 T ELT) (($ (-665 $)) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) 80 T ELT)) (-2355 (($ $) 108 T ELT)) (-1692 (($ $) 147 T ELT)) (-2821 (($ $) 120 T ELT)) (-1671 (($ $) 149 T ELT)) (-2797 (($ $) 124 T ELT)) (-1648 (($ $) 145 T ELT)) (-2772 (($ $) 116 T ELT)) (-3844 (((-112) $ |#1|) 42 T ELT)) (-3709 (((-885) $) 100 T ELT) (($ (-577)) 83 T ELT) (($ $) NIL T ELT) (($ (-577)) 83 T ELT)) (-3331 (((-792)) 102 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) 161 T ELT)) (-2861 (($ $) 130 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-1703 (($ $) 159 T ELT)) (-2834 (($ $) 126 T ELT)) (-1748 (($ $) 157 T ELT)) (-1616 (($ $) 137 T ELT)) (-4468 (($ $) 155 T ELT)) (-1626 (($ $) 135 T ELT)) (-1737 (($ $) 153 T ELT)) (-2874 (($ $) 132 T ELT)) (-1715 (($ $) 151 T ELT)) (-2847 (($ $) 128 T ELT)) (-2839 (($) 30 T CONST)) (-2853 (($) 10 T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 49 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 47 T ELT)) (-3128 (($ $) 53 T ELT) (($ $ $) 54 T ELT)) (-3114 (($ $ $) 52 T ELT)) (** (($ $ (-949)) 71 T ELT) (($ $ (-792)) NIL T ELT) (($ $ $) 110 T ELT) (($ $ (-420 (-577))) 163 T ELT)) (* (($ (-949) $) 66 T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 65 T ELT) (($ $ $) 61 T ELT))) +(((-584 |#1|) (-567 |#1|) (-13 (-417) (-1232))) (T -584)) NIL (-567 |#1|) -((-3578 (((-3 (-660 (-1197 (-577))) "failed") (-660 (-1197 (-577))) (-1197 (-577))) 27 T ELT))) -(((-585) (-10 -7 (-15 -3578 ((-3 (-660 (-1197 (-577))) "failed") (-660 (-1197 (-577))) (-1197 (-577)))))) (T -585)) -((-3578 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 (-577)))) (-5 *3 (-1197 (-577))) (-5 *1 (-585))))) -(-10 -7 (-15 -3578 ((-3 (-660 (-1197 (-577))) "failed") (-660 (-1197 (-577))) (-1197 (-577))))) -((-4401 (((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-1201)) 19 T ELT)) (-1417 (((-660 (-625 |#2|)) (-660 |#2|) (-1201)) 23 T ELT)) (-1872 (((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-660 (-625 |#2|))) 11 T ELT)) (-3037 ((|#2| |#2| (-1201)) 59 (|has| |#1| (-569)) ELT)) (-2695 ((|#2| |#2| (-1201)) 87 (-12 (|has| |#2| (-295)) (|has| |#1| (-465))) ELT)) (-2717 (((-625 |#2|) (-625 |#2|) (-660 (-625 |#2|)) (-1201)) 25 T ELT)) (-4117 (((-625 |#2|) (-660 (-625 |#2|))) 24 T ELT)) (-2301 (((-599 |#2|) |#2| (-1201) (-1 (-599 |#2|) |#2| (-1201)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201))) 115 (-12 (|has| |#2| (-295)) (|has| |#2| (-642)) (|has| |#2| (-1063 (-1201))) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-465)) (|has| |#1| (-905 (-577)))) ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -4401 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-1201))) (-15 -4117 ((-625 |#2|) (-660 (-625 |#2|)))) (-15 -2717 ((-625 |#2|) (-625 |#2|) (-660 (-625 |#2|)) (-1201))) (-15 -1872 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-660 (-625 |#2|)))) (-15 -1417 ((-660 (-625 |#2|)) (-660 |#2|) (-1201))) (IF (|has| |#1| (-569)) (-15 -3037 (|#2| |#2| (-1201))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -2695 (|#2| |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (IF (|has| |#2| (-642)) (IF (|has| |#2| (-1063 (-1201))) (-15 -2301 ((-599 |#2|) |#2| (-1201) (-1 (-599 |#2|) |#2| (-1201)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1125) (-443 |#1|)) (T -586)) -((-2301 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-599 *3) *3 (-1201))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1201))) (-4 *3 (-295)) (-4 *3 (-642)) (-4 *3 (-1063 *4)) (-4 *3 (-443 *7)) (-5 *4 (-1201)) (-4 *7 (-627 (-911 (-577)))) (-4 *7 (-465)) (-4 *7 (-905 (-577))) (-4 *7 (-1125)) (-5 *2 (-599 *3)) (-5 *1 (-586 *7 *3)))) (-2695 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-465)) (-4 *4 (-1125)) (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4)))) (-3037 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-4 *4 (-1125)) (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4)))) (-1417 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-1201)) (-4 *6 (-443 *5)) (-4 *5 (-1125)) (-5 *2 (-660 (-625 *6))) (-5 *1 (-586 *5 *6)))) (-1872 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-625 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1125)) (-5 *1 (-586 *3 *4)))) (-2717 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-625 *6))) (-5 *4 (-1201)) (-5 *2 (-625 *6)) (-4 *6 (-443 *5)) (-4 *5 (-1125)) (-5 *1 (-586 *5 *6)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-660 (-625 *5))) (-4 *4 (-1125)) (-5 *2 (-625 *5)) (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4)))) (-4401 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-625 *5))) (-5 *3 (-1201)) (-4 *5 (-443 *4)) (-4 *4 (-1125)) (-5 *1 (-586 *4 *5))))) -(-10 -7 (-15 -4401 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-1201))) (-15 -4117 ((-625 |#2|) (-660 (-625 |#2|)))) (-15 -2717 ((-625 |#2|) (-625 |#2|) (-660 (-625 |#2|)) (-1201))) (-15 -1872 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-660 (-625 |#2|)))) (-15 -1417 ((-660 (-625 |#2|)) (-660 |#2|) (-1201))) (IF (|has| |#1| (-569)) (-15 -3037 (|#2| |#2| (-1201))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -2695 (|#2| |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (IF (|has| |#2| (-642)) (IF (|has| |#2| (-1063 (-1201))) (-15 -2301 ((-599 |#2|) |#2| (-1201) (-1 (-599 |#2|) |#2| (-1201)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-3464 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) "failed") (-577) |#1| |#1|)) 199 T ELT)) (-3338 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-660 (-420 |#2|))) 174 T ELT)) (-3805 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-660 (-420 |#2|))) 171 T ELT)) (-1359 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162 T ELT)) (-3957 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185 T ELT)) (-1614 (((-3 (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|)) 202 T ELT)) (-1969 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|)) 205 T ELT)) (-4121 (((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-1587 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-1857 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-660 (-420 |#2|))) 178 T ELT)) (-3592 (((-3 (-636 |#1| |#2|) "failed") (-636 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 166 T ELT)) (-3708 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 189 T ELT)) (-3652 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|)) 210 T ELT))) -(((-587 |#1| |#2|) (-10 -7 (-15 -3957 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3708 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -3464 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) "failed") (-577) |#1| |#1|))) (-15 -1969 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -3652 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -3338 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-660 (-420 |#2|)))) (-15 -1857 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-660 (-420 |#2|)))) (-15 -1614 ((-3 (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -3805 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-660 (-420 |#2|)))) (-15 -1359 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3592 ((-3 (-636 |#1| |#2|) "failed") (-636 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -4121 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1587 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-375) (-1268 |#1|)) (T -587)) -((-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-587 *5 *3)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-3592 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-636 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3076 *4) (|:| |sol?| (-112))) (-577) *4)) (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *1 (-587 *4 *5)))) (-1359 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2845 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1268 *4)))) (-3805 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-660 (-420 *7))) (-4 *7 (-1268 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-587 *6 *7)))) (-1614 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -2845 (-420 *6)) (|:| |coeff| (-420 *6)))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-1857 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3076 *7) (|:| |sol?| (-112))) (-577) *7)) (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-3338 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2845 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-3652 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3076 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -2845 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-1969 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2845 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -2845 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-3464 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-660 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-3708 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3076 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2845 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(-10 -7 (-15 -3957 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3708 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -3464 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) "failed") (-577) |#1| |#1|))) (-15 -1969 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -3652 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -3338 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-660 (-420 |#2|)))) (-15 -1857 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-660 (-420 |#2|)))) (-15 -1614 ((-3 (-2 (|:| -2845 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -3805 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-660 (-420 |#2|)))) (-15 -1359 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3592 ((-3 (-636 |#1| |#2|) "failed") (-636 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3076 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -4121 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1587 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3095 (((-3 |#2| "failed") |#2| (-1201) (-1201)) 10 T ELT))) -(((-588 |#1| |#2|) (-10 -7 (-15 -3095 ((-3 |#2| "failed") |#2| (-1201) (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-1164) (-29 |#1|))) (T -588)) -((-3095 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-588 *4 *2)) (-4 *2 (-13 (-1227) (-982) (-1164) (-29 *4)))))) -(-10 -7 (-15 -3095 ((-3 |#2| "failed") |#2| (-1201) (-1201)))) -((-4114 (((-707 (-1250)) $ (-1250)) 26 T ELT)) (-2688 (((-707 (-562)) $ (-562)) 25 T ELT)) (-4376 (((-787) $ (-129)) 27 T ELT)) (-1626 (((-707 (-130)) $ (-130)) 24 T ELT)) (-2339 (((-707 (-1250)) $) 12 T ELT)) (-4379 (((-707 (-1248)) $) 8 T ELT)) (-1836 (((-707 (-1247)) $) 10 T ELT)) (-2128 (((-707 (-562)) $) 13 T ELT)) (-3064 (((-707 (-560)) $) 9 T ELT)) (-1699 (((-707 (-559)) $) 11 T ELT)) (-2621 (((-787) $ (-129)) 7 T ELT)) (-1893 (((-707 (-130)) $) 14 T ELT)) (-3349 (($ $) 6 T ELT))) +((-2008 (((-3 (-665 (-1202 (-577))) "failed") (-665 (-1202 (-577))) (-1202 (-577))) 27 T ELT))) +(((-585) (-10 -7 (-15 -2008 ((-3 (-665 (-1202 (-577))) "failed") (-665 (-1202 (-577))) (-1202 (-577)))))) (T -585)) +((-2008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 (-577)))) (-5 *3 (-1202 (-577))) (-5 *1 (-585))))) +(-10 -7 (-15 -2008 ((-3 (-665 (-1202 (-577))) "failed") (-665 (-1202 (-577))) (-1202 (-577))))) +((-3741 (((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-1206)) 19 T ELT)) (-3493 (((-665 (-630 |#2|)) (-665 |#2|) (-1206)) 23 T ELT)) (-1931 (((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-665 (-630 |#2|))) 11 T ELT)) (-1542 ((|#2| |#2| (-1206)) 59 (|has| |#1| (-569)) ELT)) (-2896 ((|#2| |#2| (-1206)) 87 (-12 (|has| |#2| (-295)) (|has| |#1| (-465))) ELT)) (-2525 (((-630 |#2|) (-630 |#2|) (-665 (-630 |#2|)) (-1206)) 25 T ELT)) (-2056 (((-630 |#2|) (-665 (-630 |#2|))) 24 T ELT)) (-3822 (((-599 |#2|) |#2| (-1206) (-1 (-599 |#2|) |#2| (-1206)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206))) 115 (-12 (|has| |#2| (-295)) (|has| |#2| (-647)) (|has| |#2| (-1068 (-1206))) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-465)) (|has| |#1| (-910 (-577)))) ELT))) +(((-586 |#1| |#2|) (-10 -7 (-15 -3741 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-1206))) (-15 -2056 ((-630 |#2|) (-665 (-630 |#2|)))) (-15 -2525 ((-630 |#2|) (-630 |#2|) (-665 (-630 |#2|)) (-1206))) (-15 -1931 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-665 (-630 |#2|)))) (-15 -3493 ((-665 (-630 |#2|)) (-665 |#2|) (-1206))) (IF (|has| |#1| (-569)) (-15 -1542 (|#2| |#2| (-1206))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -2896 (|#2| |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (IF (|has| |#2| (-647)) (IF (|has| |#2| (-1068 (-1206))) (-15 -3822 ((-599 |#2|) |#2| (-1206) (-1 (-599 |#2|) |#2| (-1206)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1130) (-443 |#1|)) (T -586)) +((-3822 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-599 *3) *3 (-1206))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1206))) (-4 *3 (-295)) (-4 *3 (-647)) (-4 *3 (-1068 *4)) (-4 *3 (-443 *7)) (-5 *4 (-1206)) (-4 *7 (-632 (-916 (-577)))) (-4 *7 (-465)) (-4 *7 (-910 (-577))) (-4 *7 (-1130)) (-5 *2 (-599 *3)) (-5 *1 (-586 *7 *3)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-465)) (-4 *4 (-1130)) (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-4 *4 (-1130)) (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-1206)) (-4 *6 (-443 *5)) (-4 *5 (-1130)) (-5 *2 (-665 (-630 *6))) (-5 *1 (-586 *5 *6)))) (-1931 (*1 *2 *2 *2) (-12 (-5 *2 (-665 (-630 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1130)) (-5 *1 (-586 *3 *4)))) (-2525 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-665 (-630 *6))) (-5 *4 (-1206)) (-5 *2 (-630 *6)) (-4 *6 (-443 *5)) (-4 *5 (-1130)) (-5 *1 (-586 *5 *6)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-665 (-630 *5))) (-4 *4 (-1130)) (-5 *2 (-630 *5)) (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4)))) (-3741 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-630 *5))) (-5 *3 (-1206)) (-4 *5 (-443 *4)) (-4 *4 (-1130)) (-5 *1 (-586 *4 *5))))) +(-10 -7 (-15 -3741 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-1206))) (-15 -2056 ((-630 |#2|) (-665 (-630 |#2|)))) (-15 -2525 ((-630 |#2|) (-630 |#2|) (-665 (-630 |#2|)) (-1206))) (-15 -1931 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-665 (-630 |#2|)))) (-15 -3493 ((-665 (-630 |#2|)) (-665 |#2|) (-1206))) (IF (|has| |#1| (-569)) (-15 -1542 (|#2| |#2| (-1206))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -2896 (|#2| |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (IF (|has| |#2| (-647)) (IF (|has| |#2| (-1068 (-1206))) (-15 -3822 ((-599 |#2|) |#2| (-1206) (-1 (-599 |#2|) |#2| (-1206)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2183 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-665 |#1|) "failed") (-577) |#1| |#1|)) 199 T ELT)) (-4144 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-665 (-420 |#2|))) 174 T ELT)) (-3156 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-665 (-420 |#2|))) 171 T ELT)) (-3740 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162 T ELT)) (-2586 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185 T ELT)) (-2577 (((-3 (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|)) 202 T ELT)) (-4425 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|)) 205 T ELT)) (-3838 (((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-3738 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2594 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-665 (-420 |#2|))) 178 T ELT)) (-1501 (((-3 (-641 |#1| |#2|) "failed") (-641 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 166 T ELT)) (-3910 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 189 T ELT)) (-2279 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|)) 210 T ELT))) +(((-587 |#1| |#2|) (-10 -7 (-15 -2586 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3910 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2183 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-665 |#1|) "failed") (-577) |#1| |#1|))) (-15 -4425 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -2279 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -4144 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-665 (-420 |#2|)))) (-15 -2594 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-665 (-420 |#2|)))) (-15 -2577 ((-3 (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -3156 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-665 (-420 |#2|)))) (-15 -3740 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1501 ((-3 (-641 |#1| |#2|) "failed") (-641 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -3838 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3738 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-375) (-1273 |#1|)) (T -587)) +((-3738 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-587 *5 *3)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-1501 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3352 *4) (|:| |sol?| (-112))) (-577) *4)) (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *1 (-587 *4 *5)))) (-3740 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3398 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1273 *4)))) (-3156 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-665 (-420 *7))) (-4 *7 (-1273 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-587 *6 *7)))) (-2577 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3398 (-420 *6)) (|:| |coeff| (-420 *6)))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-2594 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3352 *7) (|:| |sol?| (-112))) (-577) *7)) (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-4144 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3398 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-2279 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3352 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -3398 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-4425 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3398 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -3398 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2183 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-665 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-3910 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3352 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2586 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3398 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(-10 -7 (-15 -2586 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3910 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2183 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-665 |#1|) "failed") (-577) |#1| |#1|))) (-15 -4425 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -2279 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -4144 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-665 (-420 |#2|)))) (-15 -2594 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-665 (-420 |#2|)))) (-15 -2577 ((-3 (-2 (|:| -3398 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -3156 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-665 (-420 |#2|)))) (-15 -3740 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1501 ((-3 (-641 |#1| |#2|) "failed") (-641 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3352 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -3838 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3738 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-4020 (((-3 |#2| "failed") |#2| (-1206) (-1206)) 10 T ELT))) +(((-588 |#1| |#2|) (-10 -7 (-15 -4020 ((-3 |#2| "failed") |#2| (-1206) (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-1169) (-29 |#1|))) (T -588)) +((-4020 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-588 *4 *2)) (-4 *2 (-13 (-1232) (-987) (-1169) (-29 *4)))))) +(-10 -7 (-15 -4020 ((-3 |#2| "failed") |#2| (-1206) (-1206)))) +((-1904 (((-712 (-1255)) $ (-1255)) 26 T ELT)) (-2082 (((-712 (-562)) $ (-562)) 25 T ELT)) (-2209 (((-792) $ (-129)) 27 T ELT)) (-3970 (((-712 (-130)) $ (-130)) 24 T ELT)) (-1954 (((-712 (-1255)) $) 12 T ELT)) (-2336 (((-712 (-1253)) $) 8 T ELT)) (-2666 (((-712 (-1252)) $) 10 T ELT)) (-3772 (((-712 (-562)) $) 13 T ELT)) (-1870 (((-712 (-560)) $) 9 T ELT)) (-1504 (((-712 (-559)) $) 11 T ELT)) (-4074 (((-792) $ (-129)) 7 T ELT)) (-1554 (((-712 (-130)) $) 14 T ELT)) (-2823 (($ $) 6 T ELT))) (((-589) (-141)) (T -589)) NIL -(-13 (-540) (-878)) -(((-175) . T) ((-540) . T) ((-878) . T)) -((-4114 (((-707 (-1250)) $ (-1250)) NIL T ELT)) (-2688 (((-707 (-562)) $ (-562)) NIL T ELT)) (-4376 (((-787) $ (-129)) NIL T ELT)) (-1626 (((-707 (-130)) $ (-130)) NIL T ELT)) (-2339 (((-707 (-1250)) $) NIL T ELT)) (-4379 (((-707 (-1248)) $) NIL T ELT)) (-1836 (((-707 (-1247)) $) NIL T ELT)) (-2128 (((-707 (-562)) $) NIL T ELT)) (-3064 (((-707 (-560)) $) NIL T ELT)) (-1699 (((-707 (-559)) $) NIL T ELT)) (-2621 (((-787) $ (-129)) NIL T ELT)) (-1893 (((-707 (-130)) $) NIL T ELT)) (-3324 (((-112) $) NIL T ELT)) (-2697 (($ (-401)) 14 T ELT) (($ (-1183)) 16 T ELT)) (-3603 (((-880) $) NIL T ELT)) (-3349 (($ $) NIL T ELT))) -(((-590) (-13 (-589) (-626 (-880)) (-10 -8 (-15 -2697 ($ (-401))) (-15 -2697 ($ (-1183))) (-15 -3324 ((-112) $))))) (T -590)) -((-2697 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590)))) (-2697 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-590)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590))))) -(-13 (-589) (-626 (-880)) (-10 -8 (-15 -2697 ($ (-401))) (-15 -2697 ($ (-1183))) (-15 -3324 ((-112) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1468 (($) 7 T CONST)) (-2045 (((-1183) $) NIL T ELT)) (-2042 (($) 6 T CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 15 T ELT)) (-3590 (($) 9 T CONST)) (-1973 (($) 8 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 11 T ELT))) -(((-591) (-13 (-1125) (-10 -8 (-15 -2042 ($) -2609) (-15 -1468 ($) -2609) (-15 -1973 ($) -2609) (-15 -3590 ($) -2609)))) (T -591)) -((-2042 (*1 *1) (-5 *1 (-591))) (-1468 (*1 *1) (-5 *1 (-591))) (-1973 (*1 *1) (-5 *1 (-591))) (-3590 (*1 *1) (-5 *1 (-591)))) -(-13 (-1125) (-10 -8 (-15 -2042 ($) -2609) (-15 -1468 ($) -2609) (-15 -1973 ($) -2609) (-15 -3590 ($) -2609))) -((-3489 (((-112) $ $) NIL T ELT)) (-2237 (((-707 $) (-504)) 21 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4294 (($ (-1183)) 14 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 33 T ELT)) (-2890 (((-215 4 (-130)) $) 24 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 26 T ELT))) -(((-592) (-13 (-1125) (-10 -8 (-15 -4294 ($ (-1183))) (-15 -2890 ((-215 4 (-130)) $)) (-15 -2237 ((-707 $) (-504)))))) (T -592)) -((-4294 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-592)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-707 (-592))) (-5 *1 (-592))))) -(-13 (-1125) (-10 -8 (-15 -4294 ($ (-1183))) (-15 -2890 ((-215 4 (-130)) $)) (-15 -2237 ((-707 $) (-504))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $ (-577)) 75 T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1703 (($ (-1197 (-577)) (-577)) 81 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 66 T ELT)) (-3471 (($ $) 43 T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2536 (((-787) $) 16 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1688 (((-577)) 37 T ELT)) (-1962 (((-577) $) 41 T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1987 (($ $ (-577)) 24 T ELT)) (-3478 (((-3 $ "failed") $ $) 71 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) 17 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 72 T ELT)) (-3453 (((-1182 (-577)) $) 19 T ELT)) (-2544 (($ $) 26 T ELT)) (-3603 (((-880) $) 102 T ELT) (($ (-577)) 61 T ELT) (($ $) NIL T ELT)) (-1920 (((-787)) 15 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4142 (((-577) $ (-577)) 46 T ELT)) (-2754 (($) 44 T CONST)) (-2767 (($) 21 T CONST)) (-2949 (((-112) $ $) 52 T ELT)) (-3042 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-3031 (($ $ $) 59 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 62 T ELT) (($ $ $) 63 T ELT))) -(((-593 |#1| |#2|) (-887 |#1|) (-577) (-112)) (T -593)) -NIL -(-887 |#1|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 30 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 (($ $ (-944)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 59 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 $ "failed") $) 95 T ELT)) (-2155 (($ $) 94 T ELT)) (-1911 (($ (-1292 $)) 93 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 44 T ELT)) (-2352 (($) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) 61 T ELT)) (-4402 (((-112) $) NIL T ELT)) (-1865 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) 49 (|has| $ (-380)) ELT)) (-2936 (((-112) $) NIL (|has| $ (-380)) ELT)) (-4021 (($ $ (-944)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 $) $ (-944)) NIL (|has| $ (-380)) ELT) (((-1197 $) $) 104 T ELT)) (-2144 (((-944) $) 67 T ELT)) (-1948 (((-1197 $) $) NIL (|has| $ (-380)) ELT)) (-3995 (((-3 (-1197 $) "failed") $ $) NIL (|has| $ (-380)) ELT) (((-1197 $) $) NIL (|has| $ (-380)) ELT)) (-1542 (($ $ (-1197 $)) NIL (|has| $ (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL T CONST)) (-3251 (($ (-944)) 60 T ELT)) (-1792 (((-112) $) 87 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) 28 (|has| $ (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 54 T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-944)) 86 T ELT) (((-849 (-944))) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-3 (-787) "failed") $ $) NIL T ELT) (((-787) $) NIL T ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3616 (((-944) $) 85 T ELT) (((-849 (-944)) $) NIL T ELT)) (-1629 (((-1197 $)) 102 T ELT)) (-2932 (($) 66 T ELT)) (-3204 (($) 50 (|has| $ (-380)) ELT)) (-2729 (((-705 $) (-1292 $)) NIL T ELT) (((-1292 $) $) 91 T ELT)) (-2176 (((-577) $) 40 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) 42 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL T ELT) (($ $) 105 T ELT)) (-1920 (((-787)) 51 T CONST)) (-2726 (((-112) $ $) 107 T ELT)) (-2559 (((-1292 $) (-944)) 97 T ELT) (((-1292 $)) 96 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) 31 T CONST)) (-2767 (($) 27 T CONST)) (-1427 (($ $ (-787)) NIL (|has| $ (-380)) ELT) (($ $) NIL (|has| $ (-380)) ELT)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 34 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-594 |#1|) (-13 (-361) (-340 $) (-627 (-577))) (-944)) (T -594)) -NIL -(-13 (-361) (-340 $) (-627 (-577))) -((-4062 (((-1297) (-1183)) 10 T ELT))) -(((-595) (-10 -7 (-15 -4062 ((-1297) (-1183))))) (T -595)) -((-4062 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-595))))) -(-10 -7 (-15 -4062 ((-1297) (-1183)))) -((-3333 (((-599 |#2|) (-599 |#2|)) 42 T ELT)) (-3694 (((-660 |#2|) (-599 |#2|)) 44 T ELT)) (-2318 ((|#2| (-599 |#2|)) 50 T ELT))) -(((-596 |#1| |#2|) (-10 -7 (-15 -3333 ((-599 |#2|) (-599 |#2|))) (-15 -3694 ((-660 |#2|) (-599 |#2|))) (-15 -2318 (|#2| (-599 |#2|)))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-29 |#1|) (-1227))) (T -596)) -((-2318 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1227))) (-5 *1 (-596 *4 *2)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1227))) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-660 *5)) (-5 *1 (-596 *4 *5)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1227))) (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-596 *3 *4))))) -(-10 -7 (-15 -3333 ((-599 |#2|) (-599 |#2|))) (-15 -3694 ((-660 |#2|) (-599 |#2|))) (-15 -2318 (|#2| (-599 |#2|)))) -((-2124 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 30 T ELT))) -(((-597 |#1| |#2|) (-10 -7 (-15 -2124 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -2124 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2124 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2124 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-375) (-375)) (T -597)) -((-2124 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-597 *5 *6)))) (-2124 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) (-2124 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2845 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| -2845 *6) (|:| |coeff| *6))) (-5 *1 (-597 *5 *6)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6))))) -(-10 -7 (-15 -2124 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -2124 ((-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2845 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2124 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2124 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2121 (($ (-519) (-610)) 14 T ELT)) (-3988 (($ (-519) (-610) $) 16 T ELT)) (-2441 (($ (-519) (-610)) 15 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-1206)) 7 T ELT) (((-1206) $) 6 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-598) (-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -2121 ($ (-519) (-610))) (-15 -2441 ($ (-519) (-610))) (-15 -3988 ($ (-519) (-610) $))))) (T -598)) -((-2121 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-2441 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-3988 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -2121 ($ (-519) (-610))) (-15 -2441 ($ (-519) (-610))) (-15 -3988 ($ (-519) (-610) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 76 T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-2845 ((|#1| $) 30 T ELT)) (-2288 (((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-4407 (($ |#1| (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-3788 (((-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) $) 31 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1961 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1201)) 49 (|has| |#1| (-1063 (-1201))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2521 (((-112) $) 35 T ELT)) (-3362 ((|#1| $ (-1 |#1| |#1|)) 88 T ELT) ((|#1| $ (-1201)) 89 (|has| |#1| (-921 (-1201))) ELT)) (-3603 (((-880) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 18 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 85 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 16 T ELT) (($ (-420 (-577)) $) 41 T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-599 |#1|) (-13 (-733 (-420 (-577))) (-1063 |#1|) (-10 -8 (-15 -4407 ($ |#1| (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2845 (|#1| $)) (-15 -3788 ((-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) $)) (-15 -2288 ((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2521 ((-112) $)) (-15 -1961 ($ |#1| |#1|)) (-15 -3362 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-921 (-1201))) (-15 -3362 (|#1| $ (-1201))) |%noBranch|) (IF (|has| |#1| (-1063 (-1201))) (-15 -1961 ($ |#1| (-1201))) |%noBranch|))) (-375)) (T -599)) -((-4407 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *2)) (|:| |logand| (-1197 *2))))) (-5 *4 (-660 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-375)) (-5 *1 (-599 *2)))) (-2845 (*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *3)) (|:| |logand| (-1197 *3))))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-1961 (*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-3362 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-3362 (*1 *2 *1 *3) (-12 (-4 *2 (-375)) (-4 *2 (-921 *3)) (-5 *1 (-599 *2)) (-5 *3 (-1201)))) (-1961 (*1 *1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *1 (-599 *2)) (-4 *2 (-1063 *3)) (-4 *2 (-375))))) -(-13 (-733 (-420 (-577))) (-1063 |#1|) (-10 -8 (-15 -4407 ($ |#1| (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2845 (|#1| $)) (-15 -3788 ((-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) $)) (-15 -2288 ((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2521 ((-112) $)) (-15 -1961 ($ |#1| |#1|)) (-15 -3362 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-921 (-1201))) (-15 -3362 (|#1| $ (-1201))) |%noBranch|) (IF (|has| |#1| (-1063 (-1201))) (-15 -1961 ($ |#1| (-1201))) |%noBranch|))) -((-3082 (((-112) |#1|) 16 T ELT)) (-2416 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3383 (((-2 (|:| -2762 |#1|) (|:| -1527 (-787))) |#1|) 38 T ELT) (((-3 |#1| "failed") |#1| (-787)) 18 T ELT)) (-3713 (((-112) |#1| (-787)) 19 T ELT)) (-2205 ((|#1| |#1|) 42 T ELT)) (-3156 ((|#1| |#1| (-787)) 45 T ELT))) -(((-600 |#1|) (-10 -7 (-15 -3713 ((-112) |#1| (-787))) (-15 -3383 ((-3 |#1| "failed") |#1| (-787))) (-15 -3383 ((-2 (|:| -2762 |#1|) (|:| -1527 (-787))) |#1|)) (-15 -3156 (|#1| |#1| (-787))) (-15 -3082 ((-112) |#1|)) (-15 -2416 ((-3 |#1| "failed") |#1|)) (-15 -2205 (|#1| |#1|))) (-558)) (T -600)) -((-2205 (*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-2416 (*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-3082 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-3156 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-3383 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2762 *3) (|:| -1527 (-787)))) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-3383 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) -(-10 -7 (-15 -3713 ((-112) |#1| (-787))) (-15 -3383 ((-3 |#1| "failed") |#1| (-787))) (-15 -3383 ((-2 (|:| -2762 |#1|) (|:| -1527 (-787))) |#1|)) (-15 -3156 (|#1| |#1| (-787))) (-15 -3082 ((-112) |#1|)) (-15 -2416 ((-3 |#1| "failed") |#1|)) (-15 -2205 (|#1| |#1|))) -((-3948 (((-1197 |#1|) (-944)) 44 T ELT))) -(((-601 |#1|) (-10 -7 (-15 -3948 ((-1197 |#1|) (-944)))) (-361)) (T -601)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-601 *4)) (-4 *4 (-361))))) -(-10 -7 (-15 -3948 ((-1197 |#1|) (-944)))) -((-3333 (((-599 (-420 (-975 |#1|))) (-599 (-420 (-975 |#1|)))) 27 T ELT)) (-4129 (((-3 (-327 |#1|) (-660 (-327 |#1|))) (-420 (-975 |#1|)) (-1201)) 34 (|has| |#1| (-148)) ELT)) (-3694 (((-660 (-327 |#1|)) (-599 (-420 (-975 |#1|)))) 19 T ELT)) (-4051 (((-327 |#1|) (-420 (-975 |#1|)) (-1201)) 32 (|has| |#1| (-148)) ELT)) (-2318 (((-327 |#1|) (-599 (-420 (-975 |#1|)))) 21 T ELT))) -(((-602 |#1|) (-10 -7 (-15 -3333 ((-599 (-420 (-975 |#1|))) (-599 (-420 (-975 |#1|))))) (-15 -3694 ((-660 (-327 |#1|)) (-599 (-420 (-975 |#1|))))) (-15 -2318 ((-327 |#1|) (-599 (-420 (-975 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4129 ((-3 (-327 |#1|) (-660 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4051 ((-327 |#1|) (-420 (-975 |#1|)) (-1201)))) |%noBranch|)) (-13 (-465) (-1063 (-577)) (-654 (-577)))) (T -602)) -((-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *5)) (-5 *1 (-602 *5)))) (-4129 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (-327 *5) (-660 (-327 *5)))) (-5 *1 (-602 *5)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-975 *4)))) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-602 *4)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-975 *4)))) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-660 (-327 *4))) (-5 *1 (-602 *4)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-599 (-420 (-975 *3)))) (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-602 *3))))) -(-10 -7 (-15 -3333 ((-599 (-420 (-975 |#1|))) (-599 (-420 (-975 |#1|))))) (-15 -3694 ((-660 (-327 |#1|)) (-599 (-420 (-975 |#1|))))) (-15 -2318 ((-327 |#1|) (-599 (-420 (-975 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4129 ((-3 (-327 |#1|) (-660 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4051 ((-327 |#1|) (-420 (-975 |#1|)) (-1201)))) |%noBranch|)) -((-2297 (((-660 (-705 (-577))) (-660 (-944)) (-660 (-928 (-577)))) 78 T ELT) (((-660 (-705 (-577))) (-660 (-944))) 79 T ELT) (((-705 (-577)) (-660 (-944)) (-928 (-577))) 72 T ELT)) (-2497 (((-787) (-660 (-944))) 69 T ELT))) -(((-603) (-10 -7 (-15 -2497 ((-787) (-660 (-944)))) (-15 -2297 ((-705 (-577)) (-660 (-944)) (-928 (-577)))) (-15 -2297 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -2297 ((-660 (-705 (-577))) (-660 (-944)) (-660 (-928 (-577))))))) (T -603)) -((-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-928 (-577)))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-603)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-603)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-944))) (-5 *4 (-928 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-603)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-787)) (-5 *1 (-603))))) -(-10 -7 (-15 -2497 ((-787) (-660 (-944)))) (-15 -2297 ((-705 (-577)) (-660 (-944)) (-928 (-577)))) (-15 -2297 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -2297 ((-660 (-705 (-577))) (-660 (-944)) (-660 (-928 (-577)))))) -((-3984 (((-660 |#5|) |#5| (-112)) 100 T ELT)) (-4037 (((-112) |#5| (-660 |#5|)) 34 T ELT))) -(((-604 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3984 ((-660 |#5|) |#5| (-112))) (-15 -4037 ((-112) |#5| (-660 |#5|)))) (-13 (-318) (-148)) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3| |#4|)) (T -604)) -((-4037 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1134 *5 *6 *7 *8)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-604 *5 *6 *7 *8 *3)))) (-3984 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-660 *3)) (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1134 *5 *6 *7 *8))))) -(-10 -7 (-15 -3984 ((-660 |#5|) |#5| (-112))) (-15 -4037 ((-112) |#5| (-660 |#5|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2171 (((-1160) $) 11 T ELT)) (-2159 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 17 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-605) (-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $))))) (T -605)) -((-2159 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605))))) -(-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $)))) -((-3489 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-2628 (($ $) 38 T ELT)) (-1345 (($ $) NIL T ELT)) (-1480 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-3407 (((-112) $ $) 67 T ELT)) (-3389 (((-112) $ $ (-577)) 62 T ELT)) (-3333 (((-660 $) $ (-145)) 75 T ELT) (((-660 $) $ (-142)) 76 T ELT)) (-4438 (((-112) (-1 (-112) (-145) (-145)) $) NIL T ELT) (((-112) $) NIL (|has| (-145) (-865)) ELT)) (-3246 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-145) (-865))) ELT)) (-2312 (($ (-1 (-112) (-145) (-145)) $) NIL T ELT) (($ $) NIL (|has| (-145) (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 (((-145) $ (-577) (-145)) 59 (|has| $ (-6 -4471)) ELT) (((-145) $ (-1259 (-577)) (-145)) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1541 (($ $ (-145)) 79 T ELT) (($ $ (-142)) 80 T ELT)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3946 (($ $ (-1259 (-577)) $) 57 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-3920 (($ (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4470)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4471)) ELT)) (-2759 (((-145) $ (-577)) NIL T ELT)) (-3432 (((-112) $ $) 88 T ELT)) (-3728 (((-577) (-1 (-112) (-145)) $) NIL T ELT) (((-577) (-145) $) NIL (|has| (-145) (-1125)) ELT) (((-577) (-145) $ (-577)) 64 (|has| (-145) (-1125)) ELT) (((-577) $ $ (-577)) 63 T ELT) (((-577) (-142) $ (-577)) 66 T ELT)) (-3692 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) (-145)) 9 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 32 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| (-145) (-865)) ELT)) (-1334 (($ (-1 (-112) (-145) (-145)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-145) (-865)) ELT)) (-2434 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-2984 (((-577) $) 47 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-145) (-865)) ELT)) (-1958 (((-112) $ $ (-145)) 89 T ELT)) (-2494 (((-787) $ $ (-145)) 86 T ELT)) (-2826 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-145) (-145)) $) NIL T ELT) (($ (-1 (-145) (-145) (-145)) $ $) NIL T ELT)) (-3107 (($ $) 41 T ELT)) (-2976 (($ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1552 (($ $ (-145)) 77 T ELT) (($ $ (-142)) 78 T ELT)) (-2045 (((-1183) $) 43 (|has| (-145) (-1125)) ELT)) (-2218 (($ (-145) $ (-577)) NIL T ELT) (($ $ $ (-577)) 27 T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) 85 (|has| (-145) (-1125)) ELT)) (-1652 (((-145) $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-2529 (($ $ (-145)) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-660 (-145)) (-660 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-3908 (((-660 (-145)) $) NIL T ELT)) (-2856 (((-112) $) 15 T ELT)) (-2693 (($) 10 T ELT)) (-2837 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) 68 T ELT) (($ $ (-1259 (-577))) 25 T ELT) (($ $ $) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-2875 (($ $ $ (-577)) 81 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 20 T ELT)) (-2176 (((-549) $) NIL (|has| (-145) (-627 (-549))) ELT)) (-3614 (($ (-660 (-145))) NIL T ELT)) (-1685 (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-660 $)) 82 T ELT)) (-3603 (($ (-145)) NIL T ELT) (((-880) $) 31 (|has| (-145) (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-2285 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-145) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-145) (-865)) ELT)) (-2949 (((-112) $ $) 17 (|has| (-145) (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| (-145) (-865)) ELT)) (-2971 (((-112) $ $) 18 (|has| (-145) (-865)) ELT)) (-3501 (((-787) $) 16 (|has| $ (-6 -4470)) ELT))) -(((-606 |#1|) (-1169) (-577)) (T -606)) -NIL -(-1169) -((-3158 (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1119 |#4|)) 32 T ELT))) -(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3158 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1119 |#4|))) (-15 -3158 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) (-809) (-865) (-569) (-972 |#3| |#1| |#2|)) (T -607)) -((-3158 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) (-3158 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1119 *3)) (-4 *3 (-972 *7 *6 *4)) (-4 *6 (-809)) (-4 *4 (-865)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *6 *4 *7 *3))))) -(-10 -7 (-15 -3158 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1119 |#4|))) (-15 -3158 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 71 T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-577)) 58 T ELT) (($ $ (-577) (-577)) 59 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 65 T ELT)) (-4216 (($ $) 109 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3083 (((-880) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1051 (-859 (-577))) (-1201) |#1| (-420 (-577))) 241 T ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 36 T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2307 (((-112) $) NIL T ELT)) (-2536 (((-577) $) 63 T ELT) (((-577) $ (-577)) 64 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3681 (($ $ (-944)) 83 T ELT)) (-2720 (($ (-1 |#1| (-577)) $) 80 T ELT)) (-2148 (((-112) $) 26 T ELT)) (-3180 (($ |#1| (-577)) 22 T ELT) (($ $ (-1107) (-577)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-577))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2294 (($ (-1051 (-859 (-577))) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 13 T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4129 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3038 (((-3 $ "failed") $ $ (-112)) 108 T ELT)) (-2593 (($ $ $) 116 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4165 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 15 T ELT)) (-2733 (((-1051 (-859 (-577))) $) 14 T ELT)) (-1987 (($ $ (-577)) 47 T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT)) (-2837 ((|#1| $ (-577)) 62 T ELT) (($ $ $) NIL (|has| (-577) (-1137)) ELT)) (-3362 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-3616 (((-577) $) NIL T ELT)) (-2544 (($ $) 48 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) 29 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 28 (|has| |#1| (-174)) ELT)) (-3421 ((|#1| $ (-577)) 61 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 39 T CONST)) (-4269 ((|#1| $) NIL T ELT)) (-1902 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4004 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3087 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3477 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2560 (($ $) 201 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1747 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2058 (($ $ (-420 (-577))) 177 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3656 (($ $ |#1|) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3157 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2379 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3018 (($ $) 203 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3418 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2211 (($ $) 199 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4423 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1567 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2340 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3302 (($ $) 209 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4397 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1502 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3843 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2027 (($ $) 213 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2317 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3670 (($ $) 215 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2718 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3643 (($ $) 211 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3829 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1847 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4274 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4142 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2754 (($) 30 T CONST)) (-2767 (($) 40 T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-2949 (((-112) $ $) 73 T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3031 (($ $ $) 88 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 111 T ELT)) (* (($ (-944) $) 98 T ELT) (($ (-787) $) 96 T ELT) (($ (-577) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-608 |#1|) (-13 (-1270 |#1| (-577)) (-10 -8 (-15 -2294 ($ (-1051 (-859 (-577))) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2733 ((-1051 (-859 (-577))) $)) (-15 -4165 ((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -2857 ($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2148 ((-112) $)) (-15 -2720 ($ (-1 |#1| (-577)) $)) (-15 -3038 ((-3 $ "failed") $ $ (-112))) (-15 -4216 ($ $)) (-15 -2593 ($ $ $)) (-15 -3083 ((-880) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1051 (-859 (-577))) (-1201) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $)) (-15 -3656 ($ $ |#1|)) (-15 -2058 ($ $ (-420 (-577)))) (-15 -2379 ($ $)) (-15 -3157 ($ $)) (-15 -3477 ($ $)) (-15 -2340 ($ $)) (-15 -4004 ($ $)) (-15 -4423 ($ $)) (-15 -1747 ($ $)) (-15 -3418 ($ $)) (-15 -3843 ($ $)) (-15 -4274 ($ $)) (-15 -4397 ($ $)) (-15 -3829 ($ $)) (-15 -2317 ($ $)) (-15 -2718 ($ $)) (-15 -3087 ($ $)) (-15 -1567 ($ $)) (-15 -1902 ($ $)) (-15 -2211 ($ $)) (-15 -2560 ($ $)) (-15 -3018 ($ $)) (-15 -1502 ($ $)) (-15 -1847 ($ $)) (-15 -3302 ($ $)) (-15 -3643 ($ $)) (-15 -2027 ($ $)) (-15 -3670 ($ $))) |%noBranch|))) (-1074)) (T -608)) -((-2148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1051 (-859 (-577)))) (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1074)) (-5 *1 (-608 *4)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-1051 (-859 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1074)) (-5 *1 (-608 *3)))) (-2720 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-608 *3)))) (-3038 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-4216 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074)))) (-2593 (*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074)))) (-3083 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *6)))) (-5 *4 (-1051 (-859 (-577)))) (-5 *5 (-1201)) (-5 *7 (-420 (-577))) (-4 *6 (-1074)) (-5 *2 (-880)) (-5 *1 (-608 *6)))) (-4129 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3656 (*1 *1 *1 *2) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2058 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1074)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3477 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2340 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-4004 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-4423 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3418 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3843 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-4274 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-4397 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3829 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2317 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3087 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1567 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1902 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2560 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3018 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1502 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1847 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3643 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2027 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-3670 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(-13 (-1270 |#1| (-577)) (-10 -8 (-15 -2294 ($ (-1051 (-859 (-577))) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2733 ((-1051 (-859 (-577))) $)) (-15 -4165 ((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -2857 ($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2148 ((-112) $)) (-15 -2720 ($ (-1 |#1| (-577)) $)) (-15 -3038 ((-3 $ "failed") $ $ (-112))) (-15 -4216 ($ $)) (-15 -2593 ($ $ $)) (-15 -3083 ((-880) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1051 (-859 (-577))) (-1201) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $)) (-15 -3656 ($ $ |#1|)) (-15 -2058 ($ $ (-420 (-577)))) (-15 -2379 ($ $)) (-15 -3157 ($ $)) (-15 -3477 ($ $)) (-15 -2340 ($ $)) (-15 -4004 ($ $)) (-15 -4423 ($ $)) (-15 -1747 ($ $)) (-15 -3418 ($ $)) (-15 -3843 ($ $)) (-15 -4274 ($ $)) (-15 -4397 ($ $)) (-15 -3829 ($ $)) (-15 -2317 ($ $)) (-15 -2718 ($ $)) (-15 -3087 ($ $)) (-15 -1567 ($ $)) (-15 -1902 ($ $)) (-15 -2211 ($ $)) (-15 -2560 ($ $)) (-15 -3018 ($ $)) (-15 -1502 ($ $)) (-15 -1847 ($ $)) (-15 -3302 ($ $)) (-15 -3643 ($ $)) (-15 -2027 ($ $)) (-15 -3670 ($ $))) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 63 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2857 (($ (-1182 |#1|)) 9 T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) 44 T ELT)) (-2307 (((-112) $) 56 T ELT)) (-2536 (((-787) $) 61 T ELT) (((-787) $ (-787)) 60 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) 46 (|has| |#1| (-569)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-1182 |#1|) $) 25 T ELT)) (-1920 (((-787)) 55 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) 10 T CONST)) (-2767 (($) 14 T CONST)) (-2949 (((-112) $ $) 24 T ELT)) (-3042 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3031 (($ $ $) 27 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 53 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-577)) 38 T ELT))) -(((-609 |#1|) (-13 (-1074) (-111 |#1| |#1|) (-10 -8 (-15 -4198 ((-1182 |#1|) $)) (-15 -2857 ($ (-1182 |#1|))) (-15 -2307 ((-112) $)) (-15 -2536 ((-787) $)) (-15 -2536 ((-787) $ (-787))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) (-1074)) (T -609)) -((-4198 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-609 *3)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (-2536 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1074))))) -(-13 (-1074) (-111 |#1| |#1|) (-10 -8 (-15 -4198 ((-1182 |#1|) $)) (-15 -2857 ($ (-1182 |#1|))) (-15 -2307 ((-112) $)) (-15 -2536 ((-787) $)) (-15 -2536 ((-787) $ (-787))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2605 (($) 8 T CONST)) (-3050 (($) 7 T CONST)) (-2122 (($ $ (-660 $)) 16 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1956 (($) 6 T CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-1206)) 15 T ELT) (((-1206) $) 10 T ELT)) (-4012 (($) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-610) (-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -1956 ($) -2609) (-15 -3050 ($) -2609) (-15 -2605 ($) -2609) (-15 -4012 ($) -2609) (-15 -2122 ($ $ (-660 $)))))) (T -610)) -((-1956 (*1 *1) (-5 *1 (-610))) (-3050 (*1 *1) (-5 *1 (-610))) (-2605 (*1 *1) (-5 *1 (-610))) (-4012 (*1 *1) (-5 *1 (-610))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-610))) (-5 *1 (-610))))) -(-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -1956 ($) -2609) (-15 -3050 ($) -2609) (-15 -2605 ($) -2609) (-15 -4012 ($) -2609) (-15 -2122 ($ $ (-660 $))))) -((-2124 (((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)) 15 T ELT))) -(((-611 |#1| |#2|) (-10 -7 (-15 -2124 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) (-1242) (-1242)) (T -611)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6))))) -(-10 -7 (-15 -2124 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) -((-2124 (((-1182 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1182 |#2|)) 20 T ELT) (((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-614 |#2|)) 19 T ELT) (((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|)) 18 T ELT))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -2124 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -2124 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-614 |#2|))) (-15 -2124 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1182 |#2|)))) (-1242) (-1242) (-1242)) (T -612)) -((-2124 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1182 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) (-5 *1 (-612 *6 *7 *8)))) (-2124 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) (-5 *1 (-612 *6 *7 *8)))) (-2124 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-614 *8)) (-5 *1 (-612 *6 *7 *8))))) -(-10 -7 (-15 -2124 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -2124 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-614 |#2|))) (-15 -2124 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1182 |#2|)))) -((-4196 ((|#3| |#3| (-660 (-625 |#3|)) (-660 (-1201))) 57 T ELT)) (-4369 (((-171 |#2|) |#3|) 122 T ELT)) (-3983 ((|#3| (-171 |#2|)) 46 T ELT)) (-2585 ((|#2| |#3|) 21 T ELT)) (-2378 ((|#3| |#2|) 35 T ELT))) -(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -3983 (|#3| (-171 |#2|))) (-15 -2585 (|#2| |#3|)) (-15 -2378 (|#3| |#2|)) (-15 -4369 ((-171 |#2|) |#3|)) (-15 -4196 (|#3| |#3| (-660 (-625 |#3|)) (-660 (-1201))))) (-569) (-13 (-443 |#1|) (-1027) (-1227)) (-13 (-443 (-171 |#1|)) (-1027) (-1227))) (T -613)) -((-4196 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-660 (-1201))) (-4 *2 (-13 (-443 (-171 *5)) (-1027) (-1227))) (-4 *5 (-569)) (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1027) (-1227))))) (-4369 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) (-4 *5 (-13 (-443 *4) (-1027) (-1227))) (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227))))) (-2378 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1027) (-1227))))) (-2585 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) (-5 *1 (-613 *4 *2 *3)) (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227))))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227))) (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) (-5 *1 (-613 *4 *5 *2))))) -(-10 -7 (-15 -3983 (|#3| (-171 |#2|))) (-15 -2585 (|#2| |#3|)) (-15 -2378 (|#3| |#2|)) (-15 -4369 ((-171 |#2|) |#3|)) (-15 -4196 (|#3| |#3| (-660 (-625 |#3|)) (-660 (-1201))))) -((-3730 (($ (-1 (-112) |#1|) $) 17 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3661 (($ (-1 |#1| |#1|) |#1|) 9 T ELT)) (-3705 (($ (-1 (-112) |#1|) $) 13 T ELT)) (-3717 (($ (-1 (-112) |#1|) $) 15 T ELT)) (-3614 (((-1182 |#1|) $) 18 T ELT)) (-3603 (((-880) $) NIL T ELT))) -(((-614 |#1|) (-13 (-626 (-880)) (-10 -8 (-15 -2124 ($ (-1 |#1| |#1|) $)) (-15 -3705 ($ (-1 (-112) |#1|) $)) (-15 -3717 ($ (-1 (-112) |#1|) $)) (-15 -3730 ($ (-1 (-112) |#1|) $)) (-15 -3661 ($ (-1 |#1| |#1|) |#1|)) (-15 -3614 ((-1182 |#1|) $)))) (-1242)) (T -614)) -((-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-3705 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-3717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-3661 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1242))))) -(-13 (-626 (-880)) (-10 -8 (-15 -2124 ($ (-1 |#1| |#1|) $)) (-15 -3705 ($ (-1 (-112) |#1|) $)) (-15 -3717 ($ (-1 (-112) |#1|) $)) (-15 -3730 ($ (-1 (-112) |#1|) $)) (-15 -3661 ($ (-1 |#1| |#1|) |#1|)) (-15 -3614 ((-1182 |#1|) $)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3832 (($ (-787)) NIL (|has| |#1| (-23)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3588 (((-705 |#1|) $ $) NIL (|has| |#1| (-1074)) ELT)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2967 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3762 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))) ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1074)) ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1598 (($ $ $) NIL (|has| |#1| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) NIL T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3042 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-742)) ELT) (($ $ |#1|) NIL (|has| |#1| (-742)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-615 |#1| |#2|) (-1290 |#1|) (-1242) (-577)) (T -615)) -NIL -(-1290 |#1|) -((-2790 (((-1297) $ |#2| |#2|) 35 T ELT)) (-4239 ((|#2| $) 23 T ELT)) (-2984 ((|#2| $) 21 T ELT)) (-2826 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-2124 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-1652 ((|#3| $) 26 T ELT)) (-2529 (($ $ |#3|) 33 T ELT)) (-1696 (((-112) |#3| $) 17 T ELT)) (-3908 (((-660 |#3|) $) 15 T ELT)) (-2837 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-616 |#1| |#2| |#3|) (-10 -8 (-15 -2790 ((-1297) |#1| |#2| |#2|)) (-15 -2529 (|#1| |#1| |#3|)) (-15 -1652 (|#3| |#1|)) (-15 -4239 (|#2| |#1|)) (-15 -2984 (|#2| |#1|)) (-15 -1696 ((-112) |#3| |#1|)) (-15 -3908 ((-660 |#3|) |#1|)) (-15 -2837 (|#3| |#1| |#2|)) (-15 -2837 (|#3| |#1| |#2| |#3|)) (-15 -2826 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2124 (|#1| (-1 |#3| |#3|) |#1|))) (-617 |#2| |#3|) (-1125) (-1242)) (T -616)) -NIL -(-10 -8 (-15 -2790 ((-1297) |#1| |#2| |#2|)) (-15 -2529 (|#1| |#1| |#3|)) (-15 -1652 (|#3| |#1|)) (-15 -4239 (|#2| |#1|)) (-15 -2984 (|#2| |#1|)) (-15 -1696 ((-112) |#3| |#1|)) (-15 -3908 ((-660 |#3|) |#1|)) (-15 -2837 (|#3| |#1| |#2|)) (-15 -2837 (|#3| |#1| |#2| |#3|)) (-15 -2826 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2124 (|#1| (-1 |#3| |#3|) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-2790 (((-1297) $ |#1| |#1|) 41 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4471)) ELT)) (-3790 (($) 7 T CONST)) (-2840 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) 52 T ELT)) (-3692 (((-660 |#2|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 ((|#1| $) 44 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#2|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 ((|#1| $) 45 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#2| (-1125)) ELT)) (-3445 (((-660 |#1|) $) 47 T ELT)) (-2187 (((-112) |#1| $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| |#2| (-1125)) ELT)) (-1652 ((|#2| $) 43 (|has| |#1| (-865)) ELT)) (-2529 (($ $ |#2|) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#2| $ |#1| |#2|) 51 T ELT) ((|#2| $ |#1|) 50 T ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) 29 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#2| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-617 |#1| |#2|) (-141) (-1125) (-1242)) (T -617)) -((-3908 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-660 *4)))) (-2187 (*1 *2 *3 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-660 *3)))) (-1696 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1125)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) (-4 *2 (-865)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) (-4 *2 (-865)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) (-4 *3 (-865)) (-4 *2 (-1242)))) (-2529 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-2790 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-1297))))) -(-13 (-502 |t#2|) (-299 |t#1| |t#2|) (-10 -8 (-15 -3908 ((-660 |t#2|) $)) (-15 -2187 ((-112) |t#1| $)) (-15 -3445 ((-660 |t#1|) $)) (IF (|has| |t#2| (-1125)) (IF (|has| $ (-6 -4470)) (-15 -1696 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-865)) (PROGN (-15 -2984 (|t#1| $)) (-15 -4239 (|t#1| $)) (-15 -1652 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4471)) (PROGN (-15 -2529 ($ $ |t#2|)) (-15 -2790 ((-1297) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#2| (-1125)) (|has| |#2| (-102))) ((-626 (-880)) -2811 (|has| |#2| (-1125)) (|has| |#2| (-626 (-880)))) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-1125) |has| |#2| (-1125)) ((-1242) . T)) -((-3603 (((-880) $) 19 T ELT) (($ (-130)) 13 T ELT) (((-130) $) 14 T ELT))) -(((-618) (-13 (-626 (-880)) (-503 (-130)))) (T -618)) -NIL -(-13 (-626 (-880)) (-503 (-130))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT) (((-1241) $) 14 T ELT) (($ (-660 (-1241))) 13 T ELT)) (-3429 (((-660 (-1241)) $) 10 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-619) (-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3603 ($ (-660 (-1241)))) (-15 -3429 ((-660 (-1241)) $))))) (T -619)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619))))) -(-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3603 ($ (-660 (-1241)))) (-15 -3429 ((-660 (-1241)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3426 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2979 (((-1292 (-705 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1292 (-705 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4380 (((-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3790 (($) NIL T CONST)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3638 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2650 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4204 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1634 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3696 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3403 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1647 (($ $ (-944)) NIL T ELT)) (-1777 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3282 (((-1197 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3927 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3749 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2214 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1911 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1292 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1625 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3503 (((-944)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1825 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4254 (($ $ (-944)) NIL T ELT)) (-4041 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1580 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1451 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3370 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-4278 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2677 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3141 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3473 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3287 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1954 (($ $ (-944)) NIL T ELT)) (-4419 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3321 (((-1197 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3504 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3404 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4176 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3423 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2742 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3213 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3532 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2837 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2729 (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) (-1292 $) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT) (((-1292 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2176 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2518 (((-660 (-975 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-660 (-975 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3823 (($ $ $) NIL T ELT)) (-4244 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3603 (((-880) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2769 (((-660 (-1292 |#1|))) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2509 (($ $ $ $) NIL T ELT)) (-4429 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1640 (($ (-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3223 (($ $ $) NIL T ELT)) (-4347 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2791 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3632 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2754 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) 24 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) 19 T ELT) (($ |#1| $) NIL T ELT))) -(((-620 |#1| |#2|) (-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3603 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-760 |#1|)) (T -620)) -((-3603 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-620 *3 *2)) (-4 *2 (-760 *3))))) -(-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3603 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3777 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) 39 T ELT)) (-4212 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2790 (((-1297) $ (-1183) (-1183)) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-1183) |#1|) 49 T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#1| "failed") (-1183) $) 52 T ELT)) (-3790 (($) NIL T CONST)) (-1935 (($ $ (-1183)) 25 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT)) (-3266 (((-3 |#1| "failed") (-1183) $) 53 T ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3920 (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT)) (-2498 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT)) (-1776 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) 38 T ELT)) (-2840 ((|#1| $ (-1183) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-1183)) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-4361 (($ $) 54 T ELT)) (-3263 (($ (-401)) 23 T ELT) (($ (-401) (-1183)) 22 T ELT)) (-2668 (((-401) $) 40 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-1183) $) NIL (|has| (-1183) (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (((-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT)) (-2984 (((-1183) $) NIL (|has| (-1183) (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3740 (((-660 (-1183)) $) 45 T ELT)) (-2490 (((-112) (-1183) $) NIL T ELT)) (-1576 (((-1183) $) 41 T ELT)) (-3596 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL T ELT)) (-3445 (((-660 (-1183)) $) NIL T ELT)) (-2187 (((-112) (-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 ((|#1| $) NIL (|has| (-1183) (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) "failed") (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ $ (-660 (-305 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 43 T ELT)) (-2837 ((|#1| $ (-1183) |#1|) NIL T ELT) ((|#1| $ (-1183)) 48 T ELT)) (-4360 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (((-787) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (((-787) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT)) (-3603 (((-880) $) 21 T ELT)) (-3349 (($ $) 26 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3231 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 20 T ELT)) (-3501 (((-787) $) 47 (|has| $ (-6 -4470)) ELT))) -(((-621 |#1|) (-13 (-376 (-401) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) (-1218 (-1183) |#1|) (-10 -8 (-6 -4470) (-15 -4361 ($ $)))) (-1125)) (T -621)) -((-4361 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1125))))) -(-13 (-376 (-401) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) (-1218 (-1183) |#1|) (-10 -8 (-6 -4470) (-15 -4361 ($ $)))) -((-1645 (((-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) $) 16 T ELT)) (-3740 (((-660 |#2|) $) 20 T ELT)) (-2490 (((-112) |#2| $) 12 T ELT))) -(((-622 |#1| |#2| |#3|) (-10 -8 (-15 -3740 ((-660 |#2|) |#1|)) (-15 -2490 ((-112) |#2| |#1|)) (-15 -1645 ((-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|))) (-623 |#2| |#3|) (-1125) (-1125)) (T -622)) -NIL -(-10 -8 (-15 -3740 ((-660 |#2|) |#1|)) (-15 -2490 ((-112) |#2| |#1|)) (-15 -1645 ((-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|))) -((-3489 (((-112) $ $) 20 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 56 (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3790 (($) 7 T CONST)) (-3289 (($ $) 59 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 47 (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 57 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 54 (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 53 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-3740 (((-660 |#1|) $) 64 T ELT)) (-2490 (((-112) |#1| $) 65 T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 40 T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 41 T ELT)) (-1440 (((-1145) $) 22 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 52 T ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 42 T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) 27 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 26 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 25 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 24 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 49 T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 51 T ELT)) (-3603 (((-880) $) 18 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 43 T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-623 |#1| |#2|) (-141) (-1125) (-1125)) (T -623)) -((-2490 (*1 *2 *3 *1) (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-112)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-660 *3)))) (-3266 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-2258 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) -(-13 (-232 (-2 (|:| -4323 |t#1|) (|:| -2438 |t#2|))) (-10 -8 (-15 -2490 ((-112) |t#1| $)) (-15 -3740 ((-660 |t#1|) $)) (-15 -3266 ((-3 |t#2| "failed") |t#1| $)) (-15 -2258 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) ((-102) -2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ((-626 (-880)) -2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880)))) ((-152 #0#) . T) ((-627 (-549)) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-320 #0#) -12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ((-502 #0#) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ((-1125) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) ((-1242) . T)) -((-2662 (((-625 |#2|) |#1|) 17 T ELT)) (-1394 (((-3 |#1| "failed") (-625 |#2|)) 21 T ELT))) -(((-624 |#1| |#2|) (-10 -7 (-15 -2662 ((-625 |#2|) |#1|)) (-15 -1394 ((-3 |#1| "failed") (-625 |#2|)))) (-1125) (-1125)) (T -624)) -((-1394 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) (-5 *1 (-624 *2 *4)))) (-2662 (*1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *1 (-624 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) -(-10 -7 (-15 -2662 ((-625 |#2|) |#1|)) (-15 -1394 ((-3 |#1| "failed") (-625 |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-4365 (((-3 (-1201) "failed") $) 46 T ELT)) (-3689 (((-1297) $ (-787)) 22 T ELT)) (-3728 (((-787) $) 20 T ELT)) (-2085 (((-115) $) 9 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2869 (($ (-115) (-660 |#1|) (-787)) 32 T ELT) (($ (-1201)) 33 T ELT)) (-3152 (((-112) $ (-115)) 15 T ELT) (((-112) $ (-1201)) 13 T ELT)) (-4181 (((-787) $) 17 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2176 (((-911 (-577)) $) 95 (|has| |#1| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) 102 (|has| |#1| (-627 (-911 (-391)))) ELT) (((-549) $) 88 (|has| |#1| (-627 (-549))) ELT)) (-3603 (((-880) $) 72 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-4100 (((-660 |#1|) $) 19 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 51 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 53 T ELT))) -(((-625 |#1|) (-13 (-133) (-865) (-903 |#1|) (-10 -8 (-15 -2085 ((-115) $)) (-15 -4100 ((-660 |#1|) $)) (-15 -4181 ((-787) $)) (-15 -2869 ($ (-115) (-660 |#1|) (-787))) (-15 -2869 ($ (-1201))) (-15 -4365 ((-3 (-1201) "failed") $)) (-15 -3152 ((-112) $ (-115))) (-15 -3152 ((-112) $ (-1201))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) (-1125)) (T -625)) -((-2085 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-2869 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-1125)) (-5 *1 (-625 *5)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-4365 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-3152 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-625 *4)) (-4 *4 (-1125)))) (-3152 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-112)) (-5 *1 (-625 *4)) (-4 *4 (-1125))))) -(-13 (-133) (-865) (-903 |#1|) (-10 -8 (-15 -2085 ((-115) $)) (-15 -4100 ((-660 |#1|) $)) (-15 -4181 ((-787) $)) (-15 -2869 ($ (-115) (-660 |#1|) (-787))) (-15 -2869 ($ (-1201))) (-15 -4365 ((-3 (-1201) "failed") $)) (-15 -3152 ((-112) $ (-115))) (-15 -3152 ((-112) $ (-1201))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) -((-3603 ((|#1| $) 6 T ELT))) -(((-626 |#1|) (-141) (-1242)) (T -626)) -((-3603 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1242))))) -(-13 (-10 -8 (-15 -3603 (|t#1| $)))) -((-2176 ((|#1| $) 6 T ELT))) -(((-627 |#1|) (-141) (-1242)) (T -627)) -((-2176 (*1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1242))))) -(-13 (-10 -8 (-15 -2176 (|t#1| $)))) -((-3105 (((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)) 15 T ELT) (((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 16 T ELT))) -(((-628 |#1| |#2|) (-10 -7 (-15 -3105 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -3105 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -628)) -((-3105 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-1197 (-420 *6))) (-5 *1 (-628 *5 *6)) (-5 *3 (-420 *6)))) (-3105 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-1197 (-420 *5))) (-5 *1 (-628 *4 *5)) (-5 *3 (-420 *5))))) -(-10 -7 (-15 -3105 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -3105 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) -((-3603 (($ |#1|) 6 T ELT))) -(((-629 |#1|) (-141) (-1242)) (T -629)) -((-3603 (*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1242))))) -(-13 (-10 -8 (-15 -3603 ($ |t#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1885 (($) 14 T CONST)) (-2190 (($) 15 T CONST)) (-2713 (($ $ $) 29 T ELT)) (-2686 (($ $) 27 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1837 (($ $ $) 30 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3555 (($) 11 T CONST)) (-3339 (($ $ $) 31 T ELT)) (-3603 (((-880) $) 35 T ELT)) (-2739 (((-112) $ (|[\|\|]| -3555)) 24 T ELT) (((-112) $ (|[\|\|]| -1885)) 26 T ELT) (((-112) $ (|[\|\|]| -2190)) 21 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2700 (($ $ $) 28 T ELT)) (-2949 (((-112) $ $) 18 T ELT))) -(((-630) (-13 (-992) (-10 -8 (-15 -1885 ($) -2609) (-15 -2739 ((-112) $ (|[\|\|]| -3555))) (-15 -2739 ((-112) $ (|[\|\|]| -1885))) (-15 -2739 ((-112) $ (|[\|\|]| -2190)))))) (T -630)) -((-1885 (*1 *1) (-5 *1 (-630))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3555)) (-5 *2 (-112)) (-5 *1 (-630)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1885)) (-5 *2 (-112)) (-5 *1 (-630)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2190)) (-5 *2 (-112)) (-5 *1 (-630))))) -(-13 (-992) (-10 -8 (-15 -1885 ($) -2609) (-15 -2739 ((-112) $ (|[\|\|]| -3555))) (-15 -2739 ((-112) $ (|[\|\|]| -1885))) (-15 -2739 ((-112) $ (|[\|\|]| -2190))))) -((-2176 (($ |#1|) 6 T ELT))) -(((-631 |#1|) (-141) (-1242)) (T -631)) -((-2176 (*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1242))))) -(-13 (-10 -8 (-15 -2176 ($ |t#1|)))) -((-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-632 |#1| |#2|) (-10 -8 (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-633 |#2|) (-1074)) (T -632)) -NIL -(-10 -8 (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 41 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#1| $) 42 T ELT))) -(((-633 |#1|) (-141) (-1074)) (T -633)) -((-3603 (*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1074))))) -(-13 (-1074) (-664 |t#1|) (-10 -8 (-15 -3603 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| |#1| (-864)) ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2781 ((|#1| $) 13 T ELT)) (-2178 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-864)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-864)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2797 ((|#3| $) 15 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT)) (-1920 (((-787)) 20 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| |#1| (-864)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) 12 T CONST)) (-3001 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-3051 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-634 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (-15 -3051 ($ $ |#3|)) (-15 -3051 ($ |#1| |#3|)) (-15 -2781 (|#1| $)) (-15 -2797 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-742) |#2|)) (T -634)) -((-3051 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-742) *4)))) (-3051 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-634 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-742) *4)))) (-2781 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-634 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-742) *3)))) (-2797 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (-15 -3051 ($ $ |#3|)) (-15 -3051 ($ |#1| |#3|)) (-15 -2781 (|#1| $)) (-15 -2797 (|#3| $)))) -((-2876 ((|#2| |#2| (-1201) (-1201)) 16 T ELT))) -(((-635 |#1| |#2|) (-10 -7 (-15 -2876 (|#2| |#2| (-1201) (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-29 |#1|))) (T -635)) -((-2876 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-1227) (-982) (-29 *4)))))) -(-10 -7 (-15 -2876 (|#2| |#2| (-1201) (-1201)))) -((-3489 (((-112) $ $) 64 T ELT)) (-3801 (((-112) $) 58 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-2594 ((|#1| $) 55 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-4221 (((-2 (|:| -3487 $) (|:| -1744 (-420 |#2|))) (-420 |#2|)) 111 (|has| |#1| (-375)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 99 T ELT) (((-3 |#2| "failed") $) 95 T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) 27 T ELT)) (-1625 (((-3 $ "failed") $) 88 T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2536 (((-577) $) 22 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) 40 T ELT)) (-3180 (($ |#1| (-577)) 24 T ELT)) (-3365 ((|#1| $) 57 T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) 101 (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3478 (((-3 $ "failed") $ $) 93 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-4167 (((-787) $) 115 (|has| |#1| (-375)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 114 (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-3616 (((-577) $) 38 T ELT)) (-2176 (((-420 |#2|) $) 47 T ELT)) (-3603 (((-880) $) 69 T ELT) (($ (-577)) 35 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3421 ((|#1| $ (-577)) 72 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) 9 T CONST)) (-2767 (($) 14 T CONST)) (-2136 (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) 21 T ELT)) (-3042 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 90 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-636 |#1| |#2|) (-13 (-233 |#2|) (-569) (-627 (-420 |#2|)) (-424 |#1|) (-1063 |#2|) (-10 -8 (-15 -2148 ((-112) $)) (-15 -3616 ((-577) $)) (-15 -2536 ((-577) $)) (-15 -3391 ($ $)) (-15 -3365 (|#1| $)) (-15 -2594 (|#1| $)) (-15 -3421 (|#1| $ (-577))) (-15 -3180 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -4221 ((-2 (|:| -3487 $) (|:| -1744 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) (-569) (-1268 |#1|)) (T -636)) -((-2148 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-636 *3 *4)) (-4 *4 (-1268 *3)))) (-3616 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) (-4 *4 (-1268 *3)))) (-2536 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) (-4 *4 (-1268 *3)))) (-3391 (*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) (-3365 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) (-2594 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) (-4 *4 (-1268 *2)))) (-3180 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) (-4 *4 (-1268 *2)))) (-4221 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -3487 (-636 *4 *5)) (|:| -1744 (-420 *5)))) (-5 *1 (-636 *4 *5)) (-5 *3 (-420 *5))))) -(-13 (-233 |#2|) (-569) (-627 (-420 |#2|)) (-424 |#1|) (-1063 |#2|) (-10 -8 (-15 -2148 ((-112) $)) (-15 -3616 ((-577) $)) (-15 -2536 ((-577) $)) (-15 -3391 ($ $)) (-15 -3365 (|#1| $)) (-15 -2594 (|#1| $)) (-15 -3421 (|#1| $ (-577))) (-15 -3180 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -4221 ((-2 (|:| -3487 $) (|:| -1744 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) -((-1568 (((-660 |#6|) (-660 |#4|) (-112)) 54 T ELT)) (-4430 ((|#6| |#6|) 48 T ELT))) -(((-637 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4430 (|#6| |#6|)) (-15 -1568 ((-660 |#6|) (-660 |#4|) (-112)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|) (-1134 |#1| |#2| |#3| |#4|)) (T -637)) -((-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *10)) (-5 *1 (-637 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *10 (-1134 *5 *6 *7 *8)))) (-4430 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-637 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *2 (-1134 *3 *4 *5 *6))))) -(-10 -7 (-15 -4430 (|#6| |#6|)) (-15 -1568 ((-660 |#6|) (-660 |#4|) (-112)))) -((-3065 (((-112) |#3| (-787) (-660 |#3|)) 29 T ELT)) (-2941 (((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1197 |#3|)))) "failed") |#3| (-660 (-1197 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1704 (-660 (-2 (|:| |irr| |#4|) (|:| -2087 (-577)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)) 69 T ELT))) -(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3065 ((-112) |#3| (-787) (-660 |#3|))) (-15 -2941 ((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1197 |#3|)))) "failed") |#3| (-660 (-1197 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1704 (-660 (-2 (|:| |irr| |#4|) (|:| -2087 (-577)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)))) (-865) (-809) (-318) (-972 |#3| |#2| |#1|)) (T -638)) -((-2941 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1704 (-660 (-2 (|:| |irr| *10) (|:| -2087 (-577))))))) (-5 *6 (-660 *3)) (-5 *7 (-660 *8)) (-4 *8 (-865)) (-4 *3 (-318)) (-4 *10 (-972 *3 *9 *8)) (-4 *9 (-809)) (-5 *2 (-2 (|:| |polfac| (-660 *10)) (|:| |correct| *3) (|:| |corrfact| (-660 (-1197 *3))))) (-5 *1 (-638 *8 *9 *3 *10)) (-5 *4 (-660 (-1197 *3))))) (-3065 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-787)) (-5 *5 (-660 *3)) (-4 *3 (-318)) (-4 *6 (-865)) (-4 *7 (-809)) (-5 *2 (-112)) (-5 *1 (-638 *6 *7 *3 *8)) (-4 *8 (-972 *3 *7 *6))))) -(-10 -7 (-15 -3065 ((-112) |#3| (-787) (-660 |#3|))) (-15 -2941 ((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1197 |#3|)))) "failed") |#3| (-660 (-1197 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1704 (-660 (-2 (|:| |irr| |#4|) (|:| -2087 (-577)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2171 (((-1160) $) 11 T ELT)) (-2159 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 17 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-639) (-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $))))) (T -639)) -((-2159 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639))))) -(-13 (-1108) (-10 -8 (-15 -2159 ((-1160) $)) (-15 -2171 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1530 (((-660 |#1|) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2504 (($ $) 77 T ELT)) (-3716 (((-680 |#1| |#2|) $) 60 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 81 T ELT)) (-1549 (((-660 (-305 |#2|)) $ $) 42 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2079 (($ (-680 |#1| |#2|)) 56 T ELT)) (-1328 (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-3603 (((-880) $) 66 T ELT) (((-1307 |#1| |#2|) $) NIL T ELT) (((-1312 |#1| |#2|) $) 74 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 61 T CONST)) (-2571 (((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-4366 (((-660 (-680 |#1| |#2|)) (-660 |#1|)) 73 T ELT)) (-2994 (((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-2949 (((-112) $ $) 62 T ELT)) (-3051 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-640 |#1| |#2| |#3|) (-13 (-486) (-10 -8 (-15 -2079 ($ (-680 |#1| |#2|))) (-15 -3716 ((-680 |#1| |#2|) $)) (-15 -2994 ((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $)) (-15 -3603 ((-1307 |#1| |#2|) $)) (-15 -3603 ((-1312 |#1| |#2|) $)) (-15 -2504 ($ $)) (-15 -1530 ((-660 |#1|) $)) (-15 -4366 ((-660 (-680 |#1| |#2|)) (-660 |#1|))) (-15 -2571 ((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $)) (-15 -1549 ((-660 (-305 |#2|)) $ $)))) (-865) (-13 (-174) (-733 (-420 (-577)))) (-944)) (T -640)) -((-2079 (*1 *1 *2) (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-5 *1 (-640 *3 *4 *5)) (-14 *5 (-944)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-680 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-912 *3)) (|:| |c| *4)))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-2504 (*1 *1 *1) (-12 (-5 *1 (-640 *2 *3 *4)) (-4 *2 (-865)) (-4 *3 (-13 (-174) (-733 (-420 (-577))))) (-14 *4 (-944)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-680 *4 *5))) (-5 *1 (-640 *4 *5 *6)) (-4 *5 (-13 (-174) (-733 (-420 (-577))))) (-14 *6 (-944)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-688 *3)) (|:| |c| *4)))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-1549 (*1 *2 *1 *1) (-12 (-5 *2 (-660 (-305 *4))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944))))) -(-13 (-486) (-10 -8 (-15 -2079 ($ (-680 |#1| |#2|))) (-15 -3716 ((-680 |#1| |#2|) $)) (-15 -2994 ((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $)) (-15 -3603 ((-1307 |#1| |#2|) $)) (-15 -3603 ((-1312 |#1| |#2|) $)) (-15 -2504 ($ $)) (-15 -1530 ((-660 |#1|) $)) (-15 -4366 ((-660 (-680 |#1| |#2|)) (-660 |#1|))) (-15 -2571 ((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $)) (-15 -1549 ((-660 (-305 |#2|)) $ $)))) -((-1568 (((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)) 103 T ELT) (((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112)) 77 T ELT)) (-3067 (((-112) (-660 (-796 |#1| (-882 |#2|)))) 26 T ELT)) (-4338 (((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)) 102 T ELT)) (-1402 (((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112)) 76 T ELT)) (-1481 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|)))) 30 T ELT)) (-2851 (((-3 (-660 (-796 |#1| (-882 |#2|))) "failed") (-660 (-796 |#1| (-882 |#2|)))) 29 T ELT))) -(((-641 |#1| |#2|) (-10 -7 (-15 -3067 ((-112) (-660 (-796 |#1| (-882 |#2|))))) (-15 -2851 ((-3 (-660 (-796 |#1| (-882 |#2|))) "failed") (-660 (-796 |#1| (-882 |#2|))))) (-15 -1481 ((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))))) (-15 -1402 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -4338 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -1568 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -1568 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)))) (-465) (-660 (-1201))) (T -641)) -((-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) (-5 *1 (-641 *5 *6)))) (-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-641 *5 *6)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) (-5 *1 (-641 *5 *6)))) (-1402 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-641 *5 *6)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4)))) (-2851 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-660 (-796 *4 (-882 *5)))) (-4 *4 (-465)) (-14 *5 (-660 (-1201))) (-5 *2 (-112)) (-5 *1 (-641 *4 *5))))) -(-10 -7 (-15 -3067 ((-112) (-660 (-796 |#1| (-882 |#2|))))) (-15 -2851 ((-3 (-660 (-796 |#1| (-882 |#2|))) "failed") (-660 (-796 |#1| (-882 |#2|))))) (-15 -1481 ((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))))) (-15 -1402 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -4338 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -1568 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -1568 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)))) -((-2642 (($ $) 38 T ELT)) (-2501 (($ $) 21 T ELT)) (-2616 (($ $) 37 T ELT)) (-2471 (($ $) 22 T ELT)) (-2666 (($ $) 36 T ELT)) (-2523 (($ $) 23 T ELT)) (-2824 (($) 48 T ELT)) (-3716 (($ $) 45 T ELT)) (-1844 (($ $) 17 T ELT)) (-1961 (($ $ (-1117 $)) 7 T ELT) (($ $ (-1201)) 6 T ELT)) (-2079 (($ $) 46 T ELT)) (-2421 (($ $) 15 T ELT)) (-2458 (($ $) 16 T ELT)) (-2680 (($ $) 35 T ELT)) (-2535 (($ $) 24 T ELT)) (-2655 (($ $) 34 T ELT)) (-2512 (($ $) 25 T ELT)) (-2631 (($ $) 33 T ELT)) (-2486 (($ $) 26 T ELT)) (-2722 (($ $) 44 T ELT)) (-2570 (($ $) 32 T ELT)) (-2694 (($ $) 43 T ELT)) (-2546 (($ $) 31 T ELT)) (-2748 (($ $) 42 T ELT)) (-2592 (($ $) 30 T ELT)) (-2897 (($ $) 41 T ELT)) (-2604 (($ $) 29 T ELT)) (-2734 (($ $) 40 T ELT)) (-2581 (($ $) 28 T ELT)) (-2708 (($ $) 39 T ELT)) (-2558 (($ $) 27 T ELT)) (-4412 (($ $) 19 T ELT)) (-3059 (($ $) 20 T ELT)) (-2597 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-642) (-141)) (T -642)) -((-3059 (*1 *1 *1) (-4 *1 (-642))) (-4412 (*1 *1 *1) (-4 *1 (-642))) (-2597 (*1 *1 *1) (-4 *1 (-642))) (-1844 (*1 *1 *1) (-4 *1 (-642))) (-2458 (*1 *1 *1) (-4 *1 (-642))) (-2421 (*1 *1 *1) (-4 *1 (-642)))) -(-13 (-982) (-1227) (-10 -8 (-15 -3059 ($ $)) (-15 -4412 ($ $)) (-15 -2597 ($ $)) (-15 -1844 ($ $)) (-15 -2458 ($ $)) (-15 -2421 ($ $)))) -(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-982) . T) ((-1227) . T) ((-1230) . T)) -((-2085 (((-115) (-115)) 88 T ELT)) (-1844 ((|#2| |#2|) 28 T ELT)) (-1961 ((|#2| |#2| (-1117 |#2|)) 84 T ELT) ((|#2| |#2| (-1201)) 50 T ELT)) (-2421 ((|#2| |#2|) 27 T ELT)) (-2458 ((|#2| |#2|) 29 T ELT)) (-3123 (((-112) (-115)) 33 T ELT)) (-4412 ((|#2| |#2|) 24 T ELT)) (-3059 ((|#2| |#2|) 26 T ELT)) (-2597 ((|#2| |#2|) 25 T ELT))) -(((-643 |#1| |#2|) (-10 -7 (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -3059 (|#2| |#2|)) (-15 -4412 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -1844 (|#2| |#2|)) (-15 -2421 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -1961 (|#2| |#2| (-1201))) (-15 -1961 (|#2| |#2| (-1117 |#2|)))) (-569) (-13 (-443 |#1|) (-1027) (-1227))) (T -643)) -((-1961 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) (-4 *4 (-569)) (-5 *1 (-643 *4 *2)))) (-1961 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-643 *4 *2)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-4412 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-3059 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-643 *3 *4)) (-4 *4 (-13 (-443 *3) (-1027) (-1227))))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-643 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227)))))) -(-10 -7 (-15 -3123 ((-112) (-115))) (-15 -2085 ((-115) (-115))) (-15 -3059 (|#2| |#2|)) (-15 -4412 (|#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -1844 (|#2| |#2|)) (-15 -2421 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -1961 (|#2| |#2| (-1201))) (-15 -1961 (|#2| |#2| (-1117 |#2|)))) -((-2770 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 63 T ELT)) (-2782 (((-660 (-254 |#1| |#2|)) (-660 (-494 |#1| |#2|))) 89 T ELT)) (-4415 (((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-882 |#1|)) 91 T ELT) (((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)) (-882 |#1|)) 90 T ELT)) (-1655 (((-2 (|:| |gblist| (-660 (-254 |#1| |#2|))) (|:| |gvlist| (-660 (-577)))) (-660 (-494 |#1| |#2|))) 134 T ELT)) (-3593 (((-660 (-494 |#1| |#2|)) (-882 |#1|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|))) 104 T ELT)) (-3154 (((-2 (|:| |glbase| (-660 (-254 |#1| |#2|))) (|:| |glval| (-660 (-577)))) (-660 (-254 |#1| |#2|))) 145 T ELT)) (-3613 (((-1292 |#2|) (-494 |#1| |#2|) (-660 (-494 |#1| |#2|))) 68 T ELT)) (-3972 (((-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|))) 47 T ELT)) (-3012 (((-254 |#1| |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|))) 60 T ELT)) (-1981 (((-254 |#1| |#2|) (-660 |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|))) 112 T ELT))) -(((-644 |#1| |#2|) (-10 -7 (-15 -1655 ((-2 (|:| |gblist| (-660 (-254 |#1| |#2|))) (|:| |gvlist| (-660 (-577)))) (-660 (-494 |#1| |#2|)))) (-15 -3154 ((-2 (|:| |glbase| (-660 (-254 |#1| |#2|))) (|:| |glval| (-660 (-577)))) (-660 (-254 |#1| |#2|)))) (-15 -2782 ((-660 (-254 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -4415 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -4415 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -3972 ((-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -3613 ((-1292 |#2|) (-494 |#1| |#2|) (-660 (-494 |#1| |#2|)))) (-15 -1981 ((-254 |#1| |#2|) (-660 |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -3593 ((-660 (-494 |#1| |#2|)) (-882 |#1|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -3012 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -2770 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) (-660 (-1201)) (-465)) (T -644)) -((-2770 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-494 *4 *5)) (-5 *1 (-644 *4 *5)))) (-3012 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5)))) (-3593 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-882 *4)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5)))) (-1981 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-254 *5 *6))) (-4 *6 (-465)) (-5 *2 (-254 *5 *6)) (-14 *5 (-660 (-1201))) (-5 *1 (-644 *5 *6)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-1292 *6)) (-5 *1 (-644 *5 *6)))) (-3972 (*1 *2 *2) (-12 (-5 *2 (-660 (-494 *3 *4))) (-14 *3 (-660 (-1201))) (-4 *4 (-465)) (-5 *1 (-644 *3 *4)))) (-4415 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) (-4 *6 (-465)))) (-4415 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) (-4 *6 (-465)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-660 (-254 *4 *5))) (-5 *1 (-644 *4 *5)))) (-3154 (*1 *2 *3) (-12 (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |glbase| (-660 (-254 *4 *5))) (|:| |glval| (-660 (-577))))) (-5 *1 (-644 *4 *5)) (-5 *3 (-660 (-254 *4 *5))))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |gblist| (-660 (-254 *4 *5))) (|:| |gvlist| (-660 (-577))))) (-5 *1 (-644 *4 *5))))) -(-10 -7 (-15 -1655 ((-2 (|:| |gblist| (-660 (-254 |#1| |#2|))) (|:| |gvlist| (-660 (-577)))) (-660 (-494 |#1| |#2|)))) (-15 -3154 ((-2 (|:| |glbase| (-660 (-254 |#1| |#2|))) (|:| |glval| (-660 (-577)))) (-660 (-254 |#1| |#2|)))) (-15 -2782 ((-660 (-254 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -4415 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -4415 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -3972 ((-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -3613 ((-1292 |#2|) (-494 |#1| |#2|) (-660 (-494 |#1| |#2|)))) (-15 -1981 ((-254 |#1| |#2|) (-660 |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -3593 ((-660 (-494 |#1| |#2|)) (-882 |#1|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -3012 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -2770 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) NIL T ELT)) (-2790 (((-1297) $ (-1183) (-1183)) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 (((-52) $ (-1183) (-52)) 16 T ELT) (((-52) $ (-1201) (-52)) 17 T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 (-52) "failed") (-1183) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 (-52) "failed") (-1183) $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $ (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (((-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $ (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 (((-52) $ (-1183) (-52)) NIL (|has| $ (-6 -4471)) ELT)) (-2759 (((-52) $ (-1183)) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-4361 (($ $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-1183) $) NIL (|has| (-1183) (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT)) (-2984 (((-1183) $) NIL (|has| (-1183) (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-2052 (($ (-401)) 9 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-52) (-1125)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT)) (-3740 (((-660 (-1183)) $) NIL T ELT)) (-2490 (((-112) (-1183) $) NIL T ELT)) (-3596 (((-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) $) NIL T ELT)) (-3445 (((-660 (-1183)) $) NIL T ELT)) (-2187 (((-112) (-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-52) (-1125)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT)) (-1652 (((-52) $) NIL (|has| (-1183) (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) "failed") (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL T ELT)) (-2529 (($ $ (-52)) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-660 (-52)) (-660 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-660 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT)) (-3908 (((-660 (-52)) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 (((-52) $ (-1183)) 14 T ELT) (((-52) $ (-1183) (-52)) NIL T ELT) (((-52) $ (-1201)) 15 T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-1125))) ELT) (((-787) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT) (((-787) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-52) (-626 (-880))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 (-52))) (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-645) (-13 (-1218 (-1183) (-52)) (-297 (-1201) (-52)) (-10 -8 (-15 -2052 ($ (-401))) (-15 -4361 ($ $)) (-15 -1895 ((-52) $ (-1201) (-52)))))) (T -645)) -((-2052 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-645)))) (-4361 (*1 *1 *1) (-5 *1 (-645))) (-1895 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1201)) (-5 *1 (-645))))) -(-13 (-1218 (-1183) (-52)) (-297 (-1201) (-52)) (-10 -8 (-15 -2052 ($ (-401))) (-15 -4361 ($ $)) (-15 -1895 ((-52) $ (-1201) (-52))))) -((-3051 (($ $ |#2|) 10 T ELT))) -(((-646 |#1| |#2|) (-10 -8 (-15 -3051 (|#1| |#1| |#2|))) (-647 |#2|) (-174)) (T -646)) -NIL -(-10 -8 (-15 -3051 (|#1| |#1| |#2|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3614 (($ $ $) 34 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 33 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-647 |#1|) (-141) (-174)) (T -647)) -((-3614 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) -(-13 (-733 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3614 ($ $ $)) (IF (|has| |t#1| (-375)) (-15 -3051 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3426 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2979 (((-1292 (-705 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1292 (-705 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4380 (((-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3790 (($) NIL T CONST)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3638 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2650 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4204 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1634 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3696 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3403 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1647 (($ $ (-944)) NIL T ELT)) (-1777 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3282 (((-1197 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3927 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3749 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2214 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1911 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1292 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1625 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3503 (((-944)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1825 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4254 (($ $ (-944)) NIL T ELT)) (-4041 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1580 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1451 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3370 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-4278 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2677 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3141 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3473 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3287 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1954 (($ $ (-944)) NIL T ELT)) (-4419 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3321 (((-1197 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3504 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3404 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4176 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3423 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2742 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3213 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3532 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2837 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2729 (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-705 |#1|) (-1292 $) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT) (((-1292 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2176 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2518 (((-660 (-975 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-660 (-975 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3823 (($ $ $) NIL T ELT)) (-4244 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3603 (((-880) $) NIL T ELT) ((|#2| $) 12 T ELT) (($ |#2|) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2769 (((-660 (-1292 |#1|))) NIL (-2811 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2509 (($ $ $ $) NIL T ELT)) (-4429 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1640 (($ (-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3223 (($ $ $) NIL T ELT)) (-4347 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2791 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3632 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) 20 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 11 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-648 |#1| |#2|) (-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3603 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-760 |#1|)) (T -648)) -((-3603 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-648 *3 *2)) (-4 *2 (-760 *3))))) -(-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3603 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) -((-1898 (((-3 (-859 |#2|) "failed") |#2| (-305 |#2|) (-1183)) 106 T ELT) (((-3 (-859 |#2|) (-2 (|:| |leftHandLimit| (-3 (-859 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-859 |#2|) "failed"))) "failed") |#2| (-305 (-859 |#2|))) 131 T ELT)) (-3177 (((-3 (-849 |#2|) "failed") |#2| (-305 (-849 |#2|))) 136 T ELT))) -(((-649 |#1| |#2|) (-10 -7 (-15 -1898 ((-3 (-859 |#2|) (-2 (|:| |leftHandLimit| (-3 (-859 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-859 |#2|) "failed"))) "failed") |#2| (-305 (-859 |#2|)))) (-15 -3177 ((-3 (-849 |#2|) "failed") |#2| (-305 (-849 |#2|)))) (-15 -1898 ((-3 (-859 |#2|) "failed") |#2| (-305 |#2|) (-1183)))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -649)) -((-1898 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1183)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-859 *3)) (-5 *1 (-649 *6 *3)))) (-3177 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-849 *3))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-849 *3)) (-5 *1 (-649 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-859 *3))) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (-859 *3) (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) "failed")) (-5 *1 (-649 *5 *3))))) -(-10 -7 (-15 -1898 ((-3 (-859 |#2|) (-2 (|:| |leftHandLimit| (-3 (-859 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-859 |#2|) "failed"))) "failed") |#2| (-305 (-859 |#2|)))) (-15 -3177 ((-3 (-849 |#2|) "failed") |#2| (-305 (-849 |#2|)))) (-15 -1898 ((-3 (-859 |#2|) "failed") |#2| (-305 |#2|) (-1183)))) -((-1898 (((-3 (-859 (-420 (-975 |#1|))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))) (-1183)) 86 T ELT) (((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|)))) 20 T ELT) (((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-859 (-975 |#1|)))) 35 T ELT)) (-3177 (((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|)))) 23 T ELT) (((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-849 (-975 |#1|)))) 43 T ELT))) -(((-650 |#1|) (-10 -7 (-15 -1898 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-859 (-975 |#1|))))) (-15 -1898 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -3177 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-849 (-975 |#1|))))) (-15 -3177 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -1898 ((-3 (-859 (-420 (-975 |#1|))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))) (-1183)))) (-465)) (T -650)) -((-1898 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-420 (-975 *6)))) (-5 *5 (-1183)) (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-859 *3)) (-5 *1 (-650 *6)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-465)) (-5 *2 (-849 *3)) (-5 *1 (-650 *5)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-849 (-975 *5)))) (-4 *5 (-465)) (-5 *2 (-849 (-420 (-975 *5)))) (-5 *1 (-650 *5)) (-5 *3 (-420 (-975 *5))))) (-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-465)) (-5 *2 (-3 (-859 *3) (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) "failed")) (-5 *1 (-650 *5)))) (-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-859 (-975 *5)))) (-4 *5 (-465)) (-5 *2 (-3 (-859 (-420 (-975 *5))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 *5))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 *5))) "failed"))) "failed")) (-5 *1 (-650 *5)) (-5 *3 (-420 (-975 *5)))))) -(-10 -7 (-15 -1898 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-859 (-975 |#1|))))) (-15 -1898 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -3177 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-849 (-975 |#1|))))) (-15 -3177 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -1898 ((-3 (-859 (-420 (-975 |#1|))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))) (-1183)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) 11 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1664 (($ (-217 |#1|)) 12 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-882 |#1|)) 7 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-651 |#1|) (-13 (-860) (-629 (-882 |#1|)) (-10 -8 (-15 -1664 ($ (-217 |#1|))))) (-660 (-1201))) (T -651)) -((-1664 (*1 *1 *2) (-12 (-5 *2 (-217 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-651 *3))))) -(-13 (-860) (-629 (-882 |#1|)) (-10 -8 (-15 -1664 ($ (-217 |#1|))))) -((-4246 (((-3 (-1292 (-420 |#1|)) "failed") (-1292 |#2|) |#2|) 64 (-2686 (|has| |#1| (-375))) ELT) (((-3 (-1292 |#1|) "failed") (-1292 |#2|) |#2|) 49 (|has| |#1| (-375)) ELT)) (-3668 (((-112) (-1292 |#2|)) 33 T ELT)) (-4431 (((-3 (-1292 |#1|) "failed") (-1292 |#2|)) 40 T ELT))) -(((-652 |#1| |#2|) (-10 -7 (-15 -3668 ((-112) (-1292 |#2|))) (-15 -4431 ((-3 (-1292 |#1|) "failed") (-1292 |#2|))) (IF (|has| |#1| (-375)) (-15 -4246 ((-3 (-1292 |#1|) "failed") (-1292 |#2|) |#2|)) (-15 -4246 ((-3 (-1292 (-420 |#1|)) "failed") (-1292 |#2|) |#2|)))) (-569) (-13 (-1074) (-654 |#1|))) (T -652)) -((-4246 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) (-2686 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1292 (-420 *5))) (-5 *1 (-652 *5 *4)))) (-4246 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1292 *5)) (-5 *1 (-652 *5 *4)))) (-4431 (*1 *2 *3) (|partial| -12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) (-4 *4 (-569)) (-5 *2 (-1292 *4)) (-5 *1 (-652 *4 *5)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-652 *4 *5))))) -(-10 -7 (-15 -3668 ((-112) (-1292 |#2|))) (-15 -4431 ((-3 (-1292 |#1|) "failed") (-1292 |#2|))) (IF (|has| |#1| (-375)) (-15 -4246 ((-3 (-1292 |#1|) "failed") (-1292 |#2|) |#2|)) (-15 -4246 ((-3 (-1292 (-420 |#1|)) "failed") (-1292 |#2|) |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3229 (((-660 (-891 (-651 |#2|) |#1|)) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-3180 (($ |#1| (-651 |#2|)) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3135 (($ (-660 |#1|)) 25 T ELT)) (-4219 (((-651 |#2|) $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3941 (((-135)) 16 T ELT)) (-2729 (((-1292 |#1|) $) 44 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-651 |#2|)) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 20 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 17 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-653 |#1| |#2|) (-13 (-1299 |#1|) (-629 (-651 |#2|)) (-522 |#1| (-651 |#2|)) (-10 -8 (-15 -3135 ($ (-660 |#1|))) (-15 -2729 ((-1292 |#1|) $)))) (-375) (-660 (-1201))) (T -653)) -((-3135 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-653 *3 *4)) (-14 *4 (-660 (-1201))))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-1292 *3)) (-5 *1 (-653 *3 *4)) (-4 *3 (-375)) (-14 *4 (-660 (-1201)))))) -(-13 (-1299 |#1|) (-629 (-651 |#2|)) (-522 |#1| (-651 |#2|)) (-10 -8 (-15 -3135 ($ (-660 |#1|))) (-15 -2729 ((-1292 |#1|) $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2850 (((-705 |#1|) (-705 $)) 30 T ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 29 T ELT)) (-1512 (((-705 |#1|) (-1292 $)) 32 T ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 31 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) -(((-654 |#1|) (-141) (-1074)) (T -654)) -((-1512 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) (-5 *2 (-705 *4)))) (-1512 (*1 *2 *3 *1) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| -1631 (-705 *4)) (|:| |vec| (-1292 *4)))))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-705 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) (-5 *2 (-705 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *1)) (-5 *4 (-1292 *1)) (-4 *1 (-654 *5)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -1631 (-705 *5)) (|:| |vec| (-1292 *5))))))) -(-13 (-664 |t#1|) (-10 -8 (-15 -1512 ((-705 |t#1|) (-1292 $))) (-15 -1512 ((-2 (|:| -1631 (-705 |t#1|)) (|:| |vec| (-1292 |t#1|))) (-1292 $) $)) (-15 -2850 ((-705 |t#1|) (-705 $))) (-15 -2850 ((-2 (|:| -1631 (-705 |t#1|)) (|:| |vec| (-1292 |t#1|))) (-705 $) (-1292 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3393 (($ (-660 |#1|)) 23 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 ((|#1| $ (-653 |#1| |#2|)) 46 T ELT)) (-3941 (((-135)) 13 T ELT)) (-2729 (((-1292 |#1|) $) 42 T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 18 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 14 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-655 |#1| |#2|) (-13 (-1299 |#1|) (-297 (-653 |#1| |#2|) |#1|) (-10 -8 (-15 -3393 ($ (-660 |#1|))) (-15 -2729 ((-1292 |#1|) $)))) (-375) (-660 (-1201))) (T -655)) -((-3393 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-655 *3 *4)) (-14 *4 (-660 (-1201))))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-1292 *3)) (-5 *1 (-655 *3 *4)) (-4 *3 (-375)) (-14 *4 (-660 (-1201)))))) -(-13 (-1299 |#1|) (-297 (-653 |#1| |#2|) |#1|) (-10 -8 (-15 -3393 ($ (-660 |#1|))) (-15 -2729 ((-1292 |#1|) $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT) (($ $ |#1|) 17 T ELT))) -(((-656 |#1|) (-141) (-1137)) (T -656)) -NIL -(-13 (-662 |t#1|) (-1076 |t#1|)) -(((-102) . T) ((-626 (-880)) . T) ((-662 |#1|) . T) ((-1076 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-2494 ((|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|) 17 T ELT) ((|#2| (-660 |#1|) (-660 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|)) 12 T ELT))) -(((-657 |#1| |#2|) (-10 -7 (-15 -2494 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|))) (-15 -2494 (|#2| (-660 |#1|) (-660 |#2|) |#1|)) (-15 -2494 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|)) (-15 -2494 (|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|)) (-15 -2494 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|))) (-15 -2494 (|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)))) (-1125) (-1242)) (T -657)) -((-2494 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) (-2494 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *1 (-657 *5 *6)))) (-2494 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) (-2494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 *5)) (-4 *6 (-1125)) (-4 *5 (-1242)) (-5 *2 (-1 *5 *6)) (-5 *1 (-657 *6 *5)))) (-2494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *5 *6))))) -(-10 -7 (-15 -2494 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|))) (-15 -2494 (|#2| (-660 |#1|) (-660 |#2|) |#1|)) (-15 -2494 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|)) (-15 -2494 (|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|)) (-15 -2494 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|))) (-15 -2494 (|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)))) -((-1979 (((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|) 16 T ELT)) (-2498 ((|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|) 18 T ELT)) (-2124 (((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)) 13 T ELT))) -(((-658 |#1| |#2|) (-10 -7 (-15 -1979 ((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -2124 ((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)))) (-1242) (-1242)) (T -658)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-660 *6)) (-5 *1 (-658 *5 *6)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-658 *5 *2)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-660 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-660 *5)) (-5 *1 (-658 *6 *5))))) -(-10 -7 (-15 -1979 ((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -2124 ((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)))) -((-2124 (((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)) 21 T ELT))) -(((-659 |#1| |#2| |#3|) (-10 -7 (-15 -2124 ((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)))) (-1242) (-1242) (-1242)) (T -659)) -((-2124 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-660 *6)) (-5 *5 (-660 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-660 *8)) (-5 *1 (-659 *6 *7 *8))))) -(-10 -7 (-15 -2124 ((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) NIL T ELT)) (-4148 ((|#1| $) NIL T ELT)) (-3063 (($ $) NIL T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) $) NIL (|has| |#1| (-865)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-3246 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2312 (($ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) NIL (|has| $ (-6 -4471)) ELT)) (-2946 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-1386 (($ $ $) 37 (|has| |#1| (-1125)) ELT)) (-2543 (($ $ $) 41 (|has| |#1| (-1125)) ELT)) (-3978 (($ $ $) 44 (|has| |#1| (-1125)) ELT)) (-2236 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4135 ((|#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-1663 (($ $) 23 T ELT) (($ $ (-787)) NIL T ELT)) (-3699 (($ $) NIL (|has| |#1| (-1125)) ELT)) (-3289 (($ $) 36 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) NIL (|has| |#1| (-1125)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-3920 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3919 (((-112) $) NIL T ELT)) (-3728 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2673 (((-112) $) 11 T ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-4106 (($) 9 T CONST)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1615 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-1334 (($ $ $) NIL (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2880 (($ |#1|) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-4345 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2218 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 20 T ELT) (($ $ (-787)) NIL T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1861 (((-112) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) 39 T ELT)) (-2693 (($) 38 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT) ((|#1| $ (-577)) 42 T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3839 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3490 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3834 (((-112) $) NIL T ELT)) (-4243 (($ $) NIL T ELT)) (-1839 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) NIL T ELT)) (-3855 (($ $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) 53 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) NIL T ELT)) (-2908 (($ |#1| $) 12 T ELT)) (-1584 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1685 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-660 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3533 (($ $ $) 13 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1422 (((-1183) $) 31 (|has| |#1| (-844)) ELT) (((-1183) $ (-112)) 32 (|has| |#1| (-844)) ELT) (((-1297) (-838) $) 33 (|has| |#1| (-844)) ELT) (((-1297) (-838) $ (-112)) 34 (|has| |#1| (-844)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-660 |#1|) (-13 (-682 |#1|) (-10 -8 (-15 -4106 ($) -2609) (-15 -2673 ((-112) $)) (-15 -2908 ($ |#1| $)) (-15 -3533 ($ $ $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -1386 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -3978 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1242)) (T -660)) -((-4106 (*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1242)))) (-2908 (*1 *1 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) (-3533 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) (-1386 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)))) (-3978 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) -(-13 (-682 |#1|) (-10 -8 (-15 -4106 ($) -2609) (-15 -2673 ((-112) $)) (-15 -2908 ($ |#1| $)) (-15 -3533 ($ $ $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -1386 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -3978 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 11 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-661 |#1|) (-13 (-1108) (-626 |#1|)) (-1125)) (T -661)) -NIL -(-13 (-1108) (-626 |#1|)) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT))) -(((-662 |#1|) (-141) (-1137)) (T -662)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1137))))) -(-13 (-1125) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3262 (($ |#1| |#1| $) 43 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-3699 (($ $) 45 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) 56 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 9 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 37 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 47 T ELT)) (-4345 (($ |#1| $) 29 T ELT) (($ |#1| $ (-787)) 42 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3439 ((|#1| $) 50 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 23 T ELT)) (-2693 (($) 28 T ELT)) (-1996 (((-112) $) 54 T ELT)) (-3858 (((-660 (-2 (|:| -2438 |#1|) (|:| -1452 (-787)))) $) 67 T ELT)) (-4360 (($) 26 T ELT) (($ (-660 |#1|)) 19 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 63 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 20 T ELT)) (-2176 (((-549) $) 34 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) NIL T ELT)) (-3603 (((-880) $) 14 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 24 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 69 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 17 (|has| $ (-6 -4470)) ELT))) -(((-663 |#1|) (-13 (-711 |#1|) (-10 -8 (-6 -4470) (-15 -1996 ((-112) $)) (-15 -3262 ($ |#1| |#1| $)))) (-1125)) (T -663)) -((-1996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-1125)))) (-3262 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1125))))) -(-13 (-711 |#1|) (-10 -8 (-6 -4470) (-15 -1996 ((-112) $)) (-15 -3262 ($ |#1| |#1| $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) -(((-664 |#1|) (-141) (-1083)) (T -664)) -NIL -(-13 (-21) (-662 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787) $) 17 T ELT)) (-2376 (($ $ |#1|) 69 T ELT)) (-1932 (($ $) 39 T ELT)) (-2433 (($ $) 37 T ELT)) (-2784 (((-3 |#1| "failed") $) 61 T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1670 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-4116 (((-880) $ (-1 (-880) (-880) (-880)) (-1 (-880) (-880) (-880)) (-577)) 56 T ELT)) (-3733 ((|#1| $ (-577)) 35 T ELT)) (-3606 ((|#2| $ (-577)) 34 T ELT)) (-3672 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2295 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2157 (($) 11 T ELT)) (-3940 (($ |#1| |#2|) 24 T ELT)) (-2216 (($ (-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|)))) 25 T ELT)) (-1982 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|))) $) 14 T ELT)) (-3906 (($ |#1| $) 71 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2184 (((-112) $ $) 76 T ELT)) (-3603 (((-880) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 27 T ELT))) -(((-665 |#1| |#2| |#3|) (-13 (-1125) (-1063 |#1|) (-10 -8 (-15 -4116 ((-880) $ (-1 (-880) (-880) (-880)) (-1 (-880) (-880) (-880)) (-577))) (-15 -1982 ((-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|))) $)) (-15 -3940 ($ |#1| |#2|)) (-15 -2216 ($ (-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|))))) (-15 -3606 (|#2| $ (-577))) (-15 -3733 (|#1| $ (-577))) (-15 -2433 ($ $)) (-15 -1932 ($ $)) (-15 -3373 ((-787) $)) (-15 -2157 ($)) (-15 -2376 ($ $ |#1|)) (-15 -3906 ($ |#1| $)) (-15 -1670 ($ |#1| |#2| $)) (-15 -1670 ($ $ $)) (-15 -2184 ((-112) $ $)) (-15 -2295 ($ (-1 |#2| |#2|) $)) (-15 -3672 ($ (-1 |#1| |#1|) $)))) (-1125) (-23) |#2|) (T -665)) -((-4116 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-880) (-880) (-880))) (-5 *4 (-577)) (-5 *2 (-880)) (-5 *1 (-665 *5 *6 *7)) (-4 *5 (-1125)) (-4 *6 (-23)) (-14 *7 *6))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 *4)))) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4))) (-3940 (*1 *1 *2 *3) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-2216 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 *4)))) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-665 *3 *4 *5)))) (-3606 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-665 *4 *2 *5)) (-4 *4 (-1125)) (-14 *5 *2))) (-3733 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-1125)) (-5 *1 (-665 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2433 (*1 *1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-1932 (*1 *1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4))) (-2157 (*1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-2376 (*1 *1 *1 *2) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-3906 (*1 *1 *2 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-1670 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-1670 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-2184 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4))) (-2295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)))) (-3672 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-665 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1125) (-1063 |#1|) (-10 -8 (-15 -4116 ((-880) $ (-1 (-880) (-880) (-880)) (-1 (-880) (-880) (-880)) (-577))) (-15 -1982 ((-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|))) $)) (-15 -3940 ($ |#1| |#2|)) (-15 -2216 ($ (-660 (-2 (|:| |gen| |#1|) (|:| -2079 |#2|))))) (-15 -3606 (|#2| $ (-577))) (-15 -3733 (|#1| $ (-577))) (-15 -2433 ($ $)) (-15 -1932 ($ $)) (-15 -3373 ((-787) $)) (-15 -2157 ($)) (-15 -2376 ($ $ |#1|)) (-15 -3906 ($ |#1| $)) (-15 -1670 ($ |#1| |#2| $)) (-15 -1670 ($ $ $)) (-15 -2184 ((-112) $ $)) (-15 -2295 ($ (-1 |#2| |#2|) $)) (-15 -3672 ($ (-1 |#1| |#1|) $)))) -((-2984 (((-577) $) 31 T ELT)) (-2218 (($ |#2| $ (-577)) 27 T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) 12 T ELT)) (-2187 (((-112) (-577) $) 18 T ELT)) (-1685 (($ $ |#2|) 24 T ELT) (($ |#2| $) 25 T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT))) -(((-666 |#1| |#2|) (-10 -8 (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#2|)) (-15 -2984 ((-577) |#1|)) (-15 -3445 ((-660 (-577)) |#1|)) (-15 -2187 ((-112) (-577) |#1|))) (-667 |#2|) (-1242)) (T -666)) -NIL -(-10 -8 (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#2|)) (-15 -2984 ((-577) |#1|)) (-15 -3445 ((-660 (-577)) |#1|)) (-15 -2187 ((-112) (-577) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3289 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 52 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) 70 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 43 (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2529 (($ $ |#1|) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1259 (-577))) 71 T ELT)) (-3490 (($ $ (-577)) 64 T ELT) (($ $ (-1259 (-577))) 63 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 81 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 72 T ELT)) (-1685 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-660 $)) 66 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-667 |#1|) (-141) (-1242)) (T -667)) -((-4223 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-1685 (*1 *1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-1685 (*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-1685 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-2124 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-2218 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-2218 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-1895 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1259 (-577))) (|has| *1 (-6 -4471)) (-4 *1 (-667 *2)) (-4 *2 (-1242))))) -(-13 (-617 (-577) |t#1|) (-152 |t#1|) (-297 (-1259 (-577)) $) (-10 -8 (-15 -4223 ($ (-787) |t#1|)) (-15 -1685 ($ $ |t#1|)) (-15 -1685 ($ |t#1| $)) (-15 -1685 ($ $ $)) (-15 -1685 ($ (-660 $))) (-15 -2124 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3490 ($ $ (-577))) (-15 -3490 ($ $ (-1259 (-577)))) (-15 -2218 ($ |t#1| $ (-577))) (-15 -2218 ($ $ $ (-577))) (IF (|has| $ (-6 -4471)) (-15 -1895 (|t#1| $ (-1259 (-577)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-2773 (((-3 |#2| "failed") |#3| |#2| (-1201) |#2| (-660 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) "failed") |#3| |#2| (-1201)) 44 T ELT))) -(((-668 |#1| |#2| |#3|) (-10 -7 (-15 -2773 ((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) "failed") |#3| |#2| (-1201))) (-15 -2773 ((-3 |#2| "failed") |#3| |#2| (-1201) |#2| (-660 |#2|)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982)) (-672 |#2|)) (T -668)) -((-2773 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-668 *6 *2 *3)) (-4 *3 (-672 *2)))) (-2773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1201)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1227) (-982))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2559 (-660 *4)))) (-5 *1 (-668 *6 *4 *3)) (-4 *3 (-672 *4))))) -(-10 -7 (-15 -2773 ((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) "failed") |#3| |#2| (-1201))) (-15 -2773 ((-3 |#2| "failed") |#3| |#2| (-1201) |#2| (-660 |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3673 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2133 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3817 (($ $ (-787)) NIL (|has| |#1| (-375)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2242 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3964 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2428 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1495 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2513 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4237 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) NIL T ELT)) (-3926 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1976 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2643 (((-787) $) NIL T ELT)) (-3608 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3894 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3917 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4420 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2837 ((|#1| $ |#1|) NIL T ELT)) (-1760 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3616 (((-787) $) NIL T ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-1640 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2663 (($ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-669 |#1|) (-672 |#1|) (-239)) (T -669)) -NIL -(-672 |#1|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3673 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2133 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3817 (($ $ (-787)) NIL (|has| |#1| (-375)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2242 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3964 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2428 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1495 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2513 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4237 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) NIL T ELT)) (-3926 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1976 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2643 (((-787) $) NIL T ELT)) (-3608 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3894 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3917 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4420 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2837 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-1760 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3616 (((-787) $) NIL T ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-1640 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2663 (($ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-670 |#1| |#2|) (-13 (-672 |#1|) (-297 |#2| |#2|)) (-239) (-13 (-664 |#1|) (-10 -8 (-15 -3362 ($ $))))) (T -670)) -NIL -(-13 (-672 |#1|) (-297 |#2| |#2|)) -((-3673 (($ $) 29 T ELT)) (-2663 (($ $) 27 T ELT)) (-2136 (($) 13 T ELT))) -(((-671 |#1| |#2|) (-10 -8 (-15 -3673 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -2136 (|#1|))) (-672 |#2|) (-1074)) (T -671)) -NIL -(-10 -8 (-15 -3673 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -2136 (|#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3673 (($ $) 87 (|has| |#1| (-375)) ELT)) (-2133 (($ $ $) 89 (|has| |#1| (-375)) ELT)) (-3817 (($ $ (-787)) 88 (|has| |#1| (-375)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2242 (($ $ $) 50 (|has| |#1| (-375)) ELT)) (-3964 (($ $ $) 51 (|has| |#1| (-375)) ELT)) (-2428 (($ $ $) 53 (|has| |#1| (-375)) ELT)) (-1495 (($ $ $) 48 (|has| |#1| (-375)) ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 47 (|has| |#1| (-375)) ELT)) (-2513 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)) ELT)) (-4237 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 52 (|has| |#1| (-375)) ELT)) (-2784 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-2155 (((-577) $) 79 (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) 76 (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 75 T ELT)) (-3391 (($ $) 69 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2308 (($ $) 60 (|has| |#1| (-465)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-3180 (($ |#1| (-787)) 67 T ELT)) (-3926 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1976 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 (|has| |#1| (-569)) ELT)) (-2643 (((-787) $) 71 T ELT)) (-3608 (($ $ $) 57 (|has| |#1| (-375)) ELT)) (-3894 (($ $ $) 58 (|has| |#1| (-375)) ELT)) (-4265 (($ $ $) 46 (|has| |#1| (-375)) ELT)) (-3917 (($ $ $) 55 (|has| |#1| (-375)) ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 54 (|has| |#1| (-375)) ELT)) (-3793 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)) ELT)) (-4420 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 59 (|has| |#1| (-375)) ELT)) (-3365 ((|#1| $) 70 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)) ELT)) (-2837 ((|#1| $ |#1|) 92 T ELT)) (-1760 (($ $ $) 86 (|has| |#1| (-375)) ELT)) (-3616 (((-787) $) 72 T ELT)) (-2240 ((|#1| $) 61 (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 78 (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) 73 T ELT)) (-4198 (((-660 |#1|) $) 66 T ELT)) (-3421 ((|#1| $ (-787)) 68 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-1640 ((|#1| $ |#1| |#1|) 65 T ELT)) (-2663 (($ $) 90 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($) 91 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) -(((-672 |#1|) (-141) (-1074)) (T -672)) -((-2136 (*1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) (-2663 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) (-2133 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-672 *3)) (-4 *3 (-1074)) (-4 *3 (-375)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-1760 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(-13 (-870 |t#1|) (-297 |t#1| |t#1|) (-10 -8 (-15 -2136 ($)) (-15 -2663 ($ $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -2133 ($ $ $)) (-15 -3817 ($ $ (-787))) (-15 -3673 ($ $)) (-15 -1760 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-297 |#1| |#1|) . T) ((-424 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-870 |#1|) . T)) -((-3553 (((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))) 85 (|has| |#1| (-27)) ELT)) (-3056 (((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))) 84 (|has| |#1| (-27)) ELT) (((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 19 T ELT))) -(((-673 |#1| |#2|) (-10 -7 (-15 -3056 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3056 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)))) (-15 -3553 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))))) |%noBranch|)) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -673)) -((-3553 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5))))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5))))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-669 (-420 *6)))) (-5 *1 (-673 *5 *6)) (-5 *3 (-669 (-420 *6)))))) -(-10 -7 (-15 -3056 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3056 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)))) (-15 -3553 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))))) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3673 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2133 (($ $ $) 28 (|has| |#1| (-375)) ELT)) (-3817 (($ $ (-787)) 31 (|has| |#1| (-375)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2242 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3964 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2428 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1495 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2513 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4237 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) NIL T ELT)) (-3926 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1976 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2643 (((-787) $) NIL T ELT)) (-3608 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3894 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3917 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4420 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2837 ((|#1| $ |#1|) 24 T ELT)) (-1760 (($ $ $) 33 (|has| |#1| (-375)) ELT)) (-3616 (((-787) $) NIL T ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-1640 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2663 (($ $) NIL T ELT)) (-2754 (($) 21 T CONST)) (-2767 (($) 8 T CONST)) (-2136 (($) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-674 |#1| |#2|) (-672 |#1|) (-1074) (-1 |#1| |#1|)) (T -674)) -NIL -(-672 |#1|) -((-2133 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-3817 ((|#2| |#2| (-787) (-1 |#1| |#1|)) 45 T ELT)) (-1760 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-675 |#1| |#2|) (-10 -7 (-15 -2133 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3817 (|#2| |#2| (-787) (-1 |#1| |#1|))) (-15 -1760 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-375) (-672 |#1|)) (T -675)) -((-1760 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) (-4 *2 (-672 *4)))) (-3817 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-675 *5 *2)) (-4 *2 (-672 *5)))) (-2133 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) (-4 *2 (-672 *4))))) -(-10 -7 (-15 -2133 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3817 (|#2| |#2| (-787) (-1 |#1| |#1|))) (-15 -1760 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3559 (($ $ $) 9 T ELT))) -(((-676 |#1|) (-10 -8 (-15 -3559 (|#1| |#1| |#1|))) (-677)) (T -676)) -NIL -(-10 -8 (-15 -3559 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3516 (($ $) 11 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3559 (($ $ $) 9 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3549 (($ $ $) 10 T ELT))) -(((-677) (-141)) (T -677)) -((-3516 (*1 *1 *1) (-4 *1 (-677))) (-3549 (*1 *1 *1 *1) (-4 *1 (-677))) (-3559 (*1 *1 *1 *1) (-4 *1 (-677)))) -(-13 (-102) (-10 -8 (-15 -3516 ($ $)) (-15 -3549 ($ $ $)) (-15 -3559 ($ $ $)))) -(((-102) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 15 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2781 ((|#1| $) 23 T ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-807)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-807)) ELT)) (-2045 (((-1183) $) 48 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2797 ((|#3| $) 24 T ELT)) (-3603 (((-880) $) 43 T ELT)) (-2726 (((-112) $ $) 22 T ELT)) (-2754 (($) 10 T CONST)) (-3001 (((-112) $ $) NIL (|has| |#1| (-807)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-807)) ELT)) (-2949 (((-112) $ $) 20 T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-807)) ELT)) (-2971 (((-112) $ $) 26 (|has| |#1| (-807)) ELT)) (-3051 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3042 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 29 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-678 |#1| |#2| |#3|) (-13 (-733 |#2|) (-10 -8 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|) (-15 -3051 ($ $ |#3|)) (-15 -3051 ($ |#1| |#3|)) (-15 -2781 (|#1| $)) (-15 -2797 (|#3| $)))) (-733 |#2|) (-174) (|SubsetCategory| (-742) |#2|)) (T -678)) -((-3051 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4)) (-4 *2 (|SubsetCategory| (-742) *4)))) (-3051 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-678 *2 *4 *3)) (-4 *2 (-733 *4)) (-4 *3 (|SubsetCategory| (-742) *4)))) (-2781 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-733 *3)) (-5 *1 (-678 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-742) *3)))) (-2797 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4))))) -(-13 (-733 |#2|) (-10 -8 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|) (-15 -3051 ($ $ |#3|)) (-15 -3051 ($ |#1| |#3|)) (-15 -2781 (|#1| $)) (-15 -2797 (|#3| $)))) -((-3526 (((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|)) 33 T ELT))) -(((-679 |#1|) (-10 -7 (-15 -3526 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|)))) (-932)) (T -679)) -((-3526 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *4))) (-5 *3 (-1197 *4)) (-4 *4 (-932)) (-5 *1 (-679 *4))))) -(-10 -7 (-15 -3526 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1530 (((-660 |#1|) $) 84 T ELT)) (-2014 (($ $ (-787)) 94 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1743 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 50 T ELT)) (-2784 (((-3 (-688 |#1|) "failed") $) NIL T ELT)) (-2155 (((-688 |#1|) $) NIL T ELT)) (-3391 (($ $) 93 T ELT)) (-2011 (((-787) $) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-1740 (($ (-688 |#1|) |#2|) 70 T ELT)) (-2504 (($ $) 89 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3411 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 49 T ELT)) (-3662 (((-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3354 (((-688 |#1|) $) NIL T ELT)) (-3365 ((|#2| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3273 (($ $ |#1| $) 32 T ELT) (($ $ (-660 |#1|) (-660 $)) 34 T ELT)) (-3616 (((-787) $) 91 T ELT)) (-3614 (($ $ $) 20 T ELT) (($ (-688 |#1|) (-688 |#1|)) 79 T ELT) (($ (-688 |#1|) $) 77 T ELT) (($ $ (-688 |#1|)) 78 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1307 |#1| |#2|) $) 60 T ELT) (((-1316 |#1| |#2|) $) 43 T ELT) (($ (-688 |#1|)) 27 T ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-688 |#1|)) NIL T ELT)) (-2940 ((|#2| (-1316 |#1| |#2|) $) 45 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 23 T CONST)) (-2994 (((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2357 (((-3 $ "failed") (-1307 |#1| |#2|)) 62 T ELT)) (-4007 (($ (-688 |#1|)) 14 T ELT)) (-2949 (((-112) $ $) 46 T ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 31 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-688 |#1|)) NIL T ELT))) -(((-680 |#1| |#2|) (-13 (-386 |#1| |#2|) (-394 |#2| (-688 |#1|)) (-10 -8 (-15 -2357 ((-3 $ "failed") (-1307 |#1| |#2|))) (-15 -3614 ($ (-688 |#1|) (-688 |#1|))) (-15 -3614 ($ (-688 |#1|) $)) (-15 -3614 ($ $ (-688 |#1|))))) (-865) (-174)) (T -680)) -((-2357 (*1 *1 *2) (|partial| -12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *1 (-680 *3 *4)))) (-3614 (*1 *1 *2 *2) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174)))) (-3614 (*1 *1 *2 *1) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174)))) (-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174))))) -(-13 (-386 |#1| |#2|) (-394 |#2| (-688 |#1|)) (-10 -8 (-15 -2357 ((-3 $ "failed") (-1307 |#1| |#2|))) (-15 -3614 ($ (-688 |#1|) (-688 |#1|))) (-15 -3614 ($ (-688 |#1|) $)) (-15 -3614 ($ $ (-688 |#1|))))) -((-4438 (((-112) $) NIL T ELT) (((-112) (-1 (-112) |#2| |#2|) $) 59 T ELT)) (-3246 (($ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $) 12 T ELT)) (-2236 (($ (-1 (-112) |#2|) $) 29 T ELT)) (-1932 (($ $) 65 T ELT)) (-3699 (($ $) 74 T ELT)) (-3266 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 43 T ELT)) (-2498 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3728 (((-577) |#2| $ (-577)) 71 T ELT) (((-577) |#2| $) NIL T ELT) (((-577) (-1 (-112) |#2|) $) 54 T ELT)) (-4223 (($ (-787) |#2|) 63 T ELT)) (-1615 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 31 T ELT)) (-1334 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 24 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-2880 (($ |#2|) 15 T ELT)) (-4345 (($ $ $ (-577)) 42 T ELT) (($ |#2| $ (-577)) 40 T ELT)) (-2153 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53 T ELT)) (-3839 (($ $ (-1259 (-577))) 51 T ELT) (($ $ (-577)) 44 T ELT)) (-2875 (($ $ $ (-577)) 70 T ELT)) (-1914 (($ $) 68 T ELT)) (-2971 (((-112) $ $) 76 T ELT))) -(((-681 |#1| |#2|) (-10 -8 (-15 -2880 (|#1| |#2|)) (-15 -3839 (|#1| |#1| (-577))) (-15 -3839 (|#1| |#1| (-1259 (-577)))) (-15 -3266 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4345 (|#1| |#2| |#1| (-577))) (-15 -4345 (|#1| |#1| |#1| (-577))) (-15 -1615 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2236 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3266 (|#1| |#2| |#1|)) (-15 -3699 (|#1| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1334 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4438 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3728 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3728 ((-577) |#2| |#1|)) (-15 -3728 ((-577) |#2| |#1| (-577))) (-15 -1334 (|#1| |#1| |#1|)) (-15 -4438 ((-112) |#1|)) (-15 -2875 (|#1| |#1| |#1| (-577))) (-15 -1932 (|#1| |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2153 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4223 (|#1| (-787) |#2|)) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1914 (|#1| |#1|))) (-682 |#2|) (-1242)) (T -681)) -NIL -(-10 -8 (-15 -2880 (|#1| |#2|)) (-15 -3839 (|#1| |#1| (-577))) (-15 -3839 (|#1| |#1| (-1259 (-577)))) (-15 -3266 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4345 (|#1| |#2| |#1| (-577))) (-15 -4345 (|#1| |#1| |#1| (-577))) (-15 -1615 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2236 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3266 (|#1| |#2| |#1|)) (-15 -3699 (|#1| |#1|)) (-15 -1615 (|#1| |#1| |#1|)) (-15 -1334 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4438 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3728 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3728 ((-577) |#2| |#1|)) (-15 -3728 ((-577) |#2| |#1| (-577))) (-15 -1334 (|#1| |#1| |#1|)) (-15 -4438 ((-112) |#1|)) (-15 -2875 (|#1| |#1| |#1| (-577))) (-15 -1932 (|#1| |#1|)) (-15 -3246 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3246 (|#1| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2498 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2153 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4223 (|#1| (-787) |#2|)) (-15 -2124 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1914 (|#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-4148 ((|#1| $) 66 T ELT)) (-3063 (($ $) 68 T ELT)) (-2790 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) 53 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) $) 144 (|has| |#1| (-865)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) 138 T ELT)) (-3246 (($ $) 148 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))) ELT) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4471)) ELT)) (-2312 (($ $) 143 (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $) 137 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 57 (|has| $ (-6 -4471)) ELT)) (-2946 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 119 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-2236 (($ (-1 (-112) |#1|) $) 131 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4470)) ELT)) (-4135 ((|#1| $) 67 T ELT)) (-3790 (($) 7 T CONST)) (-1932 (($ $) 146 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 136 T ELT)) (-1663 (($ $) 74 T ELT) (($ $ (-787)) 72 T ELT)) (-3699 (($ $) 133 (|has| |#1| (-1125)) ELT)) (-3289 (($ $) 101 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ |#1| $) 132 (|has| |#1| (-1125)) ELT) (($ (-1 (-112) |#1|) $) 127 T ELT)) (-3920 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4470)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2840 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 89 T ELT)) (-3919 (((-112) $) 85 T ELT)) (-3728 (((-577) |#1| $ (-577)) 141 (|has| |#1| (-1125)) ELT) (((-577) |#1| $) 140 (|has| |#1| (-1125)) ELT) (((-577) (-1 (-112) |#1|) $) 139 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-4223 (($ (-787) |#1|) 111 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 97 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 154 (|has| |#1| (-865)) ELT)) (-1615 (($ $ $) 134 (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 130 T ELT)) (-1334 (($ $ $) 142 (|has| |#1| (-865)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 135 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 96 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 153 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-2880 (($ |#1|) 124 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) 71 T ELT) (($ $ (-787)) 69 T ELT)) (-4345 (($ $ $ (-577)) 129 T ELT) (($ |#1| $ (-577)) 128 T ELT)) (-2218 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-3445 (((-660 (-577)) $) 94 T ELT)) (-2187 (((-112) (-577) $) 93 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 77 T ELT) (($ $ (-787)) 75 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-2529 (($ $ |#1|) 98 (|has| $ (-6 -4471)) ELT)) (-1861 (((-112) $) 86 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 92 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1259 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3839 (($ $ (-1259 (-577))) 126 T ELT) (($ $ (-577)) 125 T ELT)) (-3490 (($ $ (-1259 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-4243 (($ $) 63 T ELT)) (-1839 (($ $) 60 (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) 64 T ELT)) (-3855 (($ $) 65 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2875 (($ $ $ (-577)) 145 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 100 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 109 T ELT)) (-1584 (($ $ $) 62 T ELT) (($ $ |#1|) 61 T ELT)) (-1685 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-660 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) 152 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 150 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) 151 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 149 (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-682 |#1|) (-141) (-1242)) (T -682)) -((-2880 (*1 *1 *2) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1242))))) -(-13 (-1174 |t#1|) (-385 |t#1|) (-293 |t#1|) (-10 -8 (-15 -2880 ($ |t#1|)))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-293 |#1|) . T) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1035 |#1|) . T) ((-1125) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1174 |#1|) . T) ((-1242) . T) ((-1280 |#1|) . T)) -((-2773 (((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|))))) (-660 (-660 |#1|)) (-660 (-1292 |#1|))) 22 T ELT) (((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|))))) (-705 |#1|) (-660 (-1292 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-660 (-660 |#1|)) (-1292 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)) 14 T ELT)) (-3503 (((-787) (-705 |#1|) (-1292 |#1|)) 30 T ELT)) (-2442 (((-3 (-1292 |#1|) "failed") (-705 |#1|) (-1292 |#1|)) 24 T ELT)) (-2485 (((-112) (-705 |#1|) (-1292 |#1|)) 27 T ELT))) -(((-683 |#1|) (-10 -7 (-15 -2773 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|))) (-15 -2773 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-660 (-660 |#1|)) (-1292 |#1|))) (-15 -2773 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|))))) (-705 |#1|) (-660 (-1292 |#1|)))) (-15 -2773 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|))))) (-660 (-660 |#1|)) (-660 (-1292 |#1|)))) (-15 -2442 ((-3 (-1292 |#1|) "failed") (-705 |#1|) (-1292 |#1|))) (-15 -2485 ((-112) (-705 |#1|) (-1292 |#1|))) (-15 -3503 ((-787) (-705 |#1|) (-1292 |#1|)))) (-375)) (T -683)) -((-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-5 *2 (-787)) (-5 *1 (-683 *5)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-5 *2 (-112)) (-5 *1 (-683 *5)))) (-2442 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1292 *4)) (-5 *3 (-705 *4)) (-4 *4 (-375)) (-5 *1 (-683 *4)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) (-5 *2 (-660 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -2559 (-660 (-1292 *5)))))) (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) (-5 *2 (-660 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -2559 (-660 (-1292 *5)))))) (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -2559 (-660 (-1292 *5))))) (-5 *1 (-683 *5)) (-5 *4 (-1292 *5)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -2559 (-660 (-1292 *5))))) (-5 *1 (-683 *5)) (-5 *4 (-1292 *5))))) -(-10 -7 (-15 -2773 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|))) (-15 -2773 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-660 (-660 |#1|)) (-1292 |#1|))) (-15 -2773 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|))))) (-705 |#1|) (-660 (-1292 |#1|)))) (-15 -2773 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|))))) (-660 (-660 |#1|)) (-660 (-1292 |#1|)))) (-15 -2442 ((-3 (-1292 |#1|) "failed") (-705 |#1|) (-1292 |#1|))) (-15 -2485 ((-112) (-705 |#1|) (-1292 |#1|))) (-15 -3503 ((-787) (-705 |#1|) (-1292 |#1|)))) -((-2773 (((-660 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|)))) |#4| (-660 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|))) |#4| |#3|) 60 T ELT)) (-3503 (((-787) |#4| |#3|) 18 T ELT)) (-2442 (((-3 |#3| "failed") |#4| |#3|) 21 T ELT)) (-2485 (((-112) |#4| |#3|) 14 T ELT))) -(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2773 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|))) |#4| |#3|)) (-15 -2773 ((-660 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|)))) |#4| (-660 |#3|))) (-15 -2442 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2485 ((-112) |#4| |#3|)) (-15 -3503 ((-787) |#4| |#3|))) (-375) (-13 (-385 |#1|) (-10 -7 (-6 -4471))) (-13 (-385 |#1|) (-10 -7 (-6 -4471))) (-703 |#1| |#2| |#3|)) (T -684)) -((-3503 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-787)) (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-112)) (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) (-2442 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-375)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4471)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))) (-5 *1 (-684 *4 *5 *2 *3)) (-4 *3 (-703 *4 *5 *2)))) (-2773 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-660 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2559 (-660 *7))))) (-5 *1 (-684 *5 *6 *7 *3)) (-5 *4 (-660 *7)) (-4 *3 (-703 *5 *6 *7)))) (-2773 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4))))) -(-10 -7 (-15 -2773 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|))) |#4| |#3|)) (-15 -2773 ((-660 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|)))) |#4| (-660 |#3|))) (-15 -2442 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2485 ((-112) |#4| |#3|)) (-15 -3503 ((-787) |#4| |#3|))) -((-1788 (((-2 (|:| |particular| (-3 (-1292 (-420 |#4|)) "failed")) (|:| -2559 (-660 (-1292 (-420 |#4|))))) (-660 |#4|) (-660 |#3|)) 51 T ELT))) -(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1788 ((-2 (|:| |particular| (-3 (-1292 (-420 |#4|)) "failed")) (|:| -2559 (-660 (-1292 (-420 |#4|))))) (-660 |#4|) (-660 |#3|)))) (-569) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -685)) -((-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *7)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 (-420 *8)) "failed")) (|:| -2559 (-660 (-1292 (-420 *8)))))) (-5 *1 (-685 *5 *6 *7 *8))))) -(-10 -7 (-15 -1788 ((-2 (|:| |particular| (-3 (-1292 (-420 |#4|)) "failed")) (|:| -2559 (-660 (-1292 (-420 |#4|))))) (-660 |#4|) (-660 |#3|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3426 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-2219 ((|#2| $) NIL T ELT)) (-3755 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2979 (((-1292 (-705 |#2|))) NIL T ELT) (((-1292 (-705 |#2|)) (-1292 $)) NIL T ELT)) (-2010 (((-112) $) NIL T ELT)) (-4380 (((-1292 $)) 42 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1390 (($ |#2|) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1863 (($ $) NIL (|has| |#2| (-318)) ELT)) (-1578 (((-246 |#1| |#2|) $ (-577)) NIL T ELT)) (-1724 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (|has| |#2| (-569)) ELT)) (-3638 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-2650 (((-705 |#2|)) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-4204 ((|#2| $) NIL T ELT)) (-1634 (((-705 |#2|) $) NIL T ELT) (((-705 |#2|) $ (-1292 $)) NIL T ELT)) (-3696 (((-3 $ "failed") $) NIL (|has| |#2| (-569)) ELT)) (-3403 (((-1197 (-975 |#2|))) NIL (|has| |#2| (-375)) ELT)) (-1647 (($ $ (-944)) NIL T ELT)) (-1777 ((|#2| $) NIL T ELT)) (-3282 (((-1197 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-3927 ((|#2|) NIL T ELT) ((|#2| (-1292 $)) NIL T ELT)) (-3749 (((-1197 |#2|) $) NIL T ELT)) (-2214 (((-112)) NIL T ELT)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-1911 (($ (-1292 |#2|)) NIL T ELT) (($ (-1292 |#2|) (-1292 $)) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3503 (((-787) $) NIL (|has| |#2| (-569)) ELT) (((-944)) 43 T ELT)) (-2759 ((|#2| $ (-577) (-577)) NIL T ELT)) (-1825 (((-112)) NIL T ELT)) (-4254 (($ $ (-944)) NIL T ELT)) (-3692 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3225 (((-787) $) NIL (|has| |#2| (-569)) ELT)) (-1404 (((-660 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-569)) ELT)) (-4022 (((-787) $) NIL T ELT)) (-4041 (((-112)) NIL T ELT)) (-4033 (((-787) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-3979 ((|#2| $) NIL (|has| |#2| (-6 (-4472 "*"))) ELT)) (-4250 (((-577) $) NIL T ELT)) (-2952 (((-577) $) NIL T ELT)) (-2434 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-1484 (((-577) $) NIL T ELT)) (-3329 (((-577) $) NIL T ELT)) (-4307 (($ (-660 (-660 |#2|))) NIL T ELT)) (-2826 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2347 (((-660 (-660 |#2|)) $) NIL T ELT)) (-1580 (((-112)) NIL T ELT)) (-1451 (((-112)) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1751 (((-3 (-2 (|:| |particular| $) (|:| -2559 (-660 $))) "failed")) NIL (|has| |#2| (-569)) ELT)) (-3370 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-4278 (((-705 |#2|)) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-2677 ((|#2| $) NIL T ELT)) (-3141 (((-705 |#2|) $) NIL T ELT) (((-705 |#2|) $ (-1292 $)) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-3473 (((-3 $ "failed") $) NIL (|has| |#2| (-569)) ELT)) (-3287 (((-1197 (-975 |#2|))) NIL (|has| |#2| (-375)) ELT)) (-1954 (($ $ (-944)) NIL T ELT)) (-4419 ((|#2| $) NIL T ELT)) (-3321 (((-1197 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-3504 ((|#2|) NIL T ELT) ((|#2| (-1292 $)) NIL T ELT)) (-3404 (((-1197 |#2|) $) NIL T ELT)) (-4176 (((-112)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3423 (((-112)) NIL T ELT)) (-2742 (((-112)) NIL T ELT)) (-3213 (((-112)) NIL T ELT)) (-3564 (((-3 $ "failed") $) NIL (|has| |#2| (-375)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3532 (((-112)) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) ((|#2| $ (-577) (-577)) 28 T ELT) ((|#2| $ (-577)) NIL T ELT)) (-3362 (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-3294 ((|#2| $) NIL T ELT)) (-3937 (($ (-660 |#2|)) NIL T ELT)) (-3534 (((-112) $) NIL T ELT)) (-2080 (((-246 |#1| |#2|) $) NIL T ELT)) (-2534 ((|#2| $) NIL (|has| |#2| (-6 (-4472 "*"))) ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2729 (((-705 |#2|) (-1292 $)) NIL T ELT) (((-1292 |#2|) $) NIL T ELT) (((-705 |#2|) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 |#2|) $ (-1292 $)) 31 T ELT)) (-2176 (($ (-1292 |#2|)) NIL T ELT) (((-1292 |#2|) $) NIL T ELT)) (-2518 (((-660 (-975 |#2|))) NIL T ELT) (((-660 (-975 |#2|)) (-1292 $)) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-4244 (((-112)) NIL T ELT)) (-2859 (((-246 |#1| |#2|) $ (-577)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (((-705 |#2|) $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) 41 T ELT)) (-2769 (((-660 (-1292 |#2|))) NIL (|has| |#2| (-569)) ELT)) (-2509 (($ $ $ $) NIL T ELT)) (-4429 (((-112)) NIL T ELT)) (-1640 (($ (-705 |#2|) $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) NIL T ELT)) (-3223 (($ $ $) NIL T ELT)) (-4347 (((-112)) NIL T ELT)) (-2791 (((-112)) NIL T ELT)) (-3632 (((-112)) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#2| (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-686 |#1| |#2|) (-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-430 |#2|)) (-944) (-174)) (T -686)) -NIL -(-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-430 |#2|)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3745 (((-660 (-1160)) $) 10 T ELT)) (-3603 (((-880) $) 16 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-687) (-13 (-1108) (-10 -8 (-15 -3745 ((-660 (-1160)) $))))) (T -687)) -((-3745 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-687))))) -(-13 (-1108) (-10 -8 (-15 -3745 ((-660 (-1160)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1530 (((-660 |#1|) $) NIL T ELT)) (-3076 (($ $) 62 T ELT)) (-3216 (((-112) $) NIL T ELT)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-4227 (((-3 $ "failed") (-835 |#1|)) 27 T ELT)) (-1684 (((-112) (-835 |#1|)) 17 T ELT)) (-2951 (($ (-835 |#1|)) 28 T ELT)) (-2611 (((-112) $ $) 36 T ELT)) (-3762 (((-944) $) 43 T ELT)) (-3060 (($ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3056 (((-660 $) (-835 |#1|)) 19 T ELT)) (-3603 (((-880) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-835 |#1|) $) 47 T ELT) (((-693 |#1|) $) 52 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2327 (((-59 (-660 $)) (-660 |#1|) (-944)) 67 T ELT)) (-3711 (((-660 $) (-660 |#1|) (-944)) 70 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 63 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 46 T ELT))) -(((-688 |#1|) (-13 (-865) (-1063 |#1|) (-10 -8 (-15 -3216 ((-112) $)) (-15 -3060 ($ $)) (-15 -3076 ($ $)) (-15 -3762 ((-944) $)) (-15 -2611 ((-112) $ $)) (-15 -3603 ((-835 |#1|) $)) (-15 -3603 ((-693 |#1|) $)) (-15 -3056 ((-660 $) (-835 |#1|))) (-15 -1684 ((-112) (-835 |#1|))) (-15 -2951 ($ (-835 |#1|))) (-15 -4227 ((-3 $ "failed") (-835 |#1|))) (-15 -1530 ((-660 |#1|) $)) (-15 -2327 ((-59 (-660 $)) (-660 |#1|) (-944))) (-15 -3711 ((-660 $) (-660 |#1|) (-944))))) (-865)) (T -688)) -((-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-3060 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) (-3076 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-2611 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-688 *4))) (-5 *1 (-688 *4)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-112)) (-5 *1 (-688 *4)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3)))) (-4227 (*1 *1 *2) (|partial| -12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) (-5 *2 (-59 (-660 (-688 *5)))) (-5 *1 (-688 *5)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) (-5 *2 (-660 (-688 *5))) (-5 *1 (-688 *5))))) -(-13 (-865) (-1063 |#1|) (-10 -8 (-15 -3216 ((-112) $)) (-15 -3060 ($ $)) (-15 -3076 ($ $)) (-15 -3762 ((-944) $)) (-15 -2611 ((-112) $ $)) (-15 -3603 ((-835 |#1|) $)) (-15 -3603 ((-693 |#1|) $)) (-15 -3056 ((-660 $) (-835 |#1|))) (-15 -1684 ((-112) (-835 |#1|))) (-15 -2951 ($ (-835 |#1|))) (-15 -4227 ((-3 $ "failed") (-835 |#1|))) (-15 -1530 ((-660 |#1|) $)) (-15 -2327 ((-59 (-660 $)) (-660 |#1|) (-944))) (-15 -3711 ((-660 $) (-660 |#1|) (-944))))) -((-3145 ((|#2| $) 100 T ELT)) (-3063 (($ $) 121 T ELT)) (-4403 (((-112) $ (-787)) 35 T ELT)) (-1663 (($ $) 109 T ELT) (($ $ (-787)) 112 T ELT)) (-3919 (((-112) $) 122 T ELT)) (-1830 (((-660 $) $) 96 T ELT)) (-2725 (((-112) $ $) 92 T ELT)) (-1821 (((-112) $ (-787)) 33 T ELT)) (-4239 (((-577) $) 66 T ELT)) (-2984 (((-577) $) 65 T ELT)) (-3272 (((-112) $ (-787)) 31 T ELT)) (-2284 (((-112) $) 98 T ELT)) (-3942 ((|#2| $) 113 T ELT) (($ $ (-787)) 117 T ELT)) (-2218 (($ $ $ (-577)) 83 T ELT) (($ |#2| $ (-577)) 82 T ELT)) (-3445 (((-660 (-577)) $) 64 T ELT)) (-2187 (((-112) (-577) $) 59 T ELT)) (-1652 ((|#2| $) NIL T ELT) (($ $ (-787)) 108 T ELT)) (-1987 (($ $ (-577)) 125 T ELT)) (-1861 (((-112) $) 124 T ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 42 T ELT)) (-3908 (((-660 |#2|) $) 46 T ELT)) (-2837 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1259 (-577))) 79 T ELT) ((|#2| $ (-577)) 57 T ELT) ((|#2| $ (-577) |#2|) 58 T ELT)) (-3190 (((-577) $ $) 91 T ELT)) (-3490 (($ $ (-1259 (-577))) 78 T ELT) (($ $ (-577)) 72 T ELT)) (-3834 (((-112) $) 87 T ELT)) (-4243 (($ $) 105 T ELT)) (-4282 (((-787) $) 104 T ELT)) (-3855 (($ $) 103 T ELT)) (-3614 (($ (-660 |#2|)) 53 T ELT)) (-2544 (($ $) 126 T ELT)) (-2333 (((-660 $) $) 90 T ELT)) (-1444 (((-112) $ $) 89 T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 41 T ELT)) (-2949 (((-112) $ $) 20 T ELT)) (-3501 (((-787) $) 39 T ELT))) -(((-689 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -1987 (|#1| |#1| (-577))) (-15 -3919 ((-112) |#1|)) (-15 -1861 ((-112) |#1|)) (-15 -2837 (|#2| |#1| (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577))) (-15 -3908 ((-660 |#2|) |#1|)) (-15 -2187 ((-112) (-577) |#1|)) (-15 -3445 ((-660 (-577)) |#1|)) (-15 -2984 ((-577) |#1|)) (-15 -4239 ((-577) |#1|)) (-15 -3614 (|#1| (-660 |#2|))) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -3490 (|#1| |#1| (-577))) (-15 -3490 (|#1| |#1| (-1259 (-577)))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -4243 (|#1| |#1|)) (-15 -4282 ((-787) |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3942 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "last")) (-15 -3942 (|#2| |#1|)) (-15 -1663 (|#1| |#1| (-787))) (-15 -2837 (|#1| |#1| "rest")) (-15 -1663 (|#1| |#1|)) (-15 -1652 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "first")) (-15 -1652 (|#2| |#1|)) (-15 -2725 ((-112) |#1| |#1|)) (-15 -1444 ((-112) |#1| |#1|)) (-15 -3190 ((-577) |#1| |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -2837 (|#2| |#1| "value")) (-15 -3145 (|#2| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1830 ((-660 |#1|) |#1|)) (-15 -2333 ((-660 |#1|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787)))) (-690 |#2|) (-1242)) (T -689)) -NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -1987 (|#1| |#1| (-577))) (-15 -3919 ((-112) |#1|)) (-15 -1861 ((-112) |#1|)) (-15 -2837 (|#2| |#1| (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577))) (-15 -3908 ((-660 |#2|) |#1|)) (-15 -2187 ((-112) (-577) |#1|)) (-15 -3445 ((-660 (-577)) |#1|)) (-15 -2984 ((-577) |#1|)) (-15 -4239 ((-577) |#1|)) (-15 -3614 (|#1| (-660 |#2|))) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -3490 (|#1| |#1| (-577))) (-15 -3490 (|#1| |#1| (-1259 (-577)))) (-15 -2218 (|#1| |#2| |#1| (-577))) (-15 -2218 (|#1| |#1| |#1| (-577))) (-15 -4243 (|#1| |#1|)) (-15 -4282 ((-787) |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3942 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "last")) (-15 -3942 (|#2| |#1|)) (-15 -1663 (|#1| |#1| (-787))) (-15 -2837 (|#1| |#1| "rest")) (-15 -1663 (|#1| |#1|)) (-15 -1652 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "first")) (-15 -1652 (|#2| |#1|)) (-15 -2725 ((-112) |#1| |#1|)) (-15 -1444 ((-112) |#1| |#1|)) (-15 -3190 ((-577) |#1| |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -2837 (|#2| |#1| "value")) (-15 -3145 (|#2| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1830 ((-660 |#1|) |#1|)) (-15 -2333 ((-660 |#1|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-4148 ((|#1| $) 66 T ELT)) (-3063 (($ $) 68 T ELT)) (-2790 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) 53 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 57 (|has| $ (-6 -4471)) ELT)) (-2946 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 119 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 104 T ELT)) (-4135 ((|#1| $) 67 T ELT)) (-3790 (($) 7 T CONST)) (-2036 (($ $) 126 T ELT)) (-1663 (($ $) 74 T ELT) (($ $ (-787)) 72 T ELT)) (-3289 (($ $) 101 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#1| $) 102 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 105 T ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2840 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 89 T ELT)) (-3919 (((-112) $) 85 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-3451 (((-787) $) 125 T ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-4223 (($ (-787) |#1|) 111 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 97 (|has| (-577) (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 96 (|has| (-577) (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2453 (($ $) 128 T ELT)) (-4312 (((-112) $) 129 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) 71 T ELT) (($ $ (-787)) 69 T ELT)) (-2218 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-3445 (((-660 (-577)) $) 94 T ELT)) (-2187 (((-112) (-577) $) 93 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-3800 ((|#1| $) 127 T ELT)) (-1652 ((|#1| $) 77 T ELT) (($ $ (-787)) 75 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-2529 (($ $ |#1|) 98 (|has| $ (-6 -4471)) ELT)) (-1987 (($ $ (-577)) 124 T ELT)) (-1861 (((-112) $) 86 T ELT)) (-3028 (((-112) $) 130 T ELT)) (-1758 (((-112) $) 131 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 92 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1259 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3490 (($ $ (-1259 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-4243 (($ $) 63 T ELT)) (-1839 (($ $) 60 (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) 64 T ELT)) (-3855 (($ $) 65 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 100 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 109 T ELT)) (-1584 (($ $ $) 62 (|has| $ (-6 -4471)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4471)) ELT)) (-1685 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-660 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-2544 (($ $) 123 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-690 |#1|) (-141) (-1242)) (T -690)) -((-3920 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-2453 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) (-2036 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) (-2544 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) -(-13 (-1174 |t#1|) (-10 -8 (-15 -3920 ($ (-1 (-112) |t#1|) $)) (-15 -3730 ($ (-1 (-112) |t#1|) $)) (-15 -1758 ((-112) $)) (-15 -3028 ((-112) $)) (-15 -4312 ((-112) $)) (-15 -2453 ($ $)) (-15 -3800 (|t#1| $)) (-15 -2036 ($ $)) (-15 -3451 ((-787) $)) (-15 -1987 ($ $ (-577))) (-15 -2544 ($ $)))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1174 |#1|) . T) ((-1242) . T) ((-1280 |#1|) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1375 (($ (-787) (-787) (-787)) 53 (|has| |#1| (-1074)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3205 ((|#1| $ (-787) (-787) (-787) |#1|) 47 T ELT)) (-3790 (($) NIL T CONST)) (-1670 (($ $ $) 57 (|has| |#1| (-1074)) ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2736 (((-1292 (-787)) $) 12 T ELT)) (-1455 (($ (-1201) $ $) 34 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2842 (($ (-787)) 55 (|has| |#1| (-1074)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-787) (-787) (-787)) 44 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3614 (($ (-660 (-660 (-660 |#1|)))) 67 T ELT)) (-3603 (($ (-981 (-981 (-981 |#1|)))) 23 T ELT) (((-981 (-981 (-981 |#1|))) $) 19 T ELT) (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-691 |#1|) (-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1074)) (PROGN (-15 -1375 ($ (-787) (-787) (-787))) (-15 -2842 ($ (-787))) (-15 -1670 ($ $ $))) |%noBranch|) (-15 -3614 ($ (-660 (-660 (-660 |#1|))))) (-15 -2837 (|#1| $ (-787) (-787) (-787))) (-15 -3205 (|#1| $ (-787) (-787) (-787) |#1|)) (-15 -3603 ($ (-981 (-981 (-981 |#1|))))) (-15 -3603 ((-981 (-981 (-981 |#1|))) $)) (-15 -1455 ($ (-1201) $ $)) (-15 -2736 ((-1292 (-787)) $)))) (-1125)) (T -691)) -((-1375 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) (-4 *3 (-1125)))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) (-4 *3 (-1125)))) (-1670 (*1 *1 *1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-1074)) (-4 *2 (-1125)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-660 *3)))) (-4 *3 (-1125)) (-5 *1 (-691 *3)))) (-2837 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125)))) (-3205 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-4 *3 (-1125)) (-5 *1 (-691 *3)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-5 *1 (-691 *3)) (-4 *3 (-1125)))) (-1455 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-691 *3)) (-4 *3 (-1125)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1292 (-787))) (-5 *1 (-691 *3)) (-4 *3 (-1125))))) -(-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1074)) (PROGN (-15 -1375 ($ (-787) (-787) (-787))) (-15 -2842 ($ (-787))) (-15 -1670 ($ $ $))) |%noBranch|) (-15 -3614 ($ (-660 (-660 (-660 |#1|))))) (-15 -2837 (|#1| $ (-787) (-787) (-787))) (-15 -3205 (|#1| $ (-787) (-787) (-787) |#1|)) (-15 -3603 ($ (-981 (-981 (-981 |#1|))))) (-15 -3603 ((-981 (-981 (-981 |#1|))) $)) (-15 -1455 ($ (-1201) $ $)) (-15 -2736 ((-1292 (-787)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2515 (((-496) $) 10 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 19 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-1160) $) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-692) (-13 (-1108) (-10 -8 (-15 -2515 ((-496) $)) (-15 -2682 ((-1160) $))))) (T -692)) -((-2515 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-692)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-692))))) -(-13 (-1108) (-10 -8 (-15 -2515 ((-496) $)) (-15 -2682 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1530 (((-660 |#1|) $) 15 T ELT)) (-3076 (($ $) 19 T ELT)) (-3216 (((-112) $) 20 T ELT)) (-2784 (((-3 |#1| "failed") $) 23 T ELT)) (-2155 ((|#1| $) 21 T ELT)) (-1663 (($ $) 37 T ELT)) (-2504 (($ $) 25 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2611 (((-112) $ $) 47 T ELT)) (-3762 (((-944) $) 40 T ELT)) (-3060 (($ $) 18 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 ((|#1| $) 36 T ELT)) (-3603 (((-880) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-835 |#1|) $) 28 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 13 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-693 |#1|) (-13 (-865) (-1063 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3603 ((-835 |#1|) $)) (-15 -1652 (|#1| $)) (-15 -3060 ($ $)) (-15 -3762 ((-944) $)) (-15 -2611 ((-112) $ $)) (-15 -2504 ($ $)) (-15 -1663 ($ $)) (-15 -3216 ((-112) $)) (-15 -3076 ($ $)) (-15 -1530 ((-660 |#1|) $)))) (-865)) (T -693)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-1652 (*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3060 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-2611 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-2504 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-1663 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-3076 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865))))) -(-13 (-865) (-1063 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3603 ((-835 |#1|) $)) (-15 -1652 (|#1| $)) (-15 -3060 ($ $)) (-15 -3762 ((-944) $)) (-15 -2611 ((-112) $ $)) (-15 -2504 ($ $)) (-15 -1663 ($ $)) (-15 -3216 ((-112) $)) (-15 -3076 ($ $)) (-15 -1530 ((-660 |#1|) $)))) -((-3430 ((|#1| (-1 |#1| (-787) |#1|) (-787) |#1|) 11 T ELT)) (-2018 ((|#1| (-1 |#1| |#1|) (-787) |#1|) 9 T ELT))) -(((-694 |#1|) (-10 -7 (-15 -2018 (|#1| (-1 |#1| |#1|) (-787) |#1|)) (-15 -3430 (|#1| (-1 |#1| (-787) |#1|) (-787) |#1|))) (-1125)) (T -694)) -((-3430 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-787) *2)) (-5 *4 (-787)) (-4 *2 (-1125)) (-5 *1 (-694 *2)))) (-2018 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-787)) (-4 *2 (-1125)) (-5 *1 (-694 *2))))) -(-10 -7 (-15 -2018 (|#1| (-1 |#1| |#1|) (-787) |#1|)) (-15 -3430 (|#1| (-1 |#1| (-787) |#1|) (-787) |#1|))) -((-2452 ((|#2| |#1| |#2|) 9 T ELT)) (-2439 ((|#1| |#1| |#2|) 8 T ELT))) -(((-695 |#1| |#2|) (-10 -7 (-15 -2439 (|#1| |#1| |#2|)) (-15 -2452 (|#2| |#1| |#2|))) (-1125) (-1125)) (T -695)) -((-2452 (*1 *2 *3 *2) (-12 (-5 *1 (-695 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-2439 (*1 *2 *2 *3) (-12 (-5 *1 (-695 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(-10 -7 (-15 -2439 (|#1| |#1| |#2|)) (-15 -2452 (|#2| |#1| |#2|))) -((-2406 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -2406 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1125) (-1125) (-1125)) (T -696)) -((-2406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)) (-5 *1 (-696 *5 *6 *2))))) -(-10 -7 (-15 -2406 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3014 (((-1241) $) 21 T ELT)) (-2963 (((-660 (-1241)) $) 19 T ELT)) (-4143 (($ (-660 (-1241)) (-1241)) 14 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 29 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT) (((-1241) $) 22 T ELT) (($ (-1143)) 10 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-697) (-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3603 ($ (-1143))) (-15 -4143 ($ (-660 (-1241)) (-1241))) (-15 -2963 ((-660 (-1241)) $)) (-15 -3014 ((-1241) $))))) (T -697)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-697)))) (-4143 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1241))) (-5 *3 (-1241)) (-5 *1 (-697)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-697)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-697))))) -(-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3603 ($ (-1143))) (-15 -4143 ($ (-660 (-1241)) (-1241))) (-15 -2963 ((-660 (-1241)) $)) (-15 -3014 ((-1241) $)))) -((-3430 (((-1 |#1| (-787) |#1|) (-1 |#1| (-787) |#1|)) 26 T ELT)) (-2127 (((-1 |#1|) |#1|) 8 T ELT)) (-3163 ((|#1| |#1|) 19 T ELT)) (-3644 (((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-577)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3603 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-787)) 23 T ELT))) -(((-698 |#1|) (-10 -7 (-15 -2127 ((-1 |#1|) |#1|)) (-15 -3603 ((-1 |#1|) |#1|)) (-15 -3644 (|#1| (-1 |#1| |#1|))) (-15 -3644 ((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-577))) (-15 -3163 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-787))) (-15 -3430 ((-1 |#1| (-787) |#1|) (-1 |#1| (-787) |#1|)))) (-1125)) (T -698)) -((-3430 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-787) *3)) (-4 *3 (-1125)) (-5 *1 (-698 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *4 (-1125)) (-5 *1 (-698 *4)))) (-3163 (*1 *2 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1125)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-660 *5) (-660 *5))) (-5 *4 (-577)) (-5 *2 (-660 *5)) (-5 *1 (-698 *5)) (-4 *5 (-1125)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-698 *2)) (-4 *2 (-1125)))) (-3603 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125)))) (-2127 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125))))) -(-10 -7 (-15 -2127 ((-1 |#1|) |#1|)) (-15 -3603 ((-1 |#1|) |#1|)) (-15 -3644 (|#1| (-1 |#1| |#1|))) (-15 -3644 ((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-577))) (-15 -3163 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-787))) (-15 -3430 ((-1 |#1| (-787) |#1|) (-1 |#1| (-787) |#1|)))) -((-1822 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-3458 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-2609 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-1907 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-699 |#1| |#2|) (-10 -7 (-15 -1907 ((-1 |#2| |#1|) |#2|)) (-15 -3458 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2609 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1125) (-1125)) (T -699)) -((-1822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-5 *2 (-1 *5 *4)) (-5 *1 (-699 *4 *5)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1125)) (-5 *2 (-1 *5 *4)) (-5 *1 (-699 *4 *5)) (-4 *4 (-1125)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-5 *2 (-1 *5)) (-5 *1 (-699 *4 *5)))) (-1907 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-699 *4 *3)) (-4 *4 (-1125)) (-4 *3 (-1125))))) -(-10 -7 (-15 -1907 ((-1 |#2| |#1|) |#2|)) (-15 -3458 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2609 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2265 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-1507 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2948 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2702 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-4394 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -1507 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2948 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2702 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4394 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2265 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1125) (-1125) (-1125)) (T -700)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-1 *7 *5)) (-5 *1 (-700 *5 *6 *7)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-700 *4 *5 *6)))) (-4394 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-1125)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *5 (-1125)))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1125)) (-4 *4 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *5 *4 *6))))) -(-10 -7 (-15 -1507 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2948 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2702 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4394 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2265 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2498 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-2124 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-701 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2124 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2124 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2498 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1074) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|) (-1074) (-385 |#5|) (-385 |#5|) (-703 |#5| |#6| |#7|)) (T -701)) -((-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-701 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-703 *5 *6 *7)) (-4 *10 (-703 *2 *8 *9)))) (-2124 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1074)) (-4 *8 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-703 *8 *9 *10)) (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-703 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1074)) (-4 *8 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-703 *8 *9 *10)) (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-703 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) -(-10 -7 (-15 -2124 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2124 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2498 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3832 (($ (-787) (-787)) 42 T ELT)) (-3871 (($ $ $) 73 T ELT)) (-2660 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3755 (((-112) $) 36 T ELT)) (-1915 (($ $ (-577) (-577)) 84 T ELT)) (-2953 (($ $ (-577) (-577)) 85 T ELT)) (-2457 (($ $ (-577) (-577) (-577) (-577)) 90 T ELT)) (-4173 (($ $) 71 T ELT)) (-2010 (((-112) $) 15 T ELT)) (-3914 (($ $ (-577) (-577) $) 91 T ELT)) (-1895 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577)) $) 89 T ELT)) (-1390 (($ (-787) |#2|) 55 T ELT)) (-4307 (($ (-660 (-660 |#2|))) 51 T ELT) (($ (-787) (-787) (-1 |#2| (-577) (-577))) 53 T ELT)) (-2347 (((-660 (-660 |#2|)) $) 80 T ELT)) (-2310 (($ $ $) 72 T ELT)) (-3478 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-2837 ((|#2| $ (-577) (-577)) NIL T ELT) ((|#2| $ (-577) (-577) |#2|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577))) 88 T ELT)) (-3937 (($ (-660 |#2|)) 56 T ELT) (($ (-660 $)) 58 T ELT)) (-3534 (((-112) $) 28 T ELT)) (-3603 (($ |#4|) 63 T ELT) (((-880) $) NIL T ELT)) (-2230 (((-112) $) 38 T ELT)) (-3051 (($ $ |#2|) 124 T ELT)) (-3042 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3031 (($ $ $) 93 T ELT)) (** (($ $ (-787)) 111 T ELT) (($ $ (-577)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-577) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-702 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3603 ((-880) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3051 (|#1| |#1| |#2|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3914 (|#1| |#1| (-577) (-577) |#1|)) (-15 -2457 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -2953 (|#1| |#1| (-577) (-577))) (-15 -1915 (|#1| |#1| (-577) (-577))) (-15 -1895 (|#1| |#1| (-660 (-577)) (-660 (-577)) |#1|)) (-15 -2837 (|#1| |#1| (-660 (-577)) (-660 (-577)))) (-15 -2347 ((-660 (-660 |#2|)) |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -4173 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2660 (|#1| |#3|)) (-15 -3603 (|#1| |#4|)) (-15 -3937 (|#1| (-660 |#1|))) (-15 -3937 (|#1| (-660 |#2|))) (-15 -1390 (|#1| (-787) |#2|)) (-15 -4307 (|#1| (-787) (-787) (-1 |#2| (-577) (-577)))) (-15 -4307 (|#1| (-660 (-660 |#2|)))) (-15 -3832 (|#1| (-787) (-787))) (-15 -2230 ((-112) |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -2010 ((-112) |#1|)) (-15 -1895 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) (-577)))) (-703 |#2| |#3| |#4|) (-1074) (-385 |#2|) (-385 |#2|)) (T -702)) -NIL -(-10 -8 (-15 -3603 ((-880) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3051 (|#1| |#1| |#2|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3914 (|#1| |#1| (-577) (-577) |#1|)) (-15 -2457 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -2953 (|#1| |#1| (-577) (-577))) (-15 -1915 (|#1| |#1| (-577) (-577))) (-15 -1895 (|#1| |#1| (-660 (-577)) (-660 (-577)) |#1|)) (-15 -2837 (|#1| |#1| (-660 (-577)) (-660 (-577)))) (-15 -2347 ((-660 (-660 |#2|)) |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -4173 (|#1| |#1|)) (-15 -2660 (|#1| |#1|)) (-15 -2660 (|#1| |#3|)) (-15 -3603 (|#1| |#4|)) (-15 -3937 (|#1| (-660 |#1|))) (-15 -3937 (|#1| (-660 |#2|))) (-15 -1390 (|#1| (-787) |#2|)) (-15 -4307 (|#1| (-787) (-787) (-1 |#2| (-577) (-577)))) (-15 -4307 (|#1| (-660 (-660 |#2|)))) (-15 -3832 (|#1| (-787) (-787))) (-15 -2230 ((-112) |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -2010 ((-112) |#1|)) (-15 -1895 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) (-577)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3832 (($ (-787) (-787)) 99 T ELT)) (-3871 (($ $ $) 88 T ELT)) (-2660 (($ |#2|) 92 T ELT) (($ $) 91 T ELT)) (-3755 (((-112) $) 101 T ELT)) (-1915 (($ $ (-577) (-577)) 84 T ELT)) (-2953 (($ $ (-577) (-577)) 83 T ELT)) (-2457 (($ $ (-577) (-577) (-577) (-577)) 82 T ELT)) (-4173 (($ $) 90 T ELT)) (-2010 (((-112) $) 103 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3914 (($ $ (-577) (-577) $) 81 T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) 45 T ELT) (($ $ (-660 (-577)) (-660 (-577)) $) 85 T ELT)) (-2937 (($ $ (-577) |#2|) 43 T ELT)) (-2025 (($ $ (-577) |#3|) 42 T ELT)) (-1390 (($ (-787) |#1|) 96 T ELT)) (-3790 (($) 7 T CONST)) (-1863 (($ $) 68 (|has| |#1| (-318)) ELT)) (-1578 ((|#2| $ (-577)) 47 T ELT)) (-3503 (((-787) $) 67 (|has| |#1| (-569)) ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) 44 T ELT)) (-2759 ((|#1| $ (-577) (-577)) 49 T ELT)) (-3692 (((-660 |#1|) $) 31 T ELT)) (-3225 (((-787) $) 66 (|has| |#1| (-569)) ELT)) (-1404 (((-660 |#3|) $) 65 (|has| |#1| (-569)) ELT)) (-4022 (((-787) $) 52 T ELT)) (-4223 (($ (-787) (-787) |#1|) 58 T ELT)) (-4033 (((-787) $) 51 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-3979 ((|#1| $) 63 (|has| |#1| (-6 (-4472 "*"))) ELT)) (-4250 (((-577) $) 56 T ELT)) (-2952 (((-577) $) 54 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1484 (((-577) $) 55 T ELT)) (-3329 (((-577) $) 53 T ELT)) (-4307 (($ (-660 (-660 |#1|))) 98 T ELT) (($ (-787) (-787) (-1 |#1| (-577) (-577))) 97 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-2347 (((-660 (-660 |#1|)) $) 87 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3564 (((-3 $ "failed") $) 62 (|has| |#1| (-375)) ELT)) (-2310 (($ $ $) 89 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) 57 T ELT)) (-3478 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) (-577)) 50 T ELT) ((|#1| $ (-577) (-577) |#1|) 48 T ELT) (($ $ (-660 (-577)) (-660 (-577))) 86 T ELT)) (-3937 (($ (-660 |#1|)) 95 T ELT) (($ (-660 $)) 94 T ELT)) (-3534 (((-112) $) 102 T ELT)) (-2534 ((|#1| $) 64 (|has| |#1| (-6 (-4472 "*"))) ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2859 ((|#3| $ (-577)) 46 T ELT)) (-3603 (($ |#3|) 93 T ELT) (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) 100 T ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3051 (($ $ |#1|) 69 (|has| |#1| (-375)) ELT)) (-3042 (($ $ $) 79 T ELT) (($ $) 78 T ELT)) (-3031 (($ $ $) 80 T ELT)) (** (($ $ (-787)) 71 T ELT) (($ $ (-577)) 61 (|has| |#1| (-375)) ELT)) (* (($ $ $) 77 T ELT) (($ |#1| $) 76 T ELT) (($ $ |#1|) 75 T ELT) (($ (-577) $) 74 T ELT) ((|#3| $ |#3|) 73 T ELT) ((|#2| |#2| $) 72 T ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-703 |#1| |#2| |#3|) (-141) (-1074) (-385 |t#1|) (-385 |t#1|)) (T -703)) -((-2010 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-3832 (*1 *1 *2 *2) (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4307 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1074)) (-4 *1 (-703 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3603 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-2660 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-2660 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4173 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3871 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-660 (-660 *3))))) (-2837 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1895 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1915 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2953 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2457 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3914 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3031 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3042 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3042 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-703 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-703 *3 *2 *4)) (-4 *3 (-1074)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (-1863 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-318)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-660 *5)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-3564 (*1 *1 *1) (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-375))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -2010 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -3755 ((-112) $)) (-15 -2230 ((-112) $)) (-15 -3832 ($ (-787) (-787))) (-15 -4307 ($ (-660 (-660 |t#1|)))) (-15 -4307 ($ (-787) (-787) (-1 |t#1| (-577) (-577)))) (-15 -1390 ($ (-787) |t#1|)) (-15 -3937 ($ (-660 |t#1|))) (-15 -3937 ($ (-660 $))) (-15 -3603 ($ |t#3|)) (-15 -2660 ($ |t#2|)) (-15 -2660 ($ $)) (-15 -4173 ($ $)) (-15 -2310 ($ $ $)) (-15 -3871 ($ $ $)) (-15 -2347 ((-660 (-660 |t#1|)) $)) (-15 -2837 ($ $ (-660 (-577)) (-660 (-577)))) (-15 -1895 ($ $ (-660 (-577)) (-660 (-577)) $)) (-15 -1915 ($ $ (-577) (-577))) (-15 -2953 ($ $ (-577) (-577))) (-15 -2457 ($ $ (-577) (-577) (-577) (-577))) (-15 -3914 ($ $ (-577) (-577) $)) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3042 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-577) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-787))) (IF (|has| |t#1| (-569)) (-15 -3478 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -3051 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -1863 ($ $)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3503 ((-787) $)) (-15 -3225 ((-787) $)) (-15 -1404 ((-660 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4472 "*"))) (PROGN (-15 -2534 (|t#1| $)) (-15 -3979 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -3564 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-57 |#1| |#2| |#3|) . T) ((-1242) . T)) -((-1863 ((|#4| |#4|) 92 (|has| |#1| (-318)) ELT)) (-3503 (((-787) |#4|) 120 (|has| |#1| (-569)) ELT)) (-3225 (((-787) |#4|) 96 (|has| |#1| (-569)) ELT)) (-1404 (((-660 |#3|) |#4|) 103 (|has| |#1| (-569)) ELT)) (-2956 (((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|) 135 (|has| |#1| (-318)) ELT)) (-3979 ((|#1| |#4|) 52 T ELT)) (-3854 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-569)) ELT)) (-3564 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-375)) ELT)) (-4272 ((|#4| |#4|) 88 (|has| |#1| (-569)) ELT)) (-1483 ((|#4| |#4| |#1| (-577) (-577)) 60 T ELT)) (-2804 ((|#4| |#4| (-577) (-577)) 55 T ELT)) (-3250 ((|#4| |#4| |#1| (-577) (-577)) 65 T ELT)) (-2534 ((|#1| |#4|) 98 T ELT)) (-2663 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-569)) ELT))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2534 (|#1| |#4|)) (-15 -3979 (|#1| |#4|)) (-15 -2804 (|#4| |#4| (-577) (-577))) (-15 -1483 (|#4| |#4| |#1| (-577) (-577))) (-15 -3250 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -3503 ((-787) |#4|)) (-15 -3225 ((-787) |#4|)) (-15 -1404 ((-660 |#3|) |#4|)) (-15 -4272 (|#4| |#4|)) (-15 -3854 ((-3 |#4| "failed") |#4|)) (-15 -2663 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -1863 (|#4| |#4|)) (-15 -2956 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3564 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -704)) -((-3564 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-2956 (*1 *2 *3 *3) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-704 *3 *4 *5 *6)) (-4 *6 (-703 *3 *4 *5)))) (-1863 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-2663 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3854 (*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-4272 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-1404 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3503 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3250 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) (-4 *2 (-703 *3 *5 *6)))) (-1483 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) (-4 *2 (-703 *3 *5 *6)))) (-2804 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-704 *4 *5 *6 *2)) (-4 *2 (-703 *4 *5 *6)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5))))) -(-10 -7 (-15 -2534 (|#1| |#4|)) (-15 -3979 (|#1| |#4|)) (-15 -2804 (|#4| |#4| (-577) (-577))) (-15 -1483 (|#4| |#4| |#1| (-577) (-577))) (-15 -3250 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -3503 ((-787) |#4|)) (-15 -3225 ((-787) |#4|)) (-15 -1404 ((-660 |#3|) |#4|)) (-15 -4272 (|#4| |#4|)) (-15 -3854 ((-3 |#4| "failed") |#4|)) (-15 -2663 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -1863 (|#4| |#4|)) (-15 -2956 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3564 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3832 (($ (-787) (-787)) 64 T ELT)) (-3871 (($ $ $) NIL T ELT)) (-2660 (($ (-1292 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3755 (((-112) $) NIL T ELT)) (-1915 (($ $ (-577) (-577)) 22 T ELT)) (-2953 (($ $ (-577) (-577)) NIL T ELT)) (-2457 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-4173 (($ $) NIL T ELT)) (-2010 (((-112) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3914 (($ $ (-577) (-577) $) NIL T ELT)) (-1895 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577)) $) NIL T ELT)) (-2937 (($ $ (-577) (-1292 |#1|)) NIL T ELT)) (-2025 (($ $ (-577) (-1292 |#1|)) NIL T ELT)) (-1390 (($ (-787) |#1|) 37 T ELT)) (-3790 (($) NIL T CONST)) (-1863 (($ $) 46 (|has| |#1| (-318)) ELT)) (-1578 (((-1292 |#1|) $ (-577)) NIL T ELT)) (-3503 (((-787) $) 48 (|has| |#1| (-569)) ELT)) (-2840 ((|#1| $ (-577) (-577) |#1|) 69 T ELT)) (-2759 ((|#1| $ (-577) (-577)) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL T ELT)) (-3225 (((-787) $) 50 (|has| |#1| (-569)) ELT)) (-1404 (((-660 (-1292 |#1|)) $) 53 (|has| |#1| (-569)) ELT)) (-4022 (((-787) $) 32 T ELT)) (-4223 (($ (-787) (-787) |#1|) 28 T ELT)) (-4033 (((-787) $) 33 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-3979 ((|#1| $) 44 (|has| |#1| (-6 (-4472 "*"))) ELT)) (-4250 (((-577) $) 10 T ELT)) (-2952 (((-577) $) 11 T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1484 (((-577) $) 14 T ELT)) (-3329 (((-577) $) 65 T ELT)) (-4307 (($ (-660 (-660 |#1|))) NIL T ELT) (($ (-787) (-787) (-1 |#1| (-577) (-577))) NIL T ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2347 (((-660 (-660 |#1|)) $) 76 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3564 (((-3 $ "failed") $) 60 (|has| |#1| (-375)) ELT)) (-2310 (($ $ $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2529 (($ $ |#1|) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-660 (-577)) (-660 (-577))) NIL T ELT)) (-3937 (($ (-660 |#1|)) NIL T ELT) (($ (-660 $)) NIL T ELT) (($ (-1292 |#1|)) 70 T ELT)) (-3534 (((-112) $) NIL T ELT)) (-2534 ((|#1| $) 42 (|has| |#1| (-6 (-4472 "*"))) ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) 80 (|has| |#1| (-627 (-549))) ELT)) (-2859 (((-1292 |#1|) $ (-577)) NIL T ELT)) (-3603 (($ (-1292 |#1|)) NIL T ELT) (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) NIL T ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) 38 T ELT) (($ $ (-577)) 62 (|has| |#1| (-375)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-1292 |#1|) $ (-1292 |#1|)) NIL T ELT) (((-1292 |#1|) (-1292 |#1|) $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-705 |#1|) (-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 -3937 ($ (-1292 |#1|))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3564 ((-3 $ "failed") $)) |%noBranch|))) (-1074)) (T -705)) -((-3564 (*1 *1 *1) (|partial| -12 (-5 *1 (-705 *2)) (-4 *2 (-375)) (-4 *2 (-1074)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-705 *3))))) -(-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 -3937 ($ (-1292 |#1|))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3564 ((-3 $ "failed") $)) |%noBranch|))) -((-1369 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|)) 37 T ELT)) (-2765 (((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|) 32 T ELT)) (-3121 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-787)) 43 T ELT)) (-4248 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|)) 25 T ELT)) (-4085 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|)) 29 T ELT) (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 27 T ELT)) (-2711 (((-705 |#1|) (-705 |#1|) |#1| (-705 |#1|)) 31 T ELT)) (-2380 (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 23 T ELT)) (** (((-705 |#1|) (-705 |#1|) (-787)) 46 T ELT))) -(((-706 |#1|) (-10 -7 (-15 -2380 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -4248 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -4085 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -4085 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -2711 ((-705 |#1|) (-705 |#1|) |#1| (-705 |#1|))) (-15 -2765 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -1369 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3121 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-787))) (-15 ** ((-705 |#1|) (-705 |#1|) (-787)))) (-1074)) (T -706)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-706 *4)))) (-3121 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-706 *4)))) (-1369 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-2765 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-2711 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-4085 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-4085 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-4248 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-2380 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) -(-10 -7 (-15 -2380 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -4248 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -4085 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -4085 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -2711 ((-705 |#1|) (-705 |#1|) |#1| (-705 |#1|))) (-15 -2765 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -1369 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3121 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-787))) (-15 ** ((-705 |#1|) (-705 |#1|) (-787)))) -((-2784 (((-3 |#1| "failed") $) 18 T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1492 (($) 7 T CONST)) (-2980 (($ |#1|) 8 T ELT)) (-3603 (($ |#1|) 16 T ELT) (((-880) $) 23 T ELT)) (-2739 (((-112) $ (|[\|\|]| |#1|)) 14 T ELT) (((-112) $ (|[\|\|]| -1492)) 11 T ELT)) (-1964 ((|#1| $) 15 T ELT))) -(((-707 |#1|) (-13 (-1287) (-1063 |#1|) (-626 (-880)) (-10 -8 (-15 -2980 ($ |#1|)) (-15 -2739 ((-112) $ (|[\|\|]| |#1|))) (-15 -2739 ((-112) $ (|[\|\|]| -1492))) (-15 -1964 (|#1| $)) (-15 -1492 ($) -2609))) (-626 (-880))) (T -707)) -((-2980 (*1 *1 *2) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880))))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-626 (-880))) (-5 *2 (-112)) (-5 *1 (-707 *4)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1492)) (-5 *2 (-112)) (-5 *1 (-707 *4)) (-4 *4 (-626 (-880))))) (-1964 (*1 *2 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880))))) (-1492 (*1 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880)))))) -(-13 (-1287) (-1063 |#1|) (-626 (-880)) (-10 -8 (-15 -2980 ($ |#1|)) (-15 -2739 ((-112) $ (|[\|\|]| |#1|))) (-15 -2739 ((-112) $ (|[\|\|]| -1492))) (-15 -1964 (|#1| $)) (-15 -1492 ($) -2609))) -((-4305 ((|#2| |#2| |#4|) 29 T ELT)) (-4259 (((-705 |#2|) |#3| |#4|) 35 T ELT)) (-4060 (((-705 |#2|) |#2| |#4|) 34 T ELT)) (-1594 (((-1292 |#2|) |#2| |#4|) 16 T ELT)) (-2617 ((|#2| |#3| |#4|) 28 T ELT)) (-2109 (((-705 |#2|) |#3| |#4| (-787) (-787)) 47 T ELT)) (-2542 (((-705 |#2|) |#2| |#4| (-787)) 46 T ELT))) -(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1594 ((-1292 |#2|) |#2| |#4|)) (-15 -2617 (|#2| |#3| |#4|)) (-15 -4305 (|#2| |#2| |#4|)) (-15 -4060 ((-705 |#2|) |#2| |#4|)) (-15 -2542 ((-705 |#2|) |#2| |#4| (-787))) (-15 -4259 ((-705 |#2|) |#3| |#4|)) (-15 -2109 ((-705 |#2|) |#3| |#4| (-787) (-787)))) (-1125) (-921 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4470)))) (T -708)) -((-2109 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *7 (-921 *6)) (-5 *2 (-705 *7)) (-5 *1 (-708 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470)))))) (-4259 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *6 (-921 *5)) (-5 *2 (-705 *6)) (-5 *1 (-708 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470)))))) (-2542 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *3 (-921 *6)) (-5 *2 (-705 *3)) (-5 *1 (-708 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470)))))) (-4060 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-705 *3)) (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470)))))) (-4305 (*1 *2 *2 *3) (-12 (-4 *4 (-1125)) (-4 *2 (-921 *4)) (-5 *1 (-708 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4470)))))) (-2617 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *2 (-921 *5)) (-5 *1 (-708 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470)))))) (-1594 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-1292 *3)) (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) -(-10 -7 (-15 -1594 ((-1292 |#2|) |#2| |#4|)) (-15 -2617 (|#2| |#3| |#4|)) (-15 -4305 (|#2| |#2| |#4|)) (-15 -4060 ((-705 |#2|) |#2| |#4|)) (-15 -2542 ((-705 |#2|) |#2| |#4| (-787))) (-15 -4259 ((-705 |#2|) |#3| |#4|)) (-15 -2109 ((-705 |#2|) |#3| |#4| (-787) (-787)))) -((-3773 (((-2 (|:| |num| (-705 |#1|)) (|:| |den| |#1|)) (-705 |#2|)) 20 T ELT)) (-3034 ((|#1| (-705 |#2|)) 9 T ELT)) (-2785 (((-705 |#1|) (-705 |#2|)) 18 T ELT))) -(((-709 |#1| |#2|) (-10 -7 (-15 -3034 (|#1| (-705 |#2|))) (-15 -2785 ((-705 |#1|) (-705 |#2|))) (-15 -3773 ((-2 (|:| |num| (-705 |#1|)) (|:| |den| |#1|)) (-705 |#2|)))) (-569) (-1017 |#1|)) (T -709)) -((-3773 (*1 *2 *3) (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| (-705 *4)) (|:| |den| *4))) (-5 *1 (-709 *4 *5)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) (-5 *2 (-705 *4)) (-5 *1 (-709 *4 *5)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-705 *4)) (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-709 *2 *4))))) -(-10 -7 (-15 -3034 (|#1| (-705 |#2|))) (-15 -2785 ((-705 |#1|) (-705 |#2|))) (-15 -3773 ((-2 (|:| |num| (-705 |#1|)) (|:| |den| |#1|)) (-705 |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-4436 (((-705 (-715))) NIL T ELT) (((-705 (-715)) (-1292 $)) NIL T ELT)) (-2219 (((-715) $) NIL T ELT)) (-2642 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2501 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-715) (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) ELT)) (-2001 (($ $) NIL (-2811 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))) ELT)) (-3836 (((-431 $) $) NIL (-2811 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))) ELT)) (-3070 (($ $) NIL (-12 (|has| (-715) (-1027)) (|has| (-715) (-1227))) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) ELT)) (-2435 (((-112) $ $) NIL (|has| (-715) (-318)) ELT)) (-3373 (((-787)) NIL (|has| (-715) (-380)) ELT)) (-2616 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2471 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2666 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2523 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-715) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-715) (-1063 (-420 (-577)))) ELT)) (-2155 (((-577) $) NIL T ELT) (((-715) $) NIL T ELT) (((-420 (-577)) $) NIL (|has| (-715) (-1063 (-420 (-577)))) ELT)) (-1911 (($ (-1292 (-715))) NIL T ELT) (($ (-1292 (-715)) (-1292 $)) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-715) (-361)) ELT)) (-3436 (($ $ $) NIL (|has| (-715) (-318)) ELT)) (-2678 (((-705 (-715)) $) NIL T ELT) (((-705 (-715)) $ (-1292 $)) NIL T ELT)) (-2850 (((-705 (-715)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-715))) (|:| |vec| (-1292 (-715)))) (-705 $) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-715) (-654 (-577))) ELT) (((-705 (-577)) (-705 $)) NIL (|has| (-715) (-654 (-577))) ELT)) (-2498 (((-3 $ "failed") (-420 (-1197 (-715)))) NIL (|has| (-715) (-375)) ELT) (($ (-1197 (-715))) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3081 (((-715) $) 29 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-715) (-558)) ELT)) (-2828 (((-112) $) NIL (|has| (-715) (-558)) ELT)) (-2950 (((-420 (-577)) $) NIL (|has| (-715) (-558)) ELT)) (-3503 (((-944)) NIL T ELT)) (-2352 (($) NIL (|has| (-715) (-380)) ELT)) (-3447 (($ $ $) NIL (|has| (-715) (-318)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| (-715) (-318)) ELT)) (-1742 (($) NIL (|has| (-715) (-361)) ELT)) (-4402 (((-112) $) NIL (|has| (-715) (-361)) ELT)) (-1865 (($ $) NIL (|has| (-715) (-361)) ELT) (($ $ (-787)) NIL (|has| (-715) (-361)) ELT)) (-2182 (((-112) $) NIL (-2811 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))) ELT)) (-1832 (((-2 (|:| |r| (-715)) (|:| |phi| (-715))) $) NIL (-12 (|has| (-715) (-1085)) (|has| (-715) (-1227))) ELT)) (-2824 (($) NIL (|has| (-715) (-1227)) ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-715) (-905 (-391))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-715) (-905 (-577))) ELT)) (-2536 (((-849 (-944)) $) NIL (|has| (-715) (-361)) ELT) (((-944) $) NIL (|has| (-715) (-361)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (-12 (|has| (-715) (-1027)) (|has| (-715) (-1227))) ELT)) (-4021 (((-715) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-715) (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-715) (-318)) ELT)) (-3810 (((-1197 (-715)) $) NIL (|has| (-715) (-375)) ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2124 (($ (-1 (-715) (-715)) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| (-715) (-380)) ELT)) (-3716 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2482 (((-1197 (-715)) $) NIL T ELT)) (-1512 (((-705 (-715)) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-715))) (|:| |vec| (-1292 (-715)))) (-1292 $) $) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-715) (-654 (-577))) ELT) (((-705 (-577)) (-1292 $)) NIL (|has| (-715) (-654 (-577))) ELT)) (-3508 (($ (-660 $)) NIL (|has| (-715) (-318)) ELT) (($ $ $) NIL (|has| (-715) (-318)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| (-715) (-375)) ELT)) (-3457 (($) NIL (|has| (-715) (-361)) CONST)) (-3251 (($ (-944)) NIL (|has| (-715) (-380)) ELT)) (-2833 (($) NIL T ELT)) (-3091 (((-715) $) 31 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| (-715) (-318)) ELT)) (-3543 (($ (-660 $)) NIL (|has| (-715) (-318)) ELT) (($ $ $) NIL (|has| (-715) (-318)) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| (-715) (-361)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) ELT)) (-3056 (((-431 $) $) NIL (-2811 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-715) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| (-715) (-318)) ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ (-715)) NIL (|has| (-715) (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-715) (-318)) ELT)) (-2079 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-3273 (($ $ (-1201) (-715)) NIL (|has| (-715) (-527 (-1201) (-715))) ELT) (($ $ (-660 (-1201)) (-660 (-715))) NIL (|has| (-715) (-527 (-1201) (-715))) ELT) (($ $ (-660 (-305 (-715)))) NIL (|has| (-715) (-320 (-715))) ELT) (($ $ (-305 (-715))) NIL (|has| (-715) (-320 (-715))) ELT) (($ $ (-715) (-715)) NIL (|has| (-715) (-320 (-715))) ELT) (($ $ (-660 (-715)) (-660 (-715))) NIL (|has| (-715) (-320 (-715))) ELT)) (-4167 (((-787) $) NIL (|has| (-715) (-318)) ELT)) (-2837 (($ $ (-715)) NIL (|has| (-715) (-297 (-715) (-715))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| (-715) (-318)) ELT)) (-4447 (((-715)) NIL T ELT) (((-715) (-1292 $)) NIL T ELT)) (-3816 (((-3 (-787) "failed") $ $) NIL (|has| (-715) (-361)) ELT) (((-787) $) NIL (|has| (-715) (-361)) ELT)) (-3362 (($ $ (-1 (-715) (-715)) (-787)) NIL T ELT) (($ $ (-1 (-715) (-715))) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238))) ELT) (($ $) NIL (-2811 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238))) ELT)) (-3285 (((-705 (-715)) (-1292 $) (-1 (-715) (-715))) NIL (|has| (-715) (-375)) ELT)) (-1629 (((-1197 (-715))) NIL T ELT)) (-2680 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2535 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2932 (($) NIL (|has| (-715) (-361)) ELT)) (-2655 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2512 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2631 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2486 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2729 (((-705 (-715)) (-1292 $)) NIL T ELT) (((-1292 (-715)) $) NIL T ELT) (((-705 (-715)) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 (-715)) $ (-1292 $)) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-715) (-627 (-549))) ELT) (((-171 (-228)) $) NIL (|has| (-715) (-1047)) ELT) (((-171 (-391)) $) NIL (|has| (-715) (-1047)) ELT) (((-911 (-391)) $) NIL (|has| (-715) (-627 (-911 (-391)))) ELT) (((-911 (-577)) $) NIL (|has| (-715) (-627 (-911 (-577)))) ELT) (($ (-1197 (-715))) NIL T ELT) (((-1197 (-715)) $) NIL T ELT) (($ (-1292 (-715))) NIL T ELT) (((-1292 (-715)) $) NIL T ELT)) (-1328 (($ $) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-2811 (-12 (|has| (-715) (-318)) (|has| $ (-146)) (|has| (-715) (-932))) (|has| (-715) (-361))) ELT)) (-4155 (($ (-715) (-715)) 12 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-715)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-577))) 19 T ELT) (($ (-171 (-715))) 28 T ELT) (($ (-171 (-717))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| (-715) (-1063 (-420 (-577)))) (|has| (-715) (-375))) ELT)) (-3907 (($ $) NIL (|has| (-715) (-361)) ELT) (((-3 $ "failed") $) NIL (-2811 (-12 (|has| (-715) (-318)) (|has| $ (-146)) (|has| (-715) (-932))) (|has| (-715) (-146))) ELT)) (-2600 (((-1197 (-715)) $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT)) (-2722 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2570 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2694 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2546 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2748 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2592 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-4100 (((-715) $) NIL (|has| (-715) (-1227)) ELT)) (-2897 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2604 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2734 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2581 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2708 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-2558 (($ $) NIL (|has| (-715) (-1227)) ELT)) (-4318 (($ $) NIL (|has| (-715) (-1085)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-715) (-715)) (-787)) NIL T ELT) (($ $ (-1 (-715) (-715))) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238))) ELT) (($ $) NIL (-2811 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238))) ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL (|has| (-715) (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ $) NIL (|has| (-715) (-1227)) ELT) (($ $ (-420 (-577))) NIL (-12 (|has| (-715) (-1027)) (|has| (-715) (-1227))) ELT) (($ $ (-577)) NIL (|has| (-715) (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-715) $) NIL T ELT) (($ $ (-715)) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-715) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-715) (-375)) ELT))) -(((-710) (-13 (-400) (-167 (-715)) (-10 -8 (-15 -3603 ($ (-171 (-391)))) (-15 -3603 ($ (-171 (-577)))) (-15 -3603 ($ (-171 (-715)))) (-15 -3603 ($ (-171 (-717)))) (-15 -3603 ((-171 (-391)) $))))) (T -710)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-710)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-171 (-715))) (-5 *1 (-710)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-171 (-717))) (-5 *1 (-710)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710))))) -(-13 (-400) (-167 (-715)) (-10 -8 (-15 -3603 ($ (-171 (-391)))) (-15 -3603 ($ (-171 (-577)))) (-15 -3603 ($ (-171 (-715)))) (-15 -3603 ($ (-171 (-717)))) (-15 -3603 ((-171 (-391)) $)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3699 (($ $) 63 T ELT)) (-3289 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ |#1| $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT) (($ |#1| $ (-787)) 64 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-3858 (((-660 (-2 (|:| -2438 |#1|) (|:| -1452 (-787)))) $) 62 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 |#1|)) 49 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 51 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-711 |#1|) (-141) (-1125)) (T -711)) -((-4345 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-711 *2)) (-4 *2 (-1125)))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1125)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-711 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-2 (|:| -2438 *3) (|:| -1452 (-787)))))))) -(-13 (-241 |t#1|) (-10 -8 (-15 -4345 ($ |t#1| $ (-787))) (-15 -3699 ($ $)) (-15 -3858 ((-660 (-2 (|:| -2438 |t#1|) (|:| -1452 (-787)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-4044 (((-660 |#1|) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))) (-577)) 65 T ELT)) (-3396 ((|#1| |#1| (-577)) 62 T ELT)) (-3543 ((|#1| |#1| |#1| (-577)) 46 T ELT)) (-3056 (((-660 |#1|) |#1| (-577)) 49 T ELT)) (-1379 ((|#1| |#1| (-577) |#1| (-577)) 40 T ELT)) (-2069 (((-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))) |#1| (-577)) 61 T ELT))) -(((-712 |#1|) (-10 -7 (-15 -3543 (|#1| |#1| |#1| (-577))) (-15 -3396 (|#1| |#1| (-577))) (-15 -3056 ((-660 |#1|) |#1| (-577))) (-15 -2069 ((-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))) |#1| (-577))) (-15 -4044 ((-660 |#1|) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))) (-577))) (-15 -1379 (|#1| |#1| (-577) |#1| (-577)))) (-1268 (-577))) (T -712)) -((-1379 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3)))) (-4044 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| -3056 *5) (|:| -3616 (-577))))) (-5 *4 (-577)) (-4 *5 (-1268 *4)) (-5 *2 (-660 *5)) (-5 *1 (-712 *5)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-660 (-2 (|:| -3056 *3) (|:| -3616 *4)))) (-5 *1 (-712 *3)) (-4 *3 (-1268 *4)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-660 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1268 *4)))) (-3396 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3)))) (-3543 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3))))) -(-10 -7 (-15 -3543 (|#1| |#1| |#1| (-577))) (-15 -3396 (|#1| |#1| (-577))) (-15 -3056 ((-660 |#1|) |#1| (-577))) (-15 -2069 ((-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))) |#1| (-577))) (-15 -4044 ((-660 |#1|) (-660 (-2 (|:| -3056 |#1|) (|:| -3616 (-577)))) (-577))) (-15 -1379 (|#1| |#1| (-577) |#1| (-577)))) -((-3659 (((-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 17 T ELT)) (-3077 (((-1158 (-228)) (-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 53 T ELT) (((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 55 T ELT) (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 57 T ELT)) (-1662 (((-1158 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-660 (-271))) NIL T ELT)) (-2961 (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 58 T ELT))) -(((-713) (-10 -7 (-15 -3077 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3077 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3077 ((-1158 (-228)) (-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -2961 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -1662 ((-1158 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3659 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -713)) -((-3659 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1 (-228) (-228) (-228) (-228))) (-5 *2 (-1 (-966 (-228)) (-228) (-228))) (-5 *1 (-713)))) (-1662 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) (-2961 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) (-3077 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-228))) (-5 *5 (-660 (-271))) (-5 *1 (-713)))) (-3077 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-228))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) (-3077 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713))))) -(-10 -7 (-15 -3077 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3077 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3077 ((-1158 (-228)) (-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -2961 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -1662 ((-1158 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3659 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) -((-3056 (((-431 (-1197 |#4|)) (-1197 |#4|)) 86 T ELT) (((-431 |#4|) |#4|) 266 T ELT))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-431 |#4|) |#4|)) (-15 -3056 ((-431 (-1197 |#4|)) (-1197 |#4|)))) (-865) (-809) (-361) (-972 |#3| |#2| |#1|)) (T -714)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-714 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) -(-10 -7 (-15 -3056 ((-431 |#4|) |#4|)) (-15 -3056 ((-431 (-1197 |#4|)) (-1197 |#4|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 97 T ELT)) (-2829 (((-577) $) 34 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3070 (($ $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1609 (($ $) NIL T ELT)) (-2784 (((-3 (-577) "failed") $) 85 T ELT) (((-3 (-420 (-577)) "failed") $) 28 T ELT) (((-3 (-391) "failed") $) 82 T ELT)) (-2155 (((-577) $) 87 T ELT) (((-420 (-577)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-3436 (($ $ $) 109 T ELT)) (-1625 (((-3 $ "failed") $) 100 T ELT)) (-3447 (($ $ $) 108 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3437 (((-944)) 89 T ELT) (((-944) (-944)) 88 T ELT)) (-4302 (((-112) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL T ELT)) (-2536 (((-577) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL T ELT)) (-4021 (($ $) NIL T ELT)) (-2178 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1336 (((-577) (-577)) 94 T ELT) (((-577)) 95 T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL (-12 (-2686 (|has| $ (-6 -4453))) (-2686 (|has| $ (-6 -4461)))) ELT)) (-4192 (((-577) (-577)) 92 T ELT) (((-577)) 93 T ELT)) (-1457 (($ $ $) NIL T ELT) (($) NIL (-12 (-2686 (|has| $ (-6 -4453))) (-2686 (|has| $ (-6 -4461)))) ELT)) (-1595 (((-577) $) 17 T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 104 T ELT)) (-4115 (((-944) (-577)) NIL (|has| $ (-6 -4461)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL T ELT)) (-1374 (($ $) NIL T ELT)) (-3068 (($ (-577) (-577)) NIL T ELT) (($ (-577) (-577) (-944)) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) 105 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1527 (((-577) $) 24 T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 107 T ELT)) (-3453 (((-944)) NIL T ELT) (((-944) (-944)) NIL (|has| $ (-6 -4461)) ELT)) (-4315 (((-944) (-577)) NIL (|has| $ (-6 -4461)) ELT)) (-2176 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-911 (-391)) $) NIL T ELT)) (-3603 (((-880) $) 63 T ELT) (($ (-577)) 75 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 78 T ELT) (($ (-577)) 75 T ELT) (($ (-420 (-577))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-717)) 66 T ELT)) (-1920 (((-787)) 119 T CONST)) (-1731 (($ (-577) (-577) (-944)) 54 T ELT)) (-2360 (($ $) NIL T ELT)) (-2716 (((-944)) NIL T ELT) (((-944) (-944)) NIL (|has| $ (-6 -4461)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (((-944)) 91 T ELT) (((-944) (-944)) 90 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL T ELT)) (-2754 (($) 37 T CONST)) (-2767 (($) 18 T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 96 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 118 T ELT)) (-3051 (($ $ $) 77 T ELT)) (-3042 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-3031 (($ $ $) 114 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) 103 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-715) (-13 (-417) (-400) (-375) (-1063 (-391)) (-1063 (-420 (-577))) (-148) (-10 -8 (-15 -3437 ((-944) (-944))) (-15 -3437 ((-944))) (-15 -2762 ((-944) (-944))) (-15 -4192 ((-577) (-577))) (-15 -4192 ((-577))) (-15 -1336 ((-577) (-577))) (-15 -1336 ((-577))) (-15 -3603 ((-391) $)) (-15 -3603 ($ (-717))) (-15 -1595 ((-577) $)) (-15 -1527 ((-577) $)) (-15 -1731 ($ (-577) (-577) (-944)))))) (T -715)) -((-1527 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-3437 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) (-2762 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-4192 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-1336 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-715)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-715)))) (-1731 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-5 *1 (-715))))) -(-13 (-417) (-400) (-375) (-1063 (-391)) (-1063 (-420 (-577))) (-148) (-10 -8 (-15 -3437 ((-944) (-944))) (-15 -3437 ((-944))) (-15 -2762 ((-944) (-944))) (-15 -4192 ((-577) (-577))) (-15 -4192 ((-577))) (-15 -1336 ((-577) (-577))) (-15 -1336 ((-577))) (-15 -3603 ((-391) $)) (-15 -3603 ($ (-717))) (-15 -1595 ((-577) $)) (-15 -1527 ((-577) $)) (-15 -1731 ($ (-577) (-577) (-944))))) -((-3199 (((-705 |#1|) (-705 |#1|) |#1| |#1|) 85 T ELT)) (-1863 (((-705 |#1|) (-705 |#1|) |#1|) 66 T ELT)) (-1482 (((-705 |#1|) (-705 |#1|) |#1|) 86 T ELT)) (-2814 (((-705 |#1|) (-705 |#1|)) 67 T ELT)) (-2956 (((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|) 84 T ELT))) -(((-716 |#1|) (-10 -7 (-15 -2814 ((-705 |#1|) (-705 |#1|))) (-15 -1863 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -1482 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -3199 ((-705 |#1|) (-705 |#1|) |#1| |#1|)) (-15 -2956 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|))) (-318)) (T -716)) -((-2956 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-716 *3)) (-4 *3 (-318)))) (-3199 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) (-1482 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) -(-10 -7 (-15 -2814 ((-705 |#1|) (-705 |#1|))) (-15 -1863 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -1482 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -3199 ((-705 |#1|) (-705 |#1|) |#1| |#1|)) (-15 -2956 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-2199 (($ $ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($ $ $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL T ELT)) (-2879 (($ $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) 31 T ELT)) (-2155 (((-577) $) 29 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2828 (((-112) $) NIL T ELT)) (-2950 (((-420 (-577)) $) NIL T ELT)) (-2352 (($ $) NIL T ELT) (($) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3248 (($ $ $ $) NIL T ELT)) (-3309 (($ $ $) NIL T ELT)) (-4302 (((-112) $) NIL T ELT)) (-2738 (($ $ $) NIL T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2238 (((-112) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL T ELT)) (-2178 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1912 (($ $ $ $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-2846 (((-944) (-944)) 10 T ELT) (((-944)) 9 T ELT)) (-1457 (($ $ $) NIL T ELT)) (-3510 (($ $) NIL T ELT)) (-3762 (($ $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT)) (-3508 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3371 (($ $ $) NIL T ELT)) (-3457 (($) NIL T CONST)) (-2470 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1968 (($ $) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3861 (((-112) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-2322 (($ $) NIL T ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-228) $) NIL T ELT) (((-391) $) NIL T ELT) (((-911 (-577)) $) NIL T ELT) (((-549) $) NIL T ELT) (((-577) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) 28 T ELT) (($ $) NIL T ELT) (($ (-577)) 28 T ELT) (((-327 $) (-327 (-577))) 18 T ELT)) (-1920 (((-787)) NIL T CONST)) (-1784 (((-112) $ $) NIL T ELT)) (-1774 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-3585 (($ $ $ $) NIL T ELT)) (-4318 (($ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-717) (-13 (-400) (-558) (-10 -8 (-15 -2846 ((-944) (-944))) (-15 -2846 ((-944))) (-15 -3603 ((-327 $) (-327 (-577))))))) (T -717)) -((-2846 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717)))) (-2846 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-717))) (-5 *1 (-717))))) -(-13 (-400) (-558) (-10 -8 (-15 -2846 ((-944) (-944))) (-15 -2846 ((-944))) (-15 -3603 ((-327 $) (-327 (-577)))))) -((-1638 (((-1 |#4| |#2| |#3|) |#1| (-1201) (-1201)) 19 T ELT)) (-1433 (((-1 |#4| |#2| |#3|) (-1201)) 12 T ELT))) -(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1433 ((-1 |#4| |#2| |#3|) (-1201))) (-15 -1638 ((-1 |#4| |#2| |#3|) |#1| (-1201) (-1201)))) (-627 (-549)) (-1242) (-1242) (-1242)) (T -718)) -((-1638 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *3 *5 *6 *7)) (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) (-4 *7 (-1242)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *4 *5 *6 *7)) (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) (-4 *7 (-1242))))) -(-10 -7 (-15 -1433 ((-1 |#4| |#2| |#3|) (-1201))) (-15 -1638 ((-1 |#4| |#2| |#3|) |#1| (-1201) (-1201)))) -((-3305 (((-1 (-228) (-228) (-228)) |#1| (-1201) (-1201)) 43 T ELT) (((-1 (-228) (-228)) |#1| (-1201)) 48 T ELT))) -(((-719 |#1|) (-10 -7 (-15 -3305 ((-1 (-228) (-228)) |#1| (-1201))) (-15 -3305 ((-1 (-228) (-228) (-228)) |#1| (-1201) (-1201)))) (-627 (-549))) (T -719)) -((-3305 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-719 *3)) (-4 *3 (-627 (-549))))) (-3305 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-719 *3)) (-4 *3 (-627 (-549)))))) -(-10 -7 (-15 -3305 ((-1 (-228) (-228)) |#1| (-1201))) (-15 -3305 ((-1 (-228) (-228) (-228)) |#1| (-1201) (-1201)))) -((-3386 (((-1201) |#1| (-1201) (-660 (-1201))) 10 T ELT) (((-1201) |#1| (-1201) (-1201) (-1201)) 13 T ELT) (((-1201) |#1| (-1201) (-1201)) 12 T ELT) (((-1201) |#1| (-1201)) 11 T ELT))) -(((-720 |#1|) (-10 -7 (-15 -3386 ((-1201) |#1| (-1201))) (-15 -3386 ((-1201) |#1| (-1201) (-1201))) (-15 -3386 ((-1201) |#1| (-1201) (-1201) (-1201))) (-15 -3386 ((-1201) |#1| (-1201) (-660 (-1201))))) (-627 (-549))) (T -720)) -((-3386 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) (-3386 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) (-3386 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) (-3386 (*1 *2 *3 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549)))))) -(-10 -7 (-15 -3386 ((-1201) |#1| (-1201))) (-15 -3386 ((-1201) |#1| (-1201) (-1201))) (-15 -3386 ((-1201) |#1| (-1201) (-1201) (-1201))) (-15 -3386 ((-1201) |#1| (-1201) (-660 (-1201))))) -((-3252 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-721 |#1| |#2|) (-10 -7 (-15 -3252 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1242) (-1242)) (T -721)) -((-3252 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-721 *3 *4)) (-4 *3 (-1242)) (-4 *4 (-1242))))) -(-10 -7 (-15 -3252 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1820 (((-1 |#3| |#2|) (-1201)) 11 T ELT)) (-1638 (((-1 |#3| |#2|) |#1| (-1201)) 21 T ELT))) -(((-722 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-1 |#3| |#2|) (-1201))) (-15 -1638 ((-1 |#3| |#2|) |#1| (-1201)))) (-627 (-549)) (-1242) (-1242)) (T -722)) -((-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *3 *5 *6)) (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *4 *5 *6)) (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242))))) -(-10 -7 (-15 -1820 ((-1 |#3| |#2|) (-1201))) (-15 -1638 ((-1 |#3| |#2|) |#1| (-1201)))) -((-3746 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| |#4|)))) (-660 (-787)) (-1292 (-660 (-1197 |#3|))) |#3|) 92 T ELT)) (-2170 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-787)) |#3|) 110 T ELT)) (-2656 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-787)) (-660 (-1197 |#4|)) (-1292 (-660 (-1197 |#3|))) |#3|) 47 T ELT))) -(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2656 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-787)) (-660 (-1197 |#4|)) (-1292 (-660 (-1197 |#3|))) |#3|)) (-15 -2170 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-787)) |#3|)) (-15 -3746 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| |#4|)))) (-660 (-787)) (-1292 (-660 (-1197 |#3|))) |#3|))) (-809) (-865) (-318) (-972 |#3| |#1| |#2|)) (T -723)) -((-3746 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-660 (-1197 *13))) (-5 *3 (-1197 *13)) (-5 *4 (-660 *12)) (-5 *5 (-660 *10)) (-5 *6 (-660 *13)) (-5 *7 (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| *13))))) (-5 *8 (-660 (-787))) (-5 *9 (-1292 (-660 (-1197 *10)))) (-4 *12 (-865)) (-4 *10 (-318)) (-4 *13 (-972 *10 *11 *12)) (-4 *11 (-809)) (-5 *1 (-723 *11 *12 *10 *13)))) (-2170 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-660 *11)) (-5 *5 (-660 (-1197 *9))) (-5 *6 (-660 *9)) (-5 *7 (-660 *12)) (-5 *8 (-660 (-787))) (-4 *11 (-865)) (-4 *9 (-318)) (-4 *12 (-972 *9 *10 *11)) (-4 *10 (-809)) (-5 *2 (-660 (-1197 *12))) (-5 *1 (-723 *10 *11 *9 *12)) (-5 *3 (-1197 *12)))) (-2656 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-660 (-1197 *11))) (-5 *3 (-1197 *11)) (-5 *4 (-660 *10)) (-5 *5 (-660 *8)) (-5 *6 (-660 (-787))) (-5 *7 (-1292 (-660 (-1197 *8)))) (-4 *10 (-865)) (-4 *8 (-318)) (-4 *11 (-972 *8 *9 *10)) (-4 *9 (-809)) (-5 *1 (-723 *9 *10 *8 *11))))) -(-10 -7 (-15 -2656 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-787)) (-660 (-1197 |#4|)) (-1292 (-660 (-1197 |#3|))) |#3|)) (-15 -2170 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-787)) |#3|)) (-15 -3746 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| |#4|)))) (-660 (-787)) (-1292 (-660 (-1197 |#3|))) |#3|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-3391 (($ $) 48 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-3180 (($ |#1| (-787)) 46 T ELT)) (-2643 (((-787) $) 50 T ELT)) (-3365 ((|#1| $) 49 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3616 (((-787) $) 51 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 45 (|has| |#1| (-174)) ELT)) (-3421 ((|#1| $ (-787)) 47 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT))) -(((-724 |#1|) (-141) (-1074)) (T -724)) -((-3616 (*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074)))) (-3180 (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074))))) -(-13 (-1074) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3616 ((-787) $)) (-15 -2643 ((-787) $)) (-15 -3365 (|t#1| $)) (-15 -3391 ($ $)) (-15 -3421 (|t#1| $ (-787))) (-15 -3180 ($ |t#1| (-787))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2124 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-725 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2124 (|#6| (-1 |#4| |#1|) |#3|))) (-569) (-1268 |#1|) (-1268 (-420 |#2|)) (-569) (-1268 |#4|) (-1268 (-420 |#5|))) (T -725)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1268 *5)) (-4 *2 (-1268 (-420 *8))) (-5 *1 (-725 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1268 (-420 *6))) (-4 *8 (-1268 *7))))) -(-10 -7 (-15 -2124 (|#6| (-1 |#4| |#1|) |#3|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3387 (((-1183) (-880)) 38 T ELT)) (-1992 (((-1297) (-1183)) 31 T ELT)) (-1364 (((-1183) (-880)) 28 T ELT)) (-2912 (((-1183) (-880)) 29 T ELT)) (-3603 (((-880) $) NIL T ELT) (((-1183) (-880)) 27 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-726) (-13 (-1125) (-10 -7 (-15 -3603 ((-1183) (-880))) (-15 -1364 ((-1183) (-880))) (-15 -2912 ((-1183) (-880))) (-15 -3387 ((-1183) (-880))) (-15 -1992 ((-1297) (-1183)))))) (T -726)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-2912 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-726))))) -(-13 (-1125) (-10 -7 (-15 -3603 ((-1183) (-880))) (-15 -1364 ((-1183) (-880))) (-15 -2912 ((-1183) (-880))) (-15 -3387 ((-1183) (-880))) (-15 -1992 ((-1297) (-1183))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) NIL T ELT)) (-2498 (($ |#1| |#2|) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1688 ((|#2| $) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4211 (((-3 $ "failed") $ $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) ((|#1| $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-375) (-10 -8 (-15 -1688 (|#2| $)) (-15 -3603 (|#1| $)) (-15 -2498 ($ |#1| |#2|)) (-15 -4211 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) -((-1688 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3603 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2498 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4211 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-375) (-10 -8 (-15 -1688 (|#2| $)) (-15 -3603 (|#1| $)) (-15 -2498 ($ |#1| |#2|)) (-15 -4211 ((-3 $ "failed") $ $)))) -((-3489 (((-112) $ $) 87 T ELT)) (-3801 (((-112) $) 36 T ELT)) (-1563 (((-1292 |#1|) $ (-787)) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3893 (($ (-1197 |#1|)) NIL T ELT)) (-3024 (((-1197 $) $ (-1107)) NIL T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-1107))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4072 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3373 (((-787)) 54 (|has| |#1| (-380)) ELT)) (-3890 (($ $ (-787)) NIL T ELT)) (-2167 (($ $ (-787)) NIL T ELT)) (-1791 ((|#2| |#2|) 50 T ELT)) (-4221 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-1107) "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-1107) $) NIL T ELT)) (-2653 (($ $ $ (-1107)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) NIL (|has| |#1| (-174)) ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) 40 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-2498 (($ |#2|) 48 T ELT)) (-1625 (((-3 $ "failed") $) 97 T ELT)) (-2352 (($) 58 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4123 (($ $ $) NIL T ELT)) (-2474 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2737 (((-2 (|:| -2940 |#1|) (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-2087 (((-981 $)) 89 T ELT)) (-3367 (($ $ |#1| (-787) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-2536 (((-787) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)) ELT)) (-3194 (($ (-1197 |#1|) (-1107)) NIL T ELT) (($ (-1197 $) (-1107)) NIL T ELT)) (-3681 (($ $ (-787)) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) 85 T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-1107)) NIL T ELT) (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-1688 ((|#2|) 51 T ELT)) (-2643 (((-787) $) NIL T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-4373 (($ (-1 (-787) (-787)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2432 (((-1197 |#1|) $) NIL T ELT)) (-4038 (((-3 (-1107) "failed") $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#1| (-380)) ELT)) (-2482 ((|#2| $) 47 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) 34 T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2454 (((-2 (|:| -2669 $) (|:| -2689 $)) $ (-787)) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-1107)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-4129 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3457 (($) NIL (|has| |#1| (-1177)) CONST)) (-3251 (($ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4131 (($ $) 88 (|has| |#1| (-361)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1107) |#1|) NIL T ELT) (($ $ (-660 (-1107)) (-660 |#1|)) NIL T ELT) (($ $ (-1107) $) NIL T ELT) (($ $ (-660 (-1107)) (-660 $)) NIL T ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-4036 (((-3 $ "failed") $ (-787)) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 98 (|has| |#1| (-375)) ELT)) (-4447 (($ $ (-1107)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-3616 (((-787) $) 38 T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-2392 (((-981 $)) 42 T ELT)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-3603 (((-880) $) 68 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1107)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) 70 T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) 25 T CONST)) (-3279 (((-1292 |#1|) $) 83 T ELT)) (-1632 (($ (-1292 |#1|)) 57 T ELT)) (-2767 (($) 8 T CONST)) (-2136 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-1852 (((-1292 |#1|) $) NIL T ELT)) (-2949 (((-112) $ $) 76 T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 39 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 92 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) -(((-728 |#1| |#2|) (-13 (-1268 |#1|) (-629 |#2|) (-10 -8 (-15 -1791 (|#2| |#2|)) (-15 -1688 (|#2|)) (-15 -2498 ($ |#2|)) (-15 -2482 (|#2| $)) (-15 -3279 ((-1292 |#1|) $)) (-15 -1632 ($ (-1292 |#1|))) (-15 -1852 ((-1292 |#1|) $)) (-15 -2087 ((-981 $))) (-15 -2392 ((-981 $))) (IF (|has| |#1| (-361)) (-15 -4131 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) (-1074) (-1268 |#1|)) (T -728)) -((-1791 (*1 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3)))) (-1688 (*1 *2) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) (-2498 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3)))) (-2482 (*1 *2 *1) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) (-3279 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-1632 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-1852 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-2087 (*1 *2) (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-2392 (*1 *2) (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-4131 (*1 *1 *1) (-12 (-4 *2 (-361)) (-4 *2 (-1074)) (-5 *1 (-728 *2 *3)) (-4 *3 (-1268 *2))))) -(-13 (-1268 |#1|) (-629 |#2|) (-10 -8 (-15 -1791 (|#2| |#2|)) (-15 -1688 (|#2|)) (-15 -2498 ($ |#2|)) (-15 -2482 (|#2| $)) (-15 -3279 ((-1292 |#1|) $)) (-15 -1632 ($ (-1292 |#1|))) (-15 -1852 ((-1292 |#1|) $)) (-15 -2087 ((-981 $))) (-15 -2392 ((-981 $))) (IF (|has| |#1| (-361)) (-15 -4131 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 ((|#1| $) 13 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1527 ((|#2| $) 12 T ELT)) (-3614 (($ |#1| |#2|) 16 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-2 (|:| -3251 |#1|) (|:| -1527 |#2|))) 15 T ELT) (((-2 (|:| -3251 |#1|) (|:| -1527 |#2|)) $) 14 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 11 T ELT))) -(((-729 |#1| |#2| |#3|) (-13 (-865) (-503 (-2 (|:| -3251 |#1|) (|:| -1527 |#2|))) (-10 -8 (-15 -1527 (|#2| $)) (-15 -3251 (|#1| $)) (-15 -3614 ($ |#1| |#2|)))) (-865) (-1125) (-1 (-112) (-2 (|:| -3251 |#1|) (|:| -1527 |#2|)) (-2 (|:| -3251 |#1|) (|:| -1527 |#2|)))) (T -729)) -((-1527 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-729 *3 *2 *4)) (-4 *3 (-865)) (-14 *4 (-1 (-112) (-2 (|:| -3251 *3) (|:| -1527 *2)) (-2 (|:| -3251 *3) (|:| -1527 *2)))))) (-3251 (*1 *2 *1) (-12 (-4 *2 (-865)) (-5 *1 (-729 *2 *3 *4)) (-4 *3 (-1125)) (-14 *4 (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *3)) (-2 (|:| -3251 *2) (|:| -1527 *3)))))) (-3614 (*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3 *4)) (-4 *2 (-865)) (-4 *3 (-1125)) (-14 *4 (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *3)) (-2 (|:| -3251 *2) (|:| -1527 *3))))))) -(-13 (-865) (-503 (-2 (|:| -3251 |#1|) (|:| -1527 |#2|))) (-10 -8 (-15 -1527 (|#2| $)) (-15 -3251 (|#1| $)) (-15 -3614 ($ |#1| |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 66 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 102 T ELT) (((-3 (-115) "failed") $) 108 T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-1625 (((-3 $ "failed") $) 103 T ELT)) (-2019 ((|#2| (-115) |#2|) 93 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3975 (($ |#1| (-373 (-115))) 14 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3747 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-4367 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-2837 ((|#2| $ |#2|) 33 T ELT)) (-4071 ((|#1| |#1|) 118 (|has| |#1| (-174)) ELT)) (-3603 (((-880) $) 73 T ELT) (($ (-577)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 37 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2663 (($ $) 112 (|has| |#1| (-174)) ELT) (($ $ $) 116 (|has| |#1| (-174)) ELT)) (-2754 (($) 21 T CONST)) (-2767 (($) 9 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 83 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ (-115) (-577)) NIL T ELT) (($ $ (-577)) 64 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 111 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 109 (|has| |#1| (-174)) ELT) (($ $ |#1|) 110 (|has| |#1| (-174)) ELT))) -(((-730 |#1| |#2|) (-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2663 ($ $)) (-15 -2663 ($ $ $)) (-15 -4071 (|#1| |#1|))) |%noBranch|) (-15 -4367 ($ $ (-1 |#2| |#2|))) (-15 -3747 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2019 (|#2| (-115) |#2|)) (-15 -3975 ($ |#1| (-373 (-115)))))) (-1074) (-664 |#1|)) (T -730)) -((-2663 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) (-4 *3 (-664 *2)))) (-2663 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) (-4 *3 (-664 *2)))) (-4071 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) (-4 *3 (-664 *2)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-730 *4 *5)) (-4 *5 (-664 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)) (-4 *4 (-664 *3)))) (-2019 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1074)) (-5 *1 (-730 *4 *2)) (-4 *2 (-664 *4)))) (-3975 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1074)) (-5 *1 (-730 *2 *4)) (-4 *4 (-664 *2))))) -(-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2663 ($ $)) (-15 -2663 ($ $ $)) (-15 -4071 (|#1| |#1|))) |%noBranch|) (-15 -4367 ($ $ (-1 |#2| |#2|))) (-15 -3747 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2019 (|#2| (-115) |#2|)) (-15 -3975 ($ |#1| (-373 (-115)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 33 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2498 (($ |#1| |#2|) 25 T ELT)) (-1625 (((-3 $ "failed") $) 51 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-1688 ((|#2| $) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 52 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-4211 (((-3 $ "failed") $ $) 50 T ELT)) (-3603 (((-880) $) 24 T ELT) (($ (-577)) 19 T ELT) ((|#1| $) 13 T ELT)) (-1920 (((-787)) 28 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 16 T CONST)) (-2767 (($) 30 T CONST)) (-2949 (((-112) $ $) 41 T ELT)) (-3042 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3031 (($ $ $) 43 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-731 |#1| |#2| |#3| |#4| |#5|) (-13 (-1074) (-10 -8 (-15 -1688 (|#2| $)) (-15 -3603 (|#1| $)) (-15 -2498 ($ |#1| |#2|)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -1625 ((-3 $ "failed") $)) (-15 -3318 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -731)) -((-1625 (*1 *1 *1) (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1688 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3603 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2498 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4211 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3318 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1074) (-10 -8 (-15 -1688 (|#2| $)) (-15 -3603 (|#1| $)) (-15 -2498 ($ |#1| |#2|)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -1625 ((-3 $ "failed") $)) (-15 -3318 ($ $)))) -((* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-732 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-733 |#2|) (-174)) (T -732)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-733 |#1|) (-141) (-174)) (T -733)) -NIL -(-13 (-111 |t#1| |t#1|) (-656 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2879 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-1368 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3695 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 16 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3273 ((|#1| $ |#1|) 24 T ELT) (((-849 |#1|) $ (-849 |#1|)) 32 T ELT)) (-1328 (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-3603 (((-880) $) 39 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 9 T CONST)) (-2949 (((-112) $ $) 48 T ELT)) (-3051 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-734 |#1|) (-13 (-486) (-10 -8 (-15 -3695 ($ |#1| |#1| |#1| |#1|)) (-15 -2879 ($ |#1|)) (-15 -1368 ($ |#1|)) (-15 -1625 ($)) (-15 -2879 ($ $ |#1|)) (-15 -1368 ($ $ |#1|)) (-15 -1625 ($ $)) (-15 -3273 (|#1| $ |#1|)) (-15 -3273 ((-849 |#1|) $ (-849 |#1|))))) (-375)) (T -734)) -((-3695 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-2879 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-1368 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-1625 (*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-2879 (*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-1368 (*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-1625 (*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-3273 (*1 *2 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-3273 (*1 *2 *1 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-375)) (-5 *1 (-734 *3))))) -(-13 (-486) (-10 -8 (-15 -3695 ($ |#1| |#1| |#1| |#1|)) (-15 -2879 ($ |#1|)) (-15 -1368 ($ |#1|)) (-15 -1625 ($)) (-15 -2879 ($ $ |#1|)) (-15 -1368 ($ $ |#1|)) (-15 -1625 ($ $)) (-15 -3273 (|#1| $ |#1|)) (-15 -3273 ((-849 |#1|) $ (-849 |#1|))))) -((-1647 (($ $ (-944)) 19 T ELT)) (-1954 (($ $ (-944)) 20 T ELT)) (** (($ $ (-944)) 10 T ELT))) -(((-735 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-944))) (-15 -1954 (|#1| |#1| (-944))) (-15 -1647 (|#1| |#1| (-944)))) (-736)) (T -735)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-944))) (-15 -1954 (|#1| |#1| (-944))) (-15 -1647 (|#1| |#1| (-944)))) -((-3489 (((-112) $ $) 7 T ELT)) (-1647 (($ $ (-944)) 16 T ELT)) (-1954 (($ $ (-944)) 15 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (** (($ $ (-944)) 14 T ELT)) (* (($ $ $) 17 T ELT))) -(((-736) (-141)) (T -736)) -((* (*1 *1 *1 *1) (-4 *1 (-736))) (-1647 (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) (-1954 (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944))))) -(-13 (-1125) (-10 -8 (-15 * ($ $ $)) (-15 -1647 ($ $ (-944))) (-15 -1954 ($ $ (-944))) (-15 ** ($ $ (-944))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-1647 (($ $ (-944)) NIL T ELT) (($ $ (-787)) 18 T ELT)) (-3306 (((-112) $) 10 T ELT)) (-1954 (($ $ (-944)) NIL T ELT) (($ $ (-787)) 19 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 16 T ELT))) -(((-737 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-787))) (-15 -1954 (|#1| |#1| (-787))) (-15 -1647 (|#1| |#1| (-787))) (-15 -3306 ((-112) |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -1954 (|#1| |#1| (-944))) (-15 -1647 (|#1| |#1| (-944)))) (-738)) (T -737)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-787))) (-15 -1954 (|#1| |#1| (-787))) (-15 -1647 (|#1| |#1| (-787))) (-15 -3306 ((-112) |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -1954 (|#1| |#1| (-944))) (-15 -1647 (|#1| |#1| (-944)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3696 (((-3 $ "failed") $) 18 T ELT)) (-1647 (($ $ (-944)) 16 T ELT) (($ $ (-787)) 23 T ELT)) (-1625 (((-3 $ "failed") $) 20 T ELT)) (-3306 (((-112) $) 24 T ELT)) (-3473 (((-3 $ "failed") $) 19 T ELT)) (-1954 (($ $ (-944)) 15 T ELT) (($ $ (-787)) 22 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2767 (($) 25 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (** (($ $ (-944)) 14 T ELT) (($ $ (-787)) 21 T ELT)) (* (($ $ $) 17 T ELT))) -(((-738) (-141)) (T -738)) -((-2767 (*1 *1) (-4 *1 (-738))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (-1647 (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) (-1954 (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) (-1625 (*1 *1 *1) (|partial| -4 *1 (-738))) (-3473 (*1 *1 *1) (|partial| -4 *1 (-738))) (-3696 (*1 *1 *1) (|partial| -4 *1 (-738)))) -(-13 (-736) (-10 -8 (-15 (-2767) ($) -2609) (-15 -3306 ((-112) $)) (-15 -1647 ($ $ (-787))) (-15 -1954 ($ $ (-787))) (-15 ** ($ $ (-787))) (-15 -1625 ((-3 $ "failed") $)) (-15 -3473 ((-3 $ "failed") $)) (-15 -3696 ((-3 $ "failed") $)))) -(((-102) . T) ((-626 (-880)) . T) ((-736) . T) ((-1125) . T) ((-1242) . T)) -((-3373 (((-787)) 39 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 26 T ELT)) (-2155 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-2498 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-420 |#3|)) 49 T ELT)) (-1625 (((-3 $ "failed") $) 69 T ELT)) (-2352 (($) 43 T ELT)) (-4021 ((|#2| $) 21 T ELT)) (-3428 (($) 18 T ELT)) (-3362 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-3285 (((-705 |#2|) (-1292 $) (-1 |#2| |#2|)) 64 T ELT)) (-2176 (((-1292 |#2|) $) NIL T ELT) (($ (-1292 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2600 ((|#3| $) 36 T ELT)) (-2559 (((-1292 $)) 33 T ELT))) -(((-739 |#1| |#2| |#3|) (-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2352 (|#1|)) (-15 -3373 ((-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3285 ((-705 |#2|) (-1292 |#1|) (-1 |#2| |#2|))) (-15 -2498 ((-3 |#1| "failed") (-420 |#3|))) (-15 -2176 (|#1| |#3|)) (-15 -2498 (|#1| |#3|)) (-15 -3428 (|#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2176 (|#3| |#1|)) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -2559 ((-1292 |#1|))) (-15 -2600 (|#3| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|))) (-740 |#2| |#3|) (-174) (-1268 |#2|)) (T -739)) -((-3373 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-787)) (-5 *1 (-739 *3 *4 *5)) (-4 *3 (-740 *4 *5))))) -(-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2352 (|#1|)) (-15 -3373 ((-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3285 ((-705 |#2|) (-1292 |#1|) (-1 |#2| |#2|))) (-15 -2498 ((-3 |#1| "failed") (-420 |#3|))) (-15 -2176 (|#1| |#3|)) (-15 -2498 (|#1| |#3|)) (-15 -3428 (|#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2176 (|#3| |#1|)) (-15 -2176 (|#1| (-1292 |#2|))) (-15 -2176 ((-1292 |#2|) |#1|)) (-15 -2559 ((-1292 |#1|))) (-15 -2600 (|#3| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -1625 ((-3 |#1| "failed") |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 105 (|has| |#1| (-375)) ELT)) (-4122 (($ $) 106 (|has| |#1| (-375)) ELT)) (-3547 (((-112) $) 108 (|has| |#1| (-375)) ELT)) (-4436 (((-705 |#1|) (-1292 $)) 53 T ELT) (((-705 |#1|)) 68 T ELT)) (-2219 ((|#1| $) 59 T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) 158 (|has| |#1| (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 125 (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) 126 (|has| |#1| (-375)) ELT)) (-2435 (((-112) $ $) 116 (|has| |#1| (-375)) ELT)) (-3373 (((-787)) 99 (|has| |#1| (-380)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-2155 (((-577) $) 184 (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) 182 (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 181 T ELT)) (-1911 (($ (-1292 |#1|) (-1292 $)) 55 T ELT) (($ (-1292 |#1|)) 71 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)) ELT)) (-3436 (($ $ $) 120 (|has| |#1| (-375)) ELT)) (-2678 (((-705 |#1|) $ (-1292 $)) 60 T ELT) (((-705 |#1|) $) 66 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 177 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 176 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 175 T ELT) (((-705 |#1|) (-705 $)) 174 T ELT)) (-2498 (($ |#2|) 169 T ELT) (((-3 $ "failed") (-420 |#2|)) 166 (|has| |#1| (-375)) ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3503 (((-944)) 61 T ELT)) (-2352 (($) 102 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) 119 (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 114 (|has| |#1| (-375)) ELT)) (-1742 (($) 160 (|has| |#1| (-361)) ELT)) (-4402 (((-112) $) 161 (|has| |#1| (-361)) ELT)) (-1865 (($ $ (-787)) 152 (|has| |#1| (-361)) ELT) (($ $) 151 (|has| |#1| (-361)) ELT)) (-2182 (((-112) $) 127 (|has| |#1| (-375)) ELT)) (-2536 (((-944) $) 163 (|has| |#1| (-361)) ELT) (((-849 (-944)) $) 149 (|has| |#1| (-361)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-4021 ((|#1| $) 58 T ELT)) (-1454 (((-3 $ "failed") $) 153 (|has| |#1| (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 123 (|has| |#1| (-375)) ELT)) (-3810 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-2144 (((-944) $) 101 (|has| |#1| (-380)) ELT)) (-2482 ((|#2| $) 167 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 179 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 178 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 173 T ELT) (((-705 |#1|) (-1292 $)) 172 T ELT)) (-3508 (($ (-660 $)) 112 (|has| |#1| (-375)) ELT) (($ $ $) 111 (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 128 (|has| |#1| (-375)) ELT)) (-3457 (($) 154 (|has| |#1| (-361)) CONST)) (-3251 (($ (-944)) 100 (|has| |#1| (-380)) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3428 (($) 171 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 113 (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) 110 (|has| |#1| (-375)) ELT) (($ $ $) 109 (|has| |#1| (-375)) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) 157 (|has| |#1| (-361)) ELT)) (-3056 (((-431 $) $) 124 (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 121 (|has| |#1| (-375)) ELT)) (-3478 (((-3 $ "failed") $ $) 104 (|has| |#1| (-375)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 115 (|has| |#1| (-375)) ELT)) (-4167 (((-787) $) 117 (|has| |#1| (-375)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 118 (|has| |#1| (-375)) ELT)) (-4447 ((|#1| (-1292 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-3816 (((-787) $) 162 (|has| |#1| (-361)) ELT) (((-3 (-787) "failed") $ $) 150 (|has| |#1| (-361)) ELT)) (-3362 (($ $ (-787)) 147 (-2811 (-2700 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) 145 (-2811 (-2700 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 141 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-1201) (-787)) 140 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1201))) 139 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-1201)) 137 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-787)) 135 (|has| |#1| (-375)) ELT)) (-3285 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)) ELT)) (-1629 ((|#2|) 170 T ELT)) (-2932 (($) 159 (|has| |#1| (-361)) ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 57 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) 56 T ELT) (((-1292 |#1|) $) 73 T ELT) (((-705 |#1|) (-1292 $)) 72 T ELT)) (-2176 (((-1292 |#1|) $) 70 T ELT) (($ (-1292 |#1|)) 69 T ELT) ((|#2| $) 186 T ELT) (($ |#2|) 168 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 156 (|has| |#1| (-361)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ $) 103 (|has| |#1| (-375)) ELT) (($ (-420 (-577))) 98 (-2811 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3907 (($ $) 155 (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-2600 ((|#2| $) 52 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2559 (((-1292 $)) 74 T ELT)) (-2174 (((-112) $ $) 107 (|has| |#1| (-375)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-787)) 148 (-2811 (-2700 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) 146 (-2811 (-2700 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 144 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-1201) (-787)) 143 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1201))) 142 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-1201)) 138 (-2700 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375))) ELT) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-787)) 133 (|has| |#1| (-375)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 132 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 129 (|has| |#1| (-375)) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-375)) ELT))) -(((-740 |#1| |#2|) (-141) (-174) (-1268 |t#1|)) (T -740)) -((-3428 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-740 *2 *3)) (-4 *3 (-1268 *2)))) (-1629 (*1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) (-2498 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) (-2176 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) (-2498 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-375)) (-4 *3 (-174)) (-4 *1 (-740 *3 *4)))) (-3285 (*1 *2 *3 *4) (-12 (-5 *3 (-1292 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-4 *1 (-740 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1268 *5)) (-5 *2 (-705 *5))))) -(-13 (-422 |t#1| |t#2|) (-174) (-627 |t#2|) (-424 |t#1|) (-389 |t#1|) (-10 -8 (-15 -3428 ($)) (-15 -1629 (|t#2|)) (-15 -2498 ($ |t#2|)) (-15 -2176 ($ |t#2|)) (-15 -2482 (|t#2| $)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-375)) (-6 (-233 |t#1|)) (-15 -2498 ((-3 $ "failed") (-420 |t#2|))) (-15 -3285 ((-705 |t#1|) (-1292 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-102) . T) ((-111 #0# #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2811 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) . T) ((-627 |#2|) . T) ((-235 $) -2811 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-233 |#1|) |has| |#1| (-375)) ((-239) -2811 (|has| |#1| (-361)) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-238) -2811 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-273 |#1|) |has| |#1| (-375)) ((-249) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-301) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-318) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-375) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2811 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-569) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-662 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-656 |#1|) . T) ((-656 $) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-733 |#1|) . T) ((-733 $) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))))) ((-921 (-1201)) -12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -2811 (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))))) ((-943) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) -2811 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-361)) ((-1242) . T) ((-1246) -2811 (|has| |#1| (-361)) (|has| |#1| (-375)))) -((-3790 (($) 11 T ELT)) (-1625 (((-3 $ "failed") $) 14 T ELT)) (-3306 (((-112) $) 10 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 20 T ELT))) -(((-741 |#1|) (-10 -8 (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 -3306 ((-112) |#1|)) (-15 -3790 (|#1|)) (-15 ** (|#1| |#1| (-944)))) (-742)) (T -741)) -NIL -(-10 -8 (-15 -1625 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 -3306 ((-112) |#1|)) (-15 -3790 (|#1|)) (-15 ** (|#1| |#1| (-944)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3790 (($) 19 T CONST)) (-1625 (((-3 $ "failed") $) 16 T ELT)) (-3306 (((-112) $) 18 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2767 (($) 20 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (** (($ $ (-944)) 14 T ELT) (($ $ (-787)) 17 T ELT)) (* (($ $ $) 15 T ELT))) -(((-742) (-141)) (T -742)) -((-2767 (*1 *1) (-4 *1 (-742))) (-3790 (*1 *1) (-4 *1 (-742))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-787)))) (-1625 (*1 *1 *1) (|partial| -4 *1 (-742)))) -(-13 (-1137) (-10 -8 (-15 (-2767) ($) -2609) (-15 -3790 ($) -2609) (-15 -3306 ((-112) $)) (-15 ** ($ $ (-787))) (-15 -1625 ((-3 $ "failed") $)))) -(((-102) . T) ((-626 (-880)) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3220 (((-2 (|:| -4209 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3333 (((-2 (|:| -4209 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2564 ((|#2| (-420 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-4337 (((-2 (|:| |poly| |#2|) (|:| -4209 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-743 |#1| |#2|) (-10 -7 (-15 -3333 ((-2 (|:| -4209 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3220 ((-2 (|:| -4209 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2564 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -4337 ((-2 (|:| |poly| |#2|) (|:| -4209 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1268 |#1|)) (T -743)) -((-4337 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4209 (-420 *6)) (|:| |special| (-420 *6)))) (-5 *1 (-743 *5 *6)) (-5 *3 (-420 *6)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1268 *5)) (-5 *1 (-743 *5 *2)) (-4 *5 (-375)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -4209 (-431 *3)) (|:| |special| (-431 *3)))) (-5 *1 (-743 *5 *3)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -4209 *3) (|:| |special| *3))) (-5 *1 (-743 *5 *3))))) -(-10 -7 (-15 -3333 ((-2 (|:| -4209 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3220 ((-2 (|:| -4209 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2564 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -4337 ((-2 (|:| |poly| |#2|) (|:| -4209 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) -((-3621 ((|#7| (-660 |#5|) |#6|) NIL T ELT)) (-2124 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-744 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2124 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3621 (|#7| (-660 |#5|) |#6|))) (-865) (-809) (-809) (-1074) (-1074) (-972 |#4| |#2| |#1|) (-972 |#5| |#3| |#1|)) (T -744)) -((-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *9)) (-4 *9 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *8 (-1074)) (-4 *2 (-972 *9 *7 *5)) (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) (-4 *4 (-972 *8 *6 *5)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1074)) (-4 *9 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *2 (-972 *9 *7 *5)) (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) (-4 *4 (-972 *8 *6 *5))))) -(-10 -7 (-15 -2124 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3621 (|#7| (-660 |#5|) |#6|))) -((-2124 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-745 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2124 (|#7| (-1 |#2| |#1|) |#6|))) (-865) (-865) (-809) (-809) (-1074) (-972 |#5| |#3| |#1|) (-972 |#5| |#4| |#2|)) (T -745)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-865)) (-4 *6 (-865)) (-4 *7 (-809)) (-4 *9 (-1074)) (-4 *2 (-972 *9 *8 *6)) (-5 *1 (-745 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-809)) (-4 *4 (-972 *9 *7 *5))))) -(-10 -7 (-15 -2124 (|#7| (-1 |#2| |#1|) |#6|))) -((-3056 (((-431 |#4|) |#4|) 42 T ELT))) -(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-431 |#4|) |#4|))) (-809) (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201))))) (-318) (-972 (-975 |#3|) |#1| |#2|)) (T -746)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201)))))) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-972 (-975 *6) *4 *5))))) -(-10 -7 (-15 -3056 ((-431 |#4|) |#4|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-882 |#1|)) $) NIL T ELT)) (-3024 (((-1197 $) $ (-882 |#1|)) NIL T ELT) (((-1197 |#2|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#2| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-882 |#1|))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-882 |#1|) "failed") $) NIL T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-882 |#1|) $) NIL T ELT)) (-2653 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#2| (-932)) ELT)) (-3367 (($ $ |#2| (-544 (-882 |#1|)) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-3194 (($ (-1197 |#2|) (-882 |#1|)) NIL T ELT) (($ (-1197 $) (-882 |#1|)) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#2| (-544 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-882 |#1|)) NIL T ELT)) (-2643 (((-544 (-882 |#1|)) $) NIL T ELT) (((-787) $ (-882 |#1|)) NIL T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL T ELT)) (-4373 (($ (-1 (-544 (-882 |#1|)) (-544 (-882 |#1|))) $) NIL T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4038 (((-3 (-882 |#1|) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#2| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#2| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#2| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-882 |#1|) |#2|) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) NIL T ELT) (($ $ (-882 |#1|) $) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 $)) NIL T ELT)) (-4447 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3362 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT)) (-3616 (((-544 (-882 |#1|)) $) NIL T ELT) (((-787) $ (-882 |#1|)) NIL T ELT) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))) ELT)) (-2240 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-882 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-569)) ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-544 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#2| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL T ELT) (($ $ (-882 |#1|) (-787)) NIL T ELT) (($ $ (-660 (-882 |#1|))) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-747 |#1| |#2|) (-972 |#2| (-544 (-882 |#1|)) (-882 |#1|)) (-660 (-1201)) (-1074)) (T -747)) -NIL -(-972 |#2| (-544 (-882 |#1|)) (-882 |#1|)) -((-4277 (((-2 (|:| -2510 (-975 |#3|)) (|:| -1341 (-975 |#3|))) |#4|) 14 T ELT)) (-2436 ((|#4| |#4| |#2|) 33 T ELT)) (-3242 ((|#4| (-420 (-975 |#3|)) |#2|) 64 T ELT)) (-2547 ((|#4| (-1197 (-975 |#3|)) |#2|) 77 T ELT)) (-4074 ((|#4| (-1197 |#4|) |#2|) 51 T ELT)) (-4086 ((|#4| |#4| |#2|) 54 T ELT)) (-3056 (((-431 |#4|) |#4|) 40 T ELT))) -(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4277 ((-2 (|:| -2510 (-975 |#3|)) (|:| -1341 (-975 |#3|))) |#4|)) (-15 -4086 (|#4| |#4| |#2|)) (-15 -4074 (|#4| (-1197 |#4|) |#2|)) (-15 -2436 (|#4| |#4| |#2|)) (-15 -2547 (|#4| (-1197 (-975 |#3|)) |#2|)) (-15 -3242 (|#4| (-420 (-975 |#3|)) |#2|)) (-15 -3056 ((-431 |#4|) |#4|))) (-809) (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)))) (-569) (-972 (-420 (-975 |#3|)) |#1| |#2|)) (T -748)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *6 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-972 (-420 (-975 *6)) *4 *5)))) (-3242 (*1 *2 *3 *4) (-12 (-4 *6 (-569)) (-4 *2 (-972 *3 *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) (-5 *3 (-420 (-975 *6))) (-4 *5 (-809)) (-4 *4 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))))) (-2547 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 (-975 *6))) (-4 *6 (-569)) (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) (-4 *5 (-809)) (-4 *4 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))))) (-2436 (*1 *2 *2 *3) (-12 (-4 *4 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *5 (-569)) (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *2)) (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) (-4 *5 (-809)) (-4 *4 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *6 (-569)))) (-4086 (*1 *2 *2 *3) (-12 (-4 *4 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *5 (-569)) (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) (-4277 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *6 (-569)) (-5 *2 (-2 (|:| -2510 (-975 *6)) (|:| -1341 (-975 *6)))) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-972 (-420 (-975 *6)) *4 *5))))) -(-10 -7 (-15 -4277 ((-2 (|:| -2510 (-975 |#3|)) (|:| -1341 (-975 |#3|))) |#4|)) (-15 -4086 (|#4| |#4| |#2|)) (-15 -4074 (|#4| (-1197 |#4|) |#2|)) (-15 -2436 (|#4| |#4| |#2|)) (-15 -2547 (|#4| (-1197 (-975 |#3|)) |#2|)) (-15 -3242 (|#4| (-420 (-975 |#3|)) |#2|)) (-15 -3056 ((-431 |#4|) |#4|))) -((-3056 (((-431 |#4|) |#4|) 54 T ELT))) -(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-431 |#4|) |#4|))) (-809) (-865) (-13 (-318) (-148)) (-972 (-420 |#3|) |#1| |#2|)) (T -749)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *3 (-972 (-420 *6) *4 *5))))) -(-10 -7 (-15 -3056 ((-431 |#4|) |#4|))) -((-2124 (((-751 |#2| |#3|) (-1 |#2| |#1|) (-751 |#1| |#3|)) 18 T ELT))) -(((-750 |#1| |#2| |#3|) (-10 -7 (-15 -2124 ((-751 |#2| |#3|) (-1 |#2| |#1|) (-751 |#1| |#3|)))) (-1074) (-1074) (-742)) (T -750)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5 *7)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-742)) (-5 *2 (-751 *6 *7)) (-5 *1 (-750 *5 *6 *7))))) -(-10 -7 (-15 -2124 ((-751 |#2| |#3|) (-1 |#2| |#1|) (-751 |#1| |#3|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 36 T ELT)) (-3229 (((-660 (-2 (|:| -2940 |#1|) (|:| -1740 |#2|))) $) 37 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3373 (((-787)) 22 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 76 T ELT) (((-3 |#1| "failed") $) 79 T ELT)) (-2155 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3391 (($ $) 102 (|has| |#2| (-865)) ELT)) (-1625 (((-3 $ "failed") $) 85 T ELT)) (-2352 (($) 48 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) 70 T ELT)) (-4242 (((-660 $) $) 52 T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| |#2|) 17 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2144 (((-944) $) 43 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-3354 ((|#2| $) 101 (|has| |#2| (-865)) ELT)) (-3365 ((|#1| $) 100 (|has| |#2| (-865)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) 35 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 99 T ELT) (($ (-577)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-660 (-2 (|:| -2940 |#1|) (|:| -1740 |#2|)))) 11 T ELT)) (-4198 (((-660 |#1|) $) 54 T ELT)) (-3421 ((|#1| $ |#2|) 115 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 12 T CONST)) (-2767 (($) 44 T CONST)) (-2949 (((-112) $ $) 105 T ELT)) (-3042 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 33 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 66 T ELT) (($ $ $) 118 T ELT) (($ |#1| $) 63 (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-751 |#1| |#2|) (-13 (-1074) (-1063 |#2|) (-1063 |#1|) (-10 -8 (-15 -3180 ($ |#1| |#2|)) (-15 -3421 (|#1| $ |#2|)) (-15 -3603 ($ (-660 (-2 (|:| -2940 |#1|) (|:| -1740 |#2|))))) (-15 -3229 ((-660 (-2 (|:| -2940 |#1|) (|:| -1740 |#2|))) $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (-15 -2148 ((-112) $)) (-15 -4198 ((-660 |#1|) $)) (-15 -4242 ((-660 $) $)) (-15 -2011 ((-787) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-865)) (PROGN (-15 -3354 (|#2| $)) (-15 -3365 (|#1| $)) (-15 -3391 ($ $))) |%noBranch|))) (-1074) (-742)) (T -751)) -((-3180 (*1 *1 *2 *3) (-12 (-5 *1 (-751 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-742)))) (-3421 (*1 *2 *1 *3) (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-742)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -2940 *3) (|:| -1740 *4)))) (-4 *3 (-1074)) (-4 *4 (-742)) (-5 *1 (-751 *3 *4)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -2940 *3) (|:| -1740 *4)))) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-751 *3 *4)) (-4 *4 (-742)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-660 (-751 *3 *4))) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-3354 (*1 *2 *1) (-12 (-4 *2 (-742)) (-4 *2 (-865)) (-5 *1 (-751 *3 *2)) (-4 *3 (-1074)))) (-3365 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) (-4 *3 (-742)))) (-3391 (*1 *1 *1) (-12 (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) (-4 *2 (-1074)) (-4 *3 (-742))))) -(-13 (-1074) (-1063 |#2|) (-1063 |#1|) (-10 -8 (-15 -3180 ($ |#1| |#2|)) (-15 -3421 (|#1| $ |#2|)) (-15 -3603 ($ (-660 (-2 (|:| -2940 |#1|) (|:| -1740 |#2|))))) (-15 -3229 ((-660 (-2 (|:| -2940 |#1|) (|:| -1740 |#2|))) $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (-15 -2148 ((-112) $)) (-15 -4198 ((-660 |#1|) $)) (-15 -4242 ((-660 $) $)) (-15 -2011 ((-787) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-865)) (PROGN (-15 -3354 (|#2| $)) (-15 -3365 (|#1| $)) (-15 -3391 ($ $))) |%noBranch|))) -((-3489 (((-112) $ $) 20 T ELT)) (-1872 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-3470 (($ $ $) 73 T ELT)) (-2401 (((-112) $ $) 74 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-2096 (($ (-660 |#1|)) 69 T ELT) (($) 68 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3699 (($ $) 63 T ELT)) (-3289 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ |#1| $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-2394 (((-112) $ $) 65 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 T ELT)) (-4056 (($ $ $) 70 T ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT) (($ |#1| $ (-787)) 64 T ELT)) (-1440 (((-1145) $) 22 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-3858 (((-660 (-2 (|:| -2438 |#1|) (|:| -1452 (-787)))) $) 62 T ELT)) (-3127 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 |#1|)) 49 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 51 T ELT)) (-3603 (((-880) $) 18 T ELT)) (-3122 (($ (-660 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2726 (((-112) $ $) 21 T ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 T ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-752 |#1|) (-141) (-1125)) (T -752)) -NIL -(-13 (-711 |t#1|) (-1123 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-711 |#1|) . T) ((-1123 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-1872 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 92 T ELT)) (-3470 (($ $ $) 96 T ELT)) (-2401 (((-112) $ $) 104 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-2096 (($ (-660 |#1|)) 26 T ELT) (($) 17 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-3699 (($ $) 85 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) 70 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)) ELT) (($ |#1| $ (-577)) 75 T ELT) (($ (-1 (-112) |#1|) $ (-577)) 78 T ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (($ |#1| $ (-577)) 80 T ELT) (($ (-1 (-112) |#1|) $ (-577)) 81 T ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 32 (|has| $ (-6 -4470)) ELT)) (-2394 (((-112) $ $) 103 T ELT)) (-3715 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-660 |#1|)) 23 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) 38 T ELT)) (-1645 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4056 (($ $ $) 94 T ELT)) (-3596 ((|#1| $) 62 T ELT)) (-4345 (($ |#1| $) 63 T ELT) (($ |#1| $ (-787)) 86 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3439 ((|#1| $) 61 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 56 T ELT)) (-2693 (($) 14 T ELT)) (-3858 (((-660 (-2 (|:| -2438 |#1|) (|:| -1452 (-787)))) $) 55 T ELT)) (-3127 (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-4360 (($) 16 T ELT) (($ (-660 |#1|)) 25 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 68 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 79 T ELT)) (-2176 (((-549) $) 36 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 22 T ELT)) (-3603 (((-880) $) 49 T ELT)) (-3122 (($ (-660 |#1|)) 27 T ELT) (($) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3231 (($ (-660 |#1|)) 24 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 100 T ELT)) (-3501 (((-787) $) 67 (|has| $ (-6 -4470)) ELT))) -(((-753 |#1|) (-13 (-752 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -3715 ($)) (-15 -3715 ($ |#1|)) (-15 -3715 ($ (-660 |#1|))) (-15 -2434 ((-660 |#1|) $)) (-15 -3920 ($ |#1| $ (-577))) (-15 -3920 ($ (-1 (-112) |#1|) $ (-577))) (-15 -3266 ($ |#1| $ (-577))) (-15 -3266 ($ (-1 (-112) |#1|) $ (-577))))) (-1125)) (T -753)) -((-3715 (*1 *1) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-3715 (*1 *1 *2) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-753 *3)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-753 *3)) (-4 *3 (-1125)))) (-3920 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-3920 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) (-5 *1 (-753 *4)))) (-3266 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-3266 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) (-5 *1 (-753 *4))))) -(-13 (-752 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -3715 ($)) (-15 -3715 ($ |#1|)) (-15 -3715 ($ (-660 |#1|))) (-15 -2434 ((-660 |#1|) $)) (-15 -3920 ($ |#1| $ (-577))) (-15 -3920 ($ (-1 (-112) |#1|) $ (-577))) (-15 -3266 ($ |#1| $ (-577))) (-15 -3266 ($ (-1 (-112) |#1|) $ (-577))))) -((-4177 (((-1297) (-1183)) 8 T ELT))) -(((-754) (-10 -7 (-15 -4177 ((-1297) (-1183))))) (T -754)) -((-4177 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-754))))) -(-10 -7 (-15 -4177 ((-1297) (-1183)))) -((-3584 (((-660 |#1|) (-660 |#1|) (-660 |#1|)) 15 T ELT))) -(((-755 |#1|) (-10 -7 (-15 -3584 ((-660 |#1|) (-660 |#1|) (-660 |#1|)))) (-865)) (T -755)) -((-3584 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-755 *3))))) -(-10 -7 (-15 -3584 ((-660 |#1|) (-660 |#1|) (-660 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 |#2|) $) 149 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 142 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 141 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 139 (|has| |#1| (-569)) ELT)) (-2642 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3070 (($ $) 80 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2616 (($ $) 97 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2666 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 83 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) 18 T CONST)) (-3391 (($ $) 133 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2817 (((-975 |#1|) $ (-787)) 111 T ELT) (((-975 |#1|) $ (-787) (-787)) 110 T ELT)) (-2307 (((-112) $) 150 T ELT)) (-2824 (($) 108 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-787) $ |#2|) 113 T ELT) (((-787) $ |#2| (-787)) 112 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 79 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2148 (((-112) $) 131 T ELT)) (-3180 (($ $ (-660 |#2|) (-660 (-544 |#2|))) 148 T ELT) (($ $ |#2| (-544 |#2|)) 147 T ELT) (($ |#1| (-544 |#2|)) 132 T ELT) (($ $ |#2| (-787)) 115 T ELT) (($ $ (-660 |#2|) (-660 (-787))) 114 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 130 T ELT)) (-3716 (($ $) 105 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) 128 T ELT)) (-3365 ((|#1| $) 127 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-4129 (($ $ |#2|) 109 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1987 (($ $ (-787)) 116 T ELT)) (-3478 (((-3 $ "failed") $ $) 143 (|has| |#1| (-569)) ELT)) (-2079 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (($ $ |#2| $) 124 T ELT) (($ $ (-660 |#2|) (-660 $)) 123 T ELT) (($ $ (-660 (-305 $))) 122 T ELT) (($ $ (-305 $)) 121 T ELT) (($ $ $ $) 120 T ELT) (($ $ (-660 $) (-660 $)) 119 T ELT)) (-3362 (($ $ (-660 |#2|) (-660 (-787))) 44 T ELT) (($ $ |#2| (-787)) 43 T ELT) (($ $ (-660 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3616 (((-544 |#2|) $) 129 T ELT)) (-2680 (($ $) 95 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 84 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 85 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 93 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 86 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 151 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 146 (|has| |#1| (-174)) ELT) (($ $) 144 (|has| |#1| (-569)) ELT) (($ (-420 (-577))) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3421 ((|#1| $ (-544 |#2|)) 134 T ELT) (($ $ |#2| (-787)) 118 T ELT) (($ $ (-660 |#2|) (-660 (-787))) 117 T ELT)) (-3907 (((-3 $ "failed") $) 145 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2722 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) 140 (|has| |#1| (-569)) ELT)) (-2694 (($ $) 103 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 91 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2897 (($ $) 101 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 89 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 99 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 87 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-660 |#2|) (-660 (-787))) 47 T ELT) (($ $ |#2| (-787)) 46 T ELT) (($ $ (-660 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 135 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ $) 107 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 78 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 138 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 126 T ELT) (($ $ |#1|) 125 T ELT))) -(((-756 |#1| |#2|) (-141) (-1074) (-865)) (T -756)) -((-3421 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-865)))) (-3421 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-756 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-865)))) (-3180 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-865)))) (-3180 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)))) (-2536 (*1 *2 *1 *3) (-12 (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-865)) (-5 *2 (-787)))) (-2536 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-787)) (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-865)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)) (-5 *2 (-975 *4)))) (-2817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)) (-5 *2 (-975 *4)))) (-4129 (*1 *1 *1 *2) (-12 (-4 *1 (-756 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865)) (-4 *3 (-38 (-420 (-577))))))) -(-13 (-921 |t#2|) (-998 |t#1| (-544 |t#2|) |t#2|) (-527 |t#2| $) (-320 $) (-10 -8 (-15 -3421 ($ $ |t#2| (-787))) (-15 -3421 ($ $ (-660 |t#2|) (-660 (-787)))) (-15 -1987 ($ $ (-787))) (-15 -3180 ($ $ |t#2| (-787))) (-15 -3180 ($ $ (-660 |t#2|) (-660 (-787)))) (-15 -2536 ((-787) $ |t#2|)) (-15 -2536 ((-787) $ |t#2| (-787))) (-15 -2817 ((-975 |t#1|) $ (-787))) (-15 -2817 ((-975 |t#1|) $ (-787) (-787))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $ |t#2|)) (-6 (-1027)) (-6 (-1227))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-544 |#2|)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-301) |has| |#1| (-569)) ((-320 $) . T) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 |#2| $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-662 #1#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #1#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-915 $ |#2|) . T) ((-921 |#2|) . T) ((-923 |#2|) . T) ((-998 |#1| #0# |#2|) . T) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T)) -((-3056 (((-431 (-1197 |#4|)) (-1197 |#4|)) 30 T ELT) (((-431 |#4|) |#4|) 26 T ELT))) -(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-431 |#4|) |#4|)) (-15 -3056 ((-431 (-1197 |#4|)) (-1197 |#4|)))) (-865) (-809) (-13 (-318) (-148)) (-972 |#3| |#2| |#1|)) (T -757)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-757 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-757 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) -(-10 -7 (-15 -3056 ((-431 |#4|) |#4|)) (-15 -3056 ((-431 (-1197 |#4|)) (-1197 |#4|)))) -((-3554 (((-431 |#4|) |#4| |#2|) 140 T ELT)) (-2046 (((-431 |#4|) |#4|) NIL T ELT)) (-3836 (((-431 (-1197 |#4|)) (-1197 |#4|)) 127 T ELT) (((-431 |#4|) |#4|) 52 T ELT)) (-3873 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -3056 (-1197 |#4|)) (|:| -1527 (-577)))))) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|))) 81 T ELT)) (-1349 (((-1197 |#3|) (-1197 |#3|) (-577)) 166 T ELT)) (-1633 (((-660 (-787)) (-1197 |#4|) (-660 |#2|) (-787)) 75 T ELT)) (-2482 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-1197 |#3|) (-1197 |#3|) |#4| (-660 |#2|) (-660 (-787)) (-660 |#3|)) 79 T ELT)) (-3562 (((-2 (|:| |upol| (-1197 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577))))) (|:| |ctpol| |#3|)) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|))) 27 T ELT)) (-2162 (((-2 (|:| -2364 (-1197 |#4|)) (|:| |polval| (-1197 |#3|))) (-1197 |#4|) (-1197 |#3|) (-577)) 72 T ELT)) (-1779 (((-577) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577))))) 162 T ELT)) (-1949 ((|#4| (-577) (-431 |#4|)) 73 T ELT)) (-2603 (((-112) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577)))) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577))))) NIL T ELT))) -(((-758 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3836 ((-431 |#4|) |#4|)) (-15 -3836 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2046 ((-431 |#4|) |#4|)) (-15 -1779 ((-577) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577)))))) (-15 -3554 ((-431 |#4|) |#4| |#2|)) (-15 -2162 ((-2 (|:| -2364 (-1197 |#4|)) (|:| |polval| (-1197 |#3|))) (-1197 |#4|) (-1197 |#3|) (-577))) (-15 -3873 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -3056 (-1197 |#4|)) (|:| -1527 (-577)))))) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -3562 ((-2 (|:| |upol| (-1197 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577))))) (|:| |ctpol| |#3|)) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -1949 (|#4| (-577) (-431 |#4|))) (-15 -2603 ((-112) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577)))) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577)))))) (-15 -2482 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-1197 |#3|) (-1197 |#3|) |#4| (-660 |#2|) (-660 (-787)) (-660 |#3|))) (-15 -1633 ((-660 (-787)) (-1197 |#4|) (-660 |#2|) (-787))) (-15 -1349 ((-1197 |#3|) (-1197 |#3|) (-577)))) (-809) (-865) (-318) (-972 |#3| |#1| |#2|)) (T -758)) -((-1349 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-1633 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-4 *7 (-865)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-4 *8 (-318)) (-5 *2 (-660 (-787))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *5 (-787)))) (-2482 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1197 *11)) (-5 *6 (-660 *10)) (-5 *7 (-660 (-787))) (-5 *8 (-660 *11)) (-4 *10 (-865)) (-4 *11 (-318)) (-4 *9 (-809)) (-4 *5 (-972 *11 *9 *10)) (-5 *2 (-660 (-1197 *5))) (-5 *1 (-758 *9 *10 *11 *5)) (-5 *3 (-1197 *5)))) (-2603 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-2 (|:| -3056 (-1197 *6)) (|:| -1527 (-577))))) (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-972 *7 *5 *6)) (-5 *1 (-758 *5 *6 *7 *2)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-318)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-865)) (-4 *8 (-318)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-5 *2 (-2 (|:| |upol| (-1197 *8)) (|:| |Lval| (-660 *8)) (|:| |Lfact| (-660 (-2 (|:| -3056 (-1197 *8)) (|:| -1527 (-577))))) (|:| |ctpol| *8))) (-5 *1 (-758 *6 *7 *8 *9)))) (-3873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-865)) (-4 *8 (-318)) (-4 *6 (-809)) (-4 *9 (-972 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-660 (-2 (|:| -3056 (-1197 *9)) (|:| -1527 (-577))))))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9)))) (-2162 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-577)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-318)) (-4 *9 (-972 *8 *6 *7)) (-5 *2 (-2 (|:| -2364 (-1197 *9)) (|:| |polval| (-1197 *8)))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9)) (-5 *4 (-1197 *8)))) (-3554 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-758 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3056 (-1197 *6)) (|:| -1527 (-577))))) (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-758 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5))))) -(-10 -7 (-15 -3836 ((-431 |#4|) |#4|)) (-15 -3836 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2046 ((-431 |#4|) |#4|)) (-15 -1779 ((-577) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577)))))) (-15 -3554 ((-431 |#4|) |#4| |#2|)) (-15 -2162 ((-2 (|:| -2364 (-1197 |#4|)) (|:| |polval| (-1197 |#3|))) (-1197 |#4|) (-1197 |#3|) (-577))) (-15 -3873 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -3056 (-1197 |#4|)) (|:| -1527 (-577)))))) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -3562 ((-2 (|:| |upol| (-1197 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577))))) (|:| |ctpol| |#3|)) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -1949 (|#4| (-577) (-431 |#4|))) (-15 -2603 ((-112) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577)))) (-660 (-2 (|:| -3056 (-1197 |#3|)) (|:| -1527 (-577)))))) (-15 -2482 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-1197 |#3|) (-1197 |#3|) |#4| (-660 |#2|) (-660 (-787)) (-660 |#3|))) (-15 -1633 ((-660 (-787)) (-1197 |#4|) (-660 |#2|) (-787))) (-15 -1349 ((-1197 |#3|) (-1197 |#3|) (-577)))) -((-4254 (($ $ (-944)) 17 T ELT))) -(((-759 |#1| |#2|) (-10 -8 (-15 -4254 (|#1| |#1| (-944)))) (-760 |#2|) (-174)) (T -759)) -NIL -(-10 -8 (-15 -4254 (|#1| |#1| (-944)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1647 (($ $ (-944)) 31 T ELT)) (-4254 (($ $ (-944)) 38 T ELT)) (-1954 (($ $ (-944)) 32 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3823 (($ $ $) 28 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2509 (($ $ $ $) 29 T ELT)) (-3223 (($ $ $) 27 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 33 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) -(((-760 |#1|) (-141) (-174)) (T -760)) -((-4254 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-760 *3)) (-4 *3 (-174))))) -(-13 (-777) (-733 |t#1|) (-10 -8 (-15 -4254 ($ $ (-944))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-736) . T) ((-777) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-1357 (((-1060) (-705 (-228)) (-577) (-112) (-577)) 25 T ELT)) (-2745 (((-1060) (-705 (-228)) (-577) (-112) (-577)) 24 T ELT))) -(((-761) (-10 -7 (-15 -2745 ((-1060) (-705 (-228)) (-577) (-112) (-577))) (-15 -1357 ((-1060) (-705 (-228)) (-577) (-112) (-577))))) (T -761)) -((-1357 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-761)))) (-2745 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-761))))) -(-10 -7 (-15 -2745 ((-1060) (-705 (-228)) (-577) (-112) (-577))) (-15 -1357 ((-1060) (-705 (-228)) (-577) (-112) (-577)))) -((-4331 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2599 (((-1060) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-4137 (((-1060) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) 32 T ELT))) -(((-762) (-10 -7 (-15 -4137 ((-1060) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -2599 ((-1060) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -4331 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN))))))) (T -762)) -((-4331 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1060)) (-5 *1 (-762)))) (-2599 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1060)) (-5 *1 (-762)))) (-4137 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) (-5 *2 (-1060)) (-5 *1 (-762))))) -(-10 -7 (-15 -4137 ((-1060) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -2599 ((-1060) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -4331 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))))) -((-1722 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 34 T ELT)) (-2924 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 33 T ELT)) (-3167 (((-1060) (-577) (-705 (-228)) (-577)) 32 T ELT)) (-1534 (((-1060) (-577) (-705 (-228)) (-577)) 31 T ELT)) (-1950 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 30 T ELT)) (-3599 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 29 T ELT)) (-3970 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577)) 28 T ELT)) (-1540 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577)) 27 T ELT)) (-3960 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 24 T ELT)) (-1919 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577)) 23 T ELT)) (-2981 (((-1060) (-577) (-705 (-228)) (-577)) 22 T ELT)) (-2403 (((-1060) (-577) (-705 (-228)) (-577)) 21 T ELT))) -(((-763) (-10 -7 (-15 -2403 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2981 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -1919 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3960 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1540 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3970 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3599 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1950 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1534 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -3167 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2924 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -1722 ((-1060) (-577) (-577) (-705 (-228)) (-577))))) (T -763)) -((-1722 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2924 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-3167 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-1534 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-1950 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-3599 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-3970 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-1540 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-3960 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-1919 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2981 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2403 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763))))) -(-10 -7 (-15 -2403 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2981 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -1919 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3960 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1540 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3970 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3599 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1950 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1534 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -3167 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2924 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -1722 ((-1060) (-577) (-577) (-705 (-228)) (-577)))) -((-3722 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 52 T ELT)) (-4001 (((-1060) (-705 (-228)) (-705 (-228)) (-577) (-577)) 51 T ELT)) (-4230 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 50 T ELT)) (-1426 (((-1060) (-228) (-228) (-577) (-577) (-577) (-577)) 46 T ELT)) (-1763 (((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 45 T ELT)) (-3253 (((-1060) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 44 T ELT)) (-3683 (((-1060) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 43 T ELT)) (-2075 (((-1060) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 42 T ELT)) (-4202 (((-1060) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) 38 T ELT)) (-1515 (((-1060) (-228) (-228) (-577) (-705 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) 37 T ELT)) (-1879 (((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) 33 T ELT)) (-3377 (((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) 32 T ELT))) -(((-764) (-10 -7 (-15 -3377 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -1879 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -1515 ((-1060) (-228) (-228) (-577) (-705 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -4202 ((-1060) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -2075 ((-1060) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -3683 ((-1060) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -3253 ((-1060) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -1763 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -1426 ((-1060) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -4230 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -4001 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-577))) (-15 -3722 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))))) (T -764)) -((-3722 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-4001 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-764)))) (-4230 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-1426 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-764)))) (-1763 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-3253 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-3683 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2075 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-4202 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-1515 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-764)))) (-1879 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-3377 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) (-5 *2 (-1060)) (-5 *1 (-764))))) -(-10 -7 (-15 -3377 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -1879 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -1515 ((-1060) (-228) (-228) (-577) (-705 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -4202 ((-1060) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985))))) (-15 -2075 ((-1060) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -3683 ((-1060) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -3253 ((-1060) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -1763 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -1426 ((-1060) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -4230 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -4001 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-577))) (-15 -3722 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))))) -((-1692 (((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76 T ELT)) (-1849 (((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401)) 69 T ELT) (((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) 68 T ELT)) (-3351 (((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) 57 T ELT)) (-1723 (((-1060) (-705 (-228)) (-705 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 50 T ELT)) (-3210 (((-1060) (-228) (-577) (-577) (-1183) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 49 T ELT)) (-1591 (((-1060) (-228) (-577) (-577) (-228) (-1183) (-228) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 45 T ELT)) (-1798 (((-1060) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 42 T ELT)) (-4118 (((-1060) (-228) (-577) (-577) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 38 T ELT))) -(((-765) (-10 -7 (-15 -4118 ((-1060) (-228) (-577) (-577) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -1798 ((-1060) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -1591 ((-1060) (-228) (-577) (-577) (-228) (-1183) (-228) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3210 ((-1060) (-228) (-577) (-577) (-1183) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -1723 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -3351 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -1849 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -1849 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -1692 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -765)) -((-1692 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1849 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-401)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1849 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1060)) (-5 *1 (-765)))) (-3351 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1723 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1060)) (-5 *1 (-765)))) (-3210 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1591 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1798 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-4118 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) -(-10 -7 (-15 -4118 ((-1060) (-228) (-577) (-577) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -1798 ((-1060) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -1591 ((-1060) (-228) (-577) (-577) (-228) (-1183) (-228) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3210 ((-1060) (-228) (-577) (-577) (-1183) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -1723 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -3351 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -1849 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -1849 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -1692 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-1361 (((-1060) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-691 (-228)) (-577)) 45 T ELT)) (-2968 (((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1183) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) 41 T ELT)) (-3336 (((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 23 T ELT))) -(((-766) (-10 -7 (-15 -3336 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2968 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1183) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -1361 ((-1060) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-691 (-228)) (-577))))) (T -766)) -((-1361 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-691 (-228))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-766)))) (-2968 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1060)) (-5 *1 (-766)))) (-3336 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-766))))) -(-10 -7 (-15 -3336 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2968 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1183) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -1361 ((-1060) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-691 (-228)) (-577)))) -((-2374 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-705 (-228)) (-228) (-228) (-577)) 35 T ELT)) (-4020 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-228) (-228) (-577)) 34 T ELT)) (-4356 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-705 (-228)) (-228) (-228) (-577)) 33 T ELT)) (-2751 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 29 T ELT)) (-1853 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 28 T ELT)) (-3550 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577)) 27 T ELT)) (-3961 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577)) 24 T ELT)) (-4319 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577)) 23 T ELT)) (-2675 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577)) 22 T ELT)) (-2970 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)) 21 T ELT))) -(((-767) (-10 -7 (-15 -2970 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -2675 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4319 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -3961 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -3550 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577))) (-15 -1853 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2751 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4356 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-705 (-228)) (-228) (-228) (-577))) (-15 -4020 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -2374 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-705 (-228)) (-228) (-228) (-577))))) (T -767)) -((-2374 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-4020 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-4356 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-2751 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1853 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-3550 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-3961 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-4319 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-2675 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-2970 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767))))) -(-10 -7 (-15 -2970 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -2675 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4319 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -3961 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -3550 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577))) (-15 -1853 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2751 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4356 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-705 (-228)) (-228) (-228) (-577))) (-15 -4020 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -2374 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-705 (-228)) (-228) (-228) (-577)))) -((-3891 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)) 45 T ELT)) (-2290 (((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-577)) 44 T ELT)) (-4023 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)) 43 T ELT)) (-1425 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 42 T ELT)) (-1752 (((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577)) 41 T ELT)) (-2319 (((-1060) (-1183) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577)) 40 T ELT)) (-2761 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577) (-577) (-577) (-228) (-705 (-228)) (-577)) 39 T ELT)) (-4256 (((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577))) 38 T ELT)) (-3235 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577)) 35 T ELT)) (-3690 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577)) 34 T ELT)) (-2196 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577)) 33 T ELT)) (-2626 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 32 T ELT)) (-3088 (((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577)) 31 T ELT)) (-1654 (((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-577)) 30 T ELT)) (-2054 (((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-577) (-577) (-577)) 29 T ELT)) (-4240 (((-1060) (-577) (-577) (-577) (-228) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-577)) (-577) (-577) (-577)) 28 T ELT)) (-1673 (((-1060) (-577) (-705 (-228)) (-228) (-577)) 24 T ELT)) (-2061 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 21 T ELT))) -(((-768) (-10 -7 (-15 -2061 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1673 ((-1060) (-577) (-705 (-228)) (-228) (-577))) (-15 -4240 ((-1060) (-577) (-577) (-577) (-228) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-577)) (-577) (-577) (-577))) (-15 -2054 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -1654 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -3088 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577))) (-15 -2626 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2196 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577))) (-15 -3690 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577))) (-15 -3235 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4256 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)))) (-15 -2761 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577) (-577) (-577) (-228) (-705 (-228)) (-577))) (-15 -2319 ((-1060) (-1183) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -1752 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1425 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4023 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -2290 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3891 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))))) (T -768)) -((-3891 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2290 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-4023 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-1425 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-1752 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2319 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2761 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-4256 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-3235 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-3690 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2196 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2626 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-3088 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-1654 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2054 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-4240 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-1673 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2061 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768))))) -(-10 -7 (-15 -2061 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1673 ((-1060) (-577) (-705 (-228)) (-228) (-577))) (-15 -4240 ((-1060) (-577) (-577) (-577) (-228) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-577)) (-577) (-577) (-577))) (-15 -2054 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -1654 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -3088 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577))) (-15 -2626 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2196 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577))) (-15 -3690 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577))) (-15 -3235 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4256 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)))) (-15 -2761 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577) (-577) (-577) (-228) (-705 (-228)) (-577))) (-15 -2319 ((-1060) (-1183) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -1752 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1425 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4023 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -2290 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3891 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)))) -((-3999 (((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-577) (-705 (-228)) (-577)) 63 T ELT)) (-2299 (((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 62 T ELT)) (-3667 (((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-112) (-112) (-577) (-577) (-705 (-228)) (-705 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) 58 T ELT)) (-1846 (((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-577) (-577) (-705 (-228)) (-577)) 51 T ELT)) (-3174 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) 50 T ELT)) (-1516 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) 46 T ELT)) (-2942 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) 42 T ELT)) (-3536 (((-1060) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 38 T ELT))) -(((-769) (-10 -7 (-15 -3536 ((-1060) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -2942 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -1516 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -3174 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -1846 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-577) (-577) (-705 (-228)) (-577))) (-15 -3667 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-112) (-112) (-577) (-577) (-705 (-228)) (-705 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -2299 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -3999 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-577) (-705 (-228)) (-577))))) (T -769)) -((-3999 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2299 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-705 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-3667 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-705 (-228))) (-5 *6 (-112)) (-5 *7 (-705 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-1846 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-3174 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1060)) (-5 *1 (-769)))) (-1516 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2942 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1060)) (-5 *1 (-769)))) (-3536 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769))))) -(-10 -7 (-15 -3536 ((-1060) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -2942 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -1516 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -3174 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -1846 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-577) (-577) (-705 (-228)) (-577))) (-15 -3667 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-112) (-112) (-577) (-577) (-705 (-228)) (-705 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -2299 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -3999 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-577) (-705 (-228)) (-577)))) -((-3828 (((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)) 47 T ELT)) (-1965 (((-1060) (-1183) (-1183) (-577) (-577) (-705 (-171 (-228))) (-577) (-705 (-171 (-228))) (-577) (-577) (-705 (-171 (-228))) (-577)) 46 T ELT)) (-3416 (((-1060) (-577) (-577) (-577) (-705 (-171 (-228))) (-577)) 45 T ELT)) (-3597 (((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 40 T ELT)) (-3869 (((-1060) (-1183) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)) (-577)) 39 T ELT)) (-2118 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-577)) 36 T ELT)) (-2067 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577)) 35 T ELT)) (-3530 (((-1060) (-577) (-577) (-577) (-577) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-228) (-228) (-577)) 34 T ELT)) (-1628 (((-1060) (-577) (-577) (-577) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-112) (-228) (-112) (-705 (-577)) (-705 (-228)) (-577)) 33 T ELT)) (-2705 (((-1060) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-577)) 32 T ELT))) -(((-770) (-10 -7 (-15 -2705 ((-1060) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-577))) (-15 -1628 ((-1060) (-577) (-577) (-577) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-112) (-228) (-112) (-705 (-577)) (-705 (-228)) (-577))) (-15 -3530 ((-1060) (-577) (-577) (-577) (-577) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-228) (-228) (-577))) (-15 -2067 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577))) (-15 -2118 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -3869 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)) (-577))) (-15 -3597 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3416 ((-1060) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -1965 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-171 (-228))) (-577) (-705 (-171 (-228))) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -3828 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577))))) (T -770)) -((-3828 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-1965 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-3416 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-3597 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-3869 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2118 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2067 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-770)))) (-3530 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-660 (-112))) (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-770)))) (-1628 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-705 (-577))) (-5 *5 (-112)) (-5 *7 (-705 (-228))) (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2705 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-660 (-112))) (-5 *7 (-705 (-228))) (-5 *8 (-705 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-770))))) -(-10 -7 (-15 -2705 ((-1060) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-577))) (-15 -1628 ((-1060) (-577) (-577) (-577) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-112) (-228) (-112) (-705 (-577)) (-705 (-228)) (-577))) (-15 -3530 ((-1060) (-577) (-577) (-577) (-577) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-228) (-228) (-577))) (-15 -2067 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577))) (-15 -2118 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -3869 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)) (-577))) (-15 -3597 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3416 ((-1060) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -1965 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-171 (-228))) (-577) (-705 (-171 (-228))) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -3828 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)))) -((-2443 (((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)) 79 T ELT)) (-4000 (((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577)) 68 T ELT)) (-2158 (((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401)) 56 T ELT) (((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-3611 (((-1060) (-577) (-577) (-577) (-228) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577)) 37 T ELT)) (-2538 (((-1060) (-577) (-577) (-228) (-228) (-577) (-577) (-705 (-228)) (-577)) 33 T ELT)) (-4035 (((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577) (-577)) 30 T ELT)) (-2226 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 29 T ELT)) (-2323 (((-1060) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 28 T ELT)) (-3811 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 27 T ELT)) (-4220 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577)) 26 T ELT)) (-3441 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 25 T ELT)) (-1674 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 24 T ELT)) (-2973 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 23 T ELT)) (-3090 (((-1060) (-705 (-228)) (-577) (-577) (-577) (-577)) 22 T ELT)) (-4409 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 21 T ELT))) -(((-771) (-10 -7 (-15 -4409 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -3090 ((-1060) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -2973 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1674 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3441 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -4220 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -3811 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2323 ((-1060) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2226 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4035 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -2538 ((-1060) (-577) (-577) (-228) (-228) (-577) (-577) (-705 (-228)) (-577))) (-15 -3611 ((-1060) (-577) (-577) (-577) (-228) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2158 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -2158 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -4000 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2443 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577))))) (T -771)) -((-2443 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4000 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2158 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2158 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-3611 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2538 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4035 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2226 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2323 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-3811 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4220 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-3441 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2973 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-3090 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4409 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771))))) -(-10 -7 (-15 -4409 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -3090 ((-1060) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -2973 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1674 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3441 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -4220 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -3811 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2323 ((-1060) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2226 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4035 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -2538 ((-1060) (-577) (-577) (-228) (-228) (-577) (-577) (-705 (-228)) (-577))) (-15 -3611 ((-1060) (-577) (-577) (-577) (-228) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2158 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -2158 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -4000 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2443 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)))) -((-2037 (((-1060) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-3653 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577)) 60 T ELT)) (-2469 (((-1060) (-577) (-705 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-3925 (((-1060) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577)) 37 T ELT)) (-3993 (((-1060) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-577)) 36 T ELT)) (-2185 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 33 T ELT)) (-2398 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228))) 32 T ELT)) (-3821 (((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577)) 28 T ELT)) (-1939 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577)) 27 T ELT)) (-3973 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577)) 26 T ELT)) (-2325 (((-1060) (-577) (-705 (-171 (-228))) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-577)) 22 T ELT))) -(((-772) (-10 -7 (-15 -2325 ((-1060) (-577) (-705 (-171 (-228))) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -3973 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1939 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -3821 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577))) (-15 -2398 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)))) (-15 -2185 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3993 ((-1060) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3925 ((-1060) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -2469 ((-1060) (-577) (-705 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -3653 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -2037 ((-1060) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD))))))) (T -772)) -((-2037 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-3653 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-2469 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-3925 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-3993 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-2185 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-2398 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-3821 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1939 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-3973 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-2325 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-772))))) -(-10 -7 (-15 -2325 ((-1060) (-577) (-705 (-171 (-228))) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -3973 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1939 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -3821 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577))) (-15 -2398 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)))) (-15 -2185 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3993 ((-1060) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -3925 ((-1060) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -2469 ((-1060) (-577) (-705 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -3653 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -2037 ((-1060) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))))) -((-2444 (((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-577) (-705 (-228))) 29 T ELT)) (-4081 (((-1060) (-1183) (-577) (-577) (-705 (-228))) 28 T ELT)) (-4390 (((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-228))) 27 T ELT)) (-3895 (((-1060) (-577) (-577) (-577) (-705 (-228))) 21 T ELT))) -(((-773) (-10 -7 (-15 -3895 ((-1060) (-577) (-577) (-577) (-705 (-228)))) (-15 -4390 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-228)))) (-15 -4081 ((-1060) (-1183) (-577) (-577) (-705 (-228)))) (-15 -2444 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)))))) (T -773)) -((-2444 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-773)))) (-4081 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-773)))) (-4390 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-773)))) (-3895 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-773))))) -(-10 -7 (-15 -3895 ((-1060) (-577) (-577) (-577) (-705 (-228)))) (-15 -4390 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-228)))) (-15 -4081 ((-1060) (-1183) (-577) (-577) (-705 (-228)))) (-15 -2444 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-577) (-705 (-228))))) -((-1528 (((-1060) (-228) (-228) (-228) (-228) (-577)) 62 T ELT)) (-1772 (((-1060) (-228) (-228) (-228) (-577)) 61 T ELT)) (-3120 (((-1060) (-228) (-228) (-228) (-577)) 60 T ELT)) (-1377 (((-1060) (-228) (-228) (-577)) 59 T ELT)) (-2735 (((-1060) (-228) (-577)) 58 T ELT)) (-1700 (((-1060) (-228) (-577)) 57 T ELT)) (-1889 (((-1060) (-228) (-577)) 56 T ELT)) (-3256 (((-1060) (-228) (-577)) 55 T ELT)) (-1510 (((-1060) (-228) (-577)) 54 T ELT)) (-2901 (((-1060) (-228) (-577)) 53 T ELT)) (-1903 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 52 T ELT)) (-3394 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 51 T ELT)) (-1671 (((-1060) (-228) (-577)) 50 T ELT)) (-2894 (((-1060) (-228) (-577)) 49 T ELT)) (-3119 (((-1060) (-228) (-577)) 48 T ELT)) (-1496 (((-1060) (-228) (-577)) 47 T ELT)) (-2809 (((-1060) (-577) (-228) (-171 (-228)) (-577) (-1183) (-577)) 46 T ELT)) (-4179 (((-1060) (-1183) (-171 (-228)) (-1183) (-577)) 45 T ELT)) (-2239 (((-1060) (-1183) (-171 (-228)) (-1183) (-577)) 44 T ELT)) (-3388 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 43 T ELT)) (-1555 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 42 T ELT)) (-2954 (((-1060) (-228) (-577)) 39 T ELT)) (-4206 (((-1060) (-228) (-577)) 38 T ELT)) (-2370 (((-1060) (-228) (-577)) 37 T ELT)) (-2591 (((-1060) (-228) (-577)) 36 T ELT)) (-3935 (((-1060) (-228) (-577)) 35 T ELT)) (-2460 (((-1060) (-228) (-577)) 34 T ELT)) (-2847 (((-1060) (-228) (-577)) 33 T ELT)) (-3172 (((-1060) (-228) (-577)) 32 T ELT)) (-3680 (((-1060) (-228) (-577)) 31 T ELT)) (-2081 (((-1060) (-228) (-577)) 30 T ELT)) (-2305 (((-1060) (-228) (-228) (-228) (-577)) 29 T ELT)) (-3866 (((-1060) (-228) (-577)) 28 T ELT)) (-1398 (((-1060) (-228) (-577)) 27 T ELT)) (-2911 (((-1060) (-228) (-577)) 26 T ELT)) (-3276 (((-1060) (-228) (-577)) 25 T ELT)) (-3751 (((-1060) (-228) (-577)) 24 T ELT)) (-2135 (((-1060) (-171 (-228)) (-577)) 21 T ELT))) -(((-774) (-10 -7 (-15 -2135 ((-1060) (-171 (-228)) (-577))) (-15 -3751 ((-1060) (-228) (-577))) (-15 -3276 ((-1060) (-228) (-577))) (-15 -2911 ((-1060) (-228) (-577))) (-15 -1398 ((-1060) (-228) (-577))) (-15 -3866 ((-1060) (-228) (-577))) (-15 -2305 ((-1060) (-228) (-228) (-228) (-577))) (-15 -2081 ((-1060) (-228) (-577))) (-15 -3680 ((-1060) (-228) (-577))) (-15 -3172 ((-1060) (-228) (-577))) (-15 -2847 ((-1060) (-228) (-577))) (-15 -2460 ((-1060) (-228) (-577))) (-15 -3935 ((-1060) (-228) (-577))) (-15 -2591 ((-1060) (-228) (-577))) (-15 -2370 ((-1060) (-228) (-577))) (-15 -4206 ((-1060) (-228) (-577))) (-15 -2954 ((-1060) (-228) (-577))) (-15 -1555 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -3388 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -2239 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -4179 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -2809 ((-1060) (-577) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1496 ((-1060) (-228) (-577))) (-15 -3119 ((-1060) (-228) (-577))) (-15 -2894 ((-1060) (-228) (-577))) (-15 -1671 ((-1060) (-228) (-577))) (-15 -3394 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1903 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -2901 ((-1060) (-228) (-577))) (-15 -1510 ((-1060) (-228) (-577))) (-15 -3256 ((-1060) (-228) (-577))) (-15 -1889 ((-1060) (-228) (-577))) (-15 -1700 ((-1060) (-228) (-577))) (-15 -2735 ((-1060) (-228) (-577))) (-15 -1377 ((-1060) (-228) (-228) (-577))) (-15 -3120 ((-1060) (-228) (-228) (-228) (-577))) (-15 -1772 ((-1060) (-228) (-228) (-228) (-577))) (-15 -1528 ((-1060) (-228) (-228) (-228) (-228) (-577))))) (T -774)) -((-1528 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1772 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3120 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1377 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3256 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1903 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3394 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2809 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1183)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-4179 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2239 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3388 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1555 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2954 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2847 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3680 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2305 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3866 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1398 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2911 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3751 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(-10 -7 (-15 -2135 ((-1060) (-171 (-228)) (-577))) (-15 -3751 ((-1060) (-228) (-577))) (-15 -3276 ((-1060) (-228) (-577))) (-15 -2911 ((-1060) (-228) (-577))) (-15 -1398 ((-1060) (-228) (-577))) (-15 -3866 ((-1060) (-228) (-577))) (-15 -2305 ((-1060) (-228) (-228) (-228) (-577))) (-15 -2081 ((-1060) (-228) (-577))) (-15 -3680 ((-1060) (-228) (-577))) (-15 -3172 ((-1060) (-228) (-577))) (-15 -2847 ((-1060) (-228) (-577))) (-15 -2460 ((-1060) (-228) (-577))) (-15 -3935 ((-1060) (-228) (-577))) (-15 -2591 ((-1060) (-228) (-577))) (-15 -2370 ((-1060) (-228) (-577))) (-15 -4206 ((-1060) (-228) (-577))) (-15 -2954 ((-1060) (-228) (-577))) (-15 -1555 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -3388 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -2239 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -4179 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -2809 ((-1060) (-577) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1496 ((-1060) (-228) (-577))) (-15 -3119 ((-1060) (-228) (-577))) (-15 -2894 ((-1060) (-228) (-577))) (-15 -1671 ((-1060) (-228) (-577))) (-15 -3394 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1903 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -2901 ((-1060) (-228) (-577))) (-15 -1510 ((-1060) (-228) (-577))) (-15 -3256 ((-1060) (-228) (-577))) (-15 -1889 ((-1060) (-228) (-577))) (-15 -1700 ((-1060) (-228) (-577))) (-15 -2735 ((-1060) (-228) (-577))) (-15 -1377 ((-1060) (-228) (-228) (-577))) (-15 -3120 ((-1060) (-228) (-228) (-228) (-577))) (-15 -1772 ((-1060) (-228) (-228) (-228) (-577))) (-15 -1528 ((-1060) (-228) (-228) (-228) (-228) (-577)))) -((-1362 (((-1297)) 20 T ELT)) (-4309 (((-1183)) 34 T ELT)) (-3149 (((-1183)) 33 T ELT)) (-2540 (((-1129) (-1201) (-705 (-577))) 47 T ELT) (((-1129) (-1201) (-705 (-228))) 43 T ELT)) (-2063 (((-112)) 19 T ELT)) (-3092 (((-1183) (-1183)) 37 T ELT))) -(((-775) (-10 -7 (-15 -3149 ((-1183))) (-15 -4309 ((-1183))) (-15 -3092 ((-1183) (-1183))) (-15 -2540 ((-1129) (-1201) (-705 (-228)))) (-15 -2540 ((-1129) (-1201) (-705 (-577)))) (-15 -2063 ((-112))) (-15 -1362 ((-1297))))) (T -775)) -((-1362 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-775)))) (-2063 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-775)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-577))) (-5 *2 (-1129)) (-5 *1 (-775)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-228))) (-5 *2 (-1129)) (-5 *1 (-775)))) (-3092 (*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775)))) (-4309 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775)))) (-3149 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) -(-10 -7 (-15 -3149 ((-1183))) (-15 -4309 ((-1183))) (-15 -3092 ((-1183) (-1183))) (-15 -2540 ((-1129) (-1201) (-705 (-228)))) (-15 -2540 ((-1129) (-1201) (-705 (-577)))) (-15 -2063 ((-112))) (-15 -1362 ((-1297)))) -((-3823 (($ $ $) 10 T ELT)) (-2509 (($ $ $ $) 9 T ELT)) (-3223 (($ $ $) 12 T ELT))) -(((-776 |#1|) (-10 -8 (-15 -3223 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -2509 (|#1| |#1| |#1| |#1|))) (-777)) (T -776)) -NIL -(-10 -8 (-15 -3223 (|#1| |#1| |#1|)) (-15 -3823 (|#1| |#1| |#1|)) (-15 -2509 (|#1| |#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1647 (($ $ (-944)) 31 T ELT)) (-1954 (($ $ (-944)) 32 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3823 (($ $ $) 28 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2509 (($ $ $ $) 29 T ELT)) (-3223 (($ $ $) 27 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 33 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT))) -(((-777) (-141)) (T -777)) -((-2509 (*1 *1 *1 *1 *1) (-4 *1 (-777))) (-3823 (*1 *1 *1 *1) (-4 *1 (-777))) (-3223 (*1 *1 *1 *1) (-4 *1 (-777)))) -(-13 (-21) (-736) (-10 -8 (-15 -2509 ($ $ $ $)) (-15 -3823 ($ $ $)) (-15 -3223 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-736) . T) ((-1125) . T) ((-1242) . T)) -((-3603 (((-880) $) NIL T ELT) (($ (-577)) 10 T ELT))) -(((-778 |#1|) (-10 -8 (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-779)) (T -778)) -NIL -(-10 -8 (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-3696 (((-3 $ "failed") $) 43 T ELT)) (-1647 (($ $ (-944)) 31 T ELT) (($ $ (-787)) 38 T ELT)) (-1625 (((-3 $ "failed") $) 41 T ELT)) (-3306 (((-112) $) 37 T ELT)) (-3473 (((-3 $ "failed") $) 42 T ELT)) (-1954 (($ $ (-944)) 32 T ELT) (($ $ (-787)) 39 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3823 (($ $ $) 28 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 34 T ELT)) (-1920 (((-787)) 35 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2509 (($ $ $ $) 29 T ELT)) (-3223 (($ $ $) 27 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 36 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 33 T ELT) (($ $ (-787)) 40 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT))) -(((-779) (-141)) (T -779)) -((-1920 (*1 *2) (-12 (-4 *1 (-779)) (-5 *2 (-787)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-779))))) -(-13 (-777) (-738) (-10 -8 (-15 -1920 ((-787)) -2609) (-15 -3603 ($ (-577))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-736) . T) ((-738) . T) ((-777) . T) ((-1125) . T) ((-1242) . T)) -((-4241 (((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 |#1|)))))) (-705 (-171 (-420 (-577)))) |#1|) 33 T ELT)) (-4362 (((-660 (-171 |#1|)) (-705 (-171 (-420 (-577)))) |#1|) 23 T ELT)) (-2600 (((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))) (-1201)) 20 T ELT) (((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577))))) 19 T ELT))) -(((-780 |#1|) (-10 -7 (-15 -2600 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))))) (-15 -2600 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))) (-1201))) (-15 -4362 ((-660 (-171 |#1|)) (-705 (-171 (-420 (-577)))) |#1|)) (-15 -4241 ((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 |#1|)))))) (-705 (-171 (-420 (-577)))) |#1|))) (-13 (-375) (-864))) (T -780)) -((-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-660 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 *4))))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864))))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864))))) (-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *4 (-1201)) (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-375) (-864))))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864)))))) -(-10 -7 (-15 -2600 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))))) (-15 -2600 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))) (-1201))) (-15 -4362 ((-660 (-171 |#1|)) (-705 (-171 (-420 (-577)))) |#1|)) (-15 -4241 ((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 |#1|)))))) (-705 (-171 (-420 (-577)))) |#1|))) -((-2060 (((-176 (-577)) |#1|) 27 T ELT))) -(((-781 |#1|) (-10 -7 (-15 -2060 ((-176 (-577)) |#1|))) (-417)) (T -781)) -((-2060 (*1 *2 *3) (-12 (-5 *2 (-176 (-577))) (-5 *1 (-781 *3)) (-4 *3 (-417))))) -(-10 -7 (-15 -2060 ((-176 (-577)) |#1|))) -((-3608 ((|#1| |#1| |#1|) 28 T ELT)) (-3894 ((|#1| |#1| |#1|) 27 T ELT)) (-4265 ((|#1| |#1| |#1|) 38 T ELT)) (-3917 ((|#1| |#1| |#1|) 34 T ELT)) (-3793 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-4420 (((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|) 26 T ELT))) -(((-782 |#1| |#2|) (-10 -7 (-15 -4420 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -3894 (|#1| |#1| |#1|)) (-15 -3608 (|#1| |#1| |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|))) (-724 |#2|) (-375)) (T -782)) -((-4265 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3917 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3793 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3608 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3894 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-4420 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-782 *3 *4)) (-4 *3 (-724 *4))))) -(-10 -7 (-15 -4420 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -3894 (|#1| |#1| |#1|)) (-15 -3608 (|#1| |#1| |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -4265 (|#1| |#1| |#1|))) -((-4114 (((-707 (-1250)) $ (-1250)) 26 T ELT)) (-2688 (((-707 (-562)) $ (-562)) 25 T ELT)) (-4376 (((-787) $ (-129)) 27 T ELT)) (-1626 (((-707 (-130)) $ (-130)) 24 T ELT)) (-2339 (((-707 (-1250)) $) 12 T ELT)) (-4379 (((-707 (-1248)) $) 8 T ELT)) (-1836 (((-707 (-1247)) $) 10 T ELT)) (-2128 (((-707 (-562)) $) 13 T ELT)) (-3064 (((-707 (-560)) $) 9 T ELT)) (-1699 (((-707 (-559)) $) 11 T ELT)) (-2621 (((-787) $ (-129)) 7 T ELT)) (-1893 (((-707 (-130)) $) 14 T ELT)) (-2877 (((-112) $) 31 T ELT)) (-1469 (((-707 $) |#1| (-977)) 32 T ELT)) (-3349 (($ $) 6 T ELT))) -(((-783 |#1|) (-141) (-1125)) (T -783)) -((-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-977)) (-4 *3 (-1125)) (-5 *2 (-707 *1)) (-4 *1 (-783 *3)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(-13 (-589) (-10 -8 (-15 -1469 ((-707 $) |t#1| (-977))) (-15 -2877 ((-112) $)))) -(((-175) . T) ((-540) . T) ((-589) . T) ((-878) . T)) -((-2139 (((-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))) (-577)) 71 T ELT)) (-2461 (((-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577))))) 69 T ELT)) (-4447 (((-577)) 85 T ELT))) -(((-784 |#1| |#2|) (-10 -7 (-15 -4447 ((-577))) (-15 -2461 ((-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))))) (-15 -2139 ((-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))) (-577)))) (-1268 (-577)) (-422 (-577) |#1|)) (T -784)) -((-2139 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1268 *3)) (-5 *2 (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-784 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2461 (*1 *2) (-12 (-4 *3 (-1268 (-577))) (-5 *2 (-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577))))) (-5 *1 (-784 *3 *4)) (-4 *4 (-422 (-577) *3)))) (-4447 (*1 *2) (-12 (-4 *3 (-1268 *2)) (-5 *2 (-577)) (-5 *1 (-784 *3 *4)) (-4 *4 (-422 *2 *3))))) -(-10 -7 (-15 -4447 ((-577))) (-15 -2461 ((-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))))) (-15 -2139 ((-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))) (-577)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2155 (((-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $) 21 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 13 T ELT) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-785) (-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3603 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3603 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -2155 ((-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $))))) (T -785)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-785)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-785)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-785)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-785))))) -(-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3603 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3603 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -2155 ((-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $)))) -((-4067 (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))) 18 T ELT) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201))) 17 T ELT)) (-2773 (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))) 20 T ELT) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201))) 19 T ELT))) -(((-786 |#1|) (-10 -7 (-15 -4067 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -4067 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))))) (-569)) (T -786)) -((-2773 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5))))) -(-10 -7 (-15 -4067 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -4067 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2510 (($ $ $) 10 T ELT)) (-1771 (((-3 $ "failed") $ $) 15 T ELT)) (-2879 (($ $ (-577)) 11 T ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3543 (($ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 6 T CONST)) (-2767 (($) NIL T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-787) (-13 (-809) (-742) (-10 -8 (-15 -3447 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3039 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -3478 ((-3 $ "failed") $ $)) (-15 -2879 ($ $ (-577))) (-15 -2352 ($ $)) (-6 (-4472 "*"))))) (T -787)) -((-3447 (*1 *1 *1 *1) (-5 *1 (-787))) (-3436 (*1 *1 *1 *1) (-5 *1 (-787))) (-3543 (*1 *1 *1 *1) (-5 *1 (-787))) (-3039 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2669 (-787)) (|:| -2689 (-787)))) (-5 *1 (-787)))) (-3478 (*1 *1 *1 *1) (|partial| -5 *1 (-787))) (-2879 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-787)))) (-2352 (*1 *1 *1) (-5 *1 (-787)))) -(-13 (-809) (-742) (-10 -8 (-15 -3447 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -3543 ($ $ $)) (-15 -3039 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -3478 ((-3 $ "failed") $ $)) (-15 -2879 ($ $ (-577))) (-15 -2352 ($ $)) (-6 (-4472 "*")))) +(-13 (-540) (-883)) +(((-175) . T) ((-540) . T) ((-883) . T)) +((-1904 (((-712 (-1255)) $ (-1255)) NIL T ELT)) (-2082 (((-712 (-562)) $ (-562)) NIL T ELT)) (-2209 (((-792) $ (-129)) NIL T ELT)) (-3970 (((-712 (-130)) $ (-130)) NIL T ELT)) (-1954 (((-712 (-1255)) $) NIL T ELT)) (-2336 (((-712 (-1253)) $) NIL T ELT)) (-2666 (((-712 (-1252)) $) NIL T ELT)) (-3772 (((-712 (-562)) $) NIL T ELT)) (-1870 (((-712 (-560)) $) NIL T ELT)) (-1504 (((-712 (-559)) $) NIL T ELT)) (-4074 (((-792) $ (-129)) NIL T ELT)) (-1554 (((-712 (-130)) $) NIL T ELT)) (-1552 (((-112) $) NIL T ELT)) (-1719 (($ (-401)) 14 T ELT) (($ (-1188)) 16 T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2823 (($ $) NIL T ELT))) +(((-590) (-13 (-589) (-631 (-885)) (-10 -8 (-15 -1719 ($ (-401))) (-15 -1719 ($ (-1188))) (-15 -1552 ((-112) $))))) (T -590)) +((-1719 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590)))) (-1719 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-590)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590))))) +(-13 (-589) (-631 (-885)) (-10 -8 (-15 -1719 ($ (-401))) (-15 -1719 ($ (-1188))) (-15 -1552 ((-112) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2656 (($) 7 T CONST)) (-3235 (((-1188) $) NIL T ELT)) (-2122 (($) 6 T CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 15 T ELT)) (-4139 (($) 9 T CONST)) (-1761 (($) 8 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 11 T ELT))) +(((-591) (-13 (-1130) (-10 -8 (-15 -2122 ($) -4212) (-15 -2656 ($) -4212) (-15 -1761 ($) -4212) (-15 -4139 ($) -4212)))) (T -591)) +((-2122 (*1 *1) (-5 *1 (-591))) (-2656 (*1 *1) (-5 *1 (-591))) (-1761 (*1 *1) (-5 *1 (-591))) (-4139 (*1 *1) (-5 *1 (-591)))) +(-13 (-1130) (-10 -8 (-15 -2122 ($) -4212) (-15 -2656 ($) -4212) (-15 -1761 ($) -4212) (-15 -4139 ($) -4212))) +((-3586 (((-112) $ $) NIL T ELT)) (-4405 (((-712 $) (-504)) 21 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3840 (($ (-1188)) 14 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 33 T ELT)) (-2572 (((-215 4 (-130)) $) 24 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 26 T ELT))) +(((-592) (-13 (-1130) (-10 -8 (-15 -3840 ($ (-1188))) (-15 -2572 ((-215 4 (-130)) $)) (-15 -4405 ((-712 $) (-504)))))) (T -592)) +((-3840 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-592)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592)))) (-4405 (*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-712 (-592))) (-5 *1 (-592))))) +(-13 (-1130) (-10 -8 (-15 -3840 ($ (-1188))) (-15 -2572 ((-215 4 (-130)) $)) (-15 -4405 ((-712 $) (-504))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $ (-577)) 75 T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2361 (($ (-1202 (-577)) (-577)) 81 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 66 T ELT)) (-2312 (($ $) 43 T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-4030 (((-792) $) 16 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3351 (((-577)) 37 T ELT)) (-1938 (((-577) $) 41 T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2568 (($ $ (-577)) 24 T ELT)) (-3574 (((-3 $ "failed") $ $) 71 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) 17 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 72 T ELT)) (-3046 (((-1187 (-577)) $) 19 T ELT)) (-4165 (($ $) 26 T ELT)) (-3709 (((-885) $) 102 T ELT) (($ (-577)) 61 T ELT) (($ $) NIL T ELT)) (-3331 (((-792)) 15 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4215 (((-577) $ (-577)) 46 T ELT)) (-2839 (($) 44 T CONST)) (-2853 (($) 21 T CONST)) (-3018 (((-112) $ $) 52 T ELT)) (-3128 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-3114 (($ $ $) 59 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 62 T ELT) (($ $ $) 63 T ELT))) +(((-593 |#1| |#2|) (-892 |#1|) (-577) (-112)) (T -593)) +NIL +(-892 |#1|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 30 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 59 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 $ "failed") $) 95 T ELT)) (-3783 (($ $) 94 T ELT)) (-2385 (($ (-1297 $)) 93 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 44 T ELT)) (-1424 (($) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) 61 T ELT)) (-3275 (((-112) $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) 49 (|has| $ (-380)) ELT)) (-3524 (((-112) $) NIL (|has| $ (-380)) ELT)) (-2794 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 $) $ (-949)) NIL (|has| $ (-380)) ELT) (((-1202 $) $) 104 T ELT)) (-2686 (((-949) $) 67 T ELT)) (-3200 (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-3467 (((-3 (-1202 $) "failed") $ $) NIL (|has| $ (-380)) ELT) (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-1464 (($ $ (-1202 $)) NIL (|has| $ (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL T CONST)) (-3354 (($ (-949)) 60 T ELT)) (-2789 (((-112) $) 87 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) 28 (|has| $ (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 54 T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-949)) 86 T ELT) (((-854 (-949))) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-3 (-792) "failed") $ $) NIL T ELT) (((-792) $) NIL T ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1597 (((-949) $) 85 T ELT) (((-854 (-949)) $) NIL T ELT)) (-4263 (((-1202 $)) 102 T ELT)) (-3475 (($) 66 T ELT)) (-2984 (($) 50 (|has| $ (-380)) ELT)) (-3762 (((-710 $) (-1297 $)) NIL T ELT) (((-1297 $) $) 91 T ELT)) (-4463 (((-577) $) 40 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) 42 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL T ELT) (($ $) 105 T ELT)) (-3331 (((-792)) 51 T CONST)) (-2643 (((-112) $ $) 107 T ELT)) (-2104 (((-1297 $) (-949)) 97 T ELT) (((-1297 $)) 96 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) 31 T CONST)) (-2853 (($) 27 T CONST)) (-4173 (($ $ (-792)) NIL (|has| $ (-380)) ELT) (($ $) NIL (|has| $ (-380)) ELT)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 34 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-594 |#1|) (-13 (-361) (-340 $) (-632 (-577))) (-949)) (T -594)) +NIL +(-13 (-361) (-340 $) (-632 (-577))) +((-3442 (((-1302) (-1188)) 10 T ELT))) +(((-595) (-10 -7 (-15 -3442 ((-1302) (-1188))))) (T -595)) +((-3442 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-595))))) +(-10 -7 (-15 -3442 ((-1302) (-1188)))) +((-4452 (((-599 |#2|) (-599 |#2|)) 42 T ELT)) (-3138 (((-665 |#2|) (-599 |#2|)) 44 T ELT)) (-2368 ((|#2| (-599 |#2|)) 50 T ELT))) +(((-596 |#1| |#2|) (-10 -7 (-15 -4452 ((-599 |#2|) (-599 |#2|))) (-15 -3138 ((-665 |#2|) (-599 |#2|))) (-15 -2368 (|#2| (-599 |#2|)))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-29 |#1|) (-1232))) (T -596)) +((-2368 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1232))) (-5 *1 (-596 *4 *2)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1232))) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-665 *5)) (-5 *1 (-596 *4 *5)))) (-4452 (*1 *2 *2) (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1232))) (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-596 *3 *4))))) +(-10 -7 (-15 -4452 ((-599 |#2|) (-599 |#2|))) (-15 -3138 ((-665 |#2|) (-599 |#2|))) (-15 -2368 (|#2| (-599 |#2|)))) +((-4417 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 30 T ELT))) +(((-597 |#1| |#2|) (-10 -7 (-15 -4417 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -4417 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4417 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4417 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-375) (-375)) (T -597)) +((-4417 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-597 *5 *6)))) (-4417 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) (-4417 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3398 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| -3398 *6) (|:| |coeff| *6))) (-5 *1 (-597 *5 *6)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6))))) +(-10 -7 (-15 -4417 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -4417 ((-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3398 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4417 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4417 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4149 (($ (-519) (-610)) 14 T ELT)) (-2229 (($ (-519) (-610) $) 16 T ELT)) (-3105 (($ (-519) (-610)) 15 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-1211)) 7 T ELT) (((-1211) $) 6 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-598) (-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -4149 ($ (-519) (-610))) (-15 -3105 ($ (-519) (-610))) (-15 -2229 ($ (-519) (-610) $))))) (T -598)) +((-4149 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-3105 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-2229 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) +(-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -4149 ($ (-519) (-610))) (-15 -3105 ($ (-519) (-610))) (-15 -2229 ($ (-519) (-610) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 76 T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-3398 ((|#1| $) 30 T ELT)) (-1538 (((-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-3951 (($ |#1| (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) (-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-4233 (((-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) $) 31 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1961 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1206)) 49 (|has| |#1| (-1068 (-1206))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2532 (((-112) $) 35 T ELT)) (-3641 ((|#1| $ (-1 |#1| |#1|)) 88 T ELT) ((|#1| $ (-1206)) 89 (|has| |#1| (-926 (-1206))) ELT)) (-3709 (((-885) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 18 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 85 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 16 T ELT) (($ (-420 (-577)) $) 41 T ELT) (($ $ (-420 (-577))) NIL T ELT))) +(((-599 |#1|) (-13 (-738 (-420 (-577))) (-1068 |#1|) (-10 -8 (-15 -3951 ($ |#1| (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) (-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3398 (|#1| $)) (-15 -4233 ((-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) $)) (-15 -1538 ((-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2532 ((-112) $)) (-15 -1961 ($ |#1| |#1|)) (-15 -3641 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-926 (-1206))) (-15 -3641 (|#1| $ (-1206))) |%noBranch|) (IF (|has| |#1| (-1068 (-1206))) (-15 -1961 ($ |#1| (-1206))) |%noBranch|))) (-375)) (T -599)) +((-3951 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *2)) (|:| |logand| (-1202 *2))))) (-5 *4 (-665 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-375)) (-5 *1 (-599 *2)))) (-3398 (*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *3)) (|:| |logand| (-1202 *3))))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-1961 (*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-3641 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-3641 (*1 *2 *1 *3) (-12 (-4 *2 (-375)) (-4 *2 (-926 *3)) (-5 *1 (-599 *2)) (-5 *3 (-1206)))) (-1961 (*1 *1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *1 (-599 *2)) (-4 *2 (-1068 *3)) (-4 *2 (-375))))) +(-13 (-738 (-420 (-577))) (-1068 |#1|) (-10 -8 (-15 -3951 ($ |#1| (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) (-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3398 (|#1| $)) (-15 -4233 ((-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) $)) (-15 -1538 ((-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2532 ((-112) $)) (-15 -1961 ($ |#1| |#1|)) (-15 -3641 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-926 (-1206))) (-15 -3641 (|#1| $ (-1206))) |%noBranch|) (IF (|has| |#1| (-1068 (-1206))) (-15 -1961 ($ |#1| (-1206))) |%noBranch|))) +((-3040 (((-112) |#1|) 16 T ELT)) (-1809 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-1799 (((-2 (|:| -4356 |#1|) (|:| -2328 (-792))) |#1|) 38 T ELT) (((-3 |#1| "failed") |#1| (-792)) 18 T ELT)) (-2657 (((-112) |#1| (-792)) 19 T ELT)) (-2602 ((|#1| |#1|) 42 T ELT)) (-3153 ((|#1| |#1| (-792)) 45 T ELT))) +(((-600 |#1|) (-10 -7 (-15 -2657 ((-112) |#1| (-792))) (-15 -1799 ((-3 |#1| "failed") |#1| (-792))) (-15 -1799 ((-2 (|:| -4356 |#1|) (|:| -2328 (-792))) |#1|)) (-15 -3153 (|#1| |#1| (-792))) (-15 -3040 ((-112) |#1|)) (-15 -1809 ((-3 |#1| "failed") |#1|)) (-15 -2602 (|#1| |#1|))) (-558)) (T -600)) +((-2602 (*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-1809 (*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-3040 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-3153 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-1799 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4356 *3) (|:| -2328 (-792)))) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-1799 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) +(-10 -7 (-15 -2657 ((-112) |#1| (-792))) (-15 -1799 ((-3 |#1| "failed") |#1| (-792))) (-15 -1799 ((-2 (|:| -4356 |#1|) (|:| -2328 (-792))) |#1|)) (-15 -3153 (|#1| |#1| (-792))) (-15 -3040 ((-112) |#1|)) (-15 -1809 ((-3 |#1| "failed") |#1|)) (-15 -2602 (|#1| |#1|))) +((-1646 (((-1202 |#1|) (-949)) 44 T ELT))) +(((-601 |#1|) (-10 -7 (-15 -1646 ((-1202 |#1|) (-949)))) (-361)) (T -601)) +((-1646 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-601 *4)) (-4 *4 (-361))))) +(-10 -7 (-15 -1646 ((-1202 |#1|) (-949)))) +((-4452 (((-599 (-420 (-980 |#1|))) (-599 (-420 (-980 |#1|)))) 27 T ELT)) (-1869 (((-3 (-327 |#1|) (-665 (-327 |#1|))) (-420 (-980 |#1|)) (-1206)) 34 (|has| |#1| (-148)) ELT)) (-3138 (((-665 (-327 |#1|)) (-599 (-420 (-980 |#1|)))) 19 T ELT)) (-3827 (((-327 |#1|) (-420 (-980 |#1|)) (-1206)) 32 (|has| |#1| (-148)) ELT)) (-2368 (((-327 |#1|) (-599 (-420 (-980 |#1|)))) 21 T ELT))) +(((-602 |#1|) (-10 -7 (-15 -4452 ((-599 (-420 (-980 |#1|))) (-599 (-420 (-980 |#1|))))) (-15 -3138 ((-665 (-327 |#1|)) (-599 (-420 (-980 |#1|))))) (-15 -2368 ((-327 |#1|) (-599 (-420 (-980 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1869 ((-3 (-327 |#1|) (-665 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -3827 ((-327 |#1|) (-420 (-980 |#1|)) (-1206)))) |%noBranch|)) (-13 (-465) (-1068 (-577)) (-659 (-577)))) (T -602)) +((-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *5)) (-5 *1 (-602 *5)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (-327 *5) (-665 (-327 *5)))) (-5 *1 (-602 *5)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-980 *4)))) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-602 *4)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-980 *4)))) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-665 (-327 *4))) (-5 *1 (-602 *4)))) (-4452 (*1 *2 *2) (-12 (-5 *2 (-599 (-420 (-980 *3)))) (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-602 *3))))) +(-10 -7 (-15 -4452 ((-599 (-420 (-980 |#1|))) (-599 (-420 (-980 |#1|))))) (-15 -3138 ((-665 (-327 |#1|)) (-599 (-420 (-980 |#1|))))) (-15 -2368 ((-327 |#1|) (-599 (-420 (-980 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1869 ((-3 (-327 |#1|) (-665 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -3827 ((-327 |#1|) (-420 (-980 |#1|)) (-1206)))) |%noBranch|)) +((-1765 (((-665 (-710 (-577))) (-665 (-949)) (-665 (-933 (-577)))) 78 T ELT) (((-665 (-710 (-577))) (-665 (-949))) 79 T ELT) (((-710 (-577)) (-665 (-949)) (-933 (-577))) 72 T ELT)) (-3912 (((-792) (-665 (-949))) 69 T ELT))) +(((-603) (-10 -7 (-15 -3912 ((-792) (-665 (-949)))) (-15 -1765 ((-710 (-577)) (-665 (-949)) (-933 (-577)))) (-15 -1765 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -1765 ((-665 (-710 (-577))) (-665 (-949)) (-665 (-933 (-577))))))) (T -603)) +((-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-933 (-577)))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-603)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-603)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-949))) (-5 *4 (-933 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-603)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-792)) (-5 *1 (-603))))) +(-10 -7 (-15 -3912 ((-792) (-665 (-949)))) (-15 -1765 ((-710 (-577)) (-665 (-949)) (-933 (-577)))) (-15 -1765 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -1765 ((-665 (-710 (-577))) (-665 (-949)) (-665 (-933 (-577)))))) +((-2919 (((-665 |#5|) |#5| (-112)) 100 T ELT)) (-2506 (((-112) |#5| (-665 |#5|)) 34 T ELT))) +(((-604 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2919 ((-665 |#5|) |#5| (-112))) (-15 -2506 ((-112) |#5| (-665 |#5|)))) (-13 (-318) (-148)) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3| |#4|)) (T -604)) +((-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1139 *5 *6 *7 *8)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-604 *5 *6 *7 *8 *3)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-665 *3)) (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1139 *5 *6 *7 *8))))) +(-10 -7 (-15 -2919 ((-665 |#5|) |#5| (-112))) (-15 -2506 ((-112) |#5| (-665 |#5|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2416 (((-1165) $) 11 T ELT)) (-2404 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-605) (-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $))))) (T -605)) +((-2404 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605))))) +(-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $)))) +((-3586 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-1732 (($ $) 38 T ELT)) (-3890 (($ $) NIL T ELT)) (-3788 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3000 (((-112) $ $) 67 T ELT)) (-2976 (((-112) $ $ (-577)) 62 T ELT)) (-4452 (((-665 $) $ (-145)) 75 T ELT) (((-665 $) $ (-142)) 76 T ELT)) (-3279 (((-112) (-1 (-112) (-145) (-145)) $) NIL T ELT) (((-112) $) NIL (|has| (-145) (-870)) ELT)) (-2629 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-145) (-870))) ELT)) (-1381 (($ (-1 (-112) (-145) (-145)) $) NIL T ELT) (($ $) NIL (|has| (-145) (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 (((-145) $ (-577) (-145)) 59 (|has| $ (-6 -4500)) ELT) (((-145) $ (-1264 (-577)) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-1564 (($ $ (-145)) 79 T ELT) (($ $ (-142)) 80 T ELT)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3158 (($ $ (-1264 (-577)) $) 57 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-4004 (($ (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-4353 (((-145) $ (-577)) NIL T ELT)) (-3025 (((-112) $ $) 88 T ELT)) (-3948 (((-577) (-1 (-112) (-145)) $) NIL T ELT) (((-577) (-145) $) NIL (|has| (-145) (-1130)) ELT) (((-577) (-145) $ (-577)) 64 (|has| (-145) (-1130)) ELT) (((-577) $ $ (-577)) 63 T ELT) (((-577) (-142) $ (-577)) 66 T ELT)) (-2118 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) (-145)) 9 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 32 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-3771 (($ (-1 (-112) (-145) (-145)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-2152 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1425 (((-577) $) 47 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-2028 (((-112) $ $ (-145)) 89 T ELT)) (-2166 (((-792) $ $ (-145)) 86 T ELT)) (-4409 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-145) (-145)) $) NIL T ELT) (($ (-1 (-145) (-145) (-145)) $ $) NIL T ELT)) (-4234 (($ $) 41 T ELT)) (-3110 (($ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-1575 (($ $ (-145)) 77 T ELT) (($ $ (-142)) 78 T ELT)) (-3235 (((-1188) $) 43 (|has| (-145) (-1130)) ELT)) (-2317 (($ (-145) $ (-577)) NIL T ELT) (($ $ $ (-577)) 27 T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) 85 (|has| (-145) (-1130)) ELT)) (-4397 (((-145) $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-2561 (($ $ (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-145)) (-665 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-4059 (((-665 (-145)) $) NIL T ELT)) (-2687 (((-112) $) 15 T ELT)) (-2833 (($) 10 T ELT)) (-2916 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) 68 T ELT) (($ $ (-1264 (-577))) 25 T ELT) (($ $ $) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2338 (($ $ $ (-577)) 81 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 20 T ELT)) (-4463 (((-549) $) NIL (|has| (-145) (-632 (-549))) ELT)) (-3722 (($ (-665 (-145))) NIL T ELT)) (-1702 (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-665 $)) 82 T ELT)) (-3709 (($ (-145)) NIL T ELT) (((-885) $) 31 (|has| (-145) (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-1474 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3018 (((-112) $ $) 17 (|has| (-145) (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3042 (((-112) $ $) 18 (|has| (-145) (-870)) ELT)) (-3600 (((-792) $) 16 (|has| $ (-6 -4499)) ELT))) +(((-606 |#1|) (-1174) (-577)) (T -606)) +NIL +(-1174) +((-3452 (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1124 |#4|)) 32 T ELT))) +(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1124 |#4|))) (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) (-814) (-870) (-569) (-977 |#3| |#1| |#2|)) (T -607)) +((-3452 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) (-3452 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1124 *3)) (-4 *3 (-977 *7 *6 *4)) (-4 *6 (-814)) (-4 *4 (-870)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *6 *4 *7 *3))))) +(-10 -7 (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1124 |#4|))) (-15 -3452 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 71 T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-577)) 58 T ELT) (($ $ (-577) (-577)) 59 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 65 T ELT)) (-3734 (($ $) 109 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2139 (((-885) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1056 (-864 (-577))) (-1206) |#1| (-420 (-577))) 241 T ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 36 T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1655 (((-112) $) NIL T ELT)) (-4030 (((-577) $) 63 T ELT) (((-577) $ (-577)) 64 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3720 (($ $ (-949)) 83 T ELT)) (-3956 (($ (-1 |#1| (-577)) $) 80 T ELT)) (-2696 (((-112) $) 26 T ELT)) (-3872 (($ |#1| (-577)) 22 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3455 (($ (-1056 (-864 (-577))) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 13 T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1869 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2945 (((-3 $ "failed") $ $ (-112)) 108 T ELT)) (-3828 (($ $ $) 116 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2767 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 15 T ELT)) (-4296 (((-1056 (-864 (-577))) $) 14 T ELT)) (-2568 (($ $ (-577)) 47 T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT)) (-2916 ((|#1| $ (-577)) 62 T ELT) (($ $ $) NIL (|has| (-577) (-1142)) ELT)) (-3641 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-1597 (((-577) $) NIL T ELT)) (-4165 (($ $) 48 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) 29 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 28 (|has| |#1| (-174)) ELT)) (-4171 ((|#1| $ (-577)) 61 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 39 T CONST)) (-1343 ((|#1| $) NIL T ELT)) (-3479 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3298 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4301 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3645 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4056 (($ $) 201 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2009 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1421 (($ $ (-420 (-577))) 177 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2426 (($ $ |#1|) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2316 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1679 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2467 (($ $) 203 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3731 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3991 (($ $) 199 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2569 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2676 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1822 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3055 (($ $) 209 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1684 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2173 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2460 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3669 (($ $) 213 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2134 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1917 (($ $) 215 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1958 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1745 (($ $) 211 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4295 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2741 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3037 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4215 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-2839 (($) 30 T CONST)) (-2853 (($) 40 T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-3018 (((-112) $ $) 73 T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3114 (($ $ $) 88 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 111 T ELT)) (* (($ (-949) $) 98 T ELT) (($ (-792) $) 96 T ELT) (($ (-577) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-608 |#1|) (-13 (-1275 |#1| (-577)) (-10 -8 (-15 -3455 ($ (-1056 (-864 (-577))) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -4296 ((-1056 (-864 (-577))) $)) (-15 -2767 ((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -3190 ($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2696 ((-112) $)) (-15 -3956 ($ (-1 |#1| (-577)) $)) (-15 -2945 ((-3 $ "failed") $ $ (-112))) (-15 -3734 ($ $)) (-15 -3828 ($ $ $)) (-15 -2139 ((-885) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1056 (-864 (-577))) (-1206) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $)) (-15 -2426 ($ $ |#1|)) (-15 -1421 ($ $ (-420 (-577)))) (-15 -1679 ($ $)) (-15 -2316 ($ $)) (-15 -3645 ($ $)) (-15 -1822 ($ $)) (-15 -3298 ($ $)) (-15 -2569 ($ $)) (-15 -2009 ($ $)) (-15 -3731 ($ $)) (-15 -2460 ($ $)) (-15 -3037 ($ $)) (-15 -1684 ($ $)) (-15 -4295 ($ $)) (-15 -2134 ($ $)) (-15 -1958 ($ $)) (-15 -4301 ($ $)) (-15 -2676 ($ $)) (-15 -3479 ($ $)) (-15 -3991 ($ $)) (-15 -4056 ($ $)) (-15 -2467 ($ $)) (-15 -2173 ($ $)) (-15 -2741 ($ $)) (-15 -3055 ($ $)) (-15 -1745 ($ $)) (-15 -3669 ($ $)) (-15 -1917 ($ $))) |%noBranch|))) (-1079)) (T -608)) +((-2696 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-3455 (*1 *1 *2 *3) (-12 (-5 *2 (-1056 (-864 (-577)))) (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1079)) (-5 *1 (-608 *4)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-1056 (-864 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) (-2945 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-3734 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079)))) (-3828 (*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079)))) (-2139 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *6)))) (-5 *4 (-1056 (-864 (-577)))) (-5 *5 (-1206)) (-5 *7 (-420 (-577))) (-4 *6 (-1079)) (-5 *2 (-885)) (-5 *1 (-608 *6)))) (-1869 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1421 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1079)))) (-1679 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2316 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1822 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2569 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2009 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2460 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1684 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4295 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2134 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1958 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4301 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2676 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3479 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3991 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4056 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2467 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2741 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3055 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1745 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3669 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(-13 (-1275 |#1| (-577)) (-10 -8 (-15 -3455 ($ (-1056 (-864 (-577))) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -4296 ((-1056 (-864 (-577))) $)) (-15 -2767 ((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -3190 ($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2696 ((-112) $)) (-15 -3956 ($ (-1 |#1| (-577)) $)) (-15 -2945 ((-3 $ "failed") $ $ (-112))) (-15 -3734 ($ $)) (-15 -3828 ($ $ $)) (-15 -2139 ((-885) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1056 (-864 (-577))) (-1206) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $)) (-15 -2426 ($ $ |#1|)) (-15 -1421 ($ $ (-420 (-577)))) (-15 -1679 ($ $)) (-15 -2316 ($ $)) (-15 -3645 ($ $)) (-15 -1822 ($ $)) (-15 -3298 ($ $)) (-15 -2569 ($ $)) (-15 -2009 ($ $)) (-15 -3731 ($ $)) (-15 -2460 ($ $)) (-15 -3037 ($ $)) (-15 -1684 ($ $)) (-15 -4295 ($ $)) (-15 -2134 ($ $)) (-15 -1958 ($ $)) (-15 -4301 ($ $)) (-15 -2676 ($ $)) (-15 -3479 ($ $)) (-15 -3991 ($ $)) (-15 -4056 ($ $)) (-15 -2467 ($ $)) (-15 -2173 ($ $)) (-15 -2741 ($ $)) (-15 -3055 ($ $)) (-15 -1745 ($ $)) (-15 -3669 ($ $)) (-15 -1917 ($ $))) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 63 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3190 (($ (-1187 |#1|)) 9 T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) 44 T ELT)) (-1655 (((-112) $) 56 T ELT)) (-4030 (((-792) $) 61 T ELT) (((-792) $ (-792)) 60 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) 46 (|has| |#1| (-569)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-1187 |#1|) $) 25 T ELT)) (-3331 (((-792)) 55 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) 10 T CONST)) (-2853 (($) 14 T CONST)) (-3018 (((-112) $ $) 24 T ELT)) (-3128 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3114 (($ $ $) 27 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 53 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-577)) 38 T ELT))) +(((-609 |#1|) (-13 (-1079) (-111 |#1| |#1|) (-10 -8 (-15 -4343 ((-1187 |#1|) $)) (-15 -3190 ($ (-1187 |#1|))) (-15 -1655 ((-112) $)) (-15 -4030 ((-792) $)) (-15 -4030 ((-792) $ (-792))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) (-1079)) (T -609)) +((-4343 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-609 *3)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (-4030 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1079))))) +(-13 (-1079) (-111 |#1| |#1|) (-10 -8 (-15 -4343 ((-1187 |#1|) $)) (-15 -3190 ($ (-1187 |#1|))) (-15 -1655 ((-112) $)) (-15 -4030 ((-792) $)) (-15 -4030 ((-792) $ (-792))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-1685 (($) 8 T CONST)) (-4377 (($) 7 T CONST)) (-3627 (($ $ (-665 $)) 16 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2693 (($) 6 T CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-1211)) 15 T ELT) (((-1211) $) 10 T ELT)) (-3251 (($) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-610) (-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -2693 ($) -4212) (-15 -4377 ($) -4212) (-15 -1685 ($) -4212) (-15 -3251 ($) -4212) (-15 -3627 ($ $ (-665 $)))))) (T -610)) +((-2693 (*1 *1) (-5 *1 (-610))) (-4377 (*1 *1) (-5 *1 (-610))) (-1685 (*1 *1) (-5 *1 (-610))) (-3251 (*1 *1) (-5 *1 (-610))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-610))) (-5 *1 (-610))))) +(-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -2693 ($) -4212) (-15 -4377 ($) -4212) (-15 -1685 ($) -4212) (-15 -3251 ($) -4212) (-15 -3627 ($ $ (-665 $))))) +((-4417 (((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)) 15 T ELT))) +(((-611 |#1| |#2|) (-10 -7 (-15 -4417 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) (-1247) (-1247)) (T -611)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6))))) +(-10 -7 (-15 -4417 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) +((-4417 (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1187 |#2|)) 20 T ELT) (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-614 |#2|)) 19 T ELT) (((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|)) 18 T ELT))) +(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -4417 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -4417 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-614 |#2|))) (-15 -4417 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1187 |#2|)))) (-1247) (-1247) (-1247)) (T -612)) +((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1187 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) (-5 *1 (-612 *6 *7 *8)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) (-5 *1 (-612 *6 *7 *8)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-614 *8)) (-5 *1 (-612 *6 *7 *8))))) +(-10 -7 (-15 -4417 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -4417 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-614 |#2|))) (-15 -4417 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1187 |#2|)))) +((-2517 ((|#3| |#3| (-665 (-630 |#3|)) (-665 (-1206))) 57 T ELT)) (-3088 (((-171 |#2|) |#3|) 122 T ELT)) (-1864 ((|#3| (-171 |#2|)) 46 T ELT)) (-2616 ((|#2| |#3|) 21 T ELT)) (-4349 ((|#3| |#2|) 35 T ELT))) +(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -1864 (|#3| (-171 |#2|))) (-15 -2616 (|#2| |#3|)) (-15 -4349 (|#3| |#2|)) (-15 -3088 ((-171 |#2|) |#3|)) (-15 -2517 (|#3| |#3| (-665 (-630 |#3|)) (-665 (-1206))))) (-569) (-13 (-443 |#1|) (-1032) (-1232)) (-13 (-443 (-171 |#1|)) (-1032) (-1232))) (T -613)) +((-2517 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-665 (-1206))) (-4 *2 (-13 (-443 (-171 *5)) (-1032) (-1232))) (-4 *5 (-569)) (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1032) (-1232))))) (-3088 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) (-4 *5 (-13 (-443 *4) (-1032) (-1232))) (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232))))) (-4349 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1032) (-1232))))) (-2616 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) (-5 *1 (-613 *4 *2 *3)) (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232))))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232))) (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) (-5 *1 (-613 *4 *5 *2))))) +(-10 -7 (-15 -1864 (|#3| (-171 |#2|))) (-15 -2616 (|#2| |#3|)) (-15 -4349 (|#3| |#2|)) (-15 -3088 ((-171 |#2|) |#3|)) (-15 -2517 (|#3| |#3| (-665 (-630 |#3|)) (-665 (-1206))))) +((-1440 (($ (-1 (-112) |#1|) $) 17 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2475 (($ (-1 |#1| |#1|) |#1|) 9 T ELT)) (-3149 (($ (-1 (-112) |#1|) $) 13 T ELT)) (-1428 (($ (-1 (-112) |#1|) $) 15 T ELT)) (-3722 (((-1187 |#1|) $) 18 T ELT)) (-3709 (((-885) $) NIL T ELT))) +(((-614 |#1|) (-13 (-631 (-885)) (-10 -8 (-15 -4417 ($ (-1 |#1| |#1|) $)) (-15 -3149 ($ (-1 (-112) |#1|) $)) (-15 -1428 ($ (-1 (-112) |#1|) $)) (-15 -1440 ($ (-1 (-112) |#1|) $)) (-15 -2475 ($ (-1 |#1| |#1|) |#1|)) (-15 -3722 ((-1187 |#1|) $)))) (-1247)) (T -614)) +((-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-3149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-1428 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-1440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-2475 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1247))))) +(-13 (-631 (-885)) (-10 -8 (-15 -4417 ($ (-1 |#1| |#1|) $)) (-15 -3149 ($ (-1 (-112) |#1|) $)) (-15 -1428 ($ (-1 (-112) |#1|) $)) (-15 -1440 ($ (-1 (-112) |#1|) $)) (-15 -2475 ($ (-1 |#1| |#1|) |#1|)) (-15 -3722 ((-1187 |#1|) $)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4084 (($ (-792)) NIL (|has| |#1| (-23)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3231 (((-710 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3931 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-4166 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4047 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) NIL T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3128 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-747)) ELT) (($ $ |#1|) NIL (|has| |#1| (-747)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-615 |#1| |#2|) (-1295 |#1|) (-1247) (-577)) (T -615)) +NIL +(-1295 |#1|) +((-1935 (((-1302) $ |#2| |#2|) 35 T ELT)) (-2975 ((|#2| $) 23 T ELT)) (-1425 ((|#2| $) 21 T ELT)) (-4409 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4417 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4397 ((|#3| $) 26 T ELT)) (-2561 (($ $ |#3|) 33 T ELT)) (-3893 (((-112) |#3| $) 17 T ELT)) (-4059 (((-665 |#3|) $) 15 T ELT)) (-2916 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-616 |#1| |#2| |#3|) (-10 -8 (-15 -1935 ((-1302) |#1| |#2| |#2|)) (-15 -2561 (|#1| |#1| |#3|)) (-15 -4397 (|#3| |#1|)) (-15 -2975 (|#2| |#1|)) (-15 -1425 (|#2| |#1|)) (-15 -3893 ((-112) |#3| |#1|)) (-15 -4059 ((-665 |#3|) |#1|)) (-15 -2916 (|#3| |#1| |#2|)) (-15 -2916 (|#3| |#1| |#2| |#3|)) (-15 -4409 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4417 (|#1| (-1 |#3| |#3|) |#1|))) (-617 |#2| |#3|) (-1130) (-1247)) (T -616)) +NIL +(-10 -8 (-15 -1935 ((-1302) |#1| |#2| |#2|)) (-15 -2561 (|#1| |#1| |#3|)) (-15 -4397 (|#3| |#1|)) (-15 -2975 (|#2| |#1|)) (-15 -1425 (|#2| |#1|)) (-15 -3893 ((-112) |#3| |#1|)) (-15 -4059 ((-665 |#3|) |#1|)) (-15 -2916 (|#3| |#1| |#2|)) (-15 -2916 (|#3| |#1| |#2| |#3|)) (-15 -4409 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4417 (|#1| (-1 |#3| |#3|) |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-1935 (((-1302) $ |#1| |#1|) 41 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4500)) ELT)) (-2305 (($) 7 T CONST)) (-4420 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) 52 T ELT)) (-2118 (((-665 |#2|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 ((|#1| $) 44 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#2|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 ((|#1| $) 45 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#2| (-1130)) ELT)) (-2233 (((-665 |#1|) $) 47 T ELT)) (-3972 (((-112) |#1| $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| |#2| (-1130)) ELT)) (-4397 ((|#2| $) 43 (|has| |#1| (-870)) ELT)) (-2561 (($ $ |#2|) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#2| $ |#1| |#2|) 51 T ELT) ((|#2| $ |#1|) 50 T ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) 29 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#2| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-617 |#1| |#2|) (-141) (-1130) (-1247)) (T -617)) +((-4059 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-665 *4)))) (-3972 (*1 *2 *3 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-665 *3)))) (-3893 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1130)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) (-4 *2 (-870)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) (-4 *2 (-870)))) (-4397 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) (-4 *3 (-870)) (-4 *2 (-1247)))) (-2561 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-1935 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-1302))))) +(-13 (-502 |t#2|) (-299 |t#1| |t#2|) (-10 -8 (-15 -4059 ((-665 |t#2|) $)) (-15 -3972 ((-112) |t#1| $)) (-15 -2233 ((-665 |t#1|) $)) (IF (|has| |t#2| (-1130)) (IF (|has| $ (-6 -4499)) (-15 -3893 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-15 -1425 (|t#1| $)) (-15 -2975 (|t#1| $)) (-15 -4397 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2561 ($ $ |t#2|)) (-15 -1935 ((-1302) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#2| (-1130)) (|has| |#2| (-102))) ((-631 (-885)) -2867 (|has| |#2| (-1130)) (|has| |#2| (-631 (-885)))) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-1130) |has| |#2| (-1130)) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) (((-1246) $) 14 T ELT) (($ (-665 (-1246))) 13 T ELT)) (-3024 (((-665 (-1246)) $) 10 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-618) (-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -3709 ($ (-665 (-1246)))) (-15 -3024 ((-665 (-1246)) $))))) (T -618)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618))))) +(-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -3709 ($ (-665 (-1246)))) (-15 -3024 ((-665 (-1246)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3273 (((-3 $ "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2410 (((-1297 (-710 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 (-710 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2637 (((-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2305 (($) NIL T CONST)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2044 (((-3 $ "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3820 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3009 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3214 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3252 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3769 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-3712 (($ $ (-949)) NIL T ELT)) (-1461 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3747 (((-1202 |#1|) $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2501 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4242 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2020 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2385 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3167 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1641 (((-949)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1547 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2510 (($ $ (-949)) NIL T ELT)) (-3916 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1919 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2732 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1740 (((-3 $ "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3764 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3565 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2962 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3535 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2276 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-3744 (($ $ (-949)) NIL T ELT)) (-2799 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2114 (((-1202 |#1|) $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3749 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2201 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2966 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2187 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1465 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1693 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2949 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2916 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3762 (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4463 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2133 (((-665 (-980 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-665 (-980 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2486 (($ $ $) NIL T ELT)) (-3733 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3709 (((-885) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2274 (((-665 (-1297 |#1|))) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2032 (($ $ $ $) NIL T ELT)) (-3678 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4382 (($ (-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1793 (($ $ $) NIL T ELT)) (-1897 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3211 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4146 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2839 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 24 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) 19 T ELT) (($ |#1| $) NIL T ELT))) +(((-619 |#1| |#2|) (-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -3709 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-765 |#1|)) (T -619)) +((-3709 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-765 *3))))) +(-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -3709 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-620) (-13 (-1130) (-503 (-130)))) (T -620)) +NIL +(-13 (-1130) (-503 (-130))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2188 (($) 12 T CONST)) (-4019 (($) 10 T CONST)) (-2234 (($) 13 T CONST)) (-4122 (($) 11 T CONST)) (-4153 (($) 14 T CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3660 (($ $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3647 (($ $ $) NIL T ELT))) +(((-621) (-13 (-1130) (-682) (-10 -8 (-15 -4019 ($) -4212) (-15 -4122 ($) -4212) (-15 -2188 ($) -4212) (-15 -2234 ($) -4212) (-15 -4153 ($) -4212)))) (T -621)) +((-4019 (*1 *1) (-5 *1 (-621))) (-4122 (*1 *1) (-5 *1 (-621))) (-2188 (*1 *1) (-5 *1 (-621))) (-2234 (*1 *1) (-5 *1 (-621))) (-4153 (*1 *1) (-5 *1 (-621)))) +(-13 (-1130) (-682) (-10 -8 (-15 -4019 ($) -4212) (-15 -4122 ($) -4212) (-15 -2188 ($) -4212) (-15 -2234 ($) -4212) (-15 -4153 ($) -4212))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1623 (($) 11 T CONST)) (-1654 (($) 17 T CONST)) (-1710 (($) 21 T CONST)) (-1721 (($) 19 T CONST)) (-1742 (($) 14 T CONST)) (-1754 (($) 20 T CONST)) (-1776 (($) 12 T CONST)) (-1787 (($) 13 T CONST)) (-1811 (($) 18 T CONST)) (-1849 (($) 15 T CONST)) (-1884 (($) 16 T CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (((-130) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-622) (-13 (-1130) (-631 (-130)) (-10 -8 (-15 -1623 ($) -4212) (-15 -1776 ($) -4212) (-15 -1787 ($) -4212) (-15 -1742 ($) -4212) (-15 -1849 ($) -4212) (-15 -1884 ($) -4212) (-15 -1654 ($) -4212) (-15 -1811 ($) -4212) (-15 -1721 ($) -4212) (-15 -1754 ($) -4212) (-15 -1710 ($) -4212)))) (T -622)) +((-1623 (*1 *1) (-5 *1 (-622))) (-1776 (*1 *1) (-5 *1 (-622))) (-1787 (*1 *1) (-5 *1 (-622))) (-1742 (*1 *1) (-5 *1 (-622))) (-1849 (*1 *1) (-5 *1 (-622))) (-1884 (*1 *1) (-5 *1 (-622))) (-1654 (*1 *1) (-5 *1 (-622))) (-1811 (*1 *1) (-5 *1 (-622))) (-1721 (*1 *1) (-5 *1 (-622))) (-1754 (*1 *1) (-5 *1 (-622))) (-1710 (*1 *1) (-5 *1 (-622)))) +(-13 (-1130) (-631 (-130)) (-10 -8 (-15 -1623 ($) -4212) (-15 -1776 ($) -4212) (-15 -1787 ($) -4212) (-15 -1742 ($) -4212) (-15 -1849 ($) -4212) (-15 -1884 ($) -4212) (-15 -1654 ($) -4212) (-15 -1811 ($) -4212) (-15 -1721 ($) -4212) (-15 -1754 ($) -4212) (-15 -1710 ($) -4212))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4426 (($) 15 T CONST)) (-4435 (($) 16 T CONST)) (-3986 (($) 13 T CONST)) (-4019 (($) 10 T CONST)) (-4031 (($) 12 T CONST)) (-4080 (($) 11 T CONST)) (-4122 (($) 14 T CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3660 (($ $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3647 (($ $ $) NIL T ELT))) +(((-623) (-13 (-1130) (-682) (-10 -8 (-15 -4019 ($) -4212) (-15 -4080 ($) -4212) (-15 -4031 ($) -4212) (-15 -3986 ($) -4212) (-15 -4122 ($) -4212) (-15 -4426 ($) -4212) (-15 -4435 ($) -4212)))) (T -623)) +((-4019 (*1 *1) (-5 *1 (-623))) (-4080 (*1 *1) (-5 *1 (-623))) (-4031 (*1 *1) (-5 *1 (-623))) (-3986 (*1 *1) (-5 *1 (-623))) (-4122 (*1 *1) (-5 *1 (-623))) (-4426 (*1 *1) (-5 *1 (-623))) (-4435 (*1 *1) (-5 *1 (-623)))) +(-13 (-1130) (-682) (-10 -8 (-15 -4019 ($) -4212) (-15 -4080 ($) -4212) (-15 -4031 ($) -4212) (-15 -3986 ($) -4212) (-15 -4122 ($) -4212) (-15 -4426 ($) -4212) (-15 -4435 ($) -4212))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3954 (($) 15 T CONST)) (-3975 (($) 18 T CONST)) (-3986 (($) 13 T CONST)) (-4019 (($) 10 T CONST)) (-4031 (($) 12 T CONST)) (-4080 (($) 11 T CONST)) (-4110 (($) 16 T CONST)) (-4122 (($) 14 T CONST)) (-4153 (($) 17 T CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3660 (($ $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3647 (($ $ $) NIL T ELT))) +(((-624) (-13 (-1130) (-682) (-10 -8 (-15 -4019 ($) -4212) (-15 -4080 ($) -4212) (-15 -4031 ($) -4212) (-15 -3986 ($) -4212) (-15 -4122 ($) -4212) (-15 -3954 ($) -4212) (-15 -4110 ($) -4212) (-15 -4153 ($) -4212) (-15 -3975 ($) -4212)))) (T -624)) +((-4019 (*1 *1) (-5 *1 (-624))) (-4080 (*1 *1) (-5 *1 (-624))) (-4031 (*1 *1) (-5 *1 (-624))) (-3986 (*1 *1) (-5 *1 (-624))) (-4122 (*1 *1) (-5 *1 (-624))) (-3954 (*1 *1) (-5 *1 (-624))) (-4110 (*1 *1) (-5 *1 (-624))) (-4153 (*1 *1) (-5 *1 (-624))) (-3975 (*1 *1) (-5 *1 (-624)))) +(-13 (-1130) (-682) (-10 -8 (-15 -4019 ($) -4212) (-15 -4080 ($) -4212) (-15 -4031 ($) -4212) (-15 -3986 ($) -4212) (-15 -4122 ($) -4212) (-15 -3954 ($) -4212) (-15 -4110 ($) -4212) (-15 -4153 ($) -4212) (-15 -3975 ($) -4212))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 19 T ELT) (($ (-620)) 12 T ELT) (((-620) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-625) (-13 (-1130) (-503 (-620)) (-503 (-130)))) (T -625)) +NIL +(-13 (-1130) (-503 (-620)) (-503 (-130))) +((-3586 (((-112) $ $) NIL T ELT)) (-2050 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) 39 T ELT)) (-3223 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1935 (((-1302) $ (-1188) (-1188)) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-1188) |#1|) 49 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#1| "failed") (-1188) $) 52 T ELT)) (-2305 (($) NIL T CONST)) (-3819 (($ $ (-1188)) 25 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT)) (-1894 (((-3 |#1| "failed") (-1188) $) 53 T ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-4004 (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT)) (-2060 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT)) (-1494 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) 38 T ELT)) (-4420 ((|#1| $ (-1188) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-1188)) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3976 (($ $) 54 T ELT)) (-3548 (($ (-401)) 23 T ELT) (($ (-401) (-1188)) 22 T ELT)) (-2758 (((-401) $) 40 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (((-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT)) (-1425 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4001 (((-665 (-1188)) $) 45 T ELT)) (-4065 (((-112) (-1188) $) NIL T ELT)) (-3581 (((-1188) $) 41 T ELT)) (-2786 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL T ELT)) (-2233 (((-665 (-1188)) $) NIL T ELT)) (-3972 (((-112) (-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 ((|#1| $) NIL (|has| (-1188) (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) "failed") (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ $ (-665 (-305 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 43 T ELT)) (-2916 ((|#1| $ (-1188) |#1|) NIL T ELT) ((|#1| $ (-1188)) 48 T ELT)) (-3470 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (((-792) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (((-792) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT)) (-3709 (((-885) $) 21 T ELT)) (-2823 (($ $) 26 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3886 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 20 T ELT)) (-3600 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) +(((-626 |#1|) (-13 (-376 (-401) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) (-1223 (-1188) |#1|) (-10 -8 (-6 -4499) (-15 -3976 ($ $)))) (-1130)) (T -626)) +((-3976 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1130))))) +(-13 (-376 (-401) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) (-1223 (-1188) |#1|) (-10 -8 (-6 -4499) (-15 -3976 ($ $)))) +((-3519 (((-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) $) 16 T ELT)) (-4001 (((-665 |#2|) $) 20 T ELT)) (-4065 (((-112) |#2| $) 12 T ELT))) +(((-627 |#1| |#2| |#3|) (-10 -8 (-15 -4001 ((-665 |#2|) |#1|)) (-15 -4065 ((-112) |#2| |#1|)) (-15 -3519 ((-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|))) (-628 |#2| |#3|) (-1130) (-1130)) (T -627)) +NIL +(-10 -8 (-15 -4001 ((-665 |#2|) |#1|)) (-15 -4065 ((-112) |#2| |#1|)) (-15 -3519 ((-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|))) +((-3586 (((-112) $ $) 20 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 56 (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2305 (($) 7 T CONST)) (-3589 (($ $) 59 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 47 (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 57 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 54 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 53 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-4001 (((-665 |#1|) $) 64 T ELT)) (-4065 (((-112) |#1| $) 65 T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 40 T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 41 T ELT)) (-1470 (((-1150) $) 22 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 52 T ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 42 T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) 27 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 26 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 25 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 24 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 49 T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 51 T ELT)) (-3709 (((-885) $) 18 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 43 T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-628 |#1| |#2|) (-141) (-1130) (-1130)) (T -628)) +((-4065 (*1 *2 *3 *1) (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-112)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-665 *3)))) (-1894 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2359 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(-13 (-232 (-2 (|:| -4376 |t#1|) (|:| -2727 |t#2|))) (-10 -8 (-15 -4065 ((-112) |t#1| $)) (-15 -4001 ((-665 |t#1|) $)) (-15 -1894 ((-3 |t#2| "failed") |t#1| $)) (-15 -2359 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) ((-102) -2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ((-631 (-885)) -2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885)))) ((-152 #0#) . T) ((-632 (-549)) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-320 #0#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ((-502 #0#) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ((-1130) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) ((-1247) . T)) +((-1416 (((-630 |#2|) |#1|) 17 T ELT)) (-2950 (((-3 |#1| "failed") (-630 |#2|)) 21 T ELT))) +(((-629 |#1| |#2|) (-10 -7 (-15 -1416 ((-630 |#2|) |#1|)) (-15 -2950 ((-3 |#1| "failed") (-630 |#2|)))) (-1130) (-1130)) (T -629)) +((-2950 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) (-5 *1 (-629 *2 *4)))) (-1416 (*1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) +(-10 -7 (-15 -1416 ((-630 |#2|) |#1|)) (-15 -2950 ((-3 |#1| "failed") (-630 |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3509 (((-3 (-1206) "failed") $) 46 T ELT)) (-3631 (((-1302) $ (-792)) 22 T ELT)) (-3948 (((-792) $) 20 T ELT)) (-3706 (((-115) $) 9 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4399 (($ (-115) (-665 |#1|) (-792)) 32 T ELT) (($ (-1206)) 33 T ELT)) (-4241 (((-112) $ (-115)) 15 T ELT) (((-112) $ (-1206)) 13 T ELT)) (-2553 (((-792) $) 17 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4463 (((-916 (-577)) $) 95 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 102 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-549) $) 88 (|has| |#1| (-632 (-549))) ELT)) (-3709 (((-885) $) 72 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3656 (((-665 |#1|) $) 19 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 51 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 53 T ELT))) +(((-630 |#1|) (-13 (-133) (-870) (-908 |#1|) (-10 -8 (-15 -3706 ((-115) $)) (-15 -3656 ((-665 |#1|) $)) (-15 -2553 ((-792) $)) (-15 -4399 ($ (-115) (-665 |#1|) (-792))) (-15 -4399 ($ (-1206))) (-15 -3509 ((-3 (-1206) "failed") $)) (-15 -4241 ((-112) $ (-115))) (-15 -4241 ((-112) $ (-1206))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) (-1130)) (T -630)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-4399 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-1130)) (-5 *1 (-630 *5)))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-3509 (*1 *2 *1) (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-630 *4)) (-4 *4 (-1130)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-112)) (-5 *1 (-630 *4)) (-4 *4 (-1130))))) +(-13 (-133) (-870) (-908 |#1|) (-10 -8 (-15 -3706 ((-115) $)) (-15 -3656 ((-665 |#1|) $)) (-15 -2553 ((-792) $)) (-15 -4399 ($ (-115) (-665 |#1|) (-792))) (-15 -4399 ($ (-1206))) (-15 -3509 ((-3 (-1206) "failed") $)) (-15 -4241 ((-112) $ (-115))) (-15 -4241 ((-112) $ (-1206))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) +((-3709 ((|#1| $) 6 T ELT))) +(((-631 |#1|) (-141) (-1247)) (T -631)) +((-3709 (*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -3709 (|t#1| $)))) +((-4463 ((|#1| $) 6 T ELT))) +(((-632 |#1|) (-141) (-1247)) (T -632)) +((-4463 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -4463 (|t#1| $)))) +((-2639 (((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)) 15 T ELT) (((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 16 T ELT))) +(((-633 |#1| |#2|) (-10 -7 (-15 -2639 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -2639 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -633)) +((-2639 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-1202 (-420 *6))) (-5 *1 (-633 *5 *6)) (-5 *3 (-420 *6)))) (-2639 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-1202 (-420 *5))) (-5 *1 (-633 *4 *5)) (-5 *3 (-420 *5))))) +(-10 -7 (-15 -2639 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -2639 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) +((-3709 (($ |#1|) 6 T ELT))) +(((-634 |#1|) (-141) (-1247)) (T -634)) +((-3709 (*1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -3709 ($ |t#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1505 (($) 14 T CONST)) (-2288 (($) 15 T CONST)) (-2802 (($ $ $) 29 T ELT)) (-2779 (($ $) 27 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3216 (($ $ $) 30 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3655 (($) 11 T CONST)) (-3726 (($ $ $) 31 T ELT)) (-3709 (((-885) $) 35 T ELT)) (-2827 (((-112) $ (|[\|\|]| -3655)) 24 T ELT) (((-112) $ (|[\|\|]| -1505)) 26 T ELT) (((-112) $ (|[\|\|]| -2288)) 21 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2790 (($ $ $) 28 T ELT)) (-3018 (((-112) $ $) 18 T ELT))) +(((-635) (-13 (-997) (-10 -8 (-15 -1505 ($) -4212) (-15 -2827 ((-112) $ (|[\|\|]| -3655))) (-15 -2827 ((-112) $ (|[\|\|]| -1505))) (-15 -2827 ((-112) $ (|[\|\|]| -2288)))))) (T -635)) +((-1505 (*1 *1) (-5 *1 (-635))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3655)) (-5 *2 (-112)) (-5 *1 (-635)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1505)) (-5 *2 (-112)) (-5 *1 (-635)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2288)) (-5 *2 (-112)) (-5 *1 (-635))))) +(-13 (-997) (-10 -8 (-15 -1505 ($) -4212) (-15 -2827 ((-112) $ (|[\|\|]| -3655))) (-15 -2827 ((-112) $ (|[\|\|]| -1505))) (-15 -2827 ((-112) $ (|[\|\|]| -2288))))) +((-4463 (($ |#1|) 6 T ELT))) +(((-636 |#1|) (-141) (-1247)) (T -636)) +((-4463 (*1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1247))))) +(-13 (-10 -8 (-15 -4463 ($ |t#1|)))) +((-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-637 |#1| |#2|) (-10 -8 (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-638 |#2|) (-1079)) (T -637)) +NIL +(-10 -8 (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 41 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#1| $) 42 T ELT))) +(((-638 |#1|) (-141) (-1079)) (T -638)) +((-3709 (*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1079))))) +(-13 (-1079) (-669 |t#1|) (-10 -8 (-15 -3709 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| |#1| (-869)) ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2417 ((|#1| $) 13 T ELT)) (-2649 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2429 ((|#3| $) 15 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3331 (((-792)) 20 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| |#1| (-869)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) 12 T CONST)) (-3078 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3139 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-639 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (-15 -3139 ($ $ |#3|)) (-15 -3139 ($ |#1| |#3|)) (-15 -2417 (|#1| $)) (-15 -2429 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-747) |#2|)) (T -639)) +((-3139 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-747) *4)))) (-3139 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-639 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-747) *4)))) (-2417 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-639 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-747) *3)))) (-2429 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (-15 -3139 ($ $ |#3|)) (-15 -3139 ($ |#1| |#3|)) (-15 -2417 (|#1| $)) (-15 -2429 (|#3| $)))) +((-3334 ((|#2| |#2| (-1206) (-1206)) 16 T ELT))) +(((-640 |#1| |#2|) (-10 -7 (-15 -3334 (|#2| |#2| (-1206) (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-29 |#1|))) (T -640)) +((-3334 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-1232) (-987) (-29 *4)))))) +(-10 -7 (-15 -3334 (|#2| |#2| (-1206) (-1206)))) +((-3586 (((-112) $ $) 64 T ELT)) (-4113 (((-112) $) 58 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2863 ((|#1| $) 55 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2723 (((-2 (|:| -2045 $) (|:| -3883 (-420 |#2|))) (-420 |#2|)) 111 (|has| |#1| (-375)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 99 T ELT) (((-3 |#2| "failed") $) 95 T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) 27 T ELT)) (-3167 (((-3 $ "failed") $) 88 T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-4030 (((-577) $) 22 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) 40 T ELT)) (-3872 (($ |#1| (-577)) 24 T ELT)) (-4025 ((|#1| $) 57 T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) 101 (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3574 (((-3 $ "failed") $ $) 93 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-4081 (((-792) $) 115 (|has| |#1| (-375)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 114 (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-1597 (((-577) $) 38 T ELT)) (-4463 (((-420 |#2|) $) 47 T ELT)) (-3709 (((-885) $) 69 T ELT) (($ (-577)) 35 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-4171 ((|#1| $ (-577)) 72 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) 9 T CONST)) (-2853 (($) 14 T CONST)) (-2389 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) 21 T ELT)) (-3128 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 90 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-641 |#1| |#2|) (-13 (-233 |#2|) (-569) (-632 (-420 |#2|)) (-424 |#1|) (-1068 |#2|) (-10 -8 (-15 -2696 ((-112) $)) (-15 -1597 ((-577) $)) (-15 -4030 ((-577) $)) (-15 -4048 ($ $)) (-15 -4025 (|#1| $)) (-15 -2863 (|#1| $)) (-15 -4171 (|#1| $ (-577))) (-15 -3872 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -2723 ((-2 (|:| -2045 $) (|:| -3883 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) (-569) (-1273 |#1|)) (T -641)) +((-2696 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-641 *3 *4)) (-4 *4 (-1273 *3)))) (-1597 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) (-4 *4 (-1273 *3)))) (-4030 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) (-4 *4 (-1273 *3)))) (-4048 (*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) (-4025 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) (-2863 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) (-4 *4 (-1273 *2)))) (-3872 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) (-4 *4 (-1273 *2)))) (-2723 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2045 (-641 *4 *5)) (|:| -3883 (-420 *5)))) (-5 *1 (-641 *4 *5)) (-5 *3 (-420 *5))))) +(-13 (-233 |#2|) (-569) (-632 (-420 |#2|)) (-424 |#1|) (-1068 |#2|) (-10 -8 (-15 -2696 ((-112) $)) (-15 -1597 ((-577) $)) (-15 -4030 ((-577) $)) (-15 -4048 ($ $)) (-15 -4025 (|#1| $)) (-15 -2863 (|#1| $)) (-15 -4171 (|#1| $ (-577))) (-15 -3872 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -2723 ((-2 (|:| -2045 $) (|:| -3883 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) +((-1795 (((-665 |#6|) (-665 |#4|) (-112)) 54 T ELT)) (-3429 ((|#6| |#6|) 48 T ELT))) +(((-642 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3429 (|#6| |#6|)) (-15 -1795 ((-665 |#6|) (-665 |#4|) (-112)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|) (-1139 |#1| |#2| |#3| |#4|)) (T -642)) +((-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *10)) (-5 *1 (-642 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *10 (-1139 *5 *6 *7 *8)))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-642 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *2 (-1139 *3 *4 *5 *6))))) +(-10 -7 (-15 -3429 (|#6| |#6|)) (-15 -1795 ((-665 |#6|) (-665 |#4|) (-112)))) +((-2713 (((-112) |#3| (-792) (-665 |#3|)) 29 T ELT)) (-3043 (((-3 (-2 (|:| |polfac| (-665 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-665 (-1202 |#3|)))) "failed") |#3| (-665 (-1202 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2127 (-665 (-2 (|:| |irr| |#4|) (|:| -2243 (-577)))))) (-665 |#3|) (-665 |#1|) (-665 |#3|)) 69 T ELT))) +(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2713 ((-112) |#3| (-792) (-665 |#3|))) (-15 -3043 ((-3 (-2 (|:| |polfac| (-665 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-665 (-1202 |#3|)))) "failed") |#3| (-665 (-1202 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2127 (-665 (-2 (|:| |irr| |#4|) (|:| -2243 (-577)))))) (-665 |#3|) (-665 |#1|) (-665 |#3|)))) (-870) (-814) (-318) (-977 |#3| |#2| |#1|)) (T -643)) +((-3043 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2127 (-665 (-2 (|:| |irr| *10) (|:| -2243 (-577))))))) (-5 *6 (-665 *3)) (-5 *7 (-665 *8)) (-4 *8 (-870)) (-4 *3 (-318)) (-4 *10 (-977 *3 *9 *8)) (-4 *9 (-814)) (-5 *2 (-2 (|:| |polfac| (-665 *10)) (|:| |correct| *3) (|:| |corrfact| (-665 (-1202 *3))))) (-5 *1 (-643 *8 *9 *3 *10)) (-5 *4 (-665 (-1202 *3))))) (-2713 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-792)) (-5 *5 (-665 *3)) (-4 *3 (-318)) (-4 *6 (-870)) (-4 *7 (-814)) (-5 *2 (-112)) (-5 *1 (-643 *6 *7 *3 *8)) (-4 *8 (-977 *3 *7 *6))))) +(-10 -7 (-15 -2713 ((-112) |#3| (-792) (-665 |#3|))) (-15 -3043 ((-3 (-2 (|:| |polfac| (-665 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-665 (-1202 |#3|)))) "failed") |#3| (-665 (-1202 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2127 (-665 (-2 (|:| |irr| |#4|) (|:| -2243 (-577)))))) (-665 |#3|) (-665 |#1|) (-665 |#3|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2416 (((-1165) $) 11 T ELT)) (-2404 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-644) (-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $))))) (T -644)) +((-2404 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644))))) +(-13 (-1113) (-10 -8 (-15 -2404 ((-1165) $)) (-15 -2416 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4294 (((-665 |#1|) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2714 (($ $) 77 T ELT)) (-3825 (((-685 |#1| |#2|) $) 60 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 81 T ELT)) (-3602 (((-665 (-305 |#2|)) $ $) 42 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2355 (($ (-685 |#1| |#2|)) 56 T ELT)) (-4247 (($ $ $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3709 (((-885) $) 66 T ELT) (((-1312 |#1| |#2|) $) NIL T ELT) (((-1317 |#1| |#2|) $) 74 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 61 T CONST)) (-3425 (((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-3558 (((-665 (-685 |#1| |#2|)) (-665 |#1|)) 73 T ELT)) (-2535 (((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3018 (((-112) $ $) 62 T ELT)) (-3139 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-645 |#1| |#2| |#3|) (-13 (-486) (-10 -8 (-15 -2355 ($ (-685 |#1| |#2|))) (-15 -3825 ((-685 |#1| |#2|) $)) (-15 -2535 ((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $)) (-15 -3709 ((-1312 |#1| |#2|) $)) (-15 -3709 ((-1317 |#1| |#2|) $)) (-15 -2714 ($ $)) (-15 -4294 ((-665 |#1|) $)) (-15 -3558 ((-665 (-685 |#1| |#2|)) (-665 |#1|))) (-15 -3425 ((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $)) (-15 -3602 ((-665 (-305 |#2|)) $ $)))) (-870) (-13 (-174) (-738 (-420 (-577)))) (-949)) (T -645)) +((-2355 (*1 *1 *2) (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-5 *1 (-645 *3 *4 *5)) (-14 *5 (-949)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-685 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| (-917 *3)) (|:| |c| *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1317 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-2714 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-13 (-174) (-738 (-420 (-577))))) (-14 *4 (-949)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-685 *4 *5))) (-5 *1 (-645 *4 *5 *6)) (-4 *5 (-13 (-174) (-738 (-420 (-577))))) (-14 *6 (-949)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| (-693 *3)) (|:| |c| *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-3602 (*1 *2 *1 *1) (-12 (-5 *2 (-665 (-305 *4))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949))))) +(-13 (-486) (-10 -8 (-15 -2355 ($ (-685 |#1| |#2|))) (-15 -3825 ((-685 |#1| |#2|) $)) (-15 -2535 ((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $)) (-15 -3709 ((-1312 |#1| |#2|) $)) (-15 -3709 ((-1317 |#1| |#2|) $)) (-15 -2714 ($ $)) (-15 -4294 ((-665 |#1|) $)) (-15 -3558 ((-665 (-685 |#1| |#2|)) (-665 |#1|))) (-15 -3425 ((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $)) (-15 -3602 ((-665 (-305 |#2|)) $ $)))) +((-1795 (((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)) 103 T ELT) (((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112)) 77 T ELT)) (-2760 (((-112) (-665 (-801 |#1| (-887 |#2|)))) 26 T ELT)) (-2172 (((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)) 102 T ELT)) (-1537 (((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112)) 76 T ELT)) (-1332 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|)))) 30 T ELT)) (-1590 (((-3 (-665 (-801 |#1| (-887 |#2|))) "failed") (-665 (-801 |#1| (-887 |#2|)))) 29 T ELT))) +(((-646 |#1| |#2|) (-10 -7 (-15 -2760 ((-112) (-665 (-801 |#1| (-887 |#2|))))) (-15 -1590 ((-3 (-665 (-801 |#1| (-887 |#2|))) "failed") (-665 (-801 |#1| (-887 |#2|))))) (-15 -1332 ((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))))) (-15 -1537 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -2172 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -1795 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -1795 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)))) (-465) (-665 (-1206))) (T -646)) +((-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) (-5 *1 (-646 *5 *6)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-646 *5 *6)))) (-2172 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) (-5 *1 (-646 *5 *6)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-646 *5 *6)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4)))) (-1590 (*1 *2 *2) (|partial| -12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-665 (-801 *4 (-887 *5)))) (-4 *4 (-465)) (-14 *5 (-665 (-1206))) (-5 *2 (-112)) (-5 *1 (-646 *4 *5))))) +(-10 -7 (-15 -2760 ((-112) (-665 (-801 |#1| (-887 |#2|))))) (-15 -1590 ((-3 (-665 (-801 |#1| (-887 |#2|))) "failed") (-665 (-801 |#1| (-887 |#2|))))) (-15 -1332 ((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))))) (-15 -1537 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -2172 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -1795 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -1795 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)))) +((-1660 (($ $) 38 T ELT)) (-2785 (($ $) 21 T ELT)) (-1638 (($ $) 37 T ELT)) (-2757 (($ $) 22 T ELT)) (-1682 (($ $) 36 T ELT)) (-2809 (($ $) 23 T ELT)) (-2450 (($) 48 T ELT)) (-3825 (($ $) 45 T ELT)) (-2091 (($ $) 17 T ELT)) (-1961 (($ $ (-1122 $)) 7 T ELT) (($ $ (-1206)) 6 T ELT)) (-2355 (($ $) 46 T ELT)) (-2707 (($ $) 15 T ELT)) (-2744 (($ $) 16 T ELT)) (-1692 (($ $) 35 T ELT)) (-2821 (($ $) 24 T ELT)) (-1671 (($ $) 34 T ELT)) (-2797 (($ $) 25 T ELT)) (-1648 (($ $) 33 T ELT)) (-2772 (($ $) 26 T ELT)) (-1727 (($ $) 44 T ELT)) (-2861 (($ $) 32 T ELT)) (-1703 (($ $) 43 T ELT)) (-2834 (($ $) 31 T ELT)) (-1748 (($ $) 42 T ELT)) (-1616 (($ $) 30 T ELT)) (-4468 (($ $) 41 T ELT)) (-1626 (($ $) 29 T ELT)) (-1737 (($ $) 40 T ELT)) (-2874 (($ $) 28 T ELT)) (-1715 (($ $) 39 T ELT)) (-2847 (($ $) 27 T ELT)) (-3967 (($ $) 19 T ELT)) (-4052 (($ $) 20 T ELT)) (-1364 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-647) (-141)) (T -647)) +((-4052 (*1 *1 *1) (-4 *1 (-647))) (-3967 (*1 *1 *1) (-4 *1 (-647))) (-1364 (*1 *1 *1) (-4 *1 (-647))) (-2091 (*1 *1 *1) (-4 *1 (-647))) (-2744 (*1 *1 *1) (-4 *1 (-647))) (-2707 (*1 *1 *1) (-4 *1 (-647)))) +(-13 (-987) (-1232) (-10 -8 (-15 -4052 ($ $)) (-15 -3967 ($ $)) (-15 -1364 ($ $)) (-15 -2091 ($ $)) (-15 -2744 ($ $)) (-15 -2707 ($ $)))) +(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-987) . T) ((-1232) . T) ((-1235) . T)) +((-3706 (((-115) (-115)) 88 T ELT)) (-2091 ((|#2| |#2|) 28 T ELT)) (-1961 ((|#2| |#2| (-1122 |#2|)) 84 T ELT) ((|#2| |#2| (-1206)) 50 T ELT)) (-2707 ((|#2| |#2|) 27 T ELT)) (-2744 ((|#2| |#2|) 29 T ELT)) (-1448 (((-112) (-115)) 33 T ELT)) (-3967 ((|#2| |#2|) 24 T ELT)) (-4052 ((|#2| |#2|) 26 T ELT)) (-1364 ((|#2| |#2|) 25 T ELT))) +(((-648 |#1| |#2|) (-10 -7 (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -4052 (|#2| |#2|)) (-15 -3967 (|#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -2707 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1961 (|#2| |#2| (-1206))) (-15 -1961 (|#2| |#2| (-1122 |#2|)))) (-569) (-13 (-443 |#1|) (-1032) (-1232))) (T -648)) +((-1961 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) (-4 *4 (-569)) (-5 *1 (-648 *4 *2)))) (-1961 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-648 *4 *2)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-2707 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-3967 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-4052 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-648 *3 *4)) (-4 *4 (-13 (-443 *3) (-1032) (-1232))))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232)))))) +(-10 -7 (-15 -1448 ((-112) (-115))) (-15 -3706 ((-115) (-115))) (-15 -4052 (|#2| |#2|)) (-15 -3967 (|#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -2707 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1961 (|#2| |#2| (-1206))) (-15 -1961 (|#2| |#2| (-1122 |#2|)))) +((-4210 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 63 T ELT)) (-2496 (((-665 (-254 |#1| |#2|)) (-665 (-494 |#1| |#2|))) 89 T ELT)) (-3922 (((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-887 |#1|)) 91 T ELT) (((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)) (-887 |#1|)) 90 T ELT)) (-2497 (((-2 (|:| |gblist| (-665 (-254 |#1| |#2|))) (|:| |gvlist| (-665 (-577)))) (-665 (-494 |#1| |#2|))) 134 T ELT)) (-1391 (((-665 (-494 |#1| |#2|)) (-887 |#1|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|))) 104 T ELT)) (-4321 (((-2 (|:| |glbase| (-665 (-254 |#1| |#2|))) (|:| |glval| (-665 (-577)))) (-665 (-254 |#1| |#2|))) 145 T ELT)) (-2818 (((-1297 |#2|) (-494 |#1| |#2|) (-665 (-494 |#1| |#2|))) 68 T ELT)) (-2630 (((-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|))) 47 T ELT)) (-3755 (((-254 |#1| |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|))) 60 T ELT)) (-1728 (((-254 |#1| |#2|) (-665 |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|))) 112 T ELT))) +(((-649 |#1| |#2|) (-10 -7 (-15 -2497 ((-2 (|:| |gblist| (-665 (-254 |#1| |#2|))) (|:| |gvlist| (-665 (-577)))) (-665 (-494 |#1| |#2|)))) (-15 -4321 ((-2 (|:| |glbase| (-665 (-254 |#1| |#2|))) (|:| |glval| (-665 (-577)))) (-665 (-254 |#1| |#2|)))) (-15 -2496 ((-665 (-254 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -3922 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -3922 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -2630 ((-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -2818 ((-1297 |#2|) (-494 |#1| |#2|) (-665 (-494 |#1| |#2|)))) (-15 -1728 ((-254 |#1| |#2|) (-665 |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -1391 ((-665 (-494 |#1| |#2|)) (-887 |#1|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -3755 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -4210 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) (-665 (-1206)) (-465)) (T -649)) +((-4210 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-494 *4 *5)) (-5 *1 (-649 *4 *5)))) (-3755 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5)))) (-1391 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-887 *4)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5)))) (-1728 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-254 *5 *6))) (-4 *6 (-465)) (-5 *2 (-254 *5 *6)) (-14 *5 (-665 (-1206))) (-5 *1 (-649 *5 *6)))) (-2818 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-1297 *6)) (-5 *1 (-649 *5 *6)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-665 (-494 *3 *4))) (-14 *3 (-665 (-1206))) (-4 *4 (-465)) (-5 *1 (-649 *3 *4)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) (-4 *6 (-465)))) (-3922 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) (-4 *6 (-465)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-665 (-254 *4 *5))) (-5 *1 (-649 *4 *5)))) (-4321 (*1 *2 *3) (-12 (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |glbase| (-665 (-254 *4 *5))) (|:| |glval| (-665 (-577))))) (-5 *1 (-649 *4 *5)) (-5 *3 (-665 (-254 *4 *5))))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |gblist| (-665 (-254 *4 *5))) (|:| |gvlist| (-665 (-577))))) (-5 *1 (-649 *4 *5))))) +(-10 -7 (-15 -2497 ((-2 (|:| |gblist| (-665 (-254 |#1| |#2|))) (|:| |gvlist| (-665 (-577)))) (-665 (-494 |#1| |#2|)))) (-15 -4321 ((-2 (|:| |glbase| (-665 (-254 |#1| |#2|))) (|:| |glval| (-665 (-577)))) (-665 (-254 |#1| |#2|)))) (-15 -2496 ((-665 (-254 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -3922 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -3922 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -2630 ((-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -2818 ((-1297 |#2|) (-494 |#1| |#2|) (-665 (-494 |#1| |#2|)))) (-15 -1728 ((-254 |#1| |#2|) (-665 |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -1391 ((-665 (-494 |#1| |#2|)) (-887 |#1|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -3755 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -4210 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) NIL T ELT)) (-1935 (((-1302) $ (-1188) (-1188)) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 (((-52) $ (-1188) (-52)) 16 T ELT) (((-52) $ (-1206) (-52)) 17 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 (-52) "failed") (-1188) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-52) "failed") (-1188) $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $ (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (((-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $ (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 (((-52) $ (-1188) (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-4353 (((-52) $ (-1188)) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3976 (($ $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-1425 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-2135 (($ (-401)) 9 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-52) (-1130)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT)) (-4001 (((-665 (-1188)) $) NIL T ELT)) (-4065 (((-112) (-1188) $) NIL T ELT)) (-2786 (((-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) $) NIL T ELT)) (-2233 (((-665 (-1188)) $) NIL T ELT)) (-3972 (((-112) (-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-52) (-1130)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT)) (-4397 (((-52) $) NIL (|has| (-1188) (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) "failed") (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL T ELT)) (-2561 (($ $ (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-665 (-52)) (-665 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-665 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-4059 (((-665 (-52)) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 (((-52) $ (-1188)) 14 T ELT) (((-52) $ (-1188) (-52)) NIL T ELT) (((-52) $ (-1206)) 15 T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-1130))) ELT) (((-792) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT) (((-792) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-52) (-631 (-885))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-650) (-13 (-1223 (-1188) (-52)) (-297 (-1206) (-52)) (-10 -8 (-15 -2135 ($ (-401))) (-15 -3976 ($ $)) (-15 -1957 ((-52) $ (-1206) (-52)))))) (T -650)) +((-2135 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-650)))) (-3976 (*1 *1 *1) (-5 *1 (-650))) (-1957 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1206)) (-5 *1 (-650))))) +(-13 (-1223 (-1188) (-52)) (-297 (-1206) (-52)) (-10 -8 (-15 -2135 ($ (-401))) (-15 -3976 ($ $)) (-15 -1957 ((-52) $ (-1206) (-52))))) +((-3139 (($ $ |#2|) 10 T ELT))) +(((-651 |#1| |#2|) (-10 -8 (-15 -3139 (|#1| |#1| |#2|))) (-652 |#2|) (-174)) (T -651)) +NIL +(-10 -8 (-15 -3139 (|#1| |#1| |#2|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3722 (($ $ $) 34 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 33 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-652 |#1|) (-141) (-174)) (T -652)) +((-3722 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) +(-13 (-738 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3722 ($ $ $)) (IF (|has| |t#1| (-375)) (-15 -3139 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3273 (((-3 $ "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2410 (((-1297 (-710 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 (-710 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2637 (((-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2305 (($) NIL T CONST)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2044 (((-3 $ "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3820 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3009 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3214 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3252 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3769 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-3712 (($ $ (-949)) NIL T ELT)) (-1461 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3747 (((-1202 |#1|) $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2501 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4242 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2020 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2385 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3167 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1641 (((-949)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1547 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2510 (($ $ (-949)) NIL T ELT)) (-3916 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1919 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2732 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1740 (((-3 $ "failed")) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3764 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3565 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2962 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3535 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2276 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-3744 (($ $ (-949)) NIL T ELT)) (-2799 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2114 (((-1202 |#1|) $) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3749 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2201 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2966 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2187 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1465 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1693 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2949 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2916 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3762 (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4463 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2133 (((-665 (-980 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-665 (-980 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2486 (($ $ $) NIL T ELT)) (-3733 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3709 (((-885) $) NIL T ELT) ((|#2| $) 12 T ELT) (($ |#2|) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2274 (((-665 (-1297 |#1|))) NIL (-2867 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2032 (($ $ $ $) NIL T ELT)) (-3678 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4382 (($ (-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1793 (($ $ $) NIL T ELT)) (-1897 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3211 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4146 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 20 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 11 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-653 |#1| |#2|) (-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -3709 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-765 |#1|)) (T -653)) +((-3709 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-653 *3 *2)) (-4 *2 (-765 *3))))) +(-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -3709 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) +((-2176 (((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1188)) 106 T ELT) (((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|))) 131 T ELT)) (-1614 (((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|))) 136 T ELT))) +(((-654 |#1| |#2|) (-10 -7 (-15 -2176 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -1614 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2176 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1188)))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -654)) +((-2176 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1188)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-864 *3)) (-5 *1 (-654 *6 *3)))) (-1614 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-854 *3))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-854 *3)) (-5 *1 (-654 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-654 *5 *3))))) +(-10 -7 (-15 -2176 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -1614 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2176 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1188)))) +((-2176 (((-3 (-864 (-420 (-980 |#1|))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))) (-1188)) 86 T ELT) (((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|)))) 20 T ELT) (((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-864 (-980 |#1|)))) 35 T ELT)) (-1614 (((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|)))) 23 T ELT) (((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-854 (-980 |#1|)))) 43 T ELT))) +(((-655 |#1|) (-10 -7 (-15 -2176 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-864 (-980 |#1|))))) (-15 -2176 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -1614 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-854 (-980 |#1|))))) (-15 -1614 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -2176 ((-3 (-864 (-420 (-980 |#1|))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))) (-1188)))) (-465)) (T -655)) +((-2176 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-420 (-980 *6)))) (-5 *5 (-1188)) (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-864 *3)) (-5 *1 (-655 *6)))) (-1614 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-465)) (-5 *2 (-854 *3)) (-5 *1 (-655 *5)))) (-1614 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-854 (-980 *5)))) (-4 *5 (-465)) (-5 *2 (-854 (-420 (-980 *5)))) (-5 *1 (-655 *5)) (-5 *3 (-420 (-980 *5))))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-465)) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-655 *5)))) (-2176 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 (-980 *5)))) (-4 *5 (-465)) (-5 *2 (-3 (-864 (-420 (-980 *5))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 *5))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 *5))) "failed"))) "failed")) (-5 *1 (-655 *5)) (-5 *3 (-420 (-980 *5)))))) +(-10 -7 (-15 -2176 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-864 (-980 |#1|))))) (-15 -2176 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -1614 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-854 (-980 |#1|))))) (-15 -1614 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -2176 ((-3 (-864 (-420 (-980 |#1|))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))) (-1188)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) 11 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2812 (($ (-217 |#1|)) 12 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-887 |#1|)) 7 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-656 |#1|) (-13 (-865) (-634 (-887 |#1|)) (-10 -8 (-15 -2812 ($ (-217 |#1|))))) (-665 (-1206))) (T -656)) +((-2812 (*1 *1 *2) (-12 (-5 *2 (-217 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-656 *3))))) +(-13 (-865) (-634 (-887 |#1|)) (-10 -8 (-15 -2812 ($ (-217 |#1|))))) +((-4205 (((-3 (-1297 (-420 |#1|)) "failed") (-1297 |#2|) |#2|) 64 (-2779 (|has| |#1| (-375))) ELT) (((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|) 49 (|has| |#1| (-375)) ELT)) (-2663 (((-112) (-1297 |#2|)) 33 T ELT)) (-2633 (((-3 (-1297 |#1|) "failed") (-1297 |#2|)) 40 T ELT))) +(((-657 |#1| |#2|) (-10 -7 (-15 -2663 ((-112) (-1297 |#2|))) (-15 -2633 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-375)) (-15 -4205 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -4205 ((-3 (-1297 (-420 |#1|)) "failed") (-1297 |#2|) |#2|)))) (-569) (-13 (-1079) (-659 |#1|))) (T -657)) +((-4205 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) (-2779 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1297 (-420 *5))) (-5 *1 (-657 *5 *4)))) (-4205 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1297 *5)) (-5 *1 (-657 *5 *4)))) (-2633 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) (-4 *4 (-569)) (-5 *2 (-1297 *4)) (-5 *1 (-657 *4 *5)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-657 *4 *5))))) +(-10 -7 (-15 -2663 ((-112) (-1297 |#2|))) (-15 -2633 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-375)) (-15 -4205 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -4205 ((-3 (-1297 (-420 |#1|)) "failed") (-1297 |#2|) |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2072 (((-665 (-896 (-656 |#2|) |#1|)) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3872 (($ |#1| (-656 |#2|)) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1335 (($ (-665 |#1|)) 25 T ELT)) (-1560 (((-656 |#2|) $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4366 (((-135)) 16 T ELT)) (-3762 (((-1297 |#1|) $) 44 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-656 |#2|)) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 20 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 17 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-658 |#1| |#2|) (-13 (-1304 |#1|) (-634 (-656 |#2|)) (-522 |#1| (-656 |#2|)) (-10 -8 (-15 -1335 ($ (-665 |#1|))) (-15 -3762 ((-1297 |#1|) $)))) (-375) (-665 (-1206))) (T -658)) +((-1335 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-658 *3 *4)) (-14 *4 (-665 (-1206))))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-658 *3 *4)) (-4 *3 (-375)) (-14 *4 (-665 (-1206)))))) +(-13 (-1304 |#1|) (-634 (-656 |#2|)) (-522 |#1| (-656 |#2|)) (-10 -8 (-15 -1335 ($ (-665 |#1|))) (-15 -3762 ((-1297 |#1|) $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3187 (((-710 |#1|) (-710 $)) 30 T ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 29 T ELT)) (-3163 (((-710 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) +(((-659 |#1|) (-141) (-1079)) (T -659)) +((-3163 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) (-5 *2 (-710 *4)))) (-3163 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| -3684 (-710 *4)) (|:| |vec| (-1297 *4)))))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-710 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) (-5 *2 (-710 *4)))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-659 *5)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -3684 (-710 *5)) (|:| |vec| (-1297 *5))))))) +(-13 (-669 |t#1|) (-10 -8 (-15 -3163 ((-710 |t#1|) (-1297 $))) (-15 -3163 ((-2 (|:| -3684 (-710 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-1297 $) $)) (-15 -3187 ((-710 |t#1|) (-710 $))) (-15 -3187 ((-2 (|:| -3684 (-710 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-710 $) (-1297 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2620 (($ (-665 |#1|)) 23 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 ((|#1| $ (-658 |#1| |#2|)) 46 T ELT)) (-4366 (((-135)) 13 T ELT)) (-3762 (((-1297 |#1|) $) 42 T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 18 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 14 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-660 |#1| |#2|) (-13 (-1304 |#1|) (-297 (-658 |#1| |#2|) |#1|) (-10 -8 (-15 -2620 ($ (-665 |#1|))) (-15 -3762 ((-1297 |#1|) $)))) (-375) (-665 (-1206))) (T -660)) +((-2620 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-660 *3 *4)) (-14 *4 (-665 (-1206))))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-660 *3 *4)) (-4 *3 (-375)) (-14 *4 (-665 (-1206)))))) +(-13 (-1304 |#1|) (-297 (-658 |#1| |#2|) |#1|) (-10 -8 (-15 -2620 ($ (-665 |#1|))) (-15 -3762 ((-1297 |#1|) $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT) (($ $ |#1|) 17 T ELT))) +(((-661 |#1|) (-141) (-1142)) (T -661)) +NIL +(-13 (-667 |t#1|) (-1081 |t#1|)) +(((-102) . T) ((-631 (-885)) . T) ((-667 |#1|) . T) ((-1081 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-2166 ((|#2| (-665 |#1|) (-665 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-665 |#1|) (-665 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) |#2|) 17 T ELT) ((|#2| (-665 |#1|) (-665 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|)) 12 T ELT))) +(((-662 |#1| |#2|) (-10 -7 (-15 -2166 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|))) (-15 -2166 (|#2| (-665 |#1|) (-665 |#2|) |#1|)) (-15 -2166 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) |#2|)) (-15 -2166 (|#2| (-665 |#1|) (-665 |#2|) |#1| |#2|)) (-15 -2166 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) (-1 |#2| |#1|))) (-15 -2166 (|#2| (-665 |#1|) (-665 |#2|) |#1| (-1 |#2| |#1|)))) (-1130) (-1247)) (T -662)) +((-2166 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) (-2166 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *1 (-662 *5 *6)))) (-2166 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) (-2166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 *5)) (-4 *6 (-1130)) (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-662 *6 *5)))) (-2166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *6))))) +(-10 -7 (-15 -2166 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|))) (-15 -2166 (|#2| (-665 |#1|) (-665 |#2|) |#1|)) (-15 -2166 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) |#2|)) (-15 -2166 (|#2| (-665 |#1|) (-665 |#2|) |#1| |#2|)) (-15 -2166 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) (-1 |#2| |#1|))) (-15 -2166 (|#2| (-665 |#1|) (-665 |#2|) |#1| (-1 |#2| |#1|)))) +((-4256 (((-665 |#2|) (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|) 16 T ELT)) (-2060 ((|#2| (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|) 18 T ELT)) (-4417 (((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)) 13 T ELT))) +(((-663 |#1| |#2|) (-10 -7 (-15 -4256 ((-665 |#2|) (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -4417 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) (-1247) (-1247)) (T -663)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-665 *6)) (-5 *1 (-663 *5 *6)))) (-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-665 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-665 *5)) (-5 *1 (-663 *6 *5))))) +(-10 -7 (-15 -4256 ((-665 |#2|) (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -4417 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) +((-4417 (((-665 |#3|) (-1 |#3| |#1| |#2|) (-665 |#1|) (-665 |#2|)) 21 T ELT))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -4417 ((-665 |#3|) (-1 |#3| |#1| |#2|) (-665 |#1|) (-665 |#2|)))) (-1247) (-1247) (-1247)) (T -664)) +((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-665 *6)) (-5 *5 (-665 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-665 *8)) (-5 *1 (-664 *6 *7 *8))))) +(-10 -7 (-15 -4417 ((-665 |#3|) (-1 |#3| |#1| |#2|) (-665 |#1|) (-665 |#2|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) NIL T ELT)) (-1893 ((|#1| $) NIL T ELT)) (-2688 (($ $) NIL T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) $) NIL (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-2629 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1381 (($ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-1968 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-4318 (($ $ $) 37 (|has| |#1| (-1130)) ELT)) (-3685 (($ $ $) 41 (|has| |#1| (-1130)) ELT)) (-3052 (($ $ $) 44 (|has| |#1| (-1130)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1883 ((|#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-4410 (($ $) 23 T ELT) (($ $ (-792)) NIL T ELT)) (-2697 (($ $) NIL (|has| |#1| (-1130)) ELT)) (-3589 (($ $) 36 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4004 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-4236 (((-112) $) NIL T ELT)) (-3948 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2764 (((-112) $) 11 T ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-4185 (($) 9 T CONST)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-3771 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4415 (($ |#1|) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-4375 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2317 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 20 T ELT) (($ $ (-792)) NIL T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3661 (((-112) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) 39 T ELT)) (-2833 (($) 38 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) 42 T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-4068 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3587 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1659 (($ $) NIL T ELT)) (-1697 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) NIL T ELT)) (-2554 (($ $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) 53 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) NIL T ELT)) (-2986 (($ |#1| $) 12 T ELT)) (-2562 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1702 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-665 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3630 (($ $ $) 13 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4136 (((-1188) $) 31 (|has| |#1| (-849)) ELT) (((-1188) $ (-112)) 32 (|has| |#1| (-849)) ELT) (((-1302) (-843) $) 33 (|has| |#1| (-849)) ELT) (((-1302) (-843) $ (-112)) 34 (|has| |#1| (-849)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-665 |#1|) (-13 (-687 |#1|) (-10 -8 (-15 -4185 ($) -4212) (-15 -2764 ((-112) $)) (-15 -2986 ($ |#1| $)) (-15 -3630 ($ $ $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -4318 ($ $ $)) (-15 -3685 ($ $ $)) (-15 -3052 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) (-1247)) (T -665)) +((-4185 (*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-1247)))) (-2986 (*1 *1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) (-3630 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) (-4318 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)))) (-3685 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)))) (-3052 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) +(-13 (-687 |#1|) (-10 -8 (-15 -4185 ($) -4212) (-15 -2764 ((-112) $)) (-15 -2986 ($ |#1| $)) (-15 -3630 ($ $ $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -4318 ($ $ $)) (-15 -3685 ($ $ $)) (-15 -3052 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 11 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-666 |#1|) (-13 (-1113) (-631 |#1|)) (-1130)) (T -666)) +NIL +(-13 (-1113) (-631 |#1|)) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT))) +(((-667 |#1|) (-141) (-1142)) (T -667)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1142))))) +(-13 (-1130) (-10 -8 (-15 * ($ |t#1| $)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3001 (($ |#1| |#1| $) 43 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2697 (($ $) 45 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) 56 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 9 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 37 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 47 T ELT)) (-4375 (($ |#1| $) 29 T ELT) (($ |#1| $ (-792)) 42 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3205 ((|#1| $) 50 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 23 T ELT)) (-2833 (($) 28 T ELT)) (-2178 (((-112) $) 54 T ELT)) (-2762 (((-665 (-2 (|:| -2727 |#1|) (|:| -1481 (-792)))) $) 67 T ELT)) (-3470 (($) 26 T ELT) (($ (-665 |#1|)) 19 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 63 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 20 T ELT)) (-4463 (((-549) $) 34 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) NIL T ELT)) (-3709 (((-885) $) 14 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 24 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 69 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 17 (|has| $ (-6 -4499)) ELT))) +(((-668 |#1|) (-13 (-716 |#1|) (-10 -8 (-6 -4499) (-15 -2178 ((-112) $)) (-15 -3001 ($ |#1| |#1| $)))) (-1130)) (T -668)) +((-2178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-1130)))) (-3001 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1130))))) +(-13 (-716 |#1|) (-10 -8 (-6 -4499) (-15 -2178 ((-112) $)) (-15 -3001 ($ |#1| |#1| $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) +(((-669 |#1|) (-141) (-1088)) (T -669)) +NIL +(-13 (-21) (-667 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792) $) 17 T ELT)) (-1982 (($ $ |#1|) 69 T ELT)) (-2609 (($ $) 39 T ELT)) (-2100 (($ $) 37 T ELT)) (-4335 (((-3 |#1| "failed") $) 61 T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-3221 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-2880 (((-885) $ (-1 (-885) (-885) (-885)) (-1 (-885) (-885) (-885)) (-577)) 56 T ELT)) (-1770 ((|#1| $ (-577)) 35 T ELT)) (-1520 ((|#2| $ (-577)) 34 T ELT)) (-2399 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-1923 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-1778 (($) 11 T ELT)) (-3824 (($ |#1| |#2|) 24 T ELT)) (-1980 (($ (-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|)))) 25 T ELT)) (-4000 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|))) $) 14 T ELT)) (-2184 (($ |#1| $) 71 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3343 (((-112) $ $) 76 T ELT)) (-3709 (((-885) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 27 T ELT))) +(((-670 |#1| |#2| |#3|) (-13 (-1130) (-1068 |#1|) (-10 -8 (-15 -2880 ((-885) $ (-1 (-885) (-885) (-885)) (-1 (-885) (-885) (-885)) (-577))) (-15 -4000 ((-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|))) $)) (-15 -3824 ($ |#1| |#2|)) (-15 -1980 ($ (-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|))))) (-15 -1520 (|#2| $ (-577))) (-15 -1770 (|#1| $ (-577))) (-15 -2100 ($ $)) (-15 -2609 ($ $)) (-15 -3005 ((-792) $)) (-15 -1778 ($)) (-15 -1982 ($ $ |#1|)) (-15 -2184 ($ |#1| $)) (-15 -3221 ($ |#1| |#2| $)) (-15 -3221 ($ $ $)) (-15 -3343 ((-112) $ $)) (-15 -1923 ($ (-1 |#2| |#2|) $)) (-15 -2399 ($ (-1 |#1| |#1|) $)))) (-1130) (-23) |#2|) (T -670)) +((-2880 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-885) (-885) (-885))) (-5 *4 (-577)) (-5 *2 (-885)) (-5 *1 (-670 *5 *6 *7)) (-4 *5 (-1130)) (-4 *6 (-23)) (-14 *7 *6))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 *4)))) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4))) (-3824 (*1 *1 *2 *3) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-1980 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 *4)))) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-670 *3 *4 *5)))) (-1520 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-670 *4 *2 *5)) (-4 *4 (-1130)) (-14 *5 *2))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-1130)) (-5 *1 (-670 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-2609 (*1 *1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4))) (-1778 (*1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-1982 (*1 *1 *1 *2) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-2184 (*1 *1 *2 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-3221 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-3221 (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-3343 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4))) (-1923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)))) (-2399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-670 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1130) (-1068 |#1|) (-10 -8 (-15 -2880 ((-885) $ (-1 (-885) (-885) (-885)) (-1 (-885) (-885) (-885)) (-577))) (-15 -4000 ((-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|))) $)) (-15 -3824 ($ |#1| |#2|)) (-15 -1980 ($ (-665 (-2 (|:| |gen| |#1|) (|:| -2355 |#2|))))) (-15 -1520 (|#2| $ (-577))) (-15 -1770 (|#1| $ (-577))) (-15 -2100 ($ $)) (-15 -2609 ($ $)) (-15 -3005 ((-792) $)) (-15 -1778 ($)) (-15 -1982 ($ $ |#1|)) (-15 -2184 ($ |#1| $)) (-15 -3221 ($ |#1| |#2| $)) (-15 -3221 ($ $ $)) (-15 -3343 ((-112) $ $)) (-15 -1923 ($ (-1 |#2| |#2|) $)) (-15 -2399 ($ (-1 |#1| |#1|) $)))) +((-1425 (((-577) $) 31 T ELT)) (-2317 (($ |#2| $ (-577)) 27 T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) 12 T ELT)) (-3972 (((-112) (-577) $) 18 T ELT)) (-1702 (($ $ |#2|) 24 T ELT) (($ |#2| $) 25 T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT))) +(((-671 |#1| |#2|) (-10 -8 (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#2|)) (-15 -1425 ((-577) |#1|)) (-15 -2233 ((-665 (-577)) |#1|)) (-15 -3972 ((-112) (-577) |#1|))) (-672 |#2|) (-1247)) (T -671)) +NIL +(-10 -8 (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#2|)) (-15 -1425 ((-577) |#1|)) (-15 -2233 ((-665 (-577)) |#1|)) (-15 -3972 ((-112) (-577) |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-3589 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 52 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) 70 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2561 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-3587 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 72 T ELT)) (-1702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-672 |#1|) (-141) (-1247)) (T -672)) +((-3236 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-1702 (*1 *1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-1702 (*1 *1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-1702 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-4417 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-3587 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-3587 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-2317 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-2317 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-1957 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1264 (-577))) (|has| *1 (-6 -4500)) (-4 *1 (-672 *2)) (-4 *2 (-1247))))) +(-13 (-617 (-577) |t#1|) (-152 |t#1|) (-297 (-1264 (-577)) $) (-10 -8 (-15 -3236 ($ (-792) |t#1|)) (-15 -1702 ($ $ |t#1|)) (-15 -1702 ($ |t#1| $)) (-15 -1702 ($ $ $)) (-15 -1702 ($ (-665 $))) (-15 -4417 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3587 ($ $ (-577))) (-15 -3587 ($ $ (-1264 (-577)))) (-15 -2317 ($ |t#1| $ (-577))) (-15 -2317 ($ $ $ (-577))) (IF (|has| $ (-6 -4500)) (-15 -1957 (|t#1| $ (-1264 (-577)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-2205 (((-3 |#2| "failed") |#3| |#2| (-1206) |#2| (-665 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) "failed") |#3| |#2| (-1206)) 44 T ELT))) +(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -2205 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) "failed") |#3| |#2| (-1206))) (-15 -2205 ((-3 |#2| "failed") |#3| |#2| (-1206) |#2| (-665 |#2|)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987)) (-677 |#2|)) (T -673)) +((-2205 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *2)) (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-677 *2)))) (-2205 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1206)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1232) (-987))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-665 *4)))) (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-677 *4))))) +(-10 -7 (-15 -2205 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) "failed") |#3| |#2| (-1206))) (-15 -2205 ((-3 |#2| "failed") |#3| |#2| (-1206) |#2| (-665 |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1449 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3898 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4255 (($ $ (-792)) NIL (|has| |#1| (-375)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2763 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4021 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1762 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3494 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2793 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) NIL T ELT)) (-4213 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1402 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-4340 (((-792) $) NIL T ELT)) (-2502 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3928 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2168 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2915 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3992 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2916 ((|#1| $ |#1|) NIL T ELT)) (-1930 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1597 (((-792) $) NIL T ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4382 ((|#1| $ |#1| |#1|) NIL T ELT)) (-4440 (($ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-674 |#1|) (-677 |#1|) (-239)) (T -674)) +NIL +(-677 |#1|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1449 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3898 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4255 (($ $ (-792)) NIL (|has| |#1| (-375)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2763 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4021 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1762 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3494 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2793 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) NIL T ELT)) (-4213 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1402 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-4340 (((-792) $) NIL T ELT)) (-2502 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3928 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2168 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2915 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3992 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2916 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-1930 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1597 (((-792) $) NIL T ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4382 ((|#1| $ |#1| |#1|) NIL T ELT)) (-4440 (($ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-675 |#1| |#2|) (-13 (-677 |#1|) (-297 |#2| |#2|)) (-239) (-13 (-669 |#1|) (-10 -8 (-15 -3641 ($ $))))) (T -675)) +NIL +(-13 (-677 |#1|) (-297 |#2| |#2|)) +((-1449 (($ $) 29 T ELT)) (-4440 (($ $) 27 T ELT)) (-2389 (($) 13 T ELT))) +(((-676 |#1| |#2|) (-10 -8 (-15 -1449 (|#1| |#1|)) (-15 -4440 (|#1| |#1|)) (-15 -2389 (|#1|))) (-677 |#2|) (-1079)) (T -676)) +NIL +(-10 -8 (-15 -1449 (|#1| |#1|)) (-15 -4440 (|#1| |#1|)) (-15 -2389 (|#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1449 (($ $) 87 (|has| |#1| (-375)) ELT)) (-3898 (($ $ $) 89 (|has| |#1| (-375)) ELT)) (-4255 (($ $ (-792)) 88 (|has| |#1| (-375)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-2763 (($ $ $) 50 (|has| |#1| (-375)) ELT)) (-4021 (($ $ $) 51 (|has| |#1| (-375)) ELT)) (-1762 (($ $ $) 53 (|has| |#1| (-375)) ELT)) (-3494 (($ $ $) 48 (|has| |#1| (-375)) ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 47 (|has| |#1| (-375)) ELT)) (-2761 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)) ELT)) (-2793 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 52 (|has| |#1| (-375)) ELT)) (-4335 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3783 (((-577) $) 79 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 76 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 75 T ELT)) (-4048 (($ $) 69 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2796 (($ $) 60 (|has| |#1| (-465)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-3872 (($ |#1| (-792)) 67 T ELT)) (-4213 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1402 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 (|has| |#1| (-569)) ELT)) (-4340 (((-792) $) 71 T ELT)) (-2502 (($ $ $) 57 (|has| |#1| (-375)) ELT)) (-3928 (($ $ $) 58 (|has| |#1| (-375)) ELT)) (-2168 (($ $ $) 46 (|has| |#1| (-375)) ELT)) (-3070 (($ $ $) 55 (|has| |#1| (-375)) ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 54 (|has| |#1| (-375)) ELT)) (-2915 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)) ELT)) (-3992 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 59 (|has| |#1| (-375)) ELT)) (-4025 ((|#1| $) 70 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)) ELT)) (-2916 ((|#1| $ |#1|) 92 T ELT)) (-1930 (($ $ $) 86 (|has| |#1| (-375)) ELT)) (-1597 (((-792) $) 72 T ELT)) (-2407 ((|#1| $) 61 (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 78 (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 73 T ELT)) (-4343 (((-665 |#1|) $) 66 T ELT)) (-4171 ((|#1| $ (-792)) 68 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4382 ((|#1| $ |#1| |#1|) 65 T ELT)) (-4440 (($ $) 90 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($) 91 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) +(((-677 |#1|) (-141) (-1079)) (T -677)) +((-2389 (*1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) (-4440 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) (-3898 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-4255 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-677 *3)) (-4 *3 (-1079)) (-4 *3 (-375)))) (-1449 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-1930 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(-13 (-875 |t#1|) (-297 |t#1| |t#1|) (-10 -8 (-15 -2389 ($)) (-15 -4440 ($ $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -3898 ($ $ $)) (-15 -4255 ($ $ (-792))) (-15 -1449 ($ $)) (-15 -1930 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-297 |#1| |#1|) . T) ((-424 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-875 |#1|) . T)) +((-3512 (((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))) 85 (|has| |#1| (-27)) ELT)) (-3759 (((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))) 84 (|has| |#1| (-27)) ELT) (((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 19 T ELT))) +(((-678 |#1| |#2|) (-10 -7 (-15 -3759 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3759 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)))) (-15 -3512 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))))) |%noBranch|)) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -678)) +((-3512 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5))))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5))))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-674 (-420 *6)))) (-5 *1 (-678 *5 *6)) (-5 *3 (-674 (-420 *6)))))) +(-10 -7 (-15 -3759 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3759 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)))) (-15 -3512 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))))) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1449 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3898 (($ $ $) 28 (|has| |#1| (-375)) ELT)) (-4255 (($ $ (-792)) 31 (|has| |#1| (-375)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2763 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4021 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1762 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3494 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2793 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) NIL T ELT)) (-4213 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1402 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-4340 (((-792) $) NIL T ELT)) (-2502 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3928 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2168 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2915 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3992 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2916 ((|#1| $ |#1|) 24 T ELT)) (-1930 (($ $ $) 33 (|has| |#1| (-375)) ELT)) (-1597 (((-792) $) NIL T ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4382 ((|#1| $ |#1| |#1|) 23 T ELT)) (-4440 (($ $) NIL T ELT)) (-2839 (($) 21 T CONST)) (-2853 (($) 8 T CONST)) (-2389 (($) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-679 |#1| |#2|) (-677 |#1|) (-1079) (-1 |#1| |#1|)) (T -679)) +NIL +(-677 |#1|) +((-3898 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-4255 ((|#2| |#2| (-792) (-1 |#1| |#1|)) 45 T ELT)) (-1930 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-680 |#1| |#2|) (-10 -7 (-15 -3898 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4255 (|#2| |#2| (-792) (-1 |#1| |#1|))) (-15 -1930 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-375) (-677 |#1|)) (T -680)) +((-1930 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) (-4 *2 (-677 *4)))) (-4255 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-680 *5 *2)) (-4 *2 (-677 *5)))) (-3898 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) (-4 *2 (-677 *4))))) +(-10 -7 (-15 -3898 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4255 (|#2| |#2| (-792) (-1 |#1| |#1|))) (-15 -1930 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3660 (($ $ $) 9 T ELT))) +(((-681 |#1|) (-10 -8 (-15 -3660 (|#1| |#1| |#1|))) (-682)) (T -681)) +NIL +(-10 -8 (-15 -3660 (|#1| |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3611 (($ $) 11 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3660 (($ $ $) 9 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3647 (($ $ $) 10 T ELT))) +(((-682) (-141)) (T -682)) +((-3611 (*1 *1 *1) (-4 *1 (-682))) (-3647 (*1 *1 *1 *1) (-4 *1 (-682))) (-3660 (*1 *1 *1 *1) (-4 *1 (-682)))) +(-13 (-102) (-10 -8 (-15 -3611 ($ $)) (-15 -3647 ($ $ $)) (-15 -3660 ($ $ $)))) +(((-102) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 15 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2417 ((|#1| $) 23 T ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-3235 (((-1188) $) 48 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2429 ((|#3| $) 24 T ELT)) (-3709 (((-885) $) 43 T ELT)) (-2643 (((-112) $ $) 22 T ELT)) (-2839 (($) 10 T CONST)) (-3078 (((-112) $ $) NIL (|has| |#1| (-812)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-812)) ELT)) (-3018 (((-112) $ $) 20 T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-812)) ELT)) (-3042 (((-112) $ $) 26 (|has| |#1| (-812)) ELT)) (-3139 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3128 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 29 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-683 |#1| |#2| |#3|) (-13 (-738 |#2|) (-10 -8 (IF (|has| |#1| (-812)) (-6 (-812)) |%noBranch|) (-15 -3139 ($ $ |#3|)) (-15 -3139 ($ |#1| |#3|)) (-15 -2417 (|#1| $)) (-15 -2429 (|#3| $)))) (-738 |#2|) (-174) (|SubsetCategory| (-747) |#2|)) (T -683)) +((-3139 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4)) (-4 *2 (|SubsetCategory| (-747) *4)))) (-3139 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-683 *2 *4 *3)) (-4 *2 (-738 *4)) (-4 *3 (|SubsetCategory| (-747) *4)))) (-2417 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-738 *3)) (-5 *1 (-683 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-747) *3)))) (-2429 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4))))) +(-13 (-738 |#2|) (-10 -8 (IF (|has| |#1| (-812)) (-6 (-812)) |%noBranch|) (-15 -3139 ($ $ |#3|)) (-15 -3139 ($ |#1| |#3|)) (-15 -2417 (|#1| $)) (-15 -2429 (|#3| $)))) +((-2018 (((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|)) 33 T ELT))) +(((-684 |#1|) (-10 -7 (-15 -2018 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|)))) (-937)) (T -684)) +((-2018 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *4))) (-5 *3 (-1202 *4)) (-4 *4 (-937)) (-5 *1 (-684 *4))))) +(-10 -7 (-15 -2018 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4294 (((-665 |#1|) $) 84 T ELT)) (-4249 (($ $ (-792)) 94 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1471 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 50 T ELT)) (-4335 (((-3 (-693 |#1|) "failed") $) NIL T ELT)) (-3783 (((-693 |#1|) $) NIL T ELT)) (-4048 (($ $) 93 T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3305 (($ (-693 |#1|) |#2|) 70 T ELT)) (-2714 (($ $) 89 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2511 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 49 T ELT)) (-3649 (((-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4014 (((-693 |#1|) $) NIL T ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3373 (($ $ |#1| $) 32 T ELT) (($ $ (-665 |#1|) (-665 $)) 34 T ELT)) (-1597 (((-792) $) 91 T ELT)) (-3722 (($ $ $) 20 T ELT) (($ (-693 |#1|) (-693 |#1|)) 79 T ELT) (($ (-693 |#1|) $) 77 T ELT) (($ $ (-693 |#1|)) 78 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1312 |#1| |#2|) $) 60 T ELT) (((-1321 |#1| |#2|) $) 43 T ELT) (($ (-693 |#1|)) 27 T ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-693 |#1|)) NIL T ELT)) (-4473 ((|#2| (-1321 |#1| |#2|) $) 45 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 23 T CONST)) (-2535 (((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3112 (((-3 $ "failed") (-1312 |#1| |#2|)) 62 T ELT)) (-2993 (($ (-693 |#1|)) 14 T ELT)) (-3018 (((-112) $ $) 46 T ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-693 |#1|)) NIL T ELT))) +(((-685 |#1| |#2|) (-13 (-386 |#1| |#2|) (-394 |#2| (-693 |#1|)) (-10 -8 (-15 -3112 ((-3 $ "failed") (-1312 |#1| |#2|))) (-15 -3722 ($ (-693 |#1|) (-693 |#1|))) (-15 -3722 ($ (-693 |#1|) $)) (-15 -3722 ($ $ (-693 |#1|))))) (-870) (-174)) (T -685)) +((-3112 (*1 *1 *2) (|partial| -12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *1 (-685 *3 *4)))) (-3722 (*1 *1 *2 *2) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174)))) (-3722 (*1 *1 *2 *1) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174)))) (-3722 (*1 *1 *1 *2) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174))))) +(-13 (-386 |#1| |#2|) (-394 |#2| (-693 |#1|)) (-10 -8 (-15 -3112 ((-3 $ "failed") (-1312 |#1| |#2|))) (-15 -3722 ($ (-693 |#1|) (-693 |#1|))) (-15 -3722 ($ (-693 |#1|) $)) (-15 -3722 ($ $ (-693 |#1|))))) +((-3279 (((-112) $) NIL T ELT) (((-112) (-1 (-112) |#2| |#2|) $) 59 T ELT)) (-2629 (($ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $) 12 T ELT)) (-3730 (($ (-1 (-112) |#2|) $) 29 T ELT)) (-2609 (($ $) 65 T ELT)) (-2697 (($ $) 74 T ELT)) (-1894 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 43 T ELT)) (-2060 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3948 (((-577) |#2| $ (-577)) 71 T ELT) (((-577) |#2| $) NIL T ELT) (((-577) (-1 (-112) |#2|) $) 54 T ELT)) (-3236 (($ (-792) |#2|) 63 T ELT)) (-3836 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 31 T ELT)) (-3771 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 24 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-4415 (($ |#2|) 15 T ELT)) (-4375 (($ $ $ (-577)) 42 T ELT) (($ |#2| $ (-577)) 40 T ELT)) (-2550 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53 T ELT)) (-4068 (($ $ (-1264 (-577))) 51 T ELT) (($ $ (-577)) 44 T ELT)) (-2338 (($ $ $ (-577)) 70 T ELT)) (-1977 (($ $) 68 T ELT)) (-3042 (((-112) $ $) 76 T ELT))) +(((-686 |#1| |#2|) (-10 -8 (-15 -4415 (|#1| |#2|)) (-15 -4068 (|#1| |#1| (-577))) (-15 -4068 (|#1| |#1| (-1264 (-577)))) (-15 -1894 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4375 (|#1| |#2| |#1| (-577))) (-15 -4375 (|#1| |#1| |#1| (-577))) (-15 -3836 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1894 (|#1| |#2| |#1|)) (-15 -2697 (|#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3771 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3279 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3948 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3948 ((-577) |#2| |#1|)) (-15 -3948 ((-577) |#2| |#1| (-577))) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3279 ((-112) |#1|)) (-15 -2338 (|#1| |#1| |#1| (-577))) (-15 -2609 (|#1| |#1|)) (-15 -2629 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2550 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3236 (|#1| (-792) |#2|)) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1977 (|#1| |#1|))) (-687 |#2|) (-1247)) (T -686)) +NIL +(-10 -8 (-15 -4415 (|#1| |#2|)) (-15 -4068 (|#1| |#1| (-577))) (-15 -4068 (|#1| |#1| (-1264 (-577)))) (-15 -1894 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4375 (|#1| |#2| |#1| (-577))) (-15 -4375 (|#1| |#1| |#1| (-577))) (-15 -3836 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3730 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1894 (|#1| |#2| |#1|)) (-15 -2697 (|#1| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3771 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3279 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3948 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3948 ((-577) |#2| |#1|)) (-15 -3948 ((-577) |#2| |#1| (-577))) (-15 -3771 (|#1| |#1| |#1|)) (-15 -3279 ((-112) |#1|)) (-15 -2338 (|#1| |#1| |#1| (-577))) (-15 -2609 (|#1| |#1|)) (-15 -2629 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -3042 ((-112) |#1| |#1|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2060 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2550 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3236 (|#1| (-792) |#2|)) (-15 -4417 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1977 (|#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-1893 ((|#1| $) 66 T ELT)) (-2688 (($ $) 68 T ELT)) (-1935 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) $) 144 (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) 138 T ELT)) (-2629 (($ $) 148 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4500)) ELT)) (-1381 (($ $) 143 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) 137 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-1968 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 119 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 131 T ELT)) (-1440 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4499)) ELT)) (-1883 ((|#1| $) 67 T ELT)) (-2305 (($) 7 T CONST)) (-2609 (($ $) 146 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 136 T ELT)) (-4410 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-2697 (($ $) 133 (|has| |#1| (-1130)) ELT)) (-3589 (($ $) 101 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ |#1| $) 132 (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) 127 T ELT)) (-4004 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4499)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4420 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 89 T ELT)) (-4236 (((-112) $) 85 T ELT)) (-3948 (((-577) |#1| $ (-577)) 141 (|has| |#1| (-1130)) ELT) (((-577) |#1| $) 140 (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) 139 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3236 (($ (-792) |#1|) 111 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 97 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 154 (|has| |#1| (-870)) ELT)) (-3836 (($ $ $) 134 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 130 T ELT)) (-3771 (($ $ $) 142 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 135 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 96 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 153 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-4415 (($ |#1|) 124 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-4375 (($ $ $ (-577)) 129 T ELT) (($ |#1| $ (-577)) 128 T ELT)) (-2317 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-2233 (((-665 (-577)) $) 94 T ELT)) (-3972 (((-112) (-577) $) 93 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-2561 (($ $ |#1|) 98 (|has| $ (-6 -4500)) ELT)) (-3661 (((-112) $) 86 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 92 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-4068 (($ $ (-1264 (-577))) 126 T ELT) (($ $ (-577)) 125 T ELT)) (-3587 (($ $ (-1264 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1659 (($ $) 63 T ELT)) (-1697 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) 64 T ELT)) (-2554 (($ $) 65 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2338 (($ $ $ (-577)) 145 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 100 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 109 T ELT)) (-2562 (($ $ $) 62 T ELT) (($ $ |#1|) 61 T ELT)) (-1702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-665 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) 152 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 150 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) 151 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 149 (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-687 |#1|) (-141) (-1247)) (T -687)) +((-4415 (*1 *1 *2) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1247))))) +(-13 (-1179 |t#1|) (-385 |t#1|) (-293 |t#1|) (-10 -8 (-15 -4415 ($ |t#1|)))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-293 |#1|) . T) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1040 |#1|) . T) ((-1130) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1179 |#1|) . T) ((-1247) . T) ((-1285 |#1|) . T)) +((-2205 (((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|))))) (-665 (-665 |#1|)) (-665 (-1297 |#1|))) 22 T ELT) (((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|))))) (-710 |#1|) (-665 (-1297 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-665 (-665 |#1|)) (-1297 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)) 14 T ELT)) (-1641 (((-792) (-710 |#1|) (-1297 |#1|)) 30 T ELT)) (-4167 (((-3 (-1297 |#1|) "failed") (-710 |#1|) (-1297 |#1|)) 24 T ELT)) (-2219 (((-112) (-710 |#1|) (-1297 |#1|)) 27 T ELT))) +(((-688 |#1|) (-10 -7 (-15 -2205 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|))) (-15 -2205 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-665 (-665 |#1|)) (-1297 |#1|))) (-15 -2205 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|))))) (-710 |#1|) (-665 (-1297 |#1|)))) (-15 -2205 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|))))) (-665 (-665 |#1|)) (-665 (-1297 |#1|)))) (-15 -4167 ((-3 (-1297 |#1|) "failed") (-710 |#1|) (-1297 |#1|))) (-15 -2219 ((-112) (-710 |#1|) (-1297 |#1|))) (-15 -1641 ((-792) (-710 |#1|) (-1297 |#1|)))) (-375)) (T -688)) +((-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-5 *2 (-792)) (-5 *1 (-688 *5)))) (-2219 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-5 *2 (-112)) (-5 *1 (-688 *5)))) (-4167 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-710 *4)) (-4 *4 (-375)) (-5 *1 (-688 *4)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) (-5 *2 (-665 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2104 (-665 (-1297 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) (-5 *2 (-665 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2104 (-665 (-1297 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2104 (-665 (-1297 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2104 (-665 (-1297 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1297 *5))))) +(-10 -7 (-15 -2205 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|))) (-15 -2205 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-665 (-665 |#1|)) (-1297 |#1|))) (-15 -2205 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|))))) (-710 |#1|) (-665 (-1297 |#1|)))) (-15 -2205 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|))))) (-665 (-665 |#1|)) (-665 (-1297 |#1|)))) (-15 -4167 ((-3 (-1297 |#1|) "failed") (-710 |#1|) (-1297 |#1|))) (-15 -2219 ((-112) (-710 |#1|) (-1297 |#1|))) (-15 -1641 ((-792) (-710 |#1|) (-1297 |#1|)))) +((-2205 (((-665 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|)))) |#4| (-665 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|))) |#4| |#3|) 60 T ELT)) (-1641 (((-792) |#4| |#3|) 18 T ELT)) (-4167 (((-3 |#3| "failed") |#4| |#3|) 21 T ELT)) (-2219 (((-112) |#4| |#3|) 14 T ELT))) +(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2205 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|))) |#4| |#3|)) (-15 -2205 ((-665 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|)))) |#4| (-665 |#3|))) (-15 -4167 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2219 ((-112) |#4| |#3|)) (-15 -1641 ((-792) |#4| |#3|))) (-375) (-13 (-385 |#1|) (-10 -7 (-6 -4500))) (-13 (-385 |#1|) (-10 -7 (-6 -4500))) (-708 |#1| |#2| |#3|)) (T -689)) +((-1641 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-792)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-2219 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-112)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-4167 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-375)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4500)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))) (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2)))) (-2205 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-665 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2104 (-665 *7))))) (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-665 *7)) (-4 *3 (-708 *5 *6 *7)))) (-2205 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) +(-10 -7 (-15 -2205 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|))) |#4| |#3|)) (-15 -2205 ((-665 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|)))) |#4| (-665 |#3|))) (-15 -4167 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2219 ((-112) |#4| |#3|)) (-15 -1641 ((-792) |#4| |#3|))) +((-1630 (((-2 (|:| |particular| (-3 (-1297 (-420 |#4|)) "failed")) (|:| -2104 (-665 (-1297 (-420 |#4|))))) (-665 |#4|) (-665 |#3|)) 51 T ELT))) +(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1630 ((-2 (|:| |particular| (-3 (-1297 (-420 |#4|)) "failed")) (|:| -2104 (-665 (-1297 (-420 |#4|))))) (-665 |#4|) (-665 |#3|)))) (-569) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -690)) +((-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *7)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 (-420 *8)) "failed")) (|:| -2104 (-665 (-1297 (-420 *8)))))) (-5 *1 (-690 *5 *6 *7 *8))))) +(-10 -7 (-15 -1630 ((-2 (|:| |particular| (-3 (-1297 (-420 |#4|)) "failed")) (|:| -2104 (-665 (-1297 (-420 |#4|))))) (-665 |#4|) (-665 |#3|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3273 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-2318 ((|#2| $) NIL T ELT)) (-4140 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2410 (((-1297 (-710 |#2|))) NIL T ELT) (((-1297 (-710 |#2|)) (-1297 $)) NIL T ELT)) (-2671 (((-112) $) NIL T ELT)) (-2637 (((-1297 $)) 42 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4316 (($ |#2|) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3280 (($ $) NIL (|has| |#2| (-318)) ELT)) (-4448 (((-246 |#1| |#2|) $ (-577)) NIL T ELT)) (-1437 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (|has| |#2| (-569)) ELT)) (-2044 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-3820 (((-710 |#2|)) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3009 ((|#2| $) NIL T ELT)) (-3214 (((-710 |#2|) $) NIL T ELT) (((-710 |#2|) $ (-1297 $)) NIL T ELT)) (-3252 (((-3 $ "failed") $) NIL (|has| |#2| (-569)) ELT)) (-3769 (((-1202 (-980 |#2|))) NIL (|has| |#2| (-375)) ELT)) (-3712 (($ $ (-949)) NIL T ELT)) (-1461 ((|#2| $) NIL T ELT)) (-3747 (((-1202 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-2501 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-4242 (((-1202 |#2|) $) NIL T ELT)) (-2020 (((-112)) NIL T ELT)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-2385 (($ (-1297 |#2|)) NIL T ELT) (($ (-1297 |#2|) (-1297 $)) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1641 (((-792) $) NIL (|has| |#2| (-569)) ELT) (((-949)) 43 T ELT)) (-4353 ((|#2| $ (-577) (-577)) NIL T ELT)) (-1547 (((-112)) NIL T ELT)) (-2510 (($ $ (-949)) NIL T ELT)) (-2118 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3480 (((-792) $) NIL (|has| |#2| (-569)) ELT)) (-4202 (((-665 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-569)) ELT)) (-2408 (((-792) $) NIL T ELT)) (-3916 (((-112)) NIL T ELT)) (-2420 (((-792) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2607 ((|#2| $) NIL (|has| |#2| (-6 (-4501 "*"))) ELT)) (-4051 (((-577) $) NIL T ELT)) (-3232 (((-577) $) NIL T ELT)) (-2152 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1766 (((-577) $) NIL T ELT)) (-3371 (((-577) $) NIL T ELT)) (-2374 (($ (-665 (-665 |#2|))) NIL T ELT)) (-4409 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2905 (((-665 (-665 |#2|)) $) NIL T ELT)) (-1919 (((-112)) NIL T ELT)) (-2732 (((-112)) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-4168 (((-3 (-2 (|:| |particular| $) (|:| -2104 (-665 $))) "failed")) NIL (|has| |#2| (-569)) ELT)) (-1740 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-3764 (((-710 |#2|)) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3565 ((|#2| $) NIL T ELT)) (-2962 (((-710 |#2|) $) NIL T ELT) (((-710 |#2|) $ (-1297 $)) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3535 (((-3 $ "failed") $) NIL (|has| |#2| (-569)) ELT)) (-2276 (((-1202 (-980 |#2|))) NIL (|has| |#2| (-375)) ELT)) (-3744 (($ $ (-949)) NIL T ELT)) (-2799 ((|#2| $) NIL T ELT)) (-2114 (((-1202 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-3749 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-2201 (((-1202 |#2|) $) NIL T ELT)) (-2966 (((-112)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2187 (((-112)) NIL T ELT)) (-1465 (((-112)) NIL T ELT)) (-1693 (((-112)) NIL T ELT)) (-1767 (((-3 $ "failed") $) NIL (|has| |#2| (-375)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2949 (((-112)) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) ((|#2| $ (-577) (-577)) 28 T ELT) ((|#2| $ (-577)) NIL T ELT)) (-3641 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-1566 ((|#2| $) NIL T ELT)) (-3650 (($ (-665 |#2|)) NIL T ELT)) (-4101 (((-112) $) NIL T ELT)) (-4293 (((-246 |#1| |#2|) $) NIL T ELT)) (-3422 ((|#2| $) NIL (|has| |#2| (-6 (-4501 "*"))) ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3762 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $ (-1297 $)) 31 T ELT)) (-4463 (($ (-1297 |#2|)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT)) (-2133 (((-665 (-980 |#2|))) NIL T ELT) (((-665 (-980 |#2|)) (-1297 $)) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3733 (((-112)) NIL T ELT)) (-1455 (((-246 |#1| |#2|) $ (-577)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (((-710 |#2|) $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) 41 T ELT)) (-2274 (((-665 (-1297 |#2|))) NIL (|has| |#2| (-569)) ELT)) (-2032 (($ $ $ $) NIL T ELT)) (-3678 (((-112)) NIL T ELT)) (-4382 (($ (-710 |#2|) $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) NIL T ELT)) (-1793 (($ $ $) NIL T ELT)) (-1897 (((-112)) NIL T ELT)) (-3211 (((-112)) NIL T ELT)) (-4146 (((-112)) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#2| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-691 |#1| |#2|) (-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-430 |#2|)) (-949) (-174)) (T -691)) +NIL +(-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-430 |#2|)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3715 (((-665 (-1165)) $) 10 T ELT)) (-3709 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-692) (-13 (-1113) (-10 -8 (-15 -3715 ((-665 (-1165)) $))))) (T -692)) +((-3715 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-692))))) +(-13 (-1113) (-10 -8 (-15 -3715 ((-665 (-1165)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4294 (((-665 |#1|) $) NIL T ELT)) (-3352 (($ $) 62 T ELT)) (-1887 (((-112) $) NIL T ELT)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4270 (((-3 $ "failed") (-840 |#1|)) 27 T ELT)) (-4464 (((-112) (-840 |#1|)) 17 T ELT)) (-3140 (($ (-840 |#1|)) 28 T ELT)) (-1966 (((-112) $ $) 36 T ELT)) (-4166 (((-949) $) 43 T ELT)) (-3337 (($ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3759 (((-665 $) (-840 |#1|)) 19 T ELT)) (-3709 (((-885) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-840 |#1|) $) 47 T ELT) (((-698 |#1|) $) 52 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2849 (((-59 (-665 $)) (-665 |#1|) (-949)) 67 T ELT)) (-3135 (((-665 $) (-665 |#1|) (-949)) 70 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 63 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 46 T ELT))) +(((-693 |#1|) (-13 (-870) (-1068 |#1|) (-10 -8 (-15 -1887 ((-112) $)) (-15 -3337 ($ $)) (-15 -3352 ($ $)) (-15 -4166 ((-949) $)) (-15 -1966 ((-112) $ $)) (-15 -3709 ((-840 |#1|) $)) (-15 -3709 ((-698 |#1|) $)) (-15 -3759 ((-665 $) (-840 |#1|))) (-15 -4464 ((-112) (-840 |#1|))) (-15 -3140 ($ (-840 |#1|))) (-15 -4270 ((-3 $ "failed") (-840 |#1|))) (-15 -4294 ((-665 |#1|) $)) (-15 -2849 ((-59 (-665 $)) (-665 |#1|) (-949))) (-15 -3135 ((-665 $) (-665 |#1|) (-949))))) (-870)) (T -693)) +((-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) (-3352 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-1966 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-698 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-693 *4))) (-5 *1 (-693 *4)))) (-4464 (*1 *2 *3) (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-112)) (-5 *1 (-693 *4)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3)))) (-4270 (*1 *1 *2) (|partial| -12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) (-5 *2 (-59 (-665 (-693 *5)))) (-5 *1 (-693 *5)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) (-5 *2 (-665 (-693 *5))) (-5 *1 (-693 *5))))) +(-13 (-870) (-1068 |#1|) (-10 -8 (-15 -1887 ((-112) $)) (-15 -3337 ($ $)) (-15 -3352 ($ $)) (-15 -4166 ((-949) $)) (-15 -1966 ((-112) $ $)) (-15 -3709 ((-840 |#1|) $)) (-15 -3709 ((-698 |#1|) $)) (-15 -3759 ((-665 $) (-840 |#1|))) (-15 -4464 ((-112) (-840 |#1|))) (-15 -3140 ($ (-840 |#1|))) (-15 -4270 ((-3 $ "failed") (-840 |#1|))) (-15 -4294 ((-665 |#1|) $)) (-15 -2849 ((-59 (-665 $)) (-665 |#1|) (-949))) (-15 -3135 ((-665 $) (-665 |#1|) (-949))))) +((-3254 ((|#2| $) 100 T ELT)) (-2688 (($ $) 121 T ELT)) (-1777 (((-112) $ (-792)) 35 T ELT)) (-4410 (($ $) 109 T ELT) (($ $ (-792)) 112 T ELT)) (-4236 (((-112) $) 122 T ELT)) (-2680 (((-665 $) $) 96 T ELT)) (-3977 (((-112) $ $) 92 T ELT)) (-3862 (((-112) $ (-792)) 33 T ELT)) (-2975 (((-577) $) 66 T ELT)) (-1425 (((-577) $) 65 T ELT)) (-3438 (((-112) $ (-792)) 31 T ELT)) (-3188 (((-112) $) 98 T ELT)) (-4026 ((|#2| $) 113 T ELT) (($ $ (-792)) 117 T ELT)) (-2317 (($ $ $ (-577)) 83 T ELT) (($ |#2| $ (-577)) 82 T ELT)) (-2233 (((-665 (-577)) $) 64 T ELT)) (-3972 (((-112) (-577) $) 59 T ELT)) (-4397 ((|#2| $) NIL T ELT) (($ $ (-792)) 108 T ELT)) (-2568 (($ $ (-577)) 125 T ELT)) (-3661 (((-112) $) 124 T ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 42 T ELT)) (-4059 (((-665 |#2|) $) 46 T ELT)) (-2916 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1264 (-577))) 79 T ELT) ((|#2| $ (-577)) 57 T ELT) ((|#2| $ (-577) |#2|) 58 T ELT)) (-2409 (((-577) $ $) 91 T ELT)) (-3587 (($ $ (-1264 (-577))) 78 T ELT) (($ $ (-577)) 72 T ELT)) (-2625 (((-112) $) 87 T ELT)) (-1659 (($ $) 105 T ELT)) (-2737 (((-792) $) 104 T ELT)) (-2554 (($ $) 103 T ELT)) (-3722 (($ (-665 |#2|)) 53 T ELT)) (-4165 (($ $) 126 T ELT)) (-3217 (((-665 $) $) 90 T ELT)) (-2256 (((-112) $ $) 89 T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 41 T ELT)) (-3018 (((-112) $ $) 20 T ELT)) (-3600 (((-792) $) 39 T ELT))) +(((-694 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2568 (|#1| |#1| (-577))) (-15 -4236 ((-112) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -2916 (|#2| |#1| (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577))) (-15 -4059 ((-665 |#2|) |#1|)) (-15 -3972 ((-112) (-577) |#1|)) (-15 -2233 ((-665 (-577)) |#1|)) (-15 -1425 ((-577) |#1|)) (-15 -2975 ((-577) |#1|)) (-15 -3722 (|#1| (-665 |#2|))) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -3587 (|#1| |#1| (-577))) (-15 -3587 (|#1| |#1| (-1264 (-577)))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -1659 (|#1| |#1|)) (-15 -2737 ((-792) |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -4026 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "last")) (-15 -4026 (|#2| |#1|)) (-15 -4410 (|#1| |#1| (-792))) (-15 -2916 (|#1| |#1| "rest")) (-15 -4410 (|#1| |#1|)) (-15 -4397 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "first")) (-15 -4397 (|#2| |#1|)) (-15 -3977 ((-112) |#1| |#1|)) (-15 -2256 ((-112) |#1| |#1|)) (-15 -2409 ((-577) |#1| |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2916 (|#2| |#1| "value")) (-15 -3254 (|#2| |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -2680 ((-665 |#1|) |#1|)) (-15 -3217 ((-665 |#1|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792)))) (-695 |#2|) (-1247)) (T -694)) +NIL +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2568 (|#1| |#1| (-577))) (-15 -4236 ((-112) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -2916 (|#2| |#1| (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577))) (-15 -4059 ((-665 |#2|) |#1|)) (-15 -3972 ((-112) (-577) |#1|)) (-15 -2233 ((-665 (-577)) |#1|)) (-15 -1425 ((-577) |#1|)) (-15 -2975 ((-577) |#1|)) (-15 -3722 (|#1| (-665 |#2|))) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -3587 (|#1| |#1| (-577))) (-15 -3587 (|#1| |#1| (-1264 (-577)))) (-15 -2317 (|#1| |#2| |#1| (-577))) (-15 -2317 (|#1| |#1| |#1| (-577))) (-15 -1659 (|#1| |#1|)) (-15 -2737 ((-792) |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -4026 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "last")) (-15 -4026 (|#2| |#1|)) (-15 -4410 (|#1| |#1| (-792))) (-15 -2916 (|#1| |#1| "rest")) (-15 -4410 (|#1| |#1|)) (-15 -4397 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "first")) (-15 -4397 (|#2| |#1|)) (-15 -3977 ((-112) |#1| |#1|)) (-15 -2256 ((-112) |#1| |#1|)) (-15 -2409 ((-577) |#1| |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2916 (|#2| |#1| "value")) (-15 -3254 (|#2| |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -2680 ((-665 |#1|) |#1|)) (-15 -3217 ((-665 |#1|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792)))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-1893 ((|#1| $) 66 T ELT)) (-2688 (($ $) 68 T ELT)) (-1935 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-1968 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 119 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 104 T ELT)) (-1883 ((|#1| $) 67 T ELT)) (-2305 (($) 7 T CONST)) (-2733 (($ $) 126 T ELT)) (-4410 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-3589 (($ $) 101 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#1| $) 102 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 105 T ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4420 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 89 T ELT)) (-4236 (((-112) $) 85 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1527 (((-792) $) 125 T ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3236 (($ (-792) |#1|) 111 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 97 (|has| (-577) (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 96 (|has| (-577) (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-1939 (($ $) 128 T ELT)) (-3202 (((-112) $) 129 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-2317 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-2233 (((-665 (-577)) $) 94 T ELT)) (-3972 (((-112) (-577) $) 93 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4016 ((|#1| $) 127 T ELT)) (-4397 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-2561 (($ $ |#1|) 98 (|has| $ (-6 -4500)) ELT)) (-2568 (($ $ (-577)) 124 T ELT)) (-3661 (((-112) $) 86 T ELT)) (-1729 (((-112) $) 130 T ELT)) (-2711 (((-112) $) 131 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 92 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-3587 (($ $ (-1264 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1659 (($ $) 63 T ELT)) (-1697 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) 64 T ELT)) (-2554 (($ $) 65 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 100 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 109 T ELT)) (-2562 (($ $ $) 62 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4500)) ELT)) (-1702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-665 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-4165 (($ $) 123 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-695 |#1|) (-141) (-1247)) (T -695)) +((-4004 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) (-1440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-1939 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) (-2733 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-2568 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) (-4165 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) +(-13 (-1179 |t#1|) (-10 -8 (-15 -4004 ($ (-1 (-112) |t#1|) $)) (-15 -1440 ($ (-1 (-112) |t#1|) $)) (-15 -2711 ((-112) $)) (-15 -1729 ((-112) $)) (-15 -3202 ((-112) $)) (-15 -1939 ($ $)) (-15 -4016 (|t#1| $)) (-15 -2733 ($ $)) (-15 -1527 ((-792) $)) (-15 -2568 ($ $ (-577))) (-15 -4165 ($ $)))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1179 |#1|) . T) ((-1247) . T) ((-1285 |#1|) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1490 (($ (-792) (-792) (-792)) 53 (|has| |#1| (-1079)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2192 ((|#1| $ (-792) (-792) (-792) |#1|) 47 T ELT)) (-2305 (($) NIL T CONST)) (-3221 (($ $ $) 57 (|has| |#1| (-1079)) ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2446 (((-1297 (-792)) $) 12 T ELT)) (-3848 (($ (-1206) $ $) 34 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3899 (($ (-792)) 55 (|has| |#1| (-1079)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-792) (-792) (-792)) 44 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3722 (($ (-665 (-665 (-665 |#1|)))) 67 T ELT)) (-3709 (($ (-986 (-986 (-986 |#1|)))) 23 T ELT) (((-986 (-986 (-986 |#1|))) $) 19 T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-696 |#1|) (-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1079)) (PROGN (-15 -1490 ($ (-792) (-792) (-792))) (-15 -3899 ($ (-792))) (-15 -3221 ($ $ $))) |%noBranch|) (-15 -3722 ($ (-665 (-665 (-665 |#1|))))) (-15 -2916 (|#1| $ (-792) (-792) (-792))) (-15 -2192 (|#1| $ (-792) (-792) (-792) |#1|)) (-15 -3709 ($ (-986 (-986 (-986 |#1|))))) (-15 -3709 ((-986 (-986 (-986 |#1|))) $)) (-15 -3848 ($ (-1206) $ $)) (-15 -2446 ((-1297 (-792)) $)))) (-1130)) (T -696)) +((-1490 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) (-4 *3 (-1130)))) (-3899 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) (-4 *3 (-1130)))) (-3221 (*1 *1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-1079)) (-4 *2 (-1130)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-665 *3)))) (-4 *3 (-1130)) (-5 *1 (-696 *3)))) (-2916 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130)))) (-2192 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-4 *3 (-1130)) (-5 *1 (-696 *3)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-5 *1 (-696 *3)) (-4 *3 (-1130)))) (-3848 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-696 *3)) (-4 *3 (-1130)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-1297 (-792))) (-5 *1 (-696 *3)) (-4 *3 (-1130))))) +(-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1079)) (PROGN (-15 -1490 ($ (-792) (-792) (-792))) (-15 -3899 ($ (-792))) (-15 -3221 ($ $ $))) |%noBranch|) (-15 -3722 ($ (-665 (-665 (-665 |#1|))))) (-15 -2916 (|#1| $ (-792) (-792) (-792))) (-15 -2192 (|#1| $ (-792) (-792) (-792) |#1|)) (-15 -3709 ($ (-986 (-986 (-986 |#1|))))) (-15 -3709 ((-986 (-986 (-986 |#1|))) $)) (-15 -3848 ($ (-1206) $ $)) (-15 -2446 ((-1297 (-792)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2392 (((-496) $) 10 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-1165) $) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-697) (-13 (-1113) (-10 -8 (-15 -2392 ((-496) $)) (-15 -2773 ((-1165) $))))) (T -697)) +((-2392 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-697)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-697))))) +(-13 (-1113) (-10 -8 (-15 -2392 ((-496) $)) (-15 -2773 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4294 (((-665 |#1|) $) 15 T ELT)) (-3352 (($ $) 19 T ELT)) (-1887 (((-112) $) 20 T ELT)) (-4335 (((-3 |#1| "failed") $) 23 T ELT)) (-3783 ((|#1| $) 21 T ELT)) (-4410 (($ $) 37 T ELT)) (-2714 (($ $) 25 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-1966 (((-112) $ $) 47 T ELT)) (-4166 (((-949) $) 40 T ELT)) (-3337 (($ $) 18 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 ((|#1| $) 36 T ELT)) (-3709 (((-885) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-840 |#1|) $) 28 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 13 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-698 |#1|) (-13 (-870) (-1068 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3709 ((-840 |#1|) $)) (-15 -4397 (|#1| $)) (-15 -3337 ($ $)) (-15 -4166 ((-949) $)) (-15 -1966 ((-112) $ $)) (-15 -2714 ($ $)) (-15 -4410 ($ $)) (-15 -1887 ((-112) $)) (-15 -3352 ($ $)) (-15 -4294 ((-665 |#1|) $)))) (-870)) (T -698)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-4397 (*1 *2 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-1966 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-2714 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-3352 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870))))) +(-13 (-870) (-1068 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3709 ((-840 |#1|) $)) (-15 -4397 (|#1| $)) (-15 -3337 ($ $)) (-15 -4166 ((-949) $)) (-15 -1966 ((-112) $ $)) (-15 -2714 ($ $)) (-15 -4410 ($ $)) (-15 -1887 ((-112) $)) (-15 -3352 ($ $)) (-15 -4294 ((-665 |#1|) $)))) +((-4303 ((|#1| (-1 |#1| (-792) |#1|) (-792) |#1|) 11 T ELT)) (-2294 ((|#1| (-1 |#1| |#1|) (-792) |#1|) 9 T ELT))) +(((-699 |#1|) (-10 -7 (-15 -2294 (|#1| (-1 |#1| |#1|) (-792) |#1|)) (-15 -4303 (|#1| (-1 |#1| (-792) |#1|) (-792) |#1|))) (-1130)) (T -699)) +((-4303 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-792) *2)) (-5 *4 (-792)) (-4 *2 (-1130)) (-5 *1 (-699 *2)))) (-2294 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-792)) (-4 *2 (-1130)) (-5 *1 (-699 *2))))) +(-10 -7 (-15 -2294 (|#1| (-1 |#1| |#1|) (-792) |#1|)) (-15 -4303 (|#1| (-1 |#1| (-792) |#1|) (-792) |#1|))) +((-2131 ((|#2| |#1| |#2|) 9 T ELT)) (-2117 ((|#1| |#1| |#2|) 8 T ELT))) +(((-700 |#1| |#2|) (-10 -7 (-15 -2117 (|#1| |#1| |#2|)) (-15 -2131 (|#2| |#1| |#2|))) (-1130) (-1130)) (T -700)) +((-2131 (*1 *2 *3 *2) (-12 (-5 *1 (-700 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2117 (*1 *2 *2 *3) (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(-10 -7 (-15 -2117 (|#1| |#1| |#2|)) (-15 -2131 (|#2| |#1| |#2|))) +((-3367 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-701 |#1| |#2| |#3|) (-10 -7 (-15 -3367 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1130) (-1130) (-1130)) (T -701)) +((-3367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-701 *5 *6 *2))))) +(-10 -7 (-15 -3367 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3117 (((-1246) $) 21 T ELT)) (-3059 (((-665 (-1246)) $) 19 T ELT)) (-2850 (($ (-665 (-1246)) (-1246)) 14 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 29 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) (((-1246) $) 22 T ELT) (($ (-1148)) 10 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-702) (-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -3709 ($ (-1148))) (-15 -2850 ($ (-665 (-1246)) (-1246))) (-15 -3059 ((-665 (-1246)) $)) (-15 -3117 ((-1246) $))))) (T -702)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-702)))) (-2850 (*1 *1 *2 *3) (-12 (-5 *2 (-665 (-1246))) (-5 *3 (-1246)) (-5 *1 (-702)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-702)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-702))))) +(-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -3709 ($ (-1148))) (-15 -2850 ($ (-665 (-1246)) (-1246))) (-15 -3059 ((-665 (-1246)) $)) (-15 -3117 ((-1246) $)))) +((-4303 (((-1 |#1| (-792) |#1|) (-1 |#1| (-792) |#1|)) 26 T ELT)) (-3852 (((-1 |#1|) |#1|) 8 T ELT)) (-3410 ((|#1| |#1|) 19 T ELT)) (-2574 (((-665 |#1|) (-1 (-665 |#1|) (-665 |#1|)) (-577)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3709 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-792)) 23 T ELT))) +(((-703 |#1|) (-10 -7 (-15 -3852 ((-1 |#1|) |#1|)) (-15 -3709 ((-1 |#1|) |#1|)) (-15 -2574 (|#1| (-1 |#1| |#1|))) (-15 -2574 ((-665 |#1|) (-1 (-665 |#1|) (-665 |#1|)) (-577))) (-15 -3410 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-792))) (-15 -4303 ((-1 |#1| (-792) |#1|) (-1 |#1| (-792) |#1|)))) (-1130)) (T -703)) +((-4303 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-792) *3)) (-4 *3 (-1130)) (-5 *1 (-703 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *4 (-1130)) (-5 *1 (-703 *4)))) (-3410 (*1 *2 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-1130)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-665 *5) (-665 *5))) (-5 *4 (-577)) (-5 *2 (-665 *5)) (-5 *1 (-703 *5)) (-4 *5 (-1130)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-703 *2)) (-4 *2 (-1130)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130)))) (-3852 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130))))) +(-10 -7 (-15 -3852 ((-1 |#1|) |#1|)) (-15 -3709 ((-1 |#1|) |#1|)) (-15 -2574 (|#1| (-1 |#1| |#1|))) (-15 -2574 ((-665 |#1|) (-1 (-665 |#1|) (-665 |#1|)) (-577))) (-15 -3410 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-792))) (-15 -4303 ((-1 |#1| (-792) |#1|) (-1 |#1| (-792) |#1|)))) +((-3436 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-1996 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4212 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-3031 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-704 |#1| |#2|) (-10 -7 (-15 -3031 ((-1 |#2| |#1|) |#2|)) (-15 -1996 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4212 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3436 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1130) (-1130)) (T -704)) +((-3436 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *4)) (-5 *1 (-704 *4 *5)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *4)) (-5 *1 (-704 *4 *5)) (-4 *4 (-1130)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1 *5)) (-5 *1 (-704 *4 *5)))) (-3031 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-704 *4 *3)) (-4 *4 (-1130)) (-4 *3 (-1130))))) +(-10 -7 (-15 -3031 ((-1 |#2| |#1|) |#2|)) (-15 -1996 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4212 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3436 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2424 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2030 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2580 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-1981 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-4228 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-705 |#1| |#2| |#3|) (-10 -7 (-15 -2030 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2580 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1981 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4228 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2424 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1130) (-1130) (-1130)) (T -705)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-1 *7 *5)) (-5 *1 (-705 *5 *6 *7)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-705 *4 *5 *6)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *4 (-1130)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *5 (-1130)))) (-2580 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *4 *5 *6)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1130)) (-4 *4 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *5 *4 *6))))) +(-10 -7 (-15 -2030 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2580 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1981 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4228 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2424 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2060 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4417 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-706 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4417 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4417 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2060 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1079) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1079) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -706)) +((-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-706 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9)))) (-4417 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) +(-10 -7 (-15 -4417 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4417 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2060 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-4084 (($ (-792) (-792)) 42 T ELT)) (-3813 (($ $ $) 73 T ELT)) (-2444 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-4140 (((-112) $) 36 T ELT)) (-3674 (($ $ (-577) (-577)) 84 T ELT)) (-4459 (($ $ (-577) (-577)) 85 T ELT)) (-2660 (($ $ (-577) (-577) (-577) (-577)) 90 T ELT)) (-2422 (($ $) 71 T ELT)) (-2671 (((-112) $) 15 T ELT)) (-2956 (($ $ (-577) (-577) $) 91 T ELT)) (-1957 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) 89 T ELT)) (-4316 (($ (-792) |#2|) 55 T ELT)) (-2374 (($ (-665 (-665 |#2|))) 51 T ELT) (($ (-792) (-792) (-1 |#2| (-577) (-577))) 53 T ELT)) (-2905 (((-665 (-665 |#2|)) $) 80 T ELT)) (-2010 (($ $ $) 72 T ELT)) (-3574 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-2916 ((|#2| $ (-577) (-577)) NIL T ELT) ((|#2| $ (-577) (-577) |#2|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) 88 T ELT)) (-3650 (($ (-665 |#2|)) 56 T ELT) (($ (-665 $)) 58 T ELT)) (-4101 (((-112) $) 28 T ELT)) (-3709 (($ |#4|) 63 T ELT) (((-885) $) NIL T ELT)) (-4444 (((-112) $) 38 T ELT)) (-3139 (($ $ |#2|) 124 T ELT)) (-3128 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3114 (($ $ $) 93 T ELT)) (** (($ $ (-792)) 111 T ELT) (($ $ (-577)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-577) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3709 ((-885) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3139 (|#1| |#1| |#2|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -2956 (|#1| |#1| (-577) (-577) |#1|)) (-15 -2660 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -4459 (|#1| |#1| (-577) (-577))) (-15 -3674 (|#1| |#1| (-577) (-577))) (-15 -1957 (|#1| |#1| (-665 (-577)) (-665 (-577)) |#1|)) (-15 -2916 (|#1| |#1| (-665 (-577)) (-665 (-577)))) (-15 -2905 ((-665 (-665 |#2|)) |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -2010 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2444 (|#1| |#3|)) (-15 -3709 (|#1| |#4|)) (-15 -3650 (|#1| (-665 |#1|))) (-15 -3650 (|#1| (-665 |#2|))) (-15 -4316 (|#1| (-792) |#2|)) (-15 -2374 (|#1| (-792) (-792) (-1 |#2| (-577) (-577)))) (-15 -2374 (|#1| (-665 (-665 |#2|)))) (-15 -4084 (|#1| (-792) (-792))) (-15 -4444 ((-112) |#1|)) (-15 -4140 ((-112) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -2671 ((-112) |#1|)) (-15 -1957 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) (-577)))) (-708 |#2| |#3| |#4|) (-1079) (-385 |#2|) (-385 |#2|)) (T -707)) +NIL +(-10 -8 (-15 -3709 ((-885) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3139 (|#1| |#1| |#2|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -2956 (|#1| |#1| (-577) (-577) |#1|)) (-15 -2660 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -4459 (|#1| |#1| (-577) (-577))) (-15 -3674 (|#1| |#1| (-577) (-577))) (-15 -1957 (|#1| |#1| (-665 (-577)) (-665 (-577)) |#1|)) (-15 -2916 (|#1| |#1| (-665 (-577)) (-665 (-577)))) (-15 -2905 ((-665 (-665 |#2|)) |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -2010 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2444 (|#1| |#1|)) (-15 -2444 (|#1| |#3|)) (-15 -3709 (|#1| |#4|)) (-15 -3650 (|#1| (-665 |#1|))) (-15 -3650 (|#1| (-665 |#2|))) (-15 -4316 (|#1| (-792) |#2|)) (-15 -2374 (|#1| (-792) (-792) (-1 |#2| (-577) (-577)))) (-15 -2374 (|#1| (-665 (-665 |#2|)))) (-15 -4084 (|#1| (-792) (-792))) (-15 -4444 ((-112) |#1|)) (-15 -4140 ((-112) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -2671 ((-112) |#1|)) (-15 -1957 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) (-577)))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4084 (($ (-792) (-792)) 99 T ELT)) (-3813 (($ $ $) 88 T ELT)) (-2444 (($ |#2|) 92 T ELT) (($ $) 91 T ELT)) (-4140 (((-112) $) 101 T ELT)) (-3674 (($ $ (-577) (-577)) 84 T ELT)) (-4459 (($ $ (-577) (-577)) 83 T ELT)) (-2660 (($ $ (-577) (-577) (-577) (-577)) 82 T ELT)) (-2422 (($ $) 90 T ELT)) (-2671 (((-112) $) 103 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2956 (($ $ (-577) (-577) $) 81 T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) 45 T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) 85 T ELT)) (-2699 (($ $ (-577) |#2|) 43 T ELT)) (-1969 (($ $ (-577) |#3|) 42 T ELT)) (-4316 (($ (-792) |#1|) 96 T ELT)) (-2305 (($) 7 T CONST)) (-3280 (($ $) 68 (|has| |#1| (-318)) ELT)) (-4448 ((|#2| $ (-577)) 47 T ELT)) (-1641 (((-792) $) 67 (|has| |#1| (-569)) ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) 44 T ELT)) (-4353 ((|#1| $ (-577) (-577)) 49 T ELT)) (-2118 (((-665 |#1|) $) 31 T ELT)) (-3480 (((-792) $) 66 (|has| |#1| (-569)) ELT)) (-4202 (((-665 |#3|) $) 65 (|has| |#1| (-569)) ELT)) (-2408 (((-792) $) 52 T ELT)) (-3236 (($ (-792) (-792) |#1|) 58 T ELT)) (-2420 (((-792) $) 51 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2607 ((|#1| $) 63 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4051 (((-577) $) 56 T ELT)) (-3232 (((-577) $) 54 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1766 (((-577) $) 55 T ELT)) (-3371 (((-577) $) 53 T ELT)) (-2374 (($ (-665 (-665 |#1|))) 98 T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) 97 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-2905 (((-665 (-665 |#1|)) $) 87 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-1767 (((-3 $ "failed") $) 62 (|has| |#1| (-375)) ELT)) (-2010 (($ $ $) 89 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) 57 T ELT)) (-3574 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) (-577)) 50 T ELT) ((|#1| $ (-577) (-577) |#1|) 48 T ELT) (($ $ (-665 (-577)) (-665 (-577))) 86 T ELT)) (-3650 (($ (-665 |#1|)) 95 T ELT) (($ (-665 $)) 94 T ELT)) (-4101 (((-112) $) 102 T ELT)) (-3422 ((|#1| $) 64 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-1455 ((|#3| $ (-577)) 46 T ELT)) (-3709 (($ |#3|) 93 T ELT) (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) 100 T ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3139 (($ $ |#1|) 69 (|has| |#1| (-375)) ELT)) (-3128 (($ $ $) 79 T ELT) (($ $) 78 T ELT)) (-3114 (($ $ $) 80 T ELT)) (** (($ $ (-792)) 71 T ELT) (($ $ (-577)) 61 (|has| |#1| (-375)) ELT)) (* (($ $ $) 77 T ELT) (($ |#1| $) 76 T ELT) (($ $ |#1|) 75 T ELT) (($ (-577) $) 74 T ELT) ((|#3| $ |#3|) 73 T ELT) ((|#2| |#2| $) 72 T ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-708 |#1| |#2| |#3|) (-141) (-1079) (-385 |t#1|) (-385 |t#1|)) (T -708)) +((-2671 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-4444 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-4084 (*1 *1 *2 *2) (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2374 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1079)) (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-4316 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3650 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3650 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3709 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-2444 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-2444 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2422 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2010 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3813 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-665 (-665 *3))))) (-2916 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1957 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3674 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4459 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2660 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2956 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3114 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3128 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1079)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3574 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-318)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-665 *5)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-1767 (*1 *1 *1) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-375))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -2671 ((-112) $)) (-15 -4101 ((-112) $)) (-15 -4140 ((-112) $)) (-15 -4444 ((-112) $)) (-15 -4084 ($ (-792) (-792))) (-15 -2374 ($ (-665 (-665 |t#1|)))) (-15 -2374 ($ (-792) (-792) (-1 |t#1| (-577) (-577)))) (-15 -4316 ($ (-792) |t#1|)) (-15 -3650 ($ (-665 |t#1|))) (-15 -3650 ($ (-665 $))) (-15 -3709 ($ |t#3|)) (-15 -2444 ($ |t#2|)) (-15 -2444 ($ $)) (-15 -2422 ($ $)) (-15 -2010 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -2905 ((-665 (-665 |t#1|)) $)) (-15 -2916 ($ $ (-665 (-577)) (-665 (-577)))) (-15 -1957 ($ $ (-665 (-577)) (-665 (-577)) $)) (-15 -3674 ($ $ (-577) (-577))) (-15 -4459 ($ $ (-577) (-577))) (-15 -2660 ($ $ (-577) (-577) (-577) (-577))) (-15 -2956 ($ $ (-577) (-577) $)) (-15 -3114 ($ $ $)) (-15 -3128 ($ $ $)) (-15 -3128 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-577) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-792))) (IF (|has| |t#1| (-569)) (-15 -3574 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -3139 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -3280 ($ $)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -1641 ((-792) $)) (-15 -3480 ((-792) $)) (-15 -4202 ((-665 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4501 "*"))) (PROGN (-15 -3422 (|t#1| $)) (-15 -2607 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -1767 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-57 |#1| |#2| |#3|) . T) ((-1247) . T)) +((-3280 ((|#4| |#4|) 92 (|has| |#1| (-318)) ELT)) (-1641 (((-792) |#4|) 120 (|has| |#1| (-569)) ELT)) (-3480 (((-792) |#4|) 96 (|has| |#1| (-569)) ELT)) (-4202 (((-665 |#3|) |#4|) 103 (|has| |#1| (-569)) ELT)) (-3521 (((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|) 135 (|has| |#1| (-318)) ELT)) (-2607 ((|#1| |#4|) 52 T ELT)) (-3978 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-569)) ELT)) (-1767 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-375)) ELT)) (-3409 ((|#4| |#4|) 88 (|has| |#1| (-569)) ELT)) (-2151 ((|#4| |#4| |#1| (-577) (-577)) 60 T ELT)) (-4028 ((|#4| |#4| (-577) (-577)) 55 T ELT)) (-3016 ((|#4| |#4| |#1| (-577) (-577)) 65 T ELT)) (-3422 ((|#1| |#4|) 98 T ELT)) (-4440 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-569)) ELT))) +(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3422 (|#1| |#4|)) (-15 -2607 (|#1| |#4|)) (-15 -4028 (|#4| |#4| (-577) (-577))) (-15 -2151 (|#4| |#4| |#1| (-577) (-577))) (-15 -3016 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -1641 ((-792) |#4|)) (-15 -3480 ((-792) |#4|)) (-15 -4202 ((-665 |#3|) |#4|)) (-15 -3409 (|#4| |#4|)) (-15 -3978 ((-3 |#4| "failed") |#4|)) (-15 -4440 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3280 (|#4| |#4|)) (-15 -3521 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -1767 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -709)) +((-1767 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3521 (*1 *2 *3 *3) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-709 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5)))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-4440 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3978 (*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3409 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3480 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3016 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-2151 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-4028 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-709 *4 *5 *6 *2)) (-4 *2 (-708 *4 *5 *6)))) (-2607 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-3422 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5))))) +(-10 -7 (-15 -3422 (|#1| |#4|)) (-15 -2607 (|#1| |#4|)) (-15 -4028 (|#4| |#4| (-577) (-577))) (-15 -2151 (|#4| |#4| |#1| (-577) (-577))) (-15 -3016 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -1641 ((-792) |#4|)) (-15 -3480 ((-792) |#4|)) (-15 -4202 ((-665 |#3|) |#4|)) (-15 -3409 (|#4| |#4|)) (-15 -3978 ((-3 |#4| "failed") |#4|)) (-15 -4440 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3280 (|#4| |#4|)) (-15 -3521 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -1767 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4084 (($ (-792) (-792)) 64 T ELT)) (-3813 (($ $ $) NIL T ELT)) (-2444 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4140 (((-112) $) NIL T ELT)) (-3674 (($ $ (-577) (-577)) 22 T ELT)) (-4459 (($ $ (-577) (-577)) NIL T ELT)) (-2660 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-2422 (($ $) NIL T ELT)) (-2671 (((-112) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2956 (($ $ (-577) (-577) $) NIL T ELT)) (-1957 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) NIL T ELT)) (-2699 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-1969 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-4316 (($ (-792) |#1|) 37 T ELT)) (-2305 (($) NIL T CONST)) (-3280 (($ $) 46 (|has| |#1| (-318)) ELT)) (-4448 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-1641 (((-792) $) 48 (|has| |#1| (-569)) ELT)) (-4420 ((|#1| $ (-577) (-577) |#1|) 69 T ELT)) (-4353 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL T ELT)) (-3480 (((-792) $) 50 (|has| |#1| (-569)) ELT)) (-4202 (((-665 (-1297 |#1|)) $) 53 (|has| |#1| (-569)) ELT)) (-2408 (((-792) $) 32 T ELT)) (-3236 (($ (-792) (-792) |#1|) 28 T ELT)) (-2420 (((-792) $) 33 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2607 ((|#1| $) 44 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4051 (((-577) $) 10 T ELT)) (-3232 (((-577) $) 11 T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1766 (((-577) $) 14 T ELT)) (-3371 (((-577) $) 65 T ELT)) (-2374 (($ (-665 (-665 |#1|))) NIL T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) NIL T ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2905 (((-665 (-665 |#1|)) $) 76 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1767 (((-3 $ "failed") $) 60 (|has| |#1| (-375)) ELT)) (-2010 (($ $ $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2561 (($ $ |#1|) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) NIL T ELT)) (-3650 (($ (-665 |#1|)) NIL T ELT) (($ (-665 $)) NIL T ELT) (($ (-1297 |#1|)) 70 T ELT)) (-4101 (((-112) $) NIL T ELT)) (-3422 ((|#1| $) 42 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) 80 (|has| |#1| (-632 (-549))) ELT)) (-1455 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-3709 (($ (-1297 |#1|)) NIL T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) NIL T ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) 38 T ELT) (($ $ (-577)) 62 (|has| |#1| (-375)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) NIL T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-710 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3650 ($ (-1297 |#1|))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -1767 ((-3 $ "failed") $)) |%noBranch|))) (-1079)) (T -710)) +((-1767 (*1 *1 *1) (|partial| -12 (-5 *1 (-710 *2)) (-4 *2 (-375)) (-4 *2 (-1079)))) (-3650 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) +(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3650 ($ (-1297 |#1|))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -1767 ((-3 $ "failed") $)) |%noBranch|))) +((-2703 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|)) 37 T ELT)) (-3091 (((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|) 32 T ELT)) (-3711 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-792)) 43 T ELT)) (-2527 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|)) 25 T ELT)) (-1813 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|)) 29 T ELT) (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 27 T ELT)) (-2769 (((-710 |#1|) (-710 |#1|) |#1| (-710 |#1|)) 31 T ELT)) (-2190 (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 23 T ELT)) (** (((-710 |#1|) (-710 |#1|) (-792)) 46 T ELT))) +(((-711 |#1|) (-10 -7 (-15 -2190 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2527 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -1813 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -1813 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2769 ((-710 |#1|) (-710 |#1|) |#1| (-710 |#1|))) (-15 -3091 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -2703 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -3711 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-792))) (-15 ** ((-710 |#1|) (-710 |#1|) (-792)))) (-1079)) (T -711)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-711 *4)))) (-3711 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-711 *4)))) (-2703 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-3091 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-2769 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-1813 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-2527 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-2190 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) +(-10 -7 (-15 -2190 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2527 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -1813 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -1813 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2769 ((-710 |#1|) (-710 |#1|) |#1| (-710 |#1|))) (-15 -3091 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -2703 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -3711 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-792))) (-15 ** ((-710 |#1|) (-710 |#1|) (-792)))) +((-4335 (((-3 |#1| "failed") $) 18 T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-1680 (($) 7 T CONST)) (-1882 (($ |#1|) 8 T ELT)) (-3709 (($ |#1|) 16 T ELT) (((-885) $) 23 T ELT)) (-2827 (((-112) $ (|[\|\|]| |#1|)) 14 T ELT) (((-112) $ (|[\|\|]| -1680)) 11 T ELT)) (-2035 ((|#1| $) 15 T ELT))) +(((-712 |#1|) (-13 (-1292) (-1068 |#1|) (-631 (-885)) (-10 -8 (-15 -1882 ($ |#1|)) (-15 -2827 ((-112) $ (|[\|\|]| |#1|))) (-15 -2827 ((-112) $ (|[\|\|]| -1680))) (-15 -2035 (|#1| $)) (-15 -1680 ($) -4212))) (-631 (-885))) (T -712)) +((-1882 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885))))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-631 (-885))) (-5 *2 (-112)) (-5 *1 (-712 *4)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1680)) (-5 *2 (-112)) (-5 *1 (-712 *4)) (-4 *4 (-631 (-885))))) (-2035 (*1 *2 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885))))) (-1680 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885)))))) +(-13 (-1292) (-1068 |#1|) (-631 (-885)) (-10 -8 (-15 -1882 ($ |#1|)) (-15 -2827 ((-112) $ (|[\|\|]| |#1|))) (-15 -2827 ((-112) $ (|[\|\|]| -1680))) (-15 -2035 (|#1| $)) (-15 -1680 ($) -4212))) +((-2326 ((|#2| |#2| |#4|) 29 T ELT)) (-2909 (((-710 |#2|) |#3| |#4|) 35 T ELT)) (-3306 (((-710 |#2|) |#2| |#4|) 34 T ELT)) (-2928 (((-1297 |#2|) |#2| |#4|) 16 T ELT)) (-2099 ((|#2| |#3| |#4|) 28 T ELT)) (-4137 (((-710 |#2|) |#3| |#4| (-792) (-792)) 47 T ELT)) (-2985 (((-710 |#2|) |#2| |#4| (-792)) 46 T ELT))) +(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2928 ((-1297 |#2|) |#2| |#4|)) (-15 -2099 (|#2| |#3| |#4|)) (-15 -2326 (|#2| |#2| |#4|)) (-15 -3306 ((-710 |#2|) |#2| |#4|)) (-15 -2985 ((-710 |#2|) |#2| |#4| (-792))) (-15 -2909 ((-710 |#2|) |#3| |#4|)) (-15 -4137 ((-710 |#2|) |#3| |#4| (-792) (-792)))) (-1130) (-926 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4499)))) (T -713)) +((-4137 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *7 (-926 *6)) (-5 *2 (-710 *7)) (-5 *1 (-713 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499)))))) (-2909 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *6 (-926 *5)) (-5 *2 (-710 *6)) (-5 *1 (-713 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499)))))) (-2985 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *3 (-926 *6)) (-5 *2 (-710 *3)) (-5 *1 (-713 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499)))))) (-3306 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-710 *3)) (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499)))))) (-2326 (*1 *2 *2 *3) (-12 (-4 *4 (-1130)) (-4 *2 (-926 *4)) (-5 *1 (-713 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4499)))))) (-2099 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *2 (-926 *5)) (-5 *1 (-713 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499)))))) (-2928 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-1297 *3)) (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) +(-10 -7 (-15 -2928 ((-1297 |#2|) |#2| |#4|)) (-15 -2099 (|#2| |#3| |#4|)) (-15 -2326 (|#2| |#2| |#4|)) (-15 -3306 ((-710 |#2|) |#2| |#4|)) (-15 -2985 ((-710 |#2|) |#2| |#4| (-792))) (-15 -2909 ((-710 |#2|) |#3| |#4|)) (-15 -4137 ((-710 |#2|) |#3| |#4| (-792) (-792)))) +((-1411 (((-2 (|:| |num| (-710 |#1|)) (|:| |den| |#1|)) (-710 |#2|)) 20 T ELT)) (-3632 ((|#1| (-710 |#2|)) 9 T ELT)) (-2668 (((-710 |#1|) (-710 |#2|)) 18 T ELT))) +(((-714 |#1| |#2|) (-10 -7 (-15 -3632 (|#1| (-710 |#2|))) (-15 -2668 ((-710 |#1|) (-710 |#2|))) (-15 -1411 ((-2 (|:| |num| (-710 |#1|)) (|:| |den| |#1|)) (-710 |#2|)))) (-569) (-1022 |#1|)) (T -714)) +((-1411 (*1 *2 *3) (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| (-710 *4)) (|:| |den| *4))) (-5 *1 (-714 *4 *5)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) (-5 *2 (-710 *4)) (-5 *1 (-714 *4 *5)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-710 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-714 *2 *4))))) +(-10 -7 (-15 -3632 (|#1| (-710 |#2|))) (-15 -2668 ((-710 |#1|) (-710 |#2|))) (-15 -1411 ((-2 (|:| |num| (-710 |#1|)) (|:| |den| |#1|)) (-710 |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2901 (((-710 (-720))) NIL T ELT) (((-710 (-720)) (-1297 $)) NIL T ELT)) (-2318 (((-720) $) NIL T ELT)) (-1660 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2785 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-720) (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-2612 (($ $) NIL (-2867 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-3206 (((-431 $) $) NIL (-2867 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-3770 (($ $) NIL (-12 (|has| (-720) (-1032)) (|has| (-720) (-1232))) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-2495 (((-112) $ $) NIL (|has| (-720) (-318)) ELT)) (-3005 (((-792)) NIL (|has| (-720) (-380)) ELT)) (-1638 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2757 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1682 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2809 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-720) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-720) (-1068 (-420 (-577)))) ELT)) (-3783 (((-577) $) NIL T ELT) (((-720) $) NIL T ELT) (((-420 (-577)) $) NIL (|has| (-720) (-1068 (-420 (-577)))) ELT)) (-2385 (($ (-1297 (-720))) NIL T ELT) (($ (-1297 (-720)) (-1297 $)) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-720) (-361)) ELT)) (-3531 (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-3921 (((-710 (-720)) $) NIL T ELT) (((-710 (-720)) $ (-1297 $)) NIL T ELT)) (-3187 (((-710 (-720)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-720))) (|:| |vec| (-1297 (-720)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-720) (-659 (-577))) ELT) (((-710 (-577)) (-710 $)) NIL (|has| (-720) (-659 (-577))) ELT)) (-2060 (((-3 $ "failed") (-420 (-1202 (-720)))) NIL (|has| (-720) (-375)) ELT) (($ (-1202 (-720))) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3782 (((-720) $) 29 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-720) (-558)) ELT)) (-1356 (((-112) $) NIL (|has| (-720) (-558)) ELT)) (-4035 (((-420 (-577)) $) NIL (|has| (-720) (-558)) ELT)) (-1641 (((-949)) NIL T ELT)) (-1424 (($) NIL (|has| (-720) (-380)) ELT)) (-3541 (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| (-720) (-318)) ELT)) (-2213 (($) NIL (|has| (-720) (-361)) ELT)) (-3275 (((-112) $) NIL (|has| (-720) (-361)) ELT)) (-3987 (($ $) NIL (|has| (-720) (-361)) ELT) (($ $ (-792)) NIL (|has| (-720) (-361)) ELT)) (-3567 (((-112) $) NIL (-2867 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-3798 (((-2 (|:| |r| (-720)) (|:| |phi| (-720))) $) NIL (-12 (|has| (-720) (-1090)) (|has| (-720) (-1232))) ELT)) (-2450 (($) NIL (|has| (-720) (-1232)) ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-720) (-910 (-391))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-720) (-910 (-577))) ELT)) (-4030 (((-854 (-949)) $) NIL (|has| (-720) (-361)) ELT) (((-949) $) NIL (|has| (-720) (-361)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (-12 (|has| (-720) (-1032)) (|has| (-720) (-1232))) ELT)) (-2794 (((-720) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-720) (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-720) (-318)) ELT)) (-2346 (((-1202 (-720)) $) NIL (|has| (-720) (-375)) ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4417 (($ (-1 (-720) (-720)) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| (-720) (-380)) ELT)) (-3825 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2047 (((-1202 (-720)) $) NIL T ELT)) (-3163 (((-710 (-720)) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-720))) (|:| |vec| (-1297 (-720)))) (-1297 $) $) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-720) (-659 (-577))) ELT) (((-710 (-577)) (-1297 $)) NIL (|has| (-720) (-659 (-577))) ELT)) (-3606 (($ (-665 $)) NIL (|has| (-720) (-318)) ELT) (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| (-720) (-375)) ELT)) (-2443 (($) NIL (|has| (-720) (-361)) CONST)) (-3354 (($ (-949)) NIL (|has| (-720) (-380)) ELT)) (-1687 (($) NIL T ELT)) (-3794 (((-720) $) 31 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| (-720) (-318)) ELT)) (-3642 (($ (-665 $)) NIL (|has| (-720) (-318)) ELT) (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| (-720) (-361)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-3759 (((-431 $) $) NIL (-2867 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-720) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| (-720) (-318)) ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ (-720)) NIL (|has| (-720) (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-720) (-318)) ELT)) (-2355 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-3373 (($ $ (-1206) (-720)) NIL (|has| (-720) (-527 (-1206) (-720))) ELT) (($ $ (-665 (-1206)) (-665 (-720))) NIL (|has| (-720) (-527 (-1206) (-720))) ELT) (($ $ (-665 (-305 (-720)))) NIL (|has| (-720) (-320 (-720))) ELT) (($ $ (-305 (-720))) NIL (|has| (-720) (-320 (-720))) ELT) (($ $ (-720) (-720)) NIL (|has| (-720) (-320 (-720))) ELT) (($ $ (-665 (-720)) (-665 (-720))) NIL (|has| (-720) (-320 (-720))) ELT)) (-4081 (((-792) $) NIL (|has| (-720) (-318)) ELT)) (-2916 (($ $ (-720)) NIL (|has| (-720) (-297 (-720) (-720))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| (-720) (-318)) ELT)) (-3846 (((-720)) NIL T ELT) (((-720) (-1297 $)) NIL T ELT)) (-3038 (((-3 (-792) "failed") $ $) NIL (|has| (-720) (-361)) ELT) (((-792) $) NIL (|has| (-720) (-361)) ELT)) (-3641 (($ $ (-1 (-720) (-720)) (-792)) NIL T ELT) (($ $ (-1 (-720) (-720))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT) (($ $) NIL (-2867 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT)) (-4040 (((-710 (-720)) (-1297 $) (-1 (-720) (-720))) NIL (|has| (-720) (-375)) ELT)) (-4263 (((-1202 (-720))) NIL T ELT)) (-1692 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2821 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-3475 (($) NIL (|has| (-720) (-361)) ELT)) (-1671 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2797 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1648 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2772 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-3762 (((-710 (-720)) (-1297 $)) NIL T ELT) (((-1297 (-720)) $) NIL T ELT) (((-710 (-720)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-720)) $ (-1297 $)) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-720) (-632 (-549))) ELT) (((-171 (-228)) $) NIL (|has| (-720) (-1052)) ELT) (((-171 (-391)) $) NIL (|has| (-720) (-1052)) ELT) (((-916 (-391)) $) NIL (|has| (-720) (-632 (-916 (-391)))) ELT) (((-916 (-577)) $) NIL (|has| (-720) (-632 (-916 (-577)))) ELT) (($ (-1202 (-720))) NIL T ELT) (((-1202 (-720)) $) NIL T ELT) (($ (-1297 (-720))) NIL T ELT) (((-1297 (-720)) $) NIL T ELT)) (-4247 (($ $) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-2867 (-12 (|has| (-720) (-318)) (|has| $ (-146)) (|has| (-720) (-937))) (|has| (-720) (-361))) ELT)) (-4225 (($ (-720) (-720)) 12 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-720)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-577))) 19 T ELT) (($ (-171 (-720))) 28 T ELT) (($ (-171 (-722))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| (-720) (-1068 (-420 (-577)))) (|has| (-720) (-375))) ELT)) (-2708 (($ $) NIL (|has| (-720) (-361)) ELT) (((-3 $ "failed") $) NIL (-2867 (-12 (|has| (-720) (-318)) (|has| $ (-146)) (|has| (-720) (-937))) (|has| (-720) (-146))) ELT)) (-2932 (((-1202 (-720)) $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT)) (-1727 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2861 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-1703 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2834 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1748 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1616 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-3656 (((-720) $) NIL (|has| (-720) (-1232)) ELT)) (-4468 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1626 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1737 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2874 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1715 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2847 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2215 (($ $) NIL (|has| (-720) (-1090)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-720) (-720)) (-792)) NIL T ELT) (($ $ (-1 (-720) (-720))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT) (($ $) NIL (-2867 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL (|has| (-720) (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ $) NIL (|has| (-720) (-1232)) ELT) (($ $ (-420 (-577))) NIL (-12 (|has| (-720) (-1032)) (|has| (-720) (-1232))) ELT) (($ $ (-577)) NIL (|has| (-720) (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-720) $) NIL T ELT) (($ $ (-720)) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-720) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-720) (-375)) ELT))) +(((-715) (-13 (-400) (-167 (-720)) (-10 -8 (-15 -3709 ($ (-171 (-391)))) (-15 -3709 ($ (-171 (-577)))) (-15 -3709 ($ (-171 (-720)))) (-15 -3709 ($ (-171 (-722)))) (-15 -3709 ((-171 (-391)) $))))) (T -715)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-715)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-171 (-720))) (-5 *1 (-715)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-171 (-722))) (-5 *1 (-715)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715))))) +(-13 (-400) (-167 (-720)) (-10 -8 (-15 -3709 ($ (-171 (-391)))) (-15 -3709 ($ (-171 (-577)))) (-15 -3709 ($ (-171 (-720)))) (-15 -3709 ($ (-171 (-722)))) (-15 -3709 ((-171 (-391)) $)))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2697 (($ $) 63 T ELT)) (-3589 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT) (($ |#1| $ (-792)) 64 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2762 (((-665 (-2 (|:| -2727 |#1|) (|:| -1481 (-792)))) $) 62 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 51 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-716 |#1|) (-141) (-1130)) (T -716)) +((-4375 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-716 *2)) (-4 *2 (-1130)))) (-2697 (*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1130)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-2 (|:| -2727 *3) (|:| -1481 (-792)))))))) +(-13 (-241 |t#1|) (-10 -8 (-15 -4375 ($ |t#1| $ (-792))) (-15 -2697 ($ $)) (-15 -2762 ((-665 (-2 (|:| -2727 |t#1|) (|:| -1481 (-792)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-2670 (((-665 |#1|) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))) (-577)) 65 T ELT)) (-3618 ((|#1| |#1| (-577)) 62 T ELT)) (-3642 ((|#1| |#1| |#1| (-577)) 46 T ELT)) (-3759 (((-665 |#1|) |#1| (-577)) 49 T ELT)) (-2771 ((|#1| |#1| (-577) |#1| (-577)) 40 T ELT)) (-1962 (((-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))) |#1| (-577)) 61 T ELT))) +(((-717 |#1|) (-10 -7 (-15 -3642 (|#1| |#1| |#1| (-577))) (-15 -3618 (|#1| |#1| (-577))) (-15 -3759 ((-665 |#1|) |#1| (-577))) (-15 -1962 ((-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))) |#1| (-577))) (-15 -2670 ((-665 |#1|) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))) (-577))) (-15 -2771 (|#1| |#1| (-577) |#1| (-577)))) (-1273 (-577))) (T -717)) +((-2771 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| -3759 *5) (|:| -1597 (-577))))) (-5 *4 (-577)) (-4 *5 (-1273 *4)) (-5 *2 (-665 *5)) (-5 *1 (-717 *5)))) (-1962 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-665 (-2 (|:| -3759 *3) (|:| -1597 *4)))) (-5 *1 (-717 *3)) (-4 *3 (-1273 *4)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-665 *3)) (-5 *1 (-717 *3)) (-4 *3 (-1273 *4)))) (-3618 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3)))) (-3642 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -3642 (|#1| |#1| |#1| (-577))) (-15 -3618 (|#1| |#1| (-577))) (-15 -3759 ((-665 |#1|) |#1| (-577))) (-15 -1962 ((-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))) |#1| (-577))) (-15 -2670 ((-665 |#1|) (-665 (-2 (|:| -3759 |#1|) (|:| -1597 (-577)))) (-577))) (-15 -2771 (|#1| |#1| (-577) |#1| (-577)))) +((-3121 (((-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 17 T ELT)) (-2774 (((-1163 (-228)) (-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 53 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 55 T ELT) (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 57 T ELT)) (-2712 (((-1163 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-665 (-271))) NIL T ELT)) (-4075 (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 58 T ELT))) +(((-718) (-10 -7 (-15 -2774 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2774 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2774 ((-1163 (-228)) (-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -4075 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2712 ((-1163 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -3121 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -718)) +((-3121 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1 (-228) (-228) (-228) (-228))) (-5 *2 (-1 (-971 (-228)) (-228) (-228))) (-5 *1 (-718)))) (-2712 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) (-4075 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) (-2774 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-228))) (-5 *5 (-665 (-271))) (-5 *1 (-718)))) (-2774 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-228))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) (-2774 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718))))) +(-10 -7 (-15 -2774 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2774 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2774 ((-1163 (-228)) (-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -4075 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2712 ((-1163 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -3121 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) +((-3759 (((-431 (-1202 |#4|)) (-1202 |#4|)) 86 T ELT) (((-431 |#4|) |#4|) 266 T ELT))) +(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 ((-431 |#4|) |#4|)) (-15 -3759 ((-431 (-1202 |#4|)) (-1202 |#4|)))) (-870) (-814) (-361) (-977 |#3| |#2| |#1|)) (T -719)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) +(-10 -7 (-15 -3759 ((-431 |#4|) |#4|)) (-15 -3759 ((-431 (-1202 |#4|)) (-1202 |#4|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 97 T ELT)) (-1363 (((-577) $) 34 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3610 (($ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3260 (($ $) NIL T ELT)) (-4335 (((-3 (-577) "failed") $) 85 T ELT) (((-3 (-420 (-577)) "failed") $) 28 T ELT) (((-3 (-391) "failed") $) 82 T ELT)) (-3783 (((-577) $) 87 T ELT) (((-420 (-577)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-3531 (($ $ $) 109 T ELT)) (-3167 (((-3 $ "failed") $) 100 T ELT)) (-3541 (($ $ $) 108 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-1847 (((-949)) 89 T ELT) (((-949) (-949)) 88 T ELT)) (-4339 (((-112) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL T ELT)) (-4030 (((-577) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL T ELT)) (-2794 (($ $) NIL T ELT)) (-2649 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1746 (((-577) (-577)) 94 T ELT) (((-577)) 95 T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL (-12 (-2779 (|has| $ (-6 -4482))) (-2779 (|has| $ (-6 -4490)))) ELT)) (-2691 (((-577) (-577)) 92 T ELT) (((-577)) 93 T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL (-12 (-2779 (|has| $ (-6 -4482))) (-2779 (|has| $ (-6 -4490)))) ELT)) (-3079 (((-577) $) 17 T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 104 T ELT)) (-2110 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3172 (($ (-577) (-577)) NIL T ELT) (($ (-577) (-577) (-949)) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) 105 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2328 (((-577) $) 24 T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 107 T ELT)) (-3046 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-4326 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-4463 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-916 (-391)) $) NIL T ELT)) (-3709 (((-885) $) 63 T ELT) (($ (-577)) 75 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 78 T ELT) (($ (-577)) 75 T ELT) (($ (-420 (-577))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-722)) 66 T ELT)) (-3331 (((-792)) 119 T CONST)) (-3350 (($ (-577) (-577) (-949)) 54 T ELT)) (-2431 (($ $) NIL T ELT)) (-1480 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (((-949)) 91 T ELT) (((-949) (-949)) 90 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL T ELT)) (-2839 (($) 37 T CONST)) (-2853 (($) 18 T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 96 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 118 T ELT)) (-3139 (($ $ $) 77 T ELT)) (-3128 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-3114 (($ $ $) 114 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) 103 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-720) (-13 (-417) (-400) (-375) (-1068 (-391)) (-1068 (-420 (-577))) (-148) (-10 -8 (-15 -1847 ((-949) (-949))) (-15 -1847 ((-949))) (-15 -4356 ((-949) (-949))) (-15 -2691 ((-577) (-577))) (-15 -2691 ((-577))) (-15 -1746 ((-577) (-577))) (-15 -1746 ((-577))) (-15 -3709 ((-391) $)) (-15 -3709 ($ (-722))) (-15 -3079 ((-577) $)) (-15 -2328 ((-577) $)) (-15 -3350 ($ (-577) (-577) (-949)))))) (T -720)) +((-2328 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-1847 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) (-4356 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) (-2691 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-2691 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-1746 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-1746 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-720)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-722)) (-5 *1 (-720)))) (-3350 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-5 *1 (-720))))) +(-13 (-417) (-400) (-375) (-1068 (-391)) (-1068 (-420 (-577))) (-148) (-10 -8 (-15 -1847 ((-949) (-949))) (-15 -1847 ((-949))) (-15 -4356 ((-949) (-949))) (-15 -2691 ((-577) (-577))) (-15 -2691 ((-577))) (-15 -1746 ((-577) (-577))) (-15 -1746 ((-577))) (-15 -3709 ((-391) $)) (-15 -3709 ($ (-722))) (-15 -3079 ((-577) $)) (-15 -2328 ((-577) $)) (-15 -3350 ($ (-577) (-577) (-949))))) +((-1387 (((-710 |#1|) (-710 |#1|) |#1| |#1|) 85 T ELT)) (-3280 (((-710 |#1|) (-710 |#1|) |#1|) 66 T ELT)) (-4291 (((-710 |#1|) (-710 |#1|) |#1|) 86 T ELT)) (-4022 (((-710 |#1|) (-710 |#1|)) 67 T ELT)) (-3521 (((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|) 84 T ELT))) +(((-721 |#1|) (-10 -7 (-15 -4022 ((-710 |#1|) (-710 |#1|))) (-15 -3280 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -4291 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -1387 ((-710 |#1|) (-710 |#1|) |#1| |#1|)) (-15 -3521 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|))) (-318)) (T -721)) +((-3521 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-721 *3)) (-4 *3 (-318)))) (-1387 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) (-4291 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) +(-10 -7 (-15 -4022 ((-710 |#1|) (-710 |#1|))) (-15 -3280 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -4291 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -1387 ((-710 |#1|) (-710 |#1|) |#1| |#1|)) (-15 -3521 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2940 (($ $ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4002 (($ $ $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL T ELT)) (-4387 (($ $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) 31 T ELT)) (-3783 (((-577) $) 29 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-1356 (((-112) $) NIL T ELT)) (-4035 (((-420 (-577)) $) NIL T ELT)) (-1424 (($ $) NIL T ELT) (($) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-1714 (($ $ $ $) NIL T ELT)) (-3215 (($ $ $) NIL T ELT)) (-4339 (((-112) $) NIL T ELT)) (-2381 (($ $ $) NIL T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2310 (((-112) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL T ELT)) (-2649 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4098 (($ $ $ $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-3192 (((-949) (-949)) 10 T ELT) (((-949)) 9 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3106 (($ $) NIL T ELT)) (-4166 (($ $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT)) (-3606 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4097 (($ $ $) NIL T ELT)) (-2443 (($) NIL T CONST)) (-2143 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2964 (($ $) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2820 (((-112) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2593 (($ $) NIL T ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-228) $) NIL T ELT) (((-391) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-549) $) NIL T ELT) (((-577) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) 28 T ELT) (($ $) NIL T ELT) (($ (-577)) 28 T ELT) (((-327 $) (-327 (-577))) 18 T ELT)) (-3331 (((-792)) NIL T CONST)) (-3790 (((-112) $ $) NIL T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (($) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2449 (($ $ $ $) NIL T ELT)) (-2215 (($ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-722) (-13 (-400) (-558) (-10 -8 (-15 -3192 ((-949) (-949))) (-15 -3192 ((-949))) (-15 -3709 ((-327 $) (-327 (-577))))))) (T -722)) +((-3192 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722)))) (-3192 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-722))) (-5 *1 (-722))))) +(-13 (-400) (-558) (-10 -8 (-15 -3192 ((-949) (-949))) (-15 -3192 ((-949))) (-15 -3709 ((-327 $) (-327 (-577)))))) +((-1496 (((-1 |#4| |#2| |#3|) |#1| (-1206) (-1206)) 19 T ELT)) (-2191 (((-1 |#4| |#2| |#3|) (-1206)) 12 T ELT))) +(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2191 ((-1 |#4| |#2| |#3|) (-1206))) (-15 -1496 ((-1 |#4| |#2| |#3|) |#1| (-1206) (-1206)))) (-632 (-549)) (-1247) (-1247) (-1247)) (T -723)) +((-1496 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *3 *5 *6 *7)) (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247))))) +(-10 -7 (-15 -2191 ((-1 |#4| |#2| |#3|) (-1206))) (-15 -1496 ((-1 |#4| |#2| |#3|) |#1| (-1206) (-1206)))) +((-2382 (((-1 (-228) (-228) (-228)) |#1| (-1206) (-1206)) 43 T ELT) (((-1 (-228) (-228)) |#1| (-1206)) 48 T ELT))) +(((-724 |#1|) (-10 -7 (-15 -2382 ((-1 (-228) (-228)) |#1| (-1206))) (-15 -2382 ((-1 (-228) (-228) (-228)) |#1| (-1206) (-1206)))) (-632 (-549))) (T -724)) +((-2382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-724 *3)) (-4 *3 (-632 (-549))))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-724 *3)) (-4 *3 (-632 (-549)))))) +(-10 -7 (-15 -2382 ((-1 (-228) (-228)) |#1| (-1206))) (-15 -2382 ((-1 (-228) (-228) (-228)) |#1| (-1206) (-1206)))) +((-3483 (((-1206) |#1| (-1206) (-665 (-1206))) 10 T ELT) (((-1206) |#1| (-1206) (-1206) (-1206)) 13 T ELT) (((-1206) |#1| (-1206) (-1206)) 12 T ELT) (((-1206) |#1| (-1206)) 11 T ELT))) +(((-725 |#1|) (-10 -7 (-15 -3483 ((-1206) |#1| (-1206))) (-15 -3483 ((-1206) |#1| (-1206) (-1206))) (-15 -3483 ((-1206) |#1| (-1206) (-1206) (-1206))) (-15 -3483 ((-1206) |#1| (-1206) (-665 (-1206))))) (-632 (-549))) (T -725)) +((-3483 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) (-3483 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) (-3483 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) (-3483 (*1 *2 *3 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549)))))) +(-10 -7 (-15 -3483 ((-1206) |#1| (-1206))) (-15 -3483 ((-1206) |#1| (-1206) (-1206))) (-15 -3483 ((-1206) |#1| (-1206) (-1206) (-1206))) (-15 -3483 ((-1206) |#1| (-1206) (-665 (-1206))))) +((-2464 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-726 |#1| |#2|) (-10 -7 (-15 -2464 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1247) (-1247)) (T -726)) +((-2464 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247))))) +(-10 -7 (-15 -2464 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-4211 (((-1 |#3| |#2|) (-1206)) 11 T ELT)) (-1496 (((-1 |#3| |#2|) |#1| (-1206)) 21 T ELT))) +(((-727 |#1| |#2| |#3|) (-10 -7 (-15 -4211 ((-1 |#3| |#2|) (-1206))) (-15 -1496 ((-1 |#3| |#2|) |#1| (-1206)))) (-632 (-549)) (-1247) (-1247)) (T -727)) +((-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *3 *5 *6)) (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))) (-4211 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *4 *5 *6)) (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))))) +(-10 -7 (-15 -4211 ((-1 |#3| |#2|) (-1206))) (-15 -1496 ((-1 |#3| |#2|) |#1| (-1206)))) +((-2590 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#4|)) (-665 |#3|) (-665 |#4|) (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| |#4|)))) (-665 (-792)) (-1297 (-665 (-1202 |#3|))) |#3|) 92 T ELT)) (-1427 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#3|)) (-665 |#3|) (-665 |#4|) (-665 (-792)) |#3|) 110 T ELT)) (-3222 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 |#3|) (-665 (-792)) (-665 (-1202 |#4|)) (-1297 (-665 (-1202 |#3|))) |#3|) 47 T ELT))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3222 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 |#3|) (-665 (-792)) (-665 (-1202 |#4|)) (-1297 (-665 (-1202 |#3|))) |#3|)) (-15 -1427 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#3|)) (-665 |#3|) (-665 |#4|) (-665 (-792)) |#3|)) (-15 -2590 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#4|)) (-665 |#3|) (-665 |#4|) (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| |#4|)))) (-665 (-792)) (-1297 (-665 (-1202 |#3|))) |#3|))) (-814) (-870) (-318) (-977 |#3| |#1| |#2|)) (T -728)) +((-2590 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-665 (-1202 *13))) (-5 *3 (-1202 *13)) (-5 *4 (-665 *12)) (-5 *5 (-665 *10)) (-5 *6 (-665 *13)) (-5 *7 (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| *13))))) (-5 *8 (-665 (-792))) (-5 *9 (-1297 (-665 (-1202 *10)))) (-4 *12 (-870)) (-4 *10 (-318)) (-4 *13 (-977 *10 *11 *12)) (-4 *11 (-814)) (-5 *1 (-728 *11 *12 *10 *13)))) (-1427 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-665 *11)) (-5 *5 (-665 (-1202 *9))) (-5 *6 (-665 *9)) (-5 *7 (-665 *12)) (-5 *8 (-665 (-792))) (-4 *11 (-870)) (-4 *9 (-318)) (-4 *12 (-977 *9 *10 *11)) (-4 *10 (-814)) (-5 *2 (-665 (-1202 *12))) (-5 *1 (-728 *10 *11 *9 *12)) (-5 *3 (-1202 *12)))) (-3222 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-665 (-1202 *11))) (-5 *3 (-1202 *11)) (-5 *4 (-665 *10)) (-5 *5 (-665 *8)) (-5 *6 (-665 (-792))) (-5 *7 (-1297 (-665 (-1202 *8)))) (-4 *10 (-870)) (-4 *8 (-318)) (-4 *11 (-977 *8 *9 *10)) (-4 *9 (-814)) (-5 *1 (-728 *9 *10 *8 *11))))) +(-10 -7 (-15 -3222 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 |#3|) (-665 (-792)) (-665 (-1202 |#4|)) (-1297 (-665 (-1202 |#3|))) |#3|)) (-15 -1427 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#3|)) (-665 |#3|) (-665 |#4|) (-665 (-792)) |#3|)) (-15 -2590 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#4|)) (-665 |#3|) (-665 |#4|) (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| |#4|)))) (-665 (-792)) (-1297 (-665 (-1202 |#3|))) |#3|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4048 (($ $) 48 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3872 (($ |#1| (-792)) 46 T ELT)) (-4340 (((-792) $) 50 T ELT)) (-4025 ((|#1| $) 49 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-1597 (((-792) $) 51 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 45 (|has| |#1| (-174)) ELT)) (-4171 ((|#1| $ (-792)) 47 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT))) +(((-729 |#1|) (-141) (-1079)) (T -729)) +((-1597 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079)))) (-3872 (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079))))) +(-13 (-1079) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1597 ((-792) $)) (-15 -4340 ((-792) $)) (-15 -4025 (|t#1| $)) (-15 -4048 ($ $)) (-15 -4171 (|t#1| $ (-792))) (-15 -3872 ($ |t#1| (-792))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4417 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-730 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4417 (|#6| (-1 |#4| |#1|) |#3|))) (-569) (-1273 |#1|) (-1273 (-420 |#2|)) (-569) (-1273 |#4|) (-1273 (-420 |#5|))) (T -730)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-420 *8))) (-5 *1 (-730 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-420 *6))) (-4 *8 (-1273 *7))))) +(-10 -7 (-15 -4417 (|#6| (-1 |#4| |#1|) |#3|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3526 (((-1188) (-885)) 38 T ELT)) (-2064 (((-1302) (-1188)) 31 T ELT)) (-3201 (((-1188) (-885)) 28 T ELT)) (-4223 (((-1188) (-885)) 29 T ELT)) (-3709 (((-885) $) NIL T ELT) (((-1188) (-885)) 27 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-731) (-13 (-1130) (-10 -7 (-15 -3709 ((-1188) (-885))) (-15 -3201 ((-1188) (-885))) (-15 -4223 ((-1188) (-885))) (-15 -3526 ((-1188) (-885))) (-15 -2064 ((-1302) (-1188)))))) (T -731)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-731))))) +(-13 (-1130) (-10 -7 (-15 -3709 ((-1188) (-885))) (-15 -3201 ((-1188) (-885))) (-15 -4223 ((-1188) (-885))) (-15 -3526 ((-1188) (-885))) (-15 -2064 ((-1302) (-1188))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) NIL T ELT)) (-2060 (($ |#1| |#2|) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3351 ((|#2| $) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3751 (((-3 $ "failed") $ $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-732 |#1| |#2| |#3| |#4| |#5|) (-13 (-375) (-10 -8 (-15 -3351 (|#2| $)) (-15 -3709 (|#1| $)) (-15 -2060 ($ |#1| |#2|)) (-15 -3751 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -732)) +((-3351 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-732 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3709 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2060 (*1 *1 *2 *3) (-12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3751 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-375) (-10 -8 (-15 -3351 (|#2| $)) (-15 -3709 (|#1| $)) (-15 -2060 ($ |#1| |#2|)) (-15 -3751 ((-3 $ "failed") $ $)))) +((-3586 (((-112) $ $) 87 T ELT)) (-4113 (((-112) $) 36 T ELT)) (-1400 (((-1297 |#1|) $ (-792)) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3527 (($ (-1202 |#1|)) NIL T ELT)) (-3732 (((-1202 $) $ (-1112)) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3473 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3005 (((-792)) 54 (|has| |#1| (-380)) ELT)) (-3796 (($ $ (-792)) NIL T ELT)) (-1370 (($ $ (-792)) NIL T ELT)) (-1932 ((|#2| |#2|) 50 T ELT)) (-2723 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT)) (-3868 (($ $ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) NIL (|has| |#1| (-174)) ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) 40 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-2060 (($ |#2|) 48 T ELT)) (-3167 (((-3 $ "failed") $) 97 T ELT)) (-1424 (($) 58 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1668 (($ $ $) NIL T ELT)) (-2347 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1771 (((-2 (|:| -4473 |#1|) (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-2243 (((-986 $)) 89 T ELT)) (-4365 (($ $ |#1| (-792) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-4030 (((-792) $ $) NIL (|has| |#1| (-569)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-3882 (($ (-1202 |#1|) (-1112)) NIL T ELT) (($ (-1202 $) (-1112)) NIL T ELT)) (-3720 (($ $ (-792)) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) 85 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3351 ((|#2|) 51 T ELT)) (-4340 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4329 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4120 (((-1202 |#1|) $) NIL T ELT)) (-3946 (((-3 (-1112) "failed") $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-2047 ((|#2| $) 47 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) 34 T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4462 (((-2 (|:| -2203 $) (|:| -2519 $)) $ (-792)) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-1112)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1869 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2443 (($) NIL (|has| |#1| (-1182)) CONST)) (-3354 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3299 (($ $) 88 (|has| |#1| (-361)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-3626 (((-3 $ "failed") $ (-792)) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 98 (|has| |#1| (-375)) ELT)) (-3846 (($ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-1597 (((-792) $) 38 T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-1862 (((-986 $)) 42 T ELT)) (-2162 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-3709 (((-885) $) 68 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1112)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) 70 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) 25 T CONST)) (-3834 (((-1297 |#1|) $) 83 T ELT)) (-1508 (($ (-1297 |#1|)) 57 T ELT)) (-2853 (($) 8 T CONST)) (-2389 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2716 (((-1297 |#1|) $) NIL T ELT)) (-3018 (((-112) $ $) 76 T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 39 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 92 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) +(((-733 |#1| |#2|) (-13 (-1273 |#1|) (-634 |#2|) (-10 -8 (-15 -1932 (|#2| |#2|)) (-15 -3351 (|#2|)) (-15 -2060 ($ |#2|)) (-15 -2047 (|#2| $)) (-15 -3834 ((-1297 |#1|) $)) (-15 -1508 ($ (-1297 |#1|))) (-15 -2716 ((-1297 |#1|) $)) (-15 -2243 ((-986 $))) (-15 -1862 ((-986 $))) (IF (|has| |#1| (-361)) (-15 -3299 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) (-1079) (-1273 |#1|)) (T -733)) +((-1932 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3)))) (-3351 (*1 *2) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) (-2060 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3)))) (-2047 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) (-3834 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-2716 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-2243 (*1 *2) (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-1862 (*1 *2) (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-3299 (*1 *1 *1) (-12 (-4 *2 (-361)) (-4 *2 (-1079)) (-5 *1 (-733 *2 *3)) (-4 *3 (-1273 *2))))) +(-13 (-1273 |#1|) (-634 |#2|) (-10 -8 (-15 -1932 (|#2| |#2|)) (-15 -3351 (|#2|)) (-15 -2060 ($ |#2|)) (-15 -2047 (|#2| $)) (-15 -3834 ((-1297 |#1|) $)) (-15 -1508 ($ (-1297 |#1|))) (-15 -2716 ((-1297 |#1|) $)) (-15 -2243 ((-986 $))) (-15 -1862 ((-986 $))) (IF (|has| |#1| (-361)) (-15 -3299 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 ((|#1| $) 13 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2328 ((|#2| $) 12 T ELT)) (-3722 (($ |#1| |#2|) 16 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-2 (|:| -3354 |#1|) (|:| -2328 |#2|))) 15 T ELT) (((-2 (|:| -3354 |#1|) (|:| -2328 |#2|)) $) 14 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 11 T ELT))) +(((-734 |#1| |#2| |#3|) (-13 (-870) (-503 (-2 (|:| -3354 |#1|) (|:| -2328 |#2|))) (-10 -8 (-15 -2328 (|#2| $)) (-15 -3354 (|#1| $)) (-15 -3722 ($ |#1| |#2|)))) (-870) (-1130) (-1 (-112) (-2 (|:| -3354 |#1|) (|:| -2328 |#2|)) (-2 (|:| -3354 |#1|) (|:| -2328 |#2|)))) (T -734)) +((-2328 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-734 *3 *2 *4)) (-4 *3 (-870)) (-14 *4 (-1 (-112) (-2 (|:| -3354 *3) (|:| -2328 *2)) (-2 (|:| -3354 *3) (|:| -2328 *2)))))) (-3354 (*1 *2 *1) (-12 (-4 *2 (-870)) (-5 *1 (-734 *2 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *3)) (-2 (|:| -3354 *2) (|:| -2328 *3)))))) (-3722 (*1 *1 *2 *3) (-12 (-5 *1 (-734 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-1130)) (-14 *4 (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *3)) (-2 (|:| -3354 *2) (|:| -2328 *3))))))) +(-13 (-870) (-503 (-2 (|:| -3354 |#1|) (|:| -2328 |#2|))) (-10 -8 (-15 -2328 (|#2| $)) (-15 -3354 (|#1| $)) (-15 -3722 ($ |#1| |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 66 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 102 T ELT) (((-3 (-115) "failed") $) 108 T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-3167 (((-3 $ "failed") $) 103 T ELT)) (-2012 ((|#2| (-115) |#2|) 93 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1611 (($ |#1| (-373 (-115))) 14 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3396 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-3942 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-2916 ((|#2| $ |#2|) 33 T ELT)) (-3448 ((|#1| |#1|) 118 (|has| |#1| (-174)) ELT)) (-3709 (((-885) $) 73 T ELT) (($ (-577)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 37 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4440 (($ $) 112 (|has| |#1| (-174)) ELT) (($ $ $) 116 (|has| |#1| (-174)) ELT)) (-2839 (($) 21 T CONST)) (-2853 (($) 9 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 83 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ (-115) (-577)) NIL T ELT) (($ $ (-577)) 64 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 111 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 109 (|has| |#1| (-174)) ELT) (($ $ |#1|) 110 (|has| |#1| (-174)) ELT))) +(((-735 |#1| |#2|) (-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4440 ($ $)) (-15 -4440 ($ $ $)) (-15 -3448 (|#1| |#1|))) |%noBranch|) (-15 -3942 ($ $ (-1 |#2| |#2|))) (-15 -3396 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2012 (|#2| (-115) |#2|)) (-15 -1611 ($ |#1| (-373 (-115)))))) (-1079) (-669 |#1|)) (T -735)) +((-4440 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) (-4 *3 (-669 *2)))) (-4440 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) (-4 *3 (-669 *2)))) (-3448 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) (-4 *3 (-669 *2)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)))) (-3396 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-735 *4 *5)) (-4 *5 (-669 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)) (-4 *4 (-669 *3)))) (-2012 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1079)) (-5 *1 (-735 *4 *2)) (-4 *2 (-669 *4)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1079)) (-5 *1 (-735 *2 *4)) (-4 *4 (-669 *2))))) +(-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4440 ($ $)) (-15 -4440 ($ $ $)) (-15 -3448 (|#1| |#1|))) |%noBranch|) (-15 -3942 ($ $ (-1 |#2| |#2|))) (-15 -3396 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2012 (|#2| (-115) |#2|)) (-15 -1611 ($ |#1| (-373 (-115)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 33 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2060 (($ |#1| |#2|) 25 T ELT)) (-3167 (((-3 $ "failed") $) 51 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3351 ((|#2| $) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 52 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3751 (((-3 $ "failed") $ $) 50 T ELT)) (-3709 (((-885) $) 24 T ELT) (($ (-577)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3331 (((-792)) 28 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 16 T CONST)) (-2853 (($) 30 T CONST)) (-3018 (((-112) $ $) 41 T ELT)) (-3128 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3114 (($ $ $) 43 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-736 |#1| |#2| |#3| |#4| |#5|) (-13 (-1079) (-10 -8 (-15 -3351 (|#2| $)) (-15 -3709 (|#1| $)) (-15 -2060 ($ |#1| |#2|)) (-15 -3751 ((-3 $ "failed") $ $)) (-15 -3167 ((-3 $ "failed") $)) (-15 -3981 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -736)) +((-3167 (*1 *1 *1) (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3351 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-736 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3709 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2060 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3751 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3981 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1079) (-10 -8 (-15 -3351 (|#2| $)) (-15 -3709 (|#1| $)) (-15 -2060 ($ |#1| |#2|)) (-15 -3751 ((-3 $ "failed") $ $)) (-15 -3167 ((-3 $ "failed") $)) (-15 -3981 ($ $)))) +((* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-737 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-738 |#2|) (-174)) (T -737)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-738 |#1|) (-141) (-174)) (T -738)) +NIL +(-13 (-111 |t#1| |t#1|) (-661 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4387 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-2641 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1551 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 16 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3373 ((|#1| $ |#1|) 24 T ELT) (((-854 |#1|) $ (-854 |#1|)) 32 T ELT)) (-4247 (($ $ $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-3709 (((-885) $) 39 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 9 T CONST)) (-3018 (((-112) $ $) 48 T ELT)) (-3139 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-739 |#1|) (-13 (-486) (-10 -8 (-15 -1551 ($ |#1| |#1| |#1| |#1|)) (-15 -4387 ($ |#1|)) (-15 -2641 ($ |#1|)) (-15 -3167 ($)) (-15 -4387 ($ $ |#1|)) (-15 -2641 ($ $ |#1|)) (-15 -3167 ($ $)) (-15 -3373 (|#1| $ |#1|)) (-15 -3373 ((-854 |#1|) $ (-854 |#1|))))) (-375)) (T -739)) +((-1551 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-4387 (*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-2641 (*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-3167 (*1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-4387 (*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-3167 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-3373 (*1 *2 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-3373 (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-375)) (-5 *1 (-739 *3))))) +(-13 (-486) (-10 -8 (-15 -1551 ($ |#1| |#1| |#1| |#1|)) (-15 -4387 ($ |#1|)) (-15 -2641 ($ |#1|)) (-15 -3167 ($)) (-15 -4387 ($ $ |#1|)) (-15 -2641 ($ $ |#1|)) (-15 -3167 ($ $)) (-15 -3373 (|#1| $ |#1|)) (-15 -3373 ((-854 |#1|) $ (-854 |#1|))))) +((-3712 (($ $ (-949)) 19 T ELT)) (-3744 (($ $ (-949)) 20 T ELT)) (** (($ $ (-949)) 10 T ELT))) +(((-740 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-949))) (-15 -3744 (|#1| |#1| (-949))) (-15 -3712 (|#1| |#1| (-949)))) (-741)) (T -740)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-949))) (-15 -3744 (|#1| |#1| (-949))) (-15 -3712 (|#1| |#1| (-949)))) +((-3586 (((-112) $ $) 7 T ELT)) (-3712 (($ $ (-949)) 16 T ELT)) (-3744 (($ $ (-949)) 15 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT)) (* (($ $ $) 17 T ELT))) +(((-741) (-141)) (T -741)) +((* (*1 *1 *1 *1) (-4 *1 (-741))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) (-3744 (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949))))) +(-13 (-1130) (-10 -8 (-15 * ($ $ $)) (-15 -3712 ($ $ (-949))) (-15 -3744 ($ $ (-949))) (-15 ** ($ $ (-949))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3712 (($ $ (-949)) NIL T ELT) (($ $ (-792)) 18 T ELT)) (-3357 (((-112) $) 10 T ELT)) (-3744 (($ $ (-949)) NIL T ELT) (($ $ (-792)) 19 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 16 T ELT))) +(((-742 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-792))) (-15 -3744 (|#1| |#1| (-792))) (-15 -3712 (|#1| |#1| (-792))) (-15 -3357 ((-112) |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -3744 (|#1| |#1| (-949))) (-15 -3712 (|#1| |#1| (-949)))) (-743)) (T -742)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-792))) (-15 -3744 (|#1| |#1| (-792))) (-15 -3712 (|#1| |#1| (-792))) (-15 -3357 ((-112) |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -3744 (|#1| |#1| (-949))) (-15 -3712 (|#1| |#1| (-949)))) +((-3586 (((-112) $ $) 7 T ELT)) (-3252 (((-3 $ "failed") $) 18 T ELT)) (-3712 (($ $ (-949)) 16 T ELT) (($ $ (-792)) 23 T ELT)) (-3167 (((-3 $ "failed") $) 20 T ELT)) (-3357 (((-112) $) 24 T ELT)) (-3535 (((-3 $ "failed") $) 19 T ELT)) (-3744 (($ $ (-949)) 15 T ELT) (($ $ (-792)) 22 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2853 (($) 25 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 21 T ELT)) (* (($ $ $) 17 T ELT))) +(((-743) (-141)) (T -743)) +((-2853 (*1 *1) (-4 *1 (-743))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-743)) (-5 *2 (-112)))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) (-3744 (*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) (-3167 (*1 *1 *1) (|partial| -4 *1 (-743))) (-3535 (*1 *1 *1) (|partial| -4 *1 (-743))) (-3252 (*1 *1 *1) (|partial| -4 *1 (-743)))) +(-13 (-741) (-10 -8 (-15 (-2853) ($) -4212) (-15 -3357 ((-112) $)) (-15 -3712 ($ $ (-792))) (-15 -3744 ($ $ (-792))) (-15 ** ($ $ (-792))) (-15 -3167 ((-3 $ "failed") $)) (-15 -3535 ((-3 $ "failed") $)) (-15 -3252 ((-3 $ "failed") $)))) +(((-102) . T) ((-631 (-885)) . T) ((-741) . T) ((-1130) . T) ((-1247) . T)) +((-3005 (((-792)) 39 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 26 T ELT)) (-3783 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-2060 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-420 |#3|)) 49 T ELT)) (-3167 (((-3 $ "failed") $) 69 T ELT)) (-1424 (($) 43 T ELT)) (-2794 ((|#2| $) 21 T ELT)) (-2343 (($) 18 T ELT)) (-3641 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-4040 (((-710 |#2|) (-1297 $) (-1 |#2| |#2|)) 64 T ELT)) (-4463 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2932 ((|#3| $) 36 T ELT)) (-2104 (((-1297 $)) 33 T ELT))) +(((-744 |#1| |#2| |#3|) (-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -1424 (|#1|)) (-15 -3005 ((-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4040 ((-710 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -2060 ((-3 |#1| "failed") (-420 |#3|))) (-15 -4463 (|#1| |#3|)) (-15 -2060 (|#1| |#3|)) (-15 -2343 (|#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4463 (|#3| |#1|)) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -2104 ((-1297 |#1|))) (-15 -2932 (|#3| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|))) (-745 |#2| |#3|) (-174) (-1273 |#2|)) (T -744)) +((-3005 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-792)) (-5 *1 (-744 *3 *4 *5)) (-4 *3 (-745 *4 *5))))) +(-10 -8 (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -1424 (|#1|)) (-15 -3005 ((-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4040 ((-710 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -2060 ((-3 |#1| "failed") (-420 |#3|))) (-15 -4463 (|#1| |#3|)) (-15 -2060 (|#1| |#3|)) (-15 -2343 (|#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -4463 (|#3| |#1|)) (-15 -4463 (|#1| (-1297 |#2|))) (-15 -4463 ((-1297 |#2|) |#1|)) (-15 -2104 ((-1297 |#1|))) (-15 -2932 (|#3| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 105 (|has| |#1| (-375)) ELT)) (-2261 (($ $) 106 (|has| |#1| (-375)) ELT)) (-2538 (((-112) $) 108 (|has| |#1| (-375)) ELT)) (-2901 (((-710 |#1|) (-1297 $)) 53 T ELT) (((-710 |#1|)) 68 T ELT)) (-2318 ((|#1| $) 59 T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) 158 (|has| |#1| (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 125 (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) 126 (|has| |#1| (-375)) ELT)) (-2495 (((-112) $ $) 116 (|has| |#1| (-375)) ELT)) (-3005 (((-792)) 99 (|has| |#1| (-380)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3783 (((-577) $) 184 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 182 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 181 T ELT)) (-2385 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)) ELT)) (-3531 (($ $ $) 120 (|has| |#1| (-375)) ELT)) (-3921 (((-710 |#1|) $ (-1297 $)) 60 T ELT) (((-710 |#1|) $) 66 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 177 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 176 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 175 T ELT) (((-710 |#1|) (-710 $)) 174 T ELT)) (-2060 (($ |#2|) 169 T ELT) (((-3 $ "failed") (-420 |#2|)) 166 (|has| |#1| (-375)) ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1641 (((-949)) 61 T ELT)) (-1424 (($) 102 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) 119 (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 114 (|has| |#1| (-375)) ELT)) (-2213 (($) 160 (|has| |#1| (-361)) ELT)) (-3275 (((-112) $) 161 (|has| |#1| (-361)) ELT)) (-3987 (($ $ (-792)) 152 (|has| |#1| (-361)) ELT) (($ $) 151 (|has| |#1| (-361)) ELT)) (-3567 (((-112) $) 127 (|has| |#1| (-375)) ELT)) (-4030 (((-949) $) 163 (|has| |#1| (-361)) ELT) (((-854 (-949)) $) 149 (|has| |#1| (-361)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-2794 ((|#1| $) 58 T ELT)) (-2004 (((-3 $ "failed") $) 153 (|has| |#1| (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 123 (|has| |#1| (-375)) ELT)) (-2346 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-2686 (((-949) $) 101 (|has| |#1| (-380)) ELT)) (-2047 ((|#2| $) 167 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 179 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 178 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-710 |#1|) (-1297 $)) 172 T ELT)) (-3606 (($ (-665 $)) 112 (|has| |#1| (-375)) ELT) (($ $ $) 111 (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 128 (|has| |#1| (-375)) ELT)) (-2443 (($) 154 (|has| |#1| (-361)) CONST)) (-3354 (($ (-949)) 100 (|has| |#1| (-380)) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2343 (($) 171 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 113 (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) 110 (|has| |#1| (-375)) ELT) (($ $ $) 109 (|has| |#1| (-375)) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) 157 (|has| |#1| (-361)) ELT)) (-3759 (((-431 $) $) 124 (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 121 (|has| |#1| (-375)) ELT)) (-3574 (((-3 $ "failed") $ $) 104 (|has| |#1| (-375)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 115 (|has| |#1| (-375)) ELT)) (-4081 (((-792) $) 117 (|has| |#1| (-375)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 118 (|has| |#1| (-375)) ELT)) (-3846 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-3038 (((-792) $) 162 (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) 150 (|has| |#1| (-361)) ELT)) (-3641 (($ $ (-792)) 147 (-2867 (-2790 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) 145 (-2867 (-2790 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 141 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206) (-792)) 140 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206))) 139 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206)) 137 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) 135 (|has| |#1| (-375)) ELT)) (-4040 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)) ELT)) (-4263 ((|#2|) 170 T ELT)) (-3475 (($) 159 (|has| |#1| (-361)) ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-710 |#1|) (-1297 $)) 72 T ELT)) (-4463 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) ((|#2| $) 186 T ELT) (($ |#2|) 168 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 156 (|has| |#1| (-361)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ $) 103 (|has| |#1| (-375)) ELT) (($ (-420 (-577))) 98 (-2867 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2708 (($ $) 155 (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-2932 ((|#2| $) 52 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2104 (((-1297 $)) 74 T ELT)) (-4124 (((-112) $ $) 107 (|has| |#1| (-375)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-792)) 148 (-2867 (-2790 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) 146 (-2867 (-2790 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 144 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206) (-792)) 143 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206))) 142 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206)) 138 (-2790 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) 133 (|has| |#1| (-375)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 132 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 129 (|has| |#1| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-375)) ELT))) +(((-745 |#1| |#2|) (-141) (-174) (-1273 |t#1|)) (T -745)) +((-2343 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-745 *2 *3)) (-4 *3 (-1273 *2)))) (-4263 (*1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) (-2060 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) (-4463 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) (-2047 (*1 *2 *1) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) (-2060 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-375)) (-4 *3 (-174)) (-4 *1 (-745 *3 *4)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-4 *1 (-745 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1273 *5)) (-5 *2 (-710 *5))))) +(-13 (-422 |t#1| |t#2|) (-174) (-632 |t#2|) (-424 |t#1|) (-389 |t#1|) (-10 -8 (-15 -2343 ($)) (-15 -4263 (|t#2|)) (-15 -2060 ($ |t#2|)) (-15 -4463 ($ |t#2|)) (-15 -2047 (|t#2| $)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-375)) (-6 (-233 |t#1|)) (-15 -2060 ((-3 $ "failed") (-420 |t#2|))) (-15 -4040 ((-710 |t#1|) (-1297 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-102) . T) ((-111 #0# #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2867 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) . T) ((-632 |#2|) . T) ((-235 $) -2867 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-233 |#1|) |has| |#1| (-375)) ((-239) -2867 (|has| |#1| (-361)) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-238) -2867 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-273 |#1|) |has| |#1| (-375)) ((-249) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-301) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-318) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-375) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2867 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-569) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-667 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-661 |#1|) . T) ((-661 $) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-738 |#1|) . T) ((-738 $) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))))) ((-926 (-1206)) -12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -2867 (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))))) ((-948) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) -2867 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-361)) ((-1247) . T) ((-1251) -2867 (|has| |#1| (-361)) (|has| |#1| (-375)))) +((-2305 (($) 11 T ELT)) (-3167 (((-3 $ "failed") $) 14 T ELT)) (-3357 (((-112) $) 10 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 20 T ELT))) +(((-746 |#1|) (-10 -8 (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 -3357 ((-112) |#1|)) (-15 -2305 (|#1|)) (-15 ** (|#1| |#1| (-949)))) (-747)) (T -746)) +NIL +(-10 -8 (-15 -3167 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 -3357 ((-112) |#1|)) (-15 -2305 (|#1|)) (-15 ** (|#1| |#1| (-949)))) +((-3586 (((-112) $ $) 7 T ELT)) (-2305 (($) 19 T CONST)) (-3167 (((-3 $ "failed") $) 16 T ELT)) (-3357 (((-112) $) 18 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2853 (($) 20 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT)) (* (($ $ $) 15 T ELT))) +(((-747) (-141)) (T -747)) +((-2853 (*1 *1) (-4 *1 (-747))) (-2305 (*1 *1) (-4 *1 (-747))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-747)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-747)) (-5 *2 (-792)))) (-3167 (*1 *1 *1) (|partial| -4 *1 (-747)))) +(-13 (-1142) (-10 -8 (-15 (-2853) ($) -4212) (-15 -2305 ($) -4212) (-15 -3357 ((-112) $)) (-15 ** ($ $ (-792))) (-15 -3167 ((-3 $ "failed") $)))) +(((-102) . T) ((-631 (-885)) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-1898 (((-2 (|:| -4437 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-4452 (((-2 (|:| -4437 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2021 ((|#2| (-420 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-4267 (((-2 (|:| |poly| |#2|) (|:| -4437 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-748 |#1| |#2|) (-10 -7 (-15 -4452 ((-2 (|:| -4437 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1898 ((-2 (|:| -4437 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2021 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -4267 ((-2 (|:| |poly| |#2|) (|:| -4437 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1273 |#1|)) (T -748)) +((-4267 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4437 (-420 *6)) (|:| |special| (-420 *6)))) (-5 *1 (-748 *5 *6)) (-5 *3 (-420 *6)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-748 *5 *2)) (-4 *5 (-375)))) (-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -4437 (-431 *3)) (|:| |special| (-431 *3)))) (-5 *1 (-748 *5 *3)))) (-4452 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -4437 *3) (|:| |special| *3))) (-5 *1 (-748 *5 *3))))) +(-10 -7 (-15 -4452 ((-2 (|:| -4437 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1898 ((-2 (|:| -4437 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2021 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -4267 ((-2 (|:| |poly| |#2|) (|:| -4437 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) +((-3853 ((|#7| (-665 |#5|) |#6|) NIL T ELT)) (-4417 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-749 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4417 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3853 (|#7| (-665 |#5|) |#6|))) (-870) (-814) (-814) (-1079) (-1079) (-977 |#4| |#2| |#1|) (-977 |#5| |#3| |#1|)) (T -749)) +((-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *9)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *8 (-1079)) (-4 *2 (-977 *9 *7 *5)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) (-4 *4 (-977 *8 *6 *5)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1079)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *2 (-977 *9 *7 *5)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) (-4 *4 (-977 *8 *6 *5))))) +(-10 -7 (-15 -4417 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3853 (|#7| (-665 |#5|) |#6|))) +((-4417 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-750 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4417 (|#7| (-1 |#2| |#1|) |#6|))) (-870) (-870) (-814) (-814) (-1079) (-977 |#5| |#3| |#1|) (-977 |#5| |#4| |#2|)) (T -750)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-870)) (-4 *6 (-870)) (-4 *7 (-814)) (-4 *9 (-1079)) (-4 *2 (-977 *9 *8 *6)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-814)) (-4 *4 (-977 *9 *7 *5))))) +(-10 -7 (-15 -4417 (|#7| (-1 |#2| |#1|) |#6|))) +((-3759 (((-431 |#4|) |#4|) 42 T ELT))) +(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 ((-431 |#4|) |#4|))) (-814) (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206))))) (-318) (-977 (-980 |#3|) |#1| |#2|)) (T -751)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206)))))) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-977 (-980 *6) *4 *5))))) +(-10 -7 (-15 -3759 ((-431 |#4|) |#4|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-887 |#1|)) $) NIL T ELT)) (-3732 (((-1202 $) $ (-887 |#1|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3868 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4365 (($ $ |#2| (-544 (-887 |#1|)) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-3882 (($ (-1202 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1202 $) (-887 |#1|)) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#2| (-544 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-887 |#1|)) NIL T ELT)) (-4340 (((-544 (-887 |#1|)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4329 (($ (-1 (-544 (-887 |#1|)) (-544 (-887 |#1|))) $) NIL T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3946 (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#2| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) NIL T ELT)) (-3846 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3641 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-1597 (((-544 (-887 |#1|)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2407 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-569)) ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-544 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-752 |#1| |#2|) (-977 |#2| (-544 (-887 |#1|)) (-887 |#1|)) (-665 (-1206)) (-1079)) (T -752)) +NIL +(-977 |#2| (-544 (-887 |#1|)) (-887 |#1|)) +((-3379 (((-2 (|:| -4208 (-980 |#3|)) (|:| -3847 (-980 |#3|))) |#4|) 14 T ELT)) (-2063 ((|#4| |#4| |#2|) 33 T ELT)) (-3989 ((|#4| (-420 (-980 |#3|)) |#2|) 64 T ELT)) (-1650 ((|#4| (-1202 (-980 |#3|)) |#2|) 77 T ELT)) (-3169 ((|#4| (-1202 |#4|) |#2|) 51 T ELT)) (-2558 ((|#4| |#4| |#2|) 54 T ELT)) (-3759 (((-431 |#4|) |#4|) 40 T ELT))) +(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3379 ((-2 (|:| -4208 (-980 |#3|)) (|:| -3847 (-980 |#3|))) |#4|)) (-15 -2558 (|#4| |#4| |#2|)) (-15 -3169 (|#4| (-1202 |#4|) |#2|)) (-15 -2063 (|#4| |#4| |#2|)) (-15 -1650 (|#4| (-1202 (-980 |#3|)) |#2|)) (-15 -3989 (|#4| (-420 (-980 |#3|)) |#2|)) (-15 -3759 ((-431 |#4|) |#4|))) (-814) (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)))) (-569) (-977 (-420 (-980 |#3|)) |#1| |#2|)) (T -753)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *6 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-977 (-420 (-980 *6)) *4 *5)))) (-3989 (*1 *2 *3 *4) (-12 (-4 *6 (-569)) (-4 *2 (-977 *3 *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) (-5 *3 (-420 (-980 *6))) (-4 *5 (-814)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))))) (-1650 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 (-980 *6))) (-4 *6 (-569)) (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) (-4 *5 (-814)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))))) (-2063 (*1 *2 *2 *3) (-12 (-4 *4 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *5 (-569)) (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) (-3169 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *2)) (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) (-4 *5 (-814)) (-4 *4 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *6 (-569)))) (-2558 (*1 *2 *2 *3) (-12 (-4 *4 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *5 (-569)) (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) (-3379 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *6 (-569)) (-5 *2 (-2 (|:| -4208 (-980 *6)) (|:| -3847 (-980 *6)))) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-977 (-420 (-980 *6)) *4 *5))))) +(-10 -7 (-15 -3379 ((-2 (|:| -4208 (-980 |#3|)) (|:| -3847 (-980 |#3|))) |#4|)) (-15 -2558 (|#4| |#4| |#2|)) (-15 -3169 (|#4| (-1202 |#4|) |#2|)) (-15 -2063 (|#4| |#4| |#2|)) (-15 -1650 (|#4| (-1202 (-980 |#3|)) |#2|)) (-15 -3989 (|#4| (-420 (-980 |#3|)) |#2|)) (-15 -3759 ((-431 |#4|) |#4|))) +((-3759 (((-431 |#4|) |#4|) 54 T ELT))) +(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 ((-431 |#4|) |#4|))) (-814) (-870) (-13 (-318) (-148)) (-977 (-420 |#3|) |#1| |#2|)) (T -754)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-977 (-420 *6) *4 *5))))) +(-10 -7 (-15 -3759 ((-431 |#4|) |#4|))) +((-4417 (((-756 |#2| |#3|) (-1 |#2| |#1|) (-756 |#1| |#3|)) 18 T ELT))) +(((-755 |#1| |#2| |#3|) (-10 -7 (-15 -4417 ((-756 |#2| |#3|) (-1 |#2| |#1|) (-756 |#1| |#3|)))) (-1079) (-1079) (-747)) (T -755)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5 *7)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-747)) (-5 *2 (-756 *6 *7)) (-5 *1 (-755 *5 *6 *7))))) +(-10 -7 (-15 -4417 ((-756 |#2| |#3|) (-1 |#2| |#1|) (-756 |#1| |#3|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 36 T ELT)) (-2072 (((-665 (-2 (|:| -4473 |#1|) (|:| -3305 |#2|))) $) 37 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3005 (((-792)) 22 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) 76 T ELT) (((-3 |#1| "failed") $) 79 T ELT)) (-3783 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4048 (($ $) 102 (|has| |#2| (-870)) ELT)) (-3167 (((-3 $ "failed") $) 85 T ELT)) (-1424 (($) 48 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) 70 T ELT)) (-2102 (((-665 $) $) 52 T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| |#2|) 17 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2686 (((-949) $) 43 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-4014 ((|#2| $) 101 (|has| |#2| (-870)) ELT)) (-4025 ((|#1| $) 100 (|has| |#2| (-870)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) 35 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 99 T ELT) (($ (-577)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-665 (-2 (|:| -4473 |#1|) (|:| -3305 |#2|)))) 11 T ELT)) (-4343 (((-665 |#1|) $) 54 T ELT)) (-4171 ((|#1| $ |#2|) 115 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 12 T CONST)) (-2853 (($) 44 T CONST)) (-3018 (((-112) $ $) 105 T ELT)) (-3128 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 33 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 66 T ELT) (($ $ $) 118 T ELT) (($ |#1| $) 63 (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) +(((-756 |#1| |#2|) (-13 (-1079) (-1068 |#2|) (-1068 |#1|) (-10 -8 (-15 -3872 ($ |#1| |#2|)) (-15 -4171 (|#1| $ |#2|)) (-15 -3709 ($ (-665 (-2 (|:| -4473 |#1|) (|:| -3305 |#2|))))) (-15 -2072 ((-665 (-2 (|:| -4473 |#1|) (|:| -3305 |#2|))) $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (-15 -2696 ((-112) $)) (-15 -4343 ((-665 |#1|) $)) (-15 -2102 ((-665 $) $)) (-15 -2662 ((-792) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-870)) (PROGN (-15 -4014 (|#2| $)) (-15 -4025 (|#1| $)) (-15 -4048 ($ $))) |%noBranch|))) (-1079) (-747)) (T -756)) +((-3872 (*1 *1 *2 *3) (-12 (-5 *1 (-756 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-747)))) (-4171 (*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-747)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -4473 *3) (|:| -3305 *4)))) (-4 *3 (-1079)) (-4 *4 (-747)) (-5 *1 (-756 *3 *4)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -4473 *3) (|:| -3305 *4)))) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-756 *3 *4)) (-4 *4 (-747)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-665 (-756 *3 *4))) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-4014 (*1 *2 *1) (-12 (-4 *2 (-747)) (-4 *2 (-870)) (-5 *1 (-756 *3 *2)) (-4 *3 (-1079)))) (-4025 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) (-4 *3 (-747)))) (-4048 (*1 *1 *1) (-12 (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) (-4 *2 (-1079)) (-4 *3 (-747))))) +(-13 (-1079) (-1068 |#2|) (-1068 |#1|) (-10 -8 (-15 -3872 ($ |#1| |#2|)) (-15 -4171 (|#1| $ |#2|)) (-15 -3709 ($ (-665 (-2 (|:| -4473 |#1|) (|:| -3305 |#2|))))) (-15 -2072 ((-665 (-2 (|:| -4473 |#1|) (|:| -3305 |#2|))) $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (-15 -2696 ((-112) $)) (-15 -4343 ((-665 |#1|) $)) (-15 -2102 ((-665 $) $)) (-15 -2662 ((-792) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-870)) (PROGN (-15 -4014 (|#2| $)) (-15 -4025 (|#1| $)) (-15 -4048 ($ $))) |%noBranch|))) +((-3586 (((-112) $ $) 20 T ELT)) (-1931 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-2481 (($ $ $) 73 T ELT)) (-2710 (((-112) $ $) 74 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2181 (($ (-665 |#1|)) 69 T ELT) (($) 68 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2697 (($ $) 63 T ELT)) (-3589 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2049 (((-112) $ $) 65 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 T ELT)) (-1565 (($ $ $) 70 T ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT) (($ |#1| $ (-792)) 64 T ELT)) (-1470 (((-1150) $) 22 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2762 (((-665 (-2 (|:| -2727 |#1|) (|:| -1481 (-792)))) $) 62 T ELT)) (-3165 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 51 T ELT)) (-3709 (((-885) $) 18 T ELT)) (-3823 (($ (-665 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2643 (((-112) $ $) 21 T ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 T ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-757 |#1|) (-141) (-1130)) (T -757)) +NIL +(-13 (-716 |t#1|) (-1128 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-716 |#1|) . T) ((-1128 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-1931 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 92 T ELT)) (-2481 (($ $ $) 96 T ELT)) (-2710 (((-112) $ $) 104 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2181 (($ (-665 |#1|)) 26 T ELT) (($) 17 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2697 (($ $) 85 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) 70 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT) (($ |#1| $ (-577)) 75 T ELT) (($ (-1 (-112) |#1|) $ (-577)) 78 T ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $ (-577)) 80 T ELT) (($ (-1 (-112) |#1|) $ (-577)) 81 T ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 32 (|has| $ (-6 -4499)) ELT)) (-2049 (((-112) $ $) 103 T ELT)) (-3803 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-665 |#1|)) 23 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) 38 T ELT)) (-3519 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1565 (($ $ $) 94 T ELT)) (-2786 ((|#1| $) 62 T ELT)) (-4375 (($ |#1| $) 63 T ELT) (($ |#1| $ (-792)) 86 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3205 ((|#1| $) 61 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 56 T ELT)) (-2833 (($) 14 T ELT)) (-2762 (((-665 (-2 (|:| -2727 |#1|) (|:| -1481 (-792)))) $) 55 T ELT)) (-3165 (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3470 (($) 16 T ELT) (($ (-665 |#1|)) 25 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 68 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 79 T ELT)) (-4463 (((-549) $) 36 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 22 T ELT)) (-3709 (((-885) $) 49 T ELT)) (-3823 (($ (-665 |#1|)) 27 T ELT) (($) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3886 (($ (-665 |#1|)) 24 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 100 T ELT)) (-3600 (((-792) $) 67 (|has| $ (-6 -4499)) ELT))) +(((-758 |#1|) (-13 (-757 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3803 ($)) (-15 -3803 ($ |#1|)) (-15 -3803 ($ (-665 |#1|))) (-15 -2152 ((-665 |#1|) $)) (-15 -4004 ($ |#1| $ (-577))) (-15 -4004 ($ (-1 (-112) |#1|) $ (-577))) (-15 -1894 ($ |#1| $ (-577))) (-15 -1894 ($ (-1 (-112) |#1|) $ (-577))))) (-1130)) (T -758)) +((-3803 (*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-758 *3)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1130)))) (-4004 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-4004 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) (-5 *1 (-758 *4)))) (-1894 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-1894 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) (-5 *1 (-758 *4))))) +(-13 (-757 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3803 ($)) (-15 -3803 ($ |#1|)) (-15 -3803 ($ (-665 |#1|))) (-15 -2152 ((-665 |#1|) $)) (-15 -4004 ($ |#1| $ (-577))) (-15 -4004 ($ (-1 (-112) |#1|) $ (-577))) (-15 -1894 ($ |#1| $ (-577))) (-15 -1894 ($ (-1 (-112) |#1|) $ (-577))))) +((-4406 (((-1302) (-1188)) 8 T ELT))) +(((-759) (-10 -7 (-15 -4406 ((-1302) (-1188))))) (T -759)) +((-4406 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-759))))) +(-10 -7 (-15 -4406 ((-1302) (-1188)))) +((-2351 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 15 T ELT))) +(((-760 |#1|) (-10 -7 (-15 -2351 ((-665 |#1|) (-665 |#1|) (-665 |#1|)))) (-870)) (T -760)) +((-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-760 *3))))) +(-10 -7 (-15 -2351 ((-665 |#1|) (-665 |#1|) (-665 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 |#2|) $) 149 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 142 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 141 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 139 (|has| |#1| (-569)) ELT)) (-1660 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3770 (($ $) 80 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1638 (($ $) 97 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1682 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 83 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) 18 T CONST)) (-4048 (($ $) 133 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2498 (((-980 |#1|) $ (-792)) 111 T ELT) (((-980 |#1|) $ (-792) (-792)) 110 T ELT)) (-1655 (((-112) $) 150 T ELT)) (-2450 (($) 108 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-792) $ |#2|) 113 T ELT) (((-792) $ |#2| (-792)) 112 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 79 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2696 (((-112) $) 131 T ELT)) (-3872 (($ $ (-665 |#2|) (-665 (-544 |#2|))) 148 T ELT) (($ $ |#2| (-544 |#2|)) 147 T ELT) (($ |#1| (-544 |#2|)) 132 T ELT) (($ $ |#2| (-792)) 115 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 114 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 130 T ELT)) (-3825 (($ $) 105 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) 128 T ELT)) (-4025 ((|#1| $) 127 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1869 (($ $ |#2|) 109 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2568 (($ $ (-792)) 116 T ELT)) (-3574 (((-3 $ "failed") $ $) 143 (|has| |#1| (-569)) ELT)) (-2355 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (($ $ |#2| $) 124 T ELT) (($ $ (-665 |#2|) (-665 $)) 123 T ELT) (($ $ (-665 (-305 $))) 122 T ELT) (($ $ (-305 $)) 121 T ELT) (($ $ $ $) 120 T ELT) (($ $ (-665 $) (-665 $)) 119 T ELT)) (-3641 (($ $ (-665 |#2|) (-665 (-792))) 44 T ELT) (($ $ |#2| (-792)) 43 T ELT) (($ $ (-665 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-1597 (((-544 |#2|) $) 129 T ELT)) (-1692 (($ $) 95 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 84 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 85 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 93 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 86 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 151 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 146 (|has| |#1| (-174)) ELT) (($ $) 144 (|has| |#1| (-569)) ELT) (($ (-420 (-577))) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4171 ((|#1| $ (-544 |#2|)) 134 T ELT) (($ $ |#2| (-792)) 118 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 117 T ELT)) (-2708 (((-3 $ "failed") $) 145 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-1727 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) 140 (|has| |#1| (-569)) ELT)) (-1703 (($ $) 103 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 91 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4468 (($ $) 101 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 89 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 99 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 87 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-665 |#2|) (-665 (-792))) 47 T ELT) (($ $ |#2| (-792)) 46 T ELT) (($ $ (-665 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 135 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ $) 107 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 78 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 138 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 126 T ELT) (($ $ |#1|) 125 T ELT))) +(((-761 |#1| |#2|) (-141) (-1079) (-870)) (T -761)) +((-4171 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) (-4171 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-2568 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-761 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-870)))) (-3872 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) (-3872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *2 (-792)))) (-4030 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-792)) (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) (-5 *2 (-980 *4)))) (-2498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) (-5 *2 (-980 *4)))) (-1869 (*1 *1 *1 *2) (-12 (-4 *1 (-761 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)) (-4 *3 (-38 (-420 (-577))))))) +(-13 (-926 |t#2|) (-1003 |t#1| (-544 |t#2|) |t#2|) (-527 |t#2| $) (-320 $) (-10 -8 (-15 -4171 ($ $ |t#2| (-792))) (-15 -4171 ($ $ (-665 |t#2|) (-665 (-792)))) (-15 -2568 ($ $ (-792))) (-15 -3872 ($ $ |t#2| (-792))) (-15 -3872 ($ $ (-665 |t#2|) (-665 (-792)))) (-15 -4030 ((-792) $ |t#2|)) (-15 -4030 ((-792) $ |t#2| (-792))) (-15 -2498 ((-980 |t#1|) $ (-792))) (-15 -2498 ((-980 |t#1|) $ (-792) (-792))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $ |t#2|)) (-6 (-1032)) (-6 (-1232))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-544 |#2|)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-301) |has| |#1| (-569)) ((-320 $) . T) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 |#2| $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-667 #1#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #1#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-920 $ |#2|) . T) ((-926 |#2|) . T) ((-928 |#2|) . T) ((-1003 |#1| #0# |#2|) . T) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T)) +((-3759 (((-431 (-1202 |#4|)) (-1202 |#4|)) 30 T ELT) (((-431 |#4|) |#4|) 26 T ELT))) +(((-762 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 ((-431 |#4|) |#4|)) (-15 -3759 ((-431 (-1202 |#4|)) (-1202 |#4|)))) (-870) (-814) (-13 (-318) (-148)) (-977 |#3| |#2| |#1|)) (T -762)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) +(-10 -7 (-15 -3759 ((-431 |#4|) |#4|)) (-15 -3759 ((-431 (-1202 |#4|)) (-1202 |#4|)))) +((-2291 (((-431 |#4|) |#4| |#2|) 140 T ELT)) (-4305 (((-431 |#4|) |#4|) NIL T ELT)) (-3206 (((-431 (-1202 |#4|)) (-1202 |#4|)) 127 T ELT) (((-431 |#4|) |#4|) 52 T ELT)) (-2457 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-665 (-2 (|:| -3759 (-1202 |#4|)) (|:| -2328 (-577)))))) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|))) 81 T ELT)) (-2903 (((-1202 |#3|) (-1202 |#3|) (-577)) 166 T ELT)) (-1635 (((-665 (-792)) (-1202 |#4|) (-665 |#2|) (-792)) 75 T ELT)) (-2047 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-1202 |#3|) (-1202 |#3|) |#4| (-665 |#2|) (-665 (-792)) (-665 |#3|)) 79 T ELT)) (-2046 (((-2 (|:| |upol| (-1202 |#3|)) (|:| |Lval| (-665 |#3|)) (|:| |Lfact| (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577))))) (|:| |ctpol| |#3|)) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|))) 27 T ELT)) (-2804 (((-2 (|:| -4181 (-1202 |#4|)) (|:| |polval| (-1202 |#3|))) (-1202 |#4|) (-1202 |#3|) (-577)) 72 T ELT)) (-3858 (((-577) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577))))) 162 T ELT)) (-3758 ((|#4| (-577) (-431 |#4|)) 73 T ELT)) (-1751 (((-112) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577)))) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577))))) NIL T ELT))) +(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3206 ((-431 |#4|) |#4|)) (-15 -3206 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -4305 ((-431 |#4|) |#4|)) (-15 -3858 ((-577) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577)))))) (-15 -2291 ((-431 |#4|) |#4| |#2|)) (-15 -2804 ((-2 (|:| -4181 (-1202 |#4|)) (|:| |polval| (-1202 |#3|))) (-1202 |#4|) (-1202 |#3|) (-577))) (-15 -2457 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-665 (-2 (|:| -3759 (-1202 |#4|)) (|:| -2328 (-577)))))) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -2046 ((-2 (|:| |upol| (-1202 |#3|)) (|:| |Lval| (-665 |#3|)) (|:| |Lfact| (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577))))) (|:| |ctpol| |#3|)) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -3758 (|#4| (-577) (-431 |#4|))) (-15 -1751 ((-112) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577)))) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577)))))) (-15 -2047 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-1202 |#3|) (-1202 |#3|) |#4| (-665 |#2|) (-665 (-792)) (-665 |#3|))) (-15 -1635 ((-665 (-792)) (-1202 |#4|) (-665 |#2|) (-792))) (-15 -2903 ((-1202 |#3|) (-1202 |#3|) (-577)))) (-814) (-870) (-318) (-977 |#3| |#1| |#2|)) (T -763)) +((-2903 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-4 *7 (-870)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-4 *8 (-318)) (-5 *2 (-665 (-792))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *5 (-792)))) (-2047 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1202 *11)) (-5 *6 (-665 *10)) (-5 *7 (-665 (-792))) (-5 *8 (-665 *11)) (-4 *10 (-870)) (-4 *11 (-318)) (-4 *9 (-814)) (-4 *5 (-977 *11 *9 *10)) (-5 *2 (-665 (-1202 *5))) (-5 *1 (-763 *9 *10 *11 *5)) (-5 *3 (-1202 *5)))) (-1751 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-2 (|:| -3759 (-1202 *6)) (|:| -2328 (-577))))) (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-977 *7 *5 *6)) (-5 *1 (-763 *5 *6 *7 *2)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-318)))) (-2046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) (-4 *7 (-870)) (-4 *8 (-318)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 (-2 (|:| |upol| (-1202 *8)) (|:| |Lval| (-665 *8)) (|:| |Lfact| (-665 (-2 (|:| -3759 (-1202 *8)) (|:| -2328 (-577))))) (|:| |ctpol| *8))) (-5 *1 (-763 *6 *7 *8 *9)))) (-2457 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) (-4 *7 (-870)) (-4 *8 (-318)) (-4 *6 (-814)) (-4 *9 (-977 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-665 (-2 (|:| -3759 (-1202 *9)) (|:| -2328 (-577))))))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9)))) (-2804 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-577)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-318)) (-4 *9 (-977 *8 *6 *7)) (-5 *2 (-2 (|:| -4181 (-1202 *9)) (|:| |polval| (-1202 *8)))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9)) (-5 *4 (-1202 *8)))) (-2291 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-763 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) (-3858 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3759 (-1202 *6)) (|:| -2328 (-577))))) (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-4305 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5)))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5))))) +(-10 -7 (-15 -3206 ((-431 |#4|) |#4|)) (-15 -3206 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -4305 ((-431 |#4|) |#4|)) (-15 -3858 ((-577) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577)))))) (-15 -2291 ((-431 |#4|) |#4| |#2|)) (-15 -2804 ((-2 (|:| -4181 (-1202 |#4|)) (|:| |polval| (-1202 |#3|))) (-1202 |#4|) (-1202 |#3|) (-577))) (-15 -2457 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-665 (-2 (|:| -3759 (-1202 |#4|)) (|:| -2328 (-577)))))) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -2046 ((-2 (|:| |upol| (-1202 |#3|)) (|:| |Lval| (-665 |#3|)) (|:| |Lfact| (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577))))) (|:| |ctpol| |#3|)) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -3758 (|#4| (-577) (-431 |#4|))) (-15 -1751 ((-112) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577)))) (-665 (-2 (|:| -3759 (-1202 |#3|)) (|:| -2328 (-577)))))) (-15 -2047 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-1202 |#3|) (-1202 |#3|) |#4| (-665 |#2|) (-665 (-792)) (-665 |#3|))) (-15 -1635 ((-665 (-792)) (-1202 |#4|) (-665 |#2|) (-792))) (-15 -2903 ((-1202 |#3|) (-1202 |#3|) (-577)))) +((-2510 (($ $ (-949)) 17 T ELT))) +(((-764 |#1| |#2|) (-10 -8 (-15 -2510 (|#1| |#1| (-949)))) (-765 |#2|) (-174)) (T -764)) +NIL +(-10 -8 (-15 -2510 (|#1| |#1| (-949)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3712 (($ $ (-949)) 31 T ELT)) (-2510 (($ $ (-949)) 38 T ELT)) (-3744 (($ $ (-949)) 32 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2486 (($ $ $) 28 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2032 (($ $ $ $) 29 T ELT)) (-1793 (($ $ $) 27 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) +(((-765 |#1|) (-141) (-174)) (T -765)) +((-2510 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-765 *3)) (-4 *3 (-174))))) +(-13 (-782) (-738 |t#1|) (-10 -8 (-15 -2510 ($ $ (-949))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-741) . T) ((-782) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3253 (((-1065) (-710 (-228)) (-577) (-112) (-577)) 25 T ELT)) (-3286 (((-1065) (-710 (-228)) (-577) (-112) (-577)) 24 T ELT))) +(((-766) (-10 -7 (-15 -3286 ((-1065) (-710 (-228)) (-577) (-112) (-577))) (-15 -3253 ((-1065) (-710 (-228)) (-577) (-112) (-577))))) (T -766)) +((-3253 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-766)))) (-3286 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-766))))) +(-10 -7 (-15 -3286 ((-1065) (-710 (-228)) (-577) (-112) (-577))) (-15 -3253 ((-1065) (-710 (-228)) (-577) (-112) (-577)))) +((-1910 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2402 (((-1065) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-4127 (((-1065) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) 32 T ELT))) +(((-767) (-10 -7 (-15 -4127 ((-1065) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2402 ((-1065) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -1910 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN))))))) (T -767)) +((-1910 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2402 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-4127 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) (-5 *2 (-1065)) (-5 *1 (-767))))) +(-10 -7 (-15 -4127 ((-1065) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2402 ((-1065) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -1910 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))))) +((-3670 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 34 T ELT)) (-4260 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 33 T ELT)) (-4309 (((-1065) (-577) (-710 (-228)) (-577)) 32 T ELT)) (-3420 (((-1065) (-577) (-710 (-228)) (-577)) 31 T ELT)) (-1596 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 30 T ELT)) (-3375 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 29 T ELT)) (-2384 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577)) 28 T ELT)) (-1404 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577)) 27 T ELT)) (-1460 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 24 T ELT)) (-2570 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577)) 23 T ELT)) (-3443 (((-1065) (-577) (-710 (-228)) (-577)) 22 T ELT)) (-3582 (((-1065) (-577) (-710 (-228)) (-577)) 21 T ELT))) +(((-768) (-10 -7 (-15 -3582 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -3443 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -2570 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1460 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1404 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2384 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3375 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1596 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3420 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -4309 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -4260 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -3670 ((-1065) (-577) (-577) (-710 (-228)) (-577))))) (T -768)) +((-3670 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-4260 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-4309 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3420 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-1596 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3375 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2384 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-1404 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-1460 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2570 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3443 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3582 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768))))) +(-10 -7 (-15 -3582 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -3443 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -2570 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1460 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1404 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2384 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3375 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1596 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3420 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -4309 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -4260 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -3670 ((-1065) (-577) (-577) (-710 (-228)) (-577)))) +((-4041 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 52 T ELT)) (-2610 (((-1065) (-710 (-228)) (-710 (-228)) (-577) (-577)) 51 T ELT)) (-3892 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 50 T ELT)) (-2376 (((-1065) (-228) (-228) (-577) (-577) (-577) (-577)) 46 T ELT)) (-1637 (((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 45 T ELT)) (-2719 (((-1065) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 44 T ELT)) (-4368 (((-1065) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 43 T ELT)) (-4044 (((-1065) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 42 T ELT)) (-2220 (((-1065) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) 38 T ELT)) (-2883 (((-1065) (-228) (-228) (-577) (-710 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) 37 T ELT)) (-2808 (((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) 33 T ELT)) (-2724 (((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) 32 T ELT))) +(((-769) (-10 -7 (-15 -2724 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2808 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2883 ((-1065) (-228) (-228) (-577) (-710 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2220 ((-1065) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -4044 ((-1065) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -4368 ((-1065) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2719 ((-1065) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -1637 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2376 ((-1065) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -3892 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -2610 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-577))) (-15 -4041 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))))) (T -769)) +((-4041 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2610 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-3892 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2376 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-1637 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2719 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-4368 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-4044 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2220 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2883 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2808 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2724 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) (-5 *2 (-1065)) (-5 *1 (-769))))) +(-10 -7 (-15 -2724 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2808 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2883 ((-1065) (-228) (-228) (-577) (-710 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -2220 ((-1065) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057))))) (-15 -4044 ((-1065) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -4368 ((-1065) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2719 ((-1065) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -1637 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2376 ((-1065) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -3892 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -2610 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-577))) (-15 -4041 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))))) +((-1405 (((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76 T ELT)) (-2963 (((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401)) 69 T ELT) (((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) 68 T ELT)) (-3462 (((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) 57 T ELT)) (-3262 (((-1065) (-710 (-228)) (-710 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 50 T ELT)) (-3698 (((-1065) (-228) (-577) (-577) (-1188) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 49 T ELT)) (-1820 (((-1065) (-228) (-577) (-577) (-228) (-1188) (-228) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 45 T ELT)) (-3924 (((-1065) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 42 T ELT)) (-3003 (((-1065) (-228) (-577) (-577) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 38 T ELT))) +(((-770) (-10 -7 (-15 -3003 ((-1065) (-228) (-577) (-577) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3924 ((-1065) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -1820 ((-1065) (-228) (-577) (-577) (-228) (-1188) (-228) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3698 ((-1065) (-228) (-577) (-577) (-1188) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3262 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -3462 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -2963 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -2963 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -1405 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -770)) +((-1405 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-2963 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-401)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-2963 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3462 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3262 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3698 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-1820 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3924 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3003 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) +(-10 -7 (-15 -3003 ((-1065) (-228) (-577) (-577) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3924 ((-1065) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -1820 ((-1065) (-228) (-577) (-577) (-228) (-1188) (-228) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3698 ((-1065) (-228) (-577) (-577) (-1188) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3262 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -3462 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -2963 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -2963 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -1405 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3458 (((-1065) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-696 (-228)) (-577)) 45 T ELT)) (-1712 (((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1188) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) 41 T ELT)) (-3943 (((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 23 T ELT))) +(((-771) (-10 -7 (-15 -3943 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1712 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1188) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -3458 ((-1065) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-696 (-228)) (-577))))) (T -771)) +((-3458 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-696 (-228))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-771)))) (-1712 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1065)) (-5 *1 (-771)))) (-3943 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-771))))) +(-10 -7 (-15 -3943 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1712 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1188) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -3458 ((-1065) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-696 (-228)) (-577)))) +((-2925 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-710 (-228)) (-228) (-228) (-577)) 35 T ELT)) (-1569 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-228) (-228) (-577)) 34 T ELT)) (-2734 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-710 (-228)) (-228) (-228) (-577)) 33 T ELT)) (-4164 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 29 T ELT)) (-2293 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 28 T ELT)) (-3314 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577)) 27 T ELT)) (-2678 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577)) 24 T ELT)) (-4049 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577)) 23 T ELT)) (-2479 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577)) 22 T ELT)) (-2323 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)) 21 T ELT))) +(((-772) (-10 -7 (-15 -2323 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -2479 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4049 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -2678 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -3314 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577))) (-15 -2293 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4164 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2734 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-710 (-228)) (-228) (-228) (-577))) (-15 -1569 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -2925 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-710 (-228)) (-228) (-228) (-577))))) (T -772)) +((-2925 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-1569 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2734 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-4164 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2293 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-3314 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2678 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-4049 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2479 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-2323 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772))))) +(-10 -7 (-15 -2323 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -2479 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4049 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -2678 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -3314 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577))) (-15 -2293 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4164 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2734 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-710 (-228)) (-228) (-228) (-577))) (-15 -1569 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -2925 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-710 (-228)) (-228) (-228) (-577)))) +((-2811 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)) 45 T ELT)) (-2844 (((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-577)) 44 T ELT)) (-1704 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)) 43 T ELT)) (-1906 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 42 T ELT)) (-3637 (((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577)) 41 T ELT)) (-1568 (((-1065) (-1188) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577)) 40 T ELT)) (-2851 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577) (-577) (-577) (-228) (-710 (-228)) (-577)) 39 T ELT)) (-2115 (((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577))) 38 T ELT)) (-4332 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577)) 35 T ELT)) (-2204 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577)) 34 T ELT)) (-1810 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577)) 33 T ELT)) (-2888 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 32 T ELT)) (-1482 (((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577)) 31 T ELT)) (-2837 (((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-577)) 30 T ELT)) (-3011 (((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-577) (-577) (-577)) 29 T ELT)) (-2675 (((-1065) (-577) (-577) (-577) (-228) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-577)) (-577) (-577) (-577)) 28 T ELT)) (-4416 (((-1065) (-577) (-710 (-228)) (-228) (-577)) 24 T ELT)) (-2989 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 21 T ELT))) +(((-773) (-10 -7 (-15 -2989 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4416 ((-1065) (-577) (-710 (-228)) (-228) (-577))) (-15 -2675 ((-1065) (-577) (-577) (-577) (-228) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-577)) (-577) (-577) (-577))) (-15 -3011 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -2837 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -1482 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577))) (-15 -2888 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1810 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577))) (-15 -2204 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577))) (-15 -4332 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2115 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)))) (-15 -2851 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577) (-577) (-577) (-228) (-710 (-228)) (-577))) (-15 -1568 ((-1065) (-1188) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -3637 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1906 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1704 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -2844 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2811 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))))) (T -773)) +((-2811 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2844 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1704 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1906 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-3637 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1568 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2851 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2115 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-4332 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2204 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1810 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2888 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1482 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2837 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-3011 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2675 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-4416 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2989 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773))))) +(-10 -7 (-15 -2989 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4416 ((-1065) (-577) (-710 (-228)) (-228) (-577))) (-15 -2675 ((-1065) (-577) (-577) (-577) (-228) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-577)) (-577) (-577) (-577))) (-15 -3011 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -2837 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -1482 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577))) (-15 -2888 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1810 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577))) (-15 -2204 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577))) (-15 -4332 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2115 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)))) (-15 -2851 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577) (-577) (-577) (-228) (-710 (-228)) (-577))) (-15 -1568 ((-1065) (-1188) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -3637 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1906 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1704 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -2844 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2811 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)))) +((-3176 (((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-577) (-710 (-228)) (-577)) 63 T ELT)) (-1522 (((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 62 T ELT)) (-3399 (((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-112) (-112) (-577) (-577) (-710 (-228)) (-710 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) 58 T ELT)) (-2441 (((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-577) (-577) (-710 (-228)) (-577)) 51 T ELT)) (-3690 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) 50 T ELT)) (-2433 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) 46 T ELT)) (-4276 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) 42 T ELT)) (-3302 (((-1065) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 38 T ELT))) +(((-774) (-10 -7 (-15 -3302 ((-1065) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -4276 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -2433 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -3690 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -2441 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-577) (-577) (-710 (-228)) (-577))) (-15 -3399 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-112) (-112) (-577) (-577) (-710 (-228)) (-710 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -1522 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -3176 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-577) (-710 (-228)) (-577))))) (T -774)) +((-3176 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-1522 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-710 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3399 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-710 (-228))) (-5 *6 (-112)) (-5 *7 (-710 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2441 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3690 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-2433 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-4276 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3302 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774))))) +(-10 -7 (-15 -3302 ((-1065) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -4276 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -2433 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -3690 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -2441 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-577) (-577) (-710 (-228)) (-577))) (-15 -3399 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-112) (-112) (-577) (-577) (-710 (-228)) (-710 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -1522 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -3176 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-577) (-710 (-228)) (-577)))) +((-1842 (((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)) 47 T ELT)) (-3056 (((-1065) (-1188) (-1188) (-577) (-577) (-710 (-171 (-228))) (-577) (-710 (-171 (-228))) (-577) (-577) (-710 (-171 (-228))) (-577)) 46 T ELT)) (-1723 (((-1065) (-577) (-577) (-577) (-710 (-171 (-228))) (-577)) 45 T ELT)) (-3301 (((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 40 T ELT)) (-3721 (((-1065) (-1188) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)) (-577)) 39 T ELT)) (-3544 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-577)) 36 T ELT)) (-3072 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577)) 35 T ELT)) (-2752 (((-1065) (-577) (-577) (-577) (-577) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-228) (-228) (-577)) 34 T ELT)) (-3358 (((-1065) (-577) (-577) (-577) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-112) (-228) (-112) (-710 (-577)) (-710 (-228)) (-577)) 33 T ELT)) (-1384 (((-1065) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-577)) 32 T ELT))) +(((-775) (-10 -7 (-15 -1384 ((-1065) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-577))) (-15 -3358 ((-1065) (-577) (-577) (-577) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-112) (-228) (-112) (-710 (-577)) (-710 (-228)) (-577))) (-15 -2752 ((-1065) (-577) (-577) (-577) (-577) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-228) (-228) (-577))) (-15 -3072 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577))) (-15 -3544 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -3721 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)) (-577))) (-15 -3301 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1723 ((-1065) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -3056 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-171 (-228))) (-577) (-710 (-171 (-228))) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -1842 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577))))) (T -775)) +((-1842 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-3056 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-1723 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-3301 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-3721 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-3544 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-3072 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2752 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-665 (-112))) (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-3358 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-710 (-577))) (-5 *5 (-112)) (-5 *7 (-710 (-228))) (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-1384 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-665 (-112))) (-5 *7 (-710 (-228))) (-5 *8 (-710 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-775))))) +(-10 -7 (-15 -1384 ((-1065) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-577))) (-15 -3358 ((-1065) (-577) (-577) (-577) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-112) (-228) (-112) (-710 (-577)) (-710 (-228)) (-577))) (-15 -2752 ((-1065) (-577) (-577) (-577) (-577) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-228) (-228) (-577))) (-15 -3072 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577))) (-15 -3544 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -3721 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)) (-577))) (-15 -3301 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1723 ((-1065) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -3056 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-171 (-228))) (-577) (-710 (-171 (-228))) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -1842 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)))) +((-3246 (((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)) 79 T ELT)) (-1598 (((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577)) 68 T ELT)) (-3513 (((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401)) 56 T ELT) (((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-1543 (((-1065) (-577) (-577) (-577) (-228) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577)) 37 T ELT)) (-3238 (((-1065) (-577) (-577) (-228) (-228) (-577) (-577) (-710 (-228)) (-577)) 33 T ELT)) (-3500 (((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577) (-577)) 30 T ELT)) (-2603 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 29 T ELT)) (-2137 (((-1065) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 28 T ELT)) (-4407 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 27 T ELT)) (-2068 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577)) 26 T ELT)) (-2144 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 25 T ELT)) (-1803 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 24 T ELT)) (-3346 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 23 T ELT)) (-1640 (((-1065) (-710 (-228)) (-577) (-577) (-577) (-577)) 22 T ELT)) (-2534 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 21 T ELT))) +(((-776) (-10 -7 (-15 -2534 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -1640 ((-1065) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -3346 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1803 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2144 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -2068 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -4407 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2137 ((-1065) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2603 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3500 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -3238 ((-1065) (-577) (-577) (-228) (-228) (-577) (-577) (-710 (-228)) (-577))) (-15 -1543 ((-1065) (-577) (-577) (-577) (-228) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3513 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -3513 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -1598 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3246 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577))))) (T -776)) +((-3246 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-1598 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-3513 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-3513 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-1543 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-3238 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-3500 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2603 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2137 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-4407 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2068 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2144 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-1803 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-3346 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-1640 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2534 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776))))) +(-10 -7 (-15 -2534 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -1640 ((-1065) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -3346 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1803 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2144 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -2068 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -4407 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2137 ((-1065) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2603 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3500 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -3238 ((-1065) (-577) (-577) (-228) (-228) (-577) (-577) (-710 (-228)) (-577))) (-15 -1543 ((-1065) (-577) (-577) (-577) (-228) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3513 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -3513 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -1598 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3246 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)))) +((-2253 (((-1065) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-2742 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577)) 60 T ELT)) (-1515 (((-1065) (-577) (-710 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-1558 (((-1065) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577)) 37 T ELT)) (-3522 (((-1065) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-577)) 36 T ELT)) (-1573 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 33 T ELT)) (-3543 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228))) 32 T ELT)) (-2864 (((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577)) 28 T ELT)) (-1589 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577)) 27 T ELT)) (-3021 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577)) 26 T ELT)) (-3525 (((-1065) (-577) (-710 (-171 (-228))) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-577)) 22 T ELT))) +(((-777) (-10 -7 (-15 -3525 ((-1065) (-577) (-710 (-171 (-228))) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -3021 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -1589 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -2864 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577))) (-15 -3543 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)))) (-15 -1573 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3522 ((-1065) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1558 ((-1065) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -1515 ((-1065) (-577) (-710 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -2742 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -2253 ((-1065) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD))))))) (T -777)) +((-2253 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2742 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-1515 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-1558 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-3522 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-1573 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-3543 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2864 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-1589 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-3021 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-3525 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-777))))) +(-10 -7 (-15 -3525 ((-1065) (-577) (-710 (-171 (-228))) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -3021 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -1589 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -2864 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577))) (-15 -3543 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)))) (-15 -1573 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3522 ((-1065) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1558 ((-1065) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -1515 ((-1065) (-577) (-710 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -2742 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -2253 ((-1065) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))))) +((-2681 (((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-577) (-710 (-228))) 29 T ELT)) (-1512 (((-1065) (-1188) (-577) (-577) (-710 (-228))) 28 T ELT)) (-3291 (((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-228))) 27 T ELT)) (-2934 (((-1065) (-577) (-577) (-577) (-710 (-228))) 21 T ELT))) +(((-778) (-10 -7 (-15 -2934 ((-1065) (-577) (-577) (-577) (-710 (-228)))) (-15 -3291 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-228)))) (-15 -1512 ((-1065) (-1188) (-577) (-577) (-710 (-228)))) (-15 -2681 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)))))) (T -778)) +((-2681 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-778)))) (-1512 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-778)))) (-3291 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2934 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-778))))) +(-10 -7 (-15 -2934 ((-1065) (-577) (-577) (-577) (-710 (-228)))) (-15 -3291 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-228)))) (-15 -1512 ((-1065) (-1188) (-577) (-577) (-710 (-228)))) (-15 -2681 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-577) (-710 (-228))))) +((-4422 (((-1065) (-228) (-228) (-228) (-228) (-577)) 62 T ELT)) (-2911 (((-1065) (-228) (-228) (-228) (-577)) 61 T ELT)) (-2140 (((-1065) (-228) (-228) (-228) (-577)) 60 T ELT)) (-1663 (((-1065) (-228) (-228) (-577)) 59 T ELT)) (-2778 (((-1065) (-228) (-577)) 58 T ELT)) (-2784 (((-1065) (-228) (-577)) 57 T ELT)) (-1835 (((-1065) (-228) (-577)) 56 T ELT)) (-1409 (((-1065) (-228) (-577)) 55 T ELT)) (-3287 (((-1065) (-228) (-577)) 54 T ELT)) (-3636 (((-1065) (-228) (-577)) 53 T ELT)) (-2584 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 52 T ELT)) (-1827 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 51 T ELT)) (-1620 (((-1065) (-228) (-577)) 50 T ELT)) (-2672 (((-1065) (-228) (-577)) 49 T ELT)) (-1453 (((-1065) (-228) (-577)) 48 T ELT)) (-2111 (((-1065) (-228) (-577)) 47 T ELT)) (-3688 (((-1065) (-577) (-228) (-171 (-228)) (-577) (-1188) (-577)) 46 T ELT)) (-2653 (((-1065) (-1188) (-171 (-228)) (-1188) (-577)) 45 T ELT)) (-4227 (((-1065) (-1188) (-171 (-228)) (-1188) (-577)) 44 T ELT)) (-3516 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 43 T ELT)) (-1755 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 42 T ELT)) (-2394 (((-1065) (-228) (-577)) 39 T ELT)) (-1431 (((-1065) (-228) (-577)) 38 T ELT)) (-3786 (((-1065) (-228) (-577)) 37 T ELT)) (-3561 (((-1065) (-228) (-577)) 36 T ELT)) (-2522 (((-1065) (-228) (-577)) 35 T ELT)) (-3940 (((-1065) (-228) (-577)) 34 T ELT)) (-3806 (((-1065) (-228) (-577)) 33 T ELT)) (-3166 (((-1065) (-228) (-577)) 32 T ELT)) (-1866 (((-1065) (-228) (-577)) 31 T ELT)) (-3832 (((-1065) (-228) (-577)) 30 T ELT)) (-3553 (((-1065) (-228) (-228) (-228) (-577)) 29 T ELT)) (-3307 (((-1065) (-228) (-577)) 28 T ELT)) (-3934 (((-1065) (-228) (-577)) 27 T ELT)) (-1987 (((-1065) (-228) (-577)) 26 T ELT)) (-2197 (((-1065) (-228) (-577)) 25 T ELT)) (-1812 (((-1065) (-228) (-577)) 24 T ELT)) (-2295 (((-1065) (-171 (-228)) (-577)) 21 T ELT))) +(((-779) (-10 -7 (-15 -2295 ((-1065) (-171 (-228)) (-577))) (-15 -1812 ((-1065) (-228) (-577))) (-15 -2197 ((-1065) (-228) (-577))) (-15 -1987 ((-1065) (-228) (-577))) (-15 -3934 ((-1065) (-228) (-577))) (-15 -3307 ((-1065) (-228) (-577))) (-15 -3553 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3832 ((-1065) (-228) (-577))) (-15 -1866 ((-1065) (-228) (-577))) (-15 -3166 ((-1065) (-228) (-577))) (-15 -3806 ((-1065) (-228) (-577))) (-15 -3940 ((-1065) (-228) (-577))) (-15 -2522 ((-1065) (-228) (-577))) (-15 -3561 ((-1065) (-228) (-577))) (-15 -3786 ((-1065) (-228) (-577))) (-15 -1431 ((-1065) (-228) (-577))) (-15 -2394 ((-1065) (-228) (-577))) (-15 -1755 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -3516 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -4227 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -2653 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -3688 ((-1065) (-577) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2111 ((-1065) (-228) (-577))) (-15 -1453 ((-1065) (-228) (-577))) (-15 -2672 ((-1065) (-228) (-577))) (-15 -1620 ((-1065) (-228) (-577))) (-15 -1827 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2584 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -3636 ((-1065) (-228) (-577))) (-15 -3287 ((-1065) (-228) (-577))) (-15 -1409 ((-1065) (-228) (-577))) (-15 -1835 ((-1065) (-228) (-577))) (-15 -2784 ((-1065) (-228) (-577))) (-15 -2778 ((-1065) (-228) (-577))) (-15 -1663 ((-1065) (-228) (-228) (-577))) (-15 -2140 ((-1065) (-228) (-228) (-228) (-577))) (-15 -2911 ((-1065) (-228) (-228) (-228) (-577))) (-15 -4422 ((-1065) (-228) (-228) (-228) (-228) (-577))))) (T -779)) +((-4422 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2911 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2140 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1663 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3636 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2584 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1827 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1453 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3688 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1188)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2653 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-4227 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3516 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1755 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3786 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3166 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3553 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3307 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1987 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(-10 -7 (-15 -2295 ((-1065) (-171 (-228)) (-577))) (-15 -1812 ((-1065) (-228) (-577))) (-15 -2197 ((-1065) (-228) (-577))) (-15 -1987 ((-1065) (-228) (-577))) (-15 -3934 ((-1065) (-228) (-577))) (-15 -3307 ((-1065) (-228) (-577))) (-15 -3553 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3832 ((-1065) (-228) (-577))) (-15 -1866 ((-1065) (-228) (-577))) (-15 -3166 ((-1065) (-228) (-577))) (-15 -3806 ((-1065) (-228) (-577))) (-15 -3940 ((-1065) (-228) (-577))) (-15 -2522 ((-1065) (-228) (-577))) (-15 -3561 ((-1065) (-228) (-577))) (-15 -3786 ((-1065) (-228) (-577))) (-15 -1431 ((-1065) (-228) (-577))) (-15 -2394 ((-1065) (-228) (-577))) (-15 -1755 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -3516 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -4227 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -2653 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -3688 ((-1065) (-577) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2111 ((-1065) (-228) (-577))) (-15 -1453 ((-1065) (-228) (-577))) (-15 -2672 ((-1065) (-228) (-577))) (-15 -1620 ((-1065) (-228) (-577))) (-15 -1827 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2584 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -3636 ((-1065) (-228) (-577))) (-15 -3287 ((-1065) (-228) (-577))) (-15 -1409 ((-1065) (-228) (-577))) (-15 -1835 ((-1065) (-228) (-577))) (-15 -2784 ((-1065) (-228) (-577))) (-15 -2778 ((-1065) (-228) (-577))) (-15 -1663 ((-1065) (-228) (-228) (-577))) (-15 -2140 ((-1065) (-228) (-228) (-228) (-577))) (-15 -2911 ((-1065) (-228) (-228) (-228) (-577))) (-15 -4422 ((-1065) (-228) (-228) (-228) (-228) (-577)))) +((-3913 (((-1302)) 20 T ELT)) (-3034 (((-1188)) 34 T ELT)) (-2011 (((-1188)) 33 T ELT)) (-1362 (((-1134) (-1206) (-710 (-577))) 47 T ELT) (((-1134) (-1206) (-710 (-228))) 43 T ELT)) (-2339 (((-112)) 19 T ELT)) (-1419 (((-1188) (-1188)) 37 T ELT))) +(((-780) (-10 -7 (-15 -2011 ((-1188))) (-15 -3034 ((-1188))) (-15 -1419 ((-1188) (-1188))) (-15 -1362 ((-1134) (-1206) (-710 (-228)))) (-15 -1362 ((-1134) (-1206) (-710 (-577)))) (-15 -2339 ((-112))) (-15 -3913 ((-1302))))) (T -780)) +((-3913 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-780)))) (-2339 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-780)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-577))) (-5 *2 (-1134)) (-5 *1 (-780)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-228))) (-5 *2 (-1134)) (-5 *1 (-780)))) (-1419 (*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780)))) (-3034 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780)))) (-2011 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) +(-10 -7 (-15 -2011 ((-1188))) (-15 -3034 ((-1188))) (-15 -1419 ((-1188) (-1188))) (-15 -1362 ((-1134) (-1206) (-710 (-228)))) (-15 -1362 ((-1134) (-1206) (-710 (-577)))) (-15 -2339 ((-112))) (-15 -3913 ((-1302)))) +((-2486 (($ $ $) 10 T ELT)) (-2032 (($ $ $ $) 9 T ELT)) (-1793 (($ $ $) 12 T ELT))) +(((-781 |#1|) (-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -2032 (|#1| |#1| |#1| |#1|))) (-782)) (T -781)) +NIL +(-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1| |#1|)) (-15 -2032 (|#1| |#1| |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3712 (($ $ (-949)) 31 T ELT)) (-3744 (($ $ (-949)) 32 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2486 (($ $ $) 28 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2032 (($ $ $ $) 29 T ELT)) (-1793 (($ $ $) 27 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT))) +(((-782) (-141)) (T -782)) +((-2032 (*1 *1 *1 *1 *1) (-4 *1 (-782))) (-2486 (*1 *1 *1 *1) (-4 *1 (-782))) (-1793 (*1 *1 *1 *1) (-4 *1 (-782)))) +(-13 (-21) (-741) (-10 -8 (-15 -2032 ($ $ $ $)) (-15 -2486 ($ $ $)) (-15 -1793 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-741) . T) ((-1130) . T) ((-1247) . T)) +((-3709 (((-885) $) NIL T ELT) (($ (-577)) 10 T ELT))) +(((-783 |#1|) (-10 -8 (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-784)) (T -783)) +NIL +(-10 -8 (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3252 (((-3 $ "failed") $) 43 T ELT)) (-3712 (($ $ (-949)) 31 T ELT) (($ $ (-792)) 38 T ELT)) (-3167 (((-3 $ "failed") $) 41 T ELT)) (-3357 (((-112) $) 37 T ELT)) (-3535 (((-3 $ "failed") $) 42 T ELT)) (-3744 (($ $ (-949)) 32 T ELT) (($ $ (-792)) 39 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2486 (($ $ $) 28 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 34 T ELT)) (-3331 (((-792)) 35 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2032 (($ $ $ $) 29 T ELT)) (-1793 (($ $ $) 27 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 36 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-792)) 40 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT))) +(((-784) (-141)) (T -784)) +((-3331 (*1 *2) (-12 (-4 *1 (-784)) (-5 *2 (-792)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-784))))) +(-13 (-782) (-743) (-10 -8 (-15 -3331 ((-792)) -4212) (-15 -3709 ($ (-577))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-741) . T) ((-743) . T) ((-782) . T) ((-1130) . T) ((-1247) . T)) +((-2242 (((-665 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 |#1|)))))) (-710 (-171 (-420 (-577)))) |#1|) 33 T ELT)) (-4447 (((-665 (-171 |#1|)) (-710 (-171 (-420 (-577)))) |#1|) 23 T ELT)) (-2932 (((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))) (-1206)) 20 T ELT) (((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577))))) 19 T ELT))) +(((-785 |#1|) (-10 -7 (-15 -2932 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))))) (-15 -2932 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))) (-1206))) (-15 -4447 ((-665 (-171 |#1|)) (-710 (-171 (-420 (-577)))) |#1|)) (-15 -2242 ((-665 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 |#1|)))))) (-710 (-171 (-420 (-577)))) |#1|))) (-13 (-375) (-869))) (T -785)) +((-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-665 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 *4))))))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869))))) (-4447 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *4 (-1206)) (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *5)) (-4 *5 (-13 (-375) (-869))))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869)))))) +(-10 -7 (-15 -2932 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))))) (-15 -2932 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))) (-1206))) (-15 -4447 ((-665 (-171 |#1|)) (-710 (-171 (-420 (-577)))) |#1|)) (-15 -2242 ((-665 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 |#1|)))))) (-710 (-171 (-420 (-577)))) |#1|))) +((-2979 (((-176 (-577)) |#1|) 27 T ELT))) +(((-786 |#1|) (-10 -7 (-15 -2979 ((-176 (-577)) |#1|))) (-417)) (T -786)) +((-2979 (*1 *2 *3) (-12 (-5 *2 (-176 (-577))) (-5 *1 (-786 *3)) (-4 *3 (-417))))) +(-10 -7 (-15 -2979 ((-176 (-577)) |#1|))) +((-2502 ((|#1| |#1| |#1|) 28 T ELT)) (-3928 ((|#1| |#1| |#1|) 27 T ELT)) (-2168 ((|#1| |#1| |#1|) 38 T ELT)) (-3070 ((|#1| |#1| |#1|) 34 T ELT)) (-2915 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-3992 (((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|) 26 T ELT))) +(((-787 |#1| |#2|) (-10 -7 (-15 -3992 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -2915 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| |#1|))) (-729 |#2|) (-375)) (T -787)) +((-2168 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-3070 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-2915 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-2502 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-3928 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-3992 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-787 *3 *4)) (-4 *3 (-729 *4))))) +(-10 -7 (-15 -3992 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -2915 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2168 (|#1| |#1| |#1|))) +((-1904 (((-712 (-1255)) $ (-1255)) 26 T ELT)) (-2082 (((-712 (-562)) $ (-562)) 25 T ELT)) (-2209 (((-792) $ (-129)) 27 T ELT)) (-3970 (((-712 (-130)) $ (-130)) 24 T ELT)) (-1954 (((-712 (-1255)) $) 12 T ELT)) (-2336 (((-712 (-1253)) $) 8 T ELT)) (-2666 (((-712 (-1252)) $) 10 T ELT)) (-3772 (((-712 (-562)) $) 13 T ELT)) (-1870 (((-712 (-560)) $) 9 T ELT)) (-1504 (((-712 (-559)) $) 11 T ELT)) (-4074 (((-792) $ (-129)) 7 T ELT)) (-1554 (((-712 (-130)) $) 14 T ELT)) (-2913 (((-112) $) 31 T ELT)) (-4050 (((-712 $) |#1| (-982)) 32 T ELT)) (-2823 (($ $) 6 T ELT))) +(((-788 |#1|) (-141) (-1130)) (T -788)) +((-4050 (*1 *2 *3 *4) (-12 (-5 *4 (-982)) (-4 *3 (-1130)) (-5 *2 (-712 *1)) (-4 *1 (-788 *3)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(-13 (-589) (-10 -8 (-15 -4050 ((-712 $) |t#1| (-982))) (-15 -2913 ((-112) $)))) +(((-175) . T) ((-540) . T) ((-589) . T) ((-883) . T)) +((-2387 (((-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))) (-577)) 71 T ELT)) (-2787 (((-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577))))) 69 T ELT)) (-3846 (((-577)) 85 T ELT))) +(((-789 |#1| |#2|) (-10 -7 (-15 -3846 ((-577))) (-15 -2787 ((-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))))) (-15 -2387 ((-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))) (-577)))) (-1273 (-577)) (-422 (-577) |#1|)) (T -789)) +((-2387 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-789 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2787 (*1 *2) (-12 (-4 *3 (-1273 (-577))) (-5 *2 (-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577))))) (-5 *1 (-789 *3 *4)) (-4 *4 (-422 (-577) *3)))) (-3846 (*1 *2) (-12 (-4 *3 (-1273 *2)) (-5 *2 (-577)) (-5 *1 (-789 *3 *4)) (-4 *4 (-422 *2 *3))))) +(-10 -7 (-15 -3846 ((-577))) (-15 -2787 ((-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))))) (-15 -2387 ((-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))) (-577)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3783 (((-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $) 21 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 13 T ELT) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-790) (-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3709 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3709 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -3783 ((-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $))))) (T -790)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-790)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-790)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-790)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-790))))) +(-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3709 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3709 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -3783 ((-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $)))) +((-3047 (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))) 18 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206))) 17 T ELT)) (-2205 (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))) 20 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206))) 19 T ELT))) +(((-791 |#1|) (-10 -7 (-15 -3047 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -3047 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))))) (-569)) (T -791)) +((-2205 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5))))) +(-10 -7 (-15 -3047 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -3047 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4208 (($ $ $) 10 T ELT)) (-2478 (((-3 $ "failed") $ $) 15 T ELT)) (-4387 (($ $ (-577)) 11 T ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($ $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3642 (($ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 6 T CONST)) (-2853 (($) NIL T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-792) (-13 (-814) (-747) (-10 -8 (-15 -3541 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3642 ($ $ $)) (-15 -3372 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -3574 ((-3 $ "failed") $ $)) (-15 -4387 ($ $ (-577))) (-15 -1424 ($ $)) (-6 (-4501 "*"))))) (T -792)) +((-3541 (*1 *1 *1 *1) (-5 *1 (-792))) (-3531 (*1 *1 *1 *1) (-5 *1 (-792))) (-3642 (*1 *1 *1 *1) (-5 *1 (-792))) (-3372 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2203 (-792)) (|:| -2519 (-792)))) (-5 *1 (-792)))) (-3574 (*1 *1 *1 *1) (|partial| -5 *1 (-792))) (-4387 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-792)))) (-1424 (*1 *1 *1) (-5 *1 (-792)))) +(-13 (-814) (-747) (-10 -8 (-15 -3541 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3642 ($ $ $)) (-15 -3372 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -3574 ((-3 $ "failed") $ $)) (-15 -4387 ($ $ (-577))) (-15 -1424 ($ $)) (-6 (-4501 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-2773 (((-3 |#2| "failed") |#2| |#2| (-115) (-1201)) 37 T ELT))) -(((-788 |#1| |#2|) (-10 -7 (-15 -2773 ((-3 |#2| "failed") |#2| |#2| (-115) (-1201)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982))) (T -788)) -((-2773 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-788 *5 *2)) (-4 *2 (-13 (-29 *5) (-1227) (-982)))))) -(-10 -7 (-15 -2773 ((-3 |#2| "failed") |#2| |#2| (-115) (-1201)))) -((-3603 (((-790) |#1|) 8 T ELT))) -(((-789 |#1|) (-10 -7 (-15 -3603 ((-790) |#1|))) (-1242)) (T -789)) -((-3603 (*1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-789 *3)) (-4 *3 (-1242))))) -(-10 -7 (-15 -3603 ((-790) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 7 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 9 T ELT))) -(((-790) (-1125)) (T -790)) -NIL -(-1125) -((-4021 ((|#2| |#4|) 35 T ELT))) -(((-791 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4021 (|#2| |#4|))) (-465) (-1268 |#1|) (-740 |#1| |#2|) (-1268 |#3|)) (T -791)) -((-4021 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-740 *4 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-791 *4 *2 *5 *3)) (-4 *3 (-1268 *5))))) -(-10 -7 (-15 -4021 (|#2| |#4|))) -((-1625 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-3850 (((-1297) (-1183) (-1183) |#4| |#5|) 33 T ELT)) (-3317 ((|#4| |#4| |#5|) 74 T ELT)) (-2030 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|) 79 T ELT)) (-2572 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|) 16 T ELT))) -(((-792 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3317 (|#4| |#4| |#5|)) (-15 -2030 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3850 ((-1297) (-1183) (-1183) |#4| |#5|)) (-15 -2572 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -792)) -((-2572 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3850 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1183)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *4 (-1090 *6 *7 *8)) (-5 *2 (-1297)) (-5 *1 (-792 *6 *7 *8 *4 *5)) (-4 *5 (-1096 *6 *7 *8 *4)))) (-2030 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3317 (*1 *2 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *2 (-1090 *4 *5 *6)) (-5 *1 (-792 *4 *5 *6 *2 *3)) (-4 *3 (-1096 *4 *5 *6 *2)))) (-1625 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(-10 -7 (-15 -1625 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3317 (|#4| |#4| |#5|)) (-15 -2030 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3850 ((-1297) (-1183) (-1183) |#4| |#5|)) (-15 -2572 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|))) -((-2784 (((-3 (-1197 (-1197 |#1|)) "failed") |#4|) 51 T ELT)) (-2222 (((-660 |#4|) |#4|) 22 T ELT)) (-1427 ((|#4| |#4|) 17 T ELT))) -(((-793 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2222 ((-660 |#4|) |#4|)) (-15 -2784 ((-3 (-1197 (-1197 |#1|)) "failed") |#4|)) (-15 -1427 (|#4| |#4|))) (-361) (-340 |#1|) (-1268 |#2|) (-1268 |#3|) (-944)) (T -793)) -((-1427 (*1 *2 *2) (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1268 *4)) (-5 *1 (-793 *3 *4 *5 *2 *6)) (-4 *2 (-1268 *5)) (-14 *6 (-944)))) (-2784 (*1 *2 *3) (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) (-5 *2 (-1197 (-1197 *4))) (-5 *1 (-793 *4 *5 *6 *3 *7)) (-4 *3 (-1268 *6)) (-14 *7 (-944)))) (-2222 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) (-5 *2 (-660 *3)) (-5 *1 (-793 *4 *5 *6 *3 *7)) (-4 *3 (-1268 *6)) (-14 *7 (-944))))) -(-10 -7 (-15 -2222 ((-660 |#4|) |#4|)) (-15 -2784 ((-3 (-1197 (-1197 |#1|)) "failed") |#4|)) (-15 -1427 (|#4| |#4|))) -((-2076 (((-2 (|:| |deter| (-660 (-1197 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1197 |#5|) (-660 |#1|) (-660 |#5|)) 72 T ELT)) (-4030 (((-660 (-787)) |#1|) 20 T ELT))) -(((-794 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2076 ((-2 (|:| |deter| (-660 (-1197 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1197 |#5|) (-660 |#1|) (-660 |#5|))) (-15 -4030 ((-660 (-787)) |#1|))) (-1268 |#4|) (-809) (-865) (-318) (-972 |#4| |#2| |#3|)) (T -794)) -((-4030 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-660 (-787))) (-5 *1 (-794 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *6)) (-4 *7 (-972 *6 *4 *5)))) (-2076 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1268 *9)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-318)) (-4 *10 (-972 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-660 (-1197 *10))) (|:| |dterm| (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| *10))))) (|:| |nfacts| (-660 *6)) (|:| |nlead| (-660 *10)))) (-5 *1 (-794 *6 *7 *8 *9 *10)) (-5 *3 (-1197 *10)) (-5 *4 (-660 *6)) (-5 *5 (-660 *10))))) -(-10 -7 (-15 -2076 ((-2 (|:| |deter| (-660 (-1197 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1197 |#5|) (-660 |#1|) (-660 |#5|))) (-15 -4030 ((-660 (-787)) |#1|))) -((-3842 (((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#1|))))) (-705 (-420 (-577))) |#1|) 31 T ELT)) (-2271 (((-660 |#1|) (-705 (-420 (-577))) |#1|) 21 T ELT)) (-2600 (((-975 (-420 (-577))) (-705 (-420 (-577))) (-1201)) 18 T ELT) (((-975 (-420 (-577))) (-705 (-420 (-577)))) 17 T ELT))) -(((-795 |#1|) (-10 -7 (-15 -2600 ((-975 (-420 (-577))) (-705 (-420 (-577))))) (-15 -2600 ((-975 (-420 (-577))) (-705 (-420 (-577))) (-1201))) (-15 -2271 ((-660 |#1|) (-705 (-420 (-577))) |#1|)) (-15 -3842 ((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#1|))))) (-705 (-420 (-577))) |#1|))) (-13 (-375) (-864))) (T -795)) -((-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-660 (-2 (|:| |outval| *4) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 *4)))))) (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864))))) (-2271 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864))))) (-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *4 (-1201)) (-5 *2 (-975 (-420 (-577)))) (-5 *1 (-795 *5)) (-4 *5 (-13 (-375) (-864))))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-975 (-420 (-577)))) (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864)))))) -(-10 -7 (-15 -2600 ((-975 (-420 (-577))) (-705 (-420 (-577))))) (-15 -2600 ((-975 (-420 (-577))) (-705 (-420 (-577))) (-1201))) (-15 -2271 ((-660 |#1|) (-705 (-420 (-577))) |#1|)) (-15 -3842 ((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#1|))))) (-705 (-420 (-577))) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 36 T ELT)) (-3206 (((-660 |#2|) $) NIL T ELT)) (-3024 (((-1197 $) $ |#2|) NIL T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 |#2|)) NIL T ELT)) (-3063 (($ $) 30 T ELT)) (-1556 (((-112) $ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4072 (($ $ $) 110 (|has| |#1| (-569)) ELT)) (-2522 (((-660 $) $ $) 123 (|has| |#1| (-569)) ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 $ "failed") (-975 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201)))) ELT) (((-3 $ "failed") (-975 (-577))) NIL (-2811 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))))) ELT) (((-3 $ "failed") (-975 |#1|)) NIL (-2811 (-12 (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-38 (-420 (-577))))) (-2686 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-38 (-420 (-577))))) (-2686 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-1017 (-577)))))) ELT) (((-3 (-1150 |#1| |#2|) "failed") $) 21 T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) ((|#2| $) NIL T ELT) (($ (-975 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201)))) ELT) (($ (-975 (-577))) NIL (-2811 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))))) ELT) (($ (-975 |#1|)) NIL (-2811 (-12 (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-38 (-420 (-577))))) (-2686 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-38 (-420 (-577))))) (-2686 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-1017 (-577)))))) ELT) (((-1150 |#1| |#2|) $) NIL T ELT)) (-2653 (($ $ $ |#2|) NIL (|has| |#1| (-174)) ELT) (($ $ $) 121 (|has| |#1| (-569)) ELT)) (-3391 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-3165 (((-112) $ $) NIL T ELT) (((-112) $ (-660 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3889 (((-112) $) NIL T ELT)) (-2737 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 81 T ELT)) (-2651 (($ $) 136 (|has| |#1| (-465)) ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-1860 (($ $) NIL (|has| |#1| (-569)) ELT)) (-1755 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2918 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1842 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3367 (($ $ |#1| (-544 |#2|) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577)))) ELT)) (-3306 (((-112) $) 57 T ELT)) (-2011 (((-787) $) NIL T ELT)) (-1819 (((-112) $ $) NIL T ELT) (((-112) $ (-660 $)) NIL T ELT)) (-4351 (($ $ $ $ $) 107 (|has| |#1| (-569)) ELT)) (-1940 ((|#2| $) 22 T ELT)) (-3194 (($ (-1197 |#1|) |#2|) NIL T ELT) (($ (-1197 $) |#2|) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-544 |#2|)) NIL T ELT) (($ $ |#2| (-787)) 38 T ELT) (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT)) (-1442 (($ $ $) 63 T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |#2|) NIL T ELT)) (-3496 (((-112) $) NIL T ELT)) (-2643 (((-544 |#2|) $) NIL T ELT) (((-787) $ |#2|) NIL T ELT) (((-660 (-787)) $ (-660 |#2|)) NIL T ELT)) (-2180 (((-787) $) 23 T ELT)) (-4373 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4038 (((-3 |#2| "failed") $) NIL T ELT)) (-2709 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4398 (($ $) NIL (|has| |#1| (-465)) ELT)) (-1938 (((-660 $) $) NIL T ELT)) (-2302 (($ $) 39 T ELT)) (-4162 (($ $) NIL (|has| |#1| (-465)) ELT)) (-1729 (((-660 $) $) 43 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2777 (($ $) 41 T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2505 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2212 (-787))) $ $) 96 T ELT)) (-3054 (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $) 78 T ELT) (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $ |#2|) NIL T ELT)) (-2933 (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $) NIL T ELT) (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $ |#2|) NIL T ELT)) (-3415 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1710 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2048 (($ $ $) 125 (|has| |#1| (-569)) ELT)) (-1472 (((-660 $) $) 32 T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| |#2|) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-4233 (((-112) $ $) NIL T ELT) (((-112) $ (-660 $)) NIL T ELT)) (-1458 (($ $ $) NIL T ELT)) (-3457 (($ $) 24 T ELT)) (-2928 (((-112) $ $) NIL T ELT)) (-2870 (((-112) $ $) NIL T ELT) (((-112) $ (-660 $)) NIL T ELT)) (-2108 (($ $ $) NIL T ELT)) (-2515 (($ $) 26 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3685 (((-2 (|:| -3543 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-569)) ELT)) (-2183 (((-2 (|:| -3543 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-569)) ELT)) (-3327 (((-112) $) 56 T ELT)) (-3340 ((|#1| $) 58 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 ((|#1| |#1| $) 133 (|has| |#1| (-465)) ELT) (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-4144 (((-2 (|:| -3543 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-569)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-569)) ELT)) (-1488 (($ $ |#1|) 129 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3195 (($ $ |#1|) 128 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-660 |#2|) (-660 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-660 |#2|) (-660 $)) NIL T ELT)) (-4447 (($ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3616 (((-544 |#2|) $) NIL T ELT) (((-787) $ |#2|) 45 T ELT) (((-660 (-787)) $ (-660 |#2|)) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-1800 (($ $) 35 T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549)))) ELT) (($ (-975 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201)))) ELT) (($ (-975 (-577))) NIL (-2811 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2686 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))))) ELT) (($ (-975 |#1|)) NIL (|has| |#2| (-627 (-1201))) ELT) (((-1183) $) NIL (-12 (|has| |#1| (-1063 (-577))) (|has| |#2| (-627 (-1201)))) ELT) (((-975 |#1|) $) NIL (|has| |#2| (-627 (-1201))) ELT)) (-2240 ((|#1| $) 132 (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-975 |#1|) $) NIL (|has| |#2| (-627 (-1201))) ELT) (((-1150 |#1| |#2|) $) 18 T ELT) (($ (-1150 |#1| |#2|)) 19 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-544 |#2|)) NIL T ELT) (($ $ |#2| (-787)) 47 T ELT) (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) 13 T CONST)) (-3434 (((-3 (-112) "failed") $ $) NIL T ELT)) (-2767 (($) 37 T CONST)) (-2213 (($ $ $ $ (-787)) 105 (|has| |#1| (-569)) ELT)) (-3968 (($ $ $ (-787)) 104 (|has| |#1| (-569)) ELT)) (-2136 (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3031 (($ $ $) 85 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 70 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-796 |#1| |#2|) (-13 (-1090 |#1| (-544 |#2|) |#2|) (-626 (-1150 |#1| |#2|)) (-1063 (-1150 |#1| |#2|))) (-1074) (-865)) (T -796)) -NIL -(-13 (-1090 |#1| (-544 |#2|) |#2|) (-626 (-1150 |#1| |#2|)) (-1063 (-1150 |#1| |#2|))) -((-2124 (((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)) 13 T ELT))) -(((-797 |#1| |#2|) (-10 -7 (-15 -2124 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)))) (-1074) (-1074)) (T -797)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6))))) -(-10 -7 (-15 -2124 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 12 T ELT)) (-1563 (((-1292 |#1|) $ (-787)) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3893 (($ (-1197 |#1|)) NIL T ELT)) (-3024 (((-1197 $) $ (-1107)) NIL T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-1107))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2743 (((-660 $) $ $) 54 (|has| |#1| (-569)) ELT)) (-4072 (($ $ $) 50 (|has| |#1| (-569)) ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3890 (($ $ (-787)) NIL T ELT)) (-2167 (($ $ (-787)) NIL T ELT)) (-4221 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-1107) "failed") $) NIL T ELT) (((-3 (-1197 |#1|) "failed") $) 10 T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-1107) $) NIL T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2653 (($ $ $ (-1107)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) 58 (|has| |#1| (-174)) ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4123 (($ $ $) NIL T ELT)) (-2474 (($ $ $) 87 (|has| |#1| (-569)) ELT)) (-2737 (((-2 (|:| -2940 |#1|) (|:| -2669 $) (|:| -2689 $)) $ $) 86 (|has| |#1| (-569)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-787) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-2536 (((-787) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)) ELT)) (-3194 (($ (-1197 |#1|) (-1107)) NIL T ELT) (($ (-1197 $) (-1107)) NIL T ELT)) (-3681 (($ $ (-787)) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-1442 (($ $ $) 27 T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-1107)) NIL T ELT) (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-2643 (((-787) $) NIL T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-4373 (($ (-1 (-787) (-787)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2432 (((-1197 |#1|) $) NIL T ELT)) (-4038 (((-3 (-1107) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2505 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2212 (-787))) $ $) 37 T ELT)) (-4013 (($ $ $) 41 T ELT)) (-4435 (($ $ $) 47 T ELT)) (-3054 (((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $) 46 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2048 (($ $ $) 56 (|has| |#1| (-569)) ELT)) (-2454 (((-2 (|:| -2669 $) (|:| -2689 $)) $ (-787)) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-1107)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-4129 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3457 (($) NIL (|has| |#1| (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3685 (((-2 (|:| -3543 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-569)) ELT)) (-2183 (((-2 (|:| -3543 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-569)) ELT)) (-1453 (((-2 (|:| -2653 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-569)) ELT)) (-1346 (((-2 (|:| -2653 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-569)) ELT)) (-3327 (((-112) $) 13 T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-1391 (($ $ (-787) |#1| $) 26 T ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-4144 (((-2 (|:| -3543 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-569)) ELT)) (-2977 (((-2 (|:| -2653 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1107) |#1|) NIL T ELT) (($ $ (-660 (-1107)) (-660 |#1|)) NIL T ELT) (($ $ (-1107) $) NIL T ELT) (($ $ (-660 (-1107)) (-660 $)) NIL T ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-4036 (((-3 $ "failed") $ (-787)) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4447 (($ $ (-1107)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-3616 (((-787) $) NIL T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1107)) NIL T ELT) (((-1197 |#1|) $) 7 T ELT) (($ (-1197 |#1|)) 8 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) 28 T CONST)) (-2767 (($) 32 T CONST)) (-2136 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-798 |#1|) (-13 (-1268 |#1|) (-626 (-1197 |#1|)) (-1063 (-1197 |#1|)) (-10 -8 (-15 -1391 ($ $ (-787) |#1| $)) (-15 -1442 ($ $ $)) (-15 -2505 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2212 (-787))) $ $)) (-15 -4013 ($ $ $)) (-15 -3054 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -4435 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -2743 ((-660 $) $ $)) (-15 -2048 ($ $ $)) (-15 -4144 ((-2 (|:| -3543 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2183 ((-2 (|:| -3543 $) (|:| |coef1| $)) $ $)) (-15 -3685 ((-2 (|:| -3543 $) (|:| |coef2| $)) $ $)) (-15 -2977 ((-2 (|:| -2653 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1346 ((-2 (|:| -2653 |#1|) (|:| |coef1| $)) $ $)) (-15 -1453 ((-2 (|:| -2653 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1074)) (T -798)) -((-1391 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-787)) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) (-1442 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) (-2505 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-798 *3)) (|:| |polden| *3) (|:| -2212 (-787)))) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) (-4013 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) (-3054 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2940 *3) (|:| |gap| (-787)) (|:| -2669 (-798 *3)) (|:| -2689 (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) (-4435 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) (-2743 (*1 *2 *1 *1) (-12 (-5 *2 (-660 (-798 *3))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-2048 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-569)) (-4 *2 (-1074)))) (-4144 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3543 (-798 *3)) (|:| |coef1| (-798 *3)) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-2183 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3543 (-798 *3)) (|:| |coef1| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-3685 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3543 (-798 *3)) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-2977 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2653 *3) (|:| |coef1| (-798 *3)) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-1346 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2653 *3) (|:| |coef1| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-1453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2653 *3) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) -(-13 (-1268 |#1|) (-626 (-1197 |#1|)) (-1063 (-1197 |#1|)) (-10 -8 (-15 -1391 ($ $ (-787) |#1| $)) (-15 -1442 ($ $ $)) (-15 -2505 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2212 (-787))) $ $)) (-15 -4013 ($ $ $)) (-15 -3054 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -4435 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -2743 ((-660 $) $ $)) (-15 -2048 ($ $ $)) (-15 -4144 ((-2 (|:| -3543 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2183 ((-2 (|:| -3543 $) (|:| |coef1| $)) $ $)) (-15 -3685 ((-2 (|:| -3543 $) (|:| |coef2| $)) $ $)) (-15 -2977 ((-2 (|:| -2653 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1346 ((-2 (|:| -2653 |#1|) (|:| |coef1| $)) $ $)) (-15 -1453 ((-2 (|:| -2653 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3677 ((|#1| (-787) |#1|) 33 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4134 ((|#1| (-787) |#1|) 23 T ELT)) (-2423 ((|#1| (-787) |#1|) 35 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-799 |#1|) (-10 -7 (-15 -4134 (|#1| (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -2423 (|#1| (-787) |#1|)) (-15 -3677 (|#1| (-787) |#1|))) |%noBranch|)) (-174)) (T -799)) -((-3677 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-2423 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-4134 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -4134 (|#1| (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -2423 (|#1| (-787) |#1|)) (-15 -3677 (|#1| (-787) |#1|))) |%noBranch|)) -((-3489 (((-112) $ $) 7 T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) 86 T ELT)) (-1568 (((-660 $) (-660 |#4|)) 87 T ELT) (((-660 $) (-660 |#4|) (-112)) 112 T ELT)) (-3206 (((-660 |#3|) $) 34 T ELT)) (-1905 (((-112) $) 27 T ELT)) (-1421 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3924 ((|#4| |#4| $) 93 T ELT)) (-2001 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| $) 127 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-4403 (((-112) $ (-787)) 45 T ELT)) (-3730 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3790 (($) 46 T CONST)) (-4046 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) 37 T ELT)) (-2155 (($ (-660 |#4|)) 36 T ELT)) (-1663 (((-3 $ "failed") $) 83 T ELT)) (-2801 ((|#4| |#4| $) 90 T ELT)) (-3289 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3270 ((|#4| |#4| $) 88 T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) 106 T ELT)) (-2926 (((-112) |#4| $) 137 T ELT)) (-2687 (((-112) |#4| $) 134 T ELT)) (-2632 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-3692 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1940 ((|#3| $) 35 T ELT)) (-1821 (((-112) $ (-787)) 44 T ELT)) (-2434 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1365 (((-660 |#3|) $) 33 T ELT)) (-2639 (((-112) |#3| $) 32 T ELT)) (-3272 (((-112) $ (-787)) 43 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3650 (((-3 |#4| (-660 $)) |#4| |#4| $) 129 T ELT)) (-2048 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| |#4| $) 128 T ELT)) (-3942 (((-3 |#4| "failed") $) 84 T ELT)) (-3395 (((-660 $) |#4| $) 130 T ELT)) (-3343 (((-3 (-112) (-660 $)) |#4| $) 133 T ELT)) (-3422 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-4056 (((-660 $) |#4| $) 126 T ELT) (((-660 $) (-660 |#4|) $) 125 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 124 T ELT) (((-660 $) |#4| (-660 $)) 123 T ELT)) (-2346 (($ |#4| $) 118 T ELT) (($ (-660 |#4|) $) 117 T ELT)) (-3425 (((-660 |#4|) $) 108 T ELT)) (-4233 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1458 ((|#4| |#4| $) 91 T ELT)) (-2928 (((-112) $ $) 111 T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-2108 ((|#4| |#4| $) 92 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1652 (((-3 |#4| "failed") $) 85 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-1987 (($ $ |#4|) 78 T ELT) (((-660 $) |#4| $) 116 T ELT) (((-660 $) |#4| (-660 $)) 115 T ELT) (((-660 $) (-660 |#4|) $) 114 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 113 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) 39 T ELT)) (-2856 (((-112) $) 42 T ELT)) (-2693 (($) 41 T ELT)) (-3616 (((-787) $) 107 T ELT)) (-1452 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 40 T ELT)) (-2176 (((-549) $) 70 (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 61 T ELT)) (-3620 (($ $ |#3|) 29 T ELT)) (-2003 (($ $ |#3|) 31 T ELT)) (-3307 (($ $) 89 T ELT)) (-3344 (($ $ |#3|) 30 T ELT)) (-3603 (((-880) $) 12 T ELT) (((-660 |#4|) $) 38 T ELT)) (-2272 (((-787) $) 77 (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99 T ELT)) (-3575 (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) 82 T ELT)) (-4381 (((-112) |#4| $) 136 T ELT)) (-1401 (((-112) |#3| $) 81 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-787) $) 47 (|has| $ (-6 -4470)) ELT))) -(((-800 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -800)) -NIL -(-13 (-1096 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) -((-2296 (((-3 (-391) "failed") (-327 |#1|) (-944)) 62 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-3 (-391) "failed") (-327 |#1|)) 54 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-3 (-391) "failed") (-420 (-975 |#1|)) (-944)) 41 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-420 (-975 |#1|))) 40 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-975 |#1|) (-944)) 31 (|has| |#1| (-1074)) ELT) (((-3 (-391) "failed") (-975 |#1|)) 30 (|has| |#1| (-1074)) ELT)) (-2982 (((-391) (-327 |#1|) (-944)) 99 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-391) (-327 |#1|)) 94 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-391) (-420 (-975 |#1|)) (-944)) 91 (|has| |#1| (-569)) ELT) (((-391) (-420 (-975 |#1|))) 90 (|has| |#1| (-569)) ELT) (((-391) (-975 |#1|) (-944)) 86 (|has| |#1| (-1074)) ELT) (((-391) (-975 |#1|)) 85 (|has| |#1| (-1074)) ELT) (((-391) |#1| (-944)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2059 (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-944)) 71 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|))) 70 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-3 (-171 (-391)) "failed") (-327 |#1|) (-944)) 63 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-3 (-171 (-391)) "failed") (-327 |#1|)) 61 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))) (-944)) 46 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|)))) 45 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)) (-944)) 39 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-975 |#1|))) 38 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-975 |#1|) (-944)) 28 (|has| |#1| (-1074)) ELT) (((-3 (-171 (-391)) "failed") (-975 |#1|)) 26 (|has| |#1| (-1074)) ELT) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-944)) 18 (|has| |#1| (-174)) ELT) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|))) 15 (|has| |#1| (-174)) ELT)) (-2053 (((-171 (-391)) (-327 (-171 |#1|)) (-944)) 102 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-171 (-391)) (-327 (-171 |#1|))) 101 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-171 (-391)) (-327 |#1|) (-944)) 100 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-171 (-391)) (-327 |#1|)) 98 (-12 (|has| |#1| (-569)) (|has| |#1| (-865))) ELT) (((-171 (-391)) (-420 (-975 (-171 |#1|))) (-944)) 93 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-975 (-171 |#1|)))) 92 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-975 |#1|)) (-944)) 89 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-975 |#1|))) 88 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-975 |#1|) (-944)) 84 (|has| |#1| (-1074)) ELT) (((-171 (-391)) (-975 |#1|)) 83 (|has| |#1| (-1074)) ELT) (((-171 (-391)) (-975 (-171 |#1|)) (-944)) 78 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-975 (-171 |#1|))) 77 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-171 |#1|) (-944)) 80 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-174)) ELT) (((-171 (-391)) |#1| (-944)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) -(((-801 |#1|) (-10 -7 (-15 -2982 ((-391) |#1|)) (-15 -2982 ((-391) |#1| (-944))) (-15 -2053 ((-171 (-391)) |#1|)) (-15 -2053 ((-171 (-391)) |#1| (-944))) (IF (|has| |#1| (-174)) (PROGN (-15 -2053 ((-171 (-391)) (-171 |#1|))) (-15 -2053 ((-171 (-391)) (-171 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -2053 ((-171 (-391)) (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -2982 ((-391) (-975 |#1|))) (-15 -2982 ((-391) (-975 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-975 |#1|))) (-15 -2053 ((-171 (-391)) (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2982 ((-391) (-420 (-975 |#1|)))) (-15 -2982 ((-391) (-420 (-975 |#1|)) (-944))) (-15 -2053 ((-171 (-391)) (-420 (-975 |#1|)))) (-15 -2053 ((-171 (-391)) (-420 (-975 |#1|)) (-944))) (-15 -2053 ((-171 (-391)) (-420 (-975 (-171 |#1|))))) (-15 -2053 ((-171 (-391)) (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -2982 ((-391) (-327 |#1|))) (-15 -2982 ((-391) (-327 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-327 |#1|))) (-15 -2053 ((-171 (-391)) (-327 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -2053 ((-171 (-391)) (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -2296 ((-3 (-391) "failed") (-975 |#1|))) (-15 -2296 ((-3 (-391) "failed") (-975 |#1|) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2296 ((-3 (-391) "failed") (-420 (-975 |#1|)))) (-15 -2296 ((-3 (-391) "failed") (-420 (-975 |#1|)) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -2296 ((-3 (-391) "failed") (-327 |#1|))) (-15 -2296 ((-3 (-391) "failed") (-327 |#1|) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|)) (-627 (-391))) (T -801)) -((-2059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2059 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2059 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2296 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-2296 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-2059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2059 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2059 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2296 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-2296 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-2059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2059 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2296 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-2296 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-2059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2059 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-944)) (-4 *5 (-174)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) (-4 *3 (-627 (-391))))) (-2053 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) (-4 *3 (-627 (-391))))) (-2982 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-391)) (-5 *1 (-801 *3)) (-4 *3 (-627 *2)))) (-2982 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-801 *3)) (-4 *3 (-627 *2))))) -(-10 -7 (-15 -2982 ((-391) |#1|)) (-15 -2982 ((-391) |#1| (-944))) (-15 -2053 ((-171 (-391)) |#1|)) (-15 -2053 ((-171 (-391)) |#1| (-944))) (IF (|has| |#1| (-174)) (PROGN (-15 -2053 ((-171 (-391)) (-171 |#1|))) (-15 -2053 ((-171 (-391)) (-171 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -2053 ((-171 (-391)) (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -2982 ((-391) (-975 |#1|))) (-15 -2982 ((-391) (-975 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-975 |#1|))) (-15 -2053 ((-171 (-391)) (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2982 ((-391) (-420 (-975 |#1|)))) (-15 -2982 ((-391) (-420 (-975 |#1|)) (-944))) (-15 -2053 ((-171 (-391)) (-420 (-975 |#1|)))) (-15 -2053 ((-171 (-391)) (-420 (-975 |#1|)) (-944))) (-15 -2053 ((-171 (-391)) (-420 (-975 (-171 |#1|))))) (-15 -2053 ((-171 (-391)) (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -2982 ((-391) (-327 |#1|))) (-15 -2982 ((-391) (-327 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-327 |#1|))) (-15 -2053 ((-171 (-391)) (-327 |#1|) (-944))) (-15 -2053 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -2053 ((-171 (-391)) (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -2296 ((-3 (-391) "failed") (-975 |#1|))) (-15 -2296 ((-3 (-391) "failed") (-975 |#1|) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2296 ((-3 (-391) "failed") (-420 (-975 |#1|)))) (-15 -2296 ((-3 (-391) "failed") (-420 (-975 |#1|)) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -2296 ((-3 (-391) "failed") (-327 |#1|))) (-15 -2296 ((-3 (-391) "failed") (-327 |#1|) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-944))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -2059 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|)) -((-3353 (((-944) (-1183)) 89 T ELT)) (-1501 (((-3 (-391) "failed") (-1183)) 36 T ELT)) (-2839 (((-391) (-1183)) 34 T ELT)) (-1500 (((-944) (-1183)) 63 T ELT)) (-3331 (((-1183) (-944)) 73 T ELT)) (-1875 (((-1183) (-944)) 62 T ELT))) -(((-802) (-10 -7 (-15 -1875 ((-1183) (-944))) (-15 -1500 ((-944) (-1183))) (-15 -3331 ((-1183) (-944))) (-15 -3353 ((-944) (-1183))) (-15 -2839 ((-391) (-1183))) (-15 -1501 ((-3 (-391) "failed") (-1183))))) (T -802)) -((-1501 (*1 *2 *3) (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802))))) -(-10 -7 (-15 -1875 ((-1183) (-944))) (-15 -1500 ((-944) (-1183))) (-15 -3331 ((-1183) (-944))) (-15 -3353 ((-944) (-1183))) (-15 -2839 ((-391) (-1183))) (-15 -1501 ((-3 (-391) "failed") (-1183)))) -((-3489 (((-112) $ $) 7 T ELT)) (-2055 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 16 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 14 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 17 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-803) (-141)) (T -803)) -((-4391 (*1 *2 *3 *4) (-12 (-4 *1 (-803)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060)))))) (-2055 (*1 *2 *3 *2) (-12 (-4 *1 (-803)) (-5 *2 (-1060)) (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-4391 (*1 *2 *3 *4) (-12 (-4 *1 (-803)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060)))))) (-2055 (*1 *2 *3 *2) (-12 (-4 *1 (-803)) (-5 *2 (-1060)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) -(-13 (-1125) (-10 -7 (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2055 ((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2055 ((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-2228 (((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391))) 55 T ELT) (((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 52 T ELT)) (-4169 (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 61 T ELT)) (-3607 (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 50 T ELT)) (-3744 (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391))) 63 T ELT) (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 62 T ELT))) -(((-804) (-10 -7 (-15 -3744 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -3744 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -3607 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -2228 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -2228 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -4169 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))))) (T -804)) -((-4169 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-2228 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391)))) (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-2228 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391)))) (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-3607 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-3744 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-3744 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804))))) -(-10 -7 (-15 -3744 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -3744 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -3607 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -2228 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -2228 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -4169 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))))) -((-3945 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 64 T ELT)) (-3570 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 40 T ELT)) (-2107 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 63 T ELT)) (-3669 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 38 T ELT)) (-3459 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 62 T ELT)) (-1867 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 24 T ELT)) (-3228 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 41 T ELT)) (-1565 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 39 T ELT)) (-3930 (((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 37 T ELT))) -(((-805) (-10 -7 (-15 -3930 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1565 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -3228 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1867 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3669 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3570 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3459 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2107 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3945 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))))) (T -805)) -((-3945 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-2107 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-3459 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-3570 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-3669 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-1867 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-3228 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-1565 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-3930 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577))))) -(-10 -7 (-15 -3930 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1565 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -3228 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1867 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3669 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3570 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3459 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2107 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3945 ((-2 (|:| -3145 (-391)) (|:| -3308 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)))) -((-1431 (((-1237 |#1|) |#1| (-228) (-577)) 69 T ELT))) -(((-806 |#1|) (-10 -7 (-15 -1431 ((-1237 |#1|) |#1| (-228) (-577)))) (-999)) (T -806)) -((-1431 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1237 *3)) (-5 *1 (-806 *3)) (-4 *3 (-999))))) -(-10 -7 (-15 -1431 ((-1237 |#1|) |#1| (-228) (-577)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 26 T ELT)) (-1771 (((-3 $ "failed") $ $) 28 T ELT)) (-3790 (($) 25 T CONST)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 24 T CONST)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (-3042 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-3031 (($ $ $) 22 T ELT)) (* (($ (-944) $) 23 T ELT) (($ (-787) $) 27 T ELT) (($ (-577) $) 30 T ELT))) -(((-807) (-141)) (T -807)) -NIL -(-13 (-811) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 26 T ELT)) (-3790 (($) 25 T CONST)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 24 T CONST)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (-3031 (($ $ $) 22 T ELT)) (* (($ (-944) $) 23 T ELT) (($ (-787) $) 27 T ELT))) +((-2205 (((-3 |#2| "failed") |#2| |#2| (-115) (-1206)) 37 T ELT))) +(((-793 |#1| |#2|) (-10 -7 (-15 -2205 ((-3 |#2| "failed") |#2| |#2| (-115) (-1206)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987))) (T -793)) +((-2205 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-793 *5 *2)) (-4 *2 (-13 (-29 *5) (-1232) (-987)))))) +(-10 -7 (-15 -2205 ((-3 |#2| "failed") |#2| |#2| (-115) (-1206)))) +((-3709 (((-795) |#1|) 8 T ELT))) +(((-794 |#1|) (-10 -7 (-15 -3709 ((-795) |#1|))) (-1247)) (T -794)) +((-3709 (*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-794 *3)) (-4 *3 (-1247))))) +(-10 -7 (-15 -3709 ((-795) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 7 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 9 T ELT))) +(((-795) (-1130)) (T -795)) +NIL +(-1130) +((-2794 ((|#2| |#4|) 35 T ELT))) +(((-796 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2794 (|#2| |#4|))) (-465) (-1273 |#1|) (-745 |#1| |#2|) (-1273 |#3|)) (T -796)) +((-2794 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-745 *4 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-796 *4 *2 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -2794 (|#2| |#4|))) +((-3167 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2352 (((-1302) (-1188) (-1188) |#4| |#5|) 33 T ELT)) (-2539 ((|#4| |#4| |#5|) 74 T ELT)) (-4237 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|) 79 T ELT)) (-4456 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|) 16 T ELT))) +(((-797 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3167 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2539 (|#4| |#4| |#5|)) (-15 -4237 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -2352 ((-1302) (-1188) (-1188) |#4| |#5|)) (-15 -4456 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -797)) +((-4456 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2352 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1188)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *4 (-1095 *6 *7 *8)) (-5 *2 (-1302)) (-5 *1 (-797 *6 *7 *8 *4 *5)) (-4 *5 (-1101 *6 *7 *8 *4)))) (-4237 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2539 (*1 *2 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *2 (-1095 *4 *5 *6)) (-5 *1 (-797 *4 *5 *6 *2 *3)) (-4 *3 (-1101 *4 *5 *6 *2)))) (-3167 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(-10 -7 (-15 -3167 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2539 (|#4| |#4| |#5|)) (-15 -4237 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -2352 ((-1302) (-1188) (-1188) |#4| |#5|)) (-15 -4456 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|))) +((-4335 (((-3 (-1202 (-1202 |#1|)) "failed") |#4|) 51 T ELT)) (-3663 (((-665 |#4|) |#4|) 22 T ELT)) (-4173 ((|#4| |#4|) 17 T ELT))) +(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3663 ((-665 |#4|) |#4|)) (-15 -4335 ((-3 (-1202 (-1202 |#1|)) "failed") |#4|)) (-15 -4173 (|#4| |#4|))) (-361) (-340 |#1|) (-1273 |#2|) (-1273 |#3|) (-949)) (T -798)) +((-4173 (*1 *2 *2) (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1273 *4)) (-5 *1 (-798 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-949)))) (-4335 (*1 *2 *3) (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-1202 (-1202 *4))) (-5 *1 (-798 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-949)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-665 *3)) (-5 *1 (-798 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-949))))) +(-10 -7 (-15 -3663 ((-665 |#4|) |#4|)) (-15 -4335 ((-3 (-1202 (-1202 |#1|)) "failed") |#4|)) (-15 -4173 (|#4| |#4|))) +((-3175 (((-2 (|:| |deter| (-665 (-1202 |#5|))) (|:| |dterm| (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-665 |#1|)) (|:| |nlead| (-665 |#5|))) (-1202 |#5|) (-665 |#1|) (-665 |#5|)) 72 T ELT)) (-2396 (((-665 (-792)) |#1|) 20 T ELT))) +(((-799 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3175 ((-2 (|:| |deter| (-665 (-1202 |#5|))) (|:| |dterm| (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-665 |#1|)) (|:| |nlead| (-665 |#5|))) (-1202 |#5|) (-665 |#1|) (-665 |#5|))) (-15 -2396 ((-665 (-792)) |#1|))) (-1273 |#4|) (-814) (-870) (-318) (-977 |#4| |#2| |#3|)) (T -799)) +((-2396 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-665 (-792))) (-5 *1 (-799 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *6)) (-4 *7 (-977 *6 *4 *5)))) (-3175 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1273 *9)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-318)) (-4 *10 (-977 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-665 (-1202 *10))) (|:| |dterm| (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| *10))))) (|:| |nfacts| (-665 *6)) (|:| |nlead| (-665 *10)))) (-5 *1 (-799 *6 *7 *8 *9 *10)) (-5 *3 (-1202 *10)) (-5 *4 (-665 *6)) (-5 *5 (-665 *10))))) +(-10 -7 (-15 -3175 ((-2 (|:| |deter| (-665 (-1202 |#5|))) (|:| |dterm| (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-665 |#1|)) (|:| |nlead| (-665 |#5|))) (-1202 |#5|) (-665 |#1|) (-665 |#5|))) (-15 -2396 ((-665 (-792)) |#1|))) +((-1994 (((-665 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#1|))))) (-710 (-420 (-577))) |#1|) 31 T ELT)) (-4191 (((-665 |#1|) (-710 (-420 (-577))) |#1|) 21 T ELT)) (-2932 (((-980 (-420 (-577))) (-710 (-420 (-577))) (-1206)) 18 T ELT) (((-980 (-420 (-577))) (-710 (-420 (-577)))) 17 T ELT))) +(((-800 |#1|) (-10 -7 (-15 -2932 ((-980 (-420 (-577))) (-710 (-420 (-577))))) (-15 -2932 ((-980 (-420 (-577))) (-710 (-420 (-577))) (-1206))) (-15 -4191 ((-665 |#1|) (-710 (-420 (-577))) |#1|)) (-15 -1994 ((-665 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#1|))))) (-710 (-420 (-577))) |#1|))) (-13 (-375) (-869))) (T -800)) +((-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-665 (-2 (|:| |outval| *4) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 *4)))))) (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869))))) (-4191 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *4 (-1206)) (-5 *2 (-980 (-420 (-577)))) (-5 *1 (-800 *5)) (-4 *5 (-13 (-375) (-869))))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-980 (-420 (-577)))) (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869)))))) +(-10 -7 (-15 -2932 ((-980 (-420 (-577))) (-710 (-420 (-577))))) (-15 -2932 ((-980 (-420 (-577))) (-710 (-420 (-577))) (-1206))) (-15 -4191 ((-665 |#1|) (-710 (-420 (-577))) |#1|)) (-15 -1994 ((-665 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#1|))))) (-710 (-420 (-577))) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 36 T ELT)) (-3891 (((-665 |#2|) $) NIL T ELT)) (-3732 (((-1202 $) $ |#2|) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 |#2|)) NIL T ELT)) (-2688 (($ $) 30 T ELT)) (-2817 (((-112) $ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3473 (($ $ $) 110 (|has| |#1| (-569)) ELT)) (-2795 (((-665 $) $ $) 123 (|has| |#1| (-569)) ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 $ "failed") (-980 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206)))) ELT) (((-3 $ "failed") (-980 (-577))) NIL (-2867 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))))) ELT) (((-3 $ "failed") (-980 |#1|)) NIL (-2867 (-12 (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-38 (-420 (-577))))) (-2779 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-38 (-420 (-577))))) (-2779 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-1022 (-577)))))) ELT) (((-3 (-1155 |#1| |#2|) "failed") $) 21 T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) ((|#2| $) NIL T ELT) (($ (-980 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206)))) ELT) (($ (-980 (-577))) NIL (-2867 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))))) ELT) (($ (-980 |#1|)) NIL (-2867 (-12 (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-38 (-420 (-577))))) (-2779 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-38 (-420 (-577))))) (-2779 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-1022 (-577)))))) ELT) (((-1155 |#1| |#2|) $) NIL T ELT)) (-3868 (($ $ $ |#2|) NIL (|has| |#1| (-174)) ELT) (($ $ $) 121 (|has| |#1| (-569)) ELT)) (-4048 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3894 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3856 (((-112) $) NIL T ELT)) (-1771 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 81 T ELT)) (-2528 (($ $) 136 (|has| |#1| (-465)) ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4069 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2006 (($ $) NIL (|has| |#1| (-569)) ELT)) (-1456 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1593 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-4365 (($ $ |#1| (-544 |#2|) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-3357 (((-112) $) 57 T ELT)) (-2662 (((-792) $) NIL T ELT)) (-1398 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-1908 (($ $ $ $ $) 107 (|has| |#1| (-569)) ELT)) (-1429 ((|#2| $) 22 T ELT)) (-3882 (($ (-1202 |#1|) |#2|) NIL T ELT) (($ (-1202 $) |#2|) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) 38 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-1376 (($ $ $) 63 T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |#2|) NIL T ELT)) (-2682 (((-112) $) NIL T ELT)) (-4340 (((-544 |#2|) $) NIL T ELT) (((-792) $ |#2|) NIL T ELT) (((-665 (-792)) $ (-665 |#2|)) NIL T ELT)) (-3271 (((-792) $) 23 T ELT)) (-4329 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (((-3 |#2| "failed") $) NIL T ELT)) (-3189 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4102 (($ $) NIL (|has| |#1| (-465)) ELT)) (-1347 (((-665 $) $) NIL T ELT)) (-4203 (($ $) 39 T ELT)) (-2280 (($ $) NIL (|has| |#1| (-465)) ELT)) (-1836 (((-665 $) $) 43 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-2943 (($ $) 41 T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3099 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3403 (-792))) $ $) 96 T ELT)) (-2073 (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $) 78 T ELT) (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $ |#2|) NIL T ELT)) (-3395 (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $) NIL T ELT) (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $ |#2|) NIL T ELT)) (-3421 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-2251 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4045 (($ $ $) 125 (|has| |#1| (-569)) ELT)) (-2321 (((-665 $) $) 32 T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| |#2|) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1768 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-2477 (($ $ $) NIL T ELT)) (-2443 (($ $) 24 T ELT)) (-2852 (((-112) $ $) NIL T ELT)) (-2873 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-3881 (($ $ $) NIL T ELT)) (-2392 (($ $) 26 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4178 (((-2 (|:| -3642 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-569)) ELT)) (-1749 (((-2 (|:| -3642 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-569)) ELT)) (-3988 (((-112) $) 56 T ELT)) (-3999 ((|#1| $) 58 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 ((|#1| |#1| $) 133 (|has| |#1| (-465)) ELT) (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3777 (((-2 (|:| -3642 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-569)) ELT)) (-1358 (($ $ |#1|) 129 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3380 (($ $ |#1|) 128 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-665 |#2|) (-665 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-665 |#2|) (-665 $)) NIL T ELT)) (-3846 (($ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-1597 (((-544 |#2|) $) NIL T ELT) (((-792) $ |#2|) 45 T ELT) (((-665 (-792)) $ (-665 |#2|)) NIL T ELT)) (-4217 (($ $) NIL T ELT)) (-3638 (($ $) 35 T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT) (($ (-980 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206)))) ELT) (($ (-980 (-577))) NIL (-2867 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2779 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))))) ELT) (($ (-980 |#1|)) NIL (|has| |#2| (-632 (-1206))) ELT) (((-1188) $) NIL (-12 (|has| |#1| (-1068 (-577))) (|has| |#2| (-632 (-1206)))) ELT) (((-980 |#1|) $) NIL (|has| |#2| (-632 (-1206))) ELT)) (-2407 ((|#1| $) 132 (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-980 |#1|) $) NIL (|has| |#2| (-632 (-1206))) ELT) (((-1155 |#1| |#2|) $) 18 T ELT) (($ (-1155 |#1| |#2|)) 19 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) 47 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) 13 T CONST)) (-4402 (((-3 (-112) "failed") $ $) NIL T ELT)) (-2853 (($) 37 T CONST)) (-1553 (($ $ $ $ (-792)) 105 (|has| |#1| (-569)) ELT)) (-4100 (($ $ $ (-792)) 104 (|has| |#1| (-569)) ELT)) (-2389 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3114 (($ $ $) 85 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 70 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-801 |#1| |#2|) (-13 (-1095 |#1| (-544 |#2|) |#2|) (-631 (-1155 |#1| |#2|)) (-1068 (-1155 |#1| |#2|))) (-1079) (-870)) (T -801)) +NIL +(-13 (-1095 |#1| (-544 |#2|) |#2|) (-631 (-1155 |#1| |#2|)) (-1068 (-1155 |#1| |#2|))) +((-4417 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 13 T ELT))) +(((-802 |#1| |#2|) (-10 -7 (-15 -4417 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) (-1079) (-1079)) (T -802)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6))))) +(-10 -7 (-15 -4417 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 12 T ELT)) (-1400 (((-1297 |#1|) $ (-792)) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3527 (($ (-1202 |#1|)) NIL T ELT)) (-3732 (((-1202 $) $ (-1112)) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3107 (((-665 $) $ $) 54 (|has| |#1| (-569)) ELT)) (-3473 (($ $ $) 50 (|has| |#1| (-569)) ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3796 (($ $ (-792)) NIL T ELT)) (-1370 (($ $ (-792)) NIL T ELT)) (-2723 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT) (((-3 (-1202 |#1|) "failed") $) 10 T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-3868 (($ $ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) 58 (|has| |#1| (-174)) ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1668 (($ $ $) NIL T ELT)) (-2347 (($ $ $) 87 (|has| |#1| (-569)) ELT)) (-1771 (((-2 (|:| -4473 |#1|) (|:| -2203 $) (|:| -2519 $)) $ $) 86 (|has| |#1| (-569)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-792) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-4030 (((-792) $ $) NIL (|has| |#1| (-569)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-3882 (($ (-1202 |#1|) (-1112)) NIL T ELT) (($ (-1202 $) (-1112)) NIL T ELT)) (-3720 (($ $ (-792)) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-1376 (($ $ $) 27 T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-4340 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4329 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4120 (((-1202 |#1|) $) NIL T ELT)) (-3946 (((-3 (-1112) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3099 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3403 (-792))) $ $) 37 T ELT)) (-3194 (($ $ $) 41 T ELT)) (-1339 (($ $ $) 47 T ELT)) (-2073 (((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $) 46 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4045 (($ $ $) 56 (|has| |#1| (-569)) ELT)) (-4462 (((-2 (|:| -2203 $) (|:| -2519 $)) $ (-792)) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-1112)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1869 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2443 (($) NIL (|has| |#1| (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-4178 (((-2 (|:| -3642 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-569)) ELT)) (-1749 (((-2 (|:| -3642 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-569)) ELT)) (-2588 (((-2 (|:| -3868 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-569)) ELT)) (-3316 (((-2 (|:| -3868 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-569)) ELT)) (-3988 (((-112) $) 13 T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-1818 (($ $ (-792) |#1| $) 26 T ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3777 (((-2 (|:| -3642 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-569)) ELT)) (-3148 (((-2 (|:| -3868 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-3626 (((-3 $ "failed") $ (-792)) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3846 (($ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-1597 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2162 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1112)) NIL T ELT) (((-1202 |#1|) $) 7 T ELT) (($ (-1202 |#1|)) 8 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) 28 T CONST)) (-2853 (($) 32 T CONST)) (-2389 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-803 |#1|) (-13 (-1273 |#1|) (-631 (-1202 |#1|)) (-1068 (-1202 |#1|)) (-10 -8 (-15 -1818 ($ $ (-792) |#1| $)) (-15 -1376 ($ $ $)) (-15 -3099 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3403 (-792))) $ $)) (-15 -3194 ($ $ $)) (-15 -2073 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -1339 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -3107 ((-665 $) $ $)) (-15 -4045 ($ $ $)) (-15 -3777 ((-2 (|:| -3642 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1749 ((-2 (|:| -3642 $) (|:| |coef1| $)) $ $)) (-15 -4178 ((-2 (|:| -3642 $) (|:| |coef2| $)) $ $)) (-15 -3148 ((-2 (|:| -3868 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3316 ((-2 (|:| -3868 |#1|) (|:| |coef1| $)) $ $)) (-15 -2588 ((-2 (|:| -3868 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1079)) (T -803)) +((-1818 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-792)) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) (-1376 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) (-3099 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -3403 (-792)))) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) (-3194 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) (-2073 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4473 *3) (|:| |gap| (-792)) (|:| -2203 (-803 *3)) (|:| -2519 (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) (-1339 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) (-3107 (*1 *2 *1 *1) (-12 (-5 *2 (-665 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-569)) (-4 *2 (-1079)))) (-3777 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3642 (-803 *3)) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-1749 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3642 (-803 *3)) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-4178 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3642 (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-3148 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3868 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-3316 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3868 *3) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2588 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3868 *3) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) +(-13 (-1273 |#1|) (-631 (-1202 |#1|)) (-1068 (-1202 |#1|)) (-10 -8 (-15 -1818 ($ $ (-792) |#1| $)) (-15 -1376 ($ $ $)) (-15 -3099 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3403 (-792))) $ $)) (-15 -3194 ($ $ $)) (-15 -2073 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -1339 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -3107 ((-665 $) $ $)) (-15 -4045 ($ $ $)) (-15 -3777 ((-2 (|:| -3642 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1749 ((-2 (|:| -3642 $) (|:| |coef1| $)) $ $)) (-15 -4178 ((-2 (|:| -3642 $) (|:| |coef2| $)) $ $)) (-15 -3148 ((-2 (|:| -3868 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3316 ((-2 (|:| -3868 |#1|) (|:| |coef1| $)) $ $)) (-15 -2588 ((-2 (|:| -3868 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4085 ((|#1| (-792) |#1|) 33 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1971 ((|#1| (-792) |#1|) 23 T ELT)) (-3243 ((|#1| (-792) |#1|) 35 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-804 |#1|) (-10 -7 (-15 -1971 (|#1| (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3243 (|#1| (-792) |#1|)) (-15 -4085 (|#1| (-792) |#1|))) |%noBranch|)) (-174)) (T -804)) +((-4085 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-3243 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-1971 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -1971 (|#1| (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3243 (|#1| (-792) |#1|)) (-15 -4085 (|#1| (-792) |#1|))) |%noBranch|)) +((-3586 (((-112) $ $) 7 T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-1795 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-3891 (((-665 |#3|) $) 34 T ELT)) (-1507 (((-112) $) 27 T ELT)) (-2221 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3800 ((|#4| |#4| $) 93 T ELT)) (-2612 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| $) 127 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1777 (((-112) $ (-792)) 45 T ELT)) (-1440 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2305 (($) 46 T CONST)) (-1603 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3783 (($ (-665 |#4|)) 36 T ELT)) (-4410 (((-3 $ "failed") $) 83 T ELT)) (-3145 ((|#4| |#4| $) 90 T ELT)) (-3589 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3947 ((|#4| |#4| $) 88 T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) 106 T ELT)) (-3020 (((-112) |#4| $) 137 T ELT)) (-4005 (((-112) |#4| $) 134 T ELT)) (-1753 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2118 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1429 ((|#3| $) 35 T ELT)) (-3862 (((-112) $ (-792)) 44 T ELT)) (-2152 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1683 (((-665 |#3|) $) 33 T ELT)) (-3692 (((-112) |#3| $) 32 T ELT)) (-3438 (((-112) $ (-792)) 43 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3036 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-4045 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| |#4| $) 128 T ELT)) (-4026 (((-3 |#4| "failed") $) 84 T ELT)) (-1955 (((-665 $) |#4| $) 130 T ELT)) (-1377 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-3132 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-1565 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-1963 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-1602 (((-665 |#4|) $) 108 T ELT)) (-1768 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-2477 ((|#4| |#4| $) 91 T ELT)) (-2852 (((-112) $ $) 111 T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-3881 ((|#4| |#4| $) 92 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4397 (((-3 |#4| "failed") $) 85 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2568 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) 39 T ELT)) (-2687 (((-112) $) 42 T ELT)) (-2833 (($) 41 T ELT)) (-1597 (((-792) $) 107 T ELT)) (-1481 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 40 T ELT)) (-4463 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 61 T ELT)) (-1336 (($ $ |#3|) 29 T ELT)) (-3076 (($ $ |#3|) 31 T ELT)) (-2138 (($ $) 89 T ELT)) (-2951 (($ $ |#3|) 30 T ELT)) (-3709 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3534 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-4197 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) 82 T ELT)) (-2259 (((-112) |#4| $) 136 T ELT)) (-2066 (((-112) |#3| $) 81 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) +(((-805 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -805)) +NIL +(-13 (-1101 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-2621 (((-3 (-391) "failed") (-327 |#1|) (-949)) 62 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-391) "failed") (-327 |#1|)) 54 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-391) "failed") (-420 (-980 |#1|)) (-949)) 41 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-420 (-980 |#1|))) 40 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-980 |#1|) (-949)) 31 (|has| |#1| (-1079)) ELT) (((-3 (-391) "failed") (-980 |#1|)) 30 (|has| |#1| (-1079)) ELT)) (-2664 (((-391) (-327 |#1|) (-949)) 99 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-391) (-327 |#1|)) 94 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-391) (-420 (-980 |#1|)) (-949)) 91 (|has| |#1| (-569)) ELT) (((-391) (-420 (-980 |#1|))) 90 (|has| |#1| (-569)) ELT) (((-391) (-980 |#1|) (-949)) 86 (|has| |#1| (-1079)) ELT) (((-391) (-980 |#1|)) 85 (|has| |#1| (-1079)) ELT) (((-391) |#1| (-949)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-1393 (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-949)) 71 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|))) 70 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-327 |#1|) (-949)) 63 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-327 |#1|)) 61 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))) (-949)) 46 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|)))) 45 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)) (-949)) 39 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 |#1|))) 38 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-980 |#1|) (-949)) 28 (|has| |#1| (-1079)) ELT) (((-3 (-171 (-391)) "failed") (-980 |#1|)) 26 (|has| |#1| (-1079)) ELT) (((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)) (-949)) 18 (|has| |#1| (-174)) ELT) (((-3 (-171 (-391)) "failed") (-980 (-171 |#1|))) 15 (|has| |#1| (-174)) ELT)) (-3675 (((-171 (-391)) (-327 (-171 |#1|)) (-949)) 102 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-327 (-171 |#1|))) 101 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-327 |#1|) (-949)) 100 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-327 |#1|)) 98 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-420 (-980 (-171 |#1|))) (-949)) 93 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-980 (-171 |#1|)))) 92 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-980 |#1|)) (-949)) 89 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-980 |#1|))) 88 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-980 |#1|) (-949)) 84 (|has| |#1| (-1079)) ELT) (((-171 (-391)) (-980 |#1|)) 83 (|has| |#1| (-1079)) ELT) (((-171 (-391)) (-980 (-171 |#1|)) (-949)) 78 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-980 (-171 |#1|))) 77 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-171 |#1|) (-949)) 80 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-174)) ELT) (((-171 (-391)) |#1| (-949)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) +(((-806 |#1|) (-10 -7 (-15 -2664 ((-391) |#1|)) (-15 -2664 ((-391) |#1| (-949))) (-15 -3675 ((-171 (-391)) |#1|)) (-15 -3675 ((-171 (-391)) |#1| (-949))) (IF (|has| |#1| (-174)) (PROGN (-15 -3675 ((-171 (-391)) (-171 |#1|))) (-15 -3675 ((-171 (-391)) (-171 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-980 (-171 |#1|)))) (-15 -3675 ((-171 (-391)) (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2664 ((-391) (-980 |#1|))) (-15 -2664 ((-391) (-980 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-980 |#1|))) (-15 -3675 ((-171 (-391)) (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2664 ((-391) (-420 (-980 |#1|)))) (-15 -2664 ((-391) (-420 (-980 |#1|)) (-949))) (-15 -3675 ((-171 (-391)) (-420 (-980 |#1|)))) (-15 -3675 ((-171 (-391)) (-420 (-980 |#1|)) (-949))) (-15 -3675 ((-171 (-391)) (-420 (-980 (-171 |#1|))))) (-15 -3675 ((-171 (-391)) (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -2664 ((-391) (-327 |#1|))) (-15 -2664 ((-391) (-327 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-327 |#1|))) (-15 -3675 ((-171 (-391)) (-327 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -3675 ((-171 (-391)) (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2621 ((-3 (-391) "failed") (-980 |#1|))) (-15 -2621 ((-3 (-391) "failed") (-980 |#1|) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 |#1|))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2621 ((-3 (-391) "failed") (-420 (-980 |#1|)))) (-15 -2621 ((-3 (-391) "failed") (-420 (-980 |#1|)) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -2621 ((-3 (-391) "failed") (-327 |#1|))) (-15 -2621 ((-3 (-391) "failed") (-327 |#1|) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|)) (-632 (-391))) (T -806)) +((-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-1393 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-1393 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2621 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-2621 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-1393 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-1393 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2621 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-2621 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-1393 (*1 *2 *3) (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2621 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-2621 (*1 *2 *3) (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-1393 (*1 *2 *3) (|partial| -12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-949)) (-4 *5 (-174)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) (-4 *3 (-632 (-391))))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) (-4 *3 (-632 (-391))))) (-2664 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-391)) (-5 *1 (-806 *3)) (-4 *3 (-632 *2)))) (-2664 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-806 *3)) (-4 *3 (-632 *2))))) +(-10 -7 (-15 -2664 ((-391) |#1|)) (-15 -2664 ((-391) |#1| (-949))) (-15 -3675 ((-171 (-391)) |#1|)) (-15 -3675 ((-171 (-391)) |#1| (-949))) (IF (|has| |#1| (-174)) (PROGN (-15 -3675 ((-171 (-391)) (-171 |#1|))) (-15 -3675 ((-171 (-391)) (-171 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-980 (-171 |#1|)))) (-15 -3675 ((-171 (-391)) (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2664 ((-391) (-980 |#1|))) (-15 -2664 ((-391) (-980 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-980 |#1|))) (-15 -3675 ((-171 (-391)) (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2664 ((-391) (-420 (-980 |#1|)))) (-15 -2664 ((-391) (-420 (-980 |#1|)) (-949))) (-15 -3675 ((-171 (-391)) (-420 (-980 |#1|)))) (-15 -3675 ((-171 (-391)) (-420 (-980 |#1|)) (-949))) (-15 -3675 ((-171 (-391)) (-420 (-980 (-171 |#1|))))) (-15 -3675 ((-171 (-391)) (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -2664 ((-391) (-327 |#1|))) (-15 -2664 ((-391) (-327 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-327 |#1|))) (-15 -3675 ((-171 (-391)) (-327 |#1|) (-949))) (-15 -3675 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -3675 ((-171 (-391)) (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -2621 ((-3 (-391) "failed") (-980 |#1|))) (-15 -2621 ((-3 (-391) "failed") (-980 |#1|) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 |#1|))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2621 ((-3 (-391) "failed") (-420 (-980 |#1|)))) (-15 -2621 ((-3 (-391) "failed") (-420 (-980 |#1|)) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -2621 ((-3 (-391) "failed") (-327 |#1|))) (-15 -2621 ((-3 (-391) "failed") (-327 |#1|) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-949))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -1393 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|)) +((-2891 (((-949) (-1188)) 89 T ELT)) (-4082 (((-3 (-391) "failed") (-1188)) 36 T ELT)) (-1991 (((-391) (-1188)) 34 T ELT)) (-2224 (((-949) (-1188)) 63 T ELT)) (-2142 (((-1188) (-949)) 73 T ELT)) (-3497 (((-1188) (-949)) 62 T ELT))) +(((-807) (-10 -7 (-15 -3497 ((-1188) (-949))) (-15 -2224 ((-949) (-1188))) (-15 -2142 ((-1188) (-949))) (-15 -2891 ((-949) (-1188))) (-15 -1991 ((-391) (-1188))) (-15 -4082 ((-3 (-391) "failed") (-1188))))) (T -807)) +((-4082 (*1 *2 *3) (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807)))) (-3497 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807))))) +(-10 -7 (-15 -3497 ((-1188) (-949))) (-15 -2224 ((-949) (-1188))) (-15 -2142 ((-1188) (-949))) (-15 -2891 ((-949) (-1188))) (-15 -1991 ((-391) (-1188))) (-15 -4082 ((-3 (-391) "failed") (-1188)))) +((-3586 (((-112) $ $) 7 T ELT)) (-2860 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 16 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 14 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 17 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-808) (-141)) (T -808)) -NIL -(-13 (-810) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-810) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 26 T ELT)) (-2510 (($ $ $) 29 T ELT)) (-1771 (((-3 $ "failed") $ $) 28 T ELT)) (-3790 (($) 25 T CONST)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 24 T CONST)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (-3031 (($ $ $) 22 T ELT)) (* (($ (-944) $) 23 T ELT) (($ (-787) $) 27 T ELT))) -(((-809) (-141)) (T -809)) -((-2510 (*1 *1 *1 *1) (-4 *1 (-809)))) -(-13 (-811) (-10 -8 (-15 -2510 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (-3031 (($ $ $) 22 T ELT)) (* (($ (-944) $) 23 T ELT))) -(((-810) (-141)) (T -810)) -NIL -(-13 (-865) (-25)) -(((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 26 T ELT)) (-1771 (((-3 $ "failed") $ $) 28 T ELT)) (-3790 (($) 25 T CONST)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 24 T CONST)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (-3031 (($ $ $) 22 T ELT)) (* (($ (-944) $) 23 T ELT) (($ (-787) $) 27 T ELT))) -(((-811) (-141)) (T -811)) -NIL -(-13 (-808) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-808) . T) ((-810) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-3801 (((-112) $) 42 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 45 T ELT)) (-2155 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 78 T ELT)) (-2828 (((-112) $) 72 T ELT)) (-2950 (((-420 (-577)) $) 76 T ELT)) (-4021 ((|#2| $) 26 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-3318 (($ $) 58 T ELT)) (-2176 (((-549) $) 67 T ELT)) (-1328 (($ $) 21 T ELT)) (-3603 (((-880) $) 53 T ELT) (($ (-577)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-420 (-577))) NIL T ELT)) (-1920 (((-787)) 10 T ELT)) (-4318 ((|#2| $) 71 T ELT)) (-2949 (((-112) $ $) 30 T ELT)) (-2971 (((-112) $ $) 69 T ELT)) (-3042 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 31 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-812 |#1| |#2|) (-10 -8 (-15 -2971 ((-112) |#1| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -4318 (|#2| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3801 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-813 |#2|) (-174)) (T -812)) -((-1920 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-812 *3 *4)) (-4 *3 (-813 *4))))) -(-10 -8 (-15 -2971 ((-112) |#1| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -3318 (|#1| |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -4318 (|#2| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3801 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3373 (((-787)) 59 (|has| |#1| (-380)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 101 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-2155 (((-577) $) 100 (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) 97 (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 96 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3081 ((|#1| $) 85 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) 74 (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) 73 (|has| |#1| (-558)) ELT)) (-2352 (($) 62 (|has| |#1| (-380)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-3442 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76 T ELT)) (-4021 ((|#1| $) 77 T ELT)) (-2900 (($ $ $) 63 (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) 64 (|has| |#1| (-865)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2144 (((-944) $) 61 (|has| |#1| (-380)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 71 (|has| |#1| (-375)) ELT)) (-3251 (($ (-944)) 60 (|has| |#1| (-380)) ELT)) (-3517 ((|#1| $) 82 T ELT)) (-1971 ((|#1| $) 83 T ELT)) (-3663 ((|#1| $) 84 T ELT)) (-2062 ((|#1| $) 78 T ELT)) (-4088 ((|#1| $) 79 T ELT)) (-2712 ((|#1| $) 80 T ELT)) (-4332 ((|#1| $) 81 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) 93 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 92 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 91 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 90 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) 89 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) 88 (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-2837 (($ $ |#1|) 94 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-2176 (((-549) $) 69 (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $) 86 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 99 (|has| |#1| (-1063 (-420 (-577)))) ELT)) (-3907 (((-3 $ "failed") $) 70 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-4318 ((|#1| $) 75 (|has| |#1| (-1085)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-3001 (((-112) $ $) 65 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 67 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 66 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 68 (|has| |#1| (-865)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-813 |#1|) (-141) (-174)) (T -813)) -((-1328 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-3442 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-1493 (*1 *2 *1) (|partial| -12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-3318 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-350 |t#1|) (-10 -8 (-15 -1328 ($ $)) (-15 -3081 (|t#1| $)) (-15 -3663 (|t#1| $)) (-15 -1971 (|t#1| $)) (-15 -3517 (|t#1| $)) (-15 -4332 (|t#1| $)) (-15 -2712 (|t#1| $)) (-15 -4088 (|t#1| $)) (-15 -2062 (|t#1| $)) (-15 -4021 (|t#1| $)) (-15 -3442 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -4318 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -3318 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-380) |has| |#1| (-380)) ((-350 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2124 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#3| (-1 |#4| |#2|) |#1|))) (-813 |#2|) (-174) (-813 |#4|) (-174)) (T -814)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-813 *6)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *4 (-813 *5))))) -(-10 -7 (-15 -2124 (|#3| (-1 |#4| |#2|) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-1024 |#1|) "failed") $) 35 T ELT) (((-3 (-577) "failed") $) NIL (-2811 (|has| (-1024 |#1|) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-2811 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-2155 ((|#1| $) NIL T ELT) (((-1024 |#1|) $) 33 T ELT) (((-577) $) NIL (-2811 (|has| (-1024 |#1|) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) ELT) (((-420 (-577)) $) NIL (-2811 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3081 ((|#1| $) 16 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-2352 (($) NIL (|has| |#1| (-380)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3442 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1024 |#1|) (-1024 |#1|)) 29 T ELT)) (-4021 ((|#1| $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#1| (-380)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3251 (($ (-944)) NIL (|has| |#1| (-380)) ELT)) (-3517 ((|#1| $) 22 T ELT)) (-1971 ((|#1| $) 20 T ELT)) (-3663 ((|#1| $) 18 T ELT)) (-2062 ((|#1| $) 26 T ELT)) (-4088 ((|#1| $) 25 T ELT)) (-2712 ((|#1| $) 24 T ELT)) (-4332 ((|#1| $) 23 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-2837 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1024 |#1|)) 30 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-4318 ((|#1| $) NIL (|has| |#1| (-1085)) ELT)) (-2754 (($) 8 T CONST)) (-2767 (($) 12 T CONST)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-815 |#1|) (-13 (-813 |#1|) (-424 (-1024 |#1|)) (-10 -8 (-15 -3442 ($ (-1024 |#1|) (-1024 |#1|))))) (-174)) (T -815)) -((-3442 (*1 *1 *2 *2) (-12 (-5 *2 (-1024 *3)) (-4 *3 (-174)) (-5 *1 (-815 *3))))) -(-13 (-813 |#1|) (-424 (-1024 |#1|)) (-10 -8 (-15 -3442 ($ (-1024 |#1|) (-1024 |#1|))))) -((-3489 (((-112) $ $) 7 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-1926 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 14 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) +((-4423 (*1 *2 *3 *4) (-12 (-4 *1 (-808)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065)))))) (-2860 (*1 *2 *3 *2) (-12 (-4 *1 (-808)) (-5 *2 (-1065)) (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-4423 (*1 *2 *3 *4) (-12 (-4 *1 (-808)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065)))))) (-2860 (*1 *2 *3 *2) (-12 (-4 *1 (-808)) (-5 *2 (-1065)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) +(-13 (-1130) (-10 -7 (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2860 ((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2860 ((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3032 (((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 55 T ELT) (((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 52 T ELT)) (-1724 (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 61 T ELT)) (-2601 (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 50 T ELT)) (-2453 (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 63 T ELT) (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 62 T ELT))) +(((-809) (-10 -7 (-15 -2453 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2453 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -2601 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -3032 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -3032 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -1724 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))))) (T -809)) +((-1724 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-3032 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391)))) (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-3032 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391)))) (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-2601 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-2453 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-2453 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809))))) +(-10 -7 (-15 -2453 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2453 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -2601 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -3032 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -3032 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -1724 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))))) +((-3854 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 64 T ELT)) (-2136 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 40 T ELT)) (-2938 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 63 T ELT)) (-4411 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 38 T ELT)) (-1850 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 62 T ELT)) (-4275 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 24 T ELT)) (-1725 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 41 T ELT)) (-1631 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 39 T ELT)) (-4290 (((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 37 T ELT))) +(((-810) (-10 -7 (-15 -4290 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1631 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1725 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4275 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4411 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2136 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -1850 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2938 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3854 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))))) (T -810)) +((-3854 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-2938 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-1850 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-2136 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-4411 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-4275 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-1725 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-1631 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-4290 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577))))) +(-10 -7 (-15 -4290 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1631 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1725 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4275 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4411 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2136 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -1850 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2938 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -3854 ((-2 (|:| -3254 (-391)) (|:| -3405 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)))) +((-3129 (((-1242 |#1|) |#1| (-228) (-577)) 69 T ELT))) +(((-811 |#1|) (-10 -7 (-15 -3129 ((-1242 |#1|) |#1| (-228) (-577)))) (-1004)) (T -811)) +((-3129 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1242 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1004))))) +(-10 -7 (-15 -3129 ((-1242 |#1|) |#1| (-228) (-577)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 26 T ELT)) (-2478 (((-3 $ "failed") $ $) 28 T ELT)) (-2305 (($) 25 T CONST)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 24 T CONST)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (-3128 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-3114 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT) (($ (-577) $) 30 T ELT))) +(((-812) (-141)) (T -812)) +NIL +(-13 (-816) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 26 T ELT)) (-2305 (($) 25 T CONST)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 24 T CONST)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (-3114 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT))) +(((-813) (-141)) (T -813)) +NIL +(-13 (-815) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-815) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 26 T ELT)) (-4208 (($ $ $) 29 T ELT)) (-2478 (((-3 $ "failed") $ $) 28 T ELT)) (-2305 (($) 25 T CONST)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 24 T CONST)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (-3114 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT))) +(((-814) (-141)) (T -814)) +((-4208 (*1 *1 *1 *1) (-4 *1 (-814)))) +(-13 (-816) (-10 -8 (-15 -4208 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (-3114 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT))) +(((-815) (-141)) (T -815)) +NIL +(-13 (-870) (-25)) +(((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 26 T ELT)) (-2478 (((-3 $ "failed") $ $) 28 T ELT)) (-2305 (($) 25 T CONST)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 24 T CONST)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (-3114 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT))) (((-816) (-141)) (T -816)) -((-4391 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) (-1926 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1060))))) -(-13 (-1125) (-10 -7 (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1926 ((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-1709 (((-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#3| |#2| (-1201)) 19 T ELT))) -(((-817 |#1| |#2| |#3|) (-10 -7 (-15 -1709 ((-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#3| |#2| (-1201)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982)) (-672 |#2|)) (T -817)) -((-1709 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1201)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1227) (-982))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2559 (-660 *4)))) (-5 *1 (-817 *6 *4 *3)) (-4 *3 (-672 *4))))) -(-10 -7 (-15 -1709 ((-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#3| |#2| (-1201)))) -((-2773 (((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-660 |#2|)) 28 T ELT) (((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#2| "failed") |#2| (-115) (-1201)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1201)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-660 |#2|) (-660 (-115)) (-1201)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-660 (-305 |#2|)) (-660 (-115)) (-1201)) 26 T ELT) (((-3 (-660 (-1292 |#2|)) "failed") (-705 |#2|) (-1201)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-705 |#2|) (-1292 |#2|) (-1201)) 35 T ELT))) -(((-818 |#1| |#2|) (-10 -7 (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-705 |#2|) (-1292 |#2|) (-1201))) (-15 -2773 ((-3 (-660 (-1292 |#2|)) "failed") (-705 |#2|) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-660 (-305 |#2|)) (-660 (-115)) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-660 |#2|) (-660 (-115)) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#2| "failed") |#2| (-115) (-1201))) (-15 -2773 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -2773 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-660 |#2|)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982))) (T -818)) -((-2773 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-818 *6 *2)))) (-2773 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-5 *1 (-818 *6 *2)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))))) (-2773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1201)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2559 (-660 *3))) *3 "failed")) (-5 *1 (-818 *6 *3)) (-4 *3 (-13 (-29 *6) (-1227) (-982))))) (-2773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2559 (-660 *7))) *7 "failed")) (-5 *1 (-818 *6 *7)))) (-2773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1292 *7)) (|:| -2559 (-660 (-1292 *7))))) (-5 *1 (-818 *6 *7)))) (-2773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1292 *7)) (|:| -2559 (-660 (-1292 *7))))) (-5 *1 (-818 *6 *7)))) (-2773 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-705 *6)) (-5 *4 (-1201)) (-4 *6 (-13 (-29 *5) (-1227) (-982))) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-1292 *6))) (-5 *1 (-818 *5 *6)))) (-2773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-705 *7)) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1292 *7)) (|:| -2559 (-660 (-1292 *7))))) (-5 *1 (-818 *6 *7)) (-5 *4 (-1292 *7))))) -(-10 -7 (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-705 |#2|) (-1292 |#2|) (-1201))) (-15 -2773 ((-3 (-660 (-1292 |#2|)) "failed") (-705 |#2|) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-660 (-305 |#2|)) (-660 (-115)) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -2559 (-660 (-1292 |#2|)))) "failed") (-660 |#2|) (-660 (-115)) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1201))) (-15 -2773 ((-3 (-2 (|:| |particular| |#2|) (|:| -2559 (-660 |#2|))) |#2| "failed") |#2| (-115) (-1201))) (-15 -2773 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -2773 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-660 |#2|)))) -((-1557 (($) 9 T ELT)) (-2783 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 30 T ELT)) (-3740 (((-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 27 T ELT)) (-4345 (($ (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-3295 (($ (-660 (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-3258 (((-1297)) 11 T ELT))) -(((-819) (-10 -8 (-15 -1557 ($)) (-15 -3258 ((-1297))) (-15 -3740 ((-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -3295 ($ (-660 (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4345 ($ (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2783 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -819)) -((-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-819)))) (-4345 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-819)))) (-3295 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-819)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-819)))) (-3258 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-819)))) (-1557 (*1 *1) (-5 *1 (-819)))) -(-10 -8 (-15 -1557 ($)) (-15 -3258 ((-1297))) (-15 -3740 ((-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -3295 ($ (-660 (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4345 ($ (-2 (|:| -4323 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2438 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2783 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-2719 ((|#2| |#2| (-1201)) 17 T ELT)) (-1569 ((|#2| |#2| (-1201)) 56 T ELT)) (-2202 (((-1 |#2| |#2|) (-1201)) 11 T ELT))) -(((-820 |#1| |#2|) (-10 -7 (-15 -2719 (|#2| |#2| (-1201))) (-15 -1569 (|#2| |#2| (-1201))) (-15 -2202 ((-1 |#2| |#2|) (-1201)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982))) (T -820)) -((-2202 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-820 *4 *5)) (-4 *5 (-13 (-29 *4) (-1227) (-982))))) (-1569 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982))))) (-2719 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982)))))) -(-10 -7 (-15 -2719 (|#2| |#2| (-1201))) (-15 -1569 (|#2| |#2| (-1201))) (-15 -2202 ((-1 |#2| |#2|) (-1201)))) -((-2773 (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391) (-391)) 128 T ELT) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391)) 129 T ELT) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391)) 131 T ELT) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-391)) 133 T ELT) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-391)) 134 T ELT) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391))) 136 T ELT) (((-1060) (-824) (-1088)) 120 T ELT) (((-1060) (-824)) 121 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824) (-1088)) 80 T ELT) (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824)) 82 T ELT))) -(((-821) (-10 -7 (-15 -2773 ((-1060) (-824))) (-15 -2773 ((-1060) (-824) (-1088))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391) (-391))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824) (-1088))))) (T -821)) -((-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-821)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-821)))) (-2773 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2773 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2773 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2773 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2773 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2773 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1060)) (-5 *1 (-821))))) -(-10 -7 (-15 -2773 ((-1060) (-824))) (-15 -2773 ((-1060) (-824) (-1088))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391))) (-15 -2773 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391) (-391))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824) (-1088)))) -((-3912 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2559 (-660 |#4|))) (-669 |#4|) |#4|) 33 T ELT))) -(((-822 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3912 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2559 (-660 |#4|))) (-669 |#4|) |#4|))) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -822)) -((-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *4)) (-4 *4 (-354 *5 *6 *7)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-822 *5 *6 *7 *4))))) -(-10 -7 (-15 -3912 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2559 (-660 |#4|))) (-669 |#4|) |#4|))) -((-3773 (((-2 (|:| -2007 |#3|) (|:| |rh| (-660 (-420 |#2|)))) |#4| (-660 (-420 |#2|))) 53 T ELT)) (-4342 (((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#4| |#2|) 62 T ELT) (((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#4|) 61 T ELT) (((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#3| |#2|) 20 T ELT) (((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#3|) 21 T ELT)) (-3086 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2467 ((|#2| |#3| (-660 (-420 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-420 |#2|)) 105 T ELT))) -(((-823 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2467 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -2467 (|#2| |#3| (-660 (-420 |#2|)))) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#3|)) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#3| |#2|)) (-15 -3086 (|#2| |#3| |#1|)) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#4|)) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#4| |#2|)) (-15 -3086 (|#2| |#4| |#1|)) (-15 -3773 ((-2 (|:| -2007 |#3|) (|:| |rh| (-660 (-420 |#2|)))) |#4| (-660 (-420 |#2|))))) (-13 (-375) (-148) (-1063 (-420 (-577)))) (-1268 |#1|) (-672 |#2|) (-672 (-420 |#2|))) (T -823)) -((-3773 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-2 (|:| -2007 *7) (|:| |rh| (-660 (-420 *6))))) (-5 *1 (-823 *5 *6 *7 *3)) (-5 *4 (-660 (-420 *6))) (-4 *7 (-672 *6)) (-4 *3 (-672 (-420 *6))))) (-3086 (*1 *2 *3 *4) (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *5 *3)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-672 *2)) (-4 *3 (-672 (-420 *2))))) (-4342 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -4269 *4) (|:| -3602 *4)))) (-5 *1 (-823 *5 *4 *6 *3)) (-4 *6 (-672 *4)) (-4 *3 (-672 (-420 *4))))) (-4342 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -4269 *5) (|:| -3602 *5)))) (-5 *1 (-823 *4 *5 *6 *3)) (-4 *6 (-672 *5)) (-4 *3 (-672 (-420 *5))))) (-3086 (*1 *2 *3 *4) (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *5 (-672 (-420 *2))))) (-4342 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -4269 *4) (|:| -3602 *4)))) (-5 *1 (-823 *5 *4 *3 *6)) (-4 *3 (-672 *4)) (-4 *6 (-672 (-420 *4))))) (-4342 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -4269 *5) (|:| -3602 *5)))) (-5 *1 (-823 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-672 (-420 *5))))) (-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-420 *2))) (-4 *2 (-1268 *5)) (-5 *1 (-823 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *6 (-672 (-420 *2))))) (-2467 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1268 *5)) (-5 *1 (-823 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *6 (-672 *4))))) -(-10 -7 (-15 -2467 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -2467 (|#2| |#3| (-660 (-420 |#2|)))) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#3|)) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#3| |#2|)) (-15 -3086 (|#2| |#3| |#1|)) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#4|)) (-15 -4342 ((-660 (-2 (|:| -4269 |#2|) (|:| -3602 |#2|))) |#4| |#2|)) (-15 -3086 (|#2| |#4| |#1|)) (-15 -3773 ((-2 (|:| -2007 |#3|) (|:| |rh| (-660 (-420 |#2|)))) |#4| (-660 (-420 |#2|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2155 (((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 15 T ELT) (($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-824) (-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2155 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $))))) (T -824)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-824)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-824))))) -(-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2155 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $)))) -((-2168 (((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -2007 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1197 |#2|)) (-1 (-431 |#2|) |#2|)) 154 T ELT)) (-4009 (((-660 (-2 (|:| |poly| |#2|) (|:| -2007 |#3|))) |#3| (-1 (-660 |#1|) |#2|)) 52 T ELT)) (-3822 (((-660 (-2 (|:| |deg| (-787)) (|:| -2007 |#2|))) |#3|) 122 T ELT)) (-1923 ((|#2| |#3|) 42 T ELT)) (-3511 (((-660 (-2 (|:| -2609 |#1|) (|:| -2007 |#3|))) |#3| (-1 (-660 |#1|) |#2|)) 99 T ELT)) (-2249 ((|#3| |#3| (-420 |#2|)) 72 T ELT) ((|#3| |#3| |#2|) 96 T ELT))) -(((-825 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1923 (|#2| |#3|)) (-15 -3822 ((-660 (-2 (|:| |deg| (-787)) (|:| -2007 |#2|))) |#3|)) (-15 -3511 ((-660 (-2 (|:| -2609 |#1|) (|:| -2007 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -4009 ((-660 (-2 (|:| |poly| |#2|) (|:| -2007 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -2168 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -2007 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1197 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -2249 (|#3| |#3| |#2|)) (-15 -2249 (|#3| |#3| (-420 |#2|)))) (-13 (-375) (-148) (-1063 (-420 (-577)))) (-1268 |#1|) (-672 |#2|) (-672 (-420 |#2|))) (T -825)) -((-2249 (*1 *2 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *1 (-825 *4 *5 *2 *6)) (-4 *2 (-672 *5)) (-4 *6 (-672 *3)))) (-2249 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-1268 *4)) (-5 *1 (-825 *4 *3 *2 *5)) (-4 *2 (-672 *3)) (-4 *5 (-672 (-420 *3))))) (-2168 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-660 *7) *7 (-1197 *7))) (-5 *5 (-1 (-431 *7) *7)) (-4 *7 (-1268 *6)) (-4 *6 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-5 *2 (-660 (-2 (|:| |frac| (-420 *7)) (|:| -2007 *3)))) (-5 *1 (-825 *6 *7 *3 *8)) (-4 *3 (-672 *7)) (-4 *8 (-672 (-420 *7))))) (-4009 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -2007 *3)))) (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) (-4 *7 (-672 (-420 *6))))) (-3511 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -2609 *5) (|:| -2007 *3)))) (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) (-4 *7 (-672 (-420 *6))))) (-3822 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -2007 *5)))) (-5 *1 (-825 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-672 (-420 *5))))) (-1923 (*1 *2 *3) (-12 (-4 *2 (-1268 *4)) (-5 *1 (-825 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *5 (-672 (-420 *2)))))) -(-10 -7 (-15 -1923 (|#2| |#3|)) (-15 -3822 ((-660 (-2 (|:| |deg| (-787)) (|:| -2007 |#2|))) |#3|)) (-15 -3511 ((-660 (-2 (|:| -2609 |#1|) (|:| -2007 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -4009 ((-660 (-2 (|:| |poly| |#2|) (|:| -2007 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -2168 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -2007 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1197 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -2249 (|#3| |#3| |#2|)) (-15 -2249 (|#3| |#3| (-420 |#2|)))) -((-4157 (((-2 (|:| -2559 (-660 (-420 |#2|))) (|:| -1631 (-705 |#1|))) (-670 |#2| (-420 |#2|)) (-660 (-420 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2559 (-660 (-420 |#2|)))) (-670 |#2| (-420 |#2|)) (-420 |#2|)) 145 T ELT) (((-2 (|:| -2559 (-660 (-420 |#2|))) (|:| -1631 (-705 |#1|))) (-669 (-420 |#2|)) (-660 (-420 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2559 (-660 (-420 |#2|)))) (-669 (-420 |#2|)) (-420 |#2|)) 138 T ELT)) (-2644 ((|#2| (-670 |#2| (-420 |#2|))) 87 T ELT) ((|#2| (-669 (-420 |#2|))) 90 T ELT))) -(((-826 |#1| |#2|) (-10 -7 (-15 -4157 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2559 (-660 (-420 |#2|)))) (-669 (-420 |#2|)) (-420 |#2|))) (-15 -4157 ((-2 (|:| -2559 (-660 (-420 |#2|))) (|:| -1631 (-705 |#1|))) (-669 (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -4157 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2559 (-660 (-420 |#2|)))) (-670 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -4157 ((-2 (|:| -2559 (-660 (-420 |#2|))) (|:| -1631 (-705 |#1|))) (-670 |#2| (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -2644 (|#2| (-669 (-420 |#2|)))) (-15 -2644 (|#2| (-670 |#2| (-420 |#2|))))) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -826)) -((-2644 (*1 *2 *3) (-12 (-5 *3 (-670 *2 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-826 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-669 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-826 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| -2559 (-660 (-420 *6))) (|:| -1631 (-705 *5)))) (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6))))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-826 *5 *6)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| -2559 (-660 (-420 *6))) (|:| -1631 (-705 *5)))) (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6))))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-826 *5 *6))))) -(-10 -7 (-15 -4157 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2559 (-660 (-420 |#2|)))) (-669 (-420 |#2|)) (-420 |#2|))) (-15 -4157 ((-2 (|:| -2559 (-660 (-420 |#2|))) (|:| -1631 (-705 |#1|))) (-669 (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -4157 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2559 (-660 (-420 |#2|)))) (-670 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -4157 ((-2 (|:| -2559 (-660 (-420 |#2|))) (|:| -1631 (-705 |#1|))) (-670 |#2| (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -2644 (|#2| (-669 (-420 |#2|)))) (-15 -2644 (|#2| (-670 |#2| (-420 |#2|))))) -((-2329 (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) |#5| |#4|) 49 T ELT))) -(((-827 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2329 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) |#5| |#4|))) (-375) (-672 |#1|) (-1268 |#1|) (-740 |#1| |#3|) (-672 |#4|)) (T -827)) -((-2329 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *7 (-1268 *5)) (-4 *4 (-740 *5 *7)) (-5 *2 (-2 (|:| -1631 (-705 *6)) (|:| |vec| (-1292 *5)))) (-5 *1 (-827 *5 *6 *7 *4 *3)) (-4 *6 (-672 *5)) (-4 *3 (-672 *4))))) -(-10 -7 (-15 -2329 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) |#5| |#4|))) -((-2168 (((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -2007 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 47 T ELT)) (-2456 (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-660 (-420 |#2|)) (-669 (-420 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 38 T ELT) (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 39 T ELT) (((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 36 T ELT) (((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 37 T ELT)) (-4009 (((-660 (-2 (|:| |poly| |#2|) (|:| -2007 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 96 T ELT))) -(((-828 |#1| |#2|) (-10 -7 (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2168 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -2007 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -4009 ((-660 (-2 (|:| |poly| |#2|) (|:| -2007 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)))) (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -828)) -((-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-670 *5 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-669 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) (-4009 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -2007 (-670 *6 (-420 *6)))))) (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6))))) (-2168 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-2 (|:| |frac| (-420 *6)) (|:| -2007 (-670 *6 (-420 *6)))))) (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6))))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-670 *7 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) (-2456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6))))) -(-10 -7 (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2168 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -2007 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -4009 ((-660 (-2 (|:| |poly| |#2|) (|:| -2007 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)))) (-15 -2456 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)))) (-15 -2456 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) -((-4396 (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) (-705 |#2|) (-1292 |#1|)) 110 T ELT) (((-2 (|:| A (-705 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)) (|:| -2007 |#2|) (|:| |rh| |#1|))))) (-705 |#1|) (-1292 |#1|)) 15 T ELT)) (-4067 (((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-705 |#2|) (-1292 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2559 (-660 |#1|))) |#2| |#1|)) 116 T ELT)) (-2773 (((-3 (-2 (|:| |particular| (-1292 |#1|)) (|:| -2559 (-705 |#1|))) "failed") (-705 |#1|) (-1292 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2559 (-660 |#1|))) "failed") |#2| |#1|)) 54 T ELT))) -(((-829 |#1| |#2|) (-10 -7 (-15 -4396 ((-2 (|:| A (-705 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)) (|:| -2007 |#2|) (|:| |rh| |#1|))))) (-705 |#1|) (-1292 |#1|))) (-15 -4396 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) (-705 |#2|) (-1292 |#1|))) (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#1|)) (|:| -2559 (-705 |#1|))) "failed") (-705 |#1|) (-1292 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2559 (-660 |#1|))) "failed") |#2| |#1|))) (-15 -4067 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-705 |#2|) (-1292 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2559 (-660 |#1|))) |#2| |#1|)))) (-375) (-672 |#1|)) (T -829)) -((-4067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2559 (-660 *6))) *7 *6)) (-4 *6 (-375)) (-4 *7 (-672 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 *6) "failed")) (|:| -2559 (-660 (-1292 *6))))) (-5 *1 (-829 *6 *7)) (-5 *4 (-1292 *6)))) (-2773 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2559 (-660 *6))) "failed") *7 *6)) (-4 *6 (-375)) (-4 *7 (-672 *6)) (-5 *2 (-2 (|:| |particular| (-1292 *6)) (|:| -2559 (-705 *6)))) (-5 *1 (-829 *6 *7)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *6)))) (-4396 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-672 *5)) (-5 *2 (-2 (|:| -1631 (-705 *6)) (|:| |vec| (-1292 *5)))) (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *5)))) (-4396 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| A (-705 *5)) (|:| |eqs| (-660 (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5)) (|:| -2007 *6) (|:| |rh| *5)))))) (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *6 (-672 *5))))) -(-10 -7 (-15 -4396 ((-2 (|:| A (-705 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)) (|:| -2007 |#2|) (|:| |rh| |#1|))))) (-705 |#1|) (-1292 |#1|))) (-15 -4396 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) (-705 |#2|) (-1292 |#1|))) (-15 -2773 ((-3 (-2 (|:| |particular| (-1292 |#1|)) (|:| -2559 (-705 |#1|))) "failed") (-705 |#1|) (-1292 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2559 (-660 |#1|))) "failed") |#2| |#1|))) (-15 -4067 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -2559 (-660 (-1292 |#1|)))) (-705 |#2|) (-1292 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2559 (-660 |#1|))) |#2| |#1|)))) -((-2115 (((-705 |#1|) (-660 |#1|) (-787)) 14 T ELT) (((-705 |#1|) (-660 |#1|)) 15 T ELT)) (-3921 (((-3 (-1292 |#1|) "failed") |#2| |#1| (-660 |#1|)) 39 T ELT)) (-2442 (((-3 |#1| "failed") |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-830 |#1| |#2|) (-10 -7 (-15 -2115 ((-705 |#1|) (-660 |#1|))) (-15 -2115 ((-705 |#1|) (-660 |#1|) (-787))) (-15 -3921 ((-3 (-1292 |#1|) "failed") |#2| |#1| (-660 |#1|))) (-15 -2442 ((-3 |#1| "failed") |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)))) (-375) (-672 |#1|)) (T -830)) -((-2442 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-660 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) (-5 *1 (-830 *2 *3)) (-4 *3 (-672 *2)))) (-3921 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-1292 *4)) (-5 *1 (-830 *4 *3)) (-4 *3 (-672 *4)))) (-2115 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-375)) (-5 *2 (-705 *5)) (-5 *1 (-830 *5 *6)) (-4 *6 (-672 *5)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-705 *4)) (-5 *1 (-830 *4 *5)) (-4 *5 (-672 *4))))) -(-10 -7 (-15 -2115 ((-705 |#1|) (-660 |#1|))) (-15 -2115 ((-705 |#1|) (-660 |#1|) (-787))) (-15 -3921 ((-3 (-1292 |#1|) "failed") |#2| |#1| (-660 |#1|))) (-15 -2442 ((-3 |#1| "failed") |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3801 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-3303 (($ (-944)) NIL (|has| |#2| (-1074)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2510 (($ $ $) NIL (|has| |#2| (-809)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#2| (-380)) ELT)) (-1895 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1125)) ELT)) (-2155 (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) ((|#2| $) NIL (|has| |#2| (-1125)) ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-705 $)) NIL (|has| |#2| (-1074)) ELT)) (-1625 (((-3 $ "failed") $) NIL (|has| |#2| (-1074)) ELT)) (-2352 (($) NIL (|has| |#2| (-380)) ELT)) (-2840 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ (-577)) NIL T ELT)) (-3692 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL (|has| |#2| (-1074)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-2434 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-2826 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#2| (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#2| (-1074)) ELT) (((-705 |#2|) (-1292 $)) NIL (|has| |#2| (-1074)) ELT)) (-2045 (((-1183) $) NIL (|has| |#2| (-1125)) ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-3251 (($ (-944)) NIL (|has| |#2| (-380)) ELT)) (-1440 (((-1145) $) NIL (|has| |#2| (-1125)) ELT)) (-1652 ((|#2| $) NIL (|has| (-577) (-865)) ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT)) (-3366 ((|#2| $ $) NIL (|has| |#2| (-1074)) ELT)) (-3097 (($ (-1292 |#2|)) NIL T ELT)) (-3941 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-3362 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-1292 |#2|) $) NIL T ELT) (($ (-577)) NIL (-2811 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ELT) (($ |#2|) NIL (|has| |#2| (-1125)) ELT) (((-880) $) NIL (|has| |#2| (-626 (-880))) ELT)) (-1920 (((-787)) NIL (|has| |#2| (-1074)) CONST)) (-2726 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2754 (($) NIL (|has| |#2| (-23)) CONST)) (-2767 (($) NIL (|has| |#2| (-1074)) CONST)) (-2136 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2971 (((-112) $ $) 11 (|has| |#2| (-865)) ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3031 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-787)) NIL (|has| |#2| (-1074)) ELT) (($ $ (-944)) NIL (|has| |#2| (-1074)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1074)) ELT) (($ $ |#2|) NIL (|has| |#2| (-742)) ELT) (($ |#2| $) NIL (|has| |#2| (-742)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-787) $) NIL (|has| |#2| (-23)) ELT) (($ (-944) $) NIL (|has| |#2| (-25)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-831 |#1| |#2| |#3|) (-244 |#1| |#2|) (-787) (-809) (-1 (-112) (-1292 |#2|) (-1292 |#2|))) (T -831)) +NIL +(-13 (-813) (-132)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-813) . T) ((-815) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-4113 (((-112) $) 42 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 45 T ELT)) (-3783 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 78 T ELT)) (-1356 (((-112) $) 72 T ELT)) (-4035 (((-420 (-577)) $) 76 T ELT)) (-2794 ((|#2| $) 26 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-3981 (($ $) 58 T ELT)) (-4463 (((-549) $) 67 T ELT)) (-4247 (($ $) 21 T ELT)) (-3709 (((-885) $) 53 T ELT) (($ (-577)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3331 (((-792)) 10 T ELT)) (-2215 ((|#2| $) 71 T ELT)) (-3018 (((-112) $ $) 30 T ELT)) (-3042 (((-112) $ $) 69 T ELT)) (-3128 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-817 |#1| |#2|) (-10 -8 (-15 -3042 ((-112) |#1| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -2215 (|#2| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -4113 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-818 |#2|) (-174)) (T -817)) +((-3331 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4))))) +(-10 -8 (-15 -3042 ((-112) |#1| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -2215 (|#2| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -4113 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3005 (((-792)) 59 (|has| |#1| (-380)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 101 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3783 (((-577) $) 100 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 97 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 96 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3782 ((|#1| $) 85 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) 74 (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) 73 (|has| |#1| (-558)) ELT)) (-1424 (($) 62 (|has| |#1| (-380)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-4274 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76 T ELT)) (-2794 ((|#1| $) 77 T ELT)) (-3237 (($ $ $) 63 (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) 64 (|has| |#1| (-870)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2686 (((-949) $) 61 (|has| |#1| (-380)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 71 (|has| |#1| (-375)) ELT)) (-3354 (($ (-949)) 60 (|has| |#1| (-380)) ELT)) (-2170 ((|#1| $) 82 T ELT)) (-1763 ((|#1| $) 83 T ELT)) (-1374 ((|#1| $) 84 T ELT)) (-1528 ((|#1| $) 78 T ELT)) (-4476 ((|#1| $) 79 T ELT)) (-3885 ((|#1| $) 80 T ELT)) (-2007 ((|#1| $) 81 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) 93 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 92 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 91 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 90 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 89 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 88 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2916 (($ $ |#1|) 94 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-4463 (((-549) $) 69 (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $) 86 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 99 (|has| |#1| (-1068 (-420 (-577)))) ELT)) (-2708 (((-3 $ "failed") $) 70 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2215 ((|#1| $) 75 (|has| |#1| (-1090)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3078 (((-112) $ $) 65 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 67 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 66 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 68 (|has| |#1| (-870)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-818 |#1|) (-141) (-174)) (T -818)) +((-4247 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-2170 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-4476 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-4274 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-2215 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-3981 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-350 |t#1|) (-10 -8 (-15 -4247 ($ $)) (-15 -3782 (|t#1| $)) (-15 -1374 (|t#1| $)) (-15 -1763 (|t#1| $)) (-15 -2170 (|t#1| $)) (-15 -2007 (|t#1| $)) (-15 -3885 (|t#1| $)) (-15 -4476 (|t#1| $)) (-15 -1528 (|t#1| $)) (-15 -2794 (|t#1| $)) (-15 -4274 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -2215 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -3981 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-380) |has| |#1| (-380)) ((-350 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4417 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#3| (-1 |#4| |#2|) |#1|))) (-818 |#2|) (-174) (-818 |#4|) (-174)) (T -819)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-818 *6)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *4 (-818 *5))))) +(-10 -7 (-15 -4417 (|#3| (-1 |#4| |#2|) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-1029 |#1|) "failed") $) 35 T ELT) (((-3 (-577) "failed") $) NIL (-2867 (|has| (-1029 |#1|) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-2867 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3783 ((|#1| $) NIL T ELT) (((-1029 |#1|) $) 33 T ELT) (((-577) $) NIL (-2867 (|has| (-1029 |#1|) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT) (((-420 (-577)) $) NIL (-2867 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3782 ((|#1| $) 16 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-1424 (($) NIL (|has| |#1| (-380)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-4274 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1029 |#1|) (-1029 |#1|)) 29 T ELT)) (-2794 ((|#1| $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3354 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2170 ((|#1| $) 22 T ELT)) (-1763 ((|#1| $) 20 T ELT)) (-1374 ((|#1| $) 18 T ELT)) (-1528 ((|#1| $) 26 T ELT)) (-4476 ((|#1| $) 25 T ELT)) (-3885 ((|#1| $) 24 T ELT)) (-2007 ((|#1| $) 23 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1029 |#1|)) 30 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2215 ((|#1| $) NIL (|has| |#1| (-1090)) ELT)) (-2839 (($) 8 T CONST)) (-2853 (($) 12 T CONST)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-820 |#1|) (-13 (-818 |#1|) (-424 (-1029 |#1|)) (-10 -8 (-15 -4274 ($ (-1029 |#1|) (-1029 |#1|))))) (-174)) (T -820)) +((-4274 (*1 *1 *2 *2) (-12 (-5 *2 (-1029 *3)) (-4 *3 (-174)) (-5 *1 (-820 *3))))) +(-13 (-818 |#1|) (-424 (-1029 |#1|)) (-10 -8 (-15 -4274 ($ (-1029 |#1|) (-1029 |#1|))))) +((-3586 (((-112) $ $) 7 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3472 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 14 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-821) (-141)) (T -821)) +((-4423 (*1 *2 *3 *4) (-12 (-4 *1 (-821)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) (-3472 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1065))))) +(-13 (-1130) (-10 -7 (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3472 ((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3607 (((-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#3| |#2| (-1206)) 19 T ELT))) +(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -3607 ((-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#3| |#2| (-1206)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987)) (-677 |#2|)) (T -822)) +((-3607 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1206)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1232) (-987))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-665 *4)))) (-5 *1 (-822 *6 *4 *3)) (-4 *3 (-677 *4))))) +(-10 -7 (-15 -3607 ((-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#3| |#2| (-1206)))) +((-2205 (((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-665 |#2|)) 28 T ELT) (((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#2| "failed") |#2| (-115) (-1206)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1206)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-665 |#2|) (-665 (-115)) (-1206)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-665 (-305 |#2|)) (-665 (-115)) (-1206)) 26 T ELT) (((-3 (-665 (-1297 |#2|)) "failed") (-710 |#2|) (-1206)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-710 |#2|) (-1297 |#2|) (-1206)) 35 T ELT))) +(((-823 |#1| |#2|) (-10 -7 (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-710 |#2|) (-1297 |#2|) (-1206))) (-15 -2205 ((-3 (-665 (-1297 |#2|)) "failed") (-710 |#2|) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-665 (-305 |#2|)) (-665 (-115)) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-665 |#2|) (-665 (-115)) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#2| "failed") |#2| (-115) (-1206))) (-15 -2205 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -2205 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-665 |#2|)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987))) (T -823)) +((-2205 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-665 *2)) (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-823 *6 *2)))) (-2205 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-665 *2)) (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-5 *1 (-823 *6 *2)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))))) (-2205 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1206)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2104 (-665 *3))) *3 "failed")) (-5 *1 (-823 *6 *3)) (-4 *3 (-13 (-29 *6) (-1232) (-987))))) (-2205 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2104 (-665 *7))) *7 "failed")) (-5 *1 (-823 *6 *7)))) (-2205 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2104 (-665 (-1297 *7))))) (-5 *1 (-823 *6 *7)))) (-2205 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2104 (-665 (-1297 *7))))) (-5 *1 (-823 *6 *7)))) (-2205 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-710 *6)) (-5 *4 (-1206)) (-4 *6 (-13 (-29 *5) (-1232) (-987))) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-1297 *6))) (-5 *1 (-823 *5 *6)))) (-2205 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-710 *7)) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2104 (-665 (-1297 *7))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1297 *7))))) +(-10 -7 (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-710 |#2|) (-1297 |#2|) (-1206))) (-15 -2205 ((-3 (-665 (-1297 |#2|)) "failed") (-710 |#2|) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-665 (-305 |#2|)) (-665 (-115)) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2104 (-665 (-1297 |#2|)))) "failed") (-665 |#2|) (-665 (-115)) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1206))) (-15 -2205 ((-3 (-2 (|:| |particular| |#2|) (|:| -2104 (-665 |#2|))) |#2| "failed") |#2| (-115) (-1206))) (-15 -2205 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -2205 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-665 |#2|)))) +((-1397 (($) 9 T ELT)) (-1439 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 30 T ELT)) (-4001 (((-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 27 T ELT)) (-4375 (($ (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-1801 (($ (-665 (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-3143 (((-1302)) 11 T ELT))) +(((-824) (-10 -8 (-15 -1397 ($)) (-15 -3143 ((-1302))) (-15 -4001 ((-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -1801 ($ (-665 (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4375 ($ (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -1439 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -824)) +((-1439 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-824)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-824)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-824)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-824)))) (-3143 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-824)))) (-1397 (*1 *1) (-5 *1 (-824)))) +(-10 -8 (-15 -1397 ($)) (-15 -3143 ((-1302))) (-15 -4001 ((-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -1801 ($ (-665 (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4375 ($ (-2 (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -1439 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-2269 ((|#2| |#2| (-1206)) 17 T ELT)) (-2743 ((|#2| |#2| (-1206)) 56 T ELT)) (-1357 (((-1 |#2| |#2|) (-1206)) 11 T ELT))) +(((-825 |#1| |#2|) (-10 -7 (-15 -2269 (|#2| |#2| (-1206))) (-15 -2743 (|#2| |#2| (-1206))) (-15 -1357 ((-1 |#2| |#2|) (-1206)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987))) (T -825)) +((-1357 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-13 (-29 *4) (-1232) (-987))))) (-2743 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987))))) (-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987)))))) +(-10 -7 (-15 -2269 (|#2| |#2| (-1206))) (-15 -2743 (|#2| |#2| (-1206))) (-15 -1357 ((-1 |#2| |#2|) (-1206)))) +((-2205 (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391) (-391)) 128 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391)) 129 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-665 (-391)) (-391)) 131 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-391)) 133 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-391)) 134 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391))) 136 T ELT) (((-1065) (-829) (-1093)) 120 T ELT) (((-1065) (-829)) 121 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829) (-1093)) 80 T ELT) (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829)) 82 T ELT))) +(((-826) (-10 -7 (-15 -2205 ((-1065) (-829))) (-15 -2205 ((-1065) (-829) (-1093))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-665 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391) (-391))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829) (-1093))))) (T -826)) +((-4423 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-826)))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-826)))) (-2205 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-2205 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-2205 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-2205 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-2205 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-2205 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1065)) (-5 *1 (-826))))) +(-10 -7 (-15 -2205 ((-1065) (-829))) (-15 -2205 ((-1065) (-829) (-1093))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-665 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391))) (-15 -2205 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391) (-391))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829) (-1093)))) +((-1420 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-665 |#4|))) (-674 |#4|) |#4|) 33 T ELT))) +(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1420 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-665 |#4|))) (-674 |#4|) |#4|))) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -827)) +((-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *4)) (-4 *4 (-354 *5 *6 *7)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-827 *5 *6 *7 *4))))) +(-10 -7 (-15 -1420 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2104 (-665 |#4|))) (-674 |#4|) |#4|))) +((-1411 (((-2 (|:| -2281 |#3|) (|:| |rh| (-665 (-420 |#2|)))) |#4| (-665 (-420 |#2|))) 53 T ELT)) (-1918 (((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#4| |#2|) 62 T ELT) (((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#4|) 61 T ELT) (((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#3| |#2|) 20 T ELT) (((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#3|) 21 T ELT)) (-3491 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-3555 ((|#2| |#3| (-665 (-420 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-420 |#2|)) 105 T ELT))) +(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3555 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -3555 (|#2| |#3| (-665 (-420 |#2|)))) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#3|)) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#3| |#2|)) (-15 -3491 (|#2| |#3| |#1|)) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#4|)) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#4| |#2|)) (-15 -3491 (|#2| |#4| |#1|)) (-15 -1411 ((-2 (|:| -2281 |#3|) (|:| |rh| (-665 (-420 |#2|)))) |#4| (-665 (-420 |#2|))))) (-13 (-375) (-148) (-1068 (-420 (-577)))) (-1273 |#1|) (-677 |#2|) (-677 (-420 |#2|))) (T -828)) +((-1411 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -2281 *7) (|:| |rh| (-665 (-420 *6))))) (-5 *1 (-828 *5 *6 *7 *3)) (-5 *4 (-665 (-420 *6))) (-4 *7 (-677 *6)) (-4 *3 (-677 (-420 *6))))) (-3491 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *5 *3)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-677 *2)) (-4 *3 (-677 (-420 *2))))) (-1918 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -1343 *4) (|:| -4220 *4)))) (-5 *1 (-828 *5 *4 *6 *3)) (-4 *6 (-677 *4)) (-4 *3 (-677 (-420 *4))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -1343 *5) (|:| -4220 *5)))) (-5 *1 (-828 *4 *5 *6 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 (-420 *5))))) (-3491 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *5 (-677 (-420 *2))))) (-1918 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -1343 *4) (|:| -4220 *4)))) (-5 *1 (-828 *5 *4 *3 *6)) (-4 *3 (-677 *4)) (-4 *6 (-677 (-420 *4))))) (-1918 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -1343 *5) (|:| -4220 *5)))) (-5 *1 (-828 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-677 (-420 *5))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-420 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-828 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *6 (-677 (-420 *2))))) (-3555 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-828 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *6 (-677 *4))))) +(-10 -7 (-15 -3555 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -3555 (|#2| |#3| (-665 (-420 |#2|)))) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#3|)) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#3| |#2|)) (-15 -3491 (|#2| |#3| |#1|)) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#4|)) (-15 -1918 ((-665 (-2 (|:| -1343 |#2|) (|:| -4220 |#2|))) |#4| |#2|)) (-15 -3491 (|#2| |#4| |#1|)) (-15 -1411 ((-2 (|:| -2281 |#3|) (|:| |rh| (-665 (-420 |#2|)))) |#4| (-665 (-420 |#2|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3783 (((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 15 T ELT) (($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-829) (-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3783 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $))))) (T -829)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-829)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-829))))) +(-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3783 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $)))) +((-3919 (((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -2281 |#3|))) |#3| (-1 (-665 |#2|) |#2| (-1202 |#2|)) (-1 (-431 |#2|) |#2|)) 154 T ELT)) (-3583 (((-665 (-2 (|:| |poly| |#2|) (|:| -2281 |#3|))) |#3| (-1 (-665 |#1|) |#2|)) 52 T ELT)) (-3689 (((-665 (-2 (|:| |deg| (-792)) (|:| -2281 |#2|))) |#3|) 122 T ELT)) (-2974 ((|#2| |#3|) 42 T ELT)) (-4438 (((-665 (-2 (|:| -4212 |#1|) (|:| -2281 |#3|))) |#3| (-1 (-665 |#1|) |#2|)) 99 T ELT)) (-3640 ((|#3| |#3| (-420 |#2|)) 72 T ELT) ((|#3| |#3| |#2|) 96 T ELT))) +(((-830 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2974 (|#2| |#3|)) (-15 -3689 ((-665 (-2 (|:| |deg| (-792)) (|:| -2281 |#2|))) |#3|)) (-15 -4438 ((-665 (-2 (|:| -4212 |#1|) (|:| -2281 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -3583 ((-665 (-2 (|:| |poly| |#2|) (|:| -2281 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -3919 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -2281 |#3|))) |#3| (-1 (-665 |#2|) |#2| (-1202 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3640 (|#3| |#3| |#2|)) (-15 -3640 (|#3| |#3| (-420 |#2|)))) (-13 (-375) (-148) (-1068 (-420 (-577)))) (-1273 |#1|) (-677 |#2|) (-677 (-420 |#2|))) (T -830)) +((-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *1 (-830 *4 *5 *2 *6)) (-4 *2 (-677 *5)) (-4 *6 (-677 *3)))) (-3640 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-1273 *4)) (-5 *1 (-830 *4 *3 *2 *5)) (-4 *2 (-677 *3)) (-4 *5 (-677 (-420 *3))))) (-3919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-665 *7) *7 (-1202 *7))) (-5 *5 (-1 (-431 *7) *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-5 *2 (-665 (-2 (|:| |frac| (-420 *7)) (|:| -2281 *3)))) (-5 *1 (-830 *6 *7 *3 *8)) (-4 *3 (-677 *7)) (-4 *8 (-677 (-420 *7))))) (-3583 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -2281 *3)))) (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) (-4 *7 (-677 (-420 *6))))) (-4438 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -4212 *5) (|:| -2281 *3)))) (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) (-4 *7 (-677 (-420 *6))))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -2281 *5)))) (-5 *1 (-830 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-677 (-420 *5))))) (-2974 (*1 *2 *3) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-830 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *5 (-677 (-420 *2)))))) +(-10 -7 (-15 -2974 (|#2| |#3|)) (-15 -3689 ((-665 (-2 (|:| |deg| (-792)) (|:| -2281 |#2|))) |#3|)) (-15 -4438 ((-665 (-2 (|:| -4212 |#1|) (|:| -2281 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -3583 ((-665 (-2 (|:| |poly| |#2|) (|:| -2281 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -3919 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -2281 |#3|))) |#3| (-1 (-665 |#2|) |#2| (-1202 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3640 (|#3| |#3| |#2|)) (-15 -3640 (|#3| |#3| (-420 |#2|)))) +((-1942 (((-2 (|:| -2104 (-665 (-420 |#2|))) (|:| -3684 (-710 |#1|))) (-675 |#2| (-420 |#2|)) (-665 (-420 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2104 (-665 (-420 |#2|)))) (-675 |#2| (-420 |#2|)) (-420 |#2|)) 145 T ELT) (((-2 (|:| -2104 (-665 (-420 |#2|))) (|:| -3684 (-710 |#1|))) (-674 (-420 |#2|)) (-665 (-420 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2104 (-665 (-420 |#2|)))) (-674 (-420 |#2|)) (-420 |#2|)) 138 T ELT)) (-4229 ((|#2| (-675 |#2| (-420 |#2|))) 87 T ELT) ((|#2| (-674 (-420 |#2|))) 90 T ELT))) +(((-831 |#1| |#2|) (-10 -7 (-15 -1942 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2104 (-665 (-420 |#2|)))) (-674 (-420 |#2|)) (-420 |#2|))) (-15 -1942 ((-2 (|:| -2104 (-665 (-420 |#2|))) (|:| -3684 (-710 |#1|))) (-674 (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -1942 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2104 (-665 (-420 |#2|)))) (-675 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -1942 ((-2 (|:| -2104 (-665 (-420 |#2|))) (|:| -3684 (-710 |#1|))) (-675 |#2| (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -4229 (|#2| (-674 (-420 |#2|)))) (-15 -4229 (|#2| (-675 |#2| (-420 |#2|))))) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -831)) +((-4229 (*1 *2 *3) (-12 (-5 *3 (-675 *2 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-674 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| -2104 (-665 (-420 *6))) (|:| -3684 (-710 *5)))) (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6))))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-831 *5 *6)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| -2104 (-665 (-420 *6))) (|:| -3684 (-710 *5)))) (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6))))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-831 *5 *6))))) +(-10 -7 (-15 -1942 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2104 (-665 (-420 |#2|)))) (-674 (-420 |#2|)) (-420 |#2|))) (-15 -1942 ((-2 (|:| -2104 (-665 (-420 |#2|))) (|:| -3684 (-710 |#1|))) (-674 (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -1942 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2104 (-665 (-420 |#2|)))) (-675 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -1942 ((-2 (|:| -2104 (-665 (-420 |#2|))) (|:| -3684 (-710 |#1|))) (-675 |#2| (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -4229 (|#2| (-674 (-420 |#2|)))) (-15 -4229 (|#2| (-675 |#2| (-420 |#2|))))) +((-2146 (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|) 49 T ELT))) +(((-832 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2146 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) (-375) (-677 |#1|) (-1273 |#1|) (-745 |#1| |#3|) (-677 |#4|)) (T -832)) +((-2146 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *7 (-1273 *5)) (-4 *4 (-745 *5 *7)) (-5 *2 (-2 (|:| -3684 (-710 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-832 *5 *6 *7 *4 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 *4))))) +(-10 -7 (-15 -2146 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) +((-3919 (((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -2281 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 47 T ELT)) (-3336 (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 38 T ELT) (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 39 T ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 36 T ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 37 T ELT)) (-3583 (((-665 (-2 (|:| |poly| |#2|) (|:| -2281 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 96 T ELT))) +(((-833 |#1| |#2|) (-10 -7 (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -3919 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -2281 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3583 ((-665 (-2 (|:| |poly| |#2|) (|:| -2281 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)))) (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -833)) +((-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-675 *5 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-674 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -2281 (-675 *6 (-420 *6)))))) (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-2 (|:| |frac| (-420 *6)) (|:| -2281 (-675 *6 (-420 *6)))))) (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6))))) (-3336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *7 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) (-3336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) (-3336 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6))))) +(-10 -7 (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -3919 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -2281 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3583 ((-665 (-2 (|:| |poly| |#2|) (|:| -2281 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)))) (-15 -3336 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)))) (-15 -3336 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) +((-3087 (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) (-710 |#2|) (-1297 |#1|)) 110 T ELT) (((-2 (|:| A (-710 |#1|)) (|:| |eqs| (-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -2281 |#2|) (|:| |rh| |#1|))))) (-710 |#1|) (-1297 |#1|)) 15 T ELT)) (-3047 (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-710 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-665 |#1|))) |#2| |#1|)) 116 T ELT)) (-2205 (((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2104 (-710 |#1|))) "failed") (-710 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-665 |#1|))) "failed") |#2| |#1|)) 54 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -3087 ((-2 (|:| A (-710 |#1|)) (|:| |eqs| (-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -2281 |#2|) (|:| |rh| |#1|))))) (-710 |#1|) (-1297 |#1|))) (-15 -3087 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) (-710 |#2|) (-1297 |#1|))) (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2104 (-710 |#1|))) "failed") (-710 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-665 |#1|))) "failed") |#2| |#1|))) (-15 -3047 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-710 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-665 |#1|))) |#2| |#1|)))) (-375) (-677 |#1|)) (T -834)) +((-3047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2104 (-665 *6))) *7 *6)) (-4 *6 (-375)) (-4 *7 (-677 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *6) "failed")) (|:| -2104 (-665 (-1297 *6))))) (-5 *1 (-834 *6 *7)) (-5 *4 (-1297 *6)))) (-2205 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2104 (-665 *6))) "failed") *7 *6)) (-4 *6 (-375)) (-4 *7 (-677 *6)) (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -2104 (-710 *6)))) (-5 *1 (-834 *6 *7)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *6)))) (-3087 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-677 *5)) (-5 *2 (-2 (|:| -3684 (-710 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *5)))) (-3087 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| A (-710 *5)) (|:| |eqs| (-665 (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5)) (|:| -2281 *6) (|:| |rh| *5)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *6 (-677 *5))))) +(-10 -7 (-15 -3087 ((-2 (|:| A (-710 |#1|)) (|:| |eqs| (-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -2281 |#2|) (|:| |rh| |#1|))))) (-710 |#1|) (-1297 |#1|))) (-15 -3087 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) (-710 |#2|) (-1297 |#1|))) (-15 -2205 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2104 (-710 |#1|))) "failed") (-710 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2104 (-665 |#1|))) "failed") |#2| |#1|))) (-15 -3047 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2104 (-665 (-1297 |#1|)))) (-710 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2104 (-665 |#1|))) |#2| |#1|)))) +((-2729 (((-710 |#1|) (-665 |#1|) (-792)) 14 T ELT) (((-710 |#1|) (-665 |#1|)) 15 T ELT)) (-4317 (((-3 (-1297 |#1|) "failed") |#2| |#1| (-665 |#1|)) 39 T ELT)) (-4167 (((-3 |#1| "failed") |#2| |#1| (-665 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -2729 ((-710 |#1|) (-665 |#1|))) (-15 -2729 ((-710 |#1|) (-665 |#1|) (-792))) (-15 -4317 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-665 |#1|))) (-15 -4167 ((-3 |#1| "failed") |#2| |#1| (-665 |#1|) (-1 |#1| |#1|)))) (-375) (-677 |#1|)) (T -835)) +((-4167 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-665 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) (-5 *1 (-835 *2 *3)) (-4 *3 (-677 *2)))) (-4317 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-1297 *4)) (-5 *1 (-835 *4 *3)) (-4 *3 (-677 *4)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-375)) (-5 *2 (-710 *5)) (-5 *1 (-835 *5 *6)) (-4 *6 (-677 *5)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-710 *4)) (-5 *1 (-835 *4 *5)) (-4 *5 (-677 *4))))) +(-10 -7 (-15 -2729 ((-710 |#1|) (-665 |#1|))) (-15 -2729 ((-710 |#1|) (-665 |#1|) (-792))) (-15 -4317 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-665 |#1|))) (-15 -4167 ((-3 |#1| "failed") |#2| |#1| (-665 |#1|) (-1 |#1| |#1|)))) +((-3586 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-4113 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-1385 (($ (-949)) NIL (|has| |#2| (-1079)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-4208 (($ $ $) NIL (|has| |#2| (-814)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#2| (-380)) ELT)) (-1957 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1130)) ELT)) (-3783 (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) NIL (|has| |#2| (-1130)) ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) NIL (|has| |#2| (-1079)) ELT)) (-3167 (((-3 $ "failed") $) NIL (|has| |#2| (-1079)) ELT)) (-1424 (($) NIL (|has| |#2| (-380)) ELT)) (-4420 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ (-577)) NIL T ELT)) (-2118 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL (|has| |#2| (-1079)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-2152 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4409 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#2| (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3235 (((-1188) $) NIL (|has| |#2| (-1130)) ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-3354 (($ (-949)) NIL (|has| |#2| (-380)) ELT)) (-1470 (((-1150) $) NIL (|has| |#2| (-1130)) ELT)) (-4397 ((|#2| $) NIL (|has| (-577) (-870)) ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT)) (-4047 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-3805 (($ (-1297 |#2|)) NIL T ELT)) (-4366 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-3641 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-1297 |#2|) $) NIL T ELT) (($ (-577)) NIL (-2867 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) NIL (|has| |#2| (-1130)) ELT) (((-885) $) NIL (|has| |#2| (-631 (-885))) ELT)) (-3331 (((-792)) NIL (|has| |#2| (-1079)) CONST)) (-2643 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2839 (($) NIL (|has| |#2| (-23)) CONST)) (-2853 (($) NIL (|has| |#2| (-1079)) CONST)) (-2389 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3042 (((-112) $ $) 11 (|has| |#2| (-870)) ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3114 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1079)) ELT) (($ $ |#2|) NIL (|has| |#2| (-747)) ELT) (($ |#2| $) NIL (|has| |#2| (-747)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-792) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-836 |#1| |#2| |#3|) (-244 |#1| |#2|) (-792) (-814) (-1 (-112) (-1297 |#2|) (-1297 |#2|))) (T -836)) NIL (-244 |#1| |#2|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2959 (((-660 (-787)) $) NIL T ELT) (((-660 (-787)) $ (-1201)) NIL T ELT)) (-2539 (((-787) $) NIL T ELT) (((-787) $ (-1201)) NIL T ELT)) (-3206 (((-660 (-834 (-1201))) $) NIL T ELT)) (-3024 (((-1197 $) $ (-834 (-1201))) NIL T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-834 (-1201)))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2475 (($ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-834 (-1201)) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL T ELT) (((-3 (-1150 |#1| (-1201)) "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-834 (-1201)) $) NIL T ELT) (((-1201) $) NIL T ELT) (((-1150 |#1| (-1201)) $) NIL T ELT)) (-2653 (($ $ $ (-834 (-1201))) NIL (|has| |#1| (-174)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-834 (-1201))) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-544 (-834 (-1201))) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-834 (-1201)) (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-834 (-1201)) (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-2536 (((-787) $ (-1201)) NIL T ELT) (((-787) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-3194 (($ (-1197 |#1|) (-834 (-1201))) NIL T ELT) (($ (-1197 $) (-834 (-1201))) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-544 (-834 (-1201)))) NIL T ELT) (($ $ (-834 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-834 (-1201))) NIL T ELT)) (-2643 (((-544 (-834 (-1201))) $) NIL T ELT) (((-787) $ (-834 (-1201))) NIL T ELT) (((-660 (-787)) $ (-660 (-834 (-1201)))) NIL T ELT)) (-4373 (($ (-1 (-544 (-834 (-1201))) (-544 (-834 (-1201)))) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (((-1 $ (-787)) (-1201)) NIL T ELT) (((-1 $ (-787)) $) NIL (|has| |#1| (-239)) ELT)) (-4038 (((-3 (-834 (-1201)) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2646 (((-834 (-1201)) $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2330 (((-112) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-834 (-1201))) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-2268 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-834 (-1201)) |#1|) NIL T ELT) (($ $ (-660 (-834 (-1201))) (-660 |#1|)) NIL T ELT) (($ $ (-834 (-1201)) $) NIL T ELT) (($ $ (-660 (-834 (-1201))) (-660 $)) NIL T ELT) (($ $ (-1201) $) NIL (|has| |#1| (-239)) ELT) (($ $ (-660 (-1201)) (-660 $)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-4447 (($ $ (-834 (-1201))) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL T ELT) (($ $ (-834 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-834 (-1201)))) NIL T ELT) (($ $ (-834 (-1201))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-1727 (((-660 (-1201)) $) NIL T ELT)) (-3616 (((-544 (-834 (-1201))) $) NIL T ELT) (((-787) $ (-834 (-1201))) NIL T ELT) (((-660 (-787)) $ (-660 (-834 (-1201)))) NIL T ELT) (((-787) $ (-1201)) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-834 (-1201)) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-834 (-1201)) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-834 (-1201)) (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-834 (-1201))) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-834 (-1201))) NIL T ELT) (($ (-1201)) NIL T ELT) (($ (-1150 |#1| (-1201))) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-544 (-834 (-1201)))) NIL T ELT) (($ $ (-834 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL T ELT) (($ $ (-834 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-834 (-1201)))) NIL T ELT) (($ $ (-834 (-1201))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-832 |#1|) (-13 (-261 |#1| (-1201) (-834 (-1201)) (-544 (-834 (-1201)))) (-1063 (-1150 |#1| (-1201)))) (-1074)) (T -832)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1698 (((-665 (-792)) $) NIL T ELT) (((-665 (-792)) $ (-1206)) NIL T ELT)) (-2163 (((-792) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-3891 (((-665 (-839 (-1206))) $) NIL T ELT)) (-3732 (((-1202 $) $ (-839 (-1206))) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-839 (-1206)))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-1821 (($ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-839 (-1206)) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 (-1155 |#1| (-1206)) "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-839 (-1206)) $) NIL T ELT) (((-1206) $) NIL T ELT) (((-1155 |#1| (-1206)) $) NIL T ELT)) (-3868 (($ $ $ (-839 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-839 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-544 (-839 (-1206))) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-839 (-1206)) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-839 (-1206)) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-4030 (((-792) $ (-1206)) NIL T ELT) (((-792) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-3882 (($ (-1202 |#1|) (-839 (-1206))) NIL T ELT) (($ (-1202 $) (-839 (-1206))) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-544 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-839 (-1206))) NIL T ELT)) (-4340 (((-544 (-839 (-1206))) $) NIL T ELT) (((-792) $ (-839 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-839 (-1206)))) NIL T ELT)) (-4329 (($ (-1 (-544 (-839 (-1206))) (-544 (-839 (-1206)))) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2512 (((-1 $ (-792)) (-1206)) NIL T ELT) (((-1 $ (-792)) $) NIL (|has| |#1| (-239)) ELT)) (-3946 (((-3 (-839 (-1206)) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-2357 (((-839 (-1206)) $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3288 (((-112) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-839 (-1206))) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-839 (-1206)) |#1|) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 |#1|)) NIL T ELT) (($ $ (-839 (-1206)) $) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 $)) NIL T ELT) (($ $ (-1206) $) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 $)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-3846 (($ $ (-839 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-4434 (((-665 (-1206)) $) NIL T ELT)) (-1597 (((-544 (-839 (-1206))) $) NIL T ELT) (((-792) $ (-839 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-839 (-1206)))) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-839 (-1206)) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-839 (-1206)) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-839 (-1206)) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-839 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-839 (-1206))) NIL T ELT) (($ (-1206)) NIL T ELT) (($ (-1155 |#1| (-1206))) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-544 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-837 |#1|) (-13 (-261 |#1| (-1206) (-839 (-1206)) (-544 (-839 (-1206)))) (-1068 (-1155 |#1| (-1206)))) (-1079)) (T -837)) NIL -(-13 (-261 |#1| (-1201) (-834 (-1201)) (-544 (-834 (-1201)))) (-1063 (-1150 |#1| (-1201)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-375)) ELT)) (-4122 (($ $) NIL (|has| |#2| (-375)) ELT)) (-3547 (((-112) $) NIL (|has| |#2| (-375)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#2| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#2| (-375)) ELT)) (-2435 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#2| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#2| (-375)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)) ELT)) (-3508 (($ (-660 $)) NIL (|has| |#2| (-375)) ELT) (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 20 (|has| |#2| (-375)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#2| (-375)) ELT) (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#2| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)) ELT)) (-4167 (((-787) $) NIL (|has| |#2| (-375)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3362 (($ $) 13 T ELT) (($ $ (-787)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-375)) ELT) (($ $) NIL (|has| |#2| (-375)) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) 15 (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT) (($ $ (-577)) 18 (|has| |#2| (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-375)) ELT))) -(((-833 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-503 |#2|) (-10 -7 (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|))) (-1125) (-921 |#1|) |#1|) (T -833)) +(-13 (-261 |#1| (-1206) (-839 (-1206)) (-544 (-839 (-1206)))) (-1068 (-1155 |#1| (-1206)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-375)) ELT)) (-2261 (($ $) NIL (|has| |#2| (-375)) ELT)) (-2538 (((-112) $) NIL (|has| |#2| (-375)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#2| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#2| (-375)) ELT)) (-2495 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#2| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#2| (-375)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-3606 (($ (-665 $)) NIL (|has| |#2| (-375)) ELT) (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 20 (|has| |#2| (-375)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#2| (-375)) ELT) (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#2| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-4081 (((-792) $) NIL (|has| |#2| (-375)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3641 (($ $) 13 T ELT) (($ $ (-792)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-375)) ELT) (($ $) NIL (|has| |#2| (-375)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) 15 (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ $ (-577)) 18 (|has| |#2| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-375)) ELT))) +(((-838 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-503 |#2|) (-10 -7 (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|))) (-1130) (-926 |#1|) |#1|) (T -838)) NIL (-13 (-111 $ $) (-239) (-503 |#2|) (-10 -7 (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2539 (((-787) $) NIL T ELT)) (-3052 ((|#1| $) 10 T ELT)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-2536 (((-787) $) 11 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-4417 (($ |#1| (-787)) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3362 (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2136 (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-834 |#1|) (-276 |#1|) (-865)) (T -834)) +((-3586 (((-112) $ $) NIL T ELT)) (-2163 (((-792) $) NIL T ELT)) (-3341 ((|#1| $) 10 T ELT)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-4030 (((-792) $) 11 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-2512 (($ |#1| (-792)) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3641 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2389 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-839 |#1|) (-276 |#1|) (-870)) (T -839)) NIL (-276 |#1|) -((-3489 (((-112) $ $) NIL T ELT)) (-1530 (((-660 |#1|) $) 38 T ELT)) (-3373 (((-787) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1743 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-1663 (($ $) 42 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3462 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3733 ((|#1| $ (-577)) NIL T ELT)) (-3606 (((-787) $ (-577)) NIL T ELT)) (-2504 (($ $) 54 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-3672 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2295 (($ (-1 (-787) (-787)) $) NIL T ELT)) (-3411 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-2611 (((-112) $ $) 51 T ELT)) (-3762 (((-787) $) 34 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2070 (($ $ $) NIL T ELT)) (-3884 (($ $ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 ((|#1| $) 41 T ELT)) (-1704 (((-660 (-2 (|:| |gen| |#1|) (|:| -2079 (-787)))) $) NIL T ELT)) (-3039 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-3467 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 20 T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 53 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ |#1| (-787)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-835 |#1|) (-13 (-398 |#1|) (-862) (-10 -8 (-15 -1652 (|#1| $)) (-15 -1663 ($ $)) (-15 -2504 ($ $)) (-15 -2611 ((-112) $ $)) (-15 -3411 ((-3 $ "failed") $ |#1|)) (-15 -1743 ((-3 $ "failed") $ |#1|)) (-15 -3467 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3762 ((-787) $)) (-15 -1530 ((-660 |#1|) $)))) (-865)) (T -835)) -((-1652 (*1 *2 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-1663 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-2504 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-2611 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) (-3411 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-1743 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-3467 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-835 *3)) (|:| |rm| (-835 *3)))) (-5 *1 (-835 *3)) (-4 *3 (-865)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-835 *3)) (-4 *3 (-865))))) -(-13 (-398 |#1|) (-862) (-10 -8 (-15 -1652 (|#1| $)) (-15 -1663 ($ $)) (-15 -2504 ($ $)) (-15 -2611 ((-112) $ $)) (-15 -3411 ((-3 $ "failed") $ |#1|)) (-15 -1743 ((-3 $ "failed") $ |#1|)) (-15 -3467 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3762 ((-787) $)) (-15 -1530 ((-660 |#1|) $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2917 (((-577) $) 60 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-4302 (((-112) $) 58 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2178 (((-112) $) 59 T ELT)) (-2900 (($ $ $) 52 T ELT)) (-1457 (($ $ $) 53 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-4318 (($ $) 61 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-3001 (((-112) $ $) 54 T ELT)) (-2978 (((-112) $ $) 56 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 55 T ELT)) (-2971 (((-112) $ $) 57 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-836) (-141)) (T -836)) -NIL -(-13 (-569) (-864)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-4413 (($ (-1145)) 7 T ELT)) (-2853 (((-112) $ (-1183) (-1145)) 15 T ELT)) (-3080 (((-838) $) 12 T ELT)) (-4441 (((-838) $) 11 T ELT)) (-2607 (((-1297) $) 9 T ELT)) (-1561 (((-112) $ (-1145)) 16 T ELT))) -(((-837) (-10 -8 (-15 -4413 ($ (-1145))) (-15 -2607 ((-1297) $)) (-15 -4441 ((-838) $)) (-15 -3080 ((-838) $)) (-15 -2853 ((-112) $ (-1183) (-1145))) (-15 -1561 ((-112) $ (-1145))))) (T -837)) -((-1561 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-837)))) (-2853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1145)) (-5 *2 (-112)) (-5 *1 (-837)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837)))) (-4441 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-837)))) (-4413 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-837))))) -(-10 -8 (-15 -4413 ($ (-1145))) (-15 -2607 ((-1297) $)) (-15 -4441 ((-838) $)) (-15 -3080 ((-838) $)) (-15 -2853 ((-112) $ (-1183) (-1145))) (-15 -1561 ((-112) $ (-1145)))) -((-1799 (((-1297) $ (-839)) 12 T ELT)) (-2489 (((-1297) $ (-1201)) 32 T ELT)) (-2016 (((-1297) $ (-1183) (-1183)) 34 T ELT)) (-3571 (((-1297) $ (-1183)) 33 T ELT)) (-3259 (((-1297) $) 19 T ELT)) (-2092 (((-1297) $ (-577)) 28 T ELT)) (-4014 (((-1297) $ (-228)) 30 T ELT)) (-1393 (((-1297) $) 18 T ELT)) (-3474 (((-1297) $) 26 T ELT)) (-3778 (((-1297) $) 25 T ELT)) (-3384 (((-1297) $) 23 T ELT)) (-1894 (((-1297) $) 24 T ELT)) (-1494 (((-1297) $) 22 T ELT)) (-2691 (((-1297) $) 21 T ELT)) (-3880 (((-1297) $) 20 T ELT)) (-3257 (((-1297) $) 16 T ELT)) (-2715 (((-1297) $) 17 T ELT)) (-3103 (((-1297) $) 15 T ELT)) (-1413 (((-1297) $) 14 T ELT)) (-1672 (((-1297) $) 13 T ELT)) (-4450 (($ (-1183) (-839)) 9 T ELT)) (-2582 (($ (-1183) (-1183) (-839)) 8 T ELT)) (-2882 (((-1201) $) 51 T ELT)) (-1952 (((-1201) $) 55 T ELT)) (-3347 (((-2 (|:| |cd| (-1183)) (|:| -2668 (-1183))) $) 54 T ELT)) (-1572 (((-1183) $) 52 T ELT)) (-3463 (((-1297) $) 41 T ELT)) (-3538 (((-577) $) 49 T ELT)) (-4138 (((-228) $) 50 T ELT)) (-1676 (((-1297) $) 40 T ELT)) (-3598 (((-1297) $) 48 T ELT)) (-1698 (((-1297) $) 47 T ELT)) (-3402 (((-1297) $) 45 T ELT)) (-1619 (((-1297) $) 46 T ELT)) (-1668 (((-1297) $) 44 T ELT)) (-3725 (((-1297) $) 43 T ELT)) (-2038 (((-1297) $) 42 T ELT)) (-3852 (((-1297) $) 38 T ELT)) (-1901 (((-1297) $) 39 T ELT)) (-2298 (((-1297) $) 37 T ELT)) (-2411 (((-1297) $) 36 T ELT)) (-3856 (((-1297) $) 35 T ELT)) (-3078 (((-1297) $) 11 T ELT))) -(((-838) (-10 -8 (-15 -2582 ($ (-1183) (-1183) (-839))) (-15 -4450 ($ (-1183) (-839))) (-15 -3078 ((-1297) $)) (-15 -1799 ((-1297) $ (-839))) (-15 -1672 ((-1297) $)) (-15 -1413 ((-1297) $)) (-15 -3103 ((-1297) $)) (-15 -3257 ((-1297) $)) (-15 -2715 ((-1297) $)) (-15 -1393 ((-1297) $)) (-15 -3259 ((-1297) $)) (-15 -3880 ((-1297) $)) (-15 -2691 ((-1297) $)) (-15 -1494 ((-1297) $)) (-15 -3384 ((-1297) $)) (-15 -1894 ((-1297) $)) (-15 -3778 ((-1297) $)) (-15 -3474 ((-1297) $)) (-15 -2092 ((-1297) $ (-577))) (-15 -4014 ((-1297) $ (-228))) (-15 -2489 ((-1297) $ (-1201))) (-15 -3571 ((-1297) $ (-1183))) (-15 -2016 ((-1297) $ (-1183) (-1183))) (-15 -3856 ((-1297) $)) (-15 -2411 ((-1297) $)) (-15 -2298 ((-1297) $)) (-15 -3852 ((-1297) $)) (-15 -1901 ((-1297) $)) (-15 -1676 ((-1297) $)) (-15 -3463 ((-1297) $)) (-15 -2038 ((-1297) $)) (-15 -3725 ((-1297) $)) (-15 -1668 ((-1297) $)) (-15 -3402 ((-1297) $)) (-15 -1619 ((-1297) $)) (-15 -1698 ((-1297) $)) (-15 -3598 ((-1297) $)) (-15 -3538 ((-577) $)) (-15 -4138 ((-228) $)) (-15 -2882 ((-1201) $)) (-15 -1572 ((-1183) $)) (-15 -3347 ((-2 (|:| |cd| (-1183)) (|:| -2668 (-1183))) $)) (-15 -1952 ((-1201) $)))) (T -838)) -((-1952 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1183)) (|:| -2668 (-1183)))) (-5 *1 (-838)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-838)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-838)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-838)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-2016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3571 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-2489 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-2092 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1799 (*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-4450 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838)))) (-2582 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838))))) -(-10 -8 (-15 -2582 ($ (-1183) (-1183) (-839))) (-15 -4450 ($ (-1183) (-839))) (-15 -3078 ((-1297) $)) (-15 -1799 ((-1297) $ (-839))) (-15 -1672 ((-1297) $)) (-15 -1413 ((-1297) $)) (-15 -3103 ((-1297) $)) (-15 -3257 ((-1297) $)) (-15 -2715 ((-1297) $)) (-15 -1393 ((-1297) $)) (-15 -3259 ((-1297) $)) (-15 -3880 ((-1297) $)) (-15 -2691 ((-1297) $)) (-15 -1494 ((-1297) $)) (-15 -3384 ((-1297) $)) (-15 -1894 ((-1297) $)) (-15 -3778 ((-1297) $)) (-15 -3474 ((-1297) $)) (-15 -2092 ((-1297) $ (-577))) (-15 -4014 ((-1297) $ (-228))) (-15 -2489 ((-1297) $ (-1201))) (-15 -3571 ((-1297) $ (-1183))) (-15 -2016 ((-1297) $ (-1183) (-1183))) (-15 -3856 ((-1297) $)) (-15 -2411 ((-1297) $)) (-15 -2298 ((-1297) $)) (-15 -3852 ((-1297) $)) (-15 -1901 ((-1297) $)) (-15 -1676 ((-1297) $)) (-15 -3463 ((-1297) $)) (-15 -2038 ((-1297) $)) (-15 -3725 ((-1297) $)) (-15 -1668 ((-1297) $)) (-15 -3402 ((-1297) $)) (-15 -1619 ((-1297) $)) (-15 -1698 ((-1297) $)) (-15 -3598 ((-1297) $)) (-15 -3538 ((-577) $)) (-15 -4138 ((-228) $)) (-15 -2882 ((-1201) $)) (-15 -1572 ((-1183) $)) (-15 -3347 ((-2 (|:| |cd| (-1183)) (|:| -2668 (-1183))) $)) (-15 -1952 ((-1201) $))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-4414 (($) 16 T ELT)) (-3115 (($) 14 T ELT)) (-2355 (($) 17 T ELT)) (-3731 (($) 15 T ELT)) (-2949 (((-112) $ $) 9 T ELT))) -(((-839) (-13 (-1125) (-10 -8 (-15 -3115 ($)) (-15 -4414 ($)) (-15 -2355 ($)) (-15 -3731 ($))))) (T -839)) -((-3115 (*1 *1) (-5 *1 (-839))) (-4414 (*1 *1) (-5 *1 (-839))) (-2355 (*1 *1) (-5 *1 (-839))) (-3731 (*1 *1) (-5 *1 (-839)))) -(-13 (-1125) (-10 -8 (-15 -3115 ($)) (-15 -4414 ($)) (-15 -2355 ($)) (-15 -3731 ($)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 23 T ELT) (($ (-1201)) 19 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3860 (((-112) $) 10 T ELT)) (-3492 (((-112) $) 9 T ELT)) (-3101 (((-112) $) 11 T ELT)) (-1862 (((-112) $) 8 T ELT)) (-2949 (((-112) $ $) 21 T ELT))) -(((-840) (-13 (-1125) (-10 -8 (-15 -3603 ($ (-1201))) (-15 -1862 ((-112) $)) (-15 -3492 ((-112) $)) (-15 -3860 ((-112) $)) (-15 -3101 ((-112) $))))) (T -840)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-840)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) -(-13 (-1125) (-10 -8 (-15 -3603 ($ (-1201))) (-15 -1862 ((-112) $)) (-15 -3492 ((-112) $)) (-15 -3860 ((-112) $)) (-15 -3101 ((-112) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2902 (($ (-840) (-660 (-1201))) 32 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1326 (((-840) $) 33 T ELT)) (-2618 (((-660 (-1201)) $) 34 T ELT)) (-3603 (((-880) $) 31 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-841) (-13 (-1125) (-10 -8 (-15 -1326 ((-840) $)) (-15 -2618 ((-660 (-1201)) $)) (-15 -2902 ($ (-840) (-660 (-1201))))))) (T -841)) -((-1326 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-841)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-841)))) (-2902 (*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-660 (-1201))) (-5 *1 (-841))))) -(-13 (-1125) (-10 -8 (-15 -1326 ((-840) $)) (-15 -2618 ((-660 (-1201)) $)) (-15 -2902 ($ (-840) (-660 (-1201)))))) -((-1422 (((-1297) (-838) (-327 |#1|) (-112)) 23 T ELT) (((-1297) (-838) (-327 |#1|)) 89 T ELT) (((-1183) (-327 |#1|) (-112)) 88 T ELT) (((-1183) (-327 |#1|)) 87 T ELT))) -(((-842 |#1|) (-10 -7 (-15 -1422 ((-1183) (-327 |#1|))) (-15 -1422 ((-1183) (-327 |#1|) (-112))) (-15 -1422 ((-1297) (-838) (-327 |#1|))) (-15 -1422 ((-1297) (-838) (-327 |#1|) (-112)))) (-13 (-844) (-1074))) (T -842)) -((-1422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838)) (-5 *4 (-327 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-844) (-1074))) (-5 *2 (-1297)) (-5 *1 (-842 *6)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-844) (-1074))) (-5 *2 (-1297)) (-5 *1 (-842 *5)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-1074))) (-5 *2 (-1183)) (-5 *1 (-842 *5)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-844) (-1074))) (-5 *2 (-1183)) (-5 *1 (-842 *4))))) -(-10 -7 (-15 -1422 ((-1183) (-327 |#1|))) (-15 -1422 ((-1183) (-327 |#1|) (-112))) (-15 -1422 ((-1297) (-838) (-327 |#1|))) (-15 -1422 ((-1297) (-838) (-327 |#1|) (-112)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3055 ((|#1| $) 10 T ELT)) (-1814 (($ |#1|) 9 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3180 (($ |#2| (-787)) NIL T ELT)) (-2643 (((-787) $) NIL T ELT)) (-3365 ((|#2| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3362 (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-787)) NIL (|has| |#1| (-239)) ELT)) (-3616 (((-787) $) NIL T ELT)) (-3603 (((-880) $) 17 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-174)) ELT)) (-3421 ((|#2| $ (-787)) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-787)) NIL (|has| |#1| (-239)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-843 |#1| |#2|) (-13 (-724 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1814 ($ |#1|)) (-15 -3055 (|#1| $)))) (-724 |#2|) (-1074)) (T -843)) -((-1814 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-843 *2 *3)) (-4 *2 (-724 *3)))) (-3055 (*1 *2 *1) (-12 (-4 *2 (-724 *3)) (-5 *1 (-843 *2 *3)) (-4 *3 (-1074))))) -(-13 (-724 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1814 ($ |#1|)) (-15 -3055 (|#1| $)))) -((-1422 (((-1297) (-838) $ (-112)) 9 T ELT) (((-1297) (-838) $) 8 T ELT) (((-1183) $ (-112)) 7 T ELT) (((-1183) $) 6 T ELT))) -(((-844) (-141)) (T -844)) -((-1422 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *4 (-112)) (-5 *2 (-1297)))) (-1422 (*1 *2 *3 *1) (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *2 (-1297)))) (-1422 (*1 *2 *1 *3) (-12 (-4 *1 (-844)) (-5 *3 (-112)) (-5 *2 (-1183)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-1183))))) -(-13 (-10 -8 (-15 -1422 ((-1183) $)) (-15 -1422 ((-1183) $ (-112))) (-15 -1422 ((-1297) (-838) $)) (-15 -1422 ((-1297) (-838) $ (-112))))) -((-4299 (((-323) (-1183) (-1183)) 12 T ELT)) (-2588 (((-112) (-1183) (-1183)) 34 T ELT)) (-4101 (((-112) (-1183)) 33 T ELT)) (-3357 (((-52) (-1183)) 25 T ELT)) (-1352 (((-52) (-1183)) 23 T ELT)) (-2830 (((-52) (-838)) 17 T ELT)) (-1420 (((-660 (-1183)) (-1183)) 28 T ELT)) (-1750 (((-660 (-1183))) 27 T ELT))) -(((-845) (-10 -7 (-15 -2830 ((-52) (-838))) (-15 -1352 ((-52) (-1183))) (-15 -3357 ((-52) (-1183))) (-15 -1750 ((-660 (-1183)))) (-15 -1420 ((-660 (-1183)) (-1183))) (-15 -4101 ((-112) (-1183))) (-15 -2588 ((-112) (-1183) (-1183))) (-15 -4299 ((-323) (-1183) (-1183))))) (T -845)) -((-4299 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-845)))) (-2588 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845)))) (-1420 (*1 *2 *3) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845)) (-5 *3 (-1183)))) (-1750 (*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-52)) (-5 *1 (-845))))) -(-10 -7 (-15 -2830 ((-52) (-838))) (-15 -1352 ((-52) (-1183))) (-15 -3357 ((-52) (-1183))) (-15 -1750 ((-660 (-1183)))) (-15 -1420 ((-660 (-1183)) (-1183))) (-15 -4101 ((-112) (-1183))) (-15 -2588 ((-112) (-1183) (-1183))) (-15 -4299 ((-323) (-1183) (-1183)))) -((-3489 (((-112) $ $) 20 T ELT)) (-1872 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-3470 (($ $ $) 73 T ELT)) (-2401 (((-112) $ $) 74 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-2096 (($ (-660 |#1|)) 69 T ELT) (($) 68 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-3699 (($ $) 63 T ELT)) (-3289 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ |#1| $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-2394 (((-112) $ $) 65 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2900 ((|#1| $) 79 T ELT)) (-1615 (($ $ $) 82 T ELT)) (-1334 (($ $ $) 81 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1457 ((|#1| $) 80 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 T ELT)) (-4056 (($ $ $) 70 T ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT) (($ |#1| $ (-787)) 64 T ELT)) (-1440 (((-1145) $) 22 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-3858 (((-660 (-2 (|:| -2438 |#1|) (|:| -1452 (-787)))) $) 62 T ELT)) (-3127 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 |#1|)) 49 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 51 T ELT)) (-3603 (((-880) $) 18 T ELT)) (-3122 (($ (-660 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2726 (((-112) $ $) 21 T ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 T ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-846 |#1|) (-141) (-865)) (T -846)) -((-2900 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-865))))) -(-13 (-752 |t#1|) (-993 |t#1|) (-10 -8 (-15 -2900 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-711 |#1|) . T) ((-752 |#1|) . T) ((-993 |#1|) . T) ((-1123 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3647 (((-1297) (-1145) (-1145)) 48 T ELT)) (-3825 (((-1297) (-837) (-52)) 45 T ELT)) (-2160 (((-52) (-837)) 16 T ELT))) -(((-847) (-10 -7 (-15 -2160 ((-52) (-837))) (-15 -3825 ((-1297) (-837) (-52))) (-15 -3647 ((-1297) (-1145) (-1145))))) (T -847)) -((-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1297)) (-5 *1 (-847)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-52)) (-5 *2 (-1297)) (-5 *1 (-847)))) (-2160 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-52)) (-5 *1 (-847))))) -(-10 -7 (-15 -2160 ((-52) (-837))) (-15 -3825 ((-1297) (-837) (-52))) (-15 -3647 ((-1297) (-1145) (-1145)))) -((-2124 (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|)) 12 T ELT) (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)) 13 T ELT))) -(((-848 |#1| |#2|) (-10 -7 (-15 -2124 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -2124 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|)))) (-1125) (-1125)) (T -848)) -((-2124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-848 *5 *6)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6))))) -(-10 -7 (-15 -2124 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -2124 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2917 (((-577) $) NIL (|has| |#1| (-864)) ELT)) (-3790 (($) NIL (|has| |#1| (-21)) CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 15 T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 9 T ELT)) (-1625 (((-3 $ "failed") $) 42 (|has| |#1| (-864)) ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 52 (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) 46 (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) 49 (|has| |#1| (-558)) ELT)) (-4302 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-3306 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-2178 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-864)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-864)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2836 (($) 13 T ELT)) (-2175 (((-112) $) 12 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3994 (((-112) $) 11 T ELT)) (-3603 (((-880) $) 18 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) 8 T ELT) (($ (-577)) NIL (-2811 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))) ELT)) (-1920 (((-787)) 36 (|has| |#1| (-864)) CONST)) (-2726 (((-112) $ $) 54 T ELT)) (-4318 (($ $) NIL (|has| |#1| (-864)) ELT)) (-2754 (($) 23 (|has| |#1| (-21)) CONST)) (-2767 (($) 33 (|has| |#1| (-864)) CONST)) (-3001 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2949 (((-112) $ $) 21 T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2971 (((-112) $ $) 45 (|has| |#1| (-864)) ELT)) (-3042 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-944)) NIL (|has| |#1| (-864)) ELT) (($ $ (-787)) NIL (|has| |#1| (-864)) ELT)) (* (($ $ $) 39 (|has| |#1| (-864)) ELT) (($ (-577) $) 27 (|has| |#1| (-21)) ELT) (($ (-787) $) NIL (|has| |#1| (-21)) ELT) (($ (-944) $) NIL (|has| |#1| (-21)) ELT))) -(((-849 |#1|) (-13 (-1125) (-424 |#1|) (-10 -8 (-15 -2836 ($)) (-15 -3994 ((-112) $)) (-15 -2175 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1125)) (T -849)) -((-2836 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1125)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-1493 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125))))) -(-13 (-1125) (-424 |#1|) (-10 -8 (-15 -2836 ($)) (-15 -3994 ((-112) $)) (-15 -2175 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) -((-3152 (((-112) $ |#2|) 14 T ELT)) (-3603 (((-880) $) 11 T ELT))) -(((-850 |#1| |#2|) (-10 -8 (-15 -3152 ((-112) |#1| |#2|)) (-15 -3603 ((-880) |#1|))) (-851 |#2|) (-1125)) (T -850)) -NIL -(-10 -8 (-15 -3152 ((-112) |#1| |#2|)) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2668 ((|#1| $) 16 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3152 (((-112) $ |#1|) 14 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-1376 (((-55) $) 15 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-851 |#1|) (-141) (-1125)) (T -851)) -((-2668 (*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-1125)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-55)))) (-3152 (*1 *2 *1 *3) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(-13 (-1125) (-10 -8 (-15 -2668 (|t#1| $)) (-15 -1376 ((-55) $)) (-15 -3152 ((-112) $ |t#1|)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-115) "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2019 ((|#1| (-115) |#1|) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3975 (($ |#1| (-373 (-115))) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3747 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-4367 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2837 ((|#1| $ |#1|) NIL T ELT)) (-4071 ((|#1| |#1|) NIL (|has| |#1| (-174)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2663 (($ $) NIL (|has| |#1| (-174)) ELT) (($ $ $) NIL (|has| |#1| (-174)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ (-115) (-577)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-852 |#1|) (-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2663 ($ $)) (-15 -2663 ($ $ $)) (-15 -4071 (|#1| |#1|))) |%noBranch|) (-15 -4367 ($ $ (-1 |#1| |#1|))) (-15 -3747 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2019 (|#1| (-115) |#1|)) (-15 -3975 ($ |#1| (-373 (-115)))))) (-1074)) (T -852)) -((-2663 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) (-2663 (*1 *1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) (-4071 (*1 *2 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3)))) (-3747 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-852 *4)) (-4 *4 (-1074)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-852 *3)) (-4 *3 (-1074)))) (-2019 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-852 *2)) (-4 *2 (-1074)))) (-3975 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-5 *1 (-852 *2)) (-4 *2 (-1074))))) -(-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -2663 ($ $)) (-15 -2663 ($ $ $)) (-15 -4071 (|#1| |#1|))) |%noBranch|) (-15 -4367 ($ $ (-1 |#1| |#1|))) (-15 -3747 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2019 (|#1| (-115) |#1|)) (-15 -3975 ($ |#1| (-373 (-115)))))) -((-3372 (((-216 (-515)) (-1183)) 9 T ELT))) -(((-853) (-10 -7 (-15 -3372 ((-216 (-515)) (-1183))))) (T -853)) -((-3372 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-216 (-515))) (-5 *1 (-853))))) -(-10 -7 (-15 -3372 ((-216 (-515)) (-1183)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2698 (((-1143) $) 10 T ELT)) (-2668 (((-519) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3152 (((-112) $ (-519)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3614 (($ (-519) (-1143)) 8 T ELT)) (-3603 (((-880) $) 25 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1376 (((-55) $) 20 T ELT)) (-2949 (((-112) $ $) 12 T ELT))) -(((-854) (-13 (-851 (-519)) (-10 -8 (-15 -2698 ((-1143) $)) (-15 -3614 ($ (-519) (-1143)))))) (T -854)) -((-2698 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-854)))) (-3614 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-854))))) -(-13 (-851 (-519)) (-10 -8 (-15 -2698 ((-1143) $)) (-15 -3614 ($ (-519) (-1143))))) -((-3489 (((-112) $ $) 7 T ELT)) (-4180 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 15 T ELT) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 14 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 17 T ELT) (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 16 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-855) (-141)) (T -855)) -((-4391 (*1 *2 *3 *4) (-12 (-4 *1 (-855)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) (-4391 (*1 *2 *3 *4) (-12 (-4 *1 (-855)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) (-4180 (*1 *2 *3) (-12 (-4 *1 (-855)) (-5 *3 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) (-5 *2 (-1060)))) (-4180 (*1 *2 *3) (-12 (-4 *1 (-855)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *2 (-1060))))) -(-13 (-1125) (-10 -7 (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -4180 ((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -4180 ((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3355 (((-1060) (-660 (-327 (-391))) (-660 (-391))) 166 T ELT) (((-1060) (-327 (-391)) (-660 (-391))) 164 T ELT) (((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-859 (-391)))) 162 T ELT) (((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-327 (-391))) (-660 (-859 (-391)))) 160 T ELT) (((-1060) (-857)) 125 T ELT) (((-1060) (-857) (-1088)) 124 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857) (-1088)) 85 T ELT) (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857)) 87 T ELT)) (-3766 (((-1060) (-660 (-327 (-391))) (-660 (-391))) 167 T ELT) (((-1060) (-857)) 150 T ELT))) -(((-856) (-10 -7 (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857) (-1088))) (-15 -3355 ((-1060) (-857) (-1088))) (-15 -3355 ((-1060) (-857))) (-15 -3766 ((-1060) (-857))) (-15 -3355 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-327 (-391))) (-660 (-859 (-391))))) (-15 -3355 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-859 (-391))))) (-15 -3355 ((-1060) (-327 (-391)) (-660 (-391)))) (-15 -3355 ((-1060) (-660 (-327 (-391))) (-660 (-391)))) (-15 -3766 ((-1060) (-660 (-327 (-391))) (-660 (-391)))))) (T -856)) -((-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3355 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) (-5 *5 (-660 (-859 (-391)))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3355 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-660 (-391))) (-5 *5 (-660 (-859 (-391)))) (-5 *6 (-660 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-856)))) (-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-856)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-856))))) -(-10 -7 (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857) (-1088))) (-15 -3355 ((-1060) (-857) (-1088))) (-15 -3355 ((-1060) (-857))) (-15 -3766 ((-1060) (-857))) (-15 -3355 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-327 (-391))) (-660 (-859 (-391))))) (-15 -3355 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-859 (-391))))) (-15 -3355 ((-1060) (-327 (-391)) (-660 (-391)))) (-15 -3355 ((-1060) (-660 (-327 (-391))) (-660 (-391)))) (-15 -3766 ((-1060) (-660 (-327 (-391))) (-660 (-391))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2155 (((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) $) 21 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))))) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-857) (-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -3603 ($ (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -3603 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))))) (-15 -2155 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) $))))) (T -857)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *1 (-857)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) (-5 *1 (-857)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))))) (-5 *1 (-857)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))))) (-5 *1 (-857))))) -(-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -3603 ($ (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) (-15 -3603 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))))) (-15 -2155 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228)))))) $)))) -((-2124 (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|) (-859 |#2|) (-859 |#2|)) 13 T ELT) (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)) 14 T ELT))) -(((-858 |#1| |#2|) (-10 -7 (-15 -2124 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|))) (-15 -2124 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|) (-859 |#2|) (-859 |#2|)))) (-1125) (-1125)) (T -858)) -((-2124 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-859 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-858 *5 *6)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-859 *6)) (-5 *1 (-858 *5 *6))))) -(-10 -7 (-15 -2124 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|))) (-15 -2124 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|) (-859 |#2|) (-859 |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-3574 (((-1145) $) 31 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2917 (((-577) $) NIL (|has| |#1| (-864)) ELT)) (-3790 (($) NIL (|has| |#1| (-21)) CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 18 T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 9 T ELT)) (-1625 (((-3 $ "failed") $) 58 (|has| |#1| (-864)) ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 65 (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) 60 (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) 63 (|has| |#1| (-558)) ELT)) (-4302 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-2955 (($) 14 T ELT)) (-3306 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-2178 (((-112) $) NIL (|has| |#1| (-864)) ELT)) (-2965 (($) 16 T ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-864)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-864)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2175 (((-112) $) 12 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3994 (((-112) $) 11 T ELT)) (-3603 (((-880) $) 24 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) 8 T ELT) (($ (-577)) NIL (-2811 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))) ELT)) (-1920 (((-787)) 51 (|has| |#1| (-864)) CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| |#1| (-864)) ELT)) (-2754 (($) 37 (|has| |#1| (-21)) CONST)) (-2767 (($) 48 (|has| |#1| (-864)) CONST)) (-3001 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2949 (((-112) $ $) 35 T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-864)) ELT)) (-2971 (((-112) $ $) 59 (|has| |#1| (-864)) ELT)) (-3042 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 44 (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) 46 (|has| |#1| (-21)) ELT)) (** (($ $ (-944)) NIL (|has| |#1| (-864)) ELT) (($ $ (-787)) NIL (|has| |#1| (-864)) ELT)) (* (($ $ $) 55 (|has| |#1| (-864)) ELT) (($ (-577) $) 42 (|has| |#1| (-21)) ELT) (($ (-787) $) NIL (|has| |#1| (-21)) ELT) (($ (-944) $) NIL (|has| |#1| (-21)) ELT))) -(((-859 |#1|) (-13 (-1125) (-424 |#1|) (-10 -8 (-15 -2955 ($)) (-15 -2965 ($)) (-15 -3994 ((-112) $)) (-15 -2175 ((-112) $)) (-15 -3574 ((-1145) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1125)) (T -859)) -((-2955 (*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125)))) (-2965 (*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-859 *3)) (-4 *3 (-1125)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-1493 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125))))) -(-13 (-1125) (-424 |#1|) (-10 -8 (-15 -2955 ($)) (-15 -2965 ($)) (-15 -3994 ((-112) $)) (-15 -2175 ((-112) $)) (-15 -3574 ((-1145) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3373 (((-787)) 24 T ELT)) (-2352 (($) 27 T ELT)) (-2900 (($ $ $) 20 T ELT) (($) 23 T CONST)) (-1457 (($ $ $) 19 T ELT) (($) 22 T CONST)) (-2144 (((-944) $) 26 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3251 (($ (-944)) 25 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT))) +((-3586 (((-112) $ $) NIL T ELT)) (-4294 (((-665 |#1|) $) 38 T ELT)) (-3005 (((-792) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1471 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-4410 (($ $) 42 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3792 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1770 ((|#1| $ (-577)) NIL T ELT)) (-1520 (((-792) $ (-577)) NIL T ELT)) (-2714 (($ $) 54 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-2399 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1923 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-2511 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-1966 (((-112) $ $) 51 T ELT)) (-4166 (((-792) $) 34 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4350 (($ $ $) NIL T ELT)) (-2505 (($ $ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 ((|#1| $) 41 T ELT)) (-2127 (((-665 (-2 (|:| |gen| |#1|) (|:| -2355 (-792)))) $) NIL T ELT)) (-3372 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-3563 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 20 T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 53 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ |#1| (-792)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-840 |#1|) (-13 (-398 |#1|) (-867) (-10 -8 (-15 -4397 (|#1| $)) (-15 -4410 ($ $)) (-15 -2714 ($ $)) (-15 -1966 ((-112) $ $)) (-15 -2511 ((-3 $ "failed") $ |#1|)) (-15 -1471 ((-3 $ "failed") $ |#1|)) (-15 -3563 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4166 ((-792) $)) (-15 -4294 ((-665 |#1|) $)))) (-870)) (T -840)) +((-4397 (*1 *2 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-2714 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-1966 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) (-2511 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-1471 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-3563 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-840 *3)) (|:| |rm| (-840 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-870)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-840 *3)) (-4 *3 (-870))))) +(-13 (-398 |#1|) (-867) (-10 -8 (-15 -4397 (|#1| $)) (-15 -4410 ($ $)) (-15 -2714 ($ $)) (-15 -1966 ((-112) $ $)) (-15 -2511 ((-3 $ "failed") $ |#1|)) (-15 -1471 ((-3 $ "failed") $ |#1|)) (-15 -3563 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4166 ((-792) $)) (-15 -4294 ((-665 |#1|) $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2578 (((-577) $) 60 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-4339 (((-112) $) 58 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2649 (((-112) $) 59 T ELT)) (-3237 (($ $ $) 52 T ELT)) (-2930 (($ $ $) 53 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2215 (($ $) 61 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3078 (((-112) $ $) 54 T ELT)) (-3054 (((-112) $ $) 56 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 55 T ELT)) (-3042 (((-112) $ $) 57 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-841) (-141)) (T -841)) +NIL +(-13 (-569) (-869)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-2523 (($ (-1150)) 7 T ELT)) (-2400 (((-112) $ (-1188) (-1150)) 15 T ELT)) (-3793 (((-843) $) 12 T ELT)) (-1610 (((-843) $) 11 T ELT)) (-2581 (((-1302) $) 9 T ELT)) (-3476 (((-112) $ (-1150)) 16 T ELT))) +(((-842) (-10 -8 (-15 -2523 ($ (-1150))) (-15 -2581 ((-1302) $)) (-15 -1610 ((-843) $)) (-15 -3793 ((-843) $)) (-15 -2400 ((-112) $ (-1188) (-1150))) (-15 -3476 ((-112) $ (-1150))))) (T -842)) +((-3476 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-842)))) (-2400 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-1150)) (-5 *2 (-112)) (-5 *1 (-842)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-842)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-842))))) +(-10 -8 (-15 -2523 ($ (-1150))) (-15 -2581 ((-1302) $)) (-15 -1610 ((-843) $)) (-15 -3793 ((-843) $)) (-15 -2400 ((-112) $ (-1188) (-1150))) (-15 -3476 ((-112) $ (-1150)))) +((-2128 (((-1302) $ (-844)) 12 T ELT)) (-3327 (((-1302) $ (-1206)) 32 T ELT)) (-2694 (((-1302) $ (-1188) (-1188)) 34 T ELT)) (-1722 (((-1302) $ (-1188)) 33 T ELT)) (-3612 (((-1302) $) 19 T ELT)) (-1912 (((-1302) $ (-577)) 28 T ELT)) (-2859 (((-1302) $ (-228)) 30 T ELT)) (-1701 (((-1302) $) 18 T ELT)) (-4012 (((-1302) $) 26 T ELT)) (-3330 (((-1302) $) 25 T ELT)) (-3294 (((-1302) $) 23 T ELT)) (-1743 (((-1302) $) 24 T ELT)) (-1800 (((-1302) $) 22 T ELT)) (-2298 (((-1302) $) 21 T ELT)) (-2340 (((-1302) $) 20 T ELT)) (-3013 (((-1302) $) 16 T ELT)) (-2239 (((-1302) $) 17 T ELT)) (-3376 (((-1302) $) 15 T ELT)) (-1518 (((-1302) $) 14 T ELT)) (-3157 (((-1302) $) 13 T ELT)) (-1669 (($ (-1188) (-844)) 9 T ELT)) (-1945 (($ (-1188) (-1188) (-844)) 8 T ELT)) (-3220 (((-1206) $) 51 T ELT)) (-1629 (((-1206) $) 55 T ELT)) (-3317 (((-2 (|:| |cd| (-1188)) (|:| -2758 (-1188))) $) 54 T ELT)) (-3004 (((-1188) $) 52 T ELT)) (-2654 (((-1302) $) 41 T ELT)) (-2405 (((-577) $) 49 T ELT)) (-1794 (((-228) $) 50 T ELT)) (-2005 (((-1302) $) 40 T ELT)) (-2428 (((-1302) $) 48 T ELT)) (-1536 (((-1302) $) 47 T ELT)) (-1632 (((-1302) $) 45 T ELT)) (-4243 (((-1302) $) 46 T ELT)) (-2746 (((-1302) $) 44 T ELT)) (-1403 (((-1302) $) 43 T ELT)) (-1651 (((-1302) $) 42 T ELT)) (-1432 (((-1302) $) 38 T ELT)) (-1365 (((-1302) $) 39 T ELT)) (-3748 (((-1302) $) 37 T ELT)) (-3680 (((-1302) $) 36 T ELT)) (-4013 (((-1302) $) 35 T ELT)) (-1533 (((-1302) $) 11 T ELT))) +(((-843) (-10 -8 (-15 -1945 ($ (-1188) (-1188) (-844))) (-15 -1669 ($ (-1188) (-844))) (-15 -1533 ((-1302) $)) (-15 -2128 ((-1302) $ (-844))) (-15 -3157 ((-1302) $)) (-15 -1518 ((-1302) $)) (-15 -3376 ((-1302) $)) (-15 -3013 ((-1302) $)) (-15 -2239 ((-1302) $)) (-15 -1701 ((-1302) $)) (-15 -3612 ((-1302) $)) (-15 -2340 ((-1302) $)) (-15 -2298 ((-1302) $)) (-15 -1800 ((-1302) $)) (-15 -3294 ((-1302) $)) (-15 -1743 ((-1302) $)) (-15 -3330 ((-1302) $)) (-15 -4012 ((-1302) $)) (-15 -1912 ((-1302) $ (-577))) (-15 -2859 ((-1302) $ (-228))) (-15 -3327 ((-1302) $ (-1206))) (-15 -1722 ((-1302) $ (-1188))) (-15 -2694 ((-1302) $ (-1188) (-1188))) (-15 -4013 ((-1302) $)) (-15 -3680 ((-1302) $)) (-15 -3748 ((-1302) $)) (-15 -1432 ((-1302) $)) (-15 -1365 ((-1302) $)) (-15 -2005 ((-1302) $)) (-15 -2654 ((-1302) $)) (-15 -1651 ((-1302) $)) (-15 -1403 ((-1302) $)) (-15 -2746 ((-1302) $)) (-15 -1632 ((-1302) $)) (-15 -4243 ((-1302) $)) (-15 -1536 ((-1302) $)) (-15 -2428 ((-1302) $)) (-15 -2405 ((-577) $)) (-15 -1794 ((-228) $)) (-15 -3220 ((-1206) $)) (-15 -3004 ((-1188) $)) (-15 -3317 ((-2 (|:| |cd| (-1188)) (|:| -2758 (-1188))) $)) (-15 -1629 ((-1206) $)))) (T -843)) +((-1629 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1188)) (|:| -2758 (-1188)))) (-5 *1 (-843)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-843)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-843)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-843)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-4013 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2694 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-1722 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-3327 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-2859 (*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2128 (*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1669 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843)))) (-1945 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843))))) +(-10 -8 (-15 -1945 ($ (-1188) (-1188) (-844))) (-15 -1669 ($ (-1188) (-844))) (-15 -1533 ((-1302) $)) (-15 -2128 ((-1302) $ (-844))) (-15 -3157 ((-1302) $)) (-15 -1518 ((-1302) $)) (-15 -3376 ((-1302) $)) (-15 -3013 ((-1302) $)) (-15 -2239 ((-1302) $)) (-15 -1701 ((-1302) $)) (-15 -3612 ((-1302) $)) (-15 -2340 ((-1302) $)) (-15 -2298 ((-1302) $)) (-15 -1800 ((-1302) $)) (-15 -3294 ((-1302) $)) (-15 -1743 ((-1302) $)) (-15 -3330 ((-1302) $)) (-15 -4012 ((-1302) $)) (-15 -1912 ((-1302) $ (-577))) (-15 -2859 ((-1302) $ (-228))) (-15 -3327 ((-1302) $ (-1206))) (-15 -1722 ((-1302) $ (-1188))) (-15 -2694 ((-1302) $ (-1188) (-1188))) (-15 -4013 ((-1302) $)) (-15 -3680 ((-1302) $)) (-15 -3748 ((-1302) $)) (-15 -1432 ((-1302) $)) (-15 -1365 ((-1302) $)) (-15 -2005 ((-1302) $)) (-15 -2654 ((-1302) $)) (-15 -1651 ((-1302) $)) (-15 -1403 ((-1302) $)) (-15 -2746 ((-1302) $)) (-15 -1632 ((-1302) $)) (-15 -4243 ((-1302) $)) (-15 -1536 ((-1302) $)) (-15 -2428 ((-1302) $)) (-15 -2405 ((-577) $)) (-15 -1794 ((-228) $)) (-15 -3220 ((-1206) $)) (-15 -3004 ((-1188) $)) (-15 -3317 ((-2 (|:| |cd| (-1188)) (|:| -2758 (-1188))) $)) (-15 -1629 ((-1206) $))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1877 (($) 16 T ELT)) (-1731 (($) 14 T ELT)) (-4093 (($) 17 T ELT)) (-3428 (($) 15 T ELT)) (-3018 (((-112) $ $) 9 T ELT))) +(((-844) (-13 (-1130) (-10 -8 (-15 -1731 ($)) (-15 -1877 ($)) (-15 -4093 ($)) (-15 -3428 ($))))) (T -844)) +((-1731 (*1 *1) (-5 *1 (-844))) (-1877 (*1 *1) (-5 *1 (-844))) (-4093 (*1 *1) (-5 *1 (-844))) (-3428 (*1 *1) (-5 *1 (-844)))) +(-13 (-1130) (-10 -8 (-15 -1731 ($)) (-15 -1877 ($)) (-15 -4093 ($)) (-15 -3428 ($)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 23 T ELT) (($ (-1206)) 19 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2438 (((-112) $) 10 T ELT)) (-2720 (((-112) $) 9 T ELT)) (-2705 (((-112) $) 11 T ELT)) (-2941 (((-112) $) 8 T ELT)) (-3018 (((-112) $ $) 21 T ELT))) +(((-845) (-13 (-1130) (-10 -8 (-15 -3709 ($ (-1206))) (-15 -2941 ((-112) $)) (-15 -2720 ((-112) $)) (-15 -2438 ((-112) $)) (-15 -2705 ((-112) $))))) (T -845)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-845)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) +(-13 (-1130) (-10 -8 (-15 -3709 ($ (-1206))) (-15 -2941 ((-112) $)) (-15 -2720 ((-112) $)) (-15 -2438 ((-112) $)) (-15 -2705 ((-112) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1625 (($ (-845) (-665 (-1206))) 32 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1600 (((-845) $) 33 T ELT)) (-1878 (((-665 (-1206)) $) 34 T ELT)) (-3709 (((-885) $) 31 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-846) (-13 (-1130) (-10 -8 (-15 -1600 ((-845) $)) (-15 -1878 ((-665 (-1206)) $)) (-15 -1625 ($ (-845) (-665 (-1206))))))) (T -846)) +((-1600 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-846)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-846)))) (-1625 (*1 *1 *2 *3) (-12 (-5 *2 (-845)) (-5 *3 (-665 (-1206))) (-5 *1 (-846))))) +(-13 (-1130) (-10 -8 (-15 -1600 ((-845) $)) (-15 -1878 ((-665 (-1206)) $)) (-15 -1625 ($ (-845) (-665 (-1206)))))) +((-4136 (((-1302) (-843) (-327 |#1|) (-112)) 23 T ELT) (((-1302) (-843) (-327 |#1|)) 89 T ELT) (((-1188) (-327 |#1|) (-112)) 88 T ELT) (((-1188) (-327 |#1|)) 87 T ELT))) +(((-847 |#1|) (-10 -7 (-15 -4136 ((-1188) (-327 |#1|))) (-15 -4136 ((-1188) (-327 |#1|) (-112))) (-15 -4136 ((-1302) (-843) (-327 |#1|))) (-15 -4136 ((-1302) (-843) (-327 |#1|) (-112)))) (-13 (-849) (-1079))) (T -847)) +((-4136 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-843)) (-5 *4 (-327 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-849) (-1079))) (-5 *2 (-1302)) (-5 *1 (-847 *6)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-849) (-1079))) (-5 *2 (-1302)) (-5 *1 (-847 *5)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-1079))) (-5 *2 (-1188)) (-5 *1 (-847 *5)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-849) (-1079))) (-5 *2 (-1188)) (-5 *1 (-847 *4))))) +(-10 -7 (-15 -4136 ((-1188) (-327 |#1|))) (-15 -4136 ((-1188) (-327 |#1|) (-112))) (-15 -4136 ((-1302) (-843) (-327 |#1|))) (-15 -4136 ((-1302) (-843) (-327 |#1|) (-112)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-4070 ((|#1| $) 10 T ELT)) (-1868 (($ |#1|) 9 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3872 (($ |#2| (-792)) NIL T ELT)) (-4340 (((-792) $) NIL T ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3641 (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-792)) NIL (|has| |#1| (-239)) ELT)) (-1597 (((-792) $) NIL T ELT)) (-3709 (((-885) $) 17 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-174)) ELT)) (-4171 ((|#2| $ (-792)) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-792)) NIL (|has| |#1| (-239)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-848 |#1| |#2|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1868 ($ |#1|)) (-15 -4070 (|#1| $)))) (-729 |#2|) (-1079)) (T -848)) +((-1868 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-848 *2 *3)) (-4 *2 (-729 *3)))) (-4070 (*1 *2 *1) (-12 (-4 *2 (-729 *3)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1079))))) +(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1868 ($ |#1|)) (-15 -4070 (|#1| $)))) +((-4136 (((-1302) (-843) $ (-112)) 9 T ELT) (((-1302) (-843) $) 8 T ELT) (((-1188) $ (-112)) 7 T ELT) (((-1188) $) 6 T ELT))) +(((-849) (-141)) (T -849)) +((-4136 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *4 (-112)) (-5 *2 (-1302)))) (-4136 (*1 *2 *3 *1) (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *2 (-1302)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *1 (-849)) (-5 *3 (-112)) (-5 *2 (-1188)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-1188))))) +(-13 (-10 -8 (-15 -4136 ((-1188) $)) (-15 -4136 ((-1188) $ (-112))) (-15 -4136 ((-1302) (-843) $)) (-15 -4136 ((-1302) (-843) $ (-112))))) +((-1764 (((-323) (-1188) (-1188)) 12 T ELT)) (-1410 (((-112) (-1188) (-1188)) 34 T ELT)) (-4271 (((-112) (-1188)) 33 T ELT)) (-4029 (((-52) (-1188)) 25 T ELT)) (-4465 (((-52) (-1188)) 23 T ELT)) (-3572 (((-52) (-843)) 17 T ELT)) (-2296 (((-665 (-1188)) (-1188)) 28 T ELT)) (-2419 (((-665 (-1188))) 27 T ELT))) +(((-850) (-10 -7 (-15 -3572 ((-52) (-843))) (-15 -4465 ((-52) (-1188))) (-15 -4029 ((-52) (-1188))) (-15 -2419 ((-665 (-1188)))) (-15 -2296 ((-665 (-1188)) (-1188))) (-15 -4271 ((-112) (-1188))) (-15 -1410 ((-112) (-1188) (-1188))) (-15 -1764 ((-323) (-1188) (-1188))))) (T -850)) +((-1764 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-850)))) (-1410 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850)))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850)) (-5 *3 (-1188)))) (-2419 (*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850)))) (-4465 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-52)) (-5 *1 (-850))))) +(-10 -7 (-15 -3572 ((-52) (-843))) (-15 -4465 ((-52) (-1188))) (-15 -4029 ((-52) (-1188))) (-15 -2419 ((-665 (-1188)))) (-15 -2296 ((-665 (-1188)) (-1188))) (-15 -4271 ((-112) (-1188))) (-15 -1410 ((-112) (-1188) (-1188))) (-15 -1764 ((-323) (-1188) (-1188)))) +((-3586 (((-112) $ $) 20 T ELT)) (-1931 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-2481 (($ $ $) 73 T ELT)) (-2710 (((-112) $ $) 74 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2181 (($ (-665 |#1|)) 69 T ELT) (($) 68 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2697 (($ $) 63 T ELT)) (-3589 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2049 (((-112) $ $) 65 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-3237 ((|#1| $) 79 T ELT)) (-3836 (($ $ $) 82 T ELT)) (-3771 (($ $ $) 81 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2930 ((|#1| $) 80 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 T ELT)) (-1565 (($ $ $) 70 T ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT) (($ |#1| $ (-792)) 64 T ELT)) (-1470 (((-1150) $) 22 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2762 (((-665 (-2 (|:| -2727 |#1|) (|:| -1481 (-792)))) $) 62 T ELT)) (-3165 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 51 T ELT)) (-3709 (((-885) $) 18 T ELT)) (-3823 (($ (-665 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2643 (((-112) $ $) 21 T ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 T ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-851 |#1|) (-141) (-870)) (T -851)) +((-3237 (*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-870))))) +(-13 (-757 |t#1|) (-998 |t#1|) (-10 -8 (-15 -3237 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-716 |#1|) . T) ((-757 |#1|) . T) ((-998 |#1|) . T) ((-1128 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3155 (((-1302) (-1150) (-1150)) 48 T ELT)) (-3074 (((-1302) (-842) (-52)) 45 T ELT)) (-2645 (((-52) (-842)) 16 T ELT))) +(((-852) (-10 -7 (-15 -2645 ((-52) (-842))) (-15 -3074 ((-1302) (-842) (-52))) (-15 -3155 ((-1302) (-1150) (-1150))))) (T -852)) +((-3155 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1302)) (-5 *1 (-852)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-52)) (-5 *2 (-1302)) (-5 *1 (-852)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-52)) (-5 *1 (-852))))) +(-10 -7 (-15 -2645 ((-52) (-842))) (-15 -3074 ((-1302) (-842) (-52))) (-15 -3155 ((-1302) (-1150) (-1150)))) +((-4417 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)) 12 T ELT) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 13 T ELT))) +(((-853 |#1| |#2|) (-10 -7 (-15 -4417 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -4417 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) (-1130) (-1130)) (T -853)) +((-4417 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-853 *5 *6)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6))))) +(-10 -7 (-15 -4417 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -4417 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2578 (((-577) $) NIL (|has| |#1| (-869)) ELT)) (-2305 (($) NIL (|has| |#1| (-21)) CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 15 T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 9 T ELT)) (-3167 (((-3 $ "failed") $) 42 (|has| |#1| (-869)) ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 52 (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) 46 (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) 49 (|has| |#1| (-558)) ELT)) (-4339 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3357 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-2649 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2461 (($) 13 T ELT)) (-3459 (((-112) $) 12 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2836 (((-112) $) 11 T ELT)) (-3709 (((-885) $) 18 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 8 T ELT) (($ (-577)) NIL (-2867 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ELT)) (-3331 (((-792)) 36 (|has| |#1| (-869)) CONST)) (-2643 (((-112) $ $) 54 T ELT)) (-2215 (($ $) NIL (|has| |#1| (-869)) ELT)) (-2839 (($) 23 (|has| |#1| (-21)) CONST)) (-2853 (($) 33 (|has| |#1| (-869)) CONST)) (-3078 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3018 (((-112) $ $) 21 T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3042 (((-112) $ $) 45 (|has| |#1| (-869)) ELT)) (-3128 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-949)) NIL (|has| |#1| (-869)) ELT) (($ $ (-792)) NIL (|has| |#1| (-869)) ELT)) (* (($ $ $) 39 (|has| |#1| (-869)) ELT) (($ (-577) $) 27 (|has| |#1| (-21)) ELT) (($ (-792) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-21)) ELT))) +(((-854 |#1|) (-13 (-1130) (-424 |#1|) (-10 -8 (-15 -2461 ($)) (-15 -2836 ((-112) $)) (-15 -3459 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1130)) (T -854)) +((-2461 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1130)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-1902 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130))))) +(-13 (-1130) (-424 |#1|) (-10 -8 (-15 -2461 ($)) (-15 -2836 ((-112) $)) (-15 -3459 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) +((-4241 (((-112) $ |#2|) 14 T ELT)) (-3709 (((-885) $) 11 T ELT))) +(((-855 |#1| |#2|) (-10 -8 (-15 -4241 ((-112) |#1| |#2|)) (-15 -3709 ((-885) |#1|))) (-856 |#2|) (-1130)) (T -855)) +NIL +(-10 -8 (-15 -4241 ((-112) |#1| |#2|)) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-2758 ((|#1| $) 16 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-4241 (((-112) $ |#1|) 14 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3622 (((-55) $) 15 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-856 |#1|) (-141) (-1130)) (T -856)) +((-2758 (*1 *2 *1) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1130)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-55)))) (-4241 (*1 *2 *1 *3) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(-13 (-1130) (-10 -8 (-15 -2758 (|t#1| $)) (-15 -3622 ((-55) $)) (-15 -4241 ((-112) $ |t#1|)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-115) "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2012 ((|#1| (-115) |#1|) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1611 (($ |#1| (-373 (-115))) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3396 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3942 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2916 ((|#1| $ |#1|) NIL T ELT)) (-3448 ((|#1| |#1|) NIL (|has| |#1| (-174)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4440 (($ $) NIL (|has| |#1| (-174)) ELT) (($ $ $) NIL (|has| |#1| (-174)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ (-115) (-577)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) +(((-857 |#1|) (-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4440 ($ $)) (-15 -4440 ($ $ $)) (-15 -3448 (|#1| |#1|))) |%noBranch|) (-15 -3942 ($ $ (-1 |#1| |#1|))) (-15 -3396 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2012 (|#1| (-115) |#1|)) (-15 -1611 ($ |#1| (-373 (-115)))))) (-1079)) (T -857)) +((-4440 (*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-4440 (*1 *1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3448 (*1 *2 *2) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3)))) (-3396 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-857 *4)) (-4 *4 (-1079)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-857 *3)) (-4 *3 (-1079)))) (-2012 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-857 *2)) (-4 *2 (-1079)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-5 *1 (-857 *2)) (-4 *2 (-1079))))) +(-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -4440 ($ $)) (-15 -4440 ($ $ $)) (-15 -3448 (|#1| |#1|))) |%noBranch|) (-15 -3942 ($ $ (-1 |#1| |#1|))) (-15 -3396 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -2012 (|#1| (-115) |#1|)) (-15 -1611 ($ |#1| (-373 (-115)))))) +((-4073 (((-216 (-515)) (-1188)) 9 T ELT))) +(((-858) (-10 -7 (-15 -4073 ((-216 (-515)) (-1188))))) (T -858)) +((-4073 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-216 (-515))) (-5 *1 (-858))))) +(-10 -7 (-15 -4073 ((-216 (-515)) (-1188)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2978 (((-1148) $) 10 T ELT)) (-2758 (((-519) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4241 (((-112) $ (-519)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3722 (($ (-519) (-1148)) 8 T ELT)) (-3709 (((-885) $) 25 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3622 (((-55) $) 20 T ELT)) (-3018 (((-112) $ $) 12 T ELT))) +(((-859) (-13 (-856 (-519)) (-10 -8 (-15 -2978 ((-1148) $)) (-15 -3722 ($ (-519) (-1148)))))) (T -859)) +((-2978 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-859)))) (-3722 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-859))))) +(-13 (-856 (-519)) (-10 -8 (-15 -2978 ((-1148) $)) (-15 -3722 ($ (-519) (-1148))))) +((-3586 (((-112) $ $) 7 T ELT)) (-3766 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 15 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 14 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 17 T ELT) (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 16 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) (((-860) (-141)) (T -860)) -((-2900 (*1 *1) (-4 *1 (-860))) (-1457 (*1 *1) (-4 *1 (-860)))) -(-13 (-865) (-380) (-10 -8 (-15 -2900 ($) -2609) (-15 -1457 ($) -2609))) -(((-102) . T) ((-626 (-880)) . T) ((-380) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-2645 (((-112) (-1292 |#2|) (-1292 |#2|)) 19 T ELT)) (-4378 (((-112) (-1292 |#2|) (-1292 |#2|)) 20 T ELT)) (-2595 (((-112) (-1292 |#2|) (-1292 |#2|)) 16 T ELT))) -(((-861 |#1| |#2|) (-10 -7 (-15 -2595 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -2645 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -4378 ((-112) (-1292 |#2|) (-1292 |#2|)))) (-787) (-808)) (T -861)) -((-4378 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) (-5 *1 (-861 *4 *5)) (-14 *4 (-787)))) (-2645 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) (-5 *1 (-861 *4 *5)) (-14 *4 (-787)))) (-2595 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) -(-10 -7 (-15 -2595 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -2645 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -4378 ((-112) (-1292 |#2|) (-1292 |#2|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3790 (($) 25 T CONST)) (-1625 (((-3 $ "failed") $) 28 T ELT)) (-3306 (((-112) $) 26 T ELT)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2767 (($) 24 T CONST)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (** (($ $ (-944)) 23 T ELT) (($ $ (-787)) 27 T ELT)) (* (($ $ $) 22 T ELT))) -(((-862) (-141)) (T -862)) -NIL -(-13 (-875) (-742)) -(((-102) . T) ((-626 (-880)) . T) ((-742) . T) ((-875) . T) ((-865) . T) ((-868) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2917 (((-577) $) 21 T ELT)) (-4302 (((-112) $) 10 T ELT)) (-2178 (((-112) $) 12 T ELT)) (-4318 (($ $) 23 T ELT))) -(((-863 |#1|) (-10 -8 (-15 -4318 (|#1| |#1|)) (-15 -2917 ((-577) |#1|)) (-15 -2178 ((-112) |#1|)) (-15 -4302 ((-112) |#1|))) (-864)) (T -863)) -NIL -(-10 -8 (-15 -4318 (|#1| |#1|)) (-15 -2917 ((-577) |#1|)) (-15 -2178 ((-112) |#1|)) (-15 -4302 ((-112) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 26 T ELT)) (-1771 (((-3 $ "failed") $ $) 28 T ELT)) (-2917 (((-577) $) 38 T ELT)) (-3790 (($) 25 T CONST)) (-1625 (((-3 $ "failed") $) 43 T ELT)) (-4302 (((-112) $) 40 T ELT)) (-3306 (((-112) $) 45 T ELT)) (-2178 (((-112) $) 39 T ELT)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 47 T ELT)) (-1920 (((-787)) 48 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-4318 (($ $) 37 T ELT)) (-2754 (($) 24 T CONST)) (-2767 (($) 46 T CONST)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (-3042 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-3031 (($ $ $) 22 T ELT)) (** (($ $ (-787)) 44 T ELT) (($ $ (-944)) 41 T ELT)) (* (($ (-944) $) 23 T ELT) (($ (-787) $) 27 T ELT) (($ (-577) $) 30 T ELT) (($ $ $) 42 T ELT))) -(((-864) (-141)) (T -864)) -((-4302 (*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-577)))) (-4318 (*1 *1 *1) (-4 *1 (-864)))) -(-13 (-807) (-1074) (-742) (-10 -8 (-15 -4302 ((-112) $)) (-15 -2178 ((-112) $)) (-15 -2917 ((-577) $)) (-15 -4318 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-865) . T) ((-868) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT))) +((-4423 (*1 *2 *3 *4) (-12 (-4 *1 (-860)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) (-4423 (*1 *2 *3 *4) (-12 (-4 *1 (-860)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) (-3766 (*1 *2 *3) (-12 (-4 *1 (-860)) (-5 *3 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) (-5 *2 (-1065)))) (-3766 (*1 *2 *3) (-12 (-4 *1 (-860)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *2 (-1065))))) +(-13 (-1130) (-10 -7 (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -3766 ((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -3766 ((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3449 (((-1065) (-665 (-327 (-391))) (-665 (-391))) 166 T ELT) (((-1065) (-327 (-391)) (-665 (-391))) 164 T ELT) (((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-864 (-391)))) 162 T ELT) (((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-327 (-391))) (-665 (-864 (-391)))) 160 T ELT) (((-1065) (-862)) 125 T ELT) (((-1065) (-862) (-1093)) 124 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862) (-1093)) 85 T ELT) (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862)) 87 T ELT)) (-2961 (((-1065) (-665 (-327 (-391))) (-665 (-391))) 167 T ELT) (((-1065) (-862)) 150 T ELT))) +(((-861) (-10 -7 (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862) (-1093))) (-15 -3449 ((-1065) (-862) (-1093))) (-15 -3449 ((-1065) (-862))) (-15 -2961 ((-1065) (-862))) (-15 -3449 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-327 (-391))) (-665 (-864 (-391))))) (-15 -3449 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-864 (-391))))) (-15 -3449 ((-1065) (-327 (-391)) (-665 (-391)))) (-15 -3449 ((-1065) (-665 (-327 (-391))) (-665 (-391)))) (-15 -2961 ((-1065) (-665 (-327 (-391))) (-665 (-391)))))) (T -861)) +((-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3449 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) (-5 *5 (-665 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3449 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-665 (-391))) (-5 *5 (-665 (-864 (-391)))) (-5 *6 (-665 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-861)))) (-4423 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-861)))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-861))))) +(-10 -7 (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862) (-1093))) (-15 -3449 ((-1065) (-862) (-1093))) (-15 -3449 ((-1065) (-862))) (-15 -2961 ((-1065) (-862))) (-15 -3449 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-327 (-391))) (-665 (-864 (-391))))) (-15 -3449 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-864 (-391))))) (-15 -3449 ((-1065) (-327 (-391)) (-665 (-391)))) (-15 -3449 ((-1065) (-665 (-327 (-391))) (-665 (-391)))) (-15 -2961 ((-1065) (-665 (-327 (-391))) (-665 (-391))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3783 (((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) $) 21 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))))) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-862) (-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -3709 ($ (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -3709 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))))) (-15 -3783 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) $))))) (T -862)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *1 (-862)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) (-5 *1 (-862)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))))) (-5 *1 (-862)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))))) (-5 *1 (-862))))) +(-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -3709 ($ (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) (-15 -3709 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))))) (-15 -3783 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228)))))) $)))) +((-4417 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)) 13 T ELT) (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14 T ELT))) +(((-863 |#1| |#2|) (-10 -7 (-15 -4417 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -4417 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) (-1130) (-1130)) (T -863)) +((-4417 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-863 *5 *6)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6))))) +(-10 -7 (-15 -4417 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -4417 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-1804 (((-1150) $) 31 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2578 (((-577) $) NIL (|has| |#1| (-869)) ELT)) (-2305 (($) NIL (|has| |#1| (-21)) CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 18 T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 9 T ELT)) (-3167 (((-3 $ "failed") $) 58 (|has| |#1| (-869)) ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 65 (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) 60 (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) 63 (|has| |#1| (-558)) ELT)) (-4339 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3049 (($) 14 T ELT)) (-3357 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-2649 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3061 (($) 16 T ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3459 (((-112) $) 12 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2836 (((-112) $) 11 T ELT)) (-3709 (((-885) $) 24 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 8 T ELT) (($ (-577)) NIL (-2867 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ELT)) (-3331 (((-792)) 51 (|has| |#1| (-869)) CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| |#1| (-869)) ELT)) (-2839 (($) 37 (|has| |#1| (-21)) CONST)) (-2853 (($) 48 (|has| |#1| (-869)) CONST)) (-3078 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3018 (((-112) $ $) 35 T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-3042 (((-112) $ $) 59 (|has| |#1| (-869)) ELT)) (-3128 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 44 (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) 46 (|has| |#1| (-21)) ELT)) (** (($ $ (-949)) NIL (|has| |#1| (-869)) ELT) (($ $ (-792)) NIL (|has| |#1| (-869)) ELT)) (* (($ $ $) 55 (|has| |#1| (-869)) ELT) (($ (-577) $) 42 (|has| |#1| (-21)) ELT) (($ (-792) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-21)) ELT))) +(((-864 |#1|) (-13 (-1130) (-424 |#1|) (-10 -8 (-15 -3049 ($)) (-15 -3061 ($)) (-15 -2836 ((-112) $)) (-15 -3459 ((-112) $)) (-15 -1804 ((-1150) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1130)) (T -864)) +((-3049 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130)))) (-3061 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-864 *3)) (-4 *3 (-1130)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-1902 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130))))) +(-13 (-1130) (-424 |#1|) (-10 -8 (-15 -3049 ($)) (-15 -3061 ($)) (-15 -2836 ((-112) $)) (-15 -3459 ((-112) $)) (-15 -1804 ((-1150) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3005 (((-792)) 24 T ELT)) (-1424 (($) 27 T ELT)) (-3237 (($ $ $) 20 T ELT) (($) 23 T CONST)) (-2930 (($ $ $) 19 T ELT) (($) 22 T CONST)) (-2686 (((-949) $) 26 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3354 (($ (-949)) 25 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT))) (((-865) (-141)) (T -865)) -NIL -(-13 (-1125) (-868)) -(((-102) . T) ((-626 (-880)) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-3603 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-880) $) 15 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 12 T ELT))) -(((-866 |#1| |#2|) (-13 (-868) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|))) (-1242) (-1 (-112) |#1| |#1|)) (T -866)) -NIL -(-13 (-868) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|))) -((-2900 (($ $ $) 16 T ELT)) (-1457 (($ $ $) 15 T ELT)) (-2726 (((-112) $ $) 17 T ELT)) (-3001 (((-112) $ $) 12 T ELT)) (-2978 (((-112) $ $) 9 T ELT)) (-2949 (((-112) $ $) 14 T ELT)) (-2988 (((-112) $ $) 11 T ELT))) -(((-867 |#1|) (-10 -8 (-15 -2900 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -3001 ((-112) |#1| |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-868)) (T -867)) -NIL -(-10 -8 (-15 -2900 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -3001 ((-112) |#1| |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2726 ((-112) |#1| |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2900 (($ $ $) 9 T ELT)) (-1457 (($ $ $) 10 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3001 (((-112) $ $) 11 T ELT)) (-2978 (((-112) $ $) 13 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 12 T ELT)) (-2971 (((-112) $ $) 14 T ELT))) -(((-868) (-141)) (T -868)) -((-2971 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-2978 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-2988 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-3001 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-1457 (*1 *1 *1 *1) (-4 *1 (-868))) (-2900 (*1 *1 *1 *1) (-4 *1 (-868)))) -(-13 (-102) (-10 -8 (-15 -2971 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2988 ((-112) $ $)) (-15 -3001 ((-112) $ $)) (-15 -1457 ($ $ $)) (-15 -2900 ($ $ $)))) -(((-102) . T) ((-1242) . T)) -((-2242 (($ $ $) 49 T ELT)) (-3964 (($ $ $) 48 T ELT)) (-2428 (($ $ $) 46 T ELT)) (-1495 (($ $ $) 55 T ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 50 T ELT)) (-2513 (((-3 $ "failed") $ $) 53 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 29 T ELT)) (-2308 (($ $) 39 T ELT)) (-3608 (($ $ $) 43 T ELT)) (-3894 (($ $ $) 42 T ELT)) (-4265 (($ $ $) 51 T ELT)) (-3917 (($ $ $) 57 T ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 45 T ELT)) (-3793 (((-3 $ "failed") $ $) 52 T ELT)) (-3478 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-2240 ((|#2| $) 36 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#2|) 13 T ELT)) (-4198 (((-660 |#2|) $) 21 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-869 |#1| |#2|) (-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -2885 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3428 |#1|)) |#1| |#1|)) (-15 -1495 (|#1| |#1| |#1|)) (-15 -2513 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2242 (|#1| |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1|)) (-15 -2206 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3428 |#1|)) |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3608 (|#1| |#1| |#1|)) (-15 -3894 (|#1| |#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4198 ((-660 |#2|) |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3603 ((-880) |#1|))) (-870 |#2|) (-1074)) (T -869)) -NIL -(-10 -8 (-15 -4265 (|#1| |#1| |#1|)) (-15 -2885 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3428 |#1|)) |#1| |#1|)) (-15 -1495 (|#1| |#1| |#1|)) (-15 -2513 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2242 (|#1| |#1| |#1|)) (-15 -3964 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1| |#1|)) (-15 -2206 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3428 |#1|)) |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3608 (|#1| |#1| |#1|)) (-15 -3894 (|#1| |#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -3478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4198 ((-660 |#2|) |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2242 (($ $ $) 50 (|has| |#1| (-375)) ELT)) (-3964 (($ $ $) 51 (|has| |#1| (-375)) ELT)) (-2428 (($ $ $) 53 (|has| |#1| (-375)) ELT)) (-1495 (($ $ $) 48 (|has| |#1| (-375)) ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 47 (|has| |#1| (-375)) ELT)) (-2513 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)) ELT)) (-4237 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 52 (|has| |#1| (-375)) ELT)) (-2784 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-2155 (((-577) $) 79 (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) 76 (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 75 T ELT)) (-3391 (($ $) 69 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2308 (($ $) 60 (|has| |#1| (-465)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-3180 (($ |#1| (-787)) 67 T ELT)) (-3926 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1976 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 (|has| |#1| (-569)) ELT)) (-2643 (((-787) $) 71 T ELT)) (-3608 (($ $ $) 57 (|has| |#1| (-375)) ELT)) (-3894 (($ $ $) 58 (|has| |#1| (-375)) ELT)) (-4265 (($ $ $) 46 (|has| |#1| (-375)) ELT)) (-3917 (($ $ $) 55 (|has| |#1| (-375)) ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 54 (|has| |#1| (-375)) ELT)) (-3793 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)) ELT)) (-4420 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 59 (|has| |#1| (-375)) ELT)) (-3365 ((|#1| $) 70 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)) ELT)) (-3616 (((-787) $) 72 T ELT)) (-2240 ((|#1| $) 61 (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 78 (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) 73 T ELT)) (-4198 (((-660 |#1|) $) 66 T ELT)) (-3421 ((|#1| $ (-787)) 68 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-1640 ((|#1| $ |#1| |#1|) 65 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) -(((-870 |#1|) (-141) (-1074)) (T -870)) -((-3616 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-3180 (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-660 *3)))) (-1640 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-1976 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) (-3926 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) (-2308 (*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) (-4420 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) (-3894 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3608 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3793 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-2206 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3428 *1))) (-4 *1 (-870 *3)))) (-2428 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-4237 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) (-3964 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-2242 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-2513 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-1495 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-2885 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3428 *1))) (-4 *1 (-870 *3)))) (-4265 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(-13 (-1074) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -3616 ((-787) $)) (-15 -2643 ((-787) $)) (-15 -3365 (|t#1| $)) (-15 -3391 ($ $)) (-15 -3421 (|t#1| $ (-787))) (-15 -3180 ($ |t#1| (-787))) (-15 -4198 ((-660 |t#1|) $)) (-15 -1640 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3478 ((-3 $ "failed") $ |t#1|)) (-15 -1976 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -3926 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -2240 (|t#1| $)) (-15 -2308 ($ $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -4420 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -3894 ($ $ $)) (-15 -3608 ($ $ $)) (-15 -3793 ((-3 $ "failed") $ $)) (-15 -3917 ($ $ $)) (-15 -2206 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $)) (-15 -2428 ($ $ $)) (-15 -4237 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -3964 ($ $ $)) (-15 -2242 ($ $ $)) (-15 -2513 ((-3 $ "failed") $ $)) (-15 -1495 ($ $ $)) (-15 -2885 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $)) (-15 -4265 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-424 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-1702 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-4237 (((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-375)) ELT)) (-3926 (((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-569)) ELT)) (-1976 (((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-569)) ELT)) (-4420 (((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-375)) ELT)) (-1640 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-871 |#1| |#2|) (-10 -7 (-15 -1702 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1640 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -1976 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3926 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -4420 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4237 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1074) (-870 |#1|)) (T -871)) -((-4237 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-4420 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-3926 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-1976 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-1640 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-871 *2 *3)) (-4 *3 (-870 *2)))) (-1702 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1074)) (-5 *1 (-871 *5 *2)) (-4 *2 (-870 *5))))) -(-10 -7 (-15 -1702 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1640 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -1976 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3926 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -4420 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4237 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2242 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3964 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2428 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1495 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2513 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4237 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 34 (|has| |#1| (-375)) ELT)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4116 (((-880) $ (-880)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) NIL T ELT)) (-3926 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 30 (|has| |#1| (-569)) ELT)) (-1976 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 28 (|has| |#1| (-569)) ELT)) (-2643 (((-787) $) NIL T ELT)) (-3608 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3894 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4265 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3917 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-4420 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 32 (|has| |#1| (-375)) ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-3616 (((-787) $) NIL T ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-1640 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) 23 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) 19 T ELT) (($ $ (-787)) 24 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-872 |#1| |#2| |#3|) (-13 (-870 |#1|) (-10 -8 (-15 -4116 ((-880) $ (-880))))) (-1074) (-99 |#1|) (-1 |#1| |#1|)) (T -872)) -((-4116 (*1 *2 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-870 |#1|) (-10 -8 (-15 -4116 ((-880) $ (-880))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2242 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3964 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2428 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1495 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-2513 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-4237 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3180 (($ |#2| (-787)) 17 T ELT)) (-3926 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-1976 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-2643 (((-787) $) NIL T ELT)) (-3608 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3894 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-4265 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3917 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2206 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-4420 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3365 ((|#2| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-3616 (((-787) $) NIL T ELT)) (-2240 ((|#2| $) NIL (|has| |#2| (-465)) ELT)) (-3603 (((-880) $) 24 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (($ (-1288 |#1|)) 19 T ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-787)) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-1640 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) 13 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-873 |#1| |#2| |#3| |#4|) (-13 (-870 |#2|) (-629 (-1288 |#1|))) (-1201) (-1074) (-99 |#2|) (-1 |#2| |#2|)) (T -873)) -NIL -(-13 (-870 |#2|) (-629 (-1288 |#1|))) -((-3541 ((|#1| (-787) |#1|) 45 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1551 ((|#1| (-787) (-787) |#1|) 36 T ELT) ((|#1| (-787) |#1|) 24 T ELT)) (-2854 ((|#1| (-787) |#1|) 40 T ELT)) (-2306 ((|#1| (-787) |#1|) 38 T ELT)) (-2382 ((|#1| (-787) |#1|) 37 T ELT))) -(((-874 |#1|) (-10 -7 (-15 -2382 (|#1| (-787) |#1|)) (-15 -2306 (|#1| (-787) |#1|)) (-15 -2854 (|#1| (-787) |#1|)) (-15 -1551 (|#1| (-787) |#1|)) (-15 -1551 (|#1| (-787) (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3541 (|#1| (-787) |#1|)) |%noBranch|)) (-174)) (T -874)) -((-3541 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-1551 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-1551 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-2854 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-2306 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-2382 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -2382 (|#1| (-787) |#1|)) (-15 -2306 (|#1| (-787) |#1|)) (-15 -2854 (|#1| (-787) |#1|)) (-15 -1551 (|#1| (-787) |#1|)) (-15 -1551 (|#1| (-787) (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3541 (|#1| (-787) |#1|)) |%noBranch|)) -((-3489 (((-112) $ $) 7 T ELT)) (-2900 (($ $ $) 20 T ELT)) (-1457 (($ $ $) 19 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3001 (((-112) $ $) 18 T ELT)) (-2978 (((-112) $ $) 16 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 17 T ELT)) (-2971 (((-112) $ $) 15 T ELT)) (** (($ $ (-944)) 23 T ELT)) (* (($ $ $) 22 T ELT))) -(((-875) (-141)) (T -875)) -NIL -(-13 (-865) (-1137)) -(((-102) . T) ((-626 (-880)) . T) ((-865) . T) ((-868) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3145 (((-577) $) 14 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-577)) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 9 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 11 T ELT))) -(((-876) (-13 (-865) (-10 -8 (-15 -3603 ($ (-577))) (-15 -3145 ((-577) $))))) (T -876)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-876)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-876))))) -(-13 (-865) (-10 -8 (-15 -3603 ($ (-577))) (-15 -3145 ((-577) $)))) -((-4114 (((-707 (-1250)) $ (-1250)) 15 T ELT)) (-2688 (((-707 (-562)) $ (-562)) 12 T ELT)) (-4376 (((-787) $ (-129)) 30 T ELT))) -(((-877 |#1|) (-10 -8 (-15 -4376 ((-787) |#1| (-129))) (-15 -4114 ((-707 (-1250)) |#1| (-1250))) (-15 -2688 ((-707 (-562)) |#1| (-562)))) (-878)) (T -877)) -NIL -(-10 -8 (-15 -4376 ((-787) |#1| (-129))) (-15 -4114 ((-707 (-1250)) |#1| (-1250))) (-15 -2688 ((-707 (-562)) |#1| (-562)))) -((-4114 (((-707 (-1250)) $ (-1250)) 8 T ELT)) (-2688 (((-707 (-562)) $ (-562)) 9 T ELT)) (-4376 (((-787) $ (-129)) 7 T ELT)) (-1626 (((-707 (-130)) $ (-130)) 10 T ELT)) (-3349 (($ $) 6 T ELT))) -(((-878) (-141)) (T -878)) -((-1626 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *2 (-707 (-130))) (-5 *3 (-130)))) (-2688 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *2 (-707 (-562))) (-5 *3 (-562)))) (-4114 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *2 (-707 (-1250))) (-5 *3 (-1250)))) (-4376 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *3 (-129)) (-5 *2 (-787))))) -(-13 (-175) (-10 -8 (-15 -1626 ((-707 (-130)) $ (-130))) (-15 -2688 ((-707 (-562)) $ (-562))) (-15 -4114 ((-707 (-1250)) $ (-1250))) (-15 -4376 ((-787) $ (-129))))) +((-3237 (*1 *1) (-4 *1 (-865))) (-2930 (*1 *1) (-4 *1 (-865)))) +(-13 (-870) (-380) (-10 -8 (-15 -3237 ($) -4212) (-15 -2930 ($) -4212))) +(((-102) . T) ((-631 (-885)) . T) ((-380) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-3213 (((-112) (-1297 |#2|) (-1297 |#2|)) 19 T ELT)) (-1925 (((-112) (-1297 |#2|) (-1297 |#2|)) 20 T ELT)) (-3147 (((-112) (-1297 |#2|) (-1297 |#2|)) 16 T ELT))) +(((-866 |#1| |#2|) (-10 -7 (-15 -3147 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -3213 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -1925 ((-112) (-1297 |#2|) (-1297 |#2|)))) (-792) (-813)) (T -866)) +((-1925 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) (-5 *1 (-866 *4 *5)) (-14 *4 (-792)))) (-3213 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) (-5 *1 (-866 *4 *5)) (-14 *4 (-792)))) (-3147 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) +(-10 -7 (-15 -3147 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -3213 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -1925 ((-112) (-1297 |#2|) (-1297 |#2|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-2305 (($) 25 T CONST)) (-3167 (((-3 $ "failed") $) 28 T ELT)) (-3357 (((-112) $) 26 T ELT)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2853 (($) 24 T CONST)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (** (($ $ (-949)) 23 T ELT) (($ $ (-792)) 27 T ELT)) (* (($ $ $) 22 T ELT))) +(((-867) (-141)) (T -867)) +NIL +(-13 (-880) (-747)) +(((-102) . T) ((-631 (-885)) . T) ((-747) . T) ((-880) . T) ((-870) . T) ((-873) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-2578 (((-577) $) 21 T ELT)) (-4339 (((-112) $) 10 T ELT)) (-2649 (((-112) $) 12 T ELT)) (-2215 (($ $) 23 T ELT))) +(((-868 |#1|) (-10 -8 (-15 -2215 (|#1| |#1|)) (-15 -2578 ((-577) |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -4339 ((-112) |#1|))) (-869)) (T -868)) +NIL +(-10 -8 (-15 -2215 (|#1| |#1|)) (-15 -2578 ((-577) |#1|)) (-15 -2649 ((-112) |#1|)) (-15 -4339 ((-112) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 26 T ELT)) (-2478 (((-3 $ "failed") $ $) 28 T ELT)) (-2578 (((-577) $) 38 T ELT)) (-2305 (($) 25 T CONST)) (-3167 (((-3 $ "failed") $) 43 T ELT)) (-4339 (((-112) $) 40 T ELT)) (-3357 (((-112) $) 45 T ELT)) (-2649 (((-112) $) 39 T ELT)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 47 T ELT)) (-3331 (((-792)) 48 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2215 (($ $) 37 T ELT)) (-2839 (($) 24 T CONST)) (-2853 (($) 46 T CONST)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (-3128 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-3114 (($ $ $) 22 T ELT)) (** (($ $ (-792)) 44 T ELT) (($ $ (-949)) 41 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT) (($ (-577) $) 30 T ELT) (($ $ $) 42 T ELT))) +(((-869) (-141)) (T -869)) +((-4339 (*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-577)))) (-2215 (*1 *1 *1) (-4 *1 (-869)))) +(-13 (-812) (-1079) (-747) (-10 -8 (-15 -4339 ((-112) $)) (-15 -2649 ((-112) $)) (-15 -2578 ((-577) $)) (-15 -2215 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT))) +(((-870) (-141)) (T -870)) +NIL +(-13 (-1130) (-873)) +(((-102) . T) ((-631 (-885)) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3709 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-885) $) 15 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 12 T ELT))) +(((-871 |#1| |#2|) (-13 (-873) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|))) (-1247) (-1 (-112) |#1| |#1|)) (T -871)) +NIL +(-13 (-873) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|))) +((-3237 (($ $ $) 16 T ELT)) (-2930 (($ $ $) 15 T ELT)) (-2643 (((-112) $ $) 17 T ELT)) (-3078 (((-112) $ $) 12 T ELT)) (-3054 (((-112) $ $) 9 T ELT)) (-3018 (((-112) $ $) 14 T ELT)) (-3067 (((-112) $ $) 11 T ELT))) +(((-872 |#1|) (-10 -8 (-15 -3237 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -3078 ((-112) |#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -3054 ((-112) |#1| |#1|)) (-15 -2643 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-873)) (T -872)) +NIL +(-10 -8 (-15 -3237 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|)) (-15 -3078 ((-112) |#1| |#1|)) (-15 -3067 ((-112) |#1| |#1|)) (-15 -3054 ((-112) |#1| |#1|)) (-15 -2643 ((-112) |#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3237 (($ $ $) 9 T ELT)) (-2930 (($ $ $) 10 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3078 (((-112) $ $) 11 T ELT)) (-3054 (((-112) $ $) 13 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 12 T ELT)) (-3042 (((-112) $ $) 14 T ELT))) +(((-873) (-141)) (T -873)) +((-3042 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-3054 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-3067 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-3078 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-2930 (*1 *1 *1 *1) (-4 *1 (-873))) (-3237 (*1 *1 *1 *1) (-4 *1 (-873)))) +(-13 (-102) (-10 -8 (-15 -3042 ((-112) $ $)) (-15 -3054 ((-112) $ $)) (-15 -3067 ((-112) $ $)) (-15 -3078 ((-112) $ $)) (-15 -2930 ($ $ $)) (-15 -3237 ($ $ $)))) +(((-102) . T) ((-1247) . T)) +((-2763 (($ $ $) 49 T ELT)) (-4021 (($ $ $) 48 T ELT)) (-1762 (($ $ $) 46 T ELT)) (-3494 (($ $ $) 55 T ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 50 T ELT)) (-2761 (((-3 $ "failed") $ $) 53 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 29 T ELT)) (-2796 (($ $) 39 T ELT)) (-2502 (($ $ $) 43 T ELT)) (-3928 (($ $ $) 42 T ELT)) (-2168 (($ $ $) 51 T ELT)) (-3070 (($ $ $) 57 T ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 45 T ELT)) (-2915 (((-3 $ "failed") $ $) 52 T ELT)) (-3574 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-2407 ((|#2| $) 36 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#2|) 13 T ELT)) (-4343 (((-665 |#2|) $) 21 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-874 |#1| |#2|) (-10 -8 (-15 -2168 (|#1| |#1| |#1|)) (-15 -3427 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2343 |#1|)) |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -4021 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -3224 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2343 |#1|)) |#1| |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2915 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4343 ((-665 |#2|) |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3709 ((-885) |#1|))) (-875 |#2|) (-1079)) (T -874)) +NIL +(-10 -8 (-15 -2168 (|#1| |#1| |#1|)) (-15 -3427 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2343 |#1|)) |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -4021 (|#1| |#1| |#1|)) (-15 -1762 (|#1| |#1| |#1|)) (-15 -3224 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2343 |#1|)) |#1| |#1|)) (-15 -3070 (|#1| |#1| |#1|)) (-15 -2915 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -3574 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4343 ((-665 |#2|) |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-2763 (($ $ $) 50 (|has| |#1| (-375)) ELT)) (-4021 (($ $ $) 51 (|has| |#1| (-375)) ELT)) (-1762 (($ $ $) 53 (|has| |#1| (-375)) ELT)) (-3494 (($ $ $) 48 (|has| |#1| (-375)) ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 47 (|has| |#1| (-375)) ELT)) (-2761 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)) ELT)) (-2793 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 52 (|has| |#1| (-375)) ELT)) (-4335 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3783 (((-577) $) 79 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 76 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 75 T ELT)) (-4048 (($ $) 69 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2796 (($ $) 60 (|has| |#1| (-465)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-3872 (($ |#1| (-792)) 67 T ELT)) (-4213 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1402 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 (|has| |#1| (-569)) ELT)) (-4340 (((-792) $) 71 T ELT)) (-2502 (($ $ $) 57 (|has| |#1| (-375)) ELT)) (-3928 (($ $ $) 58 (|has| |#1| (-375)) ELT)) (-2168 (($ $ $) 46 (|has| |#1| (-375)) ELT)) (-3070 (($ $ $) 55 (|has| |#1| (-375)) ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 54 (|has| |#1| (-375)) ELT)) (-2915 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)) ELT)) (-3992 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 59 (|has| |#1| (-375)) ELT)) (-4025 ((|#1| $) 70 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)) ELT)) (-1597 (((-792) $) 72 T ELT)) (-2407 ((|#1| $) 61 (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 78 (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 73 T ELT)) (-4343 (((-665 |#1|) $) 66 T ELT)) (-4171 ((|#1| $ (-792)) 68 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4382 ((|#1| $ |#1| |#1|) 65 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) +(((-875 |#1|) (-141) (-1079)) (T -875)) +((-1597 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-4048 (*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-3872 (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-665 *3)))) (-4382 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-3574 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-1402 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) (-4213 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) (-2796 (*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) (-3992 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) (-3928 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2502 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2915 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-3070 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2343 *1))) (-4 *1 (-875 *3)))) (-1762 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2793 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) (-4021 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2763 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2761 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-3494 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2343 *1))) (-4 *1 (-875 *3)))) (-2168 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(-13 (-1079) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -1597 ((-792) $)) (-15 -4340 ((-792) $)) (-15 -4025 (|t#1| $)) (-15 -4048 ($ $)) (-15 -4171 (|t#1| $ (-792))) (-15 -3872 ($ |t#1| (-792))) (-15 -4343 ((-665 |t#1|) $)) (-15 -4382 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3574 ((-3 $ "failed") $ |t#1|)) (-15 -1402 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -4213 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -2407 (|t#1| $)) (-15 -2796 ($ $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -3992 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -3928 ($ $ $)) (-15 -2502 ($ $ $)) (-15 -2915 ((-3 $ "failed") $ $)) (-15 -3070 ($ $ $)) (-15 -3224 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $)) (-15 -1762 ($ $ $)) (-15 -2793 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -4021 ($ $ $)) (-15 -2763 ($ $ $)) (-15 -2761 ((-3 $ "failed") $ $)) (-15 -3494 ($ $ $)) (-15 -3427 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $)) (-15 -2168 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-424 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3256 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2793 (((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-375)) ELT)) (-4213 (((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-569)) ELT)) (-1402 (((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-569)) ELT)) (-3992 (((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-375)) ELT)) (-4382 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-876 |#1| |#2|) (-10 -7 (-15 -3256 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4382 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -1402 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4213 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3992 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2793 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1079) (-875 |#1|)) (T -876)) +((-2793 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-3992 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-4213 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-1402 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-4382 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1079)) (-5 *1 (-876 *2 *3)) (-4 *3 (-875 *2)))) (-3256 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1079)) (-5 *1 (-876 *5 *2)) (-4 *2 (-875 *5))))) +(-10 -7 (-15 -3256 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4382 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -1402 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4213 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3992 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2793 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2763 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4021 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1762 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3494 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2793 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 34 (|has| |#1| (-375)) ELT)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT)) (-2880 (((-885) $ (-885)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) NIL T ELT)) (-4213 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 30 (|has| |#1| (-569)) ELT)) (-1402 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 28 (|has| |#1| (-569)) ELT)) (-4340 (((-792) $) NIL T ELT)) (-2502 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3928 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2168 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2915 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3992 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 32 (|has| |#1| (-375)) ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-1597 (((-792) $) NIL T ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4382 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) 23 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 19 T ELT) (($ $ (-792)) 24 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-877 |#1| |#2| |#3|) (-13 (-875 |#1|) (-10 -8 (-15 -2880 ((-885) $ (-885))))) (-1079) (-99 |#1|) (-1 |#1| |#1|)) (T -877)) +((-2880 (*1 *2 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-877 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-875 |#1|) (-10 -8 (-15 -2880 ((-885) $ (-885))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2763 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-4021 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1762 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3494 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3427 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-2793 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3872 (($ |#2| (-792)) 17 T ELT)) (-4213 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-1402 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-4340 (((-792) $) NIL T ELT)) (-2502 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3928 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2168 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3070 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-2915 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-3992 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-1597 (((-792) $) NIL T ELT)) (-2407 ((|#2| $) NIL (|has| |#2| (-465)) ELT)) (-3709 (((-885) $) 24 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (($ (-1293 |#1|)) 19 T ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-792)) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4382 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) 13 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-878 |#1| |#2| |#3| |#4|) (-13 (-875 |#2|) (-634 (-1293 |#1|))) (-1206) (-1079) (-99 |#2|) (-1 |#2| |#2|)) (T -878)) +NIL +(-13 (-875 |#2|) (-634 (-1293 |#1|))) +((-3736 ((|#1| (-792) |#1|) 45 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1661 ((|#1| (-792) (-792) |#1|) 36 T ELT) ((|#1| (-792) |#1|) 24 T ELT)) (-3208 ((|#1| (-792) |#1|) 40 T ELT)) (-4431 ((|#1| (-792) |#1|) 38 T ELT)) (-2307 ((|#1| (-792) |#1|) 37 T ELT))) +(((-879 |#1|) (-10 -7 (-15 -2307 (|#1| (-792) |#1|)) (-15 -4431 (|#1| (-792) |#1|)) (-15 -3208 (|#1| (-792) |#1|)) (-15 -1661 (|#1| (-792) |#1|)) (-15 -1661 (|#1| (-792) (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3736 (|#1| (-792) |#1|)) |%noBranch|)) (-174)) (T -879)) +((-3736 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-1661 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-1661 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-3208 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-4431 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-2307 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -2307 (|#1| (-792) |#1|)) (-15 -4431 (|#1| (-792) |#1|)) (-15 -3208 (|#1| (-792) |#1|)) (-15 -1661 (|#1| (-792) |#1|)) (-15 -1661 (|#1| (-792) (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3736 (|#1| (-792) |#1|)) |%noBranch|)) +((-3586 (((-112) $ $) 7 T ELT)) (-3237 (($ $ $) 20 T ELT)) (-2930 (($ $ $) 19 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3078 (((-112) $ $) 18 T ELT)) (-3054 (((-112) $ $) 16 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 17 T ELT)) (-3042 (((-112) $ $) 15 T ELT)) (** (($ $ (-949)) 23 T ELT)) (* (($ $ $) 22 T ELT))) +(((-880) (-141)) (T -880)) +NIL +(-13 (-870) (-1142)) +(((-102) . T) ((-631 (-885)) . T) ((-870) . T) ((-873) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3254 (((-577) $) 14 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-577)) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 9 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 11 T ELT))) +(((-881) (-13 (-870) (-10 -8 (-15 -3709 ($ (-577))) (-15 -3254 ((-577) $))))) (T -881)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-881)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-881))))) +(-13 (-870) (-10 -8 (-15 -3709 ($ (-577))) (-15 -3254 ((-577) $)))) +((-1904 (((-712 (-1255)) $ (-1255)) 15 T ELT)) (-2082 (((-712 (-562)) $ (-562)) 12 T ELT)) (-2209 (((-792) $ (-129)) 30 T ELT))) +(((-882 |#1|) (-10 -8 (-15 -2209 ((-792) |#1| (-129))) (-15 -1904 ((-712 (-1255)) |#1| (-1255))) (-15 -2082 ((-712 (-562)) |#1| (-562)))) (-883)) (T -882)) +NIL +(-10 -8 (-15 -2209 ((-792) |#1| (-129))) (-15 -1904 ((-712 (-1255)) |#1| (-1255))) (-15 -2082 ((-712 (-562)) |#1| (-562)))) +((-1904 (((-712 (-1255)) $ (-1255)) 8 T ELT)) (-2082 (((-712 (-562)) $ (-562)) 9 T ELT)) (-2209 (((-792) $ (-129)) 7 T ELT)) (-3970 (((-712 (-130)) $ (-130)) 10 T ELT)) (-2823 (($ $) 6 T ELT))) +(((-883) (-141)) (T -883)) +((-3970 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *2 (-712 (-130))) (-5 *3 (-130)))) (-2082 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *2 (-712 (-562))) (-5 *3 (-562)))) (-1904 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *2 (-712 (-1255))) (-5 *3 (-1255)))) (-2209 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *3 (-129)) (-5 *2 (-792))))) +(-13 (-175) (-10 -8 (-15 -3970 ((-712 (-130)) $ (-130))) (-15 -2082 ((-712 (-562)) $ (-562))) (-15 -1904 ((-712 (-1255)) $ (-1255))) (-15 -2209 ((-792) $ (-129))))) (((-175) . T)) -((-4114 (((-707 (-1250)) $ (-1250)) NIL T ELT)) (-2688 (((-707 (-562)) $ (-562)) NIL T ELT)) (-4376 (((-787) $ (-129)) NIL T ELT)) (-1626 (((-707 (-130)) $ (-130)) 22 T ELT)) (-3491 (($ (-401)) 12 T ELT) (($ (-1183)) 14 T ELT)) (-3324 (((-112) $) 19 T ELT)) (-3603 (((-880) $) 26 T ELT)) (-3349 (($ $) 23 T ELT))) -(((-879) (-13 (-878) (-626 (-880)) (-10 -8 (-15 -3491 ($ (-401))) (-15 -3491 ($ (-1183))) (-15 -3324 ((-112) $))))) (T -879)) -((-3491 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-879)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-879)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879))))) -(-13 (-878) (-626 (-880)) (-10 -8 (-15 -3491 ($ (-401))) (-15 -3491 ($ (-1183))) (-15 -3324 ((-112) $)))) -((-3489 (((-112) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-4133 (($ $ $) 125 T ELT)) (-2193 (((-577) $) 31 T ELT) (((-577)) 36 T ELT)) (-3173 (($ (-577)) 53 T ELT)) (-3376 (($ $ $) 54 T ELT) (($ (-660 $)) 84 T ELT)) (-4025 (($ $ (-660 $)) 82 T ELT)) (-3102 (((-577) $) 34 T ELT)) (-4386 (($ $ $) 73 T ELT)) (-3158 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2440 (((-577) $) 33 T ELT)) (-1768 (($ $ $) 72 T ELT)) (-1355 (($ $) 114 T ELT)) (-2913 (($ $ $) 129 T ELT)) (-3410 (($ (-660 $)) 61 T ELT)) (-3775 (($ $ (-660 $)) 79 T ELT)) (-1550 (($ (-577) (-577)) 55 T ELT)) (-1703 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3076 (($ $ (-577)) 43 T ELT) (($ $) 46 T ELT)) (-3436 (($ $ $) 97 T ELT)) (-1520 (($ $ $) 132 T ELT)) (-4382 (($ $) 115 T ELT)) (-3447 (($ $ $) 98 T ELT)) (-2100 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2229 (((-1297) $) 10 T ELT)) (-2786 (($ $) 118 T ELT) (($ $ (-787)) 122 T ELT)) (-3600 (($ $ $) 75 T ELT)) (-1994 (($ $ $) 74 T ELT)) (-1986 (($ $ (-660 $)) 110 T ELT)) (-3604 (($ $ $) 113 T ELT)) (-1418 (($ (-660 $)) 59 T ELT)) (-4301 (($ $) 70 T ELT) (($ (-660 $)) 71 T ELT)) (-1734 (($ $ $) 123 T ELT)) (-3265 (($ $) 116 T ELT)) (-1429 (($ $ $) 128 T ELT)) (-4116 (($ (-577)) 21 T ELT) (($ (-1201)) 23 T ELT) (($ (-1183)) 30 T ELT) (($ (-228)) 25 T ELT)) (-2713 (($ $ $) 101 T ELT)) (-2686 (($ $) 102 T ELT)) (-3969 (((-1297) (-1183)) 15 T ELT)) (-2848 (($ (-1183)) 14 T ELT)) (-4307 (($ (-660 (-660 $))) 58 T ELT)) (-3060 (($ $ (-577)) 42 T ELT) (($ $) 45 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2527 (($ $ $) 131 T ELT)) (-2719 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3497 (((-112) $) 108 T ELT)) (-3605 (($ $ (-660 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-3183 (($ (-577)) 39 T ELT)) (-4181 (((-577) $) 32 T ELT) (((-577)) 35 T ELT)) (-1868 (($ $ $) 40 T ELT) (($ (-660 $)) 83 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (($ $ $) 99 T ELT)) (-2693 (($) 13 T ELT)) (-2837 (($ $ (-660 $)) 109 T ELT)) (-4175 (((-1183) (-1183)) 8 T ELT)) (-3366 (($ $) 117 T ELT) (($ $ (-787)) 121 T ELT)) (-3467 (($ $ $) 96 T ELT)) (-3362 (($ $ (-787)) 139 T ELT)) (-2831 (($ (-660 $)) 60 T ELT)) (-3603 (((-880) $) 19 T ELT)) (-4269 (($ $ (-577)) 41 T ELT) (($ $) 44 T ELT)) (-2699 (($ $) 68 T ELT) (($ (-660 $)) 69 T ELT)) (-3122 (($ $) 66 T ELT) (($ (-660 $)) 67 T ELT)) (-1866 (($ $) 124 T ELT)) (-3792 (($ (-660 $)) 65 T ELT)) (-1774 (($ $ $) 105 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3155 (($ $ $) 130 T ELT)) (-2700 (($ $ $) 100 T ELT)) (-1856 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-3001 (($ $ $) 89 T ELT)) (-2978 (($ $ $) 87 T ELT)) (-2949 (((-112) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2988 (($ $ $) 88 T ELT)) (-2971 (($ $ $) 86 T ELT)) (-3051 (($ $ $) 94 T ELT)) (-3042 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3031 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-880) (-13 (-1125) (-10 -8 (-15 -2229 ((-1297) $)) (-15 -2848 ($ (-1183))) (-15 -3969 ((-1297) (-1183))) (-15 -4116 ($ (-577))) (-15 -4116 ($ (-1201))) (-15 -4116 ($ (-1183))) (-15 -4116 ($ (-228))) (-15 -2693 ($)) (-15 -4175 ((-1183) (-1183))) (-15 -2193 ((-577) $)) (-15 -4181 ((-577) $)) (-15 -2193 ((-577))) (-15 -4181 ((-577))) (-15 -2440 ((-577) $)) (-15 -3102 ((-577) $)) (-15 -3183 ($ (-577))) (-15 -3173 ($ (-577))) (-15 -1550 ($ (-577) (-577))) (-15 -3060 ($ $ (-577))) (-15 -3076 ($ $ (-577))) (-15 -4269 ($ $ (-577))) (-15 -3060 ($ $)) (-15 -3076 ($ $)) (-15 -4269 ($ $)) (-15 -1868 ($ $ $)) (-15 -3376 ($ $ $)) (-15 -1868 ($ (-660 $))) (-15 -3376 ($ (-660 $))) (-15 -1986 ($ $ (-660 $))) (-15 -3605 ($ $ (-660 $))) (-15 -3605 ($ $ $ $)) (-15 -3604 ($ $ $)) (-15 -3497 ((-112) $)) (-15 -2837 ($ $ (-660 $))) (-15 -1355 ($ $)) (-15 -2527 ($ $ $)) (-15 -1866 ($ $)) (-15 -4307 ($ (-660 (-660 $)))) (-15 -4133 ($ $ $)) (-15 -1703 ($ $)) (-15 -1703 ($ $ $)) (-15 -1429 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -1520 ($ $ $)) (-15 -3362 ($ $ (-787))) (-15 -1774 ($ $ $)) (-15 -1768 ($ $ $)) (-15 -4386 ($ $ $)) (-15 -1994 ($ $ $)) (-15 -3600 ($ $ $)) (-15 -3775 ($ $ (-660 $))) (-15 -4025 ($ $ (-660 $))) (-15 -4382 ($ $)) (-15 -3366 ($ $)) (-15 -3366 ($ $ (-787))) (-15 -2786 ($ $)) (-15 -2786 ($ $ (-787))) (-15 -3265 ($ $)) (-15 -1734 ($ $ $)) (-15 -3158 ($ $)) (-15 -3158 ($ $ $)) (-15 -3158 ($ $ $ $)) (-15 -2100 ($ $)) (-15 -2100 ($ $ $)) (-15 -2100 ($ $ $ $)) (-15 -2719 ($ $)) (-15 -2719 ($ $ $)) (-15 -2719 ($ $ $ $)) (-15 -3122 ($ $)) (-15 -3122 ($ (-660 $))) (-15 -2699 ($ $)) (-15 -2699 ($ (-660 $))) (-15 -4301 ($ $)) (-15 -4301 ($ (-660 $))) (-15 -1418 ($ (-660 $))) (-15 -2831 ($ (-660 $))) (-15 -3410 ($ (-660 $))) (-15 -3792 ($ (-660 $))) (-15 -2949 ($ $ $)) (-15 -3489 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -3001 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3042 ($ $)) (-15 * ($ $ $)) (-15 -3051 ($ $ $)) (-15 ** ($ $ $)) (-15 -3467 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -2700 ($ $ $)) (-15 -2713 ($ $ $)) (-15 -2686 ($ $)) (-15 -1856 ($ $ $)) (-15 -1856 ($ $))))) (T -880)) -((-2229 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-880)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-880)))) (-4116 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-4116 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-880)))) (-4116 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) (-4116 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-880)))) (-2693 (*1 *1) (-5 *1 (-880))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2193 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-4181 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3183 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3173 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-1550 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3060 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3076 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-4269 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3060 (*1 *1 *1) (-5 *1 (-880))) (-3076 (*1 *1 *1) (-5 *1 (-880))) (-4269 (*1 *1 *1) (-5 *1 (-880))) (-1868 (*1 *1 *1 *1) (-5 *1 (-880))) (-3376 (*1 *1 *1 *1) (-5 *1 (-880))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3605 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3605 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-3604 (*1 *1 *1 *1) (-5 *1 (-880))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-1355 (*1 *1 *1) (-5 *1 (-880))) (-2527 (*1 *1 *1 *1) (-5 *1 (-880))) (-1866 (*1 *1 *1) (-5 *1 (-880))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-880)))) (-4133 (*1 *1 *1 *1) (-5 *1 (-880))) (-1703 (*1 *1 *1) (-5 *1 (-880))) (-1703 (*1 *1 *1 *1) (-5 *1 (-880))) (-1429 (*1 *1 *1 *1) (-5 *1 (-880))) (-2913 (*1 *1 *1 *1) (-5 *1 (-880))) (-3155 (*1 *1 *1 *1) (-5 *1 (-880))) (-1520 (*1 *1 *1 *1) (-5 *1 (-880))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) (-1774 (*1 *1 *1 *1) (-5 *1 (-880))) (-1768 (*1 *1 *1 *1) (-5 *1 (-880))) (-4386 (*1 *1 *1 *1) (-5 *1 (-880))) (-1994 (*1 *1 *1 *1) (-5 *1 (-880))) (-3600 (*1 *1 *1 *1) (-5 *1 (-880))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-4025 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-4382 (*1 *1 *1) (-5 *1 (-880))) (-3366 (*1 *1 *1) (-5 *1 (-880))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) (-2786 (*1 *1 *1) (-5 *1 (-880))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) (-3265 (*1 *1 *1) (-5 *1 (-880))) (-1734 (*1 *1 *1 *1) (-5 *1 (-880))) (-3158 (*1 *1 *1) (-5 *1 (-880))) (-3158 (*1 *1 *1 *1) (-5 *1 (-880))) (-3158 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-2100 (*1 *1 *1) (-5 *1 (-880))) (-2100 (*1 *1 *1 *1) (-5 *1 (-880))) (-2100 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-2719 (*1 *1 *1) (-5 *1 (-880))) (-2719 (*1 *1 *1 *1) (-5 *1 (-880))) (-2719 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-3122 (*1 *1 *1) (-5 *1 (-880))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-2699 (*1 *1 *1) (-5 *1 (-880))) (-2699 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-4301 (*1 *1 *1) (-5 *1 (-880))) (-4301 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-1418 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-2949 (*1 *1 *1 *1) (-5 *1 (-880))) (-3489 (*1 *1 *1 *1) (-5 *1 (-880))) (-2971 (*1 *1 *1 *1) (-5 *1 (-880))) (-2978 (*1 *1 *1 *1) (-5 *1 (-880))) (-2988 (*1 *1 *1 *1) (-5 *1 (-880))) (-3001 (*1 *1 *1 *1) (-5 *1 (-880))) (-3031 (*1 *1 *1 *1) (-5 *1 (-880))) (-3042 (*1 *1 *1 *1) (-5 *1 (-880))) (-3042 (*1 *1 *1) (-5 *1 (-880))) (* (*1 *1 *1 *1) (-5 *1 (-880))) (-3051 (*1 *1 *1 *1) (-5 *1 (-880))) (** (*1 *1 *1 *1) (-5 *1 (-880))) (-3467 (*1 *1 *1 *1) (-5 *1 (-880))) (-3436 (*1 *1 *1 *1) (-5 *1 (-880))) (-3447 (*1 *1 *1 *1) (-5 *1 (-880))) (-3478 (*1 *1 *1 *1) (-5 *1 (-880))) (-2700 (*1 *1 *1 *1) (-5 *1 (-880))) (-2713 (*1 *1 *1 *1) (-5 *1 (-880))) (-2686 (*1 *1 *1) (-5 *1 (-880))) (-1856 (*1 *1 *1 *1) (-5 *1 (-880))) (-1856 (*1 *1 *1) (-5 *1 (-880)))) -(-13 (-1125) (-10 -8 (-15 -2229 ((-1297) $)) (-15 -2848 ($ (-1183))) (-15 -3969 ((-1297) (-1183))) (-15 -4116 ($ (-577))) (-15 -4116 ($ (-1201))) (-15 -4116 ($ (-1183))) (-15 -4116 ($ (-228))) (-15 -2693 ($)) (-15 -4175 ((-1183) (-1183))) (-15 -2193 ((-577) $)) (-15 -4181 ((-577) $)) (-15 -2193 ((-577))) (-15 -4181 ((-577))) (-15 -2440 ((-577) $)) (-15 -3102 ((-577) $)) (-15 -3183 ($ (-577))) (-15 -3173 ($ (-577))) (-15 -1550 ($ (-577) (-577))) (-15 -3060 ($ $ (-577))) (-15 -3076 ($ $ (-577))) (-15 -4269 ($ $ (-577))) (-15 -3060 ($ $)) (-15 -3076 ($ $)) (-15 -4269 ($ $)) (-15 -1868 ($ $ $)) (-15 -3376 ($ $ $)) (-15 -1868 ($ (-660 $))) (-15 -3376 ($ (-660 $))) (-15 -1986 ($ $ (-660 $))) (-15 -3605 ($ $ (-660 $))) (-15 -3605 ($ $ $ $)) (-15 -3604 ($ $ $)) (-15 -3497 ((-112) $)) (-15 -2837 ($ $ (-660 $))) (-15 -1355 ($ $)) (-15 -2527 ($ $ $)) (-15 -1866 ($ $)) (-15 -4307 ($ (-660 (-660 $)))) (-15 -4133 ($ $ $)) (-15 -1703 ($ $)) (-15 -1703 ($ $ $)) (-15 -1429 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -3155 ($ $ $)) (-15 -1520 ($ $ $)) (-15 -3362 ($ $ (-787))) (-15 -1774 ($ $ $)) (-15 -1768 ($ $ $)) (-15 -4386 ($ $ $)) (-15 -1994 ($ $ $)) (-15 -3600 ($ $ $)) (-15 -3775 ($ $ (-660 $))) (-15 -4025 ($ $ (-660 $))) (-15 -4382 ($ $)) (-15 -3366 ($ $)) (-15 -3366 ($ $ (-787))) (-15 -2786 ($ $)) (-15 -2786 ($ $ (-787))) (-15 -3265 ($ $)) (-15 -1734 ($ $ $)) (-15 -3158 ($ $)) (-15 -3158 ($ $ $)) (-15 -3158 ($ $ $ $)) (-15 -2100 ($ $)) (-15 -2100 ($ $ $)) (-15 -2100 ($ $ $ $)) (-15 -2719 ($ $)) (-15 -2719 ($ $ $)) (-15 -2719 ($ $ $ $)) (-15 -3122 ($ $)) (-15 -3122 ($ (-660 $))) (-15 -2699 ($ $)) (-15 -2699 ($ (-660 $))) (-15 -4301 ($ $)) (-15 -4301 ($ (-660 $))) (-15 -1418 ($ (-660 $))) (-15 -2831 ($ (-660 $))) (-15 -3410 ($ (-660 $))) (-15 -3792 ($ (-660 $))) (-15 -2949 ($ $ $)) (-15 -3489 ($ $ $)) (-15 -2971 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -3001 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3042 ($ $)) (-15 * ($ $ $)) (-15 -3051 ($ $ $)) (-15 ** ($ $ $)) (-15 -3467 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -2700 ($ $ $)) (-15 -2713 ($ $ $)) (-15 -2686 ($ $)) (-15 -1856 ($ $ $)) (-15 -1856 ($ $)))) -((-2013 (((-1297) (-660 (-52))) 23 T ELT)) (-1468 (((-1297) (-1183) (-880)) 13 T ELT) (((-1297) (-880)) 8 T ELT) (((-1297) (-1183)) 10 T ELT))) -(((-881) (-10 -7 (-15 -1468 ((-1297) (-1183))) (-15 -1468 ((-1297) (-880))) (-15 -1468 ((-1297) (-1183) (-880))) (-15 -2013 ((-1297) (-660 (-52)))))) (T -881)) -((-2013 (*1 *2 *3) (-12 (-5 *3 (-660 (-52))) (-5 *2 (-1297)) (-5 *1 (-881)))) (-1468 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-881))))) -(-10 -7 (-15 -1468 ((-1297) (-1183))) (-15 -1468 ((-1297) (-880))) (-15 -1468 ((-1297) (-1183) (-880))) (-15 -2013 ((-1297) (-660 (-52))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3052 (((-3 $ "failed") (-1201)) 36 T ELT)) (-3373 (((-787)) 32 T ELT)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) 29 T ELT)) (-2045 (((-1183) $) 43 T ELT)) (-3251 (($ (-944)) 28 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2176 (((-1201) $) 13 T ELT) (((-549) $) 19 T ELT) (((-911 (-391)) $) 26 T ELT) (((-911 (-577)) $) 22 T ELT)) (-3603 (((-880) $) 16 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 40 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 38 T ELT))) -(((-882 |#1|) (-13 (-860) (-627 (-1201)) (-627 (-549)) (-627 (-911 (-391))) (-627 (-911 (-577))) (-10 -8 (-15 -3052 ((-3 $ "failed") (-1201))))) (-660 (-1201))) (T -882)) -((-3052 (*1 *1 *2) (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-882 *3)) (-14 *3 (-660 *2))))) -(-13 (-860) (-627 (-1201)) (-627 (-549)) (-627 (-911 (-391))) (-627 (-911 (-577))) (-10 -8 (-15 -3052 ((-3 $ "failed") (-1201))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2668 (((-519) $) 9 T ELT)) (-2434 (((-660 (-452)) $) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 21 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 16 T ELT))) -(((-883) (-13 (-1125) (-10 -8 (-15 -2668 ((-519) $)) (-15 -2434 ((-660 (-452)) $))))) (T -883)) -((-2668 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-883)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-660 (-452))) (-5 *1 (-883))))) -(-13 (-1125) (-10 -8 (-15 -2668 ((-519) $)) (-15 -2434 ((-660 (-452)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-975 |#1|)) NIL T ELT) (((-975 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT)) (-1920 (((-787)) NIL T CONST)) (-3230 (((-1297) (-787)) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-884 |#1| |#2| |#3| |#4|) (-13 (-1074) (-503 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3051 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3230 ((-1297) (-787))))) (-1074) (-660 (-1201)) (-660 (-787)) (-787)) (T -884)) -((-3051 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-884 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-787))) (-14 *5 (-787)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-884 *4 *5 *6 *7)) (-4 *4 (-1074)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 *3)) (-14 *7 *3)))) -(-13 (-1074) (-503 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3051 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3230 ((-1297) (-787))))) -((-3363 (((-3 (-176 |#3|) "failed") (-787) (-787) |#2| |#2|) 38 T ELT)) (-1899 (((-3 (-420 |#3|) "failed") (-787) (-787) |#2| |#2|) 29 T ELT))) -(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -1899 ((-3 (-420 |#3|) "failed") (-787) (-787) |#2| |#2|)) (-15 -3363 ((-3 (-176 |#3|) "failed") (-787) (-787) |#2| |#2|))) (-375) (-1283 |#1|) (-1268 |#1|)) (T -885)) -((-3363 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-176 *6)) (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5)))) (-1899 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-420 *6)) (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5))))) -(-10 -7 (-15 -1899 ((-3 (-420 |#3|) "failed") (-787) (-787) |#2| |#2|)) (-15 -3363 ((-3 (-176 |#3|) "failed") (-787) (-787) |#2| |#2|))) -((-1899 (((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) 28 T ELT))) -(((-886 |#1| |#2| |#3|) (-10 -7 (-15 -1899 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (-15 -1899 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|)))) (-375) (-1201) |#1|) (T -886)) -((-1899 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) (-5 *1 (-886 *5 *6 *7)))) (-1899 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) (-5 *1 (-886 *5 *6 *7))))) -(-10 -7 (-15 -1899 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (-15 -1899 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3070 (($ $ (-577)) 68 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3790 (($) 18 T CONST)) (-1703 (($ (-1197 (-577)) (-577)) 67 T ELT)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3471 (($ $) 70 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-2536 (((-787) $) 75 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-1688 (((-577)) 72 T ELT)) (-1962 (((-577) $) 71 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1987 (($ $ (-577)) 74 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3453 (((-1182 (-577)) $) 76 T ELT)) (-2544 (($ $) 73 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-4142 (((-577) $ (-577)) 69 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-887 |#1|) (-141) (-577)) (T -887)) -((-3453 (*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-1182 (-577))))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-787)))) (-1987 (*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-2544 (*1 *1 *1) (-4 *1 (-887 *2))) (-1688 (*1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-3471 (*1 *1 *1) (-4 *1 (-887 *2))) (-4142 (*1 *2 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-3070 (*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *3 (-577)) (-4 *1 (-887 *4))))) -(-13 (-318) (-148) (-10 -8 (-15 -3453 ((-1182 (-577)) $)) (-15 -2536 ((-787) $)) (-15 -1987 ($ $ (-577))) (-15 -2544 ($ $)) (-15 -1688 ((-577))) (-15 -1962 ((-577) $)) (-15 -3471 ($ $)) (-15 -4142 ((-577) $ (-577))) (-15 -3070 ($ $ (-577))) (-15 -1703 ($ (-1197 (-577)) (-577))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $ (-577)) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1703 (($ (-1197 (-577)) (-577)) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3471 (($ $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2536 (((-787) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1688 (((-577)) NIL T ELT)) (-1962 (((-577) $) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1987 (($ $ (-577)) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3453 (((-1182 (-577)) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4142 (((-577) $ (-577)) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-888 |#1|) (-887 |#1|) (-577)) (T -888)) -NIL -(-887 |#1|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 (((-888 |#1|) $) NIL (|has| (-888 |#1|) (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| (-888 |#1|) (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-888 |#1|) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (|has| (-888 |#1|) (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-888 |#1|) (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-888 |#1|) (-1063 (-577))) ELT)) (-2155 (((-888 |#1|) $) NIL T ELT) (((-1201) $) NIL (|has| (-888 |#1|) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| (-888 |#1|) (-1063 (-577))) ELT) (((-577) $) NIL (|has| (-888 |#1|) (-1063 (-577))) ELT)) (-1459 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-888 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-888 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-888 |#1|))) (|:| |vec| (-1292 (-888 |#1|)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-888 |#1|)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-888 |#1|) (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| (-888 |#1|) (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-888 |#1|) (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-888 |#1|) (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 (((-888 |#1|) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-888 |#1|) (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| (-888 |#1|) (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| (-888 |#1|) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-888 |#1|) (-865)) ELT)) (-2124 (($ (-1 (-888 |#1|) (-888 |#1|)) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-888 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-888 |#1|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-888 |#1|))) (|:| |vec| (-1292 (-888 |#1|)))) (-1292 $) $) NIL T ELT) (((-705 (-888 |#1|)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-888 |#1|) (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| (-888 |#1|) (-318)) ELT)) (-1374 (((-888 |#1|) $) NIL (|has| (-888 |#1|) (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 (-888 |#1|)) (-660 (-888 |#1|))) NIL (|has| (-888 |#1|) (-320 (-888 |#1|))) ELT) (($ $ (-888 |#1|) (-888 |#1|)) NIL (|has| (-888 |#1|) (-320 (-888 |#1|))) ELT) (($ $ (-305 (-888 |#1|))) NIL (|has| (-888 |#1|) (-320 (-888 |#1|))) ELT) (($ $ (-660 (-305 (-888 |#1|)))) NIL (|has| (-888 |#1|) (-320 (-888 |#1|))) ELT) (($ $ (-660 (-1201)) (-660 (-888 |#1|))) NIL (|has| (-888 |#1|) (-527 (-1201) (-888 |#1|))) ELT) (($ $ (-1201) (-888 |#1|)) NIL (|has| (-888 |#1|) (-527 (-1201) (-888 |#1|))) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ (-888 |#1|)) NIL (|has| (-888 |#1|) (-297 (-888 |#1|) (-888 |#1|))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 (-888 |#1|) (-888 |#1|))) NIL T ELT) (($ $ (-1 (-888 |#1|) (-888 |#1|)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $) NIL (|has| (-888 |#1|) (-238)) ELT) (($ $ (-787)) NIL (|has| (-888 |#1|) (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 (((-888 |#1|) $) NIL T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| (-888 |#1|) (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| (-888 |#1|) (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| (-888 |#1|) (-627 (-549))) ELT) (((-391) $) NIL (|has| (-888 |#1|) (-1047)) ELT) (((-228) $) NIL (|has| (-888 |#1|) (-1047)) ELT)) (-2060 (((-176 (-420 (-577))) $) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-888 |#1|) (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ (-1201)) NIL (|has| (-888 |#1|) (-1063 (-1201))) ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-888 |#1|) (-932))) (|has| (-888 |#1|) (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 (((-888 |#1|) $) NIL (|has| (-888 |#1|) (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4142 (((-420 (-577)) $ (-577)) NIL T ELT)) (-4318 (($ $) NIL (|has| (-888 |#1|) (-836)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-888 |#1|) (-888 |#1|))) NIL T ELT) (($ $ (-1 (-888 |#1|) (-888 |#1|)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-888 |#1|) (-923 (-1201))) ELT) (($ $) NIL (|has| (-888 |#1|) (-238)) ELT) (($ $ (-787)) NIL (|has| (-888 |#1|) (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)) ELT)) (-3051 (($ $ $) NIL T ELT) (($ (-888 |#1|) (-888 |#1|)) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-888 |#1|) $) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT))) -(((-889 |#1|) (-13 (-1017 (-888 |#1|)) (-10 -8 (-15 -4142 ((-420 (-577)) $ (-577))) (-15 -2060 ((-176 (-420 (-577))) $)) (-15 -1459 ($ $)) (-15 -1459 ($ (-577) $)))) (-577)) (T -889)) -((-4142 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-889 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-889 *3)) (-14 *3 (-577)))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-14 *2 (-577)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-889 *3)) (-14 *3 *2)))) -(-13 (-1017 (-888 |#1|)) (-10 -8 (-15 -4142 ((-420 (-577)) $ (-577))) (-15 -2060 ((-176 (-420 (-577))) $)) (-15 -1459 ($ $)) (-15 -1459 ($ (-577) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 ((|#2| $) NIL (|has| |#2| (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| |#2| (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (|has| |#2| (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT)) (-2155 ((|#2| $) NIL T ELT) (((-1201) $) NIL (|has| |#2| (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT)) (-1459 (($ $) 35 T ELT) (($ (-577) $) 38 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) 64 T ELT)) (-2352 (($) NIL (|has| |#2| (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) NIL (|has| |#2| (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| |#2| (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| |#2| (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 ((|#2| $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#2| (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| |#2| (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#2| (-865)) ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 60 T ELT)) (-3457 (($) NIL (|has| |#2| (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| |#2| (-318)) ELT)) (-1374 ((|#2| $) NIL (|has| |#2| (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 |#2|) (-660 |#2|)) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-660 (-305 |#2|))) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-660 (-1201)) (-660 |#2|)) NIL (|has| |#2| (-527 (-1201) |#2|)) ELT) (($ $ (-1201) |#2|) NIL (|has| |#2| (-527 (-1201) |#2|)) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ |#2|) NIL (|has| |#2| (-297 |#2| |#2|)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 ((|#2| $) NIL T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| |#2| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| |#2| (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| |#2| (-627 (-549))) ELT) (((-391) $) NIL (|has| |#2| (-1047)) ELT) (((-228) $) NIL (|has| |#2| (-1047)) ELT)) (-2060 (((-176 (-420 (-577))) $) 78 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))) ELT)) (-3603 (((-880) $) 106 T ELT) (($ (-577)) 20 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1201)) NIL (|has| |#2| (-1063 (-1201))) ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-2360 ((|#2| $) NIL (|has| |#2| (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4142 (((-420 (-577)) $ (-577)) 71 T ELT)) (-4318 (($ $) NIL (|has| |#2| (-836)) ELT)) (-2754 (($) 15 T CONST)) (-2767 (($) 17 T CONST)) (-2136 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2949 (((-112) $ $) 46 T ELT)) (-2988 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#2| (-865)) ELT)) (-3051 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3042 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3031 (($ $ $) 48 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) 61 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-890 |#1| |#2|) (-13 (-1017 |#2|) (-10 -8 (-15 -4142 ((-420 (-577)) $ (-577))) (-15 -2060 ((-176 (-420 (-577))) $)) (-15 -1459 ($ $)) (-15 -1459 ($ (-577) $)))) (-577) (-887 |#1|)) (T -890)) -((-4142 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-890 *4 *5)) (-5 *3 (-577)) (-4 *5 (-887 *4)))) (-2060 (*1 *2 *1) (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-890 *3 *4)) (-4 *4 (-887 *3)))) (-1459 (*1 *1 *1) (-12 (-14 *2 (-577)) (-5 *1 (-890 *2 *3)) (-4 *3 (-887 *2)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-890 *3 *4)) (-4 *4 (-887 *3))))) -(-13 (-1017 |#2|) (-10 -8 (-15 -4142 ((-420 (-577)) $ (-577))) (-15 -2060 ((-176 (-420 (-577))) $)) (-15 -1459 ($ $)) (-15 -1459 ($ (-577) $)))) -((-3489 (((-112) $ $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT)) (-4135 ((|#2| $) 12 T ELT)) (-3288 (($ |#1| |#2|) 9 T ELT)) (-2045 (((-1183) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT)) (-1440 (((-1145) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#1| $) 11 T ELT)) (-3614 (($ |#1| |#2|) 10 T ELT)) (-3603 (((-880) $) 18 (-2811 (-12 (|has| |#1| (-626 (-880))) (|has| |#2| (-626 (-880)))) (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125)))) ELT)) (-2726 (((-112) $ $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT)) (-2949 (((-112) $ $) 23 (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ELT))) -(((-891 |#1| |#2|) (-13 (-1242) (-10 -8 (IF (|has| |#1| (-626 (-880))) (IF (|has| |#2| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1125)) (IF (|has| |#2| (-1125)) (-6 (-1125)) |%noBranch|) |%noBranch|) (-15 -3288 ($ |#1| |#2|)) (-15 -3614 ($ |#1| |#2|)) (-15 -1652 (|#1| $)) (-15 -4135 (|#2| $)))) (-1242) (-1242)) (T -891)) -((-3288 (*1 *1 *2 *3) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242)))) (-3614 (*1 *1 *2 *3) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242)))) (-1652 (*1 *2 *1) (-12 (-4 *2 (-1242)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1242)))) (-4135 (*1 *2 *1) (-12 (-4 *2 (-1242)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1242))))) -(-13 (-1242) (-10 -8 (IF (|has| |#1| (-626 (-880))) (IF (|has| |#2| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1125)) (IF (|has| |#2| (-1125)) (-6 (-1125)) |%noBranch|) |%noBranch|) (-15 -3288 ($ |#1| |#2|)) (-15 -3614 ($ |#1| |#2|)) (-15 -1652 (|#1| $)) (-15 -4135 (|#2| $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-4268 (((-577) $) 16 T ELT)) (-3460 (($ (-158)) 13 T ELT)) (-3774 (($ (-158)) 14 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2552 (((-158) $) 15 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3985 (($ (-158)) 11 T ELT)) (-1874 (($ (-158)) 10 T ELT)) (-3603 (((-880) $) 24 T ELT) (($ (-158)) 17 T ELT)) (-3247 (($ (-158)) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-892) (-13 (-1125) (-10 -8 (-15 -1874 ($ (-158))) (-15 -3985 ($ (-158))) (-15 -3247 ($ (-158))) (-15 -3460 ($ (-158))) (-15 -3774 ($ (-158))) (-15 -2552 ((-158) $)) (-15 -4268 ((-577) $)) (-15 -3603 ($ (-158)))))) (T -892)) -((-1874 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-3247 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-892)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) -(-13 (-1125) (-10 -8 (-15 -1874 ($ (-158))) (-15 -3985 ($ (-158))) (-15 -3247 ($ (-158))) (-15 -3460 ($ (-158))) (-15 -3774 ($ (-158))) (-15 -2552 ((-158) $)) (-15 -4268 ((-577) $)) (-15 -3603 ($ (-158))))) -((-3603 (((-327 (-577)) (-420 (-975 (-48)))) 23 T ELT) (((-327 (-577)) (-975 (-48))) 18 T ELT))) -(((-893) (-10 -7 (-15 -3603 ((-327 (-577)) (-975 (-48)))) (-15 -3603 ((-327 (-577)) (-420 (-975 (-48))))))) (T -893)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 (-48)))) (-5 *2 (-327 (-577))) (-5 *1 (-893)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-975 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-893))))) -(-10 -7 (-15 -3603 ((-327 (-577)) (-975 (-48)))) (-15 -3603 ((-327 (-577)) (-420 (-975 (-48)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 18 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2739 (((-112) $ (|[\|\|]| (-519))) 9 T ELT) (((-112) $ (|[\|\|]| (-1183))) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1964 (((-519) $) 10 T ELT) (((-1183) $) 14 T ELT)) (-2949 (((-112) $ $) 15 T ELT))) -(((-894) (-13 (-1108) (-1287) (-10 -8 (-15 -2739 ((-112) $ (|[\|\|]| (-519)))) (-15 -1964 ((-519) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1183)))) (-15 -1964 ((-1183) $))))) (T -894)) -((-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-894)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-894)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-894)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-894))))) -(-13 (-1108) (-1287) (-10 -8 (-15 -2739 ((-112) $ (|[\|\|]| (-519)))) (-15 -1964 ((-519) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1183)))) (-15 -1964 ((-1183) $)))) -((-2124 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 15 T ELT))) -(((-895 |#1| |#2|) (-10 -7 (-15 -2124 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1242) (-1242)) (T -895)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6))))) -(-10 -7 (-15 -2124 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) -((-3965 (($ |#1| |#1|) 8 T ELT)) (-4151 ((|#1| $ (-787)) 15 T ELT))) -(((-896 |#1|) (-10 -8 (-15 -3965 ($ |#1| |#1|)) (-15 -4151 (|#1| $ (-787)))) (-1242)) (T -896)) -((-4151 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-896 *2)) (-4 *2 (-1242)))) (-3965 (*1 *1 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1242))))) -(-10 -8 (-15 -3965 ($ |#1| |#1|)) (-15 -4151 (|#1| $ (-787)))) -((-2124 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 15 T ELT))) -(((-897 |#1| |#2|) (-10 -7 (-15 -2124 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1242) (-1242)) (T -897)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))) -(-10 -7 (-15 -2124 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) -((-3965 (($ |#1| |#1| |#1|) 8 T ELT)) (-4151 ((|#1| $ (-787)) 15 T ELT))) -(((-898 |#1|) (-10 -8 (-15 -3965 ($ |#1| |#1| |#1|)) (-15 -4151 (|#1| $ (-787)))) (-1242)) (T -898)) -((-4151 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-898 *2)) (-4 *2 (-1242)))) (-3965 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1242))))) -(-10 -8 (-15 -3965 ($ |#1| |#1| |#1|)) (-15 -4151 (|#1| $ (-787)))) -((-1521 (((-660 (-1206)) (-1183)) 9 T ELT))) -(((-899) (-10 -7 (-15 -1521 ((-660 (-1206)) (-1183))))) (T -899)) -((-1521 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-899))))) -(-10 -7 (-15 -1521 ((-660 (-1206)) (-1183)))) -((-2124 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 15 T ELT))) -(((-900 |#1| |#2|) (-10 -7 (-15 -2124 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1242) (-1242)) (T -900)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))) -(-10 -7 (-15 -2124 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) -((-4368 (($ |#1| |#1| |#1|) 8 T ELT)) (-4151 ((|#1| $ (-787)) 15 T ELT))) -(((-901 |#1|) (-10 -8 (-15 -4368 ($ |#1| |#1| |#1|)) (-15 -4151 (|#1| $ (-787)))) (-1242)) (T -901)) -((-4151 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-901 *2)) (-4 *2 (-1242)))) (-4368 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1242))))) -(-10 -8 (-15 -4368 ($ |#1| |#1| |#1|)) (-15 -4151 (|#1| $ (-787)))) -((-4040 (((-1182 (-660 (-577))) (-660 (-577)) (-1182 (-660 (-577)))) 41 T ELT)) (-4408 (((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577))) 31 T ELT)) (-2466 (((-1182 (-660 (-577))) (-660 (-577))) 53 T ELT) (((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577))) 50 T ELT)) (-2269 (((-1182 (-660 (-577))) (-577)) 55 T ELT)) (-2613 (((-1182 (-660 (-944))) (-1182 (-660 (-944)))) 22 T ELT)) (-1328 (((-660 (-944)) (-660 (-944))) 18 T ELT))) -(((-902) (-10 -7 (-15 -1328 ((-660 (-944)) (-660 (-944)))) (-15 -2613 ((-1182 (-660 (-944))) (-1182 (-660 (-944))))) (-15 -4408 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -4040 ((-1182 (-660 (-577))) (-660 (-577)) (-1182 (-660 (-577))))) (-15 -2466 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -2466 ((-1182 (-660 (-577))) (-660 (-577)))) (-15 -2269 ((-1182 (-660 (-577))) (-577))))) (T -902)) -((-2269 (*1 *2 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-577)))) (-2466 (*1 *2 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-660 (-577))))) (-2466 (*1 *2 *3 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-660 (-577))))) (-4040 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *3 (-660 (-577))) (-5 *1 (-902)))) (-4408 (*1 *2 *3 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-660 (-577))))) (-2613 (*1 *2 *2) (-12 (-5 *2 (-1182 (-660 (-944)))) (-5 *1 (-902)))) (-1328 (*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-902))))) -(-10 -7 (-15 -1328 ((-660 (-944)) (-660 (-944)))) (-15 -2613 ((-1182 (-660 (-944))) (-1182 (-660 (-944))))) (-15 -4408 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -4040 ((-1182 (-660 (-577))) (-660 (-577)) (-1182 (-660 (-577))))) (-15 -2466 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -2466 ((-1182 (-660 (-577))) (-660 (-577)))) (-15 -2269 ((-1182 (-660 (-577))) (-577)))) -((-2176 (((-911 (-391)) $) 9 (|has| |#1| (-627 (-911 (-391)))) ELT) (((-911 (-577)) $) 8 (|has| |#1| (-627 (-911 (-577)))) ELT))) -(((-903 |#1|) (-141) (-1242)) (T -903)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-627 (-911 (-577)))) (-6 (-627 (-911 (-577)))) |%noBranch|) (IF (|has| |t#1| (-627 (-911 (-391)))) (-6 (-627 (-911 (-391)))) |%noBranch|))) -(((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577))))) -((-3489 (((-112) $ $) NIL T ELT)) (-4223 (($) 14 T ELT)) (-1891 (($ (-908 |#1| |#2|) (-908 |#1| |#3|)) 28 T ELT)) (-3310 (((-908 |#1| |#3|) $) 16 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3073 (((-112) $) 22 T ELT)) (-4197 (($) 19 T ELT)) (-3603 (((-880) $) 31 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1881 (((-908 |#1| |#2|) $) 15 T ELT)) (-2949 (((-112) $ $) 26 T ELT))) -(((-904 |#1| |#2| |#3|) (-13 (-1125) (-10 -8 (-15 -3073 ((-112) $)) (-15 -4197 ($)) (-15 -4223 ($)) (-15 -1891 ($ (-908 |#1| |#2|) (-908 |#1| |#3|))) (-15 -1881 ((-908 |#1| |#2|) $)) (-15 -3310 ((-908 |#1| |#3|) $)))) (-1125) (-1125) (-682 |#2|)) (T -904)) -((-3073 (*1 *2 *1) (-12 (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-904 *3 *4 *5)) (-4 *3 (-1125)) (-4 *5 (-682 *4)))) (-4197 (*1 *1) (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) (-4 *4 (-682 *3)))) (-4223 (*1 *1) (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) (-4 *4 (-682 *3)))) (-1891 (*1 *1 *2 *3) (-12 (-5 *2 (-908 *4 *5)) (-5 *3 (-908 *4 *6)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-682 *5)) (-5 *1 (-904 *4 *5 *6)))) (-1881 (*1 *2 *1) (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *4)) (-5 *1 (-904 *3 *4 *5)) (-4 *3 (-1125)) (-4 *5 (-682 *4)))) (-3310 (*1 *2 *1) (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *5)) (-5 *1 (-904 *3 *4 *5)) (-4 *3 (-1125)) (-4 *5 (-682 *4))))) -(-13 (-1125) (-10 -8 (-15 -3073 ((-112) $)) (-15 -4197 ($)) (-15 -4223 ($)) (-15 -1891 ($ (-908 |#1| |#2|) (-908 |#1| |#3|))) (-15 -1881 ((-908 |#1| |#2|) $)) (-15 -3310 ((-908 |#1| |#3|) $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-4359 (((-908 |#1| $) $ (-911 |#1|) (-908 |#1| $)) 14 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-905 |#1|) (-141) (-1125)) (T -905)) -((-4359 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-908 *4 *1)) (-5 *3 (-911 *4)) (-4 *1 (-905 *4)) (-4 *4 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -4359 ((-908 |t#1| $) $ (-911 |t#1|) (-908 |t#1| $))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3152 (((-112) (-660 |#2|) |#3|) 23 T ELT) (((-112) |#2| |#3|) 18 T ELT)) (-1850 (((-908 |#1| |#2|) |#2| |#3|) 45 (-12 (-2686 (|has| |#2| (-1063 (-1201)))) (-2686 (|has| |#2| (-1074)))) ELT) (((-660 (-305 (-975 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1074)) (-2686 (|has| |#2| (-1063 (-1201))))) ELT) (((-660 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1063 (-1201))) ELT) (((-904 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|) 21 T ELT))) -(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -3152 ((-112) |#2| |#3|)) (-15 -3152 ((-112) (-660 |#2|) |#3|)) (-15 -1850 ((-904 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|)) (IF (|has| |#2| (-1063 (-1201))) (-15 -1850 ((-660 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1074)) (-15 -1850 ((-660 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -1850 ((-908 |#1| |#2|) |#2| |#3|))))) (-1125) (-905 |#1|) (-627 (-911 |#1|))) (T -906)) -((-1850 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-908 *5 *3)) (-5 *1 (-906 *5 *3 *4)) (-2686 (-4 *3 (-1063 (-1201)))) (-2686 (-4 *3 (-1074))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) (-1850 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 (-975 *3)))) (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-1074)) (-2686 (-4 *3 (-1063 (-1201)))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) (-1850 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 *3))) (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-1063 (-1201))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) (-1850 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *6 (-905 *5)) (-5 *2 (-904 *5 *6 (-660 *6))) (-5 *1 (-906 *5 *6 *4)) (-5 *3 (-660 *6)) (-4 *4 (-627 (-911 *5))))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-4 *6 (-905 *5)) (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-906 *5 *6 *4)) (-4 *4 (-627 (-911 *5))))) (-3152 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5)))))) -(-10 -7 (-15 -3152 ((-112) |#2| |#3|)) (-15 -3152 ((-112) (-660 |#2|) |#3|)) (-15 -1850 ((-904 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|)) (IF (|has| |#2| (-1063 (-1201))) (-15 -1850 ((-660 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1074)) (-15 -1850 ((-660 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -1850 ((-908 |#1| |#2|) |#2| |#3|))))) -((-2124 (((-908 |#1| |#3|) (-1 |#3| |#2|) (-908 |#1| |#2|)) 22 T ELT))) -(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -2124 ((-908 |#1| |#3|) (-1 |#3| |#2|) (-908 |#1| |#2|)))) (-1125) (-1125) (-1125)) (T -907)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-908 *5 *6)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-908 *5 *7)) (-5 *1 (-907 *5 *6 *7))))) -(-10 -7 (-15 -2124 ((-908 |#1| |#3|) (-1 |#3| |#2|) (-908 |#1| |#2|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1872 (($ $ $) 40 T ELT)) (-1470 (((-3 (-112) "failed") $ (-911 |#1|)) 37 T ELT)) (-4223 (($) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3483 (($ (-911 |#1|) |#2| $) 20 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1681 (((-3 |#2| "failed") (-911 |#1|) $) 51 T ELT)) (-3073 (((-112) $) 15 T ELT)) (-4197 (($) 13 T ELT)) (-3133 (((-660 (-2 (|:| -4323 (-1201)) (|:| -2438 |#2|))) $) 25 T ELT)) (-3614 (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 |#2|)))) 23 T ELT)) (-3603 (((-880) $) 45 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3851 (($ (-911 |#1|) |#2| $ |#2|) 49 T ELT)) (-1988 (($ (-911 |#1|) |#2| $) 48 T ELT)) (-2949 (((-112) $ $) 42 T ELT))) -(((-908 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -3073 ((-112) $)) (-15 -4197 ($)) (-15 -4223 ($)) (-15 -1872 ($ $ $)) (-15 -1681 ((-3 |#2| "failed") (-911 |#1|) $)) (-15 -1988 ($ (-911 |#1|) |#2| $)) (-15 -3483 ($ (-911 |#1|) |#2| $)) (-15 -3851 ($ (-911 |#1|) |#2| $ |#2|)) (-15 -3133 ((-660 (-2 (|:| -4323 (-1201)) (|:| -2438 |#2|))) $)) (-15 -3614 ($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 |#2|))))) (-15 -1470 ((-3 (-112) "failed") $ (-911 |#1|))))) (-1125) (-1125)) (T -908)) -((-3073 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-4197 (*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-4223 (*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-1872 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-1681 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) (-5 *1 (-908 *4 *2)))) (-1988 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1125)))) (-3483 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1125)))) (-3851 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1125)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 *4)))) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 *4)))) (-4 *4 (-1125)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)))) (-1470 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5)) (-4 *5 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -3073 ((-112) $)) (-15 -4197 ($)) (-15 -4223 ($)) (-15 -1872 ($ $ $)) (-15 -1681 ((-3 |#2| "failed") (-911 |#1|) $)) (-15 -1988 ($ (-911 |#1|) |#2| $)) (-15 -3483 ($ (-911 |#1|) |#2| $)) (-15 -3851 ($ (-911 |#1|) |#2| $ |#2|)) (-15 -3133 ((-660 (-2 (|:| -4323 (-1201)) (|:| -2438 |#2|))) $)) (-15 -3614 ($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 |#2|))))) (-15 -1470 ((-3 (-112) "failed") $ (-911 |#1|))))) -((-1651 (((-911 |#1|) (-911 |#1|) (-660 (-1201)) (-1 (-112) (-660 |#2|))) 32 T ELT) (((-911 |#1|) (-911 |#1|) (-660 (-1 (-112) |#2|))) 46 T ELT) (((-911 |#1|) (-911 |#1|) (-1 (-112) |#2|)) 35 T ELT)) (-1470 (((-112) (-660 |#2|) (-911 |#1|)) 42 T ELT) (((-112) |#2| (-911 |#1|)) 36 T ELT)) (-1408 (((-1 (-112) |#2|) (-911 |#1|)) 16 T ELT)) (-1622 (((-660 |#2|) (-911 |#1|)) 24 T ELT)) (-3114 (((-911 |#1|) (-911 |#1|) |#2|) 20 T ELT))) -(((-909 |#1| |#2|) (-10 -7 (-15 -1651 ((-911 |#1|) (-911 |#1|) (-1 (-112) |#2|))) (-15 -1651 ((-911 |#1|) (-911 |#1|) (-660 (-1 (-112) |#2|)))) (-15 -1651 ((-911 |#1|) (-911 |#1|) (-660 (-1201)) (-1 (-112) (-660 |#2|)))) (-15 -1408 ((-1 (-112) |#2|) (-911 |#1|))) (-15 -1470 ((-112) |#2| (-911 |#1|))) (-15 -1470 ((-112) (-660 |#2|) (-911 |#1|))) (-15 -3114 ((-911 |#1|) (-911 |#1|) |#2|)) (-15 -1622 ((-660 |#2|) (-911 |#1|)))) (-1125) (-1242)) (T -909)) -((-1622 (*1 *2 *3) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-660 *5)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1242)))) (-3114 (*1 *2 *2 *3) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1242)))) (-1470 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *2 (-112)) (-5 *1 (-909 *5 *6)))) (-1470 (*1 *2 *3 *4) (-12 (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-909 *5 *3)) (-4 *3 (-1242)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1242)))) (-1651 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-911 *5)) (-5 *3 (-660 (-1201))) (-5 *4 (-1 (-112) (-660 *6))) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *1 (-909 *5 *6)))) (-1651 (*1 *2 *2 *3) (-12 (-5 *2 (-911 *4)) (-5 *3 (-660 (-1 (-112) *5))) (-4 *4 (-1125)) (-4 *5 (-1242)) (-5 *1 (-909 *4 *5)))) (-1651 (*1 *2 *2 *3) (-12 (-5 *2 (-911 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1125)) (-4 *5 (-1242)) (-5 *1 (-909 *4 *5))))) -(-10 -7 (-15 -1651 ((-911 |#1|) (-911 |#1|) (-1 (-112) |#2|))) (-15 -1651 ((-911 |#1|) (-911 |#1|) (-660 (-1 (-112) |#2|)))) (-15 -1651 ((-911 |#1|) (-911 |#1|) (-660 (-1201)) (-1 (-112) (-660 |#2|)))) (-15 -1408 ((-1 (-112) |#2|) (-911 |#1|))) (-15 -1470 ((-112) |#2| (-911 |#1|))) (-15 -1470 ((-112) (-660 |#2|) (-911 |#1|))) (-15 -3114 ((-911 |#1|) (-911 |#1|) |#2|)) (-15 -1622 ((-660 |#2|) (-911 |#1|)))) -((-2124 (((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)) 19 T ELT))) -(((-910 |#1| |#2|) (-10 -7 (-15 -2124 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) (-1125) (-1125)) (T -910)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6))))) -(-10 -7 (-15 -2124 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-4112 (($ $ (-660 (-52))) 74 T ELT)) (-3206 (((-660 $) $) 139 T ELT)) (-3264 (((-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52))) $) 30 T ELT)) (-3364 (((-112) $) 35 T ELT)) (-2993 (($ $ (-660 (-1201)) (-52)) 31 T ELT)) (-1993 (($ $ (-660 (-52))) 73 T ELT)) (-2784 (((-3 |#1| "failed") $) 71 T ELT) (((-3 (-1201) "failed") $) 164 T ELT)) (-2155 ((|#1| $) 68 T ELT) (((-1201) $) NIL T ELT)) (-2026 (($ $) 126 T ELT)) (-3881 (((-112) $) 55 T ELT)) (-3594 (((-660 (-52)) $) 50 T ELT)) (-1419 (($ (-1201) (-112) (-112) (-112)) 75 T ELT)) (-2724 (((-3 (-660 $) "failed") (-660 $)) 82 T ELT)) (-2895 (((-112) $) 58 T ELT)) (-1343 (((-112) $) 57 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) 41 T ELT)) (-4127 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-2998 (((-3 (-2 (|:| |val| $) (|:| -1527 $)) "failed") $) 97 T ELT)) (-3910 (((-3 (-660 $) "failed") $) 40 T ELT)) (-1708 (((-3 (-660 $) "failed") $ (-115)) 124 T ELT) (((-3 (-2 (|:| -1814 (-115)) (|:| |arg| (-660 $))) "failed") $) 107 T ELT)) (-2500 (((-3 (-660 $) "failed") $) 42 T ELT)) (-1966 (((-3 (-2 (|:| |val| $) (|:| -1527 (-787))) "failed") $) 45 T ELT)) (-3619 (((-112) $) 34 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1611 (((-112) $) 28 T ELT)) (-3130 (((-112) $) 52 T ELT)) (-2367 (((-660 (-52)) $) 130 T ELT)) (-4132 (((-112) $) 56 T ELT)) (-2837 (($ (-115) (-660 $)) 104 T ELT)) (-2395 (((-787) $) 33 T ELT)) (-1914 (($ $) 72 T ELT)) (-2176 (($ (-660 $)) 69 T ELT)) (-1460 (((-112) $) 32 T ELT)) (-3603 (((-880) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1201)) 76 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3114 (($ $ (-52)) 129 T ELT)) (-2754 (($) 103 T CONST)) (-2767 (($) 83 T CONST)) (-2949 (((-112) $ $) 93 T ELT)) (-3051 (($ $ $) 117 T ELT)) (-3031 (($ $ $) 121 T ELT)) (** (($ $ (-787)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-911 |#1|) (-13 (-1125) (-1063 |#1|) (-1063 (-1201)) (-10 -8 (-15 0 ($) -2609) (-15 1 ($) -2609) (-15 -3910 ((-3 (-660 $) "failed") $)) (-15 -3484 ((-3 (-660 $) "failed") $)) (-15 -1708 ((-3 (-660 $) "failed") $ (-115))) (-15 -1708 ((-3 (-2 (|:| -1814 (-115)) (|:| |arg| (-660 $))) "failed") $)) (-15 -1966 ((-3 (-2 (|:| |val| $) (|:| -1527 (-787))) "failed") $)) (-15 -4127 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2500 ((-3 (-660 $) "failed") $)) (-15 -2998 ((-3 (-2 (|:| |val| $) (|:| -1527 $)) "failed") $)) (-15 -2837 ($ (-115) (-660 $))) (-15 -3031 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ $)) (-15 -3051 ($ $ $)) (-15 -2395 ((-787) $)) (-15 -2176 ($ (-660 $))) (-15 -1914 ($ $)) (-15 -3619 ((-112) $)) (-15 -3881 ((-112) $)) (-15 -3364 ((-112) $)) (-15 -1460 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -2895 ((-112) $)) (-15 -3130 ((-112) $)) (-15 -3594 ((-660 (-52)) $)) (-15 -1993 ($ $ (-660 (-52)))) (-15 -4112 ($ $ (-660 (-52)))) (-15 -1419 ($ (-1201) (-112) (-112) (-112))) (-15 -2993 ($ $ (-660 (-1201)) (-52))) (-15 -3264 ((-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52))) $)) (-15 -1611 ((-112) $)) (-15 -2026 ($ $)) (-15 -3114 ($ $ (-52))) (-15 -2367 ((-660 (-52)) $)) (-15 -3206 ((-660 $) $)) (-15 -2724 ((-3 (-660 $) "failed") (-660 $))))) (-1125)) (T -911)) -((-2754 (*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-2767 (*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-3910 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-3484 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1708 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-911 *4))) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-1708 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1814 (-115)) (|:| |arg| (-660 (-911 *3))))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1966 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -1527 (-787)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-4127 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-911 *3)) (|:| |den| (-911 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2500 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2998 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -1527 (-911 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 (-911 *4))) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-3031 (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-3051 (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1914 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-3130 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1993 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-4112 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1419 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-112)) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-2993 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-52)) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2026 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-3114 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2724 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(-13 (-1125) (-1063 |#1|) (-1063 (-1201)) (-10 -8 (-15 (-2754) ($) -2609) (-15 (-2767) ($) -2609) (-15 -3910 ((-3 (-660 $) "failed") $)) (-15 -3484 ((-3 (-660 $) "failed") $)) (-15 -1708 ((-3 (-660 $) "failed") $ (-115))) (-15 -1708 ((-3 (-2 (|:| -1814 (-115)) (|:| |arg| (-660 $))) "failed") $)) (-15 -1966 ((-3 (-2 (|:| |val| $) (|:| -1527 (-787))) "failed") $)) (-15 -4127 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2500 ((-3 (-660 $) "failed") $)) (-15 -2998 ((-3 (-2 (|:| |val| $) (|:| -1527 $)) "failed") $)) (-15 -2837 ($ (-115) (-660 $))) (-15 -3031 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ $)) (-15 -3051 ($ $ $)) (-15 -2395 ((-787) $)) (-15 -2176 ($ (-660 $))) (-15 -1914 ($ $)) (-15 -3619 ((-112) $)) (-15 -3881 ((-112) $)) (-15 -3364 ((-112) $)) (-15 -1460 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -2895 ((-112) $)) (-15 -3130 ((-112) $)) (-15 -3594 ((-660 (-52)) $)) (-15 -1993 ($ $ (-660 (-52)))) (-15 -4112 ($ $ (-660 (-52)))) (-15 -1419 ($ (-1201) (-112) (-112) (-112))) (-15 -2993 ($ $ (-660 (-1201)) (-52))) (-15 -3264 ((-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52))) $)) (-15 -1611 ((-112) $)) (-15 -2026 ($ $)) (-15 -3114 ($ $ (-52))) (-15 -2367 ((-660 (-52)) $)) (-15 -3206 ((-660 $) $)) (-15 -2724 ((-3 (-660 $) "failed") (-660 $))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1530 (((-660 |#1|) $) 19 T ELT)) (-3216 (((-112) $) 49 T ELT)) (-2784 (((-3 (-688 |#1|) "failed") $) 56 T ELT)) (-2155 (((-688 |#1|) $) 54 T ELT)) (-1663 (($ $) 23 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-3762 (((-787) $) 61 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-688 |#1|) $) 21 T ELT)) (-3603 (((-880) $) 47 T ELT) (($ (-688 |#1|)) 26 T ELT) (((-835 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 9 T CONST)) (-2994 (((-660 (-688 |#1|)) $) 28 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 12 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 67 T ELT))) -(((-912 |#1|) (-13 (-865) (-1063 (-688 |#1|)) (-10 -8 (-15 1 ($) -2609) (-15 -3603 ((-835 |#1|) $)) (-15 -3603 ($ |#1|)) (-15 -1652 ((-688 |#1|) $)) (-15 -3762 ((-787) $)) (-15 -2994 ((-660 (-688 |#1|)) $)) (-15 -1663 ($ $)) (-15 -3216 ((-112) $)) (-15 -1530 ((-660 |#1|) $)))) (-865)) (T -912)) -((-2767 (*1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-3603 (*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-660 (-688 *3))) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-1663 (*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865))))) -(-13 (-865) (-1063 (-688 |#1|)) (-10 -8 (-15 (-2767) ($) -2609) (-15 -3603 ((-835 |#1|) $)) (-15 -3603 ($ |#1|)) (-15 -1652 ((-688 |#1|) $)) (-15 -3762 ((-787) $)) (-15 -2994 ((-660 (-688 |#1|)) $)) (-15 -1663 ($ $)) (-15 -3216 ((-112) $)) (-15 -1530 ((-660 |#1|) $)))) -((-4016 ((|#1| |#1| |#1|) 19 T ELT))) -(((-913 |#1| |#2|) (-10 -7 (-15 -4016 (|#1| |#1| |#1|))) (-1268 |#2|) (-1074)) (T -913)) -((-4016 (*1 *2 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1268 *3))))) -(-10 -7 (-15 -4016 (|#1| |#1| |#1|))) -((-2136 ((|#2| $ |#3|) 10 T ELT))) -(((-914 |#1| |#2| |#3|) (-10 -8 (-15 -2136 (|#2| |#1| |#3|))) (-915 |#2| |#3|) (-1242) (-1242)) (T -914)) -NIL -(-10 -8 (-15 -2136 (|#2| |#1| |#3|))) -((-3362 ((|#1| $ |#2|) 7 T ELT)) (-2136 ((|#1| $ |#2|) 6 T ELT))) -(((-915 |#1| |#2|) (-141) (-1242) (-1242)) (T -915)) -((-3362 (*1 *2 *1 *3) (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242)))) (-2136 (*1 *2 *1 *3) (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242))))) -(-13 (-1242) (-10 -8 (-15 -3362 (|t#1| $ |t#2|)) (-15 -2136 (|t#1| $ |t#2|)))) -(((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 15 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-1583 (((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 14 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-916) (-141)) (T -916)) -((-4391 (*1 *2 *3 *4) (-12 (-4 *1 (-916)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) (-1583 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *3 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *2 (-1060))))) -(-13 (-1125) (-10 -7 (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))) (-15 -1583 ((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-2892 ((|#1| |#1| (-787)) 27 T ELT)) (-3226 (((-3 |#1| "failed") |#1| |#1|) 24 T ELT)) (-4337 (((-3 (-2 (|:| -3060 |#1|) (|:| -3076 |#1|)) "failed") |#1| (-787) (-787)) 30 T ELT) (((-660 |#1|) |#1|) 38 T ELT))) -(((-917 |#1| |#2|) (-10 -7 (-15 -4337 ((-660 |#1|) |#1|)) (-15 -4337 ((-3 (-2 (|:| -3060 |#1|) (|:| -3076 |#1|)) "failed") |#1| (-787) (-787))) (-15 -3226 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2892 (|#1| |#1| (-787)))) (-1268 |#2|) (-375)) (T -917)) -((-2892 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-5 *1 (-917 *2 *4)) (-4 *2 (-1268 *4)))) (-3226 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-917 *2 *3)) (-4 *2 (-1268 *3)))) (-4337 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-787)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3060 *3) (|:| -3076 *3))) (-5 *1 (-917 *3 *5)) (-4 *3 (-1268 *5)))) (-4337 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-917 *3 *4)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -4337 ((-660 |#1|) |#1|)) (-15 -4337 ((-3 (-2 (|:| -3060 |#1|) (|:| -3076 |#1|)) "failed") |#1| (-787) (-787))) (-15 -3226 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2892 (|#1| |#1| (-787)))) -((-2773 (((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183)) 104 T ELT) (((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183) (-228)) 100 T ELT) (((-1060) (-919) (-1088)) 92 T ELT) (((-1060) (-919)) 93 T ELT)) (-4391 (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919) (-1088)) 62 T ELT) (((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919)) 64 T ELT))) -(((-918) (-10 -7 (-15 -2773 ((-1060) (-919))) (-15 -2773 ((-1060) (-919) (-1088))) (-15 -2773 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183) (-228))) (-15 -2773 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919) (-1088))))) (T -918)) -((-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-918)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-918)))) (-2773 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1060)) (-5 *1 (-918)))) (-2773 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) (-5 *8 (-228)) (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1060)) (-5 *1 (-918)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-918)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1060)) (-5 *1 (-918))))) -(-10 -7 (-15 -2773 ((-1060) (-919))) (-15 -2773 ((-1060) (-919) (-1088))) (-15 -2773 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183) (-228))) (-15 -2773 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919))) (-15 -4391 ((-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919) (-1088)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2155 (((-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))) $) 19 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 21 T ELT) (($ (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 18 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-919) (-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))) (-15 -2155 ((-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))) $))))) (T -919)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *1 (-919)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *1 (-919))))) -(-13 (-1125) (-10 -8 (-15 -3603 ($ (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))) (-15 -2155 ((-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))) $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3362 (($ $ (-660 |#2|) (-660 (-787))) 39 T ELT) (($ $ |#2| (-787)) 38 T ELT) (($ $ (-660 |#2|)) 37 T ELT) (($ $ |#2|) 35 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2136 (($ $ (-660 |#2|) (-660 (-787))) 42 T ELT) (($ $ |#2| (-787)) 41 T ELT) (($ $ (-660 |#2|)) 40 T ELT) (($ $ |#2|) 36 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-920 |#1| |#2|) (-141) (-1074) (-1125)) (T -920)) -NIL -(-13 (-111 |t#1| |t#1|) (-923 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-733 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-915 $ |#2|) . T) ((-923 |#2|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3362 (($ $ (-660 |#1|) (-660 (-787))) 44 T ELT) (($ $ |#1| (-787)) 43 T ELT) (($ $ (-660 |#1|)) 42 T ELT) (($ $ |#1|) 40 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-660 |#1|) (-660 (-787))) 47 T ELT) (($ $ |#1| (-787)) 46 T ELT) (($ $ (-660 |#1|)) 45 T ELT) (($ $ |#1|) 41 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-921 |#1|) (-141) (-1125)) (T -921)) -NIL -(-13 (-1074) (-923 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-915 $ |#1|) . T) ((-923 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3362 (($ $ |#2|) NIL T ELT) (($ $ (-660 |#2|)) 10 T ELT) (($ $ |#2| (-787)) 12 T ELT) (($ $ (-660 |#2|) (-660 (-787))) 15 T ELT)) (-2136 (($ $ |#2|) 16 T ELT) (($ $ (-660 |#2|)) 18 T ELT) (($ $ |#2| (-787)) 19 T ELT) (($ $ (-660 |#2|) (-660 (-787))) 21 T ELT))) -(((-922 |#1| |#2|) (-10 -8 (-15 -2136 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -2136 (|#1| |#1| |#2| (-787))) (-15 -2136 (|#1| |#1| (-660 |#2|))) (-15 -3362 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -3362 (|#1| |#1| |#2| (-787))) (-15 -3362 (|#1| |#1| (-660 |#2|))) (-15 -2136 (|#1| |#1| |#2|)) (-15 -3362 (|#1| |#1| |#2|))) (-923 |#2|) (-1125)) (T -922)) -NIL -(-10 -8 (-15 -2136 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -2136 (|#1| |#1| |#2| (-787))) (-15 -2136 (|#1| |#1| (-660 |#2|))) (-15 -3362 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -3362 (|#1| |#1| |#2| (-787))) (-15 -3362 (|#1| |#1| (-660 |#2|))) (-15 -2136 (|#1| |#1| |#2|)) (-15 -3362 (|#1| |#1| |#2|))) -((-3362 (($ $ |#1|) 7 T ELT) (($ $ (-660 |#1|)) 15 T ELT) (($ $ |#1| (-787)) 14 T ELT) (($ $ (-660 |#1|) (-660 (-787))) 13 T ELT)) (-2136 (($ $ |#1|) 6 T ELT) (($ $ (-660 |#1|)) 12 T ELT) (($ $ |#1| (-787)) 11 T ELT) (($ $ (-660 |#1|) (-660 (-787))) 10 T ELT))) -(((-923 |#1|) (-141) (-1125)) (T -923)) -((-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) (-4 *4 (-1125)))) (-2136 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125)))) (-2136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) (-2136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) (-4 *4 (-1125))))) -(-13 (-915 $ |t#1|) (-10 -8 (-15 -3362 ($ $ (-660 |t#1|))) (-15 -3362 ($ $ |t#1| (-787))) (-15 -3362 ($ $ (-660 |t#1|) (-660 (-787)))) (-15 -2136 ($ $ (-660 |t#1|))) (-15 -2136 ($ $ |t#1| (-787))) (-15 -2136 ($ $ (-660 |t#1|) (-660 (-787)))))) -(((-915 $ |#1|) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 26 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3440 (($ $ $) NIL (|has| $ (-6 -4471)) ELT)) (-1931 (($ $ $) NIL (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4471)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-3076 (($ $) 25 T ELT)) (-2849 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3060 (($ $) 23 T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) 20 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3834 (((-112) $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-1228 |#1|) $) 9 T ELT) (((-880) $) 29 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-924 |#1|) (-13 (-120 |#1|) (-626 (-1228 |#1|)) (-10 -8 (-15 -2849 ($ |#1|)) (-15 -2849 ($ $ $)))) (-1125)) (T -924)) -((-2849 (*1 *1 *2) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125)))) (-2849 (*1 *1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125))))) -(-13 (-120 |#1|) (-626 (-1228 |#1|)) (-10 -8 (-15 -2849 ($ |#1|)) (-15 -2849 ($ $ $)))) -((-3567 ((|#2| (-1167 |#1| |#2|)) 48 T ELT))) -(((-925 |#1| |#2|) (-10 -7 (-15 -3567 (|#2| (-1167 |#1| |#2|)))) (-944) (-13 (-1074) (-10 -7 (-6 (-4472 "*"))))) (T -925)) -((-3567 (*1 *2 *3) (-12 (-5 *3 (-1167 *4 *2)) (-14 *4 (-944)) (-4 *2 (-13 (-1074) (-10 -7 (-6 (-4472 "*"))))) (-5 *1 (-925 *4 *2))))) -(-10 -7 (-15 -3567 (|#2| (-1167 |#1| |#2|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-1959 (((-1127 |#1|) $) 36 T ELT)) (-3790 (($) 19 T CONST)) (-1625 (((-3 $ "failed") $) 16 T ELT)) (-2093 (((-1127 |#1|) $ |#1|) 35 T ELT)) (-3306 (((-112) $) 18 T ELT)) (-2900 (($ $ $) 29 (-2811 (|has| |#1| (-865)) (|has| |#1| (-380))) ELT)) (-1457 (($ $ $) 30 (-2811 (|has| |#1| (-865)) (|has| |#1| (-380))) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 25 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-2837 ((|#1| $ |#1|) 39 T ELT)) (-1957 (($ (-660 (-660 |#1|))) 37 T ELT)) (-1573 (($ (-660 |#1|)) 38 T ELT)) (-1328 (($ $ $) 22 T ELT)) (-3823 (($ $ $) 21 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2767 (($) 20 T CONST)) (-3001 (((-112) $ $) 31 (-2811 (|has| |#1| (-865)) (|has| |#1| (-380))) ELT)) (-2978 (((-112) $ $) 33 (-2811 (|has| |#1| (-865)) (|has| |#1| (-380))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 32 (-2811 (|has| |#1| (-865)) (|has| |#1| (-380))) ELT)) (-2971 (((-112) $ $) 34 T ELT)) (-3051 (($ $ $) 24 T ELT)) (** (($ $ (-944)) 14 T ELT) (($ $ (-787)) 17 T ELT) (($ $ (-577)) 23 T ELT)) (* (($ $ $) 15 T ELT))) -(((-926 |#1|) (-141) (-1125)) (T -926)) -((-1573 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-926 *3)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-4 *1 (-926 *3)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) (-2093 (*1 *2 *1 *3) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) (-2971 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(-13 (-486) (-297 |t#1| |t#1|) (-10 -8 (-15 -1573 ($ (-660 |t#1|))) (-15 -1957 ($ (-660 (-660 |t#1|)))) (-15 -1959 ((-1127 |t#1|) $)) (-15 -2093 ((-1127 |t#1|) $ |t#1|)) (-15 -2971 ((-112) $ $)) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-380)) (-6 (-865)) |%noBranch|))) -(((-102) . T) ((-626 (-880)) . T) ((-297 |#1| |#1|) . T) ((-486) . T) ((-742) . T) ((-865) -2811 (|has| |#1| (-865)) (|has| |#1| (-380))) ((-868) -2811 (|has| |#1| (-865)) (|has| |#1| (-380))) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3106 (((-660 (-660 (-787))) $) 160 T ELT)) (-2989 (((-660 (-787)) (-928 |#1|) $) 188 T ELT)) (-1553 (((-660 (-787)) (-928 |#1|) $) 189 T ELT)) (-1959 (((-1127 |#1|) $) 152 T ELT)) (-4174 (((-660 (-928 |#1|)) $) 149 T ELT)) (-2352 (((-928 |#1|) $ (-577)) 154 T ELT) (((-928 |#1|) $) 155 T ELT)) (-1691 (($ (-660 (-928 |#1|))) 162 T ELT)) (-2536 (((-787) $) 156 T ELT)) (-2530 (((-1127 (-1127 |#1|)) $) 186 T ELT)) (-2093 (((-1127 |#1|) $ |#1|) 177 T ELT) (((-1127 (-1127 |#1|)) $ (-1127 |#1|)) 197 T ELT) (((-1127 (-660 |#1|)) $ (-660 |#1|)) 200 T ELT)) (-1645 (((-112) (-928 |#1|) $) 137 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4160 (((-1297) $) 142 T ELT) (((-1297) $ (-577) (-577)) 201 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2629 (((-660 (-928 |#1|)) $) 143 T ELT)) (-2837 (((-928 |#1|) $ (-787)) 150 T ELT)) (-3616 (((-787) $) 157 T ELT)) (-3603 (((-880) $) 174 T ELT) (((-660 (-928 |#1|)) $) 28 T ELT) (($ (-660 (-928 |#1|))) 161 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (((-660 |#1|) $) 159 T ELT)) (-2949 (((-112) $ $) 194 T ELT)) (-2988 (((-112) $ $) 192 T ELT)) (-2971 (((-112) $ $) 191 T ELT))) -(((-927 |#1|) (-13 (-1125) (-10 -8 (-15 -3603 ((-660 (-928 |#1|)) $)) (-15 -2629 ((-660 (-928 |#1|)) $)) (-15 -2837 ((-928 |#1|) $ (-787))) (-15 -2352 ((-928 |#1|) $ (-577))) (-15 -2352 ((-928 |#1|) $)) (-15 -2536 ((-787) $)) (-15 -3616 ((-787) $)) (-15 -2762 ((-660 |#1|) $)) (-15 -4174 ((-660 (-928 |#1|)) $)) (-15 -3106 ((-660 (-660 (-787))) $)) (-15 -3603 ($ (-660 (-928 |#1|)))) (-15 -1691 ($ (-660 (-928 |#1|)))) (-15 -2093 ((-1127 |#1|) $ |#1|)) (-15 -2530 ((-1127 (-1127 |#1|)) $)) (-15 -2093 ((-1127 (-1127 |#1|)) $ (-1127 |#1|))) (-15 -2093 ((-1127 (-660 |#1|)) $ (-660 |#1|))) (-15 -1645 ((-112) (-928 |#1|) $)) (-15 -2989 ((-660 (-787)) (-928 |#1|) $)) (-15 -1553 ((-660 (-787)) (-928 |#1|) $)) (-15 -1959 ((-1127 |#1|) $)) (-15 -2971 ((-112) $ $)) (-15 -2988 ((-112) $ $)) (-15 -4160 ((-1297) $)) (-15 -4160 ((-1297) $ (-577) (-577))))) (-1125)) (T -927)) -((-3603 (*1 *2 *1) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) (-4 *4 (-1125)))) (-2352 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) (-4 *4 (-1125)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-928 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-4174 (*1 *2 *1) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-787)))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3)))) (-2093 (*1 *2 *1 *3) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-1127 (-1127 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2093 (*1 *2 *1 *3) (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-1127 *4))) (-5 *1 (-927 *4)) (-5 *3 (-1127 *4)))) (-2093 (*1 *2 *1 *3) (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-660 *4))) (-5 *1 (-927 *4)) (-5 *3 (-660 *4)))) (-1645 (*1 *2 *3 *1) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-927 *4)))) (-2989 (*1 *2 *3 *1) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) (-5 *1 (-927 *4)))) (-1553 (*1 *2 *3 *1) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) (-5 *1 (-927 *4)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2971 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2988 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-4160 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-927 *4)) (-4 *4 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -3603 ((-660 (-928 |#1|)) $)) (-15 -2629 ((-660 (-928 |#1|)) $)) (-15 -2837 ((-928 |#1|) $ (-787))) (-15 -2352 ((-928 |#1|) $ (-577))) (-15 -2352 ((-928 |#1|) $)) (-15 -2536 ((-787) $)) (-15 -3616 ((-787) $)) (-15 -2762 ((-660 |#1|) $)) (-15 -4174 ((-660 (-928 |#1|)) $)) (-15 -3106 ((-660 (-660 (-787))) $)) (-15 -3603 ($ (-660 (-928 |#1|)))) (-15 -1691 ($ (-660 (-928 |#1|)))) (-15 -2093 ((-1127 |#1|) $ |#1|)) (-15 -2530 ((-1127 (-1127 |#1|)) $)) (-15 -2093 ((-1127 (-1127 |#1|)) $ (-1127 |#1|))) (-15 -2093 ((-1127 (-660 |#1|)) $ (-660 |#1|))) (-15 -1645 ((-112) (-928 |#1|) $)) (-15 -2989 ((-660 (-787)) (-928 |#1|) $)) (-15 -1553 ((-660 (-787)) (-928 |#1|) $)) (-15 -1959 ((-1127 |#1|) $)) (-15 -2971 ((-112) $ $)) (-15 -2988 ((-112) $ $)) (-15 -4160 ((-1297) $)) (-15 -4160 ((-1297) $ (-577) (-577))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1959 (((-1127 |#1|) $) 60 T ELT)) (-2312 (((-660 $) (-660 $)) 103 T ELT)) (-2917 (((-577) $) 83 T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2536 (((-787) $) 80 T ELT)) (-2093 (((-1127 |#1|) $ |#1|) 70 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2238 (((-112) $) 88 T ELT)) (-3450 (((-787) $) 84 T ELT)) (-2900 (($ $ $) NIL (-2811 (|has| |#1| (-380)) (|has| |#1| (-865))) ELT)) (-1457 (($ $ $) NIL (-2811 (|has| |#1| (-380)) (|has| |#1| (-865))) ELT)) (-3913 (((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $) 55 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 130 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2565 (((-1127 |#1|) $) 136 (|has| |#1| (-380)) ELT)) (-3861 (((-112) $) 81 T ELT)) (-2837 ((|#1| $ |#1|) 68 T ELT)) (-3616 (((-787) $) 62 T ELT)) (-1957 (($ (-660 (-660 |#1|))) 118 T ELT)) (-1769 (((-996) $) 74 T ELT)) (-1573 (($ (-660 |#1|)) 32 T ELT)) (-1328 (($ $ $) NIL T ELT)) (-3823 (($ $ $) NIL T ELT)) (-2291 (($ (-660 (-660 |#1|))) 57 T ELT)) (-2634 (($ (-660 (-660 |#1|))) 123 T ELT)) (-4126 (($ (-660 |#1|)) 132 T ELT)) (-3603 (((-880) $) 117 T ELT) (($ (-660 (-660 |#1|))) 91 T ELT) (($ (-660 |#1|)) 92 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) 24 T CONST)) (-3001 (((-112) $ $) NIL (-2811 (|has| |#1| (-380)) (|has| |#1| (-865))) ELT)) (-2978 (((-112) $ $) NIL (-2811 (|has| |#1| (-380)) (|has| |#1| (-865))) ELT)) (-2949 (((-112) $ $) 66 T ELT)) (-2988 (((-112) $ $) NIL (-2811 (|has| |#1| (-380)) (|has| |#1| (-865))) ELT)) (-2971 (((-112) $ $) 90 T ELT)) (-3051 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-928 |#1|) (-13 (-926 |#1|) (-10 -8 (-15 -3913 ((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $)) (-15 -2291 ($ (-660 (-660 |#1|)))) (-15 -3603 ($ (-660 (-660 |#1|)))) (-15 -3603 ($ (-660 |#1|))) (-15 -2634 ($ (-660 (-660 |#1|)))) (-15 -3616 ((-787) $)) (-15 -1769 ((-996) $)) (-15 -2536 ((-787) $)) (-15 -3450 ((-787) $)) (-15 -2917 ((-577) $)) (-15 -3861 ((-112) $)) (-15 -2238 ((-112) $)) (-15 -2312 ((-660 $) (-660 $))) (IF (|has| |#1| (-380)) (-15 -2565 ((-1127 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -4126 ($ (-660 |#1|))) (IF (|has| |#1| (-380)) (-15 -4126 ($ (-660 |#1|))) |%noBranch|)))) (-1125)) (T -928)) -((-3913 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-660 *3)) (|:| |image| (-660 *3)))) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-2291 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-2634 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-928 *3)) (-4 *3 (-380)) (-4 *3 (-1125)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) -(-13 (-926 |#1|) (-10 -8 (-15 -3913 ((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $)) (-15 -2291 ($ (-660 (-660 |#1|)))) (-15 -3603 ($ (-660 (-660 |#1|)))) (-15 -3603 ($ (-660 |#1|))) (-15 -2634 ($ (-660 (-660 |#1|)))) (-15 -3616 ((-787) $)) (-15 -1769 ((-996) $)) (-15 -2536 ((-787) $)) (-15 -3450 ((-787) $)) (-15 -2917 ((-577) $)) (-15 -3861 ((-112) $)) (-15 -2238 ((-112) $)) (-15 -2312 ((-660 $) (-660 $))) (IF (|has| |#1| (-380)) (-15 -2565 ((-1127 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -4126 ($ (-660 |#1|))) (IF (|has| |#1| (-380)) (-15 -4126 ($ (-660 |#1|))) |%noBranch|)))) -((-1669 (((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|)) 160 T ELT)) (-2638 ((|#1|) 97 T ELT)) (-4150 (((-431 (-1197 |#4|)) (-1197 |#4|)) 169 T ELT)) (-4340 (((-431 (-1197 |#4|)) (-660 |#3|) (-1197 |#4|)) 84 T ELT)) (-4422 (((-431 (-1197 |#4|)) (-1197 |#4|)) 179 T ELT)) (-3882 (((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|) |#3|) 113 T ELT))) -(((-929 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1669 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|))) (-15 -4422 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -4150 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2638 (|#1|)) (-15 -3882 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|) |#3|)) (-15 -4340 ((-431 (-1197 |#4|)) (-660 |#3|) (-1197 |#4|)))) (-932) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -929)) -((-4340 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *7)) (-4 *7 (-865)) (-4 *5 (-932)) (-4 *6 (-809)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-431 (-1197 *8))) (-5 *1 (-929 *5 *6 *7 *8)) (-5 *4 (-1197 *8)))) (-3882 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) (-4 *7 (-972 *5 *6 *4)) (-4 *5 (-932)) (-4 *6 (-809)) (-4 *4 (-865)) (-5 *1 (-929 *5 *6 *4 *7)))) (-2638 (*1 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-4150 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-1669 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-929 *4 *5 *6 *7))))) -(-10 -7 (-15 -1669 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|))) (-15 -4422 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -4150 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2638 (|#1|)) (-15 -3882 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|) |#3|)) (-15 -4340 ((-431 (-1197 |#4|)) (-660 |#3|) (-1197 |#4|)))) -((-1669 (((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)) 39 T ELT)) (-2638 ((|#1|) 72 T ELT)) (-4150 (((-431 (-1197 |#2|)) (-1197 |#2|)) 121 T ELT)) (-4340 (((-431 (-1197 |#2|)) (-1197 |#2|)) 105 T ELT)) (-4422 (((-431 (-1197 |#2|)) (-1197 |#2|)) 132 T ELT))) -(((-930 |#1| |#2|) (-10 -7 (-15 -1669 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|))) (-15 -4422 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -4150 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -2638 (|#1|)) (-15 -4340 ((-431 (-1197 |#2|)) (-1197 |#2|)))) (-932) (-1268 |#1|)) (T -930)) -((-4340 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5)))) (-2638 (*1 *2) (-12 (-4 *2 (-932)) (-5 *1 (-930 *2 *3)) (-4 *3 (-1268 *2)))) (-4150 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5)))) (-1669 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-932)) (-5 *1 (-930 *4 *5))))) -(-10 -7 (-15 -1669 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|))) (-15 -4422 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -4150 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -2638 (|#1|)) (-15 -4340 ((-431 (-1197 |#2|)) (-1197 |#2|)))) -((-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 42 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 18 T ELT)) (-3907 (((-3 $ "failed") $) 36 T ELT))) -(((-931 |#1|) (-10 -8 (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) (-932)) (T -931)) -NIL -(-10 -8 (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 66 T ELT)) (-2001 (($ $) 57 T ELT)) (-3836 (((-431 $) $) 58 T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 63 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2182 (((-112) $) 59 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 64 T ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 65 T ELT)) (-3056 (((-431 $) $) 56 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 62 (|has| $ (-146)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3907 (((-3 $ "failed") $) 61 (|has| $ (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-932) (-141)) (T -932)) -((-3502 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-932)))) (-3569 (*1 *2 *3) (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1)))) (-1761 (*1 *2 *3) (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1)))) (-2331 (*1 *2 *3) (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1)))) (-3578 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *1))) (-5 *3 (-1197 *1)) (-4 *1 (-932)))) (-2349 (*1 *2 *3) (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-146)) (-4 *1 (-932)) (-5 *2 (-1292 *1)))) (-3907 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-932))))) -(-13 (-1246) (-10 -8 (-15 -3569 ((-431 (-1197 $)) (-1197 $))) (-15 -1761 ((-431 (-1197 $)) (-1197 $))) (-15 -2331 ((-431 (-1197 $)) (-1197 $))) (-15 -3502 ((-1197 $) (-1197 $) (-1197 $))) (-15 -3578 ((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $))) (IF (|has| $ (-146)) (PROGN (-15 -2349 ((-3 (-1292 $) "failed") (-705 $))) (-15 -3907 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-3591 (((-112) $) NIL T ELT)) (-3678 (((-787)) NIL T ELT)) (-2219 (($ $ (-944)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 $ "failed") $) NIL T ELT)) (-2155 (($ $) NIL T ELT)) (-1911 (($ (-1292 $)) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-1742 (($) NIL T ELT)) (-4402 (((-112) $) NIL T ELT)) (-1865 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-2536 (((-849 (-944)) $) NIL T ELT) (((-944) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2189 (($) NIL (|has| $ (-380)) ELT)) (-2936 (((-112) $) NIL (|has| $ (-380)) ELT)) (-4021 (($ $ (-944)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3810 (((-1197 $) $ (-944)) NIL (|has| $ (-380)) ELT) (((-1197 $) $) NIL T ELT)) (-2144 (((-944) $) NIL T ELT)) (-1948 (((-1197 $) $) NIL (|has| $ (-380)) ELT)) (-3995 (((-3 (-1197 $) "failed") $ $) NIL (|has| $ (-380)) ELT) (((-1197 $) $) NIL (|has| $ (-380)) ELT)) (-1542 (($ $ (-1197 $)) NIL (|has| $ (-380)) ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL T CONST)) (-3251 (($ (-944)) NIL T ELT)) (-1792 (((-112) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) NIL (|has| $ (-380)) ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-2884 (((-944)) NIL T ELT) (((-849 (-944))) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3816 (((-3 (-787) "failed") $ $) NIL T ELT) (((-787) $) NIL T ELT)) (-3941 (((-135)) NIL T ELT)) (-3362 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3616 (((-944) $) NIL T ELT) (((-849 (-944)) $) NIL T ELT)) (-1629 (((-1197 $)) NIL T ELT)) (-2932 (($) NIL T ELT)) (-3204 (($) NIL (|has| $ (-380)) ELT)) (-2729 (((-705 $) (-1292 $)) NIL T ELT) (((-1292 $) $) NIL T ELT)) (-2176 (((-577) $) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL T ELT) (($ $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $) (-944)) NIL T ELT) (((-1292 $)) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-1427 (($ $ (-787)) NIL (|has| $ (-380)) ELT) (($ $) NIL (|has| $ (-380)) ELT)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-933 |#1|) (-13 (-361) (-340 $) (-627 (-577))) (-944)) (T -933)) -NIL -(-13 (-361) (-340 $) (-627 (-577))) -((-2567 (((-3 (-2 (|:| -2536 (-787)) (|:| -3386 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-3902 (((-112) (-348 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-2536 (((-3 (-787) "failed") (-348 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2536 ((-3 (-787) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -3902 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -2567 ((-3 (-2 (|:| -2536 (-787)) (|:| -3386 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) (-13 (-569) (-1063 (-577))) (-443 |#1|) (-1268 |#2|) (-1268 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -934)) -((-2567 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-2 (|:| -2536 (-787)) (|:| -3386 *8))) (-5 *1 (-934 *4 *5 *6 *7 *8)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7 *8)))) (-2536 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-787)) (-5 *1 (-934 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2536 ((-3 (-787) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -3902 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -2567 ((-3 (-2 (|:| -2536 (-787)) (|:| -3386 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) -((-2567 (((-3 (-2 (|:| -2536 (-787)) (|:| -3386 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 64 T ELT)) (-3902 (((-112) (-348 (-420 (-577)) |#1| |#2| |#3|)) 16 T ELT)) (-2536 (((-3 (-787) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 14 T ELT))) -(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -2536 ((-3 (-787) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -3902 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2567 ((-3 (-2 (|:| -2536 (-787)) (|:| -3386 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) (-1268 (-420 (-577))) (-1268 (-420 |#1|)) (-354 (-420 (-577)) |#1| |#2|)) (T -935)) -((-2567 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-2 (|:| -2536 (-787)) (|:| -3386 *6))) (-5 *1 (-935 *4 *5 *6)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6)))) (-2536 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-787)) (-5 *1 (-935 *4 *5 *6))))) -(-10 -7 (-15 -2536 ((-3 (-787) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -3902 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2567 ((-3 (-2 (|:| -2536 (-787)) (|:| -3386 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) -((-3804 ((|#2| |#2|) 26 T ELT)) (-2017 (((-577) (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) 15 T ELT)) (-1529 (((-944) (-577)) 38 T ELT)) (-3758 (((-577) |#2|) 45 T ELT)) (-3417 (((-577) |#2|) 21 T ELT) (((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|) 20 T ELT))) -(((-936 |#1| |#2|) (-10 -7 (-15 -1529 ((-944) (-577))) (-15 -3417 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -3417 ((-577) |#2|)) (-15 -2017 ((-577) (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -3758 ((-577) |#2|)) (-15 -3804 (|#2| |#2|))) (-1268 (-420 (-577))) (-1268 (-420 |#1|))) (T -936)) -((-3804 (*1 *2 *2) (-12 (-4 *3 (-1268 (-420 (-577)))) (-5 *1 (-936 *3 *2)) (-4 *2 (-1268 (-420 *3))))) (-3758 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) (-4 *3 (-1268 (-420 *4))))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *5)) (-4 *5 (-1268 (-420 *4))))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) (-4 *3 (-1268 (-420 *4))))) (-3417 (*1 *2 *3) (-12 (-4 *3 (-1268 (-420 (-577)))) (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) (-5 *1 (-936 *3 *4)) (-4 *4 (-1268 (-420 *3))))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1268 (-420 *3))) (-5 *2 (-944)) (-5 *1 (-936 *4 *5)) (-4 *5 (-1268 (-420 *4)))))) -(-10 -7 (-15 -1529 ((-944) (-577))) (-15 -3417 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -3417 ((-577) |#2|)) (-15 -2017 ((-577) (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -3758 ((-577) |#2|)) (-15 -3804 (|#2| |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 ((|#1| $) 100 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3436 (($ $ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 94 T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-1562 (($ |#1| (-431 |#1|)) 92 T ELT)) (-4107 (((-1197 |#1|) |#1| |#1|) 53 T ELT)) (-3710 (($ $) 61 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-1876 (((-577) $) 97 T ELT)) (-3700 (($ $ (-577)) 99 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4327 ((|#1| $) 96 T ELT)) (-4245 (((-431 |#1|) $) 95 T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) 93 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-2864 (($ $) 50 T ELT)) (-3603 (((-880) $) 124 T ELT) (($ (-577)) 73 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 41 T ELT) (((-420 |#1|) $) 78 T ELT) (($ (-420 (-431 |#1|))) 86 T ELT)) (-1920 (((-787)) 71 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) 26 T CONST)) (-2767 (($) 15 T CONST)) (-2949 (((-112) $ $) 87 T ELT)) (-3051 (($ $ $) NIL T ELT)) (-3042 (($ $) 108 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 49 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 110 T ELT) (($ $ $) 48 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#1| $) 109 T ELT) (($ $ |#1|) NIL T ELT))) -(((-937 |#1|) (-13 (-375) (-38 |#1|) (-10 -8 (-15 -3603 ((-420 |#1|) $)) (-15 -3603 ($ (-420 (-431 |#1|)))) (-15 -2864 ($ $)) (-15 -4245 ((-431 |#1|) $)) (-15 -4327 (|#1| $)) (-15 -3700 ($ $ (-577))) (-15 -1876 ((-577) $)) (-15 -4107 ((-1197 |#1|) |#1| |#1|)) (-15 -3710 ($ $)) (-15 -1562 ($ |#1| (-431 |#1|))) (-15 -2829 (|#1| $)))) (-318)) (T -937)) -((-3603 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-937 *3)))) (-2864 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-4327 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-4107 (*1 *2 *3 *3) (-12 (-5 *2 (-1197 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) (-1562 (*1 *1 *2 *3) (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-937 *2)))) (-2829 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) -(-13 (-375) (-38 |#1|) (-10 -8 (-15 -3603 ((-420 |#1|) $)) (-15 -3603 ($ (-420 (-431 |#1|)))) (-15 -2864 ($ $)) (-15 -4245 ((-431 |#1|) $)) (-15 -4327 (|#1| $)) (-15 -3700 ($ $ (-577))) (-15 -1876 ((-577) $)) (-15 -4107 ((-1197 |#1|) |#1| |#1|)) (-15 -3710 ($ $)) (-15 -1562 ($ |#1| (-431 |#1|))) (-15 -2829 (|#1| $)))) -((-1562 (((-52) (-975 |#1|) (-431 (-975 |#1|)) (-1201)) 17 T ELT) (((-52) (-420 (-975 |#1|)) (-1201)) 18 T ELT))) -(((-938 |#1|) (-10 -7 (-15 -1562 ((-52) (-420 (-975 |#1|)) (-1201))) (-15 -1562 ((-52) (-975 |#1|) (-431 (-975 |#1|)) (-1201)))) (-13 (-318) (-148))) (T -938)) -((-1562 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-431 (-975 *6))) (-5 *5 (-1201)) (-5 *3 (-975 *6)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *6)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *5))))) -(-10 -7 (-15 -1562 ((-52) (-420 (-975 |#1|)) (-1201))) (-15 -1562 ((-52) (-975 |#1|) (-431 (-975 |#1|)) (-1201)))) -((-3325 ((|#4| (-660 |#4|)) 147 T ELT) (((-1197 |#4|) (-1197 |#4|) (-1197 |#4|)) 84 T ELT) ((|#4| |#4| |#4|) 146 T ELT)) (-3543 (((-1197 |#4|) (-660 (-1197 |#4|))) 140 T ELT) (((-1197 |#4|) (-1197 |#4|) (-1197 |#4|)) 61 T ELT) ((|#4| (-660 |#4|)) 69 T ELT) ((|#4| |#4| |#4|) 107 T ELT))) -(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3543 (|#4| |#4| |#4|)) (-15 -3543 (|#4| (-660 |#4|))) (-15 -3543 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -3543 ((-1197 |#4|) (-660 (-1197 |#4|)))) (-15 -3325 (|#4| |#4| |#4|)) (-15 -3325 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -3325 (|#4| (-660 |#4|)))) (-809) (-865) (-318) (-972 |#3| |#1| |#2|)) (T -939)) -((-3325 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) (-3325 (*1 *2 *2 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-660 (-1197 *7))) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-1197 *7)) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-3543 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)))) (-3543 (*1 *2 *2 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4))))) -(-10 -7 (-15 -3543 (|#4| |#4| |#4|)) (-15 -3543 (|#4| (-660 |#4|))) (-15 -3543 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -3543 ((-1197 |#4|) (-660 (-1197 |#4|)))) (-15 -3325 (|#4| |#4| |#4|)) (-15 -3325 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -3325 (|#4| (-660 |#4|)))) -((-1841 (((-927 (-577)) (-996)) 38 T ELT) (((-927 (-577)) (-660 (-577))) 34 T ELT)) (-1933 (((-927 (-577)) (-660 (-577))) 67 T ELT) (((-927 (-577)) (-944)) 68 T ELT)) (-3909 (((-927 (-577))) 39 T ELT)) (-3646 (((-927 (-577))) 53 T ELT) (((-927 (-577)) (-660 (-577))) 52 T ELT)) (-3892 (((-927 (-577))) 51 T ELT) (((-927 (-577)) (-660 (-577))) 50 T ELT)) (-2056 (((-927 (-577))) 49 T ELT) (((-927 (-577)) (-660 (-577))) 48 T ELT)) (-3505 (((-927 (-577))) 47 T ELT) (((-927 (-577)) (-660 (-577))) 46 T ELT)) (-2424 (((-927 (-577))) 45 T ELT) (((-927 (-577)) (-660 (-577))) 44 T ELT)) (-2260 (((-927 (-577))) 55 T ELT) (((-927 (-577)) (-660 (-577))) 54 T ELT)) (-3950 (((-927 (-577)) (-660 (-577))) 72 T ELT) (((-927 (-577)) (-944)) 74 T ELT)) (-2123 (((-927 (-577)) (-660 (-577))) 69 T ELT) (((-927 (-577)) (-944)) 70 T ELT)) (-3707 (((-927 (-577)) (-660 (-577))) 65 T ELT) (((-927 (-577)) (-944)) 66 T ELT)) (-3522 (((-927 (-577)) (-660 (-944))) 57 T ELT))) -(((-940) (-10 -7 (-15 -1933 ((-927 (-577)) (-944))) (-15 -1933 ((-927 (-577)) (-660 (-577)))) (-15 -3707 ((-927 (-577)) (-944))) (-15 -3707 ((-927 (-577)) (-660 (-577)))) (-15 -3522 ((-927 (-577)) (-660 (-944)))) (-15 -2123 ((-927 (-577)) (-944))) (-15 -2123 ((-927 (-577)) (-660 (-577)))) (-15 -3950 ((-927 (-577)) (-944))) (-15 -3950 ((-927 (-577)) (-660 (-577)))) (-15 -2424 ((-927 (-577)) (-660 (-577)))) (-15 -2424 ((-927 (-577)))) (-15 -3505 ((-927 (-577)) (-660 (-577)))) (-15 -3505 ((-927 (-577)))) (-15 -2056 ((-927 (-577)) (-660 (-577)))) (-15 -2056 ((-927 (-577)))) (-15 -3892 ((-927 (-577)) (-660 (-577)))) (-15 -3892 ((-927 (-577)))) (-15 -3646 ((-927 (-577)) (-660 (-577)))) (-15 -3646 ((-927 (-577)))) (-15 -2260 ((-927 (-577)) (-660 (-577)))) (-15 -2260 ((-927 (-577)))) (-15 -3909 ((-927 (-577)))) (-15 -1841 ((-927 (-577)) (-660 (-577)))) (-15 -1841 ((-927 (-577)) (-996))))) (T -940)) -((-1841 (*1 *2 *3) (-12 (-5 *3 (-996)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3909 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2260 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3646 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3892 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2056 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3505 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2424 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3522 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(-10 -7 (-15 -1933 ((-927 (-577)) (-944))) (-15 -1933 ((-927 (-577)) (-660 (-577)))) (-15 -3707 ((-927 (-577)) (-944))) (-15 -3707 ((-927 (-577)) (-660 (-577)))) (-15 -3522 ((-927 (-577)) (-660 (-944)))) (-15 -2123 ((-927 (-577)) (-944))) (-15 -2123 ((-927 (-577)) (-660 (-577)))) (-15 -3950 ((-927 (-577)) (-944))) (-15 -3950 ((-927 (-577)) (-660 (-577)))) (-15 -2424 ((-927 (-577)) (-660 (-577)))) (-15 -2424 ((-927 (-577)))) (-15 -3505 ((-927 (-577)) (-660 (-577)))) (-15 -3505 ((-927 (-577)))) (-15 -2056 ((-927 (-577)) (-660 (-577)))) (-15 -2056 ((-927 (-577)))) (-15 -3892 ((-927 (-577)) (-660 (-577)))) (-15 -3892 ((-927 (-577)))) (-15 -3646 ((-927 (-577)) (-660 (-577)))) (-15 -3646 ((-927 (-577)))) (-15 -2260 ((-927 (-577)) (-660 (-577)))) (-15 -2260 ((-927 (-577)))) (-15 -3909 ((-927 (-577)))) (-15 -1841 ((-927 (-577)) (-660 (-577)))) (-15 -1841 ((-927 (-577)) (-996)))) -((-2315 (((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))) 14 T ELT)) (-3732 (((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))) 13 T ELT))) -(((-941 |#1|) (-10 -7 (-15 -3732 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -2315 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))))) (-465)) (T -941)) -((-2315 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) (-5 *1 (-941 *4)))) (-3732 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) (-5 *1 (-941 *4))))) -(-10 -7 (-15 -3732 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -2315 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))))) -((-3603 (((-327 |#1|) (-490)) 16 T ELT))) -(((-942 |#1|) (-10 -7 (-15 -3603 ((-327 |#1|) (-490)))) (-569)) (T -942)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-942 *4)) (-4 *4 (-569))))) -(-10 -7 (-15 -3603 ((-327 |#1|) (-490)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-943) (-141)) (T -943)) -((-3885 (*1 *2 *3) (-12 (-4 *1 (-943)) (-5 *2 (-2 (|:| -2940 (-660 *1)) (|:| -3428 *1))) (-5 *3 (-660 *1)))) (-2071 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-943))))) -(-13 (-465) (-10 -8 (-15 -3885 ((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $))) (-15 -2071 ((-3 (-660 $) "failed") (-660 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3543 (($ $ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2767 (($) NIL T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-944) (-13 (-810) (-742) (-10 -8 (-15 -3543 ($ $ $)) (-6 (-4472 "*"))))) (T -944)) -((-3543 (*1 *1 *1 *1) (-5 *1 (-944)))) -(-13 (-810) (-742) (-10 -8 (-15 -3543 ($ $ $)) (-6 (-4472 "*")))) +((-1904 (((-712 (-1255)) $ (-1255)) NIL T ELT)) (-2082 (((-712 (-562)) $ (-562)) NIL T ELT)) (-2209 (((-792) $ (-129)) NIL T ELT)) (-3970 (((-712 (-130)) $ (-130)) 22 T ELT)) (-3760 (($ (-401)) 12 T ELT) (($ (-1188)) 14 T ELT)) (-1552 (((-112) $) 19 T ELT)) (-3709 (((-885) $) 26 T ELT)) (-2823 (($ $) 23 T ELT))) +(((-884) (-13 (-883) (-631 (-885)) (-10 -8 (-15 -3760 ($ (-401))) (-15 -3760 ($ (-1188))) (-15 -1552 ((-112) $))))) (T -884)) +((-3760 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-884)))) (-3760 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-884)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-884))))) +(-13 (-883) (-631 (-885)) (-10 -8 (-15 -3760 ($ (-401))) (-15 -3760 ($ (-1188))) (-15 -1552 ((-112) $)))) +((-3586 (((-112) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-3592 (($ $ $) 125 T ELT)) (-2437 (((-577) $) 31 T ELT) (((-577)) 36 T ELT)) (-1985 (($ (-577)) 53 T ELT)) (-3126 (($ $ $) 54 T ELT) (($ (-665 $)) 84 T ELT)) (-3487 (($ $ (-665 $)) 82 T ELT)) (-3708 (((-577) $) 34 T ELT)) (-2828 (($ $ $) 73 T ELT)) (-3452 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-1946 (((-577) $) 33 T ELT)) (-2126 (($ $ $) 72 T ELT)) (-1378 (($ $) 114 T ELT)) (-2304 (($ $ $) 129 T ELT)) (-4104 (($ (-665 $)) 61 T ELT)) (-4177 (($ $ (-665 $)) 79 T ELT)) (-2000 (($ (-577) (-577)) 55 T ELT)) (-2361 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3352 (($ $ (-577)) 43 T ELT) (($ $) 46 T ELT)) (-3531 (($ $ $) 97 T ELT)) (-3628 (($ $ $) 132 T ELT)) (-1837 (($ $) 115 T ELT)) (-3541 (($ $ $) 98 T ELT)) (-3566 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-4393 (((-1302) $) 10 T ELT)) (-2058 (($ $) 118 T ELT) (($ $ (-792)) 122 T ELT)) (-3082 (($ $ $) 75 T ELT)) (-2254 (($ $ $) 74 T ELT)) (-4192 (($ $ (-665 $)) 110 T ELT)) (-2271 (($ $ $) 113 T ELT)) (-3248 (($ (-665 $)) 59 T ELT)) (-2754 (($ $) 70 T ELT) (($ (-665 $)) 71 T ELT)) (-2972 (($ $ $) 123 T ELT)) (-1974 (($ $) 116 T ELT)) (-1506 (($ $ $) 128 T ELT)) (-2880 (($ (-577)) 21 T ELT) (($ (-1206)) 23 T ELT) (($ (-1188)) 30 T ELT) (($ (-228)) 25 T ELT)) (-2802 (($ $ $) 101 T ELT)) (-2779 (($ $) 102 T ELT)) (-3958 (((-1302) (-1188)) 15 T ELT)) (-2926 (($ (-1188)) 14 T ELT)) (-2374 (($ (-665 (-665 $))) 58 T ELT)) (-3337 (($ $ (-577)) 42 T ELT) (($ $) 45 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2624 (($ $ $) 131 T ELT)) (-2269 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3094 (((-112) $) 108 T ELT)) (-1390 (($ $ (-665 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-3285 (($ (-577)) 39 T ELT)) (-2553 (((-577) $) 32 T ELT) (((-577)) 35 T ELT)) (-2069 (($ $ $) 40 T ELT) (($ (-665 $)) 83 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (($ $ $) 99 T ELT)) (-2833 (($) 13 T ELT)) (-2916 (($ $ (-665 $)) 109 T ELT)) (-2831 (((-1188) (-1188)) 8 T ELT)) (-4047 (($ $) 117 T ELT) (($ $ (-792)) 121 T ELT)) (-3563 (($ $ $) 96 T ELT)) (-3641 (($ $ (-792)) 139 T ELT)) (-3010 (($ (-665 $)) 60 T ELT)) (-3709 (((-885) $) 19 T ELT)) (-1343 (($ $ (-577)) 41 T ELT) (($ $) 44 T ELT)) (-4398 (($ $) 68 T ELT) (($ (-665 $)) 69 T ELT)) (-3823 (($ $) 66 T ELT) (($ (-665 $)) 67 T ELT)) (-2907 (($ $) 124 T ELT)) (-2958 (($ (-665 $)) 65 T ELT)) (-2990 (($ $ $) 105 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2904 (($ $ $) 130 T ELT)) (-2790 (($ $ $) 100 T ELT)) (-1915 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-3078 (($ $ $) 89 T ELT)) (-3054 (($ $ $) 87 T ELT)) (-3018 (((-112) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-3067 (($ $ $) 88 T ELT)) (-3042 (($ $ $) 86 T ELT)) (-3139 (($ $ $) 94 T ELT)) (-3128 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3114 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-885) (-13 (-1130) (-10 -8 (-15 -4393 ((-1302) $)) (-15 -2926 ($ (-1188))) (-15 -3958 ((-1302) (-1188))) (-15 -2880 ($ (-577))) (-15 -2880 ($ (-1206))) (-15 -2880 ($ (-1188))) (-15 -2880 ($ (-228))) (-15 -2833 ($)) (-15 -2831 ((-1188) (-1188))) (-15 -2437 ((-577) $)) (-15 -2553 ((-577) $)) (-15 -2437 ((-577))) (-15 -2553 ((-577))) (-15 -1946 ((-577) $)) (-15 -3708 ((-577) $)) (-15 -3285 ($ (-577))) (-15 -1985 ($ (-577))) (-15 -2000 ($ (-577) (-577))) (-15 -3337 ($ $ (-577))) (-15 -3352 ($ $ (-577))) (-15 -1343 ($ $ (-577))) (-15 -3337 ($ $)) (-15 -3352 ($ $)) (-15 -1343 ($ $)) (-15 -2069 ($ $ $)) (-15 -3126 ($ $ $)) (-15 -2069 ($ (-665 $))) (-15 -3126 ($ (-665 $))) (-15 -4192 ($ $ (-665 $))) (-15 -1390 ($ $ (-665 $))) (-15 -1390 ($ $ $ $)) (-15 -2271 ($ $ $)) (-15 -3094 ((-112) $)) (-15 -2916 ($ $ (-665 $))) (-15 -1378 ($ $)) (-15 -2624 ($ $ $)) (-15 -2907 ($ $)) (-15 -2374 ($ (-665 (-665 $)))) (-15 -3592 ($ $ $)) (-15 -2361 ($ $)) (-15 -2361 ($ $ $)) (-15 -1506 ($ $ $)) (-15 -2304 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -3628 ($ $ $)) (-15 -3641 ($ $ (-792))) (-15 -2990 ($ $ $)) (-15 -2126 ($ $ $)) (-15 -2828 ($ $ $)) (-15 -2254 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -4177 ($ $ (-665 $))) (-15 -3487 ($ $ (-665 $))) (-15 -1837 ($ $)) (-15 -4047 ($ $)) (-15 -4047 ($ $ (-792))) (-15 -2058 ($ $)) (-15 -2058 ($ $ (-792))) (-15 -1974 ($ $)) (-15 -2972 ($ $ $)) (-15 -3452 ($ $)) (-15 -3452 ($ $ $)) (-15 -3452 ($ $ $ $)) (-15 -3566 ($ $)) (-15 -3566 ($ $ $)) (-15 -3566 ($ $ $ $)) (-15 -2269 ($ $)) (-15 -2269 ($ $ $)) (-15 -2269 ($ $ $ $)) (-15 -3823 ($ $)) (-15 -3823 ($ (-665 $))) (-15 -4398 ($ $)) (-15 -4398 ($ (-665 $))) (-15 -2754 ($ $)) (-15 -2754 ($ (-665 $))) (-15 -3248 ($ (-665 $))) (-15 -3010 ($ (-665 $))) (-15 -4104 ($ (-665 $))) (-15 -2958 ($ (-665 $))) (-15 -3018 ($ $ $)) (-15 -3586 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3078 ($ $ $)) (-15 -3114 ($ $ $)) (-15 -3128 ($ $ $)) (-15 -3128 ($ $)) (-15 * ($ $ $)) (-15 -3139 ($ $ $)) (-15 ** ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3541 ($ $ $)) (-15 -3574 ($ $ $)) (-15 -2790 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -2779 ($ $)) (-15 -1915 ($ $ $)) (-15 -1915 ($ $))))) (T -885)) +((-4393 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-885)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-885)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-885)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-885)))) (-2833 (*1 *1) (-5 *1 (-885))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-2437 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-2553 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3285 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-1985 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-2000 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3337 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3337 (*1 *1 *1) (-5 *1 (-885))) (-3352 (*1 *1 *1) (-5 *1 (-885))) (-1343 (*1 *1 *1) (-5 *1 (-885))) (-2069 (*1 *1 *1 *1) (-5 *1 (-885))) (-3126 (*1 *1 *1 *1) (-5 *1 (-885))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3126 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1390 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1390 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-2271 (*1 *1 *1 *1) (-5 *1 (-885))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1378 (*1 *1 *1) (-5 *1 (-885))) (-2624 (*1 *1 *1 *1) (-5 *1 (-885))) (-2907 (*1 *1 *1) (-5 *1 (-885))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-885)))) (-3592 (*1 *1 *1 *1) (-5 *1 (-885))) (-2361 (*1 *1 *1) (-5 *1 (-885))) (-2361 (*1 *1 *1 *1) (-5 *1 (-885))) (-1506 (*1 *1 *1 *1) (-5 *1 (-885))) (-2304 (*1 *1 *1 *1) (-5 *1 (-885))) (-2904 (*1 *1 *1 *1) (-5 *1 (-885))) (-3628 (*1 *1 *1 *1) (-5 *1 (-885))) (-3641 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) (-2990 (*1 *1 *1 *1) (-5 *1 (-885))) (-2126 (*1 *1 *1 *1) (-5 *1 (-885))) (-2828 (*1 *1 *1 *1) (-5 *1 (-885))) (-2254 (*1 *1 *1 *1) (-5 *1 (-885))) (-3082 (*1 *1 *1 *1) (-5 *1 (-885))) (-4177 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3487 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1837 (*1 *1 *1) (-5 *1 (-885))) (-4047 (*1 *1 *1) (-5 *1 (-885))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) (-2058 (*1 *1 *1) (-5 *1 (-885))) (-2058 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) (-1974 (*1 *1 *1) (-5 *1 (-885))) (-2972 (*1 *1 *1 *1) (-5 *1 (-885))) (-3452 (*1 *1 *1) (-5 *1 (-885))) (-3452 (*1 *1 *1 *1) (-5 *1 (-885))) (-3452 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-3566 (*1 *1 *1) (-5 *1 (-885))) (-3566 (*1 *1 *1 *1) (-5 *1 (-885))) (-3566 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-2269 (*1 *1 *1) (-5 *1 (-885))) (-2269 (*1 *1 *1 *1) (-5 *1 (-885))) (-2269 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-3823 (*1 *1 *1) (-5 *1 (-885))) (-3823 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-4398 (*1 *1 *1) (-5 *1 (-885))) (-4398 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-2754 (*1 *1 *1) (-5 *1 (-885))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3248 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3010 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-4104 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3018 (*1 *1 *1 *1) (-5 *1 (-885))) (-3586 (*1 *1 *1 *1) (-5 *1 (-885))) (-3042 (*1 *1 *1 *1) (-5 *1 (-885))) (-3054 (*1 *1 *1 *1) (-5 *1 (-885))) (-3067 (*1 *1 *1 *1) (-5 *1 (-885))) (-3078 (*1 *1 *1 *1) (-5 *1 (-885))) (-3114 (*1 *1 *1 *1) (-5 *1 (-885))) (-3128 (*1 *1 *1 *1) (-5 *1 (-885))) (-3128 (*1 *1 *1) (-5 *1 (-885))) (* (*1 *1 *1 *1) (-5 *1 (-885))) (-3139 (*1 *1 *1 *1) (-5 *1 (-885))) (** (*1 *1 *1 *1) (-5 *1 (-885))) (-3563 (*1 *1 *1 *1) (-5 *1 (-885))) (-3531 (*1 *1 *1 *1) (-5 *1 (-885))) (-3541 (*1 *1 *1 *1) (-5 *1 (-885))) (-3574 (*1 *1 *1 *1) (-5 *1 (-885))) (-2790 (*1 *1 *1 *1) (-5 *1 (-885))) (-2802 (*1 *1 *1 *1) (-5 *1 (-885))) (-2779 (*1 *1 *1) (-5 *1 (-885))) (-1915 (*1 *1 *1 *1) (-5 *1 (-885))) (-1915 (*1 *1 *1) (-5 *1 (-885)))) +(-13 (-1130) (-10 -8 (-15 -4393 ((-1302) $)) (-15 -2926 ($ (-1188))) (-15 -3958 ((-1302) (-1188))) (-15 -2880 ($ (-577))) (-15 -2880 ($ (-1206))) (-15 -2880 ($ (-1188))) (-15 -2880 ($ (-228))) (-15 -2833 ($)) (-15 -2831 ((-1188) (-1188))) (-15 -2437 ((-577) $)) (-15 -2553 ((-577) $)) (-15 -2437 ((-577))) (-15 -2553 ((-577))) (-15 -1946 ((-577) $)) (-15 -3708 ((-577) $)) (-15 -3285 ($ (-577))) (-15 -1985 ($ (-577))) (-15 -2000 ($ (-577) (-577))) (-15 -3337 ($ $ (-577))) (-15 -3352 ($ $ (-577))) (-15 -1343 ($ $ (-577))) (-15 -3337 ($ $)) (-15 -3352 ($ $)) (-15 -1343 ($ $)) (-15 -2069 ($ $ $)) (-15 -3126 ($ $ $)) (-15 -2069 ($ (-665 $))) (-15 -3126 ($ (-665 $))) (-15 -4192 ($ $ (-665 $))) (-15 -1390 ($ $ (-665 $))) (-15 -1390 ($ $ $ $)) (-15 -2271 ($ $ $)) (-15 -3094 ((-112) $)) (-15 -2916 ($ $ (-665 $))) (-15 -1378 ($ $)) (-15 -2624 ($ $ $)) (-15 -2907 ($ $)) (-15 -2374 ($ (-665 (-665 $)))) (-15 -3592 ($ $ $)) (-15 -2361 ($ $)) (-15 -2361 ($ $ $)) (-15 -1506 ($ $ $)) (-15 -2304 ($ $ $)) (-15 -2904 ($ $ $)) (-15 -3628 ($ $ $)) (-15 -3641 ($ $ (-792))) (-15 -2990 ($ $ $)) (-15 -2126 ($ $ $)) (-15 -2828 ($ $ $)) (-15 -2254 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -4177 ($ $ (-665 $))) (-15 -3487 ($ $ (-665 $))) (-15 -1837 ($ $)) (-15 -4047 ($ $)) (-15 -4047 ($ $ (-792))) (-15 -2058 ($ $)) (-15 -2058 ($ $ (-792))) (-15 -1974 ($ $)) (-15 -2972 ($ $ $)) (-15 -3452 ($ $)) (-15 -3452 ($ $ $)) (-15 -3452 ($ $ $ $)) (-15 -3566 ($ $)) (-15 -3566 ($ $ $)) (-15 -3566 ($ $ $ $)) (-15 -2269 ($ $)) (-15 -2269 ($ $ $)) (-15 -2269 ($ $ $ $)) (-15 -3823 ($ $)) (-15 -3823 ($ (-665 $))) (-15 -4398 ($ $)) (-15 -4398 ($ (-665 $))) (-15 -2754 ($ $)) (-15 -2754 ($ (-665 $))) (-15 -3248 ($ (-665 $))) (-15 -3010 ($ (-665 $))) (-15 -4104 ($ (-665 $))) (-15 -2958 ($ (-665 $))) (-15 -3018 ($ $ $)) (-15 -3586 ($ $ $)) (-15 -3042 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3078 ($ $ $)) (-15 -3114 ($ $ $)) (-15 -3128 ($ $ $)) (-15 -3128 ($ $)) (-15 * ($ $ $)) (-15 -3139 ($ $ $)) (-15 ** ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3541 ($ $ $)) (-15 -3574 ($ $ $)) (-15 -2790 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -2779 ($ $)) (-15 -1915 ($ $ $)) (-15 -1915 ($ $)))) +((-4254 (((-1302) (-665 (-52))) 23 T ELT)) (-2656 (((-1302) (-1188) (-885)) 13 T ELT) (((-1302) (-885)) 8 T ELT) (((-1302) (-1188)) 10 T ELT))) +(((-886) (-10 -7 (-15 -2656 ((-1302) (-1188))) (-15 -2656 ((-1302) (-885))) (-15 -2656 ((-1302) (-1188) (-885))) (-15 -4254 ((-1302) (-665 (-52)))))) (T -886)) +((-4254 (*1 *2 *3) (-12 (-5 *3 (-665 (-52))) (-5 *2 (-1302)) (-5 *1 (-886)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-886))))) +(-10 -7 (-15 -2656 ((-1302) (-1188))) (-15 -2656 ((-1302) (-885))) (-15 -2656 ((-1302) (-1188) (-885))) (-15 -4254 ((-1302) (-665 (-52))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3341 (((-3 $ "failed") (-1206)) 36 T ELT)) (-3005 (((-792)) 32 T ELT)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) 29 T ELT)) (-3235 (((-1188) $) 43 T ELT)) (-3354 (($ (-949)) 28 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4463 (((-1206) $) 13 T ELT) (((-549) $) 19 T ELT) (((-916 (-391)) $) 26 T ELT) (((-916 (-577)) $) 22 T ELT)) (-3709 (((-885) $) 16 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 40 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 38 T ELT))) +(((-887 |#1|) (-13 (-865) (-632 (-1206)) (-632 (-549)) (-632 (-916 (-391))) (-632 (-916 (-577))) (-10 -8 (-15 -3341 ((-3 $ "failed") (-1206))))) (-665 (-1206))) (T -887)) +((-3341 (*1 *1 *2) (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-887 *3)) (-14 *3 (-665 *2))))) +(-13 (-865) (-632 (-1206)) (-632 (-549)) (-632 (-916 (-391))) (-632 (-916 (-577))) (-10 -8 (-15 -3341 ((-3 $ "failed") (-1206))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2758 (((-519) $) 9 T ELT)) (-2152 (((-665 (-452)) $) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 21 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 16 T ELT))) +(((-888) (-13 (-1130) (-10 -8 (-15 -2758 ((-519) $)) (-15 -2152 ((-665 (-452)) $))))) (T -888)) +((-2758 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-888)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-665 (-452))) (-5 *1 (-888))))) +(-13 (-1130) (-10 -8 (-15 -2758 ((-519) $)) (-15 -2152 ((-665 (-452)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-980 |#1|)) NIL T ELT) (((-980 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT)) (-3331 (((-792)) NIL T CONST)) (-4308 (((-1302) (-792)) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) +(((-889 |#1| |#2| |#3| |#4|) (-13 (-1079) (-503 (-980 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3139 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4308 ((-1302) (-792))))) (-1079) (-665 (-1206)) (-665 (-792)) (-792)) (T -889)) +((-3139 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-889 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-792))) (-14 *5 (-792)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-889 *4 *5 *6 *7)) (-4 *4 (-1079)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 *3)) (-14 *7 *3)))) +(-13 (-1079) (-503 (-980 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3139 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4308 ((-1302) (-792))))) +((-1510 (((-3 (-176 |#3|) "failed") (-792) (-792) |#2| |#2|) 38 T ELT)) (-2255 (((-3 (-420 |#3|) "failed") (-792) (-792) |#2| |#2|) 29 T ELT))) +(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -2255 ((-3 (-420 |#3|) "failed") (-792) (-792) |#2| |#2|)) (-15 -1510 ((-3 (-176 |#3|) "failed") (-792) (-792) |#2| |#2|))) (-375) (-1288 |#1|) (-1273 |#1|)) (T -890)) +((-1510 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-176 *6)) (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5)))) (-2255 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-420 *6)) (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5))))) +(-10 -7 (-15 -2255 ((-3 (-420 |#3|) "failed") (-792) (-792) |#2| |#2|)) (-15 -1510 ((-3 (-176 |#3|) "failed") (-792) (-792) |#2| |#2|))) +((-2255 (((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) 28 T ELT))) +(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -2255 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (-15 -2255 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|)))) (-375) (-1206) |#1|) (T -891)) +((-2255 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) (-5 *1 (-891 *5 *6 *7)))) (-2255 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) (-5 *1 (-891 *5 *6 *7))))) +(-10 -7 (-15 -2255 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (-15 -2255 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3770 (($ $ (-577)) 68 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2305 (($) 18 T CONST)) (-2361 (($ (-1202 (-577)) (-577)) 67 T ELT)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2312 (($ $) 70 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-4030 (((-792) $) 75 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3351 (((-577)) 72 T ELT)) (-1938 (((-577) $) 71 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2568 (($ $ (-577)) 74 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3046 (((-1187 (-577)) $) 76 T ELT)) (-4165 (($ $) 73 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-4215 (((-577) $ (-577)) 69 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-892 |#1|) (-141) (-577)) (T -892)) +((-3046 (*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-1187 (-577))))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-792)))) (-2568 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-4165 (*1 *1 *1) (-4 *1 (-892 *2))) (-3351 (*1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-2312 (*1 *1 *1) (-4 *1 (-892 *2))) (-4215 (*1 *2 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-2361 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *3 (-577)) (-4 *1 (-892 *4))))) +(-13 (-318) (-148) (-10 -8 (-15 -3046 ((-1187 (-577)) $)) (-15 -4030 ((-792) $)) (-15 -2568 ($ $ (-577))) (-15 -4165 ($ $)) (-15 -3351 ((-577))) (-15 -1938 ((-577) $)) (-15 -2312 ($ $)) (-15 -4215 ((-577) $ (-577))) (-15 -3770 ($ $ (-577))) (-15 -2361 ($ (-1202 (-577)) (-577))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $ (-577)) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2361 (($ (-1202 (-577)) (-577)) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2312 (($ $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-4030 (((-792) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3351 (((-577)) NIL T ELT)) (-1938 (((-577) $) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2568 (($ $ (-577)) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3046 (((-1187 (-577)) $) NIL T ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4215 (((-577) $ (-577)) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-893 |#1|) (-892 |#1|) (-577)) (T -893)) +NIL +(-892 |#1|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-893 |#1|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-893 |#1|) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT)) (-3783 (((-893 |#1|) $) NIL T ELT) (((-1206) $) NIL (|has| (-893 |#1|) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT)) (-3258 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-893 |#1|)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-893 |#1|) (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-893 |#1|) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-893 |#1|) (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 (((-893 |#1|) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-893 |#1|) (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-4417 (($ (-1 (-893 |#1|) (-893 |#1|)) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-1297 $) $) NIL T ELT) (((-710 (-893 |#1|)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-893 |#1|) (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| (-893 |#1|) (-318)) ELT)) (-3941 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 (-893 |#1|)) (-665 (-893 |#1|))) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-893 |#1|) (-893 |#1|)) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-305 (-893 |#1|))) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-665 (-305 (-893 |#1|)))) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-665 (-1206)) (-665 (-893 |#1|))) NIL (|has| (-893 |#1|) (-527 (-1206) (-893 |#1|))) ELT) (($ $ (-1206) (-893 |#1|)) NIL (|has| (-893 |#1|) (-527 (-1206) (-893 |#1|))) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ (-893 |#1|)) NIL (|has| (-893 |#1|) (-297 (-893 |#1|) (-893 |#1|))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-893 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-893 |#1|) (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 (((-893 |#1|) $) NIL T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| (-893 |#1|) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-893 |#1|) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-893 |#1|) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-893 |#1|) (-1052)) ELT) (((-228) $) NIL (|has| (-893 |#1|) (-1052)) ELT)) (-2979 (((-176 (-420 (-577))) $) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-893 |#1|) (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-893 |#1|)) NIL T ELT) (($ (-1206)) NIL (|has| (-893 |#1|) (-1068 (-1206))) ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-893 |#1|) (-937))) (|has| (-893 |#1|) (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4215 (((-420 (-577)) $ (-577)) NIL T ELT)) (-2215 (($ $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-893 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-893 |#1|) (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-893 |#1|) (-893 |#1|)) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-893 |#1|) $) NIL T ELT) (($ $ (-893 |#1|)) NIL T ELT))) +(((-894 |#1|) (-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -4215 ((-420 (-577)) $ (-577))) (-15 -2979 ((-176 (-420 (-577))) $)) (-15 -3258 ($ $)) (-15 -3258 ($ (-577) $)))) (-577)) (T -894)) +((-4215 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-894 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-894 *3)) (-14 *3 (-577)))) (-3258 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-14 *2 (-577)))) (-3258 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-894 *3)) (-14 *3 *2)))) +(-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -4215 ((-420 (-577)) $ (-577))) (-15 -2979 ((-176 (-420 (-577))) $)) (-15 -3258 ($ $)) (-15 -3258 ($ (-577) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 ((|#2| $) NIL (|has| |#2| (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| |#2| (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| |#2| (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT)) (-3783 ((|#2| $) NIL T ELT) (((-1206) $) NIL (|has| |#2| (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT)) (-3258 (($ $) 35 T ELT) (($ (-577) $) 38 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) 64 T ELT)) (-1424 (($) NIL (|has| |#2| (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) NIL (|has| |#2| (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| |#2| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| |#2| (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 ((|#2| $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| |#2| (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 60 T ELT)) (-2443 (($) NIL (|has| |#2| (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| |#2| (-318)) ELT)) (-3941 ((|#2| $) NIL (|has| |#2| (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 |#2|) (-665 |#2|)) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-665 (-305 |#2|))) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-665 (-1206)) (-665 |#2|)) NIL (|has| |#2| (-527 (-1206) |#2|)) ELT) (($ $ (-1206) |#2|) NIL (|has| |#2| (-527 (-1206) |#2|)) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-297 |#2| |#2|)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 ((|#2| $) NIL T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| |#2| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#2| (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| |#2| (-632 (-549))) ELT) (((-391) $) NIL (|has| |#2| (-1052)) ELT) (((-228) $) NIL (|has| |#2| (-1052)) ELT)) (-2979 (((-176 (-420 (-577))) $) 78 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-3709 (((-885) $) 106 T ELT) (($ (-577)) 20 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1206)) NIL (|has| |#2| (-1068 (-1206))) ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2431 ((|#2| $) NIL (|has| |#2| (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4215 (((-420 (-577)) $ (-577)) 71 T ELT)) (-2215 (($ $) NIL (|has| |#2| (-841)) ELT)) (-2839 (($) 15 T CONST)) (-2853 (($) 17 T CONST)) (-2389 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3018 (((-112) $ $) 46 T ELT)) (-3067 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-3139 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3128 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3114 (($ $ $) 48 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 61 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-895 |#1| |#2|) (-13 (-1022 |#2|) (-10 -8 (-15 -4215 ((-420 (-577)) $ (-577))) (-15 -2979 ((-176 (-420 (-577))) $)) (-15 -3258 ($ $)) (-15 -3258 ($ (-577) $)))) (-577) (-892 |#1|)) (T -895)) +((-4215 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-895 *4 *5)) (-5 *3 (-577)) (-4 *5 (-892 *4)))) (-2979 (*1 *2 *1) (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-895 *3 *4)) (-4 *4 (-892 *3)))) (-3258 (*1 *1 *1) (-12 (-14 *2 (-577)) (-5 *1 (-895 *2 *3)) (-4 *3 (-892 *2)))) (-3258 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-895 *3 *4)) (-4 *4 (-892 *3))))) +(-13 (-1022 |#2|) (-10 -8 (-15 -4215 ((-420 (-577)) $ (-577))) (-15 -2979 ((-176 (-420 (-577))) $)) (-15 -3258 ($ $)) (-15 -3258 ($ (-577) $)))) +((-3586 (((-112) $ $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-1883 ((|#2| $) 12 T ELT)) (-3387 (($ |#1| |#2|) 9 T ELT)) (-3235 (((-1188) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-1470 (((-1150) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#1| $) 11 T ELT)) (-3722 (($ |#1| |#2|) 10 T ELT)) (-3709 (((-885) $) 18 (-2867 (-12 (|has| |#1| (-631 (-885))) (|has| |#2| (-631 (-885)))) (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130)))) ELT)) (-2643 (((-112) $ $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-3018 (((-112) $ $) 23 (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT))) +(((-896 |#1| |#2|) (-13 (-1247) (-10 -8 (IF (|has| |#1| (-631 (-885))) (IF (|has| |#2| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1130)) (IF (|has| |#2| (-1130)) (-6 (-1130)) |%noBranch|) |%noBranch|) (-15 -3387 ($ |#1| |#2|)) (-15 -3722 ($ |#1| |#2|)) (-15 -4397 (|#1| $)) (-15 -1883 (|#2| $)))) (-1247) (-1247)) (T -896)) +((-3387 (*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-3722 (*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-4397 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1247)))) (-1883 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (IF (|has| |#1| (-631 (-885))) (IF (|has| |#2| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1130)) (IF (|has| |#2| (-1130)) (-6 (-1130)) |%noBranch|) |%noBranch|) (-15 -3387 ($ |#1| |#2|)) (-15 -3722 ($ |#1| |#2|)) (-15 -4397 (|#1| $)) (-15 -1883 (|#2| $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4183 (((-577) $) 16 T ELT)) (-4304 (($ (-158)) 13 T ELT)) (-1891 (($ (-158)) 14 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3807 (((-158) $) 15 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3651 (($ (-158)) 11 T ELT)) (-4194 (($ (-158)) 10 T ELT)) (-3709 (((-885) $) 24 T ELT) (($ (-158)) 17 T ELT)) (-3348 (($ (-158)) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-897) (-13 (-1130) (-10 -8 (-15 -4194 ($ (-158))) (-15 -3651 ($ (-158))) (-15 -3348 ($ (-158))) (-15 -4304 ($ (-158))) (-15 -1891 ($ (-158))) (-15 -3807 ((-158) $)) (-15 -4183 ((-577) $)) (-15 -3709 ($ (-158)))))) (T -897)) +((-4194 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-4304 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-1891 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-897)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) +(-13 (-1130) (-10 -8 (-15 -4194 ($ (-158))) (-15 -3651 ($ (-158))) (-15 -3348 ($ (-158))) (-15 -4304 ($ (-158))) (-15 -1891 ($ (-158))) (-15 -3807 ((-158) $)) (-15 -4183 ((-577) $)) (-15 -3709 ($ (-158))))) +((-3709 (((-327 (-577)) (-420 (-980 (-48)))) 23 T ELT) (((-327 (-577)) (-980 (-48))) 18 T ELT))) +(((-898) (-10 -7 (-15 -3709 ((-327 (-577)) (-980 (-48)))) (-15 -3709 ((-327 (-577)) (-420 (-980 (-48))))))) (T -898)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 (-48)))) (-5 *2 (-327 (-577))) (-5 *1 (-898)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-980 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-898))))) +(-10 -7 (-15 -3709 ((-327 (-577)) (-980 (-48)))) (-15 -3709 ((-327 (-577)) (-420 (-980 (-48)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 18 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2827 (((-112) $ (|[\|\|]| (-519))) 9 T ELT) (((-112) $ (|[\|\|]| (-1188))) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2035 (((-519) $) 10 T ELT) (((-1188) $) 14 T ELT)) (-3018 (((-112) $ $) 15 T ELT))) +(((-899) (-13 (-1113) (-1292) (-10 -8 (-15 -2827 ((-112) $ (|[\|\|]| (-519)))) (-15 -2035 ((-519) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1188)))) (-15 -2035 ((-1188) $))))) (T -899)) +((-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-899)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-899)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-899)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-899))))) +(-13 (-1113) (-1292) (-10 -8 (-15 -2827 ((-112) $ (|[\|\|]| (-519)))) (-15 -2035 ((-519) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1188)))) (-15 -2035 ((-1188) $)))) +((-4417 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 15 T ELT))) +(((-900 |#1| |#2|) (-10 -7 (-15 -4417 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1247) (-1247)) (T -900)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))) +(-10 -7 (-15 -4417 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) +((-3889 (($ |#1| |#1|) 8 T ELT)) (-4200 ((|#1| $ (-792)) 15 T ELT))) +(((-901 |#1|) (-10 -8 (-15 -3889 ($ |#1| |#1|)) (-15 -4200 (|#1| $ (-792)))) (-1247)) (T -901)) +((-4200 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-901 *2)) (-4 *2 (-1247)))) (-3889 (*1 *1 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1247))))) +(-10 -8 (-15 -3889 ($ |#1| |#1|)) (-15 -4200 (|#1| $ (-792)))) +((-4417 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 15 T ELT))) +(((-902 |#1| |#2|) (-10 -7 (-15 -4417 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1247) (-1247)) (T -902)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) +(-10 -7 (-15 -4417 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) +((-3889 (($ |#1| |#1| |#1|) 8 T ELT)) (-4200 ((|#1| $ (-792)) 15 T ELT))) +(((-903 |#1|) (-10 -8 (-15 -3889 ($ |#1| |#1| |#1|)) (-15 -4200 (|#1| $ (-792)))) (-1247)) (T -903)) +((-4200 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-903 *2)) (-4 *2 (-1247)))) (-3889 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1247))))) +(-10 -8 (-15 -3889 ($ |#1| |#1| |#1|)) (-15 -4200 (|#1| $ (-792)))) +((-1539 (((-665 (-1211)) (-1188)) 9 T ELT))) +(((-904) (-10 -7 (-15 -1539 ((-665 (-1211)) (-1188))))) (T -904)) +((-1539 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-904))))) +(-10 -7 (-15 -1539 ((-665 (-1211)) (-1188)))) +((-4417 (((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)) 15 T ELT))) +(((-905 |#1| |#2|) (-10 -7 (-15 -4417 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) (-1247) (-1247)) (T -905)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6))))) +(-10 -7 (-15 -4417 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) +((-2327 (($ |#1| |#1| |#1|) 8 T ELT)) (-4200 ((|#1| $ (-792)) 15 T ELT))) +(((-906 |#1|) (-10 -8 (-15 -2327 ($ |#1| |#1| |#1|)) (-15 -4200 (|#1| $ (-792)))) (-1247)) (T -906)) +((-4200 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-906 *2)) (-4 *2 (-1247)))) (-2327 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1247))))) +(-10 -8 (-15 -2327 ($ |#1| |#1| |#1|)) (-15 -4200 (|#1| $ (-792)))) +((-3432 (((-1187 (-665 (-577))) (-665 (-577)) (-1187 (-665 (-577)))) 41 T ELT)) (-1872 (((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577))) 31 T ELT)) (-3290 (((-1187 (-665 (-577))) (-665 (-577))) 53 T ELT) (((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577))) 50 T ELT)) (-1833 (((-1187 (-665 (-577))) (-577)) 55 T ELT)) (-3874 (((-1187 (-665 (-949))) (-1187 (-665 (-949)))) 22 T ELT)) (-4247 (((-665 (-949)) (-665 (-949))) 18 T ELT))) +(((-907) (-10 -7 (-15 -4247 ((-665 (-949)) (-665 (-949)))) (-15 -3874 ((-1187 (-665 (-949))) (-1187 (-665 (-949))))) (-15 -1872 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -3432 ((-1187 (-665 (-577))) (-665 (-577)) (-1187 (-665 (-577))))) (-15 -3290 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -3290 ((-1187 (-665 (-577))) (-665 (-577)))) (-15 -1833 ((-1187 (-665 (-577))) (-577))))) (T -907)) +((-1833 (*1 *2 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-577)))) (-3290 (*1 *2 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-665 (-577))))) (-3290 (*1 *2 *3 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-665 (-577))))) (-3432 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *3 (-665 (-577))) (-5 *1 (-907)))) (-1872 (*1 *2 *3 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-665 (-577))))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-1187 (-665 (-949)))) (-5 *1 (-907)))) (-4247 (*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-907))))) +(-10 -7 (-15 -4247 ((-665 (-949)) (-665 (-949)))) (-15 -3874 ((-1187 (-665 (-949))) (-1187 (-665 (-949))))) (-15 -1872 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -3432 ((-1187 (-665 (-577))) (-665 (-577)) (-1187 (-665 (-577))))) (-15 -3290 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -3290 ((-1187 (-665 (-577))) (-665 (-577)))) (-15 -1833 ((-1187 (-665 (-577))) (-577)))) +((-4463 (((-916 (-391)) $) 9 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-916 (-577)) $) 8 (|has| |#1| (-632 (-916 (-577)))) ELT))) +(((-908 |#1|) (-141) (-1247)) (T -908)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-632 (-916 (-577)))) (-6 (-632 (-916 (-577)))) |%noBranch|) (IF (|has| |t#1| (-632 (-916 (-391)))) (-6 (-632 (-916 (-391)))) |%noBranch|))) +(((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3236 (($) 14 T ELT)) (-1495 (($ (-913 |#1| |#2|) (-913 |#1| |#3|)) 28 T ELT)) (-1718 (((-913 |#1| |#3|) $) 16 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3134 (((-112) $) 22 T ELT)) (-4262 (($) 19 T ELT)) (-3709 (((-885) $) 31 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2413 (((-913 |#1| |#2|) $) 15 T ELT)) (-3018 (((-112) $ $) 26 T ELT))) +(((-909 |#1| |#2| |#3|) (-13 (-1130) (-10 -8 (-15 -3134 ((-112) $)) (-15 -4262 ($)) (-15 -3236 ($)) (-15 -1495 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -2413 ((-913 |#1| |#2|) $)) (-15 -1718 ((-913 |#1| |#3|) $)))) (-1130) (-1130) (-687 |#2|)) (T -909)) +((-3134 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1130)) (-4 *5 (-687 *4)))) (-4262 (*1 *1) (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) (-4 *4 (-687 *3)))) (-3236 (*1 *1) (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) (-4 *4 (-687 *3)))) (-1495 (*1 *1 *2 *3) (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-687 *5)) (-5 *1 (-909 *4 *5 *6)))) (-2413 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *4)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1130)) (-4 *5 (-687 *4)))) (-1718 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *5)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1130)) (-4 *5 (-687 *4))))) +(-13 (-1130) (-10 -8 (-15 -3134 ((-112) $)) (-15 -4262 ($)) (-15 -3236 ($)) (-15 -1495 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -2413 ((-913 |#1| |#2|) $)) (-15 -1718 ((-913 |#1| |#3|) $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-2425 (((-913 |#1| $) $ (-916 |#1|) (-913 |#1| $)) 14 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-910 |#1|) (-141) (-1130)) (T -910)) +((-2425 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-916 *4)) (-4 *1 (-910 *4)) (-4 *4 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -2425 ((-913 |t#1| $) $ (-916 |t#1|) (-913 |t#1| $))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-4241 (((-112) (-665 |#2|) |#3|) 23 T ELT) (((-112) |#2| |#3|) 18 T ELT)) (-3035 (((-913 |#1| |#2|) |#2| |#3|) 45 (-12 (-2779 (|has| |#2| (-1068 (-1206)))) (-2779 (|has| |#2| (-1079)))) ELT) (((-665 (-305 (-980 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1079)) (-2779 (|has| |#2| (-1068 (-1206))))) ELT) (((-665 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1068 (-1206))) ELT) (((-909 |#1| |#2| (-665 |#2|)) (-665 |#2|) |#3|) 21 T ELT))) +(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -4241 ((-112) |#2| |#3|)) (-15 -4241 ((-112) (-665 |#2|) |#3|)) (-15 -3035 ((-909 |#1| |#2| (-665 |#2|)) (-665 |#2|) |#3|)) (IF (|has| |#2| (-1068 (-1206))) (-15 -3035 ((-665 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1079)) (-15 -3035 ((-665 (-305 (-980 |#2|))) |#2| |#3|)) (-15 -3035 ((-913 |#1| |#2|) |#2| |#3|))))) (-1130) (-910 |#1|) (-632 (-916 |#1|))) (T -911)) +((-3035 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-913 *5 *3)) (-5 *1 (-911 *5 *3 *4)) (-2779 (-4 *3 (-1068 (-1206)))) (-2779 (-4 *3 (-1079))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 (-980 *3)))) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1079)) (-2779 (-4 *3 (-1068 (-1206)))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 *3))) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1068 (-1206))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *6 (-910 *5)) (-5 *2 (-909 *5 *6 (-665 *6))) (-5 *1 (-911 *5 *6 *4)) (-5 *3 (-665 *6)) (-4 *4 (-632 (-916 *5))))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-4 *6 (-910 *5)) (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-911 *5 *6 *4)) (-4 *4 (-632 (-916 *5))))) (-4241 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5)))))) +(-10 -7 (-15 -4241 ((-112) |#2| |#3|)) (-15 -4241 ((-112) (-665 |#2|) |#3|)) (-15 -3035 ((-909 |#1| |#2| (-665 |#2|)) (-665 |#2|) |#3|)) (IF (|has| |#2| (-1068 (-1206))) (-15 -3035 ((-665 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1079)) (-15 -3035 ((-665 (-305 (-980 |#2|))) |#2| |#3|)) (-15 -3035 ((-913 |#1| |#2|) |#2| |#3|))))) +((-4417 (((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)) 22 T ELT))) +(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -4417 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)))) (-1130) (-1130) (-1130)) (T -912)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-913 *5 *7)) (-5 *1 (-912 *5 *6 *7))))) +(-10 -7 (-15 -4417 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1931 (($ $ $) 40 T ELT)) (-3962 (((-3 (-112) "failed") $ (-916 |#1|)) 37 T ELT)) (-3236 (($) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2116 (($ (-916 |#1|) |#2| $) 20 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3377 (((-3 |#2| "failed") (-916 |#1|) $) 51 T ELT)) (-3134 (((-112) $) 15 T ELT)) (-4262 (($) 13 T ELT)) (-3833 (((-665 (-2 (|:| -4376 (-1206)) (|:| -2727 |#2|))) $) 25 T ELT)) (-3722 (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 |#2|)))) 23 T ELT)) (-3709 (((-885) $) 45 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2080 (($ (-916 |#1|) |#2| $ |#2|) 49 T ELT)) (-1549 (($ (-916 |#1|) |#2| $) 48 T ELT)) (-3018 (((-112) $ $) 42 T ELT))) +(((-913 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3134 ((-112) $)) (-15 -4262 ($)) (-15 -3236 ($)) (-15 -1931 ($ $ $)) (-15 -3377 ((-3 |#2| "failed") (-916 |#1|) $)) (-15 -1549 ($ (-916 |#1|) |#2| $)) (-15 -2116 ($ (-916 |#1|) |#2| $)) (-15 -2080 ($ (-916 |#1|) |#2| $ |#2|)) (-15 -3833 ((-665 (-2 (|:| -4376 (-1206)) (|:| -2727 |#2|))) $)) (-15 -3722 ($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 |#2|))))) (-15 -3962 ((-3 (-112) "failed") $ (-916 |#1|))))) (-1130) (-1130)) (T -913)) +((-3134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-4262 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3236 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-1931 (*1 *1 *1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3377 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) (-5 *1 (-913 *4 *2)))) (-1549 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1130)))) (-2116 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1130)))) (-2080 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1130)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 *4)))) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 *4)))) (-4 *4 (-1130)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)))) (-3962 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3134 ((-112) $)) (-15 -4262 ($)) (-15 -3236 ($)) (-15 -1931 ($ $ $)) (-15 -3377 ((-3 |#2| "failed") (-916 |#1|) $)) (-15 -1549 ($ (-916 |#1|) |#2| $)) (-15 -2116 ($ (-916 |#1|) |#2| $)) (-15 -2080 ($ (-916 |#1|) |#2| $ |#2|)) (-15 -3833 ((-665 (-2 (|:| -4376 (-1206)) (|:| -2727 |#2|))) $)) (-15 -3722 ($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 |#2|))))) (-15 -3962 ((-3 (-112) "failed") $ (-916 |#1|))))) +((-1856 (((-916 |#1|) (-916 |#1|) (-665 (-1206)) (-1 (-112) (-665 |#2|))) 32 T ELT) (((-916 |#1|) (-916 |#1|) (-665 (-1 (-112) |#2|))) 46 T ELT) (((-916 |#1|) (-916 |#1|) (-1 (-112) |#2|)) 35 T ELT)) (-3962 (((-112) (-665 |#2|) (-916 |#1|)) 42 T ELT) (((-112) |#2| (-916 |#1|)) 36 T ELT)) (-2994 (((-1 (-112) |#2|) (-916 |#1|)) 16 T ELT)) (-3707 (((-665 |#2|) (-916 |#1|)) 24 T ELT)) (-2869 (((-916 |#1|) (-916 |#1|) |#2|) 20 T ELT))) +(((-914 |#1| |#2|) (-10 -7 (-15 -1856 ((-916 |#1|) (-916 |#1|) (-1 (-112) |#2|))) (-15 -1856 ((-916 |#1|) (-916 |#1|) (-665 (-1 (-112) |#2|)))) (-15 -1856 ((-916 |#1|) (-916 |#1|) (-665 (-1206)) (-1 (-112) (-665 |#2|)))) (-15 -2994 ((-1 (-112) |#2|) (-916 |#1|))) (-15 -3962 ((-112) |#2| (-916 |#1|))) (-15 -3962 ((-112) (-665 |#2|) (-916 |#1|))) (-15 -2869 ((-916 |#1|) (-916 |#1|) |#2|)) (-15 -3707 ((-665 |#2|) (-916 |#1|)))) (-1130) (-1247)) (T -914)) +((-3707 (*1 *2 *3) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-665 *5)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1247)))) (-2869 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1247)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *2 (-112)) (-5 *1 (-914 *5 *6)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-914 *5 *3)) (-4 *3 (-1247)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1247)))) (-1856 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-916 *5)) (-5 *3 (-665 (-1206))) (-5 *4 (-1 (-112) (-665 *6))) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *1 (-914 *5 *6)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-5 *3 (-665 (-1 (-112) *5))) (-4 *4 (-1130)) (-4 *5 (-1247)) (-5 *1 (-914 *4 *5)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1130)) (-4 *5 (-1247)) (-5 *1 (-914 *4 *5))))) +(-10 -7 (-15 -1856 ((-916 |#1|) (-916 |#1|) (-1 (-112) |#2|))) (-15 -1856 ((-916 |#1|) (-916 |#1|) (-665 (-1 (-112) |#2|)))) (-15 -1856 ((-916 |#1|) (-916 |#1|) (-665 (-1206)) (-1 (-112) (-665 |#2|)))) (-15 -2994 ((-1 (-112) |#2|) (-916 |#1|))) (-15 -3962 ((-112) |#2| (-916 |#1|))) (-15 -3962 ((-112) (-665 |#2|) (-916 |#1|))) (-15 -2869 ((-916 |#1|) (-916 |#1|) |#2|)) (-15 -3707 ((-665 |#2|) (-916 |#1|)))) +((-4417 (((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)) 19 T ELT))) +(((-915 |#1| |#2|) (-10 -7 (-15 -4417 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) (-1130) (-1130)) (T -915)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-916 *6)) (-5 *1 (-915 *5 *6))))) +(-10 -7 (-15 -4417 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4138 (($ $ (-665 (-52))) 74 T ELT)) (-3891 (((-665 $) $) 139 T ELT)) (-2582 (((-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52))) $) 30 T ELT)) (-1457 (((-112) $) 35 T ELT)) (-2286 (($ $ (-665 (-1206)) (-52)) 31 T ELT)) (-3265 (($ $ (-665 (-52))) 73 T ELT)) (-4335 (((-3 |#1| "failed") $) 71 T ELT) (((-3 (-1206) "failed") $) 164 T ELT)) (-3783 ((|#1| $) 68 T ELT) (((-1206) $) NIL T ELT)) (-1998 (($ $) 126 T ELT)) (-4222 (((-112) $) 55 T ELT)) (-2515 (((-665 (-52)) $) 50 T ELT)) (-2297 (($ (-1206) (-112) (-112) (-112)) 75 T ELT)) (-3665 (((-3 (-665 $) "failed") (-665 $)) 82 T ELT)) (-3536 (((-112) $) 58 T ELT)) (-4246 (((-112) $) 57 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) 41 T ELT)) (-2507 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-2646 (((-3 (-2 (|:| |val| $) (|:| -2328 $)) "failed") $) 97 T ELT)) (-1796 (((-3 (-665 $) "failed") $) 40 T ELT)) (-4475 (((-3 (-665 $) "failed") $ (-115)) 124 T ELT) (((-3 (-2 (|:| -1868 (-115)) (|:| |arg| (-665 $))) "failed") $) 107 T ELT)) (-4196 (((-3 (-665 $) "failed") $) 42 T ELT)) (-2547 (((-3 (-2 (|:| |val| $) (|:| -2328 (-792))) "failed") $) 45 T ELT)) (-3335 (((-112) $) 34 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4363 (((-112) $) 28 T ELT)) (-4057 (((-112) $) 52 T ELT)) (-3725 (((-665 (-52)) $) 130 T ELT)) (-2369 (((-112) $) 56 T ELT)) (-2916 (($ (-115) (-665 $)) 104 T ELT)) (-2105 (((-792) $) 33 T ELT)) (-1977 (($ $) 72 T ELT)) (-4463 (($ (-665 $)) 69 T ELT)) (-2456 (((-112) $) 32 T ELT)) (-3709 (((-885) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1206)) 76 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2869 (($ $ (-52)) 129 T ELT)) (-2839 (($) 103 T CONST)) (-2853 (($) 83 T CONST)) (-3018 (((-112) $ $) 93 T ELT)) (-3139 (($ $ $) 117 T ELT)) (-3114 (($ $ $) 121 T ELT)) (** (($ $ (-792)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-916 |#1|) (-13 (-1130) (-1068 |#1|) (-1068 (-1206)) (-10 -8 (-15 0 ($) -4212) (-15 1 ($) -4212) (-15 -1796 ((-3 (-665 $) "failed") $)) (-15 -1426 ((-3 (-665 $) "failed") $)) (-15 -4475 ((-3 (-665 $) "failed") $ (-115))) (-15 -4475 ((-3 (-2 (|:| -1868 (-115)) (|:| |arg| (-665 $))) "failed") $)) (-15 -2547 ((-3 (-2 (|:| |val| $) (|:| -2328 (-792))) "failed") $)) (-15 -2507 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4196 ((-3 (-665 $) "failed") $)) (-15 -2646 ((-3 (-2 (|:| |val| $) (|:| -2328 $)) "failed") $)) (-15 -2916 ($ (-115) (-665 $))) (-15 -3114 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ $)) (-15 -3139 ($ $ $)) (-15 -2105 ((-792) $)) (-15 -4463 ($ (-665 $))) (-15 -1977 ($ $)) (-15 -3335 ((-112) $)) (-15 -4222 ((-112) $)) (-15 -1457 ((-112) $)) (-15 -2456 ((-112) $)) (-15 -2369 ((-112) $)) (-15 -4246 ((-112) $)) (-15 -3536 ((-112) $)) (-15 -4057 ((-112) $)) (-15 -2515 ((-665 (-52)) $)) (-15 -3265 ($ $ (-665 (-52)))) (-15 -4138 ($ $ (-665 (-52)))) (-15 -2297 ($ (-1206) (-112) (-112) (-112))) (-15 -2286 ($ $ (-665 (-1206)) (-52))) (-15 -2582 ((-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52))) $)) (-15 -4363 ((-112) $)) (-15 -1998 ($ $)) (-15 -2869 ($ $ (-52))) (-15 -3725 ((-665 (-52)) $)) (-15 -3891 ((-665 $) $)) (-15 -3665 ((-3 (-665 $) "failed") (-665 $))))) (-1130)) (T -916)) +((-2839 (*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-2853 (*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-1796 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1426 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4475 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-916 *4))) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-4475 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1868 (-115)) (|:| |arg| (-665 (-916 *3))))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2547 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2328 (-792)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2507 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-916 *3)) (|:| |den| (-916 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4196 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2328 (-916 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 (-916 *4))) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-3114 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-3139 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-2105 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-3335 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3265 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2297 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-112)) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-52)) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1998 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3665 (*1 *2 *2) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(-13 (-1130) (-1068 |#1|) (-1068 (-1206)) (-10 -8 (-15 (-2839) ($) -4212) (-15 (-2853) ($) -4212) (-15 -1796 ((-3 (-665 $) "failed") $)) (-15 -1426 ((-3 (-665 $) "failed") $)) (-15 -4475 ((-3 (-665 $) "failed") $ (-115))) (-15 -4475 ((-3 (-2 (|:| -1868 (-115)) (|:| |arg| (-665 $))) "failed") $)) (-15 -2547 ((-3 (-2 (|:| |val| $) (|:| -2328 (-792))) "failed") $)) (-15 -2507 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4196 ((-3 (-665 $) "failed") $)) (-15 -2646 ((-3 (-2 (|:| |val| $) (|:| -2328 $)) "failed") $)) (-15 -2916 ($ (-115) (-665 $))) (-15 -3114 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ $)) (-15 -3139 ($ $ $)) (-15 -2105 ((-792) $)) (-15 -4463 ($ (-665 $))) (-15 -1977 ($ $)) (-15 -3335 ((-112) $)) (-15 -4222 ((-112) $)) (-15 -1457 ((-112) $)) (-15 -2456 ((-112) $)) (-15 -2369 ((-112) $)) (-15 -4246 ((-112) $)) (-15 -3536 ((-112) $)) (-15 -4057 ((-112) $)) (-15 -2515 ((-665 (-52)) $)) (-15 -3265 ($ $ (-665 (-52)))) (-15 -4138 ($ $ (-665 (-52)))) (-15 -2297 ($ (-1206) (-112) (-112) (-112))) (-15 -2286 ($ $ (-665 (-1206)) (-52))) (-15 -2582 ((-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52))) $)) (-15 -4363 ((-112) $)) (-15 -1998 ($ $)) (-15 -2869 ($ $ (-52))) (-15 -3725 ((-665 (-52)) $)) (-15 -3891 ((-665 $) $)) (-15 -3665 ((-3 (-665 $) "failed") (-665 $))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4294 (((-665 |#1|) $) 19 T ELT)) (-1887 (((-112) $) 49 T ELT)) (-4335 (((-3 (-693 |#1|) "failed") $) 56 T ELT)) (-3783 (((-693 |#1|) $) 54 T ELT)) (-4410 (($ $) 23 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4166 (((-792) $) 61 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-693 |#1|) $) 21 T ELT)) (-3709 (((-885) $) 47 T ELT) (($ (-693 |#1|)) 26 T ELT) (((-840 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 9 T CONST)) (-2535 (((-665 (-693 |#1|)) $) 28 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 12 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 67 T ELT))) +(((-917 |#1|) (-13 (-870) (-1068 (-693 |#1|)) (-10 -8 (-15 1 ($) -4212) (-15 -3709 ((-840 |#1|) $)) (-15 -3709 ($ |#1|)) (-15 -4397 ((-693 |#1|) $)) (-15 -4166 ((-792) $)) (-15 -2535 ((-665 (-693 |#1|)) $)) (-15 -4410 ($ $)) (-15 -1887 ((-112) $)) (-15 -4294 ((-665 |#1|) $)))) (-870)) (T -917)) +((-2853 (*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-3709 (*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-665 (-693 *3))) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870))))) +(-13 (-870) (-1068 (-693 |#1|)) (-10 -8 (-15 (-2853) ($) -4212) (-15 -3709 ((-840 |#1|) $)) (-15 -3709 ($ |#1|)) (-15 -4397 ((-693 |#1|) $)) (-15 -4166 ((-792) $)) (-15 -2535 ((-665 (-693 |#1|)) $)) (-15 -4410 ($ $)) (-15 -1887 ((-112) $)) (-15 -4294 ((-665 |#1|) $)))) +((-4198 ((|#1| |#1| |#1|) 19 T ELT))) +(((-918 |#1| |#2|) (-10 -7 (-15 -4198 (|#1| |#1| |#1|))) (-1273 |#2|) (-1079)) (T -918)) +((-4198 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-918 *2 *3)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -4198 (|#1| |#1| |#1|))) +((-2389 ((|#2| $ |#3|) 10 T ELT))) +(((-919 |#1| |#2| |#3|) (-10 -8 (-15 -2389 (|#2| |#1| |#3|))) (-920 |#2| |#3|) (-1247) (-1247)) (T -919)) +NIL +(-10 -8 (-15 -2389 (|#2| |#1| |#3|))) +((-3641 ((|#1| $ |#2|) 7 T ELT)) (-2389 ((|#1| $ |#2|) 6 T ELT))) +(((-920 |#1| |#2|) (-141) (-1247) (-1247)) (T -920)) +((-3641 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) (-2389 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -3641 (|t#1| $ |t#2|)) (-15 -2389 (|t#1| $ |t#2|)))) +(((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 15 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3979 (((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 14 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-921) (-141)) (T -921)) +((-4423 (*1 *2 *3 *4) (-12 (-4 *1 (-921)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) (-3979 (*1 *2 *3) (-12 (-4 *1 (-921)) (-5 *3 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *2 (-1065))))) +(-13 (-1130) (-10 -7 (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))) (-15 -3979 ((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-1927 ((|#1| |#1| (-792)) 27 T ELT)) (-1951 (((-3 |#1| "failed") |#1| |#1|) 24 T ELT)) (-4267 (((-3 (-2 (|:| -3337 |#1|) (|:| -3352 |#1|)) "failed") |#1| (-792) (-792)) 30 T ELT) (((-665 |#1|) |#1|) 38 T ELT))) +(((-922 |#1| |#2|) (-10 -7 (-15 -4267 ((-665 |#1|) |#1|)) (-15 -4267 ((-3 (-2 (|:| -3337 |#1|) (|:| -3352 |#1|)) "failed") |#1| (-792) (-792))) (-15 -1951 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1927 (|#1| |#1| (-792)))) (-1273 |#2|) (-375)) (T -922)) +((-1927 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-5 *1 (-922 *2 *4)) (-4 *2 (-1273 *4)))) (-1951 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-922 *2 *3)) (-4 *2 (-1273 *3)))) (-4267 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-792)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *3))) (-5 *1 (-922 *3 *5)) (-4 *3 (-1273 *5)))) (-4267 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-922 *3 *4)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -4267 ((-665 |#1|) |#1|)) (-15 -4267 ((-3 (-2 (|:| -3337 |#1|) (|:| -3352 |#1|)) "failed") |#1| (-792) (-792))) (-15 -1951 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1927 (|#1| |#1| (-792)))) +((-2205 (((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188)) 104 T ELT) (((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188) (-228)) 100 T ELT) (((-1065) (-924) (-1093)) 92 T ELT) (((-1065) (-924)) 93 T ELT)) (-4423 (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924) (-1093)) 62 T ELT) (((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924)) 64 T ELT))) +(((-923) (-10 -7 (-15 -2205 ((-1065) (-924))) (-15 -2205 ((-1065) (-924) (-1093))) (-15 -2205 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188) (-228))) (-15 -2205 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924) (-1093))))) (T -923)) +((-4423 (*1 *2 *3 *4) (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-923)))) (-4423 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-923)))) (-2205 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-2205 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) (-5 *8 (-228)) (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-1065)) (-5 *1 (-923))))) +(-10 -7 (-15 -2205 ((-1065) (-924))) (-15 -2205 ((-1065) (-924) (-1093))) (-15 -2205 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188) (-228))) (-15 -2205 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924))) (-15 -4423 ((-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924) (-1093)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3783 (((-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))) $) 19 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 21 T ELT) (($ (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 18 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-924) (-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))) (-15 -3783 ((-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))) $))))) (T -924)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *1 (-924)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *1 (-924))))) +(-13 (-1130) (-10 -8 (-15 -3709 ($ (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))) (-15 -3783 ((-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))) $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3641 (($ $ (-665 |#2|) (-665 (-792))) 39 T ELT) (($ $ |#2| (-792)) 38 T ELT) (($ $ (-665 |#2|)) 37 T ELT) (($ $ |#2|) 35 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2389 (($ $ (-665 |#2|) (-665 (-792))) 42 T ELT) (($ $ |#2| (-792)) 41 T ELT) (($ $ (-665 |#2|)) 40 T ELT) (($ $ |#2|) 36 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-925 |#1| |#2|) (-141) (-1079) (-1130)) (T -925)) +NIL +(-13 (-111 |t#1| |t#1|) (-928 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-738 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-920 $ |#2|) . T) ((-928 |#2|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3641 (($ $ (-665 |#1|) (-665 (-792))) 44 T ELT) (($ $ |#1| (-792)) 43 T ELT) (($ $ (-665 |#1|)) 42 T ELT) (($ $ |#1|) 40 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-665 |#1|) (-665 (-792))) 47 T ELT) (($ $ |#1| (-792)) 46 T ELT) (($ $ (-665 |#1|)) 45 T ELT) (($ $ |#1|) 41 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-926 |#1|) (-141) (-1130)) (T -926)) +NIL +(-13 (-1079) (-928 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-920 $ |#1|) . T) ((-928 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3641 (($ $ |#2|) NIL T ELT) (($ $ (-665 |#2|)) 10 T ELT) (($ $ |#2| (-792)) 12 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 15 T ELT)) (-2389 (($ $ |#2|) 16 T ELT) (($ $ (-665 |#2|)) 18 T ELT) (($ $ |#2| (-792)) 19 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 21 T ELT))) +(((-927 |#1| |#2|) (-10 -8 (-15 -2389 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -2389 (|#1| |#1| |#2| (-792))) (-15 -2389 (|#1| |#1| (-665 |#2|))) (-15 -3641 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -3641 (|#1| |#1| |#2| (-792))) (-15 -3641 (|#1| |#1| (-665 |#2|))) (-15 -2389 (|#1| |#1| |#2|)) (-15 -3641 (|#1| |#1| |#2|))) (-928 |#2|) (-1130)) (T -927)) +NIL +(-10 -8 (-15 -2389 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -2389 (|#1| |#1| |#2| (-792))) (-15 -2389 (|#1| |#1| (-665 |#2|))) (-15 -3641 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -3641 (|#1| |#1| |#2| (-792))) (-15 -3641 (|#1| |#1| (-665 |#2|))) (-15 -2389 (|#1| |#1| |#2|)) (-15 -3641 (|#1| |#1| |#2|))) +((-3641 (($ $ |#1|) 7 T ELT) (($ $ (-665 |#1|)) 15 T ELT) (($ $ |#1| (-792)) 14 T ELT) (($ $ (-665 |#1|) (-665 (-792))) 13 T ELT)) (-2389 (($ $ |#1|) 6 T ELT) (($ $ (-665 |#1|)) 12 T ELT) (($ $ |#1| (-792)) 11 T ELT) (($ $ (-665 |#1|) (-665 (-792))) 10 T ELT))) +(((-928 |#1|) (-141) (-1130)) (T -928)) +((-3641 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130)))) (-3641 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) (-3641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) (-4 *4 (-1130)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130)))) (-2389 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) (-2389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) (-4 *4 (-1130))))) +(-13 (-920 $ |t#1|) (-10 -8 (-15 -3641 ($ $ (-665 |t#1|))) (-15 -3641 ($ $ |t#1| (-792))) (-15 -3641 ($ $ (-665 |t#1|) (-665 (-792)))) (-15 -2389 ($ $ (-665 |t#1|))) (-15 -2389 ($ $ |t#1| (-792))) (-15 -2389 ($ $ (-665 |t#1|) (-665 (-792)))))) +(((-920 $ |#1|) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 26 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4257 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-1526 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-3352 (($ $) 25 T ELT)) (-3125 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3337 (($ $) 23 T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) 20 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-2625 (((-112) $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-1233 |#1|) $) 9 T ELT) (((-885) $) 29 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-929 |#1|) (-13 (-120 |#1|) (-631 (-1233 |#1|)) (-10 -8 (-15 -3125 ($ |#1|)) (-15 -3125 ($ $ $)))) (-1130)) (T -929)) +((-3125 (*1 *1 *2) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130)))) (-3125 (*1 *1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130))))) +(-13 (-120 |#1|) (-631 (-1233 |#1|)) (-10 -8 (-15 -3125 ($ |#1|)) (-15 -3125 ($ $ $)))) +((-2540 ((|#2| (-1172 |#1| |#2|)) 48 T ELT))) +(((-930 |#1| |#2|) (-10 -7 (-15 -2540 (|#2| (-1172 |#1| |#2|)))) (-949) (-13 (-1079) (-10 -7 (-6 (-4501 "*"))))) (T -930)) +((-2540 (*1 *2 *3) (-12 (-5 *3 (-1172 *4 *2)) (-14 *4 (-949)) (-4 *2 (-13 (-1079) (-10 -7 (-6 (-4501 "*"))))) (-5 *1 (-930 *4 *2))))) +(-10 -7 (-15 -2540 (|#2| (-1172 |#1| |#2|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-1488 (((-1132 |#1|) $) 36 T ELT)) (-2305 (($) 19 T CONST)) (-3167 (((-3 $ "failed") $) 16 T ELT)) (-2350 (((-1132 |#1|) $ |#1|) 35 T ELT)) (-3357 (((-112) $) 18 T ELT)) (-3237 (($ $ $) 29 (-2867 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-2930 (($ $ $) 30 (-2867 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 25 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2916 ((|#1| $ |#1|) 39 T ELT)) (-1924 (($ (-665 (-665 |#1|))) 37 T ELT)) (-2791 (($ (-665 |#1|)) 38 T ELT)) (-4247 (($ $ $) 22 T ELT)) (-2486 (($ $ $) 21 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2853 (($) 20 T CONST)) (-3078 (((-112) $ $) 31 (-2867 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-3054 (((-112) $ $) 33 (-2867 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 32 (-2867 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-3042 (((-112) $ $) 34 T ELT)) (-3139 (($ $ $) 24 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT) (($ $ (-577)) 23 T ELT)) (* (($ $ $) 15 T ELT))) +(((-931 |#1|) (-141) (-1130)) (T -931)) +((-2791 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-931 *3)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-4 *1 (-931 *3)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) (-2350 (*1 *2 *1 *3) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) (-3042 (*1 *2 *1 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(-13 (-486) (-297 |t#1| |t#1|) (-10 -8 (-15 -2791 ($ (-665 |t#1|))) (-15 -1924 ($ (-665 (-665 |t#1|)))) (-15 -1488 ((-1132 |t#1|) $)) (-15 -2350 ((-1132 |t#1|) $ |t#1|)) (-15 -3042 ((-112) $ $)) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-380)) (-6 (-870)) |%noBranch|))) +(((-102) . T) ((-631 (-885)) . T) ((-297 |#1| |#1|) . T) ((-486) . T) ((-747) . T) ((-870) -2867 (|has| |#1| (-870)) (|has| |#1| (-380))) ((-873) -2867 (|has| |#1| (-870)) (|has| |#1| (-380))) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4384 (((-665 (-665 (-792))) $) 160 T ELT)) (-3614 (((-665 (-792)) (-933 |#1|) $) 188 T ELT)) (-1572 (((-665 (-792)) (-933 |#1|) $) 189 T ELT)) (-1488 (((-1132 |#1|) $) 152 T ELT)) (-1605 (((-665 (-933 |#1|)) $) 149 T ELT)) (-1424 (((-933 |#1|) $ (-577)) 154 T ELT) (((-933 |#1|) $) 155 T ELT)) (-1413 (($ (-665 (-933 |#1|))) 162 T ELT)) (-4030 (((-792) $) 156 T ELT)) (-1649 (((-1132 (-1132 |#1|)) $) 186 T ELT)) (-2350 (((-1132 |#1|) $ |#1|) 177 T ELT) (((-1132 (-1132 |#1|)) $ (-1132 |#1|)) 197 T ELT) (((-1132 (-665 |#1|)) $ (-665 |#1|)) 200 T ELT)) (-3519 (((-112) (-933 |#1|) $) 137 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3249 (((-1302) $) 142 T ELT) (((-1302) $ (-577) (-577)) 201 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2164 (((-665 (-933 |#1|)) $) 143 T ELT)) (-2916 (((-933 |#1|) $ (-792)) 150 T ELT)) (-1597 (((-792) $) 157 T ELT)) (-3709 (((-885) $) 174 T ELT) (((-665 (-933 |#1|)) $) 28 T ELT) (($ (-665 (-933 |#1|))) 161 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (((-665 |#1|) $) 159 T ELT)) (-3018 (((-112) $ $) 194 T ELT)) (-3067 (((-112) $ $) 192 T ELT)) (-3042 (((-112) $ $) 191 T ELT))) +(((-932 |#1|) (-13 (-1130) (-10 -8 (-15 -3709 ((-665 (-933 |#1|)) $)) (-15 -2164 ((-665 (-933 |#1|)) $)) (-15 -2916 ((-933 |#1|) $ (-792))) (-15 -1424 ((-933 |#1|) $ (-577))) (-15 -1424 ((-933 |#1|) $)) (-15 -4030 ((-792) $)) (-15 -1597 ((-792) $)) (-15 -4356 ((-665 |#1|) $)) (-15 -1605 ((-665 (-933 |#1|)) $)) (-15 -4384 ((-665 (-665 (-792))) $)) (-15 -3709 ($ (-665 (-933 |#1|)))) (-15 -1413 ($ (-665 (-933 |#1|)))) (-15 -2350 ((-1132 |#1|) $ |#1|)) (-15 -1649 ((-1132 (-1132 |#1|)) $)) (-15 -2350 ((-1132 (-1132 |#1|)) $ (-1132 |#1|))) (-15 -2350 ((-1132 (-665 |#1|)) $ (-665 |#1|))) (-15 -3519 ((-112) (-933 |#1|) $)) (-15 -3614 ((-665 (-792)) (-933 |#1|) $)) (-15 -1572 ((-665 (-792)) (-933 |#1|) $)) (-15 -1488 ((-1132 |#1|) $)) (-15 -3042 ((-112) $ $)) (-15 -3067 ((-112) $ $)) (-15 -3249 ((-1302) $)) (-15 -3249 ((-1302) $ (-577) (-577))))) (-1130)) (T -932)) +((-3709 (*1 *2 *1) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2916 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) (-4 *4 (-1130)))) (-1424 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) (-4 *4 (-1130)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-933 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-792)))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3)))) (-1413 (*1 *1 *2) (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3)))) (-2350 (*1 *2 *1 *3) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1132 (-1132 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2350 (*1 *2 *1 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-1132 *4))) (-5 *1 (-932 *4)) (-5 *3 (-1132 *4)))) (-2350 (*1 *2 *1 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-665 *4))) (-5 *1 (-932 *4)) (-5 *3 (-665 *4)))) (-3519 (*1 *2 *3 *1) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-932 *4)))) (-3614 (*1 *2 *3 *1) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) (-5 *1 (-932 *4)))) (-1572 (*1 *2 *3 *1) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) (-5 *1 (-932 *4)))) (-1488 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3042 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3067 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3249 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-932 *4)) (-4 *4 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3709 ((-665 (-933 |#1|)) $)) (-15 -2164 ((-665 (-933 |#1|)) $)) (-15 -2916 ((-933 |#1|) $ (-792))) (-15 -1424 ((-933 |#1|) $ (-577))) (-15 -1424 ((-933 |#1|) $)) (-15 -4030 ((-792) $)) (-15 -1597 ((-792) $)) (-15 -4356 ((-665 |#1|) $)) (-15 -1605 ((-665 (-933 |#1|)) $)) (-15 -4384 ((-665 (-665 (-792))) $)) (-15 -3709 ($ (-665 (-933 |#1|)))) (-15 -1413 ($ (-665 (-933 |#1|)))) (-15 -2350 ((-1132 |#1|) $ |#1|)) (-15 -1649 ((-1132 (-1132 |#1|)) $)) (-15 -2350 ((-1132 (-1132 |#1|)) $ (-1132 |#1|))) (-15 -2350 ((-1132 (-665 |#1|)) $ (-665 |#1|))) (-15 -3519 ((-112) (-933 |#1|) $)) (-15 -3614 ((-665 (-792)) (-933 |#1|) $)) (-15 -1572 ((-665 (-792)) (-933 |#1|) $)) (-15 -1488 ((-1132 |#1|) $)) (-15 -3042 ((-112) $ $)) (-15 -3067 ((-112) $ $)) (-15 -3249 ((-1302) $)) (-15 -3249 ((-1302) $ (-577) (-577))))) +((-3586 (((-112) $ $) NIL T ELT)) (-1488 (((-1132 |#1|) $) 60 T ELT)) (-1381 (((-665 $) (-665 $)) 103 T ELT)) (-2578 (((-577) $) 83 T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-4030 (((-792) $) 80 T ELT)) (-2350 (((-1132 |#1|) $ |#1|) 70 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2310 (((-112) $) 88 T ELT)) (-2273 (((-792) $) 84 T ELT)) (-3237 (($ $ $) NIL (-2867 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-2930 (($ $ $) NIL (-2867 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-2977 (((-2 (|:| |preimage| (-665 |#1|)) (|:| |image| (-665 |#1|))) $) 55 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 130 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1579 (((-1132 |#1|) $) 136 (|has| |#1| (-380)) ELT)) (-2820 (((-112) $) 81 T ELT)) (-2916 ((|#1| $ |#1|) 68 T ELT)) (-1597 (((-792) $) 62 T ELT)) (-1924 (($ (-665 (-665 |#1|))) 118 T ELT)) (-2618 (((-1001) $) 74 T ELT)) (-2791 (($ (-665 |#1|)) 32 T ELT)) (-4247 (($ $ $) NIL T ELT)) (-2486 (($ $ $) NIL T ELT)) (-4344 (($ (-665 (-665 |#1|))) 57 T ELT)) (-1926 (($ (-665 (-665 |#1|))) 123 T ELT)) (-3310 (($ (-665 |#1|)) 132 T ELT)) (-3709 (((-885) $) 117 T ELT) (($ (-665 (-665 |#1|))) 91 T ELT) (($ (-665 |#1|)) 92 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) 24 T CONST)) (-3078 (((-112) $ $) NIL (-2867 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-3054 (((-112) $ $) NIL (-2867 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-3018 (((-112) $ $) 66 T ELT)) (-3067 (((-112) $ $) NIL (-2867 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-3042 (((-112) $ $) 90 T ELT)) (-3139 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-933 |#1|) (-13 (-931 |#1|) (-10 -8 (-15 -2977 ((-2 (|:| |preimage| (-665 |#1|)) (|:| |image| (-665 |#1|))) $)) (-15 -4344 ($ (-665 (-665 |#1|)))) (-15 -3709 ($ (-665 (-665 |#1|)))) (-15 -3709 ($ (-665 |#1|))) (-15 -1926 ($ (-665 (-665 |#1|)))) (-15 -1597 ((-792) $)) (-15 -2618 ((-1001) $)) (-15 -4030 ((-792) $)) (-15 -2273 ((-792) $)) (-15 -2578 ((-577) $)) (-15 -2820 ((-112) $)) (-15 -2310 ((-112) $)) (-15 -1381 ((-665 $) (-665 $))) (IF (|has| |#1| (-380)) (-15 -1579 ((-1132 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -3310 ($ (-665 |#1|))) (IF (|has| |#1| (-380)) (-15 -3310 ($ (-665 |#1|))) |%noBranch|)))) (-1130)) (T -933)) +((-2977 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-665 *3)) (|:| |image| (-665 *3)))) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-4344 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-933 *3)) (-4 *3 (-380)) (-4 *3 (-1130)))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) +(-13 (-931 |#1|) (-10 -8 (-15 -2977 ((-2 (|:| |preimage| (-665 |#1|)) (|:| |image| (-665 |#1|))) $)) (-15 -4344 ($ (-665 (-665 |#1|)))) (-15 -3709 ($ (-665 (-665 |#1|)))) (-15 -3709 ($ (-665 |#1|))) (-15 -1926 ($ (-665 (-665 |#1|)))) (-15 -1597 ((-792) $)) (-15 -2618 ((-1001) $)) (-15 -4030 ((-792) $)) (-15 -2273 ((-792) $)) (-15 -2578 ((-577) $)) (-15 -2820 ((-112) $)) (-15 -2310 ((-112) $)) (-15 -1381 ((-665 $) (-665 $))) (IF (|has| |#1| (-380)) (-15 -1579 ((-1132 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -3310 ($ (-665 |#1|))) (IF (|has| |#1| (-380)) (-15 -3310 ($ (-665 |#1|))) |%noBranch|)))) +((-3378 (((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|)) 160 T ELT)) (-1816 ((|#1|) 97 T ELT)) (-1417 (((-431 (-1202 |#4|)) (-1202 |#4|)) 169 T ELT)) (-3437 (((-431 (-1202 |#4|)) (-665 |#3|) (-1202 |#4|)) 84 T ELT)) (-2240 (((-431 (-1202 |#4|)) (-1202 |#4|)) 179 T ELT)) (-1583 (((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|) |#3|) 113 T ELT))) +(((-934 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3378 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|))) (-15 -2240 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -1417 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -1816 (|#1|)) (-15 -1583 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|) |#3|)) (-15 -3437 ((-431 (-1202 |#4|)) (-665 |#3|) (-1202 |#4|)))) (-937) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -934)) +((-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *7)) (-4 *7 (-870)) (-4 *5 (-937)) (-4 *6 (-814)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-431 (-1202 *8))) (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-1202 *8)))) (-1583 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) (-4 *7 (-977 *5 *6 *4)) (-4 *5 (-937)) (-4 *6 (-814)) (-4 *4 (-870)) (-5 *1 (-934 *5 *6 *4 *7)))) (-1816 (*1 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) (-5 *1 (-934 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-2240 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-3378 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-934 *4 *5 *6 *7))))) +(-10 -7 (-15 -3378 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|))) (-15 -2240 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -1417 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -1816 (|#1|)) (-15 -1583 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|) |#3|)) (-15 -3437 ((-431 (-1202 |#4|)) (-665 |#3|) (-1202 |#4|)))) +((-3378 (((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)) 39 T ELT)) (-1816 ((|#1|) 72 T ELT)) (-1417 (((-431 (-1202 |#2|)) (-1202 |#2|)) 121 T ELT)) (-3437 (((-431 (-1202 |#2|)) (-1202 |#2|)) 105 T ELT)) (-2240 (((-431 (-1202 |#2|)) (-1202 |#2|)) 132 T ELT))) +(((-935 |#1| |#2|) (-10 -7 (-15 -3378 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|))) (-15 -2240 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -1417 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -1816 (|#1|)) (-15 -3437 ((-431 (-1202 |#2|)) (-1202 |#2|)))) (-937) (-1273 |#1|)) (T -935)) +((-3437 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5)))) (-1816 (*1 *2) (-12 (-4 *2 (-937)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1273 *2)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5)))) (-2240 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5)))) (-3378 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-937)) (-5 *1 (-935 *4 *5))))) +(-10 -7 (-15 -3378 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|))) (-15 -2240 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -1417 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -1816 (|#1|)) (-15 -3437 ((-431 (-1202 |#2|)) (-1202 |#2|)))) +((-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 42 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 18 T ELT)) (-2708 (((-3 $ "failed") $) 36 T ELT))) +(((-936 |#1|) (-10 -8 (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) (-937)) (T -936)) +NIL +(-10 -8 (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 66 T ELT)) (-2612 (($ $) 57 T ELT)) (-3206 (((-431 $) $) 58 T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 63 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3567 (((-112) $) 59 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 64 T ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 65 T ELT)) (-3759 (((-431 $) $) 56 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 62 (|has| $ (-146)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-2708 (((-3 $ "failed") $) 61 (|has| $ (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-937) (-141)) (T -937)) +((-3945 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-937)))) (-2969 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1)))) (-2083 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1)))) (-4058 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1)))) (-2008 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *1))) (-5 *3 (-1202 *1)) (-4 *1 (-937)))) (-1676 (*1 *2 *3) (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-146)) (-4 *1 (-937)) (-5 *2 (-1297 *1)))) (-2708 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-937))))) +(-13 (-1251) (-10 -8 (-15 -2969 ((-431 (-1202 $)) (-1202 $))) (-15 -2083 ((-431 (-1202 $)) (-1202 $))) (-15 -4058 ((-431 (-1202 $)) (-1202 $))) (-15 -3945 ((-1202 $) (-1202 $) (-1202 $))) (-15 -2008 ((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $))) (IF (|has| $ (-146)) (PROGN (-15 -1676 ((-3 (-1297 $) "failed") (-710 $))) (-15 -2708 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-3028 (((-112) $) NIL T ELT)) (-3073 (((-792)) NIL T ELT)) (-2318 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 $ "failed") $) NIL T ELT)) (-3783 (($ $) NIL T ELT)) (-2385 (($ (-1297 $)) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-2213 (($) NIL T ELT)) (-3275 (((-112) $) NIL T ELT)) (-3987 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4030 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-4235 (($) NIL (|has| $ (-380)) ELT)) (-3524 (((-112) $) NIL (|has| $ (-380)) ELT)) (-2794 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2346 (((-1202 $) $ (-949)) NIL (|has| $ (-380)) ELT) (((-1202 $) $) NIL T ELT)) (-2686 (((-949) $) NIL T ELT)) (-3200 (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-3467 (((-3 (-1202 $) "failed") $ $) NIL (|has| $ (-380)) ELT) (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-1464 (($ $ (-1202 $)) NIL (|has| $ (-380)) ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL T CONST)) (-3354 (($ (-949)) NIL T ELT)) (-2789 (((-112) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) NIL (|has| $ (-380)) ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-3417 (((-949)) NIL T ELT) (((-854 (-949))) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3038 (((-3 (-792) "failed") $ $) NIL T ELT) (((-792) $) NIL T ELT)) (-4366 (((-135)) NIL T ELT)) (-3641 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1597 (((-949) $) NIL T ELT) (((-854 (-949)) $) NIL T ELT)) (-4263 (((-1202 $)) NIL T ELT)) (-3475 (($) NIL T ELT)) (-2984 (($) NIL (|has| $ (-380)) ELT)) (-3762 (((-710 $) (-1297 $)) NIL T ELT) (((-1297 $) $) NIL T ELT)) (-4463 (((-577) $) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL T ELT) (($ $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $) (-949)) NIL T ELT) (((-1297 $)) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2066 (((-112) $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-4173 (($ $ (-792)) NIL (|has| $ (-380)) ELT) (($ $) NIL (|has| $ (-380)) ELT)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-938 |#1|) (-13 (-361) (-340 $) (-632 (-577))) (-949)) (T -938)) +NIL +(-13 (-361) (-340 $) (-632 (-577))) +((-2455 (((-3 (-2 (|:| -4030 (-792)) (|:| -3483 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-4174 (((-112) (-348 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-4030 (((-3 (-792) "failed") (-348 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-939 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4030 ((-3 (-792) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -4174 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -2455 ((-3 (-2 (|:| -4030 (-792)) (|:| -3483 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) (-13 (-569) (-1068 (-577))) (-443 |#1|) (-1273 |#2|) (-1273 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -939)) +((-2455 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-2 (|:| -4030 (-792)) (|:| -3483 *8))) (-5 *1 (-939 *4 *5 *6 *7 *8)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7 *8)))) (-4030 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-792)) (-5 *1 (-939 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4030 ((-3 (-792) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -4174 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -2455 ((-3 (-2 (|:| -4030 (-792)) (|:| -3483 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) +((-2455 (((-3 (-2 (|:| -4030 (-792)) (|:| -3483 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 64 T ELT)) (-4174 (((-112) (-348 (-420 (-577)) |#1| |#2| |#3|)) 16 T ELT)) (-4030 (((-3 (-792) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 14 T ELT))) +(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -4030 ((-3 (-792) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -4174 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2455 ((-3 (-2 (|:| -4030 (-792)) (|:| -3483 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) (-1273 (-420 (-577))) (-1273 (-420 |#1|)) (-354 (-420 (-577)) |#1| |#2|)) (T -940)) +((-2455 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-2 (|:| -4030 (-792)) (|:| -3483 *6))) (-5 *1 (-940 *4 *5 *6)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6)))) (-4030 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-792)) (-5 *1 (-940 *4 *5 *6))))) +(-10 -7 (-15 -4030 ((-3 (-792) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -4174 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2455 ((-3 (-2 (|:| -4030 (-792)) (|:| -3483 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) +((-3774 ((|#2| |#2|) 26 T ELT)) (-3845 (((-577) (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) 15 T ELT)) (-1875 (((-949) (-577)) 38 T ELT)) (-1713 (((-577) |#2|) 45 T ELT)) (-4034 (((-577) |#2|) 21 T ELT) (((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|) 20 T ELT))) +(((-941 |#1| |#2|) (-10 -7 (-15 -1875 ((-949) (-577))) (-15 -4034 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -4034 ((-577) |#2|)) (-15 -3845 ((-577) (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -1713 ((-577) |#2|)) (-15 -3774 (|#2| |#2|))) (-1273 (-420 (-577))) (-1273 (-420 |#1|))) (T -941)) +((-3774 (*1 *2 *2) (-12 (-4 *3 (-1273 (-420 (-577)))) (-5 *1 (-941 *3 *2)) (-4 *2 (-1273 (-420 *3))))) (-1713 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1273 (-420 *4))))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-420 *4))))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1273 (-420 *4))))) (-4034 (*1 *2 *3) (-12 (-4 *3 (-1273 (-420 (-577)))) (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) (-5 *1 (-941 *3 *4)) (-4 *4 (-1273 (-420 *3))))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1273 (-420 *3))) (-5 *2 (-949)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-420 *4)))))) +(-10 -7 (-15 -1875 ((-949) (-577))) (-15 -4034 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -4034 ((-577) |#2|)) (-15 -3845 ((-577) (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -1713 ((-577) |#2|)) (-15 -3774 (|#2| |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 ((|#1| $) 100 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3531 (($ $ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 94 T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-3382 (($ |#1| (-431 |#1|)) 92 T ELT)) (-3644 (((-1202 |#1|) |#1| |#1|) 53 T ELT)) (-2587 (($ $) 61 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3727 (((-577) $) 97 T ELT)) (-4333 (($ $ (-577)) 99 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3203 ((|#1| $) 96 T ELT)) (-1914 (((-431 |#1|) $) 95 T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) 93 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-2566 (($ $) 50 T ELT)) (-3709 (((-885) $) 124 T ELT) (($ (-577)) 73 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 41 T ELT) (((-420 |#1|) $) 78 T ELT) (($ (-420 (-431 |#1|))) 86 T ELT)) (-3331 (((-792)) 71 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) 26 T CONST)) (-2853 (($) 15 T CONST)) (-3018 (((-112) $ $) 87 T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3128 (($ $) 108 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 49 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 110 T ELT) (($ $ $) 48 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#1| $) 109 T ELT) (($ $ |#1|) NIL T ELT))) +(((-942 |#1|) (-13 (-375) (-38 |#1|) (-10 -8 (-15 -3709 ((-420 |#1|) $)) (-15 -3709 ($ (-420 (-431 |#1|)))) (-15 -2566 ($ $)) (-15 -1914 ((-431 |#1|) $)) (-15 -3203 (|#1| $)) (-15 -4333 ($ $ (-577))) (-15 -3727 ((-577) $)) (-15 -3644 ((-1202 |#1|) |#1| |#1|)) (-15 -2587 ($ $)) (-15 -3382 ($ |#1| (-431 |#1|))) (-15 -1363 (|#1| $)))) (-318)) (T -942)) +((-3709 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-942 *3)))) (-2566 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-3203 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) (-4333 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-3644 (*1 *2 *3 *3) (-12 (-5 *2 (-1202 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-2587 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) (-3382 (*1 *1 *2 *3) (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-942 *2)))) (-1363 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) +(-13 (-375) (-38 |#1|) (-10 -8 (-15 -3709 ((-420 |#1|) $)) (-15 -3709 ($ (-420 (-431 |#1|)))) (-15 -2566 ($ $)) (-15 -1914 ((-431 |#1|) $)) (-15 -3203 (|#1| $)) (-15 -4333 ($ $ (-577))) (-15 -3727 ((-577) $)) (-15 -3644 ((-1202 |#1|) |#1| |#1|)) (-15 -2587 ($ $)) (-15 -3382 ($ |#1| (-431 |#1|))) (-15 -1363 (|#1| $)))) +((-3382 (((-52) (-980 |#1|) (-431 (-980 |#1|)) (-1206)) 17 T ELT) (((-52) (-420 (-980 |#1|)) (-1206)) 18 T ELT))) +(((-943 |#1|) (-10 -7 (-15 -3382 ((-52) (-420 (-980 |#1|)) (-1206))) (-15 -3382 ((-52) (-980 |#1|) (-431 (-980 |#1|)) (-1206)))) (-13 (-318) (-148))) (T -943)) +((-3382 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-431 (-980 *6))) (-5 *5 (-1206)) (-5 *3 (-980 *6)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *6)))) (-3382 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *5))))) +(-10 -7 (-15 -3382 ((-52) (-420 (-980 |#1|)) (-1206))) (-15 -3382 ((-52) (-980 |#1|) (-431 (-980 |#1|)) (-1206)))) +((-3816 ((|#4| (-665 |#4|)) 147 T ELT) (((-1202 |#4|) (-1202 |#4|) (-1202 |#4|)) 84 T ELT) ((|#4| |#4| |#4|) 146 T ELT)) (-3642 (((-1202 |#4|) (-665 (-1202 |#4|))) 140 T ELT) (((-1202 |#4|) (-1202 |#4|) (-1202 |#4|)) 61 T ELT) ((|#4| (-665 |#4|)) 69 T ELT) ((|#4| |#4| |#4|) 107 T ELT))) +(((-944 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3642 (|#4| |#4| |#4|)) (-15 -3642 (|#4| (-665 |#4|))) (-15 -3642 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -3642 ((-1202 |#4|) (-665 (-1202 |#4|)))) (-15 -3816 (|#4| |#4| |#4|)) (-15 -3816 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -3816 (|#4| (-665 |#4|)))) (-814) (-870) (-318) (-977 |#3| |#1| |#2|)) (T -944)) +((-3816 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)))) (-3816 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) (-3816 (*1 *2 *2 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-665 (-1202 *7))) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-1202 *7)) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-3642 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)))) (-3642 (*1 *2 *2 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4))))) +(-10 -7 (-15 -3642 (|#4| |#4| |#4|)) (-15 -3642 (|#4| (-665 |#4|))) (-15 -3642 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -3642 ((-1202 |#4|) (-665 (-1202 |#4|)))) (-15 -3816 (|#4| |#4| |#4|)) (-15 -3816 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -3816 (|#4| (-665 |#4|)))) +((-3499 (((-932 (-577)) (-1001)) 38 T ELT) (((-932 (-577)) (-665 (-577))) 34 T ELT)) (-4086 (((-932 (-577)) (-665 (-577))) 67 T ELT) (((-932 (-577)) (-949)) 68 T ELT)) (-1824 (((-932 (-577))) 39 T ELT)) (-2902 (((-932 (-577))) 53 T ELT) (((-932 (-577)) (-665 (-577))) 52 T ELT)) (-3411 (((-932 (-577))) 51 T ELT) (((-932 (-577)) (-665 (-577))) 50 T ELT)) (-2267 (((-932 (-577))) 49 T ELT) (((-932 (-577)) (-665 (-577))) 48 T ELT)) (-3259 (((-932 (-577))) 47 T ELT) (((-932 (-577)) (-665 (-577))) 46 T ELT)) (-1627 (((-932 (-577))) 45 T ELT) (((-932 (-577)) (-665 (-577))) 44 T ELT)) (-3339 (((-932 (-577))) 55 T ELT) (((-932 (-577)) (-665 (-577))) 54 T ELT)) (-4150 (((-932 (-577)) (-665 (-577))) 72 T ELT) (((-932 (-577)) (-949)) 74 T ELT)) (-1738 (((-932 (-577)) (-665 (-577))) 69 T ELT) (((-932 (-577)) (-949)) 70 T ELT)) (-2895 (((-932 (-577)) (-665 (-577))) 65 T ELT) (((-932 (-577)) (-949)) 66 T ELT)) (-1578 (((-932 (-577)) (-665 (-949))) 57 T ELT))) +(((-945) (-10 -7 (-15 -4086 ((-932 (-577)) (-949))) (-15 -4086 ((-932 (-577)) (-665 (-577)))) (-15 -2895 ((-932 (-577)) (-949))) (-15 -2895 ((-932 (-577)) (-665 (-577)))) (-15 -1578 ((-932 (-577)) (-665 (-949)))) (-15 -1738 ((-932 (-577)) (-949))) (-15 -1738 ((-932 (-577)) (-665 (-577)))) (-15 -4150 ((-932 (-577)) (-949))) (-15 -4150 ((-932 (-577)) (-665 (-577)))) (-15 -1627 ((-932 (-577)) (-665 (-577)))) (-15 -1627 ((-932 (-577)))) (-15 -3259 ((-932 (-577)) (-665 (-577)))) (-15 -3259 ((-932 (-577)))) (-15 -2267 ((-932 (-577)) (-665 (-577)))) (-15 -2267 ((-932 (-577)))) (-15 -3411 ((-932 (-577)) (-665 (-577)))) (-15 -3411 ((-932 (-577)))) (-15 -2902 ((-932 (-577)) (-665 (-577)))) (-15 -2902 ((-932 (-577)))) (-15 -3339 ((-932 (-577)) (-665 (-577)))) (-15 -3339 ((-932 (-577)))) (-15 -1824 ((-932 (-577)))) (-15 -3499 ((-932 (-577)) (-665 (-577)))) (-15 -3499 ((-932 (-577)) (-1001))))) (T -945)) +((-3499 (*1 *2 *3) (-12 (-5 *3 (-1001)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1824 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3339 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2902 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3411 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2267 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3259 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3259 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1627 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(-10 -7 (-15 -4086 ((-932 (-577)) (-949))) (-15 -4086 ((-932 (-577)) (-665 (-577)))) (-15 -2895 ((-932 (-577)) (-949))) (-15 -2895 ((-932 (-577)) (-665 (-577)))) (-15 -1578 ((-932 (-577)) (-665 (-949)))) (-15 -1738 ((-932 (-577)) (-949))) (-15 -1738 ((-932 (-577)) (-665 (-577)))) (-15 -4150 ((-932 (-577)) (-949))) (-15 -4150 ((-932 (-577)) (-665 (-577)))) (-15 -1627 ((-932 (-577)) (-665 (-577)))) (-15 -1627 ((-932 (-577)))) (-15 -3259 ((-932 (-577)) (-665 (-577)))) (-15 -3259 ((-932 (-577)))) (-15 -2267 ((-932 (-577)) (-665 (-577)))) (-15 -2267 ((-932 (-577)))) (-15 -3411 ((-932 (-577)) (-665 (-577)))) (-15 -3411 ((-932 (-577)))) (-15 -2902 ((-932 (-577)) (-665 (-577)))) (-15 -2902 ((-932 (-577)))) (-15 -3339 ((-932 (-577)) (-665 (-577)))) (-15 -3339 ((-932 (-577)))) (-15 -1824 ((-932 (-577)))) (-15 -3499 ((-932 (-577)) (-665 (-577)))) (-15 -3499 ((-932 (-577)) (-1001)))) +((-1492 (((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))) 14 T ELT)) (-2123 (((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))) 13 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -2123 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -1492 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))))) (-465)) (T -946)) +((-1492 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) (-5 *1 (-946 *4)))) (-2123 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) (-5 *1 (-946 *4))))) +(-10 -7 (-15 -2123 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -1492 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))))) +((-3709 (((-327 |#1|) (-490)) 16 T ELT))) +(((-947 |#1|) (-10 -7 (-15 -3709 ((-327 |#1|) (-490)))) (-569)) (T -947)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-947 *4)) (-4 *4 (-569))))) +(-10 -7 (-15 -3709 ((-327 |#1|) (-490)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-948) (-141)) (T -948)) +((-3089 (*1 *2 *3) (-12 (-4 *1 (-948)) (-5 *2 (-2 (|:| -4473 (-665 *1)) (|:| -2343 *1))) (-5 *3 (-665 *1)))) (-3002 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-948))))) +(-13 (-465) (-10 -8 (-15 -3089 ((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $))) (-15 -3002 ((-3 (-665 $) "failed") (-665 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3642 (($ $ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2853 (($) NIL T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-949) (-13 (-815) (-747) (-10 -8 (-15 -3642 ($ $ $)) (-6 (-4501 "*"))))) (T -949)) +((-3642 (*1 *1 *1 *1) (-5 *1 (-949)))) +(-13 (-815) (-747) (-10 -8 (-15 -3642 ($ $ $)) (-6 (-4501 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-3837 ((|#2| (-660 |#1|) (-660 |#1|)) 28 T ELT))) -(((-945 |#1| |#2|) (-10 -7 (-15 -3837 (|#2| (-660 |#1|) (-660 |#1|)))) (-375) (-1268 |#1|)) (T -945)) -((-3837 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-4 *2 (-1268 *4)) (-5 *1 (-945 *4 *2))))) -(-10 -7 (-15 -3837 (|#2| (-660 |#1|) (-660 |#1|)))) -((-2577 (((-1197 |#2|) (-660 |#2|) (-660 |#2|)) 17 T ELT) (((-1265 |#1| |#2|) (-1265 |#1| |#2|) (-660 |#2|) (-660 |#2|)) 13 T ELT))) -(((-946 |#1| |#2|) (-10 -7 (-15 -2577 ((-1265 |#1| |#2|) (-1265 |#1| |#2|) (-660 |#2|) (-660 |#2|))) (-15 -2577 ((-1197 |#2|) (-660 |#2|) (-660 |#2|)))) (-1201) (-375)) (T -946)) -((-2577 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-375)) (-5 *2 (-1197 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-1201)))) (-2577 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1265 *4 *5)) (-5 *3 (-660 *5)) (-14 *4 (-1201)) (-4 *5 (-375)) (-5 *1 (-946 *4 *5))))) -(-10 -7 (-15 -2577 ((-1265 |#1| |#2|) (-1265 |#1| |#2|) (-660 |#2|) (-660 |#2|))) (-15 -2577 ((-1197 |#2|) (-660 |#2|) (-660 |#2|)))) -((-2245 (((-577) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183)) 174 T ELT)) (-2484 ((|#4| |#4|) 193 T ELT)) (-3989 (((-660 (-420 (-975 |#1|))) (-660 (-1201))) 146 T ELT)) (-3847 (((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-660 (-660 |#4|)) (-787) (-787) (-577)) 88 T ELT)) (-3150 (((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-660 |#4|)) 69 T ELT)) (-4178 (((-705 |#4|) (-705 |#4|) (-660 |#4|)) 65 T ELT)) (-1934 (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183)) 186 T ELT)) (-3666 (((-577) (-705 |#4|) (-944) (-1183)) 166 T ELT) (((-577) (-705 |#4|) (-660 (-1201)) (-944) (-1183)) 165 T ELT) (((-577) (-705 |#4|) (-660 |#4|) (-944) (-1183)) 164 T ELT) (((-577) (-705 |#4|) (-1183)) 154 T ELT) (((-577) (-705 |#4|) (-660 (-1201)) (-1183)) 153 T ELT) (((-577) (-705 |#4|) (-660 |#4|) (-1183)) 152 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-944)) 151 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)) (-944)) 150 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|) (-944)) 149 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|)) 148 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201))) 147 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|)) 143 T ELT)) (-3618 ((|#4| (-975 |#1|)) 80 T ELT)) (-2495 (((-112) (-660 |#4|) (-660 (-660 |#4|))) 190 T ELT)) (-3833 (((-660 (-660 (-577))) (-577) (-577)) 159 T ELT)) (-2024 (((-660 (-660 |#4|)) (-660 (-660 |#4|))) 106 T ELT)) (-3986 (((-787) (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|))))) 100 T ELT)) (-4322 (((-787) (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|))))) 99 T ELT)) (-2267 (((-112) (-660 (-975 |#1|))) 19 T ELT) (((-112) (-660 |#4|)) 15 T ELT)) (-2040 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|)) 84 T ELT)) (-4439 (((-660 |#4|) |#4|) 57 T ELT)) (-4285 (((-660 (-420 (-975 |#1|))) (-660 |#4|)) 142 T ELT) (((-705 (-420 (-975 |#1|))) (-705 |#4|)) 66 T ELT) (((-420 (-975 |#1|)) |#4|) 139 T ELT)) (-3761 (((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))))))) (|:| |rgsz| (-577))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-787) (-1183) (-577)) 112 T ELT)) (-1720 (((-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))) (-705 |#4|) (-787)) 98 T ELT)) (-4320 (((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-705 |#4|) (-787)) 121 T ELT)) (-2823 (((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| -1631 (-705 (-420 (-975 |#1|)))) (|:| |vec| (-660 (-420 (-975 |#1|)))) (|:| -3503 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) 56 T ELT))) -(((-947 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|) (-944))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)) (-944))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-944))) (-15 -3666 ((-577) (-705 |#4|) (-660 |#4|) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-660 (-1201)) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-660 |#4|) (-944) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-660 (-1201)) (-944) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-944) (-1183))) (-15 -2245 ((-577) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -1934 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -3761 ((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))))))) (|:| |rgsz| (-577))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-787) (-1183) (-577))) (-15 -4285 ((-420 (-975 |#1|)) |#4|)) (-15 -4285 ((-705 (-420 (-975 |#1|))) (-705 |#4|))) (-15 -4285 ((-660 (-420 (-975 |#1|))) (-660 |#4|))) (-15 -3989 ((-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -3618 (|#4| (-975 |#1|))) (-15 -2040 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|))) (-15 -1720 ((-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))) (-705 |#4|) (-787))) (-15 -3150 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-660 |#4|))) (-15 -2823 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| -1631 (-705 (-420 (-975 |#1|)))) (|:| |vec| (-660 (-420 (-975 |#1|)))) (|:| -3503 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (-15 -4439 ((-660 |#4|) |#4|)) (-15 -4322 ((-787) (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -3986 ((-787) (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -2024 ((-660 (-660 |#4|)) (-660 (-660 |#4|)))) (-15 -3833 ((-660 (-660 (-577))) (-577) (-577))) (-15 -2495 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -4320 ((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-705 |#4|) (-787))) (-15 -4178 ((-705 |#4|) (-705 |#4|) (-660 |#4|))) (-15 -3847 ((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-660 (-660 |#4|)) (-787) (-787) (-577))) (-15 -2484 (|#4| |#4|)) (-15 -2267 ((-112) (-660 |#4|))) (-15 -2267 ((-112) (-660 (-975 |#1|))))) (-13 (-318) (-148)) (-13 (-865) (-627 (-1201))) (-809) (-972 |#1| |#3| |#2|)) (T -947)) -((-2267 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *4 *5 *6 *7)))) (-2484 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *2)) (-4 *2 (-972 *3 *5 *4)))) (-3847 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-5 *4 (-705 *12)) (-5 *5 (-660 (-420 (-975 *9)))) (-5 *6 (-660 (-660 *12))) (-5 *7 (-787)) (-5 *8 (-577)) (-4 *9 (-13 (-318) (-148))) (-4 *12 (-972 *9 *11 *10)) (-4 *10 (-13 (-865) (-627 (-1201)))) (-4 *11 (-809)) (-5 *2 (-2 (|:| |eqzro| (-660 *12)) (|:| |neqzro| (-660 *12)) (|:| |wcond| (-660 (-975 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *9)))) (|:| -2559 (-660 (-1292 (-420 (-975 *9))))))))) (-5 *1 (-947 *9 *10 *11 *12)))) (-4178 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *7)) (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7)))) (-4320 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-787)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (-5 *1 (-947 *5 *6 *7 *8)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *5 *6 *7 *8)))) (-3833 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-660 (-577)))) (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *6 *5)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-660 (-660 *6))) (-4 *6 (-972 *3 *5 *4)) (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *6)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 *7))))) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) (-5 *1 (-947 *4 *5 *6 *7)))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 *7))))) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) (-5 *1 (-947 *4 *5 *6 *7)))) (-4439 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 *3)) (-5 *1 (-947 *4 *5 *6 *3)) (-4 *3 (-972 *4 *6 *5)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1631 (-705 (-420 (-975 *4)))) (|:| |vec| (-660 (-420 (-975 *4)))) (|:| -3503 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -2559 (-660 (-1292 (-420 (-975 *4))))))) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-3150 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -2559 (-660 (-1292 (-420 (-975 *4))))))) (-5 *3 (-660 *7)) (-4 *4 (-13 (-318) (-148))) (-4 *7 (-972 *4 *6 *5)) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7)))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 *8))))) (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-787)))) (-2040 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-4 *7 (-972 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-660 *7)) (|:| |n0| (-660 *7)))) (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-318) (-148))) (-4 *2 (-972 *4 *6 *5)) (-5 *1 (-947 *4 *5 *6 *2)) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-705 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)))) (-4285 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-420 (-975 *4))) (-5 *1 (-947 *4 *5 *6 *3)) (-4 *3 (-972 *4 *6 *5)))) (-3761 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-705 *11)) (-5 *4 (-660 (-420 (-975 *8)))) (-5 *5 (-787)) (-5 *6 (-1183)) (-4 *8 (-13 (-318) (-148))) (-4 *11 (-972 *8 *10 *9)) (-4 *9 (-13 (-865) (-627 (-1201)))) (-4 *10 (-809)) (-5 *2 (-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 *11)) (|:| |neqzro| (-660 *11)) (|:| |wcond| (-660 (-975 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *8)))) (|:| -2559 (-660 (-1292 (-420 (-975 *8)))))))))) (|:| |rgsz| (-577)))) (-5 *1 (-947 *8 *9 *10 *11)) (-5 *7 (-577)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) (|:| |wcond| (-660 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -2559 (-660 (-1292 (-420 (-975 *4)))))))))) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *4 (-1183)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-972 *5 *7 *6)) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-944)) (-5 *5 (-1183)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *6 *7 *8 *9)))) (-3666 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *7 *8 *9 *10)))) (-3666 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 *10)) (-5 *5 (-944)) (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *7 *8 *9 *10)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-1183)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-1183)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *6 *7 *8 *9)))) (-3666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 *9)) (-5 *5 (-1183)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *6 *7 *8 *9)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-944)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *1 (-947 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) (|:| |wcond| (-660 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) (|:| -2559 (-660 (-1292 (-420 (-975 *6)))))))))) (-5 *1 (-947 *6 *7 *8 *9)))) (-3666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *5 (-944)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) (|:| |wcond| (-660 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) (|:| -2559 (-660 (-1292 (-420 (-975 *6)))))))))) (-5 *1 (-947 *6 *7 *8 *9)) (-5 *4 (-660 *9)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) (|:| |wcond| (-660 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -2559 (-660 (-1292 (-420 (-975 *4)))))))))) (-5 *1 (-947 *4 *5 *6 *7)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-660 (-1201))) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *1 (-947 *5 *6 *7 *8)))) (-3666 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) -(-10 -7 (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|) (-944))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)) (-944))) (-15 -3666 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-944))) (-15 -3666 ((-577) (-705 |#4|) (-660 |#4|) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-660 (-1201)) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-660 |#4|) (-944) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-660 (-1201)) (-944) (-1183))) (-15 -3666 ((-577) (-705 |#4|) (-944) (-1183))) (-15 -2245 ((-577) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -1934 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -3761 ((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))))))) (|:| |rgsz| (-577))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-787) (-1183) (-577))) (-15 -4285 ((-420 (-975 |#1|)) |#4|)) (-15 -4285 ((-705 (-420 (-975 |#1|))) (-705 |#4|))) (-15 -4285 ((-660 (-420 (-975 |#1|))) (-660 |#4|))) (-15 -3989 ((-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -3618 (|#4| (-975 |#1|))) (-15 -2040 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|))) (-15 -1720 ((-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))) (-705 |#4|) (-787))) (-15 -3150 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-660 |#4|))) (-15 -2823 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| -1631 (-705 (-420 (-975 |#1|)))) (|:| |vec| (-660 (-420 (-975 |#1|)))) (|:| -3503 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (-15 -4439 ((-660 |#4|) |#4|)) (-15 -4322 ((-787) (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -3986 ((-787) (-660 (-2 (|:| -3503 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -2024 ((-660 (-660 |#4|)) (-660 (-660 |#4|)))) (-15 -3833 ((-660 (-660 (-577))) (-577) (-577))) (-15 -2495 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -4320 ((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-705 |#4|) (-787))) (-15 -4178 ((-705 |#4|) (-705 |#4|) (-660 |#4|))) (-15 -3847 ((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -2559 (-660 (-1292 (-420 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-660 (-660 |#4|)) (-787) (-787) (-577))) (-15 -2484 (|#4| |#4|)) (-15 -2267 ((-112) (-660 |#4|))) (-15 -2267 ((-112) (-660 (-975 |#1|))))) -((-1571 (((-950) |#1| (-1201)) 17 T ELT) (((-950) |#1| (-1201) (-1119 (-228))) 21 T ELT)) (-3061 (((-950) |#1| |#1| (-1201) (-1119 (-228))) 19 T ELT) (((-950) |#1| (-1201) (-1119 (-228))) 15 T ELT))) -(((-948 |#1|) (-10 -7 (-15 -3061 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -3061 ((-950) |#1| |#1| (-1201) (-1119 (-228)))) (-15 -1571 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -1571 ((-950) |#1| (-1201)))) (-627 (-549))) (T -948)) -((-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) (-1571 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) (-3061 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) (-3061 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549)))))) -(-10 -7 (-15 -3061 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -3061 ((-950) |#1| |#1| (-1201) (-1119 (-228)))) (-15 -1571 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -1571 ((-950) |#1| (-1201)))) -((-1796 (($ $ (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 121 T ELT)) (-2816 (((-1119 (-228)) $) 64 T ELT)) (-2805 (((-1119 (-228)) $) 63 T ELT)) (-2788 (((-1119 (-228)) $) 62 T ELT)) (-2904 (((-660 (-660 (-228))) $) 69 T ELT)) (-1437 (((-1119 (-228)) $) 65 T ELT)) (-3143 (((-577) (-577)) 57 T ELT)) (-4418 (((-577) (-577)) 52 T ELT)) (-1606 (((-577) (-577)) 55 T ELT)) (-2795 (((-112) (-112)) 59 T ELT)) (-3005 (((-577)) 56 T ELT)) (-2256 (($ $ (-1119 (-228))) 124 T ELT) (($ $) 125 T ELT)) (-4205 (($ (-1 (-966 (-228)) (-228)) (-1119 (-228))) 131 T ELT) (($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 132 T ELT)) (-3061 (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228))) 134 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 135 T ELT) (($ $ (-1119 (-228))) 127 T ELT)) (-1806 (((-577)) 60 T ELT)) (-3021 (((-577)) 50 T ELT)) (-4275 (((-577)) 53 T ELT)) (-3874 (((-660 (-660 (-966 (-228)))) $) 151 T ELT)) (-3274 (((-112) (-112)) 61 T ELT)) (-3603 (((-880) $) 149 T ELT)) (-1380 (((-112)) 58 T ELT))) -(((-949) (-13 (-999) (-10 -8 (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ $ (-1119 (-228)))) (-15 -1796 ($ $ (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -2256 ($ $ (-1119 (-228)))) (-15 -2256 ($ $)) (-15 -1437 ((-1119 (-228)) $)) (-15 -2904 ((-660 (-660 (-228))) $)) (-15 -3021 ((-577))) (-15 -4418 ((-577) (-577))) (-15 -4275 ((-577))) (-15 -1606 ((-577) (-577))) (-15 -3005 ((-577))) (-15 -3143 ((-577) (-577))) (-15 -1380 ((-112))) (-15 -2795 ((-112) (-112))) (-15 -1806 ((-577))) (-15 -3274 ((-112) (-112)))))) (T -949)) -((-4205 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-4205 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-3061 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-3061 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-3061 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-1796 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-2256 (*1 *1 *1) (-5 *1 (-949))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-949)))) (-3021 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-4418 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-4275 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-1606 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3005 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3143 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-1380 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949)))) (-2795 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949)))) (-1806 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) -(-13 (-999) (-10 -8 (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ $ (-1119 (-228)))) (-15 -1796 ($ $ (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -2256 ($ $ (-1119 (-228)))) (-15 -2256 ($ $)) (-15 -1437 ((-1119 (-228)) $)) (-15 -2904 ((-660 (-660 (-228))) $)) (-15 -3021 ((-577))) (-15 -4418 ((-577) (-577))) (-15 -4275 ((-577))) (-15 -1606 ((-577) (-577))) (-15 -3005 ((-577))) (-15 -3143 ((-577) (-577))) (-15 -1380 ((-112))) (-15 -2795 ((-112) (-112))) (-15 -1806 ((-577))) (-15 -3274 ((-112) (-112))))) -((-1796 (($ $ (-1119 (-228))) 122 T ELT) (($ $ (-1119 (-228)) (-1119 (-228))) 123 T ELT)) (-2805 (((-1119 (-228)) $) 73 T ELT)) (-2788 (((-1119 (-228)) $) 72 T ELT)) (-1437 (((-1119 (-228)) $) 74 T ELT)) (-3267 (((-577) (-577)) 66 T ELT)) (-1410 (((-577) (-577)) 61 T ELT)) (-4068 (((-577) (-577)) 64 T ELT)) (-4095 (((-112) (-112)) 68 T ELT)) (-2145 (((-577)) 65 T ELT)) (-2256 (($ $ (-1119 (-228))) 126 T ELT) (($ $) 127 T ELT)) (-4205 (($ (-1 (-966 (-228)) (-228)) (-1119 (-228))) 141 T ELT) (($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 142 T ELT)) (-1571 (($ (-1 (-228) (-228)) (-1119 (-228))) 149 T ELT) (($ (-1 (-228) (-228))) 153 T ELT)) (-3061 (($ (-1 (-228) (-228)) (-1119 (-228))) 137 T ELT) (($ (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228))) 138 T ELT) (($ (-660 (-1 (-228) (-228))) (-1119 (-228))) 146 T ELT) (($ (-660 (-1 (-228) (-228))) (-1119 (-228)) (-1119 (-228))) 147 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228))) 139 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 140 T ELT) (($ $ (-1119 (-228))) 128 T ELT)) (-1782 (((-112) $) 69 T ELT)) (-2141 (((-577)) 70 T ELT)) (-3022 (((-577)) 59 T ELT)) (-2685 (((-577)) 62 T ELT)) (-3874 (((-660 (-660 (-966 (-228)))) $) 35 T ELT)) (-2125 (((-112) (-112)) 71 T ELT)) (-3603 (((-880) $) 167 T ELT)) (-1443 (((-112)) 67 T ELT))) -(((-950) (-13 (-978) (-10 -8 (-15 -3061 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)))) (-15 -3061 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -1571 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -1571 ($ (-1 (-228) (-228)))) (-15 -3061 ($ $ (-1119 (-228)))) (-15 -1782 ((-112) $)) (-15 -1796 ($ $ (-1119 (-228)))) (-15 -1796 ($ $ (-1119 (-228)) (-1119 (-228)))) (-15 -2256 ($ $ (-1119 (-228)))) (-15 -2256 ($ $)) (-15 -1437 ((-1119 (-228)) $)) (-15 -3022 ((-577))) (-15 -1410 ((-577) (-577))) (-15 -2685 ((-577))) (-15 -4068 ((-577) (-577))) (-15 -2145 ((-577))) (-15 -3267 ((-577) (-577))) (-15 -1443 ((-112))) (-15 -4095 ((-112) (-112))) (-15 -2141 ((-577))) (-15 -2125 ((-112) (-112)))))) (T -950)) -((-3061 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3061 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3061 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3061 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3061 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3061 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-4205 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-4205 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-1571 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-950)))) (-3061 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-950)))) (-1796 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-1796 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-2256 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-2256 (*1 *1 *1) (-5 *1 (-950))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-3022 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-2685 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-2145 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1443 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950)))) (-4095 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950)))) (-2141 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-2125 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) -(-13 (-978) (-10 -8 (-15 -3061 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)))) (-15 -3061 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3061 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -4205 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -1571 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -1571 ($ (-1 (-228) (-228)))) (-15 -3061 ($ $ (-1119 (-228)))) (-15 -1782 ((-112) $)) (-15 -1796 ($ $ (-1119 (-228)))) (-15 -1796 ($ $ (-1119 (-228)) (-1119 (-228)))) (-15 -2256 ($ $ (-1119 (-228)))) (-15 -2256 ($ $)) (-15 -1437 ((-1119 (-228)) $)) (-15 -3022 ((-577))) (-15 -1410 ((-577) (-577))) (-15 -2685 ((-577))) (-15 -4068 ((-577) (-577))) (-15 -2145 ((-577))) (-15 -3267 ((-577) (-577))) (-15 -1443 ((-112))) (-15 -4095 ((-112) (-112))) (-15 -2141 ((-577))) (-15 -2125 ((-112) (-112))))) -((-2983 (((-660 (-1119 (-228))) (-660 (-660 (-966 (-228))))) 34 T ELT))) -(((-951) (-10 -7 (-15 -2983 ((-660 (-1119 (-228))) (-660 (-660 (-966 (-228)))))))) (T -951)) -((-2983 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-660 (-1119 (-228)))) (-5 *1 (-951))))) -(-10 -7 (-15 -2983 ((-660 (-1119 (-228))) (-660 (-660 (-966 (-228))))))) -((-2266 ((|#2| |#2|) 28 T ELT)) (-2775 ((|#2| |#2|) 29 T ELT)) (-2609 ((|#2| |#2|) 27 T ELT)) (-2787 ((|#2| |#2| (-519)) 26 T ELT))) -(((-952 |#1| |#2|) (-10 -7 (-15 -2787 (|#2| |#2| (-519))) (-15 -2609 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2775 (|#2| |#2|))) (-1125) (-443 |#1|)) (T -952)) -((-2775 (*1 *2 *2) (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) (-2787 (*1 *2 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-1125)) (-5 *1 (-952 *4 *2)) (-4 *2 (-443 *4))))) -(-10 -7 (-15 -2787 (|#2| |#2| (-519))) (-15 -2609 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2775 (|#2| |#2|))) -((-2266 (((-327 (-577)) (-1201)) 16 T ELT)) (-2775 (((-327 (-577)) (-1201)) 14 T ELT)) (-2609 (((-327 (-577)) (-1201)) 12 T ELT)) (-2787 (((-327 (-577)) (-1201) (-519)) 19 T ELT))) -(((-953) (-10 -7 (-15 -2787 ((-327 (-577)) (-1201) (-519))) (-15 -2609 ((-327 (-577)) (-1201))) (-15 -2266 ((-327 (-577)) (-1201))) (-15 -2775 ((-327 (-577)) (-1201))))) (T -953)) -((-2775 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) (-5 *1 (-953))))) -(-10 -7 (-15 -2787 ((-327 (-577)) (-1201) (-519))) (-15 -2609 ((-327 (-577)) (-1201))) (-15 -2266 ((-327 (-577)) (-1201))) (-15 -2775 ((-327 (-577)) (-1201)))) -((-4359 (((-908 |#1| |#3|) |#2| (-911 |#1|) (-908 |#1| |#3|)) 25 T ELT)) (-2426 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13 T ELT))) -(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -2426 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4359 ((-908 |#1| |#3|) |#2| (-911 |#1|) (-908 |#1| |#3|)))) (-1125) (-905 |#1|) (-13 (-1125) (-1063 |#2|))) (T -954)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-13 (-1125) (-1063 *3))) (-4 *3 (-905 *5)) (-5 *1 (-954 *5 *3 *6)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1125) (-1063 *5))) (-4 *5 (-905 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-954 *4 *5 *6))))) -(-10 -7 (-15 -2426 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4359 ((-908 |#1| |#3|) |#2| (-911 |#1|) (-908 |#1| |#3|)))) -((-4359 (((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)) 30 T ELT))) -(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -4359 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-1125) (-13 (-569) (-905 |#1|)) (-13 (-443 |#2|) (-627 (-911 |#1|)) (-905 |#1|) (-1063 (-625 $)))) (T -955)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-13 (-443 *6) (-627 *4) (-905 *5) (-1063 (-625 $)))) (-5 *4 (-911 *5)) (-4 *6 (-13 (-569) (-905 *5))) (-5 *1 (-955 *5 *6 *3))))) -(-10 -7 (-15 -4359 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) -((-4359 (((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|)) 13 T ELT))) -(((-956 |#1|) (-10 -7 (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|)))) (-558)) (T -956)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 (-577) *3)) (-5 *4 (-911 (-577))) (-4 *3 (-558)) (-5 *1 (-956 *3))))) -(-10 -7 (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|)))) -((-4359 (((-908 |#1| |#2|) (-625 |#2|) (-911 |#1|) (-908 |#1| |#2|)) 57 T ELT))) -(((-957 |#1| |#2|) (-10 -7 (-15 -4359 ((-908 |#1| |#2|) (-625 |#2|) (-911 |#1|) (-908 |#1| |#2|)))) (-1125) (-13 (-1125) (-1063 (-625 $)) (-627 (-911 |#1|)) (-905 |#1|))) (T -957)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *6)) (-5 *3 (-625 *6)) (-4 *5 (-1125)) (-4 *6 (-13 (-1125) (-1063 (-625 $)) (-627 *4) (-905 *5))) (-5 *4 (-911 *5)) (-5 *1 (-957 *5 *6))))) -(-10 -7 (-15 -4359 ((-908 |#1| |#2|) (-625 |#2|) (-911 |#1|) (-908 |#1| |#2|)))) -((-4359 (((-904 |#1| |#2| |#3|) |#3| (-911 |#1|) (-904 |#1| |#2| |#3|)) 17 T ELT))) -(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -4359 ((-904 |#1| |#2| |#3|) |#3| (-911 |#1|) (-904 |#1| |#2| |#3|)))) (-1125) (-905 |#1|) (-682 |#2|)) (T -958)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-905 *5)) (-4 *3 (-682 *6)) (-5 *1 (-958 *5 *6 *3))))) -(-10 -7 (-15 -4359 ((-904 |#1| |#2| |#3|) |#3| (-911 |#1|) (-904 |#1| |#2| |#3|)))) -((-4359 (((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|)) 17 (|has| |#3| (-905 |#1|)) ELT) (((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|) (-1 (-908 |#1| |#5|) |#3| (-911 |#1|) (-908 |#1| |#5|))) 16 T ELT))) -(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4359 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|) (-1 (-908 |#1| |#5|) |#3| (-911 |#1|) (-908 |#1| |#5|)))) (IF (|has| |#3| (-905 |#1|)) (-15 -4359 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|))) |%noBranch|)) (-1125) (-809) (-865) (-13 (-1074) (-905 |#1|)) (-13 (-972 |#4| |#2| |#3|) (-627 (-911 |#1|)))) (T -959)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-13 (-972 *8 *6 *7) (-627 *4))) (-5 *4 (-911 *5)) (-4 *7 (-905 *5)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-13 (-1074) (-905 *5))) (-5 *1 (-959 *5 *6 *7 *8 *3)))) (-4359 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-908 *6 *3) *8 (-911 *6) (-908 *6 *3))) (-4 *8 (-865)) (-5 *2 (-908 *6 *3)) (-5 *4 (-911 *6)) (-4 *6 (-1125)) (-4 *3 (-13 (-972 *9 *7 *8) (-627 *4))) (-4 *7 (-809)) (-4 *9 (-13 (-1074) (-905 *6))) (-5 *1 (-959 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -4359 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|) (-1 (-908 |#1| |#5|) |#3| (-911 |#1|) (-908 |#1| |#5|)))) (IF (|has| |#3| (-905 |#1|)) (-15 -4359 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|))) |%noBranch|)) -((-1651 ((|#2| |#2| (-660 (-1 (-112) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-112) |#3|)) 13 T ELT))) -(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -1651 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1651 (|#2| |#2| (-660 (-1 (-112) |#3|))))) (-1125) (-443 |#1|) (-1242)) (T -960)) -((-1651 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) (-4 *4 (-1125)) (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4)))) (-1651 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1242)) (-4 *4 (-1125)) (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4))))) -(-10 -7 (-15 -1651 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1651 (|#2| |#2| (-660 (-1 (-112) |#3|))))) -((-1651 (((-327 (-577)) (-1201) (-660 (-1 (-112) |#1|))) 18 T ELT) (((-327 (-577)) (-1201) (-1 (-112) |#1|)) 15 T ELT))) -(((-961 |#1|) (-10 -7 (-15 -1651 ((-327 (-577)) (-1201) (-1 (-112) |#1|))) (-15 -1651 ((-327 (-577)) (-1201) (-660 (-1 (-112) |#1|))))) (-1242)) (T -961)) -((-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) (-5 *2 (-327 (-577))) (-5 *1 (-961 *5)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1242)) (-5 *2 (-327 (-577))) (-5 *1 (-961 *5))))) -(-10 -7 (-15 -1651 ((-327 (-577)) (-1201) (-1 (-112) |#1|))) (-15 -1651 ((-327 (-577)) (-1201) (-660 (-1 (-112) |#1|))))) -((-4359 (((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)) 25 T ELT))) -(((-962 |#1| |#2| |#3|) (-10 -7 (-15 -4359 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-1125) (-13 (-569) (-905 |#1|) (-627 (-911 |#1|))) (-1017 |#2|)) (T -962)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-1017 *6)) (-4 *6 (-13 (-569) (-905 *5) (-627 *4))) (-5 *4 (-911 *5)) (-5 *1 (-962 *5 *6 *3))))) -(-10 -7 (-15 -4359 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) -((-4359 (((-908 |#1| (-1201)) (-1201) (-911 |#1|) (-908 |#1| (-1201))) 18 T ELT))) -(((-963 |#1|) (-10 -7 (-15 -4359 ((-908 |#1| (-1201)) (-1201) (-911 |#1|) (-908 |#1| (-1201))))) (-1125)) (T -963)) -((-4359 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 (-1201))) (-5 *3 (-1201)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-5 *1 (-963 *5))))) -(-10 -7 (-15 -4359 ((-908 |#1| (-1201)) (-1201) (-911 |#1|) (-908 |#1| (-1201))))) -((-3125 (((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) 34 T ELT)) (-4359 (((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-1 |#3| (-660 |#3|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) 33 T ELT))) -(((-964 |#1| |#2| |#3|) (-10 -7 (-15 -4359 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-1 |#3| (-660 |#3|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-15 -3125 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))))) (-1125) (-1074) (-13 (-1074) (-627 (-911 |#1|)) (-1063 |#2|))) (T -964)) -((-3125 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-911 *6))) (-5 *5 (-1 (-908 *6 *8) *8 (-911 *6) (-908 *6 *8))) (-4 *6 (-1125)) (-4 *8 (-13 (-1074) (-627 (-911 *6)) (-1063 *7))) (-5 *2 (-908 *6 *8)) (-4 *7 (-1074)) (-5 *1 (-964 *6 *7 *8)))) (-4359 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-660 (-911 *7))) (-5 *5 (-1 *9 (-660 *9))) (-5 *6 (-1 (-908 *7 *9) *9 (-911 *7) (-908 *7 *9))) (-4 *7 (-1125)) (-4 *9 (-13 (-1074) (-627 (-911 *7)) (-1063 *8))) (-5 *2 (-908 *7 *9)) (-5 *3 (-660 *9)) (-4 *8 (-1074)) (-5 *1 (-964 *7 *8 *9))))) -(-10 -7 (-15 -4359 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-1 |#3| (-660 |#3|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-15 -3125 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))))) -((-1927 (((-1197 (-420 (-577))) (-577)) 79 T ELT)) (-3191 (((-1197 (-577)) (-577)) 82 T ELT)) (-3207 (((-1197 (-577)) (-577)) 76 T ELT)) (-1371 (((-577) (-1197 (-577))) 72 T ELT)) (-2766 (((-1197 (-420 (-577))) (-577)) 65 T ELT)) (-4134 (((-1197 (-577)) (-577)) 49 T ELT)) (-2306 (((-1197 (-577)) (-577)) 84 T ELT)) (-2382 (((-1197 (-577)) (-577)) 83 T ELT)) (-3709 (((-1197 (-420 (-577))) (-577)) 67 T ELT))) -(((-965) (-10 -7 (-15 -3709 ((-1197 (-420 (-577))) (-577))) (-15 -2382 ((-1197 (-577)) (-577))) (-15 -2306 ((-1197 (-577)) (-577))) (-15 -4134 ((-1197 (-577)) (-577))) (-15 -2766 ((-1197 (-420 (-577))) (-577))) (-15 -1371 ((-577) (-1197 (-577)))) (-15 -3207 ((-1197 (-577)) (-577))) (-15 -3191 ((-1197 (-577)) (-577))) (-15 -1927 ((-1197 (-420 (-577))) (-577))))) (T -965)) -((-1927 (*1 *2 *3) (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3191 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3207 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-577)) (-5 *1 (-965)))) (-2766 (*1 *2 *3) (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577)))) (-4134 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-2306 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-2382 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) -(-10 -7 (-15 -3709 ((-1197 (-420 (-577))) (-577))) (-15 -2382 ((-1197 (-577)) (-577))) (-15 -2306 ((-1197 (-577)) (-577))) (-15 -4134 ((-1197 (-577)) (-577))) (-15 -2766 ((-1197 (-420 (-577))) (-577))) (-15 -1371 ((-577) (-1197 (-577)))) (-15 -3207 ((-1197 (-577)) (-577))) (-15 -3191 ((-1197 (-577)) (-577))) (-15 -1927 ((-1197 (-420 (-577))) (-577)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3832 (($ (-787)) NIL (|has| |#1| (-23)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-2820 (($ (-660 |#1|)) 9 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3588 (((-705 |#1|) $ $) NIL (|has| |#1| (-1074)) ELT)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2967 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3762 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))) ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1987 (($ $ (-660 |#1|)) 25 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 18 T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1074)) ELT)) (-3941 (((-944) $) 13 T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1598 (($ $ $) 23 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT) (($ (-660 |#1|)) 14 T ELT)) (-3614 (($ (-660 |#1|)) NIL T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3042 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-742)) ELT) (($ $ |#1|) NIL (|has| |#1| (-742)) ELT)) (-3501 (((-787) $) 11 (|has| $ (-6 -4470)) ELT))) -(((-966 |#1|) (-1005 |#1|) (-1074)) (T -966)) -NIL -(-1005 |#1|) -((-2283 (((-494 |#1| |#2|) (-975 |#2|)) 22 T ELT)) (-2481 (((-254 |#1| |#2|) (-975 |#2|)) 35 T ELT)) (-1983 (((-975 |#2|) (-494 |#1| |#2|)) 27 T ELT)) (-2448 (((-254 |#1| |#2|) (-494 |#1| |#2|)) 57 T ELT)) (-3923 (((-975 |#2|) (-254 |#1| |#2|)) 32 T ELT)) (-3750 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 48 T ELT))) -(((-967 |#1| |#2|) (-10 -7 (-15 -3750 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -2448 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -2283 ((-494 |#1| |#2|) (-975 |#2|))) (-15 -1983 ((-975 |#2|) (-494 |#1| |#2|))) (-15 -3923 ((-975 |#2|) (-254 |#1| |#2|))) (-15 -2481 ((-254 |#1| |#2|) (-975 |#2|)))) (-660 (-1201)) (-1074)) (T -967)) -((-2481 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-254 *4 *5)) (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201))))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-494 *4 *5)) (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201))))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-254 *4 *5)) (-5 *1 (-967 *4 *5)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-494 *4 *5)) (-5 *1 (-967 *4 *5))))) -(-10 -7 (-15 -3750 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -2448 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -2283 ((-494 |#1| |#2|) (-975 |#2|))) (-15 -1983 ((-975 |#2|) (-494 |#1| |#2|))) (-15 -3923 ((-975 |#2|) (-254 |#1| |#2|))) (-15 -2481 ((-254 |#1| |#2|) (-975 |#2|)))) -((-2154 (((-660 |#2|) |#2| |#2|) 10 T ELT)) (-3990 (((-787) (-660 |#1|)) 48 (|has| |#1| (-864)) ELT)) (-3752 (((-660 |#2|) |#2|) 11 T ELT)) (-2430 (((-787) (-660 |#1|) (-577) (-577)) 52 (|has| |#1| (-864)) ELT)) (-1367 ((|#1| |#2|) 38 (|has| |#1| (-864)) ELT))) -(((-968 |#1| |#2|) (-10 -7 (-15 -2154 ((-660 |#2|) |#2| |#2|)) (-15 -3752 ((-660 |#2|) |#2|)) (IF (|has| |#1| (-864)) (PROGN (-15 -1367 (|#1| |#2|)) (-15 -3990 ((-787) (-660 |#1|))) (-15 -2430 ((-787) (-660 |#1|) (-577) (-577)))) |%noBranch|)) (-375) (-1268 |#1|)) (T -968)) -((-2430 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-577)) (-4 *5 (-864)) (-4 *5 (-375)) (-5 *2 (-787)) (-5 *1 (-968 *5 *6)) (-4 *6 (-1268 *5)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-864)) (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-968 *4 *5)) (-4 *5 (-1268 *4)))) (-1367 (*1 *2 *3) (-12 (-4 *2 (-375)) (-4 *2 (-864)) (-5 *1 (-968 *2 *3)) (-4 *3 (-1268 *2)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1268 *4)))) (-2154 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -2154 ((-660 |#2|) |#2| |#2|)) (-15 -3752 ((-660 |#2|) |#2|)) (IF (|has| |#1| (-864)) (PROGN (-15 -1367 (|#1| |#2|)) (-15 -3990 ((-787) (-660 |#1|))) (-15 -2430 ((-787) (-660 |#1|) (-577) (-577)))) |%noBranch|)) -((-2124 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 19 T ELT))) -(((-969 |#1| |#2|) (-10 -7 (-15 -2124 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1074) (-1074)) (T -969)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-975 *6)) (-5 *1 (-969 *5 *6))))) -(-10 -7 (-15 -2124 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) -((-3024 (((-1265 |#1| (-975 |#2|)) (-975 |#2|) (-1288 |#1|)) 18 T ELT))) -(((-970 |#1| |#2|) (-10 -7 (-15 -3024 ((-1265 |#1| (-975 |#2|)) (-975 |#2|) (-1288 |#1|)))) (-1201) (-1074)) (T -970)) -((-3024 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 *5)) (-14 *5 (-1201)) (-4 *6 (-1074)) (-5 *2 (-1265 *5 (-975 *6))) (-5 *1 (-970 *5 *6)) (-5 *3 (-975 *6))))) -(-10 -7 (-15 -3024 ((-1265 |#1| (-975 |#2|)) (-975 |#2|) (-1288 |#1|)))) -((-3036 (((-787) $) 88 T ELT) (((-787) $ (-660 |#4|)) 93 T ELT)) (-2001 (($ $) 203 T ELT)) (-3836 (((-431 $) $) 195 T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 141 T ELT)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) 74 T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-2653 (($ $ $ |#4|) 95 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 131 T ELT) (((-705 |#2|) (-705 $)) 121 T ELT)) (-2308 (($ $) 210 T ELT) (($ $ |#4|) 213 T ELT)) (-3378 (((-660 $) $) 77 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 229 T ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 222 T ELT)) (-4242 (((-660 $) $) 34 T ELT)) (-3180 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-787)) NIL T ELT) (($ $ (-660 |#4|) (-660 (-787))) 71 T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |#4|) 192 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 52 T ELT)) (-3910 (((-3 (-660 $) "failed") $) 39 T ELT)) (-1966 (((-3 (-2 (|:| |var| |#4|) (|:| -1527 (-787))) "failed") $) 57 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 134 T ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 147 T ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 145 T ELT)) (-3056 (((-431 $) $) 165 T ELT)) (-3273 (($ $ (-660 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-660 |#4|) (-660 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-660 |#4|) (-660 $)) NIL T ELT)) (-4447 (($ $ |#4|) 97 T ELT)) (-2176 (((-911 (-391)) $) 243 T ELT) (((-911 (-577)) $) 236 T ELT) (((-549) $) 251 T ELT)) (-2240 ((|#2| $) NIL T ELT) (($ $ |#4|) 205 T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 184 T ELT)) (-3421 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-787)) 62 T ELT) (($ $ (-660 |#4|) (-660 (-787))) 69 T ELT)) (-3907 (((-3 $ "failed") $) 186 T ELT)) (-2726 (((-112) $ $) 216 T ELT))) -(((-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -2001 (|#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -1761 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2331 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2349 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -2308 (|#1| |#1| |#4|)) (-15 -2240 (|#1| |#1| |#4|)) (-15 -4447 (|#1| |#1| |#4|)) (-15 -2653 (|#1| |#1| |#1| |#4|)) (-15 -3378 ((-660 |#1|) |#1|)) (-15 -3036 ((-787) |#1| (-660 |#4|))) (-15 -3036 ((-787) |#1|)) (-15 -1966 ((-3 (-2 (|:| |var| |#4|) (|:| -1527 (-787))) "failed") |#1|)) (-15 -3484 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3910 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3180 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3180 (|#1| |#1| |#4| (-787))) (-15 -4279 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1| |#4|)) (-15 -4242 ((-660 |#1|) |#1|)) (-15 -3421 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3421 (|#1| |#1| |#4| (-787))) (-15 -2850 ((-705 |#2|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2155 (|#4| |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#4| |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#4| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3180 (|#1| |#2| |#3|)) (-15 -3421 (|#2| |#1| |#3|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2726 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4|) (-1074) (-809) (-865)) (T -971)) -NIL -(-10 -8 (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -2001 (|#1| |#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -1761 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2331 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2349 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -2308 (|#1| |#1| |#4|)) (-15 -2240 (|#1| |#1| |#4|)) (-15 -4447 (|#1| |#1| |#4|)) (-15 -2653 (|#1| |#1| |#1| |#4|)) (-15 -3378 ((-660 |#1|) |#1|)) (-15 -3036 ((-787) |#1| (-660 |#4|))) (-15 -3036 ((-787) |#1|)) (-15 -1966 ((-3 (-2 (|:| |var| |#4|) (|:| -1527 (-787))) "failed") |#1|)) (-15 -3484 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3910 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3180 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3180 (|#1| |#1| |#4| (-787))) (-15 -4279 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1| |#4|)) (-15 -4242 ((-660 |#1|) |#1|)) (-15 -3421 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3421 (|#1| |#1| |#4| (-787))) (-15 -2850 ((-705 |#2|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2155 (|#4| |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#4| |#1|)) (-15 -3273 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3273 (|#1| |#1| |#4| |#2|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3180 (|#1| |#2| |#3|)) (-15 -3421 (|#2| |#1| |#3|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -2726 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 |#3|) $) 113 T ELT)) (-3024 (((-1197 $) $ |#3|) 128 T ELT) (((-1197 |#1|) $) 127 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 91 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) 115 T ELT) (((-787) $ (-660 |#3|)) 114 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)) ELT)) (-2001 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT)) (-2155 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1063 (-577))) ELT) ((|#3| $) 144 T ELT)) (-2653 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT)) (-3391 (($ $) 161 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137 T ELT) (((-705 |#1|) (-705 $)) 136 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2308 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) 112 T ELT)) (-2182 (((-112) $) 99 (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| |#2| $) 179 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| |#3| (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| |#3| (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-3306 (((-112) $) 35 T ELT)) (-2011 (((-787) $) 176 T ELT)) (-3194 (($ (-1197 |#1|) |#3|) 120 T ELT) (($ (-1197 $) |#3|) 119 T ELT)) (-4242 (((-660 $) $) 129 T ELT)) (-2148 (((-112) $) 159 T ELT)) (-3180 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-787)) 122 T ELT) (($ $ (-660 |#3|) (-660 (-787))) 121 T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |#3|) 123 T ELT)) (-2643 ((|#2| $) 177 T ELT) (((-787) $ |#3|) 125 T ELT) (((-660 (-787)) $ (-660 |#3|)) 124 T ELT)) (-4373 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-4038 (((-3 |#3| "failed") $) 126 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135 T ELT) (((-705 |#1|) (-1292 $)) 134 T ELT)) (-3354 (($ $) 156 T ELT)) (-3365 ((|#1| $) 155 T ELT)) (-3508 (($ (-660 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 117 T ELT)) (-3910 (((-3 (-660 $) "failed") $) 118 T ELT)) (-1966 (((-3 (-2 (|:| |var| |#3|) (|:| -1527 (-787))) "failed") $) 116 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3327 (((-112) $) 173 T ELT)) (-3340 ((|#1| $) 174 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) 102 (|has| |#1| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-660 $) (-660 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-660 |#3|) (-660 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-660 |#3|) (-660 $)) 145 T ELT)) (-4447 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 |#3|) (-660 (-787))) 44 T ELT) (($ $ |#3| (-787)) 43 T ELT) (($ $ (-660 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3616 ((|#2| $) 157 T ELT) (((-787) $ |#3|) 133 T ELT) (((-660 (-787)) $ (-660 |#3|)) 132 T ELT)) (-2176 (((-911 (-391)) $) 85 (-12 (|has| |#3| (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) 84 (-12 (|has| |#3| (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ $) 88 (|has| |#1| (-569)) ELT) (($ (-420 (-577))) 81 (-2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-4198 (((-660 |#1|) $) 175 T ELT)) (-3421 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-787)) 131 T ELT) (($ $ (-660 |#3|) (-660 (-787))) 130 T ELT)) (-3907 (((-3 $ "failed") $) 82 (-2811 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 32 T CONST)) (-3528 (($ $ $ (-787)) 180 (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-660 |#3|) (-660 (-787))) 47 T ELT) (($ $ |#3| (-787)) 46 T ELT) (($ $ (-660 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-972 |#1| |#2| |#3|) (-141) (-1074) (-809) (-865)) (T -972)) -((-2308 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-3616 (*1 *2 *1 *3) (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-787)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) (-3421 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *2 (-865)))) (-3421 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) (-4242 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-3024 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-1197 *1)) (-4 *1 (-972 *4 *5 *3)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-1197 *3)))) (-4038 (*1 *2 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-2643 (*1 *2 *1 *3) (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-787)))) (-2643 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) (-4279 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-972 *4 *5 *3)))) (-3180 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *2 (-865)))) (-3180 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) (-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *4)) (-4 *4 (-1074)) (-4 *1 (-972 *4 *5 *3)) (-4 *5 (-809)) (-4 *3 (-865)))) (-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)))) (-3910 (*1 *2 *1) (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-3484 (*1 *2 *1) (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-1966 (*1 *2 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| |var| *5) (|:| -1527 (-787)))))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-787)))) (-3036 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *5)))) (-3378 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-2653 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-174)))) (-4447 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-174)))) (-2240 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-465)))) (-2308 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-465)))) (-2001 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-3836 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-431 *1)) (-4 *1 (-972 *3 *4 *5))))) -(-13 (-921 |t#3|) (-337 |t#1| |t#2|) (-320 $) (-527 |t#3| |t#1|) (-527 |t#3| $) (-1063 |t#3|) (-389 |t#1|) (-10 -8 (-15 -3616 ((-787) $ |t#3|)) (-15 -3616 ((-660 (-787)) $ (-660 |t#3|))) (-15 -3421 ($ $ |t#3| (-787))) (-15 -3421 ($ $ (-660 |t#3|) (-660 (-787)))) (-15 -4242 ((-660 $) $)) (-15 -3024 ((-1197 $) $ |t#3|)) (-15 -3024 ((-1197 |t#1|) $)) (-15 -4038 ((-3 |t#3| "failed") $)) (-15 -2643 ((-787) $ |t#3|)) (-15 -2643 ((-660 (-787)) $ (-660 |t#3|))) (-15 -4279 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |t#3|)) (-15 -3180 ($ $ |t#3| (-787))) (-15 -3180 ($ $ (-660 |t#3|) (-660 (-787)))) (-15 -3194 ($ (-1197 |t#1|) |t#3|)) (-15 -3194 ($ (-1197 $) |t#3|)) (-15 -3910 ((-3 (-660 $) "failed") $)) (-15 -3484 ((-3 (-660 $) "failed") $)) (-15 -1966 ((-3 (-2 (|:| |var| |t#3|) (|:| -1527 (-787))) "failed") $)) (-15 -3036 ((-787) $)) (-15 -3036 ((-787) $ (-660 |t#3|))) (-15 -3206 ((-660 |t#3|) $)) (-15 -3378 ((-660 $) $)) (IF (|has| |t#1| (-627 (-549))) (IF (|has| |t#3| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-627 (-911 (-577)))) (IF (|has| |t#3| (-627 (-911 (-577)))) (-6 (-627 (-911 (-577)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-627 (-911 (-391)))) (IF (|has| |t#3| (-627 (-911 (-391)))) (-6 (-627 (-911 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-905 (-577))) (IF (|has| |t#3| (-905 (-577))) (-6 (-905 (-577))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-905 (-391))) (IF (|has| |t#3| (-905 (-391))) (-6 (-905 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2653 ($ $ $ |t#3|)) (-15 -4447 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-6 (-465)) (-15 -2240 ($ $ |t#3|)) (-15 -2308 ($ $)) (-15 -2308 ($ $ |t#3|)) (-15 -3836 ((-431 $) $)) (-15 -2001 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4468)) (-6 -4468) |%noBranch|) (IF (|has| |t#1| (-932)) (-6 (-932)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 |#3|) . T) ((-629 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) ((-301) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2811 (|has| |#1| (-932)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-742) . T) ((-915 $ |#3|) . T) ((-921 |#3|) . T) ((-923 |#3|) . T) ((-905 (-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) ((-932) |has| |#1| (-932)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1063 |#3|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-932))) -((-3206 (((-660 |#2|) |#5|) 40 T ELT)) (-3024 (((-1197 |#5|) |#5| |#2| (-1197 |#5|)) 23 T ELT) (((-420 (-1197 |#5|)) |#5| |#2|) 16 T ELT)) (-3194 ((|#5| (-420 (-1197 |#5|)) |#2|) 30 T ELT)) (-4038 (((-3 |#2| "failed") |#5|) 71 T ELT)) (-3484 (((-3 (-660 |#5|) "failed") |#5|) 65 T ELT)) (-2998 (((-3 (-2 (|:| |val| |#5|) (|:| -1527 (-577))) "failed") |#5|) 53 T ELT)) (-3910 (((-3 (-660 |#5|) "failed") |#5|) 67 T ELT)) (-1966 (((-3 (-2 (|:| |var| |#2|) (|:| -1527 (-577))) "failed") |#5|) 57 T ELT))) -(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3206 ((-660 |#2|) |#5|)) (-15 -4038 ((-3 |#2| "failed") |#5|)) (-15 -3024 ((-420 (-1197 |#5|)) |#5| |#2|)) (-15 -3194 (|#5| (-420 (-1197 |#5|)) |#2|)) (-15 -3024 ((-1197 |#5|) |#5| |#2| (-1197 |#5|))) (-15 -3910 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -3484 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -1966 ((-3 (-2 (|:| |var| |#2|) (|:| -1527 (-577))) "failed") |#5|)) (-15 -2998 ((-3 (-2 (|:| |val| |#5|) (|:| -1527 (-577))) "failed") |#5|))) (-809) (-865) (-1074) (-972 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3603 ($ |#4|)) (-15 -2781 (|#4| $)) (-15 -2797 (|#4| $))))) (T -973)) -((-2998 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1527 (-577)))) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))))) (-1966 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1527 (-577)))) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))))) (-3484 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))))) (-3910 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))))) (-3024 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))) (-4 *7 (-972 *6 *5 *4)) (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) (-5 *1 (-973 *5 *4 *6 *7 *3)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1197 *2))) (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) (-4 *2 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))) (-5 *1 (-973 *5 *4 *6 *7 *2)) (-4 *7 (-972 *6 *5 *4)))) (-3024 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-420 (-1197 *3))) (-5 *1 (-973 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))))) (-4038 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-1074)) (-4 *6 (-972 *5 *4 *2)) (-4 *2 (-865)) (-5 *1 (-973 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *6)) (-15 -2781 (*6 $)) (-15 -2797 (*6 $))))))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *5)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $)))))))) -(-10 -7 (-15 -3206 ((-660 |#2|) |#5|)) (-15 -4038 ((-3 |#2| "failed") |#5|)) (-15 -3024 ((-420 (-1197 |#5|)) |#5| |#2|)) (-15 -3194 (|#5| (-420 (-1197 |#5|)) |#2|)) (-15 -3024 ((-1197 |#5|) |#5| |#2| (-1197 |#5|))) (-15 -3910 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -3484 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -1966 ((-3 (-2 (|:| |var| |#2|) (|:| -1527 (-577))) "failed") |#5|)) (-15 -2998 ((-3 (-2 (|:| |val| |#5|) (|:| -1527 (-577))) "failed") |#5|))) -((-2124 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-974 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2124 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-809) (-865) (-1074) (-972 |#3| |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -3031 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787)))))) (T -974)) -((-2124 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-865)) (-4 *8 (-1074)) (-4 *6 (-809)) (-4 *2 (-13 (-1125) (-10 -8 (-15 -3031 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787)))))) (-5 *1 (-974 *6 *7 *8 *5 *2)) (-4 *5 (-972 *8 *6 *7))))) -(-10 -7 (-15 -2124 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1201)) $) 16 T ELT)) (-3024 (((-1197 $) $ (-1201)) 21 T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-1201))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 8 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-1201) "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-1201) $) NIL T ELT)) (-2653 (($ $ $ (-1201)) NIL (|has| |#1| (-174)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1201)) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-544 (-1201)) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1201) (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1201) (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-3194 (($ (-1197 |#1|) (-1201)) NIL T ELT) (($ (-1197 $) (-1201)) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-544 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-1201)) NIL T ELT)) (-2643 (((-544 (-1201)) $) NIL T ELT) (((-787) $ (-1201)) NIL T ELT) (((-660 (-787)) $ (-660 (-1201))) NIL T ELT)) (-4373 (($ (-1 (-544 (-1201)) (-544 (-1201))) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4038 (((-3 (-1201) "failed") $) 19 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-1201)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-4129 (($ $ (-1201)) 29 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1201) |#1|) NIL T ELT) (($ $ (-660 (-1201)) (-660 |#1|)) NIL T ELT) (($ $ (-1201) $) NIL T ELT) (($ $ (-660 (-1201)) (-660 $)) NIL T ELT)) (-4447 (($ $ (-1201)) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT)) (-3616 (((-544 (-1201)) $) NIL T ELT) (((-787) $ (-1201)) NIL T ELT) (((-660 (-787)) $ (-660 (-1201))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-1201) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1201) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1201) (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1201)) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) 25 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1201)) 27 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-544 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-975 |#1|) (-13 (-972 |#1| (-544 (-1201)) (-1201)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1201))) |%noBranch|))) (-1074)) (T -975)) -((-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074))))) -(-13 (-972 |#1| (-544 (-1201)) (-1201)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1201))) |%noBranch|))) -((-1589 (((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) |#3| (-787)) 49 T ELT)) (-3197 (((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-787)) 44 T ELT)) (-2701 (((-2 (|:| -1527 (-787)) (|:| -2940 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-787)) 65 T ELT)) (-3232 (((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) |#5| (-787)) 74 (|has| |#3| (-465)) ELT))) -(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1589 ((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) |#3| (-787))) (-15 -3197 ((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-787))) (IF (|has| |#3| (-465)) (-15 -3232 ((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) |#5| (-787))) |%noBranch|) (-15 -2701 ((-2 (|:| -1527 (-787)) (|:| -2940 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-787)))) (-809) (-865) (-569) (-972 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3603 ($ |#4|)) (-15 -2781 (|#4| $)) (-15 -2797 (|#4| $))))) (T -976)) -((-2701 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) (-4 *3 (-972 *7 *5 *6)) (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *3) (|:| |radicand| (-660 *3)))) (-5 *1 (-976 *5 *6 *7 *3 *8)) (-5 *4 (-787)) (-4 *8 (-13 (-375) (-10 -8 (-15 -3603 ($ *3)) (-15 -2781 (*3 $)) (-15 -2797 (*3 $))))))) (-3232 (*1 *2 *3 *4) (-12 (-4 *7 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) (-4 *8 (-972 *7 *5 *6)) (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *3) (|:| |radicand| *3))) (-5 *1 (-976 *5 *6 *7 *8 *3)) (-5 *4 (-787)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3603 ($ *8)) (-15 -2781 (*8 $)) (-15 -2797 (*8 $))))))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) (-4 *8 (-972 *7 *5 *6)) (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *9) (|:| |radicand| *9))) (-5 *1 (-976 *5 *6 *7 *8 *9)) (-5 *4 (-787)) (-4 *9 (-13 (-375) (-10 -8 (-15 -3603 ($ *8)) (-15 -2781 (*8 $)) (-15 -2797 (*8 $))))))) (-1589 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-569)) (-4 *7 (-972 *3 *5 *6)) (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *8) (|:| |radicand| *8))) (-5 *1 (-976 *5 *6 *3 *7 *8)) (-5 *4 (-787)) (-4 *8 (-13 (-375) (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $)))))))) -(-10 -7 (-15 -1589 ((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) |#3| (-787))) (-15 -3197 ((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-787))) (IF (|has| |#3| (-465)) (-15 -3232 ((-2 (|:| -1527 (-787)) (|:| -2940 |#5|) (|:| |radicand| |#5|)) |#5| (-787))) |%noBranch|) (-15 -2701 ((-2 (|:| -1527 (-787)) (|:| -2940 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-787)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2793 (($ (-1145)) 8 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 15 T ELT) (((-1145) $) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 11 T ELT))) -(((-977) (-13 (-1125) (-626 (-1145)) (-10 -8 (-15 -2793 ($ (-1145)))))) (T -977)) -((-2793 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-977))))) -(-13 (-1125) (-626 (-1145)) (-10 -8 (-15 -2793 ($ (-1145))))) -((-2805 (((-1119 (-228)) $) 8 T ELT)) (-2788 (((-1119 (-228)) $) 9 T ELT)) (-3874 (((-660 (-660 (-966 (-228)))) $) 10 T ELT)) (-3603 (((-880) $) 6 T ELT))) -(((-978) (-141)) (T -978)) -((-3874 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-660 (-660 (-966 (-228))))))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228))))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228)))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3874 ((-660 (-660 (-966 (-228)))) $)) (-15 -2788 ((-1119 (-228)) $)) (-15 -2805 ((-1119 (-228)) $)))) -(((-626 (-880)) . T)) -((-1383 (((-3 (-705 |#1|) "failed") |#2| (-944)) 18 T ELT))) -(((-979 |#1| |#2|) (-10 -7 (-15 -1383 ((-3 (-705 |#1|) "failed") |#2| (-944)))) (-569) (-672 |#1|)) (T -979)) -((-1383 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-944)) (-4 *5 (-569)) (-5 *2 (-705 *5)) (-5 *1 (-979 *5 *3)) (-4 *3 (-672 *5))))) -(-10 -7 (-15 -1383 ((-3 (-705 |#1|) "failed") |#2| (-944)))) -((-1979 (((-981 |#2|) (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|) 16 T ELT)) (-2498 ((|#2| (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|) 18 T ELT)) (-2124 (((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)) 13 T ELT))) -(((-980 |#1| |#2|) (-10 -7 (-15 -1979 ((-981 |#2|) (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -2124 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)))) (-1242) (-1242)) (T -980)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-981 *6)) (-5 *1 (-980 *5 *6)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-980 *5 *2)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-981 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-981 *5)) (-5 *1 (-980 *6 *5))))) -(-10 -7 (-15 -1979 ((-981 |#2|) (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -2124 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) |#1|) 19 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 18 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 16 T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) |#1|) 15 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) 11 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) 20 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 17 T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 21 T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 14 T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3501 (((-787) $) 8 (|has| $ (-6 -4470)) ELT))) -(((-981 |#1|) (-19 |#1|) (-1242)) (T -981)) +((-1888 ((|#2| (-665 |#1|) (-665 |#1|)) 28 T ELT))) +(((-950 |#1| |#2|) (-10 -7 (-15 -1888 (|#2| (-665 |#1|) (-665 |#1|)))) (-375) (-1273 |#1|)) (T -950)) +((-1888 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-4 *2 (-1273 *4)) (-5 *1 (-950 *4 *2))))) +(-10 -7 (-15 -1888 (|#2| (-665 |#1|) (-665 |#1|)))) +((-3044 (((-1202 |#2|) (-665 |#2|) (-665 |#2|)) 17 T ELT) (((-1270 |#1| |#2|) (-1270 |#1| |#2|) (-665 |#2|) (-665 |#2|)) 13 T ELT))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3044 ((-1270 |#1| |#2|) (-1270 |#1| |#2|) (-665 |#2|) (-665 |#2|))) (-15 -3044 ((-1202 |#2|) (-665 |#2|) (-665 |#2|)))) (-1206) (-375)) (T -951)) +((-3044 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-375)) (-5 *2 (-1202 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-1206)))) (-3044 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1270 *4 *5)) (-5 *3 (-665 *5)) (-14 *4 (-1206)) (-4 *5 (-375)) (-5 *1 (-951 *4 *5))))) +(-10 -7 (-15 -3044 ((-1270 |#1| |#2|) (-1270 |#1| |#2|) (-665 |#2|) (-665 |#2|))) (-15 -3044 ((-1202 |#2|) (-665 |#2|) (-665 |#2|)))) +((-2089 (((-577) (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188)) 174 T ELT)) (-2701 ((|#4| |#4|) 193 T ELT)) (-2518 (((-665 (-420 (-980 |#1|))) (-665 (-1206))) 146 T ELT)) (-1380 (((-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-665 (-665 |#4|)) (-792) (-792) (-577)) 88 T ELT)) (-1681 (((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-665 |#4|)) 69 T ELT)) (-3562 (((-710 |#4|) (-710 |#4|) (-665 |#4|)) 65 T ELT)) (-4310 (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188)) 186 T ELT)) (-2248 (((-577) (-710 |#4|) (-949) (-1188)) 166 T ELT) (((-577) (-710 |#4|) (-665 (-1206)) (-949) (-1188)) 165 T ELT) (((-577) (-710 |#4|) (-665 |#4|) (-949) (-1188)) 164 T ELT) (((-577) (-710 |#4|) (-1188)) 154 T ELT) (((-577) (-710 |#4|) (-665 (-1206)) (-1188)) 153 T ELT) (((-577) (-710 |#4|) (-665 |#4|) (-1188)) 152 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-949)) 151 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)) (-949)) 150 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|) (-949)) 149 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|)) 148 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206))) 147 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|)) 143 T ELT)) (-1970 ((|#4| (-980 |#1|)) 80 T ELT)) (-3811 (((-112) (-665 |#4|) (-665 (-665 |#4|))) 190 T ELT)) (-3123 (((-665 (-665 (-577))) (-577) (-577)) 159 T ELT)) (-4221 (((-665 (-665 |#4|)) (-665 (-665 |#4|))) 106 T ELT)) (-1580 (((-792) (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|))))) 100 T ELT)) (-4108 (((-792) (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|))))) 99 T ELT)) (-1395 (((-112) (-665 (-980 |#1|))) 19 T ELT) (((-112) (-665 |#4|)) 15 T ELT)) (-2914 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-665 |#4|)) (|:| |n0| (-665 |#4|))) (-665 |#4|) (-665 |#4|)) 84 T ELT)) (-3019 (((-665 |#4|) |#4|) 57 T ELT)) (-4424 (((-665 (-420 (-980 |#1|))) (-665 |#4|)) 142 T ELT) (((-710 (-420 (-980 |#1|))) (-710 |#4|)) 66 T ELT) (((-420 (-980 |#1|)) |#4|) 139 T ELT)) (-2725 (((-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))))))) (|:| |rgsz| (-577))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-792) (-1188) (-577)) 112 T ELT)) (-1446 (((-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))) (-710 |#4|) (-792)) 98 T ELT)) (-1686 (((-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-710 |#4|) (-792)) 121 T ELT)) (-1493 (((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| -3684 (-710 (-420 (-980 |#1|)))) (|:| |vec| (-665 (-420 (-980 |#1|)))) (|:| -1641 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) 56 T ELT))) +(((-952 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|) (-949))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)) (-949))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-949))) (-15 -2248 ((-577) (-710 |#4|) (-665 |#4|) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-665 (-1206)) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-665 |#4|) (-949) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-665 (-1206)) (-949) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-949) (-1188))) (-15 -2089 ((-577) (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -4310 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -2725 ((-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))))))) (|:| |rgsz| (-577))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-792) (-1188) (-577))) (-15 -4424 ((-420 (-980 |#1|)) |#4|)) (-15 -4424 ((-710 (-420 (-980 |#1|))) (-710 |#4|))) (-15 -4424 ((-665 (-420 (-980 |#1|))) (-665 |#4|))) (-15 -2518 ((-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -1970 (|#4| (-980 |#1|))) (-15 -2914 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-665 |#4|)) (|:| |n0| (-665 |#4|))) (-665 |#4|) (-665 |#4|))) (-15 -1446 ((-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))) (-710 |#4|) (-792))) (-15 -1681 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-665 |#4|))) (-15 -1493 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| -3684 (-710 (-420 (-980 |#1|)))) (|:| |vec| (-665 (-420 (-980 |#1|)))) (|:| -1641 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (-15 -3019 ((-665 |#4|) |#4|)) (-15 -4108 ((-792) (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -1580 ((-792) (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -4221 ((-665 (-665 |#4|)) (-665 (-665 |#4|)))) (-15 -3123 ((-665 (-665 (-577))) (-577) (-577))) (-15 -3811 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -1686 ((-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-710 |#4|) (-792))) (-15 -3562 ((-710 |#4|) (-710 |#4|) (-665 |#4|))) (-15 -1380 ((-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-665 (-665 |#4|)) (-792) (-792) (-577))) (-15 -2701 (|#4| |#4|)) (-15 -1395 ((-112) (-665 |#4|))) (-15 -1395 ((-112) (-665 (-980 |#1|))))) (-13 (-318) (-148)) (-13 (-870) (-632 (-1206))) (-814) (-977 |#1| |#3| |#2|)) (T -952)) +((-1395 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *4 *5 *6 *7)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *2)) (-4 *2 (-977 *3 *5 *4)))) (-1380 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-5 *4 (-710 *12)) (-5 *5 (-665 (-420 (-980 *9)))) (-5 *6 (-665 (-665 *12))) (-5 *7 (-792)) (-5 *8 (-577)) (-4 *9 (-13 (-318) (-148))) (-4 *12 (-977 *9 *11 *10)) (-4 *10 (-13 (-870) (-632 (-1206)))) (-4 *11 (-814)) (-5 *2 (-2 (|:| |eqzro| (-665 *12)) (|:| |neqzro| (-665 *12)) (|:| |wcond| (-665 (-980 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *9)))) (|:| -2104 (-665 (-1297 (-420 (-980 *9))))))))) (-5 *1 (-952 *9 *10 *11 *12)))) (-3562 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *7)) (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-792)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *5 *6 *7 *8)))) (-3123 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-665 (-577)))) (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *6 *5)))) (-4221 (*1 *2 *2) (-12 (-5 *2 (-665 (-665 *6))) (-4 *6 (-977 *3 *5 *4)) (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *6)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 *7))))) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) (-5 *1 (-952 *4 *5 *6 *7)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 *7))))) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 *3)) (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-977 *4 *6 *5)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3684 (-710 (-420 (-980 *4)))) (|:| |vec| (-665 (-420 (-980 *4)))) (|:| -1641 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2104 (-665 (-1297 (-420 (-980 *4))))))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-1681 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2104 (-665 (-1297 (-420 (-980 *4))))))) (-5 *3 (-665 *7)) (-4 *4 (-13 (-318) (-148))) (-4 *7 (-977 *4 *6 *5)) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7)))) (-1446 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 *8))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-792)))) (-2914 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-4 *7 (-977 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-665 *7)) (|:| |n0| (-665 *7)))) (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-318) (-148))) (-4 *2 (-977 *4 *6 *5)) (-5 *1 (-952 *4 *5 *6 *2)) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-710 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-420 (-980 *4))) (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-977 *4 *6 *5)))) (-2725 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-710 *11)) (-5 *4 (-665 (-420 (-980 *8)))) (-5 *5 (-792)) (-5 *6 (-1188)) (-4 *8 (-13 (-318) (-148))) (-4 *11 (-977 *8 *10 *9)) (-4 *9 (-13 (-870) (-632 (-1206)))) (-4 *10 (-814)) (-5 *2 (-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 *11)) (|:| |neqzro| (-665 *11)) (|:| |wcond| (-665 (-980 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *8)))) (|:| -2104 (-665 (-1297 (-420 (-980 *8)))))))))) (|:| |rgsz| (-577)))) (-5 *1 (-952 *8 *9 *10 *11)) (-5 *7 (-577)))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) (|:| |wcond| (-665 (-980 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2104 (-665 (-1297 (-420 (-980 *4)))))))))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *4 (-1188)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-977 *5 *7 *6)) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *5 *6 *7 *8)))) (-2248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-949)) (-5 *5 (-1188)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *6 *7 *8 *9)))) (-2248 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *7 *8 *9 *10)))) (-2248 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 *10)) (-5 *5 (-949)) (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *7 *8 *9 *10)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-1188)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *5 *6 *7 *8)))) (-2248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-1188)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *6 *7 *8 *9)))) (-2248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 *9)) (-5 *5 (-1188)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *6 *7 *8 *9)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-949)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-2248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) (|:| |wcond| (-665 (-980 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) (|:| -2104 (-665 (-1297 (-420 (-980 *6)))))))))) (-5 *1 (-952 *6 *7 *8 *9)))) (-2248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *5 (-949)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) (|:| |wcond| (-665 (-980 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) (|:| -2104 (-665 (-1297 (-420 (-980 *6)))))))))) (-5 *1 (-952 *6 *7 *8 *9)) (-5 *4 (-665 *9)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) (|:| |wcond| (-665 (-980 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2104 (-665 (-1297 (-420 (-980 *4)))))))))) (-5 *1 (-952 *4 *5 *6 *7)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-665 (-1206))) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) +(-10 -7 (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|) (-949))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)) (-949))) (-15 -2248 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-949))) (-15 -2248 ((-577) (-710 |#4|) (-665 |#4|) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-665 (-1206)) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-665 |#4|) (-949) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-665 (-1206)) (-949) (-1188))) (-15 -2248 ((-577) (-710 |#4|) (-949) (-1188))) (-15 -2089 ((-577) (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -4310 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -2725 ((-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))))))) (|:| |rgsz| (-577))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-792) (-1188) (-577))) (-15 -4424 ((-420 (-980 |#1|)) |#4|)) (-15 -4424 ((-710 (-420 (-980 |#1|))) (-710 |#4|))) (-15 -4424 ((-665 (-420 (-980 |#1|))) (-665 |#4|))) (-15 -2518 ((-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -1970 (|#4| (-980 |#1|))) (-15 -2914 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-665 |#4|)) (|:| |n0| (-665 |#4|))) (-665 |#4|) (-665 |#4|))) (-15 -1446 ((-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))) (-710 |#4|) (-792))) (-15 -1681 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-665 |#4|))) (-15 -1493 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| -3684 (-710 (-420 (-980 |#1|)))) (|:| |vec| (-665 (-420 (-980 |#1|)))) (|:| -1641 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (-15 -3019 ((-665 |#4|) |#4|)) (-15 -4108 ((-792) (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -1580 ((-792) (-665 (-2 (|:| -1641 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -4221 ((-665 (-665 |#4|)) (-665 (-665 |#4|)))) (-15 -3123 ((-665 (-665 (-577))) (-577) (-577))) (-15 -3811 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -1686 ((-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-710 |#4|) (-792))) (-15 -3562 ((-710 |#4|) (-710 |#4|) (-665 |#4|))) (-15 -1380 ((-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2104 (-665 (-1297 (-420 (-980 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-665 (-665 |#4|)) (-792) (-792) (-577))) (-15 -2701 (|#4| |#4|)) (-15 -1395 ((-112) (-665 |#4|))) (-15 -1395 ((-112) (-665 (-980 |#1|))))) +((-1535 (((-955) |#1| (-1206)) 17 T ELT) (((-955) |#1| (-1206) (-1124 (-228))) 21 T ELT)) (-3564 (((-955) |#1| |#1| (-1206) (-1124 (-228))) 19 T ELT) (((-955) |#1| (-1206) (-1124 (-228))) 15 T ELT))) +(((-953 |#1|) (-10 -7 (-15 -3564 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -3564 ((-955) |#1| |#1| (-1206) (-1124 (-228)))) (-15 -1535 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -1535 ((-955) |#1| (-1206)))) (-632 (-549))) (T -953)) +((-1535 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) (-1535 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) (-3564 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) (-3564 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549)))))) +(-10 -7 (-15 -3564 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -3564 ((-955) |#1| |#1| (-1206) (-1124 (-228)))) (-15 -1535 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -1535 ((-955) |#1| (-1206)))) +((-3062 (($ $ (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 121 T ELT)) (-4396 (((-1124 (-228)) $) 64 T ELT)) (-4383 (((-1124 (-228)) $) 63 T ELT)) (-4374 (((-1124 (-228)) $) 62 T ELT)) (-2265 (((-665 (-665 (-228))) $) 69 T ELT)) (-2353 (((-1124 (-228)) $) 65 T ELT)) (-3323 (((-577) (-577)) 57 T ELT)) (-4341 (((-577) (-577)) 52 T ELT)) (-2745 (((-577) (-577)) 55 T ELT)) (-4442 (((-112) (-112)) 59 T ELT)) (-3502 (((-577)) 56 T ELT)) (-2109 (($ $ (-1124 (-228))) 124 T ELT) (($ $) 125 T ELT)) (-3653 (($ (-1 (-971 (-228)) (-228)) (-1124 (-228))) 131 T ELT) (($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 132 T ELT)) (-3564 (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228))) 134 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 135 T ELT) (($ $ (-1124 (-228))) 127 T ELT)) (-2470 (((-577)) 60 T ELT)) (-4428 (((-577)) 50 T ELT)) (-3658 (((-577)) 53 T ELT)) (-2489 (((-665 (-665 (-971 (-228)))) $) 151 T ELT)) (-2585 (((-112) (-112)) 61 T ELT)) (-3709 (((-885) $) 149 T ELT)) (-3624 (((-112)) 58 T ELT))) +(((-954) (-13 (-1004) (-10 -8 (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -2109 ($ $ (-1124 (-228)))) (-15 -2109 ($ $)) (-15 -2353 ((-1124 (-228)) $)) (-15 -2265 ((-665 (-665 (-228))) $)) (-15 -4428 ((-577))) (-15 -4341 ((-577) (-577))) (-15 -3658 ((-577))) (-15 -2745 ((-577) (-577))) (-15 -3502 ((-577))) (-15 -3323 ((-577) (-577))) (-15 -3624 ((-112))) (-15 -4442 ((-112) (-112))) (-15 -2470 ((-577))) (-15 -2585 ((-112) (-112)))))) (T -954)) +((-3653 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-3653 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-3564 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-3564 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-3062 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-2109 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-2109 (*1 *1 *1) (-5 *1 (-954))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-954)))) (-4428 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-4341 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-3658 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-3502 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-3323 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-3624 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954)))) (-4442 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954)))) (-2470 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) +(-13 (-1004) (-10 -8 (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -2109 ($ $ (-1124 (-228)))) (-15 -2109 ($ $)) (-15 -2353 ((-1124 (-228)) $)) (-15 -2265 ((-665 (-665 (-228))) $)) (-15 -4428 ((-577))) (-15 -4341 ((-577) (-577))) (-15 -3658 ((-577))) (-15 -2745 ((-577) (-577))) (-15 -3502 ((-577))) (-15 -3323 ((-577) (-577))) (-15 -3624 ((-112))) (-15 -4442 ((-112) (-112))) (-15 -2470 ((-577))) (-15 -2585 ((-112) (-112))))) +((-3062 (($ $ (-1124 (-228))) 122 T ELT) (($ $ (-1124 (-228)) (-1124 (-228))) 123 T ELT)) (-4383 (((-1124 (-228)) $) 73 T ELT)) (-4374 (((-1124 (-228)) $) 72 T ELT)) (-2353 (((-1124 (-228)) $) 74 T ELT)) (-2564 (((-577) (-577)) 66 T ELT)) (-3281 (((-577) (-577)) 61 T ELT)) (-2002 (((-577) (-577)) 64 T ELT)) (-1885 (((-112) (-112)) 68 T ELT)) (-4159 (((-577)) 65 T ELT)) (-2109 (($ $ (-1124 (-228))) 126 T ELT) (($ $) 127 T ELT)) (-3653 (($ (-1 (-971 (-228)) (-228)) (-1124 (-228))) 141 T ELT) (($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 142 T ELT)) (-1535 (($ (-1 (-228) (-228)) (-1124 (-228))) 149 T ELT) (($ (-1 (-228) (-228))) 153 T ELT)) (-3564 (($ (-1 (-228) (-228)) (-1124 (-228))) 137 T ELT) (($ (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228))) 138 T ELT) (($ (-665 (-1 (-228) (-228))) (-1124 (-228))) 146 T ELT) (($ (-665 (-1 (-228) (-228))) (-1124 (-228)) (-1124 (-228))) 147 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228))) 139 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 140 T ELT) (($ $ (-1124 (-228))) 128 T ELT)) (-3944 (((-112) $) 69 T ELT)) (-1636 (((-577)) 70 T ELT)) (-1619 (((-577)) 59 T ELT)) (-3963 (((-577)) 62 T ELT)) (-2489 (((-665 (-665 (-971 (-228)))) $) 35 T ELT)) (-2378 (((-112) (-112)) 71 T ELT)) (-3709 (((-885) $) 167 T ELT)) (-2463 (((-112)) 67 T ELT))) +(((-955) (-13 (-983) (-10 -8 (-15 -3564 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)))) (-15 -3564 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1535 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1535 ($ (-1 (-228) (-228)))) (-15 -3564 ($ $ (-1124 (-228)))) (-15 -3944 ((-112) $)) (-15 -3062 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)))) (-15 -2109 ($ $ (-1124 (-228)))) (-15 -2109 ($ $)) (-15 -2353 ((-1124 (-228)) $)) (-15 -1619 ((-577))) (-15 -3281 ((-577) (-577))) (-15 -3963 ((-577))) (-15 -2002 ((-577) (-577))) (-15 -4159 ((-577))) (-15 -2564 ((-577) (-577))) (-15 -2463 ((-112))) (-15 -1885 ((-112) (-112))) (-15 -1636 ((-577))) (-15 -2378 ((-112) (-112)))))) (T -955)) +((-3564 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-3564 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-3564 (*1 *1 *2 *3) (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-3564 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-3564 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-3564 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-3653 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-3653 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-1535 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-1535 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-955)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-3062 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-3062 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-2109 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-2109 (*1 *1 *1) (-5 *1 (-955))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-1619 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-3963 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-4159 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-2564 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-2463 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-1636 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) +(-13 (-983) (-10 -8 (-15 -3564 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)))) (-15 -3564 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -3564 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -3653 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1535 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1535 ($ (-1 (-228) (-228)))) (-15 -3564 ($ $ (-1124 (-228)))) (-15 -3944 ((-112) $)) (-15 -3062 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)))) (-15 -2109 ($ $ (-1124 (-228)))) (-15 -2109 ($ $)) (-15 -2353 ((-1124 (-228)) $)) (-15 -1619 ((-577))) (-15 -3281 ((-577) (-577))) (-15 -3963 ((-577))) (-15 -2002 ((-577) (-577))) (-15 -4159 ((-577))) (-15 -2564 ((-577) (-577))) (-15 -2463 ((-112))) (-15 -1885 ((-112) (-112))) (-15 -1636 ((-577))) (-15 -2378 ((-112) (-112))))) +((-1658 (((-665 (-1124 (-228))) (-665 (-665 (-971 (-228))))) 34 T ELT))) +(((-956) (-10 -7 (-15 -1658 ((-665 (-1124 (-228))) (-665 (-665 (-971 (-228)))))))) (T -956)) +((-1658 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-665 (-1124 (-228)))) (-5 *1 (-956))))) +(-10 -7 (-15 -1658 ((-665 (-1124 (-228))) (-665 (-665 (-971 (-228))))))) +((-2516 ((|#2| |#2|) 28 T ELT)) (-1769 ((|#2| |#2|) 29 T ELT)) (-4212 ((|#2| |#2|) 27 T ELT)) (-2868 ((|#2| |#2| (-519)) 26 T ELT))) +(((-957 |#1| |#2|) (-10 -7 (-15 -2868 (|#2| |#2| (-519))) (-15 -4212 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -1769 (|#2| |#2|))) (-1130) (-443 |#1|)) (T -957)) +((-1769 (*1 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) (-4212 (*1 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) (-2868 (*1 *2 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-1130)) (-5 *1 (-957 *4 *2)) (-4 *2 (-443 *4))))) +(-10 -7 (-15 -2868 (|#2| |#2| (-519))) (-15 -4212 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -1769 (|#2| |#2|))) +((-2516 (((-327 (-577)) (-1206)) 16 T ELT)) (-1769 (((-327 (-577)) (-1206)) 14 T ELT)) (-4212 (((-327 (-577)) (-1206)) 12 T ELT)) (-2868 (((-327 (-577)) (-1206) (-519)) 19 T ELT))) +(((-958) (-10 -7 (-15 -2868 ((-327 (-577)) (-1206) (-519))) (-15 -4212 ((-327 (-577)) (-1206))) (-15 -2516 ((-327 (-577)) (-1206))) (-15 -1769 ((-327 (-577)) (-1206))))) (T -958)) +((-1769 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) (-5 *1 (-958))))) +(-10 -7 (-15 -2868 ((-327 (-577)) (-1206) (-519))) (-15 -4212 ((-327 (-577)) (-1206))) (-15 -2516 ((-327 (-577)) (-1206))) (-15 -1769 ((-327 (-577)) (-1206)))) +((-2425 (((-913 |#1| |#3|) |#2| (-916 |#1|) (-913 |#1| |#3|)) 25 T ELT)) (-2583 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13 T ELT))) +(((-959 |#1| |#2| |#3|) (-10 -7 (-15 -2583 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2425 ((-913 |#1| |#3|) |#2| (-916 |#1|) (-913 |#1| |#3|)))) (-1130) (-910 |#1|) (-13 (-1130) (-1068 |#2|))) (T -959)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-13 (-1130) (-1068 *3))) (-4 *3 (-910 *5)) (-5 *1 (-959 *5 *3 *6)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1130) (-1068 *5))) (-4 *5 (-910 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-959 *4 *5 *6))))) +(-10 -7 (-15 -2583 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2425 ((-913 |#1| |#3|) |#2| (-916 |#1|) (-913 |#1| |#3|)))) +((-2425 (((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)) 30 T ELT))) +(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -2425 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-1130) (-13 (-569) (-910 |#1|)) (-13 (-443 |#2|) (-632 (-916 |#1|)) (-910 |#1|) (-1068 (-630 $)))) (T -960)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-13 (-443 *6) (-632 *4) (-910 *5) (-1068 (-630 $)))) (-5 *4 (-916 *5)) (-4 *6 (-13 (-569) (-910 *5))) (-5 *1 (-960 *5 *6 *3))))) +(-10 -7 (-15 -2425 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) +((-2425 (((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|)) 13 T ELT))) +(((-961 |#1|) (-10 -7 (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|)))) (-558)) (T -961)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 (-577) *3)) (-5 *4 (-916 (-577))) (-4 *3 (-558)) (-5 *1 (-961 *3))))) +(-10 -7 (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|)))) +((-2425 (((-913 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-913 |#1| |#2|)) 57 T ELT))) +(((-962 |#1| |#2|) (-10 -7 (-15 -2425 ((-913 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-913 |#1| |#2|)))) (-1130) (-13 (-1130) (-1068 (-630 $)) (-632 (-916 |#1|)) (-910 |#1|))) (T -962)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1130)) (-4 *6 (-13 (-1130) (-1068 (-630 $)) (-632 *4) (-910 *5))) (-5 *4 (-916 *5)) (-5 *1 (-962 *5 *6))))) +(-10 -7 (-15 -2425 ((-913 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-913 |#1| |#2|)))) +((-2425 (((-909 |#1| |#2| |#3|) |#3| (-916 |#1|) (-909 |#1| |#2| |#3|)) 17 T ELT))) +(((-963 |#1| |#2| |#3|) (-10 -7 (-15 -2425 ((-909 |#1| |#2| |#3|) |#3| (-916 |#1|) (-909 |#1| |#2| |#3|)))) (-1130) (-910 |#1|) (-687 |#2|)) (T -963)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-909 *5 *6 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-910 *5)) (-4 *3 (-687 *6)) (-5 *1 (-963 *5 *6 *3))))) +(-10 -7 (-15 -2425 ((-909 |#1| |#2| |#3|) |#3| (-916 |#1|) (-909 |#1| |#2| |#3|)))) +((-2425 (((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|)) 17 (|has| |#3| (-910 |#1|)) ELT) (((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-916 |#1|) (-913 |#1| |#5|))) 16 T ELT))) +(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2425 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-916 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-910 |#1|)) (-15 -2425 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|))) |%noBranch|)) (-1130) (-814) (-870) (-13 (-1079) (-910 |#1|)) (-13 (-977 |#4| |#2| |#3|) (-632 (-916 |#1|)))) (T -964)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-13 (-977 *8 *6 *7) (-632 *4))) (-5 *4 (-916 *5)) (-4 *7 (-910 *5)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-13 (-1079) (-910 *5))) (-5 *1 (-964 *5 *6 *7 *8 *3)))) (-2425 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-916 *6) (-913 *6 *3))) (-4 *8 (-870)) (-5 *2 (-913 *6 *3)) (-5 *4 (-916 *6)) (-4 *6 (-1130)) (-4 *3 (-13 (-977 *9 *7 *8) (-632 *4))) (-4 *7 (-814)) (-4 *9 (-13 (-1079) (-910 *6))) (-5 *1 (-964 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2425 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-916 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-910 |#1|)) (-15 -2425 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|))) |%noBranch|)) +((-1856 ((|#2| |#2| (-665 (-1 (-112) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-112) |#3|)) 13 T ELT))) +(((-965 |#1| |#2| |#3|) (-10 -7 (-15 -1856 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1856 (|#2| |#2| (-665 (-1 (-112) |#3|))))) (-1130) (-443 |#1|) (-1247)) (T -965)) +((-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) (-4 *4 (-1130)) (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1247)) (-4 *4 (-1130)) (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4))))) +(-10 -7 (-15 -1856 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1856 (|#2| |#2| (-665 (-1 (-112) |#3|))))) +((-1856 (((-327 (-577)) (-1206) (-665 (-1 (-112) |#1|))) 18 T ELT) (((-327 (-577)) (-1206) (-1 (-112) |#1|)) 15 T ELT))) +(((-966 |#1|) (-10 -7 (-15 -1856 ((-327 (-577)) (-1206) (-1 (-112) |#1|))) (-15 -1856 ((-327 (-577)) (-1206) (-665 (-1 (-112) |#1|))))) (-1247)) (T -966)) +((-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) (-5 *2 (-327 (-577))) (-5 *1 (-966 *5)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1247)) (-5 *2 (-327 (-577))) (-5 *1 (-966 *5))))) +(-10 -7 (-15 -1856 ((-327 (-577)) (-1206) (-1 (-112) |#1|))) (-15 -1856 ((-327 (-577)) (-1206) (-665 (-1 (-112) |#1|))))) +((-2425 (((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)) 25 T ELT))) +(((-967 |#1| |#2| |#3|) (-10 -7 (-15 -2425 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-1130) (-13 (-569) (-910 |#1|) (-632 (-916 |#1|))) (-1022 |#2|)) (T -967)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-1022 *6)) (-4 *6 (-13 (-569) (-910 *5) (-632 *4))) (-5 *4 (-916 *5)) (-5 *1 (-967 *5 *6 *3))))) +(-10 -7 (-15 -2425 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) +((-2425 (((-913 |#1| (-1206)) (-1206) (-916 |#1|) (-913 |#1| (-1206))) 18 T ELT))) +(((-968 |#1|) (-10 -7 (-15 -2425 ((-913 |#1| (-1206)) (-1206) (-916 |#1|) (-913 |#1| (-1206))))) (-1130)) (T -968)) +((-2425 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 (-1206))) (-5 *3 (-1206)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-5 *1 (-968 *5))))) +(-10 -7 (-15 -2425 ((-913 |#1| (-1206)) (-1206) (-916 |#1|) (-913 |#1| (-1206))))) +((-4062 (((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) 34 T ELT)) (-2425 (((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-1 |#3| (-665 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) 33 T ELT))) +(((-969 |#1| |#2| |#3|) (-10 -7 (-15 -2425 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-1 |#3| (-665 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-15 -4062 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))))) (-1130) (-1079) (-13 (-1079) (-632 (-916 |#1|)) (-1068 |#2|))) (T -969)) +((-4062 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-916 *6))) (-5 *5 (-1 (-913 *6 *8) *8 (-916 *6) (-913 *6 *8))) (-4 *6 (-1130)) (-4 *8 (-13 (-1079) (-632 (-916 *6)) (-1068 *7))) (-5 *2 (-913 *6 *8)) (-4 *7 (-1079)) (-5 *1 (-969 *6 *7 *8)))) (-2425 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-665 (-916 *7))) (-5 *5 (-1 *9 (-665 *9))) (-5 *6 (-1 (-913 *7 *9) *9 (-916 *7) (-913 *7 *9))) (-4 *7 (-1130)) (-4 *9 (-13 (-1079) (-632 (-916 *7)) (-1068 *8))) (-5 *2 (-913 *7 *9)) (-5 *3 (-665 *9)) (-4 *8 (-1079)) (-5 *1 (-969 *7 *8 *9))))) +(-10 -7 (-15 -2425 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-1 |#3| (-665 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-15 -4062 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))))) +((-2955 (((-1202 (-420 (-577))) (-577)) 79 T ELT)) (-1438 (((-1202 (-577)) (-577)) 82 T ELT)) (-3234 (((-1202 (-577)) (-577)) 76 T ELT)) (-3058 (((-577) (-1202 (-577))) 72 T ELT)) (-3681 (((-1202 (-420 (-577))) (-577)) 65 T ELT)) (-1971 (((-1202 (-577)) (-577)) 49 T ELT)) (-4431 (((-1202 (-577)) (-577)) 84 T ELT)) (-2307 (((-1202 (-577)) (-577)) 83 T ELT)) (-2805 (((-1202 (-420 (-577))) (-577)) 67 T ELT))) +(((-970) (-10 -7 (-15 -2805 ((-1202 (-420 (-577))) (-577))) (-15 -2307 ((-1202 (-577)) (-577))) (-15 -4431 ((-1202 (-577)) (-577))) (-15 -1971 ((-1202 (-577)) (-577))) (-15 -3681 ((-1202 (-420 (-577))) (-577))) (-15 -3058 ((-577) (-1202 (-577)))) (-15 -3234 ((-1202 (-577)) (-577))) (-15 -1438 ((-1202 (-577)) (-577))) (-15 -2955 ((-1202 (-420 (-577))) (-577))))) (T -970)) +((-2955 (*1 *2 *3) (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577)))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-3234 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-577)) (-5 *1 (-970)))) (-3681 (*1 *2 *3) (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577)))) (-1971 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-4431 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-2307 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) +(-10 -7 (-15 -2805 ((-1202 (-420 (-577))) (-577))) (-15 -2307 ((-1202 (-577)) (-577))) (-15 -4431 ((-1202 (-577)) (-577))) (-15 -1971 ((-1202 (-577)) (-577))) (-15 -3681 ((-1202 (-420 (-577))) (-577))) (-15 -3058 ((-577) (-1202 (-577)))) (-15 -3234 ((-1202 (-577)) (-577))) (-15 -1438 ((-1202 (-577)) (-577))) (-15 -2955 ((-1202 (-420 (-577))) (-577)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4084 (($ (-792)) NIL (|has| |#1| (-23)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-3159 (($ (-665 |#1|)) 9 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3231 (((-710 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3931 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-4166 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2568 (($ $ (-665 |#1|)) 25 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 18 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4047 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-4366 (((-949) $) 13 T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-2311 (($ $ $) 23 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT) (($ (-665 |#1|)) 14 T ELT)) (-3722 (($ (-665 |#1|)) NIL T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3128 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-747)) ELT) (($ $ |#1|) NIL (|has| |#1| (-747)) ELT)) (-3600 (((-792) $) 11 (|has| $ (-6 -4499)) ELT))) +(((-971 |#1|) (-1010 |#1|) (-1079)) (T -971)) +NIL +(-1010 |#1|) +((-2386 (((-494 |#1| |#2|) (-980 |#2|)) 22 T ELT)) (-3571 (((-254 |#1| |#2|) (-980 |#2|)) 35 T ELT)) (-3584 (((-980 |#2|) (-494 |#1| |#2|)) 27 T ELT)) (-4361 (((-254 |#1| |#2|) (-494 |#1| |#2|)) 57 T ELT)) (-3830 (((-980 |#2|) (-254 |#1| |#2|)) 32 T ELT)) (-2250 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 48 T ELT))) +(((-972 |#1| |#2|) (-10 -7 (-15 -2250 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -4361 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -2386 ((-494 |#1| |#2|) (-980 |#2|))) (-15 -3584 ((-980 |#2|) (-494 |#1| |#2|))) (-15 -3830 ((-980 |#2|) (-254 |#1| |#2|))) (-15 -3571 ((-254 |#1| |#2|) (-980 |#2|)))) (-665 (-1206)) (-1079)) (T -972)) +((-3571 (*1 *2 *3) (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-254 *4 *5)) (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206))))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-494 *4 *5)) (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206))))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-254 *4 *5)) (-5 *1 (-972 *4 *5)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-494 *4 *5)) (-5 *1 (-972 *4 *5))))) +(-10 -7 (-15 -2250 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -4361 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -2386 ((-494 |#1| |#2|) (-980 |#2|))) (-15 -3584 ((-980 |#2|) (-494 |#1| |#2|))) (-15 -3830 ((-980 |#2|) (-254 |#1| |#2|))) (-15 -3571 ((-254 |#1| |#2|) (-980 |#2|)))) +((-3171 (((-665 |#2|) |#2| |#2|) 10 T ELT)) (-4467 (((-792) (-665 |#1|)) 48 (|has| |#1| (-869)) ELT)) (-2015 (((-665 |#2|) |#2|) 11 T ELT)) (-2003 (((-792) (-665 |#1|) (-577) (-577)) 52 (|has| |#1| (-869)) ELT)) (-4288 ((|#1| |#2|) 38 (|has| |#1| (-869)) ELT))) +(((-973 |#1| |#2|) (-10 -7 (-15 -3171 ((-665 |#2|) |#2| |#2|)) (-15 -2015 ((-665 |#2|) |#2|)) (IF (|has| |#1| (-869)) (PROGN (-15 -4288 (|#1| |#2|)) (-15 -4467 ((-792) (-665 |#1|))) (-15 -2003 ((-792) (-665 |#1|) (-577) (-577)))) |%noBranch|)) (-375) (-1273 |#1|)) (T -973)) +((-2003 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-577)) (-4 *5 (-869)) (-4 *5 (-375)) (-5 *2 (-792)) (-5 *1 (-973 *5 *6)) (-4 *6 (-1273 *5)))) (-4467 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-869)) (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-973 *4 *5)) (-4 *5 (-1273 *4)))) (-4288 (*1 *2 *3) (-12 (-4 *2 (-375)) (-4 *2 (-869)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1273 *2)))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1273 *4)))) (-3171 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3171 ((-665 |#2|) |#2| |#2|)) (-15 -2015 ((-665 |#2|) |#2|)) (IF (|has| |#1| (-869)) (PROGN (-15 -4288 (|#1| |#2|)) (-15 -4467 ((-792) (-665 |#1|))) (-15 -2003 ((-792) (-665 |#1|) (-577) (-577)))) |%noBranch|)) +((-4417 (((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)) 19 T ELT))) +(((-974 |#1| |#2|) (-10 -7 (-15 -4417 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)))) (-1079) (-1079)) (T -974)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-980 *6)) (-5 *1 (-974 *5 *6))))) +(-10 -7 (-15 -4417 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)))) +((-3732 (((-1270 |#1| (-980 |#2|)) (-980 |#2|) (-1293 |#1|)) 18 T ELT))) +(((-975 |#1| |#2|) (-10 -7 (-15 -3732 ((-1270 |#1| (-980 |#2|)) (-980 |#2|) (-1293 |#1|)))) (-1206) (-1079)) (T -975)) +((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1293 *5)) (-14 *5 (-1206)) (-4 *6 (-1079)) (-5 *2 (-1270 *5 (-980 *6))) (-5 *1 (-975 *5 *6)) (-5 *3 (-980 *6))))) +(-10 -7 (-15 -3732 ((-1270 |#1| (-980 |#2|)) (-980 |#2|) (-1293 |#1|)))) +((-4176 (((-792) $) 88 T ELT) (((-792) $ (-665 |#4|)) 93 T ELT)) (-2612 (($ $) 203 T ELT)) (-3206 (((-431 $) $) 195 T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 141 T ELT)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) 74 T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3868 (($ $ $ |#4|) 95 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 131 T ELT) (((-710 |#2|) (-710 $)) 121 T ELT)) (-2796 (($ $) 210 T ELT) (($ $ |#4|) 213 T ELT)) (-4037 (((-665 $) $) 77 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 229 T ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 222 T ELT)) (-2102 (((-665 $) $) 34 T ELT)) (-3872 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-792)) NIL T ELT) (($ $ (-665 |#4|) (-665 (-792))) 71 T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |#4|) 192 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 52 T ELT)) (-1796 (((-3 (-665 $) "failed") $) 39 T ELT)) (-2547 (((-3 (-2 (|:| |var| |#4|) (|:| -2328 (-792))) "failed") $) 57 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 134 T ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 147 T ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 145 T ELT)) (-3759 (((-431 $) $) 165 T ELT)) (-3373 (($ $ (-665 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-665 |#4|) (-665 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-665 |#4|) (-665 $)) NIL T ELT)) (-3846 (($ $ |#4|) 97 T ELT)) (-4463 (((-916 (-391)) $) 243 T ELT) (((-916 (-577)) $) 236 T ELT) (((-549) $) 251 T ELT)) (-2407 ((|#2| $) NIL T ELT) (($ $ |#4|) 205 T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 184 T ELT)) (-4171 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-792)) 62 T ELT) (($ $ (-665 |#4|) (-665 (-792))) 69 T ELT)) (-2708 (((-3 $ "failed") $) 186 T ELT)) (-2643 (((-112) $ $) 216 T ELT))) +(((-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -2612 (|#1| |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -2083 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4058 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -1676 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -2796 (|#1| |#1| |#4|)) (-15 -2407 (|#1| |#1| |#4|)) (-15 -3846 (|#1| |#1| |#4|)) (-15 -3868 (|#1| |#1| |#1| |#4|)) (-15 -4037 ((-665 |#1|) |#1|)) (-15 -4176 ((-792) |#1| (-665 |#4|))) (-15 -4176 ((-792) |#1|)) (-15 -2547 ((-3 (-2 (|:| |var| |#4|) (|:| -2328 (-792))) "failed") |#1|)) (-15 -1426 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -1796 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3872 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -3872 (|#1| |#1| |#4| (-792))) (-15 -1615 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1| |#4|)) (-15 -2102 ((-665 |#1|) |#1|)) (-15 -4171 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -4171 (|#1| |#1| |#4| (-792))) (-15 -3187 ((-710 |#2|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -4335 ((-3 |#4| "failed") |#1|)) (-15 -3783 (|#4| |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#4| |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#4| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3872 (|#1| |#2| |#3|)) (-15 -4171 (|#2| |#1| |#3|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2643 ((-112) |#1| |#1|))) (-977 |#2| |#3| |#4|) (-1079) (-814) (-870)) (T -976)) +NIL +(-10 -8 (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -2612 (|#1| |#1|)) (-15 -2708 ((-3 |#1| "failed") |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -2083 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4058 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -1676 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -2796 (|#1| |#1| |#4|)) (-15 -2407 (|#1| |#1| |#4|)) (-15 -3846 (|#1| |#1| |#4|)) (-15 -3868 (|#1| |#1| |#1| |#4|)) (-15 -4037 ((-665 |#1|) |#1|)) (-15 -4176 ((-792) |#1| (-665 |#4|))) (-15 -4176 ((-792) |#1|)) (-15 -2547 ((-3 (-2 (|:| |var| |#4|) (|:| -2328 (-792))) "failed") |#1|)) (-15 -1426 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -1796 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3872 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -3872 (|#1| |#1| |#4| (-792))) (-15 -1615 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1| |#4|)) (-15 -2102 ((-665 |#1|) |#1|)) (-15 -4171 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -4171 (|#1| |#1| |#4| (-792))) (-15 -3187 ((-710 |#2|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -4335 ((-3 |#4| "failed") |#1|)) (-15 -3783 (|#4| |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#4| |#1|)) (-15 -3373 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3373 (|#1| |#1| |#4| |#2|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3872 (|#1| |#2| |#3|)) (-15 -4171 (|#2| |#1| |#3|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2643 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 |#3|) $) 113 T ELT)) (-3732 (((-1202 $) $ |#3|) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 91 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) 115 T ELT) (((-792) $ (-665 |#3|)) 114 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-2612 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT)) (-3783 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) 144 T ELT)) (-3868 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT)) (-4048 (($ $) 161 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-2796 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) 112 T ELT)) (-3567 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| |#2| $) 179 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| |#3| (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3357 (((-112) $) 35 T ELT)) (-2662 (((-792) $) 176 T ELT)) (-3882 (($ (-1202 |#1|) |#3|) 120 T ELT) (($ (-1202 $) |#3|) 119 T ELT)) (-2102 (((-665 $) $) 129 T ELT)) (-2696 (((-112) $) 159 T ELT)) (-3872 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-792)) 122 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 121 T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |#3|) 123 T ELT)) (-4340 ((|#2| $) 177 T ELT) (((-792) $ |#3|) 125 T ELT) (((-665 (-792)) $ (-665 |#3|)) 124 T ELT)) (-4329 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-3946 (((-3 |#3| "failed") $) 126 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-4014 (($ $) 156 T ELT)) (-4025 ((|#1| $) 155 T ELT)) (-3606 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 117 T ELT)) (-1796 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2547 (((-3 (-2 (|:| |var| |#3|) (|:| -2328 (-792))) "failed") $) 116 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3988 (((-112) $) 173 T ELT)) (-3999 ((|#1| $) 174 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-665 |#3|) (-665 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-665 |#3|) (-665 $)) 145 T ELT)) (-3846 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 |#3|) (-665 (-792))) 44 T ELT) (($ $ |#3| (-792)) 43 T ELT) (($ $ (-665 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-1597 ((|#2| $) 157 T ELT) (((-792) $ |#3|) 133 T ELT) (((-665 (-792)) $ (-665 |#3|)) 132 T ELT)) (-4463 (((-916 (-391)) $) 85 (-12 (|has| |#3| (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| |#3| (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ $) 88 (|has| |#1| (-569)) ELT) (($ (-420 (-577))) 81 (-2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-4343 (((-665 |#1|) $) 175 T ELT)) (-4171 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-792)) 131 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 130 T ELT)) (-2708 (((-3 $ "failed") $) 82 (-2867 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 32 T CONST)) (-2576 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-665 |#3|) (-665 (-792))) 47 T ELT) (($ $ |#3| (-792)) 46 T ELT) (($ $ (-665 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-977 |#1| |#2| |#3|) (-141) (-1079) (-814) (-870)) (T -977)) +((-2796 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-1597 (*1 *2 *1 *3) (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-792)))) (-1597 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) (-4171 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *2 (-870)))) (-4171 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) (-2102 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3732 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-1202 *1)) (-4 *1 (-977 *4 *5 *3)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-1202 *3)))) (-3946 (*1 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-4340 (*1 *2 *1 *3) (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-792)))) (-4340 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) (-1615 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3872 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *2 (-870)))) (-3872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) (-3882 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *4)) (-4 *4 (-1079)) (-4 *1 (-977 *4 *5 *3)) (-4 *5 (-814)) (-4 *3 (-870)))) (-3882 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)))) (-1796 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-1426 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-2547 (*1 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| |var| *5) (|:| -2328 (-792)))))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-792)))) (-4176 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *5)))) (-4037 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3868 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-174)))) (-3846 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-174)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-465)))) (-2796 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-465)))) (-2612 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-3206 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-431 *1)) (-4 *1 (-977 *3 *4 *5))))) +(-13 (-926 |t#3|) (-337 |t#1| |t#2|) (-320 $) (-527 |t#3| |t#1|) (-527 |t#3| $) (-1068 |t#3|) (-389 |t#1|) (-10 -8 (-15 -1597 ((-792) $ |t#3|)) (-15 -1597 ((-665 (-792)) $ (-665 |t#3|))) (-15 -4171 ($ $ |t#3| (-792))) (-15 -4171 ($ $ (-665 |t#3|) (-665 (-792)))) (-15 -2102 ((-665 $) $)) (-15 -3732 ((-1202 $) $ |t#3|)) (-15 -3732 ((-1202 |t#1|) $)) (-15 -3946 ((-3 |t#3| "failed") $)) (-15 -4340 ((-792) $ |t#3|)) (-15 -4340 ((-665 (-792)) $ (-665 |t#3|))) (-15 -1615 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |t#3|)) (-15 -3872 ($ $ |t#3| (-792))) (-15 -3872 ($ $ (-665 |t#3|) (-665 (-792)))) (-15 -3882 ($ (-1202 |t#1|) |t#3|)) (-15 -3882 ($ (-1202 $) |t#3|)) (-15 -1796 ((-3 (-665 $) "failed") $)) (-15 -1426 ((-3 (-665 $) "failed") $)) (-15 -2547 ((-3 (-2 (|:| |var| |t#3|) (|:| -2328 (-792))) "failed") $)) (-15 -4176 ((-792) $)) (-15 -4176 ((-792) $ (-665 |t#3|))) (-15 -3891 ((-665 |t#3|) $)) (-15 -4037 ((-665 $) $)) (IF (|has| |t#1| (-632 (-549))) (IF (|has| |t#3| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-632 (-916 (-577)))) (IF (|has| |t#3| (-632 (-916 (-577)))) (-6 (-632 (-916 (-577)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-632 (-916 (-391)))) (IF (|has| |t#3| (-632 (-916 (-391)))) (-6 (-632 (-916 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-910 (-577))) (IF (|has| |t#3| (-910 (-577))) (-6 (-910 (-577))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-910 (-391))) (IF (|has| |t#3| (-910 (-391))) (-6 (-910 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3868 ($ $ $ |t#3|)) (-15 -3846 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-6 (-465)) (-15 -2407 ($ $ |t#3|)) (-15 -2796 ($ $)) (-15 -2796 ($ $ |t#3|)) (-15 -3206 ((-431 $) $)) (-15 -2612 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4497)) (-6 -4497) |%noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 |#3|) . T) ((-634 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ((-301) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2867 (|has| |#1| (-937)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-747) . T) ((-920 $ |#3|) . T) ((-926 |#3|) . T) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ((-937) |has| |#1| (-937)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1068 |#3|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-937))) +((-3891 (((-665 |#2|) |#5|) 40 T ELT)) (-3732 (((-1202 |#5|) |#5| |#2| (-1202 |#5|)) 23 T ELT) (((-420 (-1202 |#5|)) |#5| |#2|) 16 T ELT)) (-3882 ((|#5| (-420 (-1202 |#5|)) |#2|) 30 T ELT)) (-3946 (((-3 |#2| "failed") |#5|) 71 T ELT)) (-1426 (((-3 (-665 |#5|) "failed") |#5|) 65 T ELT)) (-2646 (((-3 (-2 (|:| |val| |#5|) (|:| -2328 (-577))) "failed") |#5|) 53 T ELT)) (-1796 (((-3 (-665 |#5|) "failed") |#5|) 67 T ELT)) (-2547 (((-3 (-2 (|:| |var| |#2|) (|:| -2328 (-577))) "failed") |#5|) 57 T ELT))) +(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3891 ((-665 |#2|) |#5|)) (-15 -3946 ((-3 |#2| "failed") |#5|)) (-15 -3732 ((-420 (-1202 |#5|)) |#5| |#2|)) (-15 -3882 (|#5| (-420 (-1202 |#5|)) |#2|)) (-15 -3732 ((-1202 |#5|) |#5| |#2| (-1202 |#5|))) (-15 -1796 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -1426 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -2547 ((-3 (-2 (|:| |var| |#2|) (|:| -2328 (-577))) "failed") |#5|)) (-15 -2646 ((-3 (-2 (|:| |val| |#5|) (|:| -2328 (-577))) "failed") |#5|))) (-814) (-870) (-1079) (-977 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3709 ($ |#4|)) (-15 -2417 (|#4| $)) (-15 -2429 (|#4| $))))) (T -978)) +((-2646 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2328 (-577)))) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))))) (-2547 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2328 (-577)))) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))))) (-1426 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))))) (-1796 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))))) (-3732 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))) (-4 *7 (-977 *6 *5 *4)) (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) (-5 *1 (-978 *5 *4 *6 *7 *3)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1202 *2))) (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *2 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))) (-5 *1 (-978 *5 *4 *6 *7 *2)) (-4 *7 (-977 *6 *5 *4)))) (-3732 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-420 (-1202 *3))) (-5 *1 (-978 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))))) (-3946 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-1079)) (-4 *6 (-977 *5 *4 *2)) (-4 *2 (-870)) (-5 *1 (-978 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *6)) (-15 -2417 (*6 $)) (-15 -2429 (*6 $))))))) (-3891 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *5)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $)))))))) +(-10 -7 (-15 -3891 ((-665 |#2|) |#5|)) (-15 -3946 ((-3 |#2| "failed") |#5|)) (-15 -3732 ((-420 (-1202 |#5|)) |#5| |#2|)) (-15 -3882 (|#5| (-420 (-1202 |#5|)) |#2|)) (-15 -3732 ((-1202 |#5|) |#5| |#2| (-1202 |#5|))) (-15 -1796 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -1426 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -2547 ((-3 (-2 (|:| |var| |#2|) (|:| -2328 (-577))) "failed") |#5|)) (-15 -2646 ((-3 (-2 (|:| |val| |#5|) (|:| -2328 (-577))) "failed") |#5|))) +((-4417 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4417 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-814) (-870) (-1079) (-977 |#3| |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3114 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792)))))) (T -979)) +((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *6 (-814)) (-4 *2 (-13 (-1130) (-10 -8 (-15 -3114 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792)))))) (-5 *1 (-979 *6 *7 *8 *5 *2)) (-4 *5 (-977 *8 *6 *7))))) +(-10 -7 (-15 -4417 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1206)) $) 16 T ELT)) (-3732 (((-1202 $) $ (-1206)) 21 T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1206))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 8 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1206) "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1206) $) NIL T ELT)) (-3868 (($ $ $ (-1206)) NIL (|has| |#1| (-174)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-544 (-1206)) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1206) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1206) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-3882 (($ (-1202 |#1|) (-1206)) NIL T ELT) (($ (-1202 $) (-1206)) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-1206)) NIL T ELT)) (-4340 (((-544 (-1206)) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT) (((-665 (-792)) $ (-665 (-1206))) NIL T ELT)) (-4329 (($ (-1 (-544 (-1206)) (-544 (-1206))) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3946 (((-3 (-1206) "failed") $) 19 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-1206)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1869 (($ $ (-1206)) 29 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1206) |#1|) NIL T ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL T ELT) (($ $ (-1206) $) NIL T ELT) (($ $ (-665 (-1206)) (-665 $)) NIL T ELT)) (-3846 (($ $ (-1206)) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-1597 (((-544 (-1206)) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT) (((-665 (-792)) $ (-665 (-1206))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-1206) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1206) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1206) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) 25 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1206)) 27 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-980 |#1|) (-13 (-977 |#1| (-544 (-1206)) (-1206)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1206))) |%noBranch|))) (-1079)) (T -980)) +((-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-980 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079))))) +(-13 (-977 |#1| (-544 (-1206)) (-1206)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1206))) |%noBranch|))) +((-3053 (((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) |#3| (-792)) 49 T ELT)) (-1823 (((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-792)) 44 T ELT)) (-1838 (((-2 (|:| -2328 (-792)) (|:| -4473 |#4|) (|:| |radicand| (-665 |#4|))) |#4| (-792)) 65 T ELT)) (-1563 (((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) |#5| (-792)) 74 (|has| |#3| (-465)) ELT))) +(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3053 ((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) |#3| (-792))) (-15 -1823 ((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-792))) (IF (|has| |#3| (-465)) (-15 -1563 ((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) |#5| (-792))) |%noBranch|) (-15 -1838 ((-2 (|:| -2328 (-792)) (|:| -4473 |#4|) (|:| |radicand| (-665 |#4|))) |#4| (-792)))) (-814) (-870) (-569) (-977 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3709 ($ |#4|)) (-15 -2417 (|#4| $)) (-15 -2429 (|#4| $))))) (T -981)) +((-1838 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *3 (-977 *7 *5 *6)) (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *3) (|:| |radicand| (-665 *3)))) (-5 *1 (-981 *5 *6 *7 *3 *8)) (-5 *4 (-792)) (-4 *8 (-13 (-375) (-10 -8 (-15 -3709 ($ *3)) (-15 -2417 (*3 $)) (-15 -2429 (*3 $))))))) (-1563 (*1 *2 *3 *4) (-12 (-4 *7 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *8 (-977 *7 *5 *6)) (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *3) (|:| |radicand| *3))) (-5 *1 (-981 *5 *6 *7 *8 *3)) (-5 *4 (-792)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3709 ($ *8)) (-15 -2417 (*8 $)) (-15 -2429 (*8 $))))))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *8 (-977 *7 *5 *6)) (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *9) (|:| |radicand| *9))) (-5 *1 (-981 *5 *6 *7 *8 *9)) (-5 *4 (-792)) (-4 *9 (-13 (-375) (-10 -8 (-15 -3709 ($ *8)) (-15 -2417 (*8 $)) (-15 -2429 (*8 $))))))) (-3053 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-569)) (-4 *7 (-977 *3 *5 *6)) (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *8) (|:| |radicand| *8))) (-5 *1 (-981 *5 *6 *3 *7 *8)) (-5 *4 (-792)) (-4 *8 (-13 (-375) (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $)))))))) +(-10 -7 (-15 -3053 ((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) |#3| (-792))) (-15 -1823 ((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-792))) (IF (|has| |#3| (-465)) (-15 -1563 ((-2 (|:| -2328 (-792)) (|:| -4473 |#5|) (|:| |radicand| |#5|)) |#5| (-792))) |%noBranch|) (-15 -1838 ((-2 (|:| -2328 (-792)) (|:| -4473 |#4|) (|:| |radicand| (-665 |#4|))) |#4| (-792)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2876 (($ (-1150)) 8 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 15 T ELT) (((-1150) $) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 11 T ELT))) +(((-982) (-13 (-1130) (-631 (-1150)) (-10 -8 (-15 -2876 ($ (-1150)))))) (T -982)) +((-2876 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-982))))) +(-13 (-1130) (-631 (-1150)) (-10 -8 (-15 -2876 ($ (-1150))))) +((-4383 (((-1124 (-228)) $) 8 T ELT)) (-4374 (((-1124 (-228)) $) 9 T ELT)) (-2489 (((-665 (-665 (-971 (-228)))) $) 10 T ELT)) (-3709 (((-885) $) 6 T ELT))) +(((-983) (-141)) (T -983)) +((-2489 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-665 (-665 (-971 (-228))))))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228))))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228)))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2489 ((-665 (-665 (-971 (-228)))) $)) (-15 -4374 ((-1124 (-228)) $)) (-15 -4383 ((-1124 (-228)) $)))) +(((-631 (-885)) . T)) +((-1983 (((-3 (-710 |#1|) "failed") |#2| (-949)) 18 T ELT))) +(((-984 |#1| |#2|) (-10 -7 (-15 -1983 ((-3 (-710 |#1|) "failed") |#2| (-949)))) (-569) (-677 |#1|)) (T -984)) +((-1983 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-949)) (-4 *5 (-569)) (-5 *2 (-710 *5)) (-5 *1 (-984 *5 *3)) (-4 *3 (-677 *5))))) +(-10 -7 (-15 -1983 ((-3 (-710 |#1|) "failed") |#2| (-949)))) +((-4256 (((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|) 16 T ELT)) (-2060 ((|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|) 18 T ELT)) (-4417 (((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)) 13 T ELT))) +(((-985 |#1| |#2|) (-10 -7 (-15 -4256 ((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -4417 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)))) (-1247) (-1247)) (T -985)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-986 *6)) (-5 *1 (-985 *5 *6)))) (-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-985 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-986 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-986 *5)) (-5 *1 (-985 *6 *5))))) +(-10 -7 (-15 -4256 ((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -4417 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) |#1|) 19 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 18 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 16 T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) |#1|) 15 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) 11 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) 20 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 17 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 21 T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 14 T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3600 (((-792) $) 8 (|has| $ (-6 -4499)) ELT))) +(((-986 |#1|) (-19 |#1|) (-1247)) (T -986)) NIL (-19 |#1|) -((-1961 (($ $ (-1117 $)) 7 T ELT) (($ $ (-1201)) 6 T ELT))) -(((-982) (-141)) (T -982)) -((-1961 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-982)))) (-1961 (*1 *1 *1 *2) (-12 (-4 *1 (-982)) (-5 *2 (-1201))))) -(-13 (-10 -8 (-15 -1961 ($ $ (-1201))) (-15 -1961 ($ $ (-1117 $))))) -((-1742 (((-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)) (-1201)) 26 T ELT) (((-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201))) 27 T ELT) (((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 |#1|))) (-975 |#1|) (-1201) (-975 |#1|) (-1201)) 49 T ELT))) -(((-983 |#1|) (-10 -7 (-15 -1742 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 |#1|))) (-975 |#1|) (-1201) (-975 |#1|) (-1201))) (-15 -1742 ((-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -1742 ((-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)) (-1201)))) (-13 (-375) (-148))) (T -983)) -((-1742 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-5 *5 (-1201)) (-4 *6 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 *6))) (|:| |prim| (-1197 *6)))) (-5 *1 (-983 *6)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 *5))) (|:| |prim| (-1197 *5)))) (-5 *1 (-983 *5)))) (-1742 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-1201)) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 *5)))) (-5 *1 (-983 *5))))) -(-10 -7 (-15 -1742 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 |#1|))) (-975 |#1|) (-1201) (-975 |#1|) (-1201))) (-15 -1742 ((-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -1742 ((-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)) (-1201)))) -((-4058 (((-660 |#1|) |#1| |#1|) 47 T ELT)) (-2182 (((-112) |#1|) 44 T ELT)) (-2126 ((|#1| |#1|) 79 T ELT)) (-3486 ((|#1| |#1|) 78 T ELT))) -(((-984 |#1|) (-10 -7 (-15 -2182 ((-112) |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -2126 (|#1| |#1|)) (-15 -4058 ((-660 |#1|) |#1| |#1|))) (-558)) (T -984)) -((-4058 (*1 *2 *3 *3) (-12 (-5 *2 (-660 *3)) (-5 *1 (-984 *3)) (-4 *3 (-558)))) (-2126 (*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558)))) (-3486 (*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558)))) (-2182 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-558))))) -(-10 -7 (-15 -2182 ((-112) |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -2126 (|#1| |#1|)) (-15 -4058 ((-660 |#1|) |#1| |#1|))) -((-2229 (((-1297) (-880)) 9 T ELT))) -(((-985) (-10 -7 (-15 -2229 ((-1297) (-880))))) (T -985)) -((-2229 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-985))))) -(-10 -7 (-15 -2229 ((-1297) (-880)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 78 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 79 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 34 T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3391 (($ $) 31 T ELT)) (-1625 (((-3 $ "failed") $) 42 T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3367 (($ $ |#1| |#2| $) 62 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) 17 T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| |#2|) NIL T ELT)) (-2643 ((|#2| $) 24 T ELT)) (-4373 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3354 (($ $) 28 T ELT)) (-3365 ((|#1| $) 26 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) 51 T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-1391 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-569))) ELT)) (-3478 (((-3 $ "failed") $ $) 91 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-569)) ELT)) (-3616 ((|#2| $) 22 T ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) 46 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 41 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ |#2|) 37 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 15 T CONST)) (-3528 (($ $ $ (-787)) 74 (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) 84 (|has| |#1| (-569)) ELT)) (-2754 (($) 27 T CONST)) (-2767 (($) 12 T CONST)) (-2949 (((-112) $ $) 83 T ELT)) (-3051 (($ $ |#1|) 92 (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) 69 T ELT) (($ $ (-787)) 67 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 66 T ELT) (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-986 |#1| |#2|) (-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -1391 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) (-1074) (-808)) (T -986)) -((-1391 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-986 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *2 (-808))))) -(-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -1391 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) ELT)) (-2510 (($ $ $) 65 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) ELT)) (-1771 (((-3 $ "failed") $ $) 52 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) ELT)) (-3373 (((-787)) 36 (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-2796 ((|#2| $) 22 T ELT)) (-1485 ((|#1| $) 21 T ELT)) (-3790 (($) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) CONST)) (-1625 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) ELT)) (-2352 (($) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-3306 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) ELT)) (-2900 (($ $ $) NIL (-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) ELT)) (-1457 (($ $ $) NIL (-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) ELT)) (-3109 (($ |#1| |#2|) 20 T ELT)) (-2144 (((-944) $) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 39 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-3251 (($ (-944)) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1328 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-3823 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-3603 (((-880) $) 14 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 42 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) CONST)) (-2767 (($) 25 (-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) CONST)) (-3001 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) ELT)) (-2978 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) ELT)) (-2949 (((-112) $ $) 19 T ELT)) (-2988 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) ELT)) (-2971 (((-112) $ $) 69 (-2811 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) ELT)) (-3051 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-3042 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3031 (($ $ $) 45 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) ELT)) (** (($ $ (-577)) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT) (($ $ (-787)) 32 (-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) ELT) (($ $ (-944)) NIL (-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) ELT)) (* (($ (-577) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-787) $) 48 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) ELT) (($ (-944) $) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) ELT) (($ $ $) 28 (-2811 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) ELT))) -(((-987 |#1| |#2|) (-13 (-1125) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-742)) (IF (|has| |#2| (-742)) (-6 (-742)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-809)) (IF (|has| |#2| (-809)) (-6 (-809)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-865)) (IF (|has| |#2| (-865)) (-6 (-865)) |%noBranch|) |%noBranch|) (-15 -3109 ($ |#1| |#2|)) (-15 -1485 (|#1| $)) (-15 -2796 (|#2| $)))) (-1125) (-1125)) (T -987)) -((-3109 (*1 *1 *2 *3) (-12 (-5 *1 (-987 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-1485 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1125)))) (-2796 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-987 *3 *2)) (-4 *3 (-1125))))) -(-13 (-1125) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-742)) (IF (|has| |#2| (-742)) (-6 (-742)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-809)) (IF (|has| |#2| (-809)) (-6 (-809)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-865)) (IF (|has| |#2| (-865)) (-6 (-865)) |%noBranch|) |%noBranch|) (-15 -3109 ($ |#1| |#2|)) (-15 -1485 (|#1| $)) (-15 -2796 (|#2| $)))) -((-3145 (((-1129) $) 12 T ELT)) (-1773 (($ (-519) (-1129)) 14 T ELT)) (-2668 (((-519) $) 9 T ELT)) (-3603 (((-880) $) 24 T ELT))) -(((-988) (-13 (-626 (-880)) (-10 -8 (-15 -2668 ((-519) $)) (-15 -3145 ((-1129) $)) (-15 -1773 ($ (-519) (-1129)))))) (T -988)) -((-2668 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-988)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-988)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-988))))) -(-13 (-626 (-880)) (-10 -8 (-15 -2668 ((-519) $)) (-15 -3145 ((-1129) $)) (-15 -1773 ($ (-519) (-1129))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2190 (($) NIL T CONST)) (-2713 (($ $ $) 30 T ELT)) (-2686 (($ $) 24 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3835 (((-707 (-891 $ $)) $) 55 T ELT)) (-2280 (((-707 $) $) 45 T ELT)) (-2005 (((-707 (-891 $ $)) $) 56 T ELT)) (-3359 (((-707 (-891 $ $)) $) 57 T ELT)) (-3413 (((-707 |#1|) $) 36 T ELT)) (-2391 (((-707 (-891 $ $)) $) 54 T ELT)) (-1837 (($ $ $) 31 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3555 (($) NIL T CONST)) (-3339 (($ $ $) 32 T ELT)) (-1660 (($ $ $) 29 T ELT)) (-3469 (($ $ $) 27 T ELT)) (-3603 (((-880) $) 59 T ELT) (($ |#1|) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2700 (($ $ $) 28 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-989 |#1|) (-13 (-992) (-629 |#1|) (-10 -8 (-15 -3413 ((-707 |#1|) $)) (-15 -2280 ((-707 $) $)) (-15 -2391 ((-707 (-891 $ $)) $)) (-15 -3835 ((-707 (-891 $ $)) $)) (-15 -2005 ((-707 (-891 $ $)) $)) (-15 -3359 ((-707 (-891 $ $)) $)) (-15 -3469 ($ $ $)) (-15 -1660 ($ $ $)))) (-1125)) (T -989)) -((-3413 (*1 *2 *1) (-12 (-5 *2 (-707 *3)) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-707 (-989 *3))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3469 (*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125)))) (-1660 (*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125))))) -(-13 (-992) (-629 |#1|) (-10 -8 (-15 -3413 ((-707 |#1|) $)) (-15 -2280 ((-707 $) $)) (-15 -2391 ((-707 (-891 $ $)) $)) (-15 -3835 ((-707 (-891 $ $)) $)) (-15 -2005 ((-707 (-891 $ $)) $)) (-15 -3359 ((-707 (-891 $ $)) $)) (-15 -3469 ($ $ $)) (-15 -1660 ($ $ $)))) -((-3698 (((-989 |#1|) (-989 |#1|)) 46 T ELT)) (-1664 (((-989 |#1|) (-989 |#1|)) 22 T ELT)) (-1881 (((-1127 |#1|) (-989 |#1|)) 41 T ELT))) -(((-990 |#1|) (-13 (-1242) (-10 -7 (-15 -1664 ((-989 |#1|) (-989 |#1|))) (-15 -1881 ((-1127 |#1|) (-989 |#1|))) (-15 -3698 ((-989 |#1|) (-989 |#1|))))) (-1125)) (T -990)) -((-1664 (*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-989 *4)) (-4 *4 (-1125)) (-5 *2 (-1127 *4)) (-5 *1 (-990 *4)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3))))) -(-13 (-1242) (-10 -7 (-15 -1664 ((-989 |#1|) (-989 |#1|))) (-15 -1881 ((-1127 |#1|) (-989 |#1|))) (-15 -3698 ((-989 |#1|) (-989 |#1|))))) -((-2124 (((-989 |#2|) (-1 |#2| |#1|) (-989 |#1|)) 29 T ELT))) -(((-991 |#1| |#2|) (-13 (-1242) (-10 -7 (-15 -2124 ((-989 |#2|) (-1 |#2| |#1|) (-989 |#1|))))) (-1125) (-1125)) (T -991)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-989 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-989 *6)) (-5 *1 (-991 *5 *6))))) -(-13 (-1242) (-10 -7 (-15 -2124 ((-989 |#2|) (-1 |#2| |#1|) (-989 |#1|))))) -((-3489 (((-112) $ $) 16 T ELT)) (-2190 (($) 14 T CONST)) (-2713 (($ $ $) 6 T ELT)) (-2686 (($ $) 8 T ELT)) (-2045 (((-1183) $) 20 T ELT)) (-1837 (($ $ $) 12 T ELT)) (-1440 (((-1145) $) 19 T ELT)) (-3555 (($) 13 T CONST)) (-3339 (($ $ $) 11 T ELT)) (-3603 (((-880) $) 18 T ELT)) (-2726 (((-112) $ $) 17 T ELT)) (-2700 (($ $ $) 7 T ELT)) (-2949 (((-112) $ $) 15 T ELT))) -(((-992) (-141)) (T -992)) -((-2190 (*1 *1) (-4 *1 (-992))) (-3555 (*1 *1) (-4 *1 (-992))) (-1837 (*1 *1 *1 *1) (-4 *1 (-992))) (-3339 (*1 *1 *1 *1) (-4 *1 (-992)))) -(-13 (-113) (-1125) (-10 -8 (-15 -2190 ($) -2609) (-15 -3555 ($) -2609) (-15 -1837 ($ $ $)) (-15 -3339 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3790 (($) 7 T CONST)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-1615 (($ $ $) 44 T ELT)) (-1334 (($ $ $) 45 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1457 ((|#1| $) 46 T ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-993 |#1|) (-141) (-865)) (T -993)) -((-1457 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865)))) (-1334 (*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865)))) (-1615 (*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4470) (-15 -1457 (|t#1| $)) (-15 -1334 ($ $ $)) (-15 -1615 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3419 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3543 |#2|)) |#2| |#2|) 105 T ELT)) (-4072 ((|#2| |#2| |#2|) 103 T ELT)) (-2134 (((-2 (|:| |coef2| |#2|) (|:| -3543 |#2|)) |#2| |#2|) 107 T ELT)) (-4045 (((-2 (|:| |coef1| |#2|) (|:| -3543 |#2|)) |#2| |#2|) 109 T ELT)) (-3631 (((-2 (|:| |coef2| |#2|) (|:| -2261 |#1|)) |#2| |#2|) 131 (|has| |#1| (-465)) ELT)) (-3298 (((-2 (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|) 56 T ELT)) (-3182 (((-2 (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|) 80 T ELT)) (-2636 (((-2 (|:| |coef1| |#2|) (|:| -2653 |#1|)) |#2| |#2|) 82 T ELT)) (-3719 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-3813 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 89 T ELT)) (-3519 (((-2 (|:| |coef2| |#2|) (|:| -4447 |#1|)) |#2|) 121 T ELT)) (-4222 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 92 T ELT)) (-3903 (((-660 (-787)) |#2| |#2|) 102 T ELT)) (-2102 ((|#1| |#2| |#2|) 50 T ELT)) (-3996 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2261 |#1|)) |#2| |#2|) 129 (|has| |#1| (-465)) ELT)) (-2261 ((|#1| |#2| |#2|) 127 (|has| |#1| (-465)) ELT)) (-3701 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|) 54 T ELT)) (-3146 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|) 79 T ELT)) (-2653 ((|#1| |#2| |#2|) 76 T ELT)) (-2737 (((-2 (|:| -2940 |#1|) (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2|) 41 T ELT)) (-2531 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-1845 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-2048 ((|#2| |#2| |#2|) 93 T ELT)) (-2098 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 87 T ELT)) (-1447 ((|#2| |#2| |#2| (-787)) 85 T ELT)) (-3543 ((|#2| |#2| |#2|) 135 (|has| |#1| (-465)) ELT)) (-3478 (((-1292 |#2|) (-1292 |#2|) |#1|) 22 T ELT)) (-3039 (((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2|) 46 T ELT)) (-2549 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4447 |#1|)) |#2|) 119 T ELT)) (-4447 ((|#1| |#2|) 116 T ELT)) (-2281 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 91 T ELT)) (-2365 ((|#2| |#2| |#2| (-787)) 90 T ELT)) (-2066 (((-660 |#2|) |#2| |#2|) 99 T ELT)) (-4182 ((|#2| |#2| |#1| |#1| (-787)) 62 T ELT)) (-1434 ((|#1| |#1| |#1| (-787)) 61 T ELT)) (* (((-1292 |#2|) |#1| (-1292 |#2|)) 17 T ELT))) -(((-994 |#1| |#2|) (-10 -7 (-15 -2653 (|#1| |#2| |#2|)) (-15 -3146 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -2636 ((-2 (|:| |coef1| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -1447 (|#2| |#2| |#2| (-787))) (-15 -2098 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3813 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -2365 (|#2| |#2| |#2| (-787))) (-15 -2281 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -4222 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -2048 (|#2| |#2| |#2|)) (-15 -1845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3719 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4072 (|#2| |#2| |#2|)) (-15 -3419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3543 |#2|)) |#2| |#2|)) (-15 -2134 ((-2 (|:| |coef2| |#2|) (|:| -3543 |#2|)) |#2| |#2|)) (-15 -4045 ((-2 (|:| |coef1| |#2|) (|:| -3543 |#2|)) |#2| |#2|)) (-15 -4447 (|#1| |#2|)) (-15 -2549 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4447 |#1|)) |#2|)) (-15 -3519 ((-2 (|:| |coef2| |#2|) (|:| -4447 |#1|)) |#2|)) (-15 -2066 ((-660 |#2|) |#2| |#2|)) (-15 -3903 ((-660 (-787)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -2261 (|#1| |#2| |#2|)) (-15 -3996 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2261 |#1|)) |#2| |#2|)) (-15 -3631 ((-2 (|:| |coef2| |#2|) (|:| -2261 |#1|)) |#2| |#2|)) (-15 -3543 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1292 |#2|) |#1| (-1292 |#2|))) (-15 -3478 ((-1292 |#2|) (-1292 |#2|) |#1|)) (-15 -2737 ((-2 (|:| -2940 |#1|) (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2|)) (-15 -3039 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2|)) (-15 -1434 (|#1| |#1| |#1| (-787))) (-15 -4182 (|#2| |#2| |#1| |#1| (-787))) (-15 -2531 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2102 (|#1| |#2| |#2|)) (-15 -3701 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -3298 ((-2 (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|))) (-569) (-1268 |#1|)) (T -994)) -((-3298 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2653 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2653 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2102 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) (-2531 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-4182 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-1434 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *2 (-569)) (-5 *1 (-994 *2 *4)) (-4 *4 (-1268 *2)))) (-3039 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2737 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2940 *4) (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3478 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) (-5 *1 (-994 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) (-5 *1 (-994 *3 *4)))) (-3543 (*1 *2 *2 *2) (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-3631 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2261 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3996 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2261 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2261 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) (-3903 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-787))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2066 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4447 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2549 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4447 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-4447 (*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) (-4045 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3543 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2134 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3543 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3419 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3543 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-4072 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-3719 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-1845 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2048 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-4222 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-2281 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-2365 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) (-4 *2 (-1268 *4)))) (-3813 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-2098 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-1447 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) (-4 *2 (-1268 *4)))) (-2636 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2653 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3182 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2653 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3146 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2653 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-2653 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2))))) -(-10 -7 (-15 -2653 (|#1| |#2| |#2|)) (-15 -3146 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -2636 ((-2 (|:| |coef1| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -1447 (|#2| |#2| |#2| (-787))) (-15 -2098 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3813 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -2365 (|#2| |#2| |#2| (-787))) (-15 -2281 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -4222 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -2048 (|#2| |#2| |#2|)) (-15 -1845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3719 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4072 (|#2| |#2| |#2|)) (-15 -3419 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3543 |#2|)) |#2| |#2|)) (-15 -2134 ((-2 (|:| |coef2| |#2|) (|:| -3543 |#2|)) |#2| |#2|)) (-15 -4045 ((-2 (|:| |coef1| |#2|) (|:| -3543 |#2|)) |#2| |#2|)) (-15 -4447 (|#1| |#2|)) (-15 -2549 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4447 |#1|)) |#2|)) (-15 -3519 ((-2 (|:| |coef2| |#2|) (|:| -4447 |#1|)) |#2|)) (-15 -2066 ((-660 |#2|) |#2| |#2|)) (-15 -3903 ((-660 (-787)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -2261 (|#1| |#2| |#2|)) (-15 -3996 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2261 |#1|)) |#2| |#2|)) (-15 -3631 ((-2 (|:| |coef2| |#2|) (|:| -2261 |#1|)) |#2| |#2|)) (-15 -3543 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1292 |#2|) |#1| (-1292 |#2|))) (-15 -3478 ((-1292 |#2|) (-1292 |#2|) |#1|)) (-15 -2737 ((-2 (|:| -2940 |#1|) (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2|)) (-15 -3039 ((-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) |#2| |#2|)) (-15 -1434 (|#1| |#1| |#1| (-787))) (-15 -4182 (|#2| |#2| |#1| |#1| (-787))) (-15 -2531 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2102 (|#1| |#2| |#2|)) (-15 -3701 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|)) (-15 -3298 ((-2 (|:| |coef2| |#2|) (|:| -2653 |#1|)) |#2| |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3014 (((-1241) $) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3201 (((-1160) $) 10 T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-995) (-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -3014 ((-1241) $))))) (T -995)) -((-3201 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-995)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-995))))) -(-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -3014 ((-1241) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 40 T ELT)) (-1771 (((-3 $ "failed") $ $) 54 T ELT)) (-3790 (($) NIL T CONST)) (-1370 (((-660 (-891 (-944) (-944))) $) 67 T ELT)) (-2858 (((-944) $) 94 T ELT)) (-3692 (((-660 (-944)) $) 17 T ELT)) (-4306 (((-1182 $) (-787)) 39 T ELT)) (-4082 (($ (-660 (-944))) 16 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1328 (($ $) 70 T ELT)) (-3603 (((-880) $) 90 T ELT) (((-660 (-944)) $) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 8 T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 44 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 42 T ELT)) (-3031 (($ $ $) 46 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) 49 T ELT)) (-3501 (((-787) $) 22 T ELT))) -(((-996) (-13 (-811) (-626 (-660 (-944))) (-10 -8 (-15 -4082 ($ (-660 (-944)))) (-15 -3692 ((-660 (-944)) $)) (-15 -3501 ((-787) $)) (-15 -4306 ((-1182 $) (-787))) (-15 -1370 ((-660 (-891 (-944) (-944))) $)) (-15 -2858 ((-944) $)) (-15 -1328 ($ $))))) (T -996)) -((-4082 (*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-996)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1182 (-996))) (-5 *1 (-996)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-944) (-944)))) (-5 *1 (-996)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-996)))) (-1328 (*1 *1 *1) (-5 *1 (-996)))) -(-13 (-811) (-626 (-660 (-944))) (-10 -8 (-15 -4082 ($ (-660 (-944)))) (-15 -3692 ((-660 (-944)) $)) (-15 -3501 ((-787) $)) (-15 -4306 ((-1182 $) (-787))) (-15 -1370 ((-660 (-891 (-944) (-944))) $)) (-15 -2858 ((-944) $)) (-15 -1328 ($ $)))) -((-3051 (($ $ |#2|) 31 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-420 (-577)) $) 27 T ELT) (($ $ (-420 (-577))) 29 T ELT))) -(((-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3051 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-998 |#2| |#3| |#4|) (-1074) (-808) (-865)) (T -997)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3051 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 |#3|) $) 86 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2307 (((-112) $) 85 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| |#2|) 73 T ELT) (($ $ |#3| |#2|) 88 T ELT) (($ $ (-660 |#3|) (-660 |#2|)) 87 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3616 ((|#2| $) 76 T ELT)) (-2544 (($ $) 84 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-3421 ((|#1| $ |#2|) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-998 |#1| |#2| |#3|) (-141) (-1074) (-808) (-865)) (T -998)) -((-3365 (*1 *2 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *3 (-808)) (-4 *4 (-865)) (-4 *2 (-1074)))) (-3354 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *4 (-865)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *2 *4)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *2 (-808)))) (-3180 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-998 *4 *3 *2)) (-4 *4 (-1074)) (-4 *3 (-808)) (-4 *2 (-865)))) (-3180 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 *5)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-808)) (-4 *6 (-865)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) (-4 *5 (-865)) (-5 *2 (-660 *5)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2544 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *4 (-865))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3180 ($ $ |t#3| |t#2|)) (-15 -3180 ($ $ (-660 |t#3|) (-660 |t#2|))) (-15 -3354 ($ $)) (-15 -3365 (|t#1| $)) (-15 -3616 (|t#2| $)) (-15 -3206 ((-660 |t#3|) $)) (-15 -2307 ((-112) $)) (-15 -2544 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2816 (((-1119 (-228)) $) 8 T ELT)) (-2805 (((-1119 (-228)) $) 9 T ELT)) (-2788 (((-1119 (-228)) $) 10 T ELT)) (-3874 (((-660 (-660 (-966 (-228)))) $) 11 T ELT)) (-3603 (((-880) $) 6 T ELT))) -(((-999) (-141)) (T -999)) -((-3874 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-660 (-660 (-966 (-228))))))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228))))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228))))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3874 ((-660 (-660 (-966 (-228)))) $)) (-15 -2788 ((-1119 (-228)) $)) (-15 -2805 ((-1119 (-228)) $)) (-15 -2816 ((-1119 (-228)) $)))) -(((-626 (-880)) . T)) -((-3206 (((-660 |#4|) $) 23 T ELT)) (-1905 (((-112) $) 55 T ELT)) (-1421 (((-112) $) 54 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-4046 (((-112) $) 56 T ELT)) (-2569 (((-112) $ $) 62 T ELT)) (-2573 (((-112) $ $) 65 T ELT)) (-1574 (((-112) $) 60 T ELT)) (-1399 (((-660 |#5|) (-660 |#5|) $) 98 T ELT)) (-4193 (((-660 |#5|) (-660 |#5|) $) 95 T ELT)) (-2689 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-1365 (((-660 |#4|) $) 27 T ELT)) (-2639 (((-112) |#4| $) 34 T ELT)) (-4383 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3620 (($ $ |#4|) 39 T ELT)) (-2003 (($ $ |#4|) 38 T ELT)) (-3344 (($ $ |#4|) 40 T ELT)) (-2949 (((-112) $ $) 46 T ELT))) -(((-1000 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1421 ((-112) |#1|)) (-15 -1399 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -4193 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -2689 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4383 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -2573 ((-112) |#1| |#1|)) (-15 -2569 ((-112) |#1| |#1|)) (-15 -1574 ((-112) |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -2312 ((-2 (|:| |under| |#1|) (|:| -1374 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3620 (|#1| |#1| |#4|)) (-15 -3344 (|#1| |#1| |#4|)) (-15 -2003 (|#1| |#1| |#4|)) (-15 -2639 ((-112) |#4| |#1|)) (-15 -1365 ((-660 |#4|) |#1|)) (-15 -3206 ((-660 |#4|) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-1001 |#2| |#3| |#4| |#5|) (-1074) (-809) (-865) (-1090 |#2| |#3| |#4|)) (T -1000)) -NIL -(-10 -8 (-15 -1421 ((-112) |#1|)) (-15 -1399 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -4193 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -2689 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4383 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -2573 ((-112) |#1| |#1|)) (-15 -2569 ((-112) |#1| |#1|)) (-15 -1574 ((-112) |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -2312 ((-2 (|:| |under| |#1|) (|:| -1374 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3620 (|#1| |#1| |#4|)) (-15 -3344 (|#1| |#1| |#4|)) (-15 -2003 (|#1| |#1| |#4|)) (-15 -2639 ((-112) |#4| |#1|)) (-15 -1365 ((-660 |#4|) |#1|)) (-15 -3206 ((-660 |#4|) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3206 (((-660 |#3|) $) 34 T ELT)) (-1905 (((-112) $) 27 T ELT)) (-1421 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-4403 (((-112) $ (-787)) 45 T ELT)) (-3730 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 46 T CONST)) (-4046 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) 37 T ELT)) (-2155 (($ (-660 |#4|)) 36 T ELT)) (-3289 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)) ELT)) (-1940 ((|#3| $) 35 T ELT)) (-1821 (((-112) $ (-787)) 44 T ELT)) (-2434 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1365 (((-660 |#3|) $) 33 T ELT)) (-2639 (((-112) |#3| $) 32 T ELT)) (-3272 (((-112) $ (-787)) 43 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) 39 T ELT)) (-2856 (((-112) $) 42 T ELT)) (-2693 (($) 41 T ELT)) (-1452 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 40 T ELT)) (-2176 (((-549) $) 70 (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 61 T ELT)) (-3620 (($ $ |#3|) 29 T ELT)) (-2003 (($ $ |#3|) 31 T ELT)) (-3344 (($ $ |#3|) 30 T ELT)) (-3603 (((-880) $) 12 T ELT) (((-660 |#4|) $) 38 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-787) $) 47 (|has| $ (-6 -4470)) ELT))) -(((-1001 |#1| |#2| |#3| |#4|) (-141) (-1074) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1001)) -((-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *1 (-1001 *3 *4 *5 *6)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *1 (-1001 *3 *4 *5 *6)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-1090 *3 *4 *2)) (-4 *2 (-865)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) (-2639 (*1 *2 *3 *1) (-12 (-4 *1 (-1001 *4 *5 *3 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112)))) (-2003 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2)))) (-3344 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2)))) (-3620 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2)))) (-2312 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1374 *1) (|:| |upper| *1))) (-4 *1 (-1001 *4 *5 *3 *6)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2573 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-4383 (*1 *2 *3 *1) (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2689 (*1 *2 *3 *1) (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4193 (*1 *2 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)))) (-1399 (*1 *2 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112))))) -(-13 (-1125) (-152 |t#4|) (-626 (-660 |t#4|)) (-10 -8 (-6 -4470) (-15 -2784 ((-3 $ "failed") (-660 |t#4|))) (-15 -2155 ($ (-660 |t#4|))) (-15 -1940 (|t#3| $)) (-15 -3206 ((-660 |t#3|) $)) (-15 -1365 ((-660 |t#3|) $)) (-15 -2639 ((-112) |t#3| $)) (-15 -2003 ($ $ |t#3|)) (-15 -3344 ($ $ |t#3|)) (-15 -3620 ($ $ |t#3|)) (-15 -2312 ((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |t#3|)) (-15 -1905 ((-112) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -1574 ((-112) $)) (-15 -2569 ((-112) $ $)) (-15 -2573 ((-112) $ $)) (-15 -4046 ((-112) $)) (-15 -4383 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2689 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4193 ((-660 |t#4|) (-660 |t#4|) $)) (-15 -1399 ((-660 |t#4|) (-660 |t#4|) $)) (-15 -1421 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1125) . T) ((-1242) . T)) -((-2903 (((-660 |#4|) |#4| |#4|) 136 T ELT)) (-2386 (((-660 |#4|) (-660 |#4|) (-112)) 125 (|has| |#1| (-465)) ELT) (((-660 |#4|) (-660 |#4|)) 126 (|has| |#1| (-465)) ELT)) (-3576 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 44 T ELT)) (-3824 (((-112) |#4|) 43 T ELT)) (-2822 (((-660 |#4|) |#4|) 121 (|has| |#1| (-465)) ELT)) (-3138 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-112) |#4|) (-660 |#4|)) 24 T ELT)) (-2821 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|)) 30 T ELT)) (-4357 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|)) 31 T ELT)) (-2405 (((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|)) 90 T ELT)) (-1706 (((-660 |#4|) (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3186 (((-660 |#4|) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3117 (((-660 |#4|) (-660 |#4|)) 128 T ELT)) (-3658 (((-660 |#4|) (-660 |#4|) (-660 |#4|) (-112)) 59 T ELT) (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 61 T ELT)) (-2273 ((|#4| |#4| (-660 |#4|)) 60 T ELT)) (-2077 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 132 (|has| |#1| (-465)) ELT)) (-4400 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 135 (|has| |#1| (-465)) ELT)) (-2957 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 134 (|has| |#1| (-465)) ELT)) (-1381 (((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|))) 105 T ELT) (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 107 T ELT) (((-660 |#4|) (-660 |#4|) |#4|) 140 T ELT) (((-660 |#4|) |#4| |#4|) 137 T ELT) (((-660 |#4|) (-660 |#4|)) 106 T ELT)) (-4343 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-2099 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 52 T ELT)) (-1538 (((-112) (-660 |#4|)) 79 T ELT)) (-2863 (((-112) (-660 |#4|) (-660 (-660 |#4|))) 67 T ELT)) (-3754 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 37 T ELT)) (-2073 (((-112) |#4|) 36 T ELT)) (-2627 (((-660 |#4|) (-660 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-4184 (((-660 |#4|) (-660 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-1478 (((-660 |#4|) (-660 |#4|)) 83 T ELT)) (-4231 (((-660 |#4|) (-660 |#4|)) 97 T ELT)) (-2990 (((-112) (-660 |#4|) (-660 |#4|)) 65 T ELT)) (-1955 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 50 T ELT)) (-3408 (((-112) |#4|) 45 T ELT))) -(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1381 ((-660 |#4|) (-660 |#4|))) (-15 -1381 ((-660 |#4|) |#4| |#4|)) (-15 -3117 ((-660 |#4|) (-660 |#4|))) (-15 -2903 ((-660 |#4|) |#4| |#4|)) (-15 -1381 ((-660 |#4|) (-660 |#4|) |#4|)) (-15 -1381 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -1381 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|)))) (-15 -2990 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2863 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -1538 ((-112) (-660 |#4|))) (-15 -3138 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-112) |#4|) (-660 |#4|))) (-15 -2821 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -4357 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -2099 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3824 ((-112) |#4|)) (-15 -3576 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2073 ((-112) |#4|)) (-15 -3754 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3408 ((-112) |#4|)) (-15 -1955 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3658 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -3658 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-112))) (-15 -2273 (|#4| |#4| (-660 |#4|))) (-15 -1478 ((-660 |#4|) (-660 |#4|))) (-15 -2405 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|))) (-15 -4231 ((-660 |#4|) (-660 |#4|))) (-15 -1706 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3186 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2822 ((-660 |#4|) |#4|)) (-15 -2386 ((-660 |#4|) (-660 |#4|))) (-15 -2386 ((-660 |#4|) (-660 |#4|) (-112))) (-15 -2077 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2957 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -4400 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -4184 ((-660 |#4|) (-660 |#4|))) (-15 -2627 ((-660 |#4|) (-660 |#4|))) (-15 -4343 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) |%noBranch|)) (-569) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1002)) -((-4343 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-4400 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2957 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2077 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2386 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2822 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-3186 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1002 *5 *6 *7 *8)))) (-1706 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-660 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *1 (-1002 *6 *7 *8 *9)))) (-4231 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2405 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -2554 (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2273 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *2)))) (-3658 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-3658 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2073 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-2099 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-4357 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *5 *6 *7 *8)))) (-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-1381 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-660 *7) (-660 *7))) (-5 *2 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-1381 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *3)))) (-2903 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-1381 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) -(-10 -7 (-15 -1381 ((-660 |#4|) (-660 |#4|))) (-15 -1381 ((-660 |#4|) |#4| |#4|)) (-15 -3117 ((-660 |#4|) (-660 |#4|))) (-15 -2903 ((-660 |#4|) |#4| |#4|)) (-15 -1381 ((-660 |#4|) (-660 |#4|) |#4|)) (-15 -1381 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -1381 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|)))) (-15 -2990 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2863 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -1538 ((-112) (-660 |#4|))) (-15 -3138 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-112) |#4|) (-660 |#4|))) (-15 -2821 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -4357 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -2099 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3824 ((-112) |#4|)) (-15 -3576 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2073 ((-112) |#4|)) (-15 -3754 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3408 ((-112) |#4|)) (-15 -1955 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3658 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -3658 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-112))) (-15 -2273 (|#4| |#4| (-660 |#4|))) (-15 -1478 ((-660 |#4|) (-660 |#4|))) (-15 -2405 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|))) (-15 -4231 ((-660 |#4|) (-660 |#4|))) (-15 -1706 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3186 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2822 ((-660 |#4|) |#4|)) (-15 -2386 ((-660 |#4|) (-660 |#4|))) (-15 -2386 ((-660 |#4|) (-660 |#4|) (-112))) (-15 -2077 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2957 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -4400 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -4184 ((-660 |#4|) (-660 |#4|))) (-15 -2627 ((-660 |#4|) (-660 |#4|))) (-15 -4343 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) |%noBranch|)) -((-3862 (((-2 (|:| R (-705 |#1|)) (|:| A (-705 |#1|)) (|:| |Ainv| (-705 |#1|))) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-1389 (((-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)) 46 T ELT)) (-1731 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-1003 |#1|) (-10 -7 (-15 -3862 ((-2 (|:| R (-705 |#1|)) (|:| A (-705 |#1|)) (|:| |Ainv| (-705 |#1|))) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1731 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1389 ((-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)))) (-375)) (T -1003)) -((-1389 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-660 (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5))))) (-5 *1 (-1003 *5)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)))) (-1731 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-705 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-1003 *5)))) (-3862 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) (-5 *2 (-2 (|:| R (-705 *6)) (|:| A (-705 *6)) (|:| |Ainv| (-705 *6)))) (-5 *1 (-1003 *6)) (-5 *3 (-705 *6))))) -(-10 -7 (-15 -3862 ((-2 (|:| R (-705 |#1|)) (|:| A (-705 |#1|)) (|:| |Ainv| (-705 |#1|))) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1731 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1389 ((-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)))) -((-3836 (((-431 |#4|) |#4|) 56 T ELT))) -(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3836 ((-431 |#4|) |#4|))) (-865) (-809) (-465) (-972 |#3| |#2| |#1|)) (T -1004)) -((-3836 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-465)) (-5 *2 (-431 *3)) (-5 *1 (-1004 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) -(-10 -7 (-15 -3836 ((-431 |#4|) |#4|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3832 (($ (-787)) 115 (|has| |#1| (-23)) ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471)) ELT) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-1932 (($ $) 93 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 103 T ELT)) (-3289 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 52 T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)) ELT)) (-2820 (($ (-660 |#1|)) 121 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-3588 (((-705 |#1|) $ $) 108 (|has| |#1| (-1074)) ELT)) (-4223 (($ (-787) |#1|) 70 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 85 (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 86 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-2967 ((|#1| $) 105 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))) ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-3762 ((|#1| $) 106 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))) ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 43 (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2529 (($ $ |#1|) 42 (|has| $ (-6 -4471)) ELT)) (-1987 (($ $ (-660 |#1|)) 119 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1259 (-577))) 71 T ELT)) (-3366 ((|#1| $ $) 109 (|has| |#1| (-1074)) ELT)) (-3941 (((-944) $) 120 T ELT)) (-3490 (($ $ (-577)) 64 T ELT) (($ $ (-1259 (-577))) 63 T ELT)) (-1598 (($ $ $) 107 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2875 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 81 (|has| |#1| (-627 (-549))) ELT) (($ (-660 |#1|)) 122 T ELT)) (-3614 (($ (-660 |#1|)) 72 T ELT)) (-1685 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-660 $)) 66 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) 87 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 89 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) 88 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 90 (|has| |#1| (-865)) ELT)) (-3042 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-577) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-742)) ELT) (($ $ |#1|) 110 (|has| |#1| (-742)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1005 |#1|) (-141) (-1074)) (T -1005)) -((-2820 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-1005 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1074)) (-5 *2 (-944)))) (-1598 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1074)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1005 *3)) (-4 *3 (-1074))))) -(-13 (-1290 |t#1|) (-631 (-660 |t#1|)) (-10 -8 (-15 -2820 ($ (-660 |t#1|))) (-15 -3941 ((-944) $)) (-15 -1598 ($ $ $)) (-15 -1987 ($ $ (-660 |t#1|))))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-631 (-660 |#1|)) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-19 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T) ((-1290 |#1|) . T)) -((-2124 (((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)) 17 T ELT))) -(((-1006 |#1| |#2|) (-10 -7 (-15 -2124 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)))) (-1074) (-1074)) (T -1006)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-966 *6)) (-5 *1 (-1006 *5 *6))))) -(-10 -7 (-15 -2124 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)))) -((-2215 ((|#1| (-966 |#1|)) 14 T ELT)) (-2566 ((|#1| (-966 |#1|)) 13 T ELT)) (-4080 ((|#1| (-966 |#1|)) 12 T ELT)) (-1679 ((|#1| (-966 |#1|)) 16 T ELT)) (-4268 ((|#1| (-966 |#1|)) 24 T ELT)) (-3830 ((|#1| (-966 |#1|)) 15 T ELT)) (-3296 ((|#1| (-966 |#1|)) 17 T ELT)) (-2552 ((|#1| (-966 |#1|)) 23 T ELT)) (-3196 ((|#1| (-966 |#1|)) 22 T ELT))) -(((-1007 |#1|) (-10 -7 (-15 -4080 (|#1| (-966 |#1|))) (-15 -2566 (|#1| (-966 |#1|))) (-15 -2215 (|#1| (-966 |#1|))) (-15 -3830 (|#1| (-966 |#1|))) (-15 -1679 (|#1| (-966 |#1|))) (-15 -3296 (|#1| (-966 |#1|))) (-15 -3196 (|#1| (-966 |#1|))) (-15 -2552 (|#1| (-966 |#1|))) (-15 -4268 (|#1| (-966 |#1|)))) (-1074)) (T -1007)) -((-4268 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2566 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(-10 -7 (-15 -4080 (|#1| (-966 |#1|))) (-15 -2566 (|#1| (-966 |#1|))) (-15 -2215 (|#1| (-966 |#1|))) (-15 -3830 (|#1| (-966 |#1|))) (-15 -1679 (|#1| (-966 |#1|))) (-15 -3296 (|#1| (-966 |#1|))) (-15 -3196 (|#1| (-966 |#1|))) (-15 -2552 (|#1| (-966 |#1|))) (-15 -4268 (|#1| (-966 |#1|)))) -((-3218 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-4147 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-1995 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2614 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-4416 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2130 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-4064 (((-3 |#1| "failed") |#1| (-787)) 1 T ELT)) (-4152 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2412 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3899 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3743 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2865 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2516 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-1678 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-4374 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3954 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-1636 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-1378 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3431 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-1827 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2670 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-1395 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2292 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3523 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3126 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-4388 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-1936 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-1008 |#1|) (-141) (-1227)) (T -1008)) -((-1395 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1827 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-3523 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-3954 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-4388 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1378 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-3899 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-4416 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2865 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-3218 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1678 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1995 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2292 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2670 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-3126 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1636 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1936 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-3431 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-3743 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2130 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2516 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-4147 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-4374 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2614 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-4152 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2412 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-4064 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-787)) (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(-13 (-10 -7 (-15 -4064 ((-3 |t#1| "failed") |t#1| (-787))) (-15 -2412 ((-3 |t#1| "failed") |t#1|)) (-15 -4152 ((-3 |t#1| "failed") |t#1|)) (-15 -2614 ((-3 |t#1| "failed") |t#1|)) (-15 -4374 ((-3 |t#1| "failed") |t#1|)) (-15 -4147 ((-3 |t#1| "failed") |t#1|)) (-15 -2516 ((-3 |t#1| "failed") |t#1|)) (-15 -2130 ((-3 |t#1| "failed") |t#1|)) (-15 -3743 ((-3 |t#1| "failed") |t#1|)) (-15 -3431 ((-3 |t#1| "failed") |t#1|)) (-15 -1936 ((-3 |t#1| "failed") |t#1|)) (-15 -1636 ((-3 |t#1| "failed") |t#1|)) (-15 -3126 ((-3 |t#1| "failed") |t#1|)) (-15 -2670 ((-3 |t#1| "failed") |t#1|)) (-15 -2292 ((-3 |t#1| "failed") |t#1|)) (-15 -1995 ((-3 |t#1| "failed") |t#1|)) (-15 -1678 ((-3 |t#1| "failed") |t#1|)) (-15 -3218 ((-3 |t#1| "failed") |t#1|)) (-15 -2865 ((-3 |t#1| "failed") |t#1|)) (-15 -4416 ((-3 |t#1| "failed") |t#1|)) (-15 -3899 ((-3 |t#1| "failed") |t#1|)) (-15 -1378 ((-3 |t#1| "failed") |t#1|)) (-15 -4388 ((-3 |t#1| "failed") |t#1|)) (-15 -3954 ((-3 |t#1| "failed") |t#1|)) (-15 -3523 ((-3 |t#1| "failed") |t#1|)) (-15 -1827 ((-3 |t#1| "failed") |t#1|)) (-15 -1395 ((-3 |t#1| "failed") |t#1|)))) -((-2436 ((|#4| |#4| (-660 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-4086 ((|#4| |#4| (-660 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-2124 ((|#4| (-1 |#4| (-975 |#1|)) |#4|) 31 T ELT))) -(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4086 (|#4| |#4| |#3|)) (-15 -4086 (|#4| |#4| (-660 |#3|))) (-15 -2436 (|#4| |#4| |#3|)) (-15 -2436 (|#4| |#4| (-660 |#3|))) (-15 -2124 (|#4| (-1 |#4| (-975 |#1|)) |#4|))) (-1074) (-809) (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201))))) (-972 (-975 |#1|) |#2| |#3|)) (T -1009)) -((-2124 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1074)) (-4 *2 (-972 (-975 *4) *5 *6)) (-4 *5 (-809)) (-4 *6 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201)))))) (-5 *1 (-1009 *4 *5 *6 *2)))) (-2436 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201)))))) (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) (-4 *2 (-972 (-975 *4) *5 *6)))) (-2436 (*1 *2 *2 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201)))))) (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3)))) (-4086 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201)))))) (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) (-4 *2 (-972 (-975 *4) *5 *6)))) (-4086 (*1 *2 *2 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)) (-15 -3052 ((-3 $ "failed") (-1201)))))) (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3))))) -(-10 -7 (-15 -4086 (|#4| |#4| |#3|)) (-15 -4086 (|#4| |#4| (-660 |#3|))) (-15 -2436 (|#4| |#4| |#3|)) (-15 -2436 (|#4| |#4| (-660 |#3|))) (-15 -2124 (|#4| (-1 |#4| (-975 |#1|)) |#4|))) -((-3587 ((|#2| |#3|) 35 T ELT)) (-2139 (((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|) 79 T ELT)) (-2461 (((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) 100 T ELT))) -(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2461 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2139 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|)) (-15 -3587 (|#2| |#3|))) (-361) (-1268 |#1|) (-1268 |#2|) (-740 |#2| |#3|)) (T -1010)) -((-3587 (*1 *2 *3) (-12 (-4 *3 (-1268 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-1010 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-740 *2 *3)))) (-2139 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) (-5 *2 (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-1010 *4 *3 *5 *6)) (-4 *6 (-740 *3 *5)))) (-2461 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -2559 (-705 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-705 *4)))) (-5 *1 (-1010 *3 *4 *5 *6)) (-4 *6 (-740 *4 *5))))) -(-10 -7 (-15 -2461 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2139 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|)) (-15 -3587 (|#2| |#3|))) -((-2681 (((-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577)))) (-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577))))) 82 T ELT))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -2681 ((-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577)))) (-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577))))))) (-660 (-1201)) (-787)) (T -1011)) -((-2681 (*1 *2 *2) (-12 (-5 *2 (-1012 (-420 (-577)) (-882 *3) (-246 *4 (-787)) (-254 *3 (-420 (-577))))) (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-1011 *3 *4))))) -(-10 -7 (-15 -2681 ((-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577)))) (-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577))))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1775 (((-3 (-112) "failed") $) 71 T ELT)) (-3698 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-3784 (($ $ (-3 (-112) "failed")) 72 T ELT)) (-3184 (($ (-660 |#4|) |#4|) 25 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3244 (($ $) 69 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2856 (((-112) $) 70 T ELT)) (-2693 (($) 30 T ELT)) (-2506 ((|#4| $) 74 T ELT)) (-2161 (((-660 |#4|) $) 73 T ELT)) (-3603 (((-880) $) 68 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1012 |#1| |#2| |#3| |#4|) (-13 (-1125) (-626 (-880)) (-10 -8 (-15 -2693 ($)) (-15 -3184 ($ (-660 |#4|) |#4|)) (-15 -1775 ((-3 (-112) "failed") $)) (-15 -3784 ($ $ (-3 (-112) "failed"))) (-15 -2856 ((-112) $)) (-15 -2161 ((-660 |#4|) $)) (-15 -2506 (|#4| $)) (-15 -3244 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -3698 ($ $)) |%noBranch|) |%noBranch|))) (-465) (-865) (-809) (-972 |#1| |#3| |#2|)) (T -1012)) -((-2693 (*1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) (-3184 (*1 *1 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-972 *4 *6 *5)) (-4 *4 (-465)) (-4 *5 (-865)) (-4 *6 (-809)) (-5 *1 (-1012 *4 *5 *6 *3)))) (-1775 (*1 *2 *1) (|partial| -12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-112)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-2856 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-112)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-2161 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-660 *6)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-2506 (*1 *2 *1) (-12 (-4 *2 (-972 *3 *5 *4)) (-5 *1 (-1012 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)))) (-3244 (*1 *1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) (-3698 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3))))) -(-13 (-1125) (-626 (-880)) (-10 -8 (-15 -2693 ($)) (-15 -3184 ($ (-660 |#4|) |#4|)) (-15 -1775 ((-3 (-112) "failed") $)) (-15 -3784 ($ $ (-3 (-112) "failed"))) (-15 -2856 ((-112) $)) (-15 -2161 ((-660 |#4|) $)) (-15 -2506 (|#4| $)) (-15 -3244 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -3698 ($ $)) |%noBranch|) |%noBranch|))) -((-3609 (((-112) |#5| |#5|) 44 T ELT)) (-3465 (((-112) |#5| |#5|) 59 T ELT)) (-1479 (((-112) |#5| (-660 |#5|)) 81 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-1991 (((-112) (-660 |#4|) (-660 |#4|)) 65 T ELT)) (-2841 (((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) 70 T ELT)) (-1896 (((-1297)) 32 T ELT)) (-3427 (((-1297) (-1183) (-1183) (-1183)) 28 T ELT)) (-3079 (((-660 |#5|) (-660 |#5|)) 100 T ELT)) (-4424 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) 92 T ELT)) (-4066 (((-660 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112)) 122 T ELT)) (-3721 (((-112) |#5| |#5|) 53 T ELT)) (-1854 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-3704 (((-112) (-660 |#4|) (-660 |#4|)) 64 T ELT)) (-3461 (((-112) (-660 |#4|) (-660 |#4|)) 66 T ELT)) (-2928 (((-112) (-660 |#4|) (-660 |#4|)) 67 T ELT)) (-2350 (((-3 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)) 117 T ELT)) (-3322 (((-660 |#5|) (-660 |#5|)) 49 T ELT))) -(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3427 ((-1297) (-1183) (-1183) (-1183))) (-15 -1896 ((-1297))) (-15 -3609 ((-112) |#5| |#5|)) (-15 -3322 ((-660 |#5|) (-660 |#5|))) (-15 -3721 ((-112) |#5| |#5|)) (-15 -3465 ((-112) |#5| |#5|)) (-15 -1991 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3704 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3461 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2928 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1854 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1479 ((-112) |#5| |#5|)) (-15 -1479 ((-112) |#5| (-660 |#5|))) (-15 -3079 ((-660 |#5|) (-660 |#5|))) (-15 -2841 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4424 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-15 -4066 ((-660 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -2350 ((-3 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1013)) -((-2350 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| -2007 (-660 *9)) (|:| -2002 *4) (|:| |ineq| (-660 *9)))) (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) (-4 *4 (-1096 *6 *7 *8 *9)))) (-4066 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| -2007 (-660 *9)) (|:| -2002 *10) (|:| |ineq| (-660 *9))))) (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) (-4424 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -2002 *7)))) (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-2841 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-1479 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1013 *5 *6 *7 *8 *3)))) (-1479 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-1854 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-2928 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-3461 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-3704 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1991 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-3465 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3721 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-1896 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-3427 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(-10 -7 (-15 -3427 ((-1297) (-1183) (-1183) (-1183))) (-15 -1896 ((-1297))) (-15 -3609 ((-112) |#5| |#5|)) (-15 -3322 ((-660 |#5|) (-660 |#5|))) (-15 -3721 ((-112) |#5| |#5|)) (-15 -3465 ((-112) |#5| |#5|)) (-15 -1991 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3704 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3461 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2928 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1854 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1479 ((-112) |#5| |#5|)) (-15 -1479 ((-112) |#5| (-660 |#5|))) (-15 -3079 ((-660 |#5|) (-660 |#5|))) (-15 -2841 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4424 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-15 -4066 ((-660 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -2350 ((-3 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3052 (((-1201) $) 15 T ELT)) (-3145 (((-1183) $) 16 T ELT)) (-3602 (($ (-1201) (-1183)) 14 T ELT)) (-3603 (((-880) $) 13 T ELT))) -(((-1014) (-13 (-626 (-880)) (-10 -8 (-15 -3602 ($ (-1201) (-1183))) (-15 -3052 ((-1201) $)) (-15 -3145 ((-1183) $))))) (T -1014)) -((-3602 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-1014)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1014)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1014))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3602 ($ (-1201) (-1183))) (-15 -3052 ((-1201) $)) (-15 -3145 ((-1183) $)))) -((-2124 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#4| (-1 |#2| |#1|) |#3|))) (-569) (-569) (-1017 |#1|) (-1017 |#2|)) (T -1015)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1017 *6)) (-5 *1 (-1015 *5 *6 *4 *2)) (-4 *4 (-1017 *5))))) -(-10 -7 (-15 -2124 (|#4| (-1 |#2| |#1|) |#3|))) -((-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) 66 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) 96 T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-1201) $) 61 T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) 93 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 115 T ELT) (((-705 |#2|) (-705 $)) 28 T ELT)) (-2352 (($) 99 T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 76 T ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 85 T ELT)) (-3116 (($ $) 10 T ELT)) (-1454 (((-3 $ "failed") $) 20 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3457 (($) 16 T ELT)) (-3053 (($ $) 55 T ELT)) (-3362 (($ $ (-1 |#2| |#2|)) 36 T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3069 (($ $) 12 T ELT)) (-2176 (((-911 (-577)) $) 71 T ELT) (((-911 (-391)) $) 80 T ELT) (((-549) $) 40 T ELT) (((-391) $) 44 T ELT) (((-228) $) 48 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 91 T ELT) (($ |#2|) NIL T ELT) (($ (-1201)) 58 T ELT)) (-1920 (((-787)) 31 T ELT)) (-2971 (((-112) $ $) 51 T ELT))) -(((-1016 |#1| |#2|) (-10 -8 (-15 -2971 ((-112) |#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2176 ((-228) |#1|)) (-15 -2176 ((-391) |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -3603 (|#1| (-1201))) (-15 -2784 ((-3 (-1201) "failed") |#1|)) (-15 -2155 ((-1201) |#1|)) (-15 -2352 (|#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2850 ((-705 |#2|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| |#1|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-1017 |#2|) (-569)) (T -1016)) -((-1920 (*1 *2) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-1016 *3 *4)) (-4 *3 (-1017 *4))))) -(-10 -8 (-15 -2971 ((-112) |#1| |#1|)) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2176 ((-228) |#1|)) (-15 -2176 ((-391) |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -3603 (|#1| (-1201))) (-15 -2784 ((-3 (-1201) "failed") |#1|)) (-15 -2155 ((-1201) |#1|)) (-15 -2352 (|#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -4359 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2850 ((-705 |#2|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| |#1|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2829 ((|#1| $) 163 (|has| |#1| (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 154 (|has| |#1| (-932)) ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 157 (|has| |#1| (-932)) ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-2917 (((-577) $) 144 (|has| |#1| (-836)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 193 T ELT) (((-3 (-1201) "failed") $) 152 (|has| |#1| (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) 135 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-577) "failed") $) 133 (|has| |#1| (-1063 (-577))) ELT)) (-2155 ((|#1| $) 194 T ELT) (((-1201) $) 153 (|has| |#1| (-1063 (-1201))) ELT) (((-420 (-577)) $) 136 (|has| |#1| (-1063 (-577))) ELT) (((-577) $) 134 (|has| |#1| (-1063 (-577))) ELT)) (-3436 (($ $ $) 61 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 178 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 177 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 176 T ELT) (((-705 |#1|) (-705 $)) 175 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2352 (($) 161 (|has| |#1| (-558)) ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-4302 (((-112) $) 146 (|has| |#1| (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 170 (|has| |#1| (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 169 (|has| |#1| (-905 (-391))) ELT)) (-3306 (((-112) $) 35 T ELT)) (-3116 (($ $) 165 T ELT)) (-2781 ((|#1| $) 167 T ELT)) (-1454 (((-3 $ "failed") $) 132 (|has| |#1| (-1177)) ELT)) (-2178 (((-112) $) 145 (|has| |#1| (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-2900 (($ $ $) 137 (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) 138 (|has| |#1| (-865)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 185 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 180 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 179 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 174 T ELT) (((-705 |#1|) (-1292 $)) 173 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-3457 (($) 131 (|has| |#1| (-1177)) CONST)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3053 (($ $) 162 (|has| |#1| (-318)) ELT)) (-1374 ((|#1| $) 159 (|has| |#1| (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 156 (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 155 (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) 191 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 190 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 189 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 188 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) 187 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) 186 (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-4167 (((-787) $) 64 T ELT)) (-2837 (($ $ |#1|) 192 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3362 (($ $ (-1 |#1| |#1|)) 184 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 183 T ELT) (($ $) 130 (|has| |#1| (-238)) ELT) (($ $ (-787)) 128 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 126 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 124 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 123 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 122 (|has| |#1| (-923 (-1201))) ELT)) (-3069 (($ $) 164 T ELT)) (-2797 ((|#1| $) 166 T ELT)) (-2176 (((-911 (-577)) $) 172 (|has| |#1| (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) 171 (|has| |#1| (-627 (-911 (-391)))) ELT) (((-549) $) 149 (|has| |#1| (-627 (-549))) ELT) (((-391) $) 148 (|has| |#1| (-1047)) ELT) (((-228) $) 147 (|has| |#1| (-1047)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 158 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 197 T ELT) (($ (-1201)) 151 (|has| |#1| (-1063 (-1201))) ELT)) (-3907 (((-3 $ "failed") $) 150 (-2811 (|has| |#1| (-146)) (-2700 (|has| $ (-146)) (|has| |#1| (-932)))) ELT)) (-1920 (((-787)) 32 T CONST)) (-2360 ((|#1| $) 160 (|has| |#1| (-558)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-4318 (($ $) 143 (|has| |#1| (-836)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 181 T ELT) (($ $) 129 (|has| |#1| (-238)) ELT) (($ $ (-787)) 127 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 125 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 121 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 120 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 119 (|has| |#1| (-923 (-1201))) ELT)) (-3001 (((-112) $ $) 139 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 141 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 140 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 142 (|has| |#1| (-865)) ELT)) (-3051 (($ $ $) 73 T ELT) (($ |#1| |#1|) 168 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ |#1| $) 196 T ELT) (($ $ |#1|) 195 T ELT))) -(((-1017 |#1|) (-141) (-569)) (T -1017)) -((-3051 (*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-3116 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-3069 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-2352 (*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-558)) (-4 *2 (-569)))) (-2360 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558))))) -(-13 (-375) (-38 |t#1|) (-1063 |t#1|) (-350 |t#1|) (-233 |t#1|) (-389 |t#1|) (-903 |t#1|) (-413 |t#1|) (-10 -8 (-15 -3051 ($ |t#1| |t#1|)) (-15 -2781 (|t#1| $)) (-15 -2797 (|t#1| $)) (-15 -3116 ($ $)) (-15 -3069 ($ $)) (IF (|has| |t#1| (-1177)) (-6 (-1177)) |%noBranch|) (IF (|has| |t#1| (-1063 (-577))) (PROGN (-6 (-1063 (-577))) (-6 (-1063 (-420 (-577))))) |%noBranch|) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-1047)) (-6 (-1047)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1063 (-1201))) (-6 (-1063 (-1201))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -2829 (|t#1| $)) (-15 -3053 ($ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2352 ($)) (-15 -2360 (|t#1| $)) (-15 -1374 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-932)) (-6 (-932)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 #1=(-1201)) |has| |#1| (-1063 (-1201))) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-228)) |has| |#1| (-1047)) ((-627 (-391)) |has| |#1| (-1047)) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-235 $) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) . T) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) . T) ((-318) . T) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-465) . T) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 #2=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-654 #2#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) . T) ((-733 |#1|) . T) ((-733 $) . T) ((-742) . T) ((-807) |has| |#1| (-836)) ((-808) |has| |#1| (-836)) ((-810) |has| |#1| (-836)) ((-811) |has| |#1| (-836)) ((-836) |has| |#1| (-836)) ((-864) |has| |#1| (-836)) ((-865) -2811 (|has| |#1| (-865)) (|has| |#1| (-836))) ((-868) -2811 (|has| |#1| (-865)) (|has| |#1| (-836))) ((-915 $ #3=(-1201)) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #3#) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-932) |has| |#1| (-932)) ((-943) . T) ((-1047) |has| |#1| (-1047)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-577))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #1#) |has| |#1| (-1063 (-1201))) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-1177)) ((-1242) . T) ((-1246) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-4267 (($ (-1167 |#1| |#2|)) 11 T ELT)) (-4307 (((-1167 |#1| |#2|) $) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT))) -(((-1018 |#1| |#2|) (-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -4267 ($ (-1167 |#1| |#2|))) (-15 -4307 ((-1167 |#1| |#2|) $)))) (-944) (-375)) (T -1018)) -((-4267 (*1 *1 *2) (-12 (-5 *2 (-1167 *3 *4)) (-14 *3 (-944)) (-4 *4 (-375)) (-5 *1 (-1018 *3 *4)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1018 *3 *4)) (-14 *3 (-944)) (-4 *4 (-375))))) -(-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -4267 ($ (-1167 |#1| |#2|))) (-15 -4307 ((-1167 |#1| |#2|) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3201 (((-1160) $) 9 T ELT)) (-3603 (((-880) $) 15 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1019) (-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $))))) (T -1019)) -((-3201 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1019))))) -(-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3790 (($) 7 T CONST)) (-4218 (($ $) 47 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-3762 (((-787) $) 46 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2387 ((|#1| $) 45 T ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2696 ((|#1| |#1| $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-4108 ((|#1| $) 48 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-3035 ((|#1| $) 44 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1020 |#1|) (-141) (-1242)) (T -1020)) -((-2696 (*1 *2 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-4218 (*1 *1 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1020 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4470) (-15 -2696 (|t#1| |t#1| $)) (-15 -4108 (|t#1| $)) (-15 -4218 ($ $)) (-15 -3762 ((-787) $)) (-15 -2387 (|t#1| $)) (-15 -3035 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3801 (((-112) $) 43 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 46 T ELT)) (-2155 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 78 T ELT)) (-2828 (((-112) $) 72 T ELT)) (-2950 (((-420 (-577)) $) 76 T ELT)) (-3306 (((-112) $) 42 T ELT)) (-4021 ((|#2| $) 22 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-3318 (($ $) 58 T ELT)) (-3362 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2176 (((-549) $) 67 T ELT)) (-1328 (($ $) 17 T ELT)) (-3603 (((-880) $) 53 T ELT) (($ (-577)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-420 (-577))) NIL T ELT)) (-1920 (((-787)) 10 T ELT)) (-4318 ((|#2| $) 71 T ELT)) (-2949 (((-112) $ $) 26 T ELT)) (-2971 (((-112) $ $) 69 T ELT)) (-3042 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3031 (($ $ $) 27 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-1021 |#1| |#2|) (-10 -8 (-15 -3603 (|#1| (-420 (-577)))) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -2971 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -3318 (|#1| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -4318 (|#2| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 -3306 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3801 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-1022 |#2|) (-174)) (T -1021)) -((-1920 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-1021 *3 *4)) (-4 *3 (-1022 *4))))) -(-10 -8 (-15 -3603 (|#1| (-420 (-577)))) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -2971 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -3318 (|#1| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -4318 (|#2| |#1|)) (-15 -4021 (|#2| |#1|)) (-15 -1328 (|#1| |#1|)) (-15 -2124 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 -3306 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3801 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3031 (|#1| |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 (-577) "failed") $) 135 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 133 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 130 T ELT)) (-2155 (((-577) $) 134 (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) 132 (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) 131 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 115 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 114 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 113 T ELT) (((-705 |#1|) (-705 $)) 112 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3081 ((|#1| $) 103 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) 99 (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) 101 (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) 100 (|has| |#1| (-558)) ELT)) (-3168 (($ |#1| |#1| |#1| |#1|) 104 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4021 ((|#1| $) 105 T ELT)) (-2900 (($ $ $) 87 (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) 88 (|has| |#1| (-865)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 118 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 117 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 116 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 111 T ELT) (((-705 |#1|) (-1292 $)) 110 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 96 (|has| |#1| (-375)) ELT)) (-2062 ((|#1| $) 106 T ELT)) (-4088 ((|#1| $) 107 T ELT)) (-2712 ((|#1| $) 108 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) 124 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 123 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 122 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 121 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) 120 (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) 119 (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-2837 (($ $ |#1|) 125 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3362 (($ $ (-1 |#1| |#1|)) 129 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 128 T ELT) (($ $) 86 (|has| |#1| (-238)) ELT) (($ $ (-787)) 84 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 82 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 80 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 79 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 78 (|has| |#1| (-923 (-1201))) ELT)) (-2176 (((-549) $) 97 (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $) 109 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 74 (-2811 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3907 (((-3 $ "failed") $) 98 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-4318 ((|#1| $) 102 (|has| |#1| (-1085)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1 |#1| |#1|)) 127 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 126 T ELT) (($ $) 85 (|has| |#1| (-238)) ELT) (($ $ (-787)) 83 (|has| |#1| (-238)) ELT) (($ $ (-1201)) 81 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 77 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 76 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 75 (|has| |#1| (-923 (-1201))) ELT)) (-3001 (((-112) $ $) 89 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 91 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 90 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 92 (|has| |#1| (-865)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 95 (|has| |#1| (-375)) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ $ (-420 (-577))) 94 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) 93 (|has| |#1| (-375)) ELT))) -(((-1022 |#1|) (-141) (-174)) (T -1022)) -((-1328 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-3168 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-1493 (*1 *2 *1) (|partial| -12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-389 |t#1|) (-10 -8 (-15 -1328 ($ $)) (-15 -2712 (|t#1| $)) (-15 -4088 (|t#1| $)) (-15 -2062 (|t#1| $)) (-15 -4021 (|t#1| $)) (-15 -3168 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3081 (|t#1| $)) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -4318 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2828 ((-112) $)) (-15 -2950 ((-420 (-577)) $)) (-15 -1493 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-375)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-375)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-375))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-235 $) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2811 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) |has| |#1| (-375)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2811 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-662 #0#) |has| |#1| (-375)) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-375)) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-375)) ((-656 |#1|) . T) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-375)) ((-733 |#1|) . T) ((-742) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-915 $ #2=(-1201)) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #2#) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) |has| |#1| (-375)) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1081 #0#) |has| |#1| (-375)) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2124 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-1023 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#3| (-1 |#4| |#2|) |#1|))) (-1022 |#2|) (-174) (-1022 |#4|) (-174)) (T -1023)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1022 *6)) (-5 *1 (-1023 *4 *5 *2 *6)) (-4 *4 (-1022 *5))))) -(-10 -7 (-15 -2124 (|#3| (-1 |#4| |#2|) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3081 ((|#1| $) 12 T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-2828 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-2950 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-3168 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4021 ((|#1| $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2062 ((|#1| $) 15 T ELT)) (-4088 ((|#1| $) 14 T ELT)) (-2712 ((|#1| $) 13 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)) ELT)) (-2837 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3362 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-1328 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-4318 ((|#1| $) NIL (|has| |#1| (-1085)) ELT)) (-2754 (($) 8 T CONST)) (-2767 (($) 10 T CONST)) (-2136 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT))) -(((-1024 |#1|) (-1022 |#1|) (-174)) (T -1024)) -NIL -(-1022 |#1|) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-4218 (($ $) 23 T ELT)) (-1350 (($ (-660 |#1|)) 33 T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3762 (((-787) $) 26 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 28 T ELT)) (-4345 (($ |#1| $) 17 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2387 ((|#1| $) 27 T ELT)) (-3439 ((|#1| $) 22 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2696 ((|#1| |#1| $) 16 T ELT)) (-2856 (((-112) $) 18 T ELT)) (-2693 (($) NIL T ELT)) (-4108 ((|#1| $) 21 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) NIL T ELT)) (-3035 ((|#1| $) 30 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1025 |#1|) (-13 (-1020 |#1|) (-10 -8 (-15 -1350 ($ (-660 |#1|))))) (-1125)) (T -1025)) -((-1350 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1025 *3))))) -(-13 (-1020 |#1|) (-10 -8 (-15 -1350 ($ (-660 |#1|))))) -((-3070 (($ $) 12 T ELT)) (-4286 (($ $ (-577)) 13 T ELT))) -(((-1026 |#1|) (-10 -8 (-15 -3070 (|#1| |#1|)) (-15 -4286 (|#1| |#1| (-577)))) (-1027)) (T -1026)) -NIL -(-10 -8 (-15 -3070 (|#1| |#1|)) (-15 -4286 (|#1| |#1| (-577)))) -((-3070 (($ $) 6 T ELT)) (-4286 (($ $ (-577)) 7 T ELT)) (** (($ $ (-420 (-577))) 8 T ELT))) -(((-1027) (-141)) (T -1027)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-420 (-577))))) (-4286 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-577)))) (-3070 (*1 *1 *1) (-4 *1 (-1027)))) -(-13 (-10 -8 (-15 -3070 ($ $)) (-15 -4286 ($ $ (-577))) (-15 ** ($ $ (-420 (-577)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-4326 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4122 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3547 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4436 (((-705 (-420 |#2|)) (-1292 $)) NIL T ELT) (((-705 (-420 |#2|))) NIL T ELT)) (-2219 (((-420 |#2|) $) NIL T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2435 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3373 (((-787)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2944 (((-112)) NIL T ELT)) (-4310 (((-112) |#1|) 162 T ELT) (((-112) |#2|) 166 T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| (-420 |#2|) (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577)))) ELT) (((-420 |#2|) $) NIL T ELT)) (-1911 (($ (-1292 (-420 |#2|)) (-1292 $)) NIL T ELT) (($ (-1292 (-420 |#2|))) 79 T ELT) (($ (-1292 |#2|) |#2|) NIL T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3436 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2678 (((-705 (-420 |#2|)) $ (-1292 $)) NIL T ELT) (((-705 (-420 |#2|)) $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-420 |#2|)) (-705 $)) NIL T ELT)) (-4264 (((-1292 $) (-1292 $)) NIL T ELT)) (-2498 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3651 (((-660 (-660 |#1|))) NIL (|has| |#1| (-380)) ELT)) (-2648 (((-112) |#1| |#1|) NIL T ELT)) (-3503 (((-944)) NIL T ELT)) (-2352 (($) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2463 (((-112)) NIL T ELT)) (-3013 (((-112) |#1|) 61 T ELT) (((-112) |#2|) 164 T ELT)) (-3447 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2308 (($ $) NIL T ELT)) (-1742 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-4402 (((-112) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1865 (($ $ (-787)) NIL (|has| (-420 |#2|) (-361)) ELT) (($ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2182 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2536 (((-944) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-849 (-944)) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2561 (((-787)) NIL T ELT)) (-2960 (((-1292 $) (-1292 $)) NIL T ELT)) (-4021 (((-420 |#2|) $) NIL T ELT)) (-4292 (((-660 (-975 |#1|)) (-1201)) NIL (|has| |#1| (-375)) ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3810 ((|#3| $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2144 (((-944) $) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2482 ((|#3| $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-420 |#2|) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-1292 $) $) NIL T ELT) (((-705 (-420 |#2|)) (-1292 $)) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4215 (((-705 (-420 |#2|))) 57 T ELT)) (-1450 (((-705 (-420 |#2|))) 56 T ELT)) (-3318 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2764 (($ (-1292 |#2|) |#2|) 80 T ELT)) (-2812 (((-705 (-420 |#2|))) 55 T ELT)) (-2459 (((-705 (-420 |#2|))) 54 T ELT)) (-2997 (((-2 (|:| |num| (-705 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-2514 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-4238 (((-1292 $)) 51 T ELT)) (-2461 (((-1292 $)) 50 T ELT)) (-4421 (((-112) $) NIL T ELT)) (-1363 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-3457 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-3251 (($ (-944)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2541 (((-3 |#2| "failed")) 70 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2525 (((-787)) NIL T ELT)) (-3428 (($) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3056 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4167 (((-787) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2837 ((|#1| $ |#1| |#1|) NIL T ELT)) (-4404 (((-3 |#2| "failed")) 68 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4447 (((-420 |#2|) (-1292 $)) NIL T ELT) (((-420 |#2|)) 47 T ELT)) (-3816 (((-787) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 (-787) "failed") $ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3362 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-3285 (((-705 (-420 |#2|)) (-1292 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1629 ((|#3|) 58 T ELT)) (-2932 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2729 (((-1292 (-420 |#2|)) $ (-1292 $)) NIL T ELT) (((-705 (-420 |#2|)) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 (-420 |#2|)) $) 81 T ELT) (((-705 (-420 |#2|)) (-1292 $)) NIL T ELT)) (-2176 (((-1292 (-420 |#2|)) $) NIL T ELT) (($ (-1292 (-420 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2714 (((-1292 $) (-1292 $)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 |#2|)) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| (-420 |#2|) (-1063 (-420 (-577)))) (|has| (-420 |#2|) (-375))) ELT) (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3907 (($ $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)) ELT)) (-2600 ((|#3| $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-3033 (((-112)) 65 T ELT)) (-1545 (((-112) |#1|) 167 T ELT) (((-112) |#2|) 168 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3998 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-2335 (((-112)) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201))))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2811 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 |#2|)) NIL T ELT) (($ (-420 |#2|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375)) ELT))) -(((-1028 |#1| |#2| |#3| |#4| |#5|) (-354 |#1| |#2| |#3|) (-1246) (-1268 |#1|) (-1268 (-420 |#2|)) (-420 |#2|) (-787)) (T -1028)) +((-1961 (($ $ (-1122 $)) 7 T ELT) (($ $ (-1206)) 6 T ELT))) +(((-987) (-141)) (T -987)) +((-1961 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-987)))) (-1961 (*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-1206))))) +(-13 (-10 -8 (-15 -1961 ($ $ (-1206))) (-15 -1961 ($ $ (-1122 $))))) +((-2213 (((-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)) (-1206)) 26 T ELT) (((-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206))) 27 T ELT) (((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 |#1|))) (-980 |#1|) (-1206) (-980 |#1|) (-1206)) 49 T ELT))) +(((-988 |#1|) (-10 -7 (-15 -2213 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 |#1|))) (-980 |#1|) (-1206) (-980 |#1|) (-1206))) (-15 -2213 ((-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -2213 ((-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)) (-1206)))) (-13 (-375) (-148))) (T -988)) +((-2213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-5 *5 (-1206)) (-4 *6 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 *6))) (|:| |prim| (-1202 *6)))) (-5 *1 (-988 *6)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 *5))) (|:| |prim| (-1202 *5)))) (-5 *1 (-988 *5)))) (-2213 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-980 *5)) (-5 *4 (-1206)) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 *5)))) (-5 *1 (-988 *5))))) +(-10 -7 (-15 -2213 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 |#1|))) (-980 |#1|) (-1206) (-980 |#1|) (-1206))) (-15 -2213 ((-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -2213 ((-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)) (-1206)))) +((-4112 (((-665 |#1|) |#1| |#1|) 47 T ELT)) (-3567 (((-112) |#1|) 44 T ELT)) (-1511 ((|#1| |#1|) 79 T ELT)) (-1953 ((|#1| |#1|) 78 T ELT))) +(((-989 |#1|) (-10 -7 (-15 -3567 ((-112) |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -4112 ((-665 |#1|) |#1| |#1|))) (-558)) (T -989)) +((-4112 (*1 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-5 *1 (-989 *3)) (-4 *3 (-558)))) (-1511 (*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558)))) (-1953 (*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558)))) (-3567 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-989 *3)) (-4 *3 (-558))))) +(-10 -7 (-15 -3567 ((-112) |#1|)) (-15 -1953 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -4112 ((-665 |#1|) |#1| |#1|))) +((-4393 (((-1302) (-885)) 9 T ELT))) +(((-990) (-10 -7 (-15 -4393 ((-1302) (-885))))) (T -990)) +((-4393 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-990))))) +(-10 -7 (-15 -4393 ((-1302) (-885)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 78 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 79 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 34 T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-4048 (($ $) 31 T ELT)) (-3167 (((-3 $ "failed") $) 42 T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4365 (($ $ |#1| |#2| $) 62 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) 17 T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| |#2|) NIL T ELT)) (-4340 ((|#2| $) 24 T ELT)) (-4329 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4014 (($ $) 28 T ELT)) (-4025 ((|#1| $) 26 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) 51 T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-1818 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-569))) ELT)) (-3574 (((-3 $ "failed") $ $) 91 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-569)) ELT)) (-1597 ((|#2| $) 22 T ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) 46 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 41 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ |#2|) 37 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 15 T CONST)) (-2576 (($ $ $ (-792)) 74 (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) 84 (|has| |#1| (-569)) ELT)) (-2839 (($) 27 T CONST)) (-2853 (($) 12 T CONST)) (-3018 (((-112) $ $) 83 T ELT)) (-3139 (($ $ |#1|) 92 (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 69 T ELT) (($ $ (-792)) 67 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 66 T ELT) (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-991 |#1| |#2|) (-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -1818 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) (-1079) (-813)) (T -991)) +((-1818 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-991 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *2 (-813))))) +(-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -1818 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL (-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (-4208 (($ $ $) 65 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) ELT)) (-2478 (((-3 $ "failed") $ $) 52 (-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (-3005 (((-792)) 36 (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-1959 ((|#2| $) 22 T ELT)) (-2957 ((|#1| $) 21 T ELT)) (-2305 (($) NIL (-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) CONST)) (-3167 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT)) (-1424 (($) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-3357 (((-112) $) NIL (-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT)) (-3237 (($ $ $) NIL (-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-2930 (($ $ $) NIL (-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-2652 (($ |#1| |#2|) 20 T ELT)) (-2686 (((-949) $) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 39 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-3354 (($ (-949)) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4247 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-2486 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-3709 (((-885) $) 14 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 42 (-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) CONST)) (-2853 (($) 25 (-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) CONST)) (-3078 (((-112) $ $) NIL (-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3054 (((-112) $ $) NIL (-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3018 (((-112) $ $) 19 T ELT)) (-3067 (((-112) $ $) NIL (-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3042 (((-112) $ $) 69 (-2867 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-3139 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-3128 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3114 (($ $ $) 45 (-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (** (($ $ (-577)) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT) (($ $ (-792)) 32 (-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT) (($ $ (-949)) NIL (-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT)) (* (($ (-577) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-792) $) 48 (-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT) (($ (-949) $) NIL (-2867 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT) (($ $ $) 28 (-2867 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT))) +(((-992 |#1| |#2|) (-13 (-1130) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-747)) (IF (|has| |#2| (-747)) (-6 (-747)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-814)) (IF (|has| |#2| (-814)) (-6 (-814)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-870)) (IF (|has| |#2| (-870)) (-6 (-870)) |%noBranch|) |%noBranch|) (-15 -2652 ($ |#1| |#2|)) (-15 -2957 (|#1| $)) (-15 -1959 (|#2| $)))) (-1130) (-1130)) (T -992)) +((-2652 (*1 *1 *2 *3) (-12 (-5 *1 (-992 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-2957 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-992 *2 *3)) (-4 *3 (-1130)))) (-1959 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-992 *3 *2)) (-4 *3 (-1130))))) +(-13 (-1130) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-747)) (IF (|has| |#2| (-747)) (-6 (-747)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-814)) (IF (|has| |#2| (-814)) (-6 (-814)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-870)) (IF (|has| |#2| (-870)) (-6 (-870)) |%noBranch|) |%noBranch|) (-15 -2652 ($ |#1| |#2|)) (-15 -2957 (|#1| $)) (-15 -1959 (|#2| $)))) +((-3254 (((-1134) $) 12 T ELT)) (-3173 (($ (-519) (-1134)) 14 T ELT)) (-2758 (((-519) $) 9 T ELT)) (-3709 (((-885) $) 24 T ELT))) +(((-993) (-13 (-631 (-885)) (-10 -8 (-15 -2758 ((-519) $)) (-15 -3254 ((-1134) $)) (-15 -3173 ($ (-519) (-1134)))))) (T -993)) +((-2758 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-993)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-993)))) (-3173 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-993))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2758 ((-519) $)) (-15 -3254 ((-1134) $)) (-15 -3173 ($ (-519) (-1134))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2288 (($) NIL T CONST)) (-2802 (($ $ $) 30 T ELT)) (-2779 (($ $) 24 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1892 (((-712 (-896 $ $)) $) 55 T ELT)) (-1819 (((-712 $) $) 45 T ELT)) (-2487 (((-712 (-896 $ $)) $) 56 T ELT)) (-4033 (((-712 (-896 $ $)) $) 57 T ELT)) (-2179 (((-712 |#1|) $) 36 T ELT)) (-1672 (((-712 (-896 $ $)) $) 54 T ELT)) (-3216 (($ $ $) 31 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3655 (($) NIL T CONST)) (-3726 (($ $ $) 32 T ELT)) (-2249 (($ $ $) 29 T ELT)) (-3361 (($ $ $) 27 T ELT)) (-3709 (((-885) $) 59 T ELT) (($ |#1|) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2790 (($ $ $) 28 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-994 |#1|) (-13 (-997) (-634 |#1|) (-10 -8 (-15 -2179 ((-712 |#1|) $)) (-15 -1819 ((-712 $) $)) (-15 -1672 ((-712 (-896 $ $)) $)) (-15 -1892 ((-712 (-896 $ $)) $)) (-15 -2487 ((-712 (-896 $ $)) $)) (-15 -4033 ((-712 (-896 $ $)) $)) (-15 -3361 ($ $ $)) (-15 -2249 ($ $ $)))) (-1130)) (T -994)) +((-2179 (*1 *2 *1) (-12 (-5 *2 (-712 *3)) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-712 (-994 *3))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-3361 (*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130)))) (-2249 (*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130))))) +(-13 (-997) (-634 |#1|) (-10 -8 (-15 -2179 ((-712 |#1|) $)) (-15 -1819 ((-712 $) $)) (-15 -1672 ((-712 (-896 $ $)) $)) (-15 -1892 ((-712 (-896 $ $)) $)) (-15 -2487 ((-712 (-896 $ $)) $)) (-15 -4033 ((-712 (-896 $ $)) $)) (-15 -3361 ($ $ $)) (-15 -2249 ($ $ $)))) +((-1468 (((-994 |#1|) (-994 |#1|)) 46 T ELT)) (-2812 (((-994 |#1|) (-994 |#1|)) 22 T ELT)) (-2413 (((-1132 |#1|) (-994 |#1|)) 41 T ELT))) +(((-995 |#1|) (-13 (-1247) (-10 -7 (-15 -2812 ((-994 |#1|) (-994 |#1|))) (-15 -2413 ((-1132 |#1|) (-994 |#1|))) (-15 -1468 ((-994 |#1|) (-994 |#1|))))) (-1130)) (T -995)) +((-2812 (*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3)))) (-2413 (*1 *2 *3) (-12 (-5 *3 (-994 *4)) (-4 *4 (-1130)) (-5 *2 (-1132 *4)) (-5 *1 (-995 *4)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3))))) +(-13 (-1247) (-10 -7 (-15 -2812 ((-994 |#1|) (-994 |#1|))) (-15 -2413 ((-1132 |#1|) (-994 |#1|))) (-15 -1468 ((-994 |#1|) (-994 |#1|))))) +((-4417 (((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|)) 29 T ELT))) +(((-996 |#1| |#2|) (-13 (-1247) (-10 -7 (-15 -4417 ((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|))))) (-1130) (-1130)) (T -996)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-994 *6)) (-5 *1 (-996 *5 *6))))) +(-13 (-1247) (-10 -7 (-15 -4417 ((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|))))) +((-3586 (((-112) $ $) 16 T ELT)) (-2288 (($) 14 T CONST)) (-2802 (($ $ $) 6 T ELT)) (-2779 (($ $) 8 T ELT)) (-3235 (((-1188) $) 20 T ELT)) (-3216 (($ $ $) 12 T ELT)) (-1470 (((-1150) $) 19 T ELT)) (-3655 (($) 13 T CONST)) (-3726 (($ $ $) 11 T ELT)) (-3709 (((-885) $) 18 T ELT)) (-2643 (((-112) $ $) 17 T ELT)) (-2790 (($ $ $) 7 T ELT)) (-3018 (((-112) $ $) 15 T ELT))) +(((-997) (-141)) (T -997)) +((-2288 (*1 *1) (-4 *1 (-997))) (-3655 (*1 *1) (-4 *1 (-997))) (-3216 (*1 *1 *1 *1) (-4 *1 (-997))) (-3726 (*1 *1 *1 *1) (-4 *1 (-997)))) +(-13 (-113) (-1130) (-10 -8 (-15 -2288 ($) -4212) (-15 -3655 ($) -4212) (-15 -3216 ($ $ $)) (-15 -3726 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2305 (($) 7 T CONST)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-3836 (($ $ $) 44 T ELT)) (-3771 (($ $ $) 45 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2930 ((|#1| $) 46 T ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-998 |#1|) (-141) (-870)) (T -998)) +((-2930 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4499) (-15 -2930 (|t#1| $)) (-15 -3771 ($ $ $)) (-15 -3836 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3461 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3642 |#2|)) |#2| |#2|) 105 T ELT)) (-3473 ((|#2| |#2| |#2|) 103 T ELT)) (-3182 (((-2 (|:| |coef2| |#2|) (|:| -3642 |#2|)) |#2| |#2|) 107 T ELT)) (-1599 (((-2 (|:| |coef1| |#2|) (|:| -3642 |#2|)) |#2| |#2|) 109 T ELT)) (-4319 (((-2 (|:| |coef2| |#2|) (|:| -1545 |#1|)) |#2| |#2|) 131 (|has| |#1| (-465)) ELT)) (-4280 (((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|) 56 T ELT)) (-2970 (((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|) 80 T ELT)) (-1392 (((-2 (|:| |coef1| |#2|) (|:| -3868 |#1|)) |#2| |#2|) 82 T ELT)) (-3550 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-1399 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 89 T ELT)) (-3880 (((-2 (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|) 121 T ELT)) (-3083 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 92 T ELT)) (-3071 (((-665 (-792)) |#2| |#2|) 102 T ELT)) (-3329 ((|#1| |#2| |#2|) 50 T ELT)) (-4155 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1545 |#1|)) |#2| |#2|) 129 (|has| |#1| (-465)) ELT)) (-1545 ((|#1| |#2| |#2|) 127 (|has| |#1| (-465)) ELT)) (-1913 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|) 54 T ELT)) (-2472 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|) 79 T ELT)) (-3868 ((|#1| |#2| |#2|) 76 T ELT)) (-1771 (((-2 (|:| -4473 |#1|) (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2|) 41 T ELT)) (-2027 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-1447 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-4045 ((|#2| |#2| |#2|) 93 T ELT)) (-3109 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 87 T ELT)) (-4239 ((|#2| |#2| |#2| (-792)) 85 T ELT)) (-3642 ((|#2| |#2| |#2|) 135 (|has| |#1| (-465)) ELT)) (-3574 (((-1297 |#2|) (-1297 |#2|) |#1|) 22 T ELT)) (-3372 (((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2|) 46 T ELT)) (-2062 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|) 119 T ELT)) (-3846 ((|#1| |#2|) 116 T ELT)) (-2210 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 91 T ELT)) (-2533 ((|#2| |#2| |#2| (-792)) 90 T ELT)) (-1642 (((-665 |#2|) |#2| |#2|) 99 T ELT)) (-4471 ((|#2| |#2| |#1| |#1| (-792)) 62 T ELT)) (-2185 ((|#1| |#1| |#1| (-792)) 61 T ELT)) (* (((-1297 |#2|) |#1| (-1297 |#2|)) 17 T ELT))) +(((-999 |#1| |#2|) (-10 -7 (-15 -3868 (|#1| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -2970 ((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -1392 ((-2 (|:| |coef1| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -4239 (|#2| |#2| |#2| (-792))) (-15 -3109 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -1399 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -2533 (|#2| |#2| |#2| (-792))) (-15 -2210 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -3083 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -4045 (|#2| |#2| |#2|)) (-15 -1447 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3550 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3473 (|#2| |#2| |#2|)) (-15 -3461 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3642 |#2|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -3642 |#2|)) |#2| |#2|)) (-15 -1599 ((-2 (|:| |coef1| |#2|) (|:| -3642 |#2|)) |#2| |#2|)) (-15 -3846 (|#1| |#2|)) (-15 -2062 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -3880 ((-2 (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -1642 ((-665 |#2|) |#2| |#2|)) (-15 -3071 ((-665 (-792)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -1545 (|#1| |#2| |#2|)) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1545 |#1|)) |#2| |#2|)) (-15 -4319 ((-2 (|:| |coef2| |#2|) (|:| -1545 |#1|)) |#2| |#2|)) (-15 -3642 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -3574 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -1771 ((-2 (|:| -4473 |#1|) (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2|)) (-15 -3372 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2|)) (-15 -2185 (|#1| |#1| |#1| (-792))) (-15 -4471 (|#2| |#2| |#1| |#1| (-792))) (-15 -2027 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3329 (|#1| |#2| |#2|)) (-15 -1913 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -4280 ((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|))) (-569) (-1273 |#1|)) (T -999)) +((-4280 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3868 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1913 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3868 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3329 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-2027 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-4471 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-2185 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *2 (-569)) (-5 *1 (-999 *2 *4)) (-4 *4 (-1273 *2)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1771 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -4473 *4) (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3574 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) (-5 *1 (-999 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) (-5 *1 (-999 *3 *4)))) (-3642 (*1 *2 *2 *2) (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-4319 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1545 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4155 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1545 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1545 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-3071 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-792))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1642 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3880 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3846 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3846 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3846 (*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-1599 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3642 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3182 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3642 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3461 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3642 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3473 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3550 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1447 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4045 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3083 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-2210 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-2533 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4)))) (-1399 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-3109 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-4239 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3868 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2970 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3868 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3868 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3868 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2))))) +(-10 -7 (-15 -3868 (|#1| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -2970 ((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -1392 ((-2 (|:| |coef1| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -4239 (|#2| |#2| |#2| (-792))) (-15 -3109 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -1399 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -2533 (|#2| |#2| |#2| (-792))) (-15 -2210 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -3083 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -4045 (|#2| |#2| |#2|)) (-15 -1447 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3550 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3473 (|#2| |#2| |#2|)) (-15 -3461 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3642 |#2|)) |#2| |#2|)) (-15 -3182 ((-2 (|:| |coef2| |#2|) (|:| -3642 |#2|)) |#2| |#2|)) (-15 -1599 ((-2 (|:| |coef1| |#2|) (|:| -3642 |#2|)) |#2| |#2|)) (-15 -3846 (|#1| |#2|)) (-15 -2062 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -3880 ((-2 (|:| |coef2| |#2|) (|:| -3846 |#1|)) |#2|)) (-15 -1642 ((-665 |#2|) |#2| |#2|)) (-15 -3071 ((-665 (-792)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -1545 (|#1| |#2| |#2|)) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1545 |#1|)) |#2| |#2|)) (-15 -4319 ((-2 (|:| |coef2| |#2|) (|:| -1545 |#1|)) |#2| |#2|)) (-15 -3642 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -3574 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -1771 ((-2 (|:| -4473 |#1|) (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2|)) (-15 -3372 ((-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) |#2| |#2|)) (-15 -2185 (|#1| |#1| |#1| (-792))) (-15 -4471 (|#2| |#2| |#1| |#1| (-792))) (-15 -2027 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3329 (|#1| |#2| |#2|)) (-15 -1913 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -4280 ((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3117 (((-1246) $) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3477 (((-1165) $) 10 T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1000) (-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3117 ((-1246) $))))) (T -1000)) +((-3477 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1000)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1000))))) +(-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3117 ((-1246) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 40 T ELT)) (-2478 (((-3 $ "failed") $ $) 54 T ELT)) (-2305 (($) NIL T CONST)) (-2186 (((-665 (-896 (-949) (-949))) $) 67 T ELT)) (-1334 (((-949) $) 94 T ELT)) (-2118 (((-665 (-949)) $) 17 T ELT)) (-1422 (((-1187 $) (-792)) 39 T ELT)) (-1988 (($ (-665 (-949))) 16 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4247 (($ $) 70 T ELT)) (-3709 (((-885) $) 90 T ELT) (((-665 (-949)) $) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 8 T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 44 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 42 T ELT)) (-3114 (($ $ $) 46 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 49 T ELT)) (-3600 (((-792) $) 22 T ELT))) +(((-1001) (-13 (-816) (-631 (-665 (-949))) (-10 -8 (-15 -1988 ($ (-665 (-949)))) (-15 -2118 ((-665 (-949)) $)) (-15 -3600 ((-792) $)) (-15 -1422 ((-1187 $) (-792))) (-15 -2186 ((-665 (-896 (-949) (-949))) $)) (-15 -1334 ((-949) $)) (-15 -4247 ($ $))))) (T -1001)) +((-1988 (*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1001)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1187 (-1001))) (-5 *1 (-1001)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-949) (-949)))) (-5 *1 (-1001)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-1001)))) (-4247 (*1 *1 *1) (-5 *1 (-1001)))) +(-13 (-816) (-631 (-665 (-949))) (-10 -8 (-15 -1988 ($ (-665 (-949)))) (-15 -2118 ((-665 (-949)) $)) (-15 -3600 ((-792) $)) (-15 -1422 ((-1187 $) (-792))) (-15 -2186 ((-665 (-896 (-949) (-949))) $)) (-15 -1334 ((-949) $)) (-15 -4247 ($ $)))) +((-3139 (($ $ |#2|) 31 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-420 (-577)) $) 27 T ELT) (($ $ (-420 (-577))) 29 T ELT))) +(((-1002 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3139 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-1003 |#2| |#3| |#4|) (-1079) (-813) (-870)) (T -1002)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3139 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 |#3|) $) 86 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1655 (((-112) $) 85 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| |#2|) 73 T ELT) (($ $ |#3| |#2|) 88 T ELT) (($ $ (-665 |#3|) (-665 |#2|)) 87 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-1597 ((|#2| $) 76 T ELT)) (-4165 (($ $) 84 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-4171 ((|#1| $ |#2|) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1003 |#1| |#2| |#3|) (-141) (-1079) (-813) (-870)) (T -1003)) +((-4025 (*1 *2 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *3 (-813)) (-4 *4 (-870)) (-4 *2 (-1079)))) (-4014 (*1 *1 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *4 (-870)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *2 *4)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *2 (-813)))) (-3872 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-1003 *4 *3 *2)) (-4 *4 (-1079)) (-4 *3 (-813)) (-4 *2 (-870)))) (-3872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 *5)) (-4 *1 (-1003 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-813)) (-4 *6 (-870)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) (-4 *5 (-870)) (-5 *2 (-665 *5)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) (-4 *5 (-870)) (-5 *2 (-112)))) (-4165 (*1 *1 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *4 (-870))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3872 ($ $ |t#3| |t#2|)) (-15 -3872 ($ $ (-665 |t#3|) (-665 |t#2|))) (-15 -4014 ($ $)) (-15 -4025 (|t#1| $)) (-15 -1597 (|t#2| $)) (-15 -3891 ((-665 |t#3|) $)) (-15 -1655 ((-112) $)) (-15 -4165 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4396 (((-1124 (-228)) $) 8 T ELT)) (-4383 (((-1124 (-228)) $) 9 T ELT)) (-4374 (((-1124 (-228)) $) 10 T ELT)) (-2489 (((-665 (-665 (-971 (-228)))) $) 11 T ELT)) (-3709 (((-885) $) 6 T ELT))) +(((-1004) (-141)) (T -1004)) +((-2489 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-665 (-665 (-971 (-228))))))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228))))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228))))) (-4396 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2489 ((-665 (-665 (-971 (-228)))) $)) (-15 -4374 ((-1124 (-228)) $)) (-15 -4383 ((-1124 (-228)) $)) (-15 -4396 ((-1124 (-228)) $)))) +(((-631 (-885)) . T)) +((-3891 (((-665 |#4|) $) 23 T ELT)) (-1507 (((-112) $) 55 T ELT)) (-2221 (((-112) $) 54 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-1603 (((-112) $) 56 T ELT)) (-2266 (((-112) $ $) 62 T ELT)) (-2289 (((-112) $ $) 65 T ELT)) (-3723 (((-112) $) 60 T ELT)) (-2379 (((-665 |#5|) (-665 |#5|) $) 98 T ELT)) (-3080 (((-665 |#5|) (-665 |#5|) $) 95 T ELT)) (-2519 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-1683 (((-665 |#4|) $) 27 T ELT)) (-3692 (((-112) |#4| $) 34 T ELT)) (-2842 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-1336 (($ $ |#4|) 39 T ELT)) (-3076 (($ $ |#4|) 38 T ELT)) (-2951 (($ $ |#4|) 40 T ELT)) (-3018 (((-112) $ $) 46 T ELT))) +(((-1005 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2221 ((-112) |#1|)) (-15 -2379 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -3080 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -2519 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2842 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1603 ((-112) |#1|)) (-15 -2289 ((-112) |#1| |#1|)) (-15 -2266 ((-112) |#1| |#1|)) (-15 -3723 ((-112) |#1|)) (-15 -1507 ((-112) |#1|)) (-15 -1381 ((-2 (|:| |under| |#1|) (|:| -3941 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1336 (|#1| |#1| |#4|)) (-15 -2951 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -3692 ((-112) |#4| |#1|)) (-15 -1683 ((-665 |#4|) |#1|)) (-15 -3891 ((-665 |#4|) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-1006 |#2| |#3| |#4| |#5|) (-1079) (-814) (-870) (-1095 |#2| |#3| |#4|)) (T -1005)) +NIL +(-10 -8 (-15 -2221 ((-112) |#1|)) (-15 -2379 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -3080 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -2519 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2842 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1603 ((-112) |#1|)) (-15 -2289 ((-112) |#1| |#1|)) (-15 -2266 ((-112) |#1| |#1|)) (-15 -3723 ((-112) |#1|)) (-15 -1507 ((-112) |#1|)) (-15 -1381 ((-2 (|:| |under| |#1|) (|:| -3941 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1336 (|#1| |#1| |#4|)) (-15 -2951 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -3692 ((-112) |#4| |#1|)) (-15 -1683 ((-665 |#4|) |#1|)) (-15 -3891 ((-665 |#4|) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3891 (((-665 |#3|) $) 34 T ELT)) (-1507 (((-112) $) 27 T ELT)) (-2221 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1777 (((-112) $ (-792)) 45 T ELT)) (-1440 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 46 T CONST)) (-1603 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3783 (($ (-665 |#4|)) 36 T ELT)) (-3589 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1429 ((|#3| $) 35 T ELT)) (-3862 (((-112) $ (-792)) 44 T ELT)) (-2152 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1683 (((-665 |#3|) $) 33 T ELT)) (-3692 (((-112) |#3| $) 32 T ELT)) (-3438 (((-112) $ (-792)) 43 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) 39 T ELT)) (-2687 (((-112) $) 42 T ELT)) (-2833 (($) 41 T ELT)) (-1481 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 40 T ELT)) (-4463 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 61 T ELT)) (-1336 (($ $ |#3|) 29 T ELT)) (-3076 (($ $ |#3|) 31 T ELT)) (-2951 (($ $ |#3|) 30 T ELT)) (-3709 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) +(((-1006 |#1| |#2| |#3| |#4|) (-141) (-1079) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1006)) +((-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-1095 *3 *4 *2)) (-4 *2 (-870)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *3 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112)))) (-3076 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-2951 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-1336 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-1381 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3941 *1) (|:| |upper| *1))) (-4 *1 (-1006 *4 *5 *3 *6)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2266 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2289 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2842 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2519 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3080 (*1 *2 *2 *1) (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)))) (-2379 (*1 *2 *2 *1) (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112))))) +(-13 (-1130) (-152 |t#4|) (-631 (-665 |t#4|)) (-10 -8 (-6 -4499) (-15 -4335 ((-3 $ "failed") (-665 |t#4|))) (-15 -3783 ($ (-665 |t#4|))) (-15 -1429 (|t#3| $)) (-15 -3891 ((-665 |t#3|) $)) (-15 -1683 ((-665 |t#3|) $)) (-15 -3692 ((-112) |t#3| $)) (-15 -3076 ($ $ |t#3|)) (-15 -2951 ($ $ |t#3|)) (-15 -1336 ($ $ |t#3|)) (-15 -1381 ((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |t#3|)) (-15 -1507 ((-112) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -3723 ((-112) $)) (-15 -2266 ((-112) $ $)) (-15 -2289 ((-112) $ $)) (-15 -1603 ((-112) $)) (-15 -2842 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2519 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3080 ((-665 |t#4|) (-665 |t#4|) $)) (-15 -2379 ((-665 |t#4|) (-665 |t#4|) $)) (-15 -2221 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1130) . T) ((-1247) . T)) +((-4214 (((-665 |#4|) |#4| |#4|) 136 T ELT)) (-1555 (((-665 |#4|) (-665 |#4|) (-112)) 125 (|has| |#1| (-465)) ELT) (((-665 |#4|) (-665 |#4|)) 126 (|has| |#1| (-465)) ELT)) (-2526 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 44 T ELT)) (-1452 (((-112) |#4|) 43 T ELT)) (-4119 (((-665 |#4|) |#4|) 121 (|has| |#1| (-465)) ELT)) (-2324 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-1 (-112) |#4|) (-665 |#4|)) 24 T ELT)) (-2947 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|)) 30 T ELT)) (-3773 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|)) 31 T ELT)) (-3753 (((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|)) 90 T ELT)) (-2097 (((-665 |#4|) (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3667 (((-665 |#4|) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-2380 (((-665 |#4|) (-665 |#4|)) 128 T ELT)) (-3959 (((-665 |#4|) (-665 |#4|) (-665 |#4|) (-112)) 59 T ELT) (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 61 T ELT)) (-3388 ((|#4| |#4| (-665 |#4|)) 60 T ELT)) (-2235 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 132 (|has| |#1| (-465)) ELT)) (-2048 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 135 (|has| |#1| (-465)) ELT)) (-2959 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 134 (|has| |#1| (-465)) ELT)) (-2856 (((-665 |#4|) (-665 |#4|) (-665 |#4|) (-1 (-665 |#4|) (-665 |#4|))) 105 T ELT) (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 107 T ELT) (((-665 |#4|) (-665 |#4|) |#4|) 140 T ELT) (((-665 |#4|) |#4| |#4|) 137 T ELT) (((-665 |#4|) (-665 |#4|)) 106 T ELT)) (-3039 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-2819 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 52 T ELT)) (-3033 (((-112) (-665 |#4|)) 79 T ELT)) (-4067 (((-112) (-665 |#4|) (-665 (-665 |#4|))) 67 T ELT)) (-1338 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 37 T ELT)) (-2775 (((-112) |#4|) 36 T ELT)) (-1561 (((-665 |#4|) (-665 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-2541 (((-665 |#4|) (-665 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-2301 (((-665 |#4|) (-665 |#4|)) 83 T ELT)) (-3300 (((-665 |#4|) (-665 |#4|)) 97 T ELT)) (-1920 (((-112) (-665 |#4|) (-665 |#4|)) 65 T ELT)) (-3415 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 50 T ELT)) (-2344 (((-112) |#4|) 45 T ELT))) +(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2856 ((-665 |#4|) (-665 |#4|))) (-15 -2856 ((-665 |#4|) |#4| |#4|)) (-15 -2380 ((-665 |#4|) (-665 |#4|))) (-15 -4214 ((-665 |#4|) |#4| |#4|)) (-15 -2856 ((-665 |#4|) (-665 |#4|) |#4|)) (-15 -2856 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2856 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-1 (-665 |#4|) (-665 |#4|)))) (-15 -1920 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4067 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -3033 ((-112) (-665 |#4|))) (-15 -2324 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-1 (-112) |#4|) (-665 |#4|))) (-15 -2947 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -3773 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -2819 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -1452 ((-112) |#4|)) (-15 -2526 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -2775 ((-112) |#4|)) (-15 -1338 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -2344 ((-112) |#4|)) (-15 -3415 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -3959 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -3959 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-112))) (-15 -3388 (|#4| |#4| (-665 |#4|))) (-15 -2301 ((-665 |#4|) (-665 |#4|))) (-15 -3753 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|))) (-15 -3300 ((-665 |#4|) (-665 |#4|))) (-15 -2097 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3667 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -4119 ((-665 |#4|) |#4|)) (-15 -1555 ((-665 |#4|) (-665 |#4|))) (-15 -1555 ((-665 |#4|) (-665 |#4|) (-112))) (-15 -2235 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2959 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2048 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -2541 ((-665 |#4|) (-665 |#4|))) (-15 -1561 ((-665 |#4|) (-665 |#4|))) (-15 -3039 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) |%noBranch|)) (-569) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1007)) +((-3039 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2048 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2959 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2235 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3667 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1007 *5 *6 *7 *8)))) (-2097 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-665 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *1 (-1007 *6 *7 *8 *9)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3753 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -2841 (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3388 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *2)))) (-3959 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3959 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3415 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-2344 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-1338 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-2775 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-2526 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8)))) (-1920 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-2856 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-665 *7) (-665 *7))) (-5 *2 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-2856 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2856 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *3)))) (-4214 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-2380 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) +(-10 -7 (-15 -2856 ((-665 |#4|) (-665 |#4|))) (-15 -2856 ((-665 |#4|) |#4| |#4|)) (-15 -2380 ((-665 |#4|) (-665 |#4|))) (-15 -4214 ((-665 |#4|) |#4| |#4|)) (-15 -2856 ((-665 |#4|) (-665 |#4|) |#4|)) (-15 -2856 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2856 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-1 (-665 |#4|) (-665 |#4|)))) (-15 -1920 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4067 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -3033 ((-112) (-665 |#4|))) (-15 -2324 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-1 (-112) |#4|) (-665 |#4|))) (-15 -2947 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -3773 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -2819 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -1452 ((-112) |#4|)) (-15 -2526 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -2775 ((-112) |#4|)) (-15 -1338 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -2344 ((-112) |#4|)) (-15 -3415 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -3959 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -3959 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-112))) (-15 -3388 (|#4| |#4| (-665 |#4|))) (-15 -2301 ((-665 |#4|) (-665 |#4|))) (-15 -3753 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|))) (-15 -3300 ((-665 |#4|) (-665 |#4|))) (-15 -2097 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3667 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -4119 ((-665 |#4|) |#4|)) (-15 -1555 ((-665 |#4|) (-665 |#4|))) (-15 -1555 ((-665 |#4|) (-665 |#4|) (-112))) (-15 -2235 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2959 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2048 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -2541 ((-665 |#4|) (-665 |#4|))) (-15 -1561 ((-665 |#4|) (-665 |#4|))) (-15 -3039 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) |%noBranch|)) +((-2070 (((-2 (|:| R (-710 |#1|)) (|:| A (-710 |#1|)) (|:| |Ainv| (-710 |#1|))) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3507 (((-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)) 46 T ELT)) (-3350 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-1008 |#1|) (-10 -7 (-15 -2070 ((-2 (|:| R (-710 |#1|)) (|:| A (-710 |#1|)) (|:| |Ainv| (-710 |#1|))) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3350 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3507 ((-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)))) (-375)) (T -1008)) +((-3507 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-665 (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5))))) (-5 *1 (-1008 *5)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)))) (-3350 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-710 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-1008 *5)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) (-5 *2 (-2 (|:| R (-710 *6)) (|:| A (-710 *6)) (|:| |Ainv| (-710 *6)))) (-5 *1 (-1008 *6)) (-5 *3 (-710 *6))))) +(-10 -7 (-15 -2070 ((-2 (|:| R (-710 |#1|)) (|:| A (-710 |#1|)) (|:| |Ainv| (-710 |#1|))) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3350 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3507 ((-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)))) +((-3206 (((-431 |#4|) |#4|) 56 T ELT))) +(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3206 ((-431 |#4|) |#4|))) (-870) (-814) (-465) (-977 |#3| |#2| |#1|)) (T -1009)) +((-3206 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-465)) (-5 *2 (-431 *3)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) +(-10 -7 (-15 -3206 ((-431 |#4|) |#4|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4084 (($ (-792)) 115 (|has| |#1| (-23)) ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2609 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 103 T ELT)) (-3589 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 52 T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-3159 (($ (-665 |#1|)) 121 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3231 (((-710 |#1|) $ $) 108 (|has| |#1| (-1079)) ELT)) (-3236 (($ (-792) |#1|) 70 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3931 ((|#1| $) 105 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-4166 ((|#1| $) 106 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2561 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-2568 (($ $ (-665 |#1|)) 119 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-4047 ((|#1| $ $) 109 (|has| |#1| (-1079)) ELT)) (-4366 (((-949) $) 120 T ELT)) (-3587 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-2311 (($ $ $) 107 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2338 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT) (($ (-665 |#1|)) 122 T ELT)) (-3722 (($ (-665 |#1|)) 72 T ELT)) (-1702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-3128 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-577) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-747)) ELT) (($ $ |#1|) 110 (|has| |#1| (-747)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1010 |#1|) (-141) (-1079)) (T -1010)) +((-3159 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-1010 *3)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1079)) (-5 *2 (-949)))) (-2311 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1079)))) (-2568 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-1010 *3)) (-4 *3 (-1079))))) +(-13 (-1295 |t#1|) (-636 (-665 |t#1|)) (-10 -8 (-15 -3159 ($ (-665 |t#1|))) (-15 -4366 ((-949) $)) (-15 -2311 ($ $ $)) (-15 -2568 ($ $ (-665 |t#1|))))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-636 (-665 |#1|)) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-19 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T) ((-1295 |#1|) . T)) +((-4417 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 17 T ELT))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -4417 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1079) (-1079)) (T -1011)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-971 *6)) (-5 *1 (-1011 *5 *6))))) +(-10 -7 (-15 -4417 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) +((-2673 ((|#1| (-971 |#1|)) 14 T ELT)) (-1523 ((|#1| (-971 |#1|)) 13 T ELT)) (-2175 ((|#1| (-971 |#1|)) 12 T ELT)) (-2508 ((|#1| (-971 |#1|)) 16 T ELT)) (-4183 ((|#1| (-971 |#1|)) 24 T ELT)) (-3763 ((|#1| (-971 |#1|)) 15 T ELT)) (-3392 ((|#1| (-971 |#1|)) 17 T ELT)) (-3807 ((|#1| (-971 |#1|)) 23 T ELT)) (-3397 ((|#1| (-971 |#1|)) 22 T ELT))) +(((-1012 |#1|) (-10 -7 (-15 -2175 (|#1| (-971 |#1|))) (-15 -1523 (|#1| (-971 |#1|))) (-15 -2673 (|#1| (-971 |#1|))) (-15 -3763 (|#1| (-971 |#1|))) (-15 -2508 (|#1| (-971 |#1|))) (-15 -3392 (|#1| (-971 |#1|))) (-15 -3397 (|#1| (-971 |#1|))) (-15 -3807 (|#1| (-971 |#1|))) (-15 -4183 (|#1| (-971 |#1|)))) (-1079)) (T -1012)) +((-4183 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3807 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(-10 -7 (-15 -2175 (|#1| (-971 |#1|))) (-15 -1523 (|#1| (-971 |#1|))) (-15 -2673 (|#1| (-971 |#1|))) (-15 -3763 (|#1| (-971 |#1|))) (-15 -2508 (|#1| (-971 |#1|))) (-15 -3392 (|#1| (-971 |#1|))) (-15 -3397 (|#1| (-971 |#1|))) (-15 -3807 (|#1| (-971 |#1|))) (-15 -4183 (|#1| (-971 |#1|)))) +((-2747 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3111 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2503 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2077 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2278 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3065 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-1867 (((-3 |#1| "failed") |#1| (-792)) 1 T ELT)) (-1936 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-4312 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-4106 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-1972 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3964 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2023 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-1333 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3703 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3654 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-4354 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-1805 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-4266 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-4413 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-1855 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3929 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2439 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-1782 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2237 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2290 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-1013 |#1|) (-141) (-1232)) (T -1013)) +((-1855 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-4413 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2439 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3654 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2237 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1805 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-4106 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2278 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3964 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2747 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1333 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2503 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3929 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1782 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-4354 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2290 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-4266 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1972 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3065 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2023 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3111 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3703 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2077 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1936 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-4312 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1867 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-792)) (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(-13 (-10 -7 (-15 -1867 ((-3 |t#1| "failed") |t#1| (-792))) (-15 -4312 ((-3 |t#1| "failed") |t#1|)) (-15 -1936 ((-3 |t#1| "failed") |t#1|)) (-15 -2077 ((-3 |t#1| "failed") |t#1|)) (-15 -3703 ((-3 |t#1| "failed") |t#1|)) (-15 -3111 ((-3 |t#1| "failed") |t#1|)) (-15 -2023 ((-3 |t#1| "failed") |t#1|)) (-15 -3065 ((-3 |t#1| "failed") |t#1|)) (-15 -1972 ((-3 |t#1| "failed") |t#1|)) (-15 -4266 ((-3 |t#1| "failed") |t#1|)) (-15 -2290 ((-3 |t#1| "failed") |t#1|)) (-15 -4354 ((-3 |t#1| "failed") |t#1|)) (-15 -1782 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -3929 ((-3 |t#1| "failed") |t#1|)) (-15 -2503 ((-3 |t#1| "failed") |t#1|)) (-15 -1333 ((-3 |t#1| "failed") |t#1|)) (-15 -2747 ((-3 |t#1| "failed") |t#1|)) (-15 -3964 ((-3 |t#1| "failed") |t#1|)) (-15 -2278 ((-3 |t#1| "failed") |t#1|)) (-15 -4106 ((-3 |t#1| "failed") |t#1|)) (-15 -1805 ((-3 |t#1| "failed") |t#1|)) (-15 -2237 ((-3 |t#1| "failed") |t#1|)) (-15 -3654 ((-3 |t#1| "failed") |t#1|)) (-15 -2439 ((-3 |t#1| "failed") |t#1|)) (-15 -4413 ((-3 |t#1| "failed") |t#1|)) (-15 -1855 ((-3 |t#1| "failed") |t#1|)))) +((-2063 ((|#4| |#4| (-665 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2558 ((|#4| |#4| (-665 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4417 ((|#4| (-1 |#4| (-980 |#1|)) |#4|) 31 T ELT))) +(((-1014 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2558 (|#4| |#4| |#3|)) (-15 -2558 (|#4| |#4| (-665 |#3|))) (-15 -2063 (|#4| |#4| |#3|)) (-15 -2063 (|#4| |#4| (-665 |#3|))) (-15 -4417 (|#4| (-1 |#4| (-980 |#1|)) |#4|))) (-1079) (-814) (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206))))) (-977 (-980 |#1|) |#2| |#3|)) (T -1014)) +((-4417 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-980 *4))) (-4 *4 (-1079)) (-4 *2 (-977 (-980 *4) *5 *6)) (-4 *5 (-814)) (-4 *6 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206)))))) (-5 *1 (-1014 *4 *5 *6 *2)))) (-2063 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206)))))) (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) (-4 *2 (-977 (-980 *4) *5 *6)))) (-2063 (*1 *2 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206)))))) (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3)))) (-2558 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206)))))) (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) (-4 *2 (-977 (-980 *4) *5 *6)))) (-2558 (*1 *2 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)) (-15 -3341 ((-3 $ "failed") (-1206)))))) (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3))))) +(-10 -7 (-15 -2558 (|#4| |#4| |#3|)) (-15 -2558 (|#4| |#4| (-665 |#3|))) (-15 -2063 (|#4| |#4| |#3|)) (-15 -2063 (|#4| |#4| (-665 |#3|))) (-15 -4417 (|#4| (-1 |#4| (-980 |#1|)) |#4|))) +((-2838 ((|#2| |#3|) 35 T ELT)) (-2387 (((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|) 79 T ELT)) (-2787 (((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) 100 T ELT))) +(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2787 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -2387 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|)) (-15 -2838 (|#2| |#3|))) (-361) (-1273 |#1|) (-1273 |#2|) (-745 |#2| |#3|)) (T -1015)) +((-2838 (*1 *2 *3) (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-1015 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-745 *2 *3)))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-1015 *4 *3 *5 *6)) (-4 *6 (-745 *3 *5)))) (-2787 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2104 (-710 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-710 *4)))) (-5 *1 (-1015 *3 *4 *5 *6)) (-4 *6 (-745 *4 *5))))) +(-10 -7 (-15 -2787 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -2387 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|)) (-15 -2838 (|#2| |#3|))) +((-2258 (((-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577)))) (-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577))))) 82 T ELT))) +(((-1016 |#1| |#2|) (-10 -7 (-15 -2258 ((-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577)))) (-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577))))))) (-665 (-1206)) (-792)) (T -1016)) +((-2258 (*1 *2 *2) (-12 (-5 *2 (-1017 (-420 (-577)) (-887 *3) (-246 *4 (-792)) (-254 *3 (-420 (-577))))) (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-1016 *3 *4))))) +(-10 -7 (-15 -2258 ((-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577)))) (-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577))))))) +((-3586 (((-112) $ $) NIL T ELT)) (-2684 (((-3 (-112) "failed") $) 71 T ELT)) (-1468 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-2866 (($ $ (-3 (-112) "failed")) 72 T ELT)) (-2753 (($ (-665 |#4|) |#4|) 25 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2149 (($ $) 69 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2687 (((-112) $) 70 T ELT)) (-2833 (($) 30 T ELT)) (-2462 ((|#4| $) 74 T ELT)) (-4315 (((-665 |#4|) $) 73 T ELT)) (-3709 (((-885) $) 68 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1017 |#1| |#2| |#3| |#4|) (-13 (-1130) (-631 (-885)) (-10 -8 (-15 -2833 ($)) (-15 -2753 ($ (-665 |#4|) |#4|)) (-15 -2684 ((-3 (-112) "failed") $)) (-15 -2866 ($ $ (-3 (-112) "failed"))) (-15 -2687 ((-112) $)) (-15 -4315 ((-665 |#4|) $)) (-15 -2462 (|#4| $)) (-15 -2149 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -1468 ($ $)) |%noBranch|) |%noBranch|))) (-465) (-870) (-814) (-977 |#1| |#3| |#2|)) (T -1017)) +((-2833 (*1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) (-2753 (*1 *1 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-977 *4 *6 *5)) (-4 *4 (-465)) (-4 *5 (-870)) (-4 *6 (-814)) (-5 *1 (-1017 *4 *5 *6 *3)))) (-2684 (*1 *2 *1) (|partial| -12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-2866 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-2687 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-4315 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-665 *6)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-2462 (*1 *2 *1) (-12 (-4 *2 (-977 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)))) (-2149 (*1 *1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) (-1468 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3))))) +(-13 (-1130) (-631 (-885)) (-10 -8 (-15 -2833 ($)) (-15 -2753 ($ (-665 |#4|) |#4|)) (-15 -2684 ((-3 (-112) "failed") $)) (-15 -2866 ($ $ (-3 (-112) "failed"))) (-15 -2687 ((-112) $)) (-15 -4315 ((-665 |#4|) $)) (-15 -2462 (|#4| $)) (-15 -2149 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -1468 ($ $)) |%noBranch|) |%noBranch|))) +((-2075 (((-112) |#5| |#5|) 44 T ELT)) (-3303 (((-112) |#5| |#5|) 59 T ELT)) (-3596 (((-112) |#5| (-665 |#5|)) 81 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-3569 (((-112) (-665 |#4|) (-665 |#4|)) 65 T ELT)) (-1984 (((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) 70 T ELT)) (-3127 (((-1302)) 32 T ELT)) (-2605 (((-1302) (-1188) (-1188) (-1188)) 28 T ELT)) (-1741 (((-665 |#5|) (-665 |#5|)) 100 T ELT)) (-2292 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) 92 T ELT)) (-2597 (((-665 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112)) 122 T ELT)) (-1341 (((-112) |#5| |#5|) 53 T ELT)) (-1639 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-1388 (((-112) (-665 |#4|) (-665 |#4|)) 64 T ELT)) (-1720 (((-112) (-665 |#4|) (-665 |#4|)) 66 T ELT)) (-2852 (((-112) (-665 |#4|) (-665 |#4|)) 67 T ELT)) (-4095 (((-3 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)) 117 T ELT)) (-2333 (((-665 |#5|) (-665 |#5|)) 49 T ELT))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2605 ((-1302) (-1188) (-1188) (-1188))) (-15 -3127 ((-1302))) (-15 -2075 ((-112) |#5| |#5|)) (-15 -2333 ((-665 |#5|) (-665 |#5|))) (-15 -1341 ((-112) |#5| |#5|)) (-15 -3303 ((-112) |#5| |#5|)) (-15 -3569 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1388 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1720 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2852 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1639 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3596 ((-112) |#5| |#5|)) (-15 -3596 ((-112) |#5| (-665 |#5|))) (-15 -1741 ((-665 |#5|) (-665 |#5|))) (-15 -1984 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2292 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-15 -2597 ((-665 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4095 ((-3 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1018)) +((-4095 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| -2281 (-665 *9)) (|:| -3613 *4) (|:| |ineq| (-665 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) (-4 *4 (-1101 *6 *7 *8 *9)))) (-2597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| -2281 (-665 *9)) (|:| -3613 *10) (|:| |ineq| (-665 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -3613 *7)))) (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-1984 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3596 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-1639 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-2852 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-1720 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-1388 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3569 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3303 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-1341 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-2075 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3127 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-2605 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -2605 ((-1302) (-1188) (-1188) (-1188))) (-15 -3127 ((-1302))) (-15 -2075 ((-112) |#5| |#5|)) (-15 -2333 ((-665 |#5|) (-665 |#5|))) (-15 -1341 ((-112) |#5| |#5|)) (-15 -3303 ((-112) |#5| |#5|)) (-15 -3569 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1388 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1720 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2852 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1639 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3596 ((-112) |#5| |#5|)) (-15 -3596 ((-112) |#5| (-665 |#5|))) (-15 -1741 ((-665 |#5|) (-665 |#5|))) (-15 -1984 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2292 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-15 -2597 ((-665 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4095 ((-3 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3341 (((-1206) $) 15 T ELT)) (-3254 (((-1188) $) 16 T ELT)) (-4220 (($ (-1206) (-1188)) 14 T ELT)) (-3709 (((-885) $) 13 T ELT))) +(((-1019) (-13 (-631 (-885)) (-10 -8 (-15 -4220 ($ (-1206) (-1188))) (-15 -3341 ((-1206) $)) (-15 -3254 ((-1188) $))))) (T -1019)) +((-4220 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-1019)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1019)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1019))))) +(-13 (-631 (-885)) (-10 -8 (-15 -4220 ($ (-1206) (-1188))) (-15 -3341 ((-1206) $)) (-15 -3254 ((-1188) $)))) +((-4417 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-1020 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#4| (-1 |#2| |#1|) |#3|))) (-569) (-569) (-1022 |#1|) (-1022 |#2|)) (T -1020)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1022 *6)) (-5 *1 (-1020 *5 *6 *4 *2)) (-4 *4 (-1022 *5))))) +(-10 -7 (-15 -4417 (|#4| (-1 |#2| |#1|) |#3|))) +((-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) 66 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) 96 T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-1206) $) 61 T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) 93 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 115 T ELT) (((-710 |#2|) (-710 $)) 28 T ELT)) (-1424 (($) 99 T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 76 T ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 85 T ELT)) (-3608 (($ $) 10 T ELT)) (-2004 (((-3 $ "failed") $) 20 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-2443 (($) 16 T ELT)) (-4378 (($ $) 55 T ELT)) (-3641 (($ $ (-1 |#2| |#2|)) 36 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1674 (($ $) 12 T ELT)) (-4463 (((-916 (-577)) $) 71 T ELT) (((-916 (-391)) $) 80 T ELT) (((-549) $) 40 T ELT) (((-391) $) 44 T ELT) (((-228) $) 48 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 91 T ELT) (($ |#2|) NIL T ELT) (($ (-1206)) 58 T ELT)) (-3331 (((-792)) 31 T ELT)) (-3042 (((-112) $ $) 51 T ELT))) +(((-1021 |#1| |#2|) (-10 -8 (-15 -3042 ((-112) |#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4463 ((-228) |#1|)) (-15 -4463 ((-391) |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -3709 (|#1| (-1206))) (-15 -4335 ((-3 (-1206) "failed") |#1|)) (-15 -3783 ((-1206) |#1|)) (-15 -1424 (|#1|)) (-15 -4378 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -3187 ((-710 |#2|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| |#1|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-1022 |#2|) (-569)) (T -1021)) +((-3331 (*1 *2) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-1021 *3 *4)) (-4 *3 (-1022 *4))))) +(-10 -8 (-15 -3042 ((-112) |#1| |#1|)) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4463 ((-228) |#1|)) (-15 -4463 ((-391) |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -3709 (|#1| (-1206))) (-15 -4335 ((-3 (-1206) "failed") |#1|)) (-15 -3783 ((-1206) |#1|)) (-15 -1424 (|#1|)) (-15 -4378 (|#1| |#1|)) (-15 -1674 (|#1| |#1|)) (-15 -3608 (|#1| |#1|)) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2425 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -3187 ((-710 |#2|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| |#1|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1363 ((|#1| $) 163 (|has| |#1| (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 154 (|has| |#1| (-937)) ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 157 (|has| |#1| (-937)) ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2578 (((-577) $) 144 (|has| |#1| (-841)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 193 T ELT) (((-3 (-1206) "failed") $) 152 (|has| |#1| (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) 135 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-577) "failed") $) 133 (|has| |#1| (-1068 (-577))) ELT)) (-3783 ((|#1| $) 194 T ELT) (((-1206) $) 153 (|has| |#1| (-1068 (-1206))) ELT) (((-420 (-577)) $) 136 (|has| |#1| (-1068 (-577))) ELT) (((-577) $) 134 (|has| |#1| (-1068 (-577))) ELT)) (-3531 (($ $ $) 61 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 178 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 177 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 176 T ELT) (((-710 |#1|) (-710 $)) 175 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1424 (($) 161 (|has| |#1| (-558)) ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-4339 (((-112) $) 146 (|has| |#1| (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 170 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 169 (|has| |#1| (-910 (-391))) ELT)) (-3357 (((-112) $) 35 T ELT)) (-3608 (($ $) 165 T ELT)) (-2417 ((|#1| $) 167 T ELT)) (-2004 (((-3 $ "failed") $) 132 (|has| |#1| (-1182)) ELT)) (-2649 (((-112) $) 145 (|has| |#1| (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3237 (($ $ $) 137 (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) 138 (|has| |#1| (-870)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 185 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 180 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 179 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 174 T ELT) (((-710 |#1|) (-1297 $)) 173 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-2443 (($) 131 (|has| |#1| (-1182)) CONST)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-4378 (($ $) 162 (|has| |#1| (-318)) ELT)) (-3941 ((|#1| $) 159 (|has| |#1| (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 156 (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 155 (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) 191 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 190 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 189 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 188 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 187 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 186 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-4081 (((-792) $) 64 T ELT)) (-2916 (($ $ |#1|) 192 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3641 (($ $ (-1 |#1| |#1|)) 184 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 183 T ELT) (($ $) 130 (|has| |#1| (-238)) ELT) (($ $ (-792)) 128 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 126 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 124 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 123 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 122 (|has| |#1| (-928 (-1206))) ELT)) (-1674 (($ $) 164 T ELT)) (-2429 ((|#1| $) 166 T ELT)) (-4463 (((-916 (-577)) $) 172 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 171 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-549) $) 149 (|has| |#1| (-632 (-549))) ELT) (((-391) $) 148 (|has| |#1| (-1052)) ELT) (((-228) $) 147 (|has| |#1| (-1052)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 158 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 197 T ELT) (($ (-1206)) 151 (|has| |#1| (-1068 (-1206))) ELT)) (-2708 (((-3 $ "failed") $) 150 (-2867 (|has| |#1| (-146)) (-2790 (|has| $ (-146)) (|has| |#1| (-937)))) ELT)) (-3331 (((-792)) 32 T CONST)) (-2431 ((|#1| $) 160 (|has| |#1| (-558)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2215 (($ $) 143 (|has| |#1| (-841)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 181 T ELT) (($ $) 129 (|has| |#1| (-238)) ELT) (($ $ (-792)) 127 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 125 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 121 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 120 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 119 (|has| |#1| (-928 (-1206))) ELT)) (-3078 (((-112) $ $) 139 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 141 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 140 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 142 (|has| |#1| (-870)) ELT)) (-3139 (($ $ $) 73 T ELT) (($ |#1| |#1|) 168 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ |#1| $) 196 T ELT) (($ $ |#1|) 195 T ELT))) +(((-1022 |#1|) (-141) (-569)) (T -1022)) +((-3139 (*1 *1 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-1674 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-4378 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-1424 (*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-558)) (-4 *2 (-569)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558))))) +(-13 (-375) (-38 |t#1|) (-1068 |t#1|) (-350 |t#1|) (-233 |t#1|) (-389 |t#1|) (-908 |t#1|) (-413 |t#1|) (-10 -8 (-15 -3139 ($ |t#1| |t#1|)) (-15 -2417 (|t#1| $)) (-15 -2429 (|t#1| $)) (-15 -3608 ($ $)) (-15 -1674 ($ $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-1068 (-577))) (PROGN (-6 (-1068 (-577))) (-6 (-1068 (-420 (-577))))) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1068 (-1206))) (-6 (-1068 (-1206))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -1363 (|t#1| $)) (-15 -4378 ($ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -1424 ($)) (-15 -2431 (|t#1| $)) (-15 -3941 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 #1=(-1206)) |has| |#1| (-1068 (-1206))) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-228)) |has| |#1| (-1052)) ((-632 (-391)) |has| |#1| (-1052)) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-235 $) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) . T) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) . T) ((-318) . T) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-465) . T) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 #2=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-659 #2#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) . T) ((-738 |#1|) . T) ((-738 $) . T) ((-747) . T) ((-812) |has| |#1| (-841)) ((-813) |has| |#1| (-841)) ((-815) |has| |#1| (-841)) ((-816) |has| |#1| (-841)) ((-841) |has| |#1| (-841)) ((-869) |has| |#1| (-841)) ((-870) -2867 (|has| |#1| (-870)) (|has| |#1| (-841))) ((-873) -2867 (|has| |#1| (-870)) (|has| |#1| (-841))) ((-920 $ #3=(-1206)) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #3#) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-937) |has| |#1| (-937)) ((-948) . T) ((-1052) |has| |#1| (-1052)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-577))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #1#) |has| |#1| (-1068 (-1206))) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1251) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3908 (($ (-1172 |#1| |#2|)) 11 T ELT)) (-2374 (((-1172 |#1| |#2|) $) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT))) +(((-1023 |#1| |#2|) (-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3908 ($ (-1172 |#1| |#2|))) (-15 -2374 ((-1172 |#1| |#2|) $)))) (-949) (-375)) (T -1023)) +((-3908 (*1 *1 *2) (-12 (-5 *2 (-1172 *3 *4)) (-14 *3 (-949)) (-4 *4 (-375)) (-5 *1 (-1023 *3 *4)))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-1023 *3 *4)) (-14 *3 (-949)) (-4 *4 (-375))))) +(-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3908 ($ (-1172 |#1| |#2|))) (-15 -2374 ((-1172 |#1| |#2|) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3477 (((-1165) $) 9 T ELT)) (-3709 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1024) (-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $))))) (T -1024)) +((-3477 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1024))))) +(-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2305 (($) 7 T CONST)) (-4258 (($ $) 47 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-4166 (((-792) $) 46 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3183 ((|#1| $) 45 T ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2613 ((|#1| |#1| $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-3855 ((|#1| $) 48 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-3993 ((|#1| $) 44 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1025 |#1|) (-141) (-1247)) (T -1025)) +((-2613 (*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-4258 (*1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-4166 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4499) (-15 -2613 (|t#1| |t#1| $)) (-15 -3855 (|t#1| $)) (-15 -4258 ($ $)) (-15 -4166 ((-792) $)) (-15 -3183 (|t#1| $)) (-15 -3993 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-4113 (((-112) $) 43 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 46 T ELT)) (-3783 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 78 T ELT)) (-1356 (((-112) $) 72 T ELT)) (-4035 (((-420 (-577)) $) 76 T ELT)) (-3357 (((-112) $) 42 T ELT)) (-2794 ((|#2| $) 22 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-3981 (($ $) 58 T ELT)) (-3641 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-4463 (((-549) $) 67 T ELT)) (-4247 (($ $) 17 T ELT)) (-3709 (((-885) $) 53 T ELT) (($ (-577)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3331 (((-792)) 10 T ELT)) (-2215 ((|#2| $) 71 T ELT)) (-3018 (((-112) $ $) 26 T ELT)) (-3042 (((-112) $ $) 69 T ELT)) (-3128 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3114 (($ $ $) 27 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) +(((-1026 |#1| |#2|) (-10 -8 (-15 -3709 (|#1| (-420 (-577)))) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3042 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -3981 (|#1| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -2215 (|#2| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 -3357 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -4113 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-1027 |#2|) (-174)) (T -1026)) +((-3331 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1027 *4))))) +(-10 -8 (-15 -3709 (|#1| (-420 (-577)))) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3042 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -3981 (|#1| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -2215 (|#2| |#1|)) (-15 -2794 (|#2| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -4417 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 -3357 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -4113 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -3114 (|#1| |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 (-577) "failed") $) 135 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 133 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 130 T ELT)) (-3783 (((-577) $) 134 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 132 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 131 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 115 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 114 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 113 T ELT) (((-710 |#1|) (-710 $)) 112 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3782 ((|#1| $) 103 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) 99 (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) 101 (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) 100 (|has| |#1| (-558)) ELT)) (-4300 (($ |#1| |#1| |#1| |#1|) 104 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2794 ((|#1| $) 105 T ELT)) (-3237 (($ $ $) 87 (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) 88 (|has| |#1| (-870)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 118 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 117 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 116 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 111 T ELT) (((-710 |#1|) (-1297 $)) 110 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 96 (|has| |#1| (-375)) ELT)) (-1528 ((|#1| $) 106 T ELT)) (-4476 ((|#1| $) 107 T ELT)) (-3885 ((|#1| $) 108 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) 124 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 123 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 122 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 121 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 120 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 119 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2916 (($ $ |#1|) 125 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3641 (($ $ (-1 |#1| |#1|)) 129 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 128 T ELT) (($ $) 86 (|has| |#1| (-238)) ELT) (($ $ (-792)) 84 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 82 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 80 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 79 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 78 (|has| |#1| (-928 (-1206))) ELT)) (-4463 (((-549) $) 97 (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $) 109 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 74 (-2867 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2708 (((-3 $ "failed") $) 98 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2215 ((|#1| $) 102 (|has| |#1| (-1090)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1 |#1| |#1|)) 127 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 126 T ELT) (($ $) 85 (|has| |#1| (-238)) ELT) (($ $ (-792)) 83 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 81 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 77 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 76 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 75 (|has| |#1| (-928 (-1206))) ELT)) (-3078 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 91 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 92 (|has| |#1| (-870)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 95 (|has| |#1| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ $ (-420 (-577))) 94 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) 93 (|has| |#1| (-375)) ELT))) +(((-1027 |#1|) (-141) (-174)) (T -1027)) +((-4247 (*1 *1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-4476 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-4300 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-2215 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-1902 (*1 *2 *1) (|partial| -12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-389 |t#1|) (-10 -8 (-15 -4247 ($ $)) (-15 -3885 (|t#1| $)) (-15 -4476 (|t#1| $)) (-15 -1528 (|t#1| $)) (-15 -2794 (|t#1| $)) (-15 -4300 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3782 (|t#1| $)) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -2215 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -1356 ((-112) $)) (-15 -4035 ((-420 (-577)) $)) (-15 -1902 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-375)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-375)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-375))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-235 $) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2867 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) |has| |#1| (-375)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2867 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-667 #0#) |has| |#1| (-375)) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-375)) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-375)) ((-661 |#1|) . T) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-375)) ((-738 |#1|) . T) ((-747) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-920 $ #2=(-1206)) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #2#) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) |has| |#1| (-375)) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1086 #0#) |has| |#1| (-375)) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4417 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-1028 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#3| (-1 |#4| |#2|) |#1|))) (-1027 |#2|) (-174) (-1027 |#4|) (-174)) (T -1028)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1027 *6)) (-5 *1 (-1028 *4 *5 *2 *6)) (-4 *4 (-1027 *5))))) +(-10 -7 (-15 -4417 (|#3| (-1 |#4| |#2|) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3782 ((|#1| $) 12 T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-1356 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-4035 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-4300 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2794 ((|#1| $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-1528 ((|#1| $) 15 T ELT)) (-4476 ((|#1| $) 14 T ELT)) (-3885 ((|#1| $) 13 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3641 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-4247 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2215 ((|#1| $) NIL (|has| |#1| (-1090)) ELT)) (-2839 (($) 8 T CONST)) (-2853 (($) 10 T CONST)) (-2389 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT))) +(((-1029 |#1|) (-1027 |#1|) (-174)) (T -1029)) +NIL +(-1027 |#1|) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4258 (($ $) 23 T ELT)) (-3662 (($ (-665 |#1|)) 33 T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-4166 (((-792) $) 26 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 28 T ELT)) (-4375 (($ |#1| $) 17 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3183 ((|#1| $) 27 T ELT)) (-3205 ((|#1| $) 22 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2613 ((|#1| |#1| $) 16 T ELT)) (-2687 (((-112) $) 18 T ELT)) (-2833 (($) NIL T ELT)) (-3855 ((|#1| $) 21 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) NIL T ELT)) (-3993 ((|#1| $) 30 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1030 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -3662 ($ (-665 |#1|))))) (-1130)) (T -1030)) +((-3662 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1030 *3))))) +(-13 (-1025 |#1|) (-10 -8 (-15 -3662 ($ (-665 |#1|))))) +((-3770 (($ $) 12 T ELT)) (-3368 (($ $ (-577)) 13 T ELT))) +(((-1031 |#1|) (-10 -8 (-15 -3770 (|#1| |#1|)) (-15 -3368 (|#1| |#1| (-577)))) (-1032)) (T -1031)) +NIL +(-10 -8 (-15 -3770 (|#1| |#1|)) (-15 -3368 (|#1| |#1| (-577)))) +((-3770 (($ $) 6 T ELT)) (-3368 (($ $ (-577)) 7 T ELT)) (** (($ $ (-420 (-577))) 8 T ELT))) +(((-1032) (-141)) (T -1032)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-420 (-577))))) (-3368 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-577)))) (-3770 (*1 *1 *1) (-4 *1 (-1032)))) +(-13 (-10 -8 (-15 -3770 ($ $)) (-15 -3368 ($ $ (-577))) (-15 ** ($ $ (-420 (-577)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3191 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2261 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2538 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2901 (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|))) NIL T ELT)) (-2318 (((-420 |#2|) $) NIL T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2495 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3005 (((-792)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2375 (((-112)) NIL T ELT)) (-1929 (((-112) |#1|) 162 T ELT) (((-112) |#2|) 166 T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-420 |#2|) $) NIL T ELT)) (-2385 (($ (-1297 (-420 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-420 |#2|))) 79 T ELT) (($ (-1297 |#2|) |#2|) NIL T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3531 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3921 (((-710 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-710 $)) NIL T ELT)) (-1903 (((-1297 $) (-1297 $)) NIL T ELT)) (-2060 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2628 (((-665 (-665 |#1|))) NIL (|has| |#1| (-380)) ELT)) (-3617 (((-112) |#1| |#1|) NIL T ELT)) (-1641 (((-949)) NIL T ELT)) (-1424 (($) NIL (|has| (-420 |#2|) (-380)) ELT)) (-4338 (((-112)) NIL T ELT)) (-2600 (((-112) |#1|) 61 T ELT) (((-112) |#2|) 164 T ELT)) (-3541 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2796 (($ $) NIL T ELT)) (-2213 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3275 (((-112) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3987 (($ $ (-792)) NIL (|has| (-420 |#2|) (-361)) ELT) (($ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3567 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4030 (((-949) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-854 (-949)) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3603 (((-792)) NIL T ELT)) (-4042 (((-1297 $) (-1297 $)) NIL T ELT)) (-2794 (((-420 |#2|) $) NIL T ELT)) (-3506 (((-665 (-980 |#1|)) (-1206)) NIL (|has| |#1| (-375)) ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2346 ((|#3| $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2686 (((-949) $) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2047 ((|#3| $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-1297 $) $) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1379 (((-710 (-420 |#2|))) 57 T ELT)) (-4201 (((-710 (-420 |#2|))) 56 T ELT)) (-3981 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3710 (($ (-1297 |#2|) |#2|) 80 T ELT)) (-4297 (((-710 (-420 |#2|))) 55 T ELT)) (-2999 (((-710 (-420 |#2|))) 54 T ELT)) (-4348 (((-2 (|:| |num| (-710 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-3935 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-3604 (((-1297 $)) 51 T ELT)) (-2787 (((-1297 $)) 50 T ELT)) (-3255 (((-112) $) NIL T ELT)) (-2798 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-2443 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-3354 (($ (-949)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2731 (((-3 |#2| "failed")) 70 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2918 (((-792)) NIL T ELT)) (-2343 (($) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3759 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4081 (((-792) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2916 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3585 (((-3 |#2| "failed")) 68 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3846 (((-420 |#2|) (-1297 $)) NIL T ELT) (((-420 |#2|)) 47 T ELT)) (-3038 (((-792) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3641 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-4040 (((-710 (-420 |#2|)) (-1297 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4263 ((|#3|) 58 T ELT)) (-3475 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3762 (((-1297 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-420 |#2|)) $) 81 T ELT) (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT)) (-4463 (((-1297 (-420 |#2|)) $) NIL T ELT) (($ (-1297 (-420 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2591 (((-1297 $) (-1297 $)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 |#2|)) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| (-420 |#2|) (-1068 (-420 (-577)))) (|has| (-420 |#2|) (-375))) ELT) (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2708 (($ $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)) ELT)) (-2932 ((|#3| $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-3634 (((-112)) 65 T ELT)) (-4064 (((-112) |#1|) 167 T ELT) (((-112) |#2|) 168 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1567 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-3702 (((-112)) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2867 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 |#2|)) NIL T ELT) (($ (-420 |#2|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375)) ELT))) +(((-1033 |#1| |#2| |#3| |#4| |#5|) (-354 |#1| |#2| |#3|) (-1251) (-1273 |#1|) (-1273 (-420 |#2|)) (-420 |#2|) (-792)) (T -1033)) NIL (-354 |#1| |#2| |#3|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3556 (((-660 (-577)) $) 73 T ELT)) (-2649 (($ (-660 (-577))) 81 T ELT)) (-2829 (((-577) $) 48 (|has| (-577) (-318)) ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL (|has| (-577) (-836)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) 60 T ELT) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-3 (-420 (-577)) "failed") $) 57 (|has| (-577) (-1063 (-577))) ELT) (((-3 (-577) "failed") $) 60 (|has| (-577) (-1063 (-577))) ELT)) (-2155 (((-577) $) NIL T ELT) (((-1201) $) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1063 (-577))) ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2352 (($) NIL (|has| (-577) (-558)) ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3104 (((-660 (-577)) $) 79 T ELT)) (-4302 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577))) ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-2781 (((-577) $) 45 T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)) ELT)) (-2178 (((-112) $) NIL (|has| (-577) (-836)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-577) (-865)) ELT)) (-2124 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL T ELT)) (-3457 (($) NIL (|has| (-577) (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3053 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) 50 T ELT)) (-3697 (((-1182 (-577)) $) 78 T ELT)) (-3071 (($ (-660 (-577)) (-660 (-577))) 82 T ELT)) (-1374 (((-577) $) 64 (|has| (-577) (-558)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)) ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3273 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577))) ELT) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))) ELT)) (-4167 (((-787) $) NIL T ELT)) (-2837 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) 15 (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3069 (($ $) NIL T ELT)) (-2797 (((-577) $) 47 T ELT)) (-4349 (((-660 (-577)) $) 80 T ELT)) (-2176 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577)))) ELT) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-627 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1047)) ELT) (((-228) $) NIL (|has| (-577) (-1047)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))) ELT)) (-3603 (((-880) $) 107 T ELT) (($ (-577)) 51 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 27 T ELT) (($ (-577)) 51 T ELT) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201))) ELT) (((-420 (-577)) $) 25 T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))) ELT)) (-1920 (((-787)) 13 T CONST)) (-2360 (((-577) $) 62 (|has| (-577) (-558)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4318 (($ $) NIL (|has| (-577) (-836)) ELT)) (-2754 (($) 14 T CONST)) (-2767 (($) 17 T CONST)) (-2136 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-787)) NIL (|has| (-577) (-238)) ELT)) (-3001 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2949 (((-112) $ $) 21 T ELT)) (-2988 (((-112) $ $) NIL (|has| (-577) (-865)) ELT)) (-2971 (((-112) $ $) 40 (|has| (-577) (-865)) ELT)) (-3051 (($ $ $) 36 T ELT) (($ (-577) (-577)) 38 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3031 (($ $ $) 28 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ $ (-577)) NIL T ELT))) -(((-1029 |#1|) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -3556 ((-660 (-577)) $)) (-15 -3697 ((-1182 (-577)) $)) (-15 -3104 ((-660 (-577)) $)) (-15 -4349 ((-660 (-577)) $)) (-15 -2649 ($ (-660 (-577)))) (-15 -3071 ($ (-660 (-577)) (-660 (-577)))))) (-577)) (T -1029)) -((-3053 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-2649 (*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-3071 (*1 *1 *2 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) -(-13 (-1017 (-577)) (-626 (-420 (-577))) (-10 -8 (-15 -3053 ((-420 (-577)) $)) (-15 -3556 ((-660 (-577)) $)) (-15 -3697 ((-1182 (-577)) $)) (-15 -3104 ((-660 (-577)) $)) (-15 -4349 ((-660 (-577)) $)) (-15 -2649 ($ (-660 (-577)))) (-15 -3071 ($ (-660 (-577)) (-660 (-577)))))) -((-2289 (((-52) (-420 (-577)) (-577)) 9 T ELT))) -(((-1030) (-10 -7 (-15 -2289 ((-52) (-420 (-577)) (-577))))) (T -1030)) -((-2289 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) (-5 *1 (-1030))))) -(-10 -7 (-15 -2289 ((-52) (-420 (-577)) (-577)))) -((-3373 (((-577)) 23 T ELT)) (-1347 (((-577)) 28 T ELT)) (-2596 (((-1297) (-577)) 26 T ELT)) (-4015 (((-577) (-577)) 29 T ELT) (((-577)) 22 T ELT))) -(((-1031) (-10 -7 (-15 -4015 ((-577))) (-15 -3373 ((-577))) (-15 -4015 ((-577) (-577))) (-15 -2596 ((-1297) (-577))) (-15 -1347 ((-577))))) (T -1031)) -((-1347 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1031)))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) (-3373 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) (-4015 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031))))) -(-10 -7 (-15 -4015 ((-577))) (-15 -3373 ((-577))) (-15 -4015 ((-577) (-577))) (-15 -2596 ((-1297) (-577))) (-15 -1347 ((-577)))) -((-2503 (((-431 |#1|) |#1|) 43 T ELT)) (-3056 (((-431 |#1|) |#1|) 41 T ELT))) -(((-1032 |#1|) (-10 -7 (-15 -3056 ((-431 |#1|) |#1|)) (-15 -2503 ((-431 |#1|) |#1|))) (-1268 (-420 (-577)))) (T -1032)) -((-2503 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1268 (-420 (-577)))))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1268 (-420 (-577))))))) -(-10 -7 (-15 -3056 ((-431 |#1|) |#1|)) (-15 -2503 ((-431 |#1|) |#1|))) -((-1493 (((-3 (-420 (-577)) "failed") |#1|) 15 T ELT)) (-2828 (((-112) |#1|) 14 T ELT)) (-2950 (((-420 (-577)) |#1|) 10 T ELT))) -(((-1033 |#1|) (-10 -7 (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|))) (-1063 (-420 (-577)))) (T -1033)) -((-1493 (*1 *2 *3) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) (-4 *3 (-1063 *2)))) (-2828 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1033 *3)) (-4 *3 (-1063 (-420 (-577)))))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) (-4 *3 (-1063 *2))))) -(-10 -7 (-15 -2950 ((-420 (-577)) |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -1493 ((-3 (-420 (-577)) "failed") |#1|))) -((-1895 ((|#2| $ "value" |#2|) 12 T ELT)) (-2837 ((|#2| $ "value") 10 T ELT)) (-1444 (((-112) $ $) 18 T ELT))) -(((-1034 |#1| |#2|) (-10 -8 (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -1444 ((-112) |#1| |#1|)) (-15 -2837 (|#2| |#1| "value"))) (-1035 |#2|) (-1242)) (T -1034)) -NIL -(-10 -8 (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -1444 ((-112) |#1| |#1|)) (-15 -2837 (|#2| |#1| "value"))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-3790 (($) 7 T CONST)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1035 |#1|) (-141) (-1242)) (T -1035)) -((-2333 (*1 *2 *1) (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3)))) (-1830 (*1 *2 *1) (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3)))) (-2284 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-2935 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3)))) (-3190 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-577)))) (-1444 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-2725 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-2966 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *1)) (|has| *1 (-6 -4471)) (-4 *1 (-1035 *3)) (-4 *3 (-1242)))) (-1895 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) (-3211 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) (-4 *2 (-1242))))) -(-13 (-502 |t#1|) (-10 -8 (-15 -2333 ((-660 $) $)) (-15 -1830 ((-660 $) $)) (-15 -2284 ((-112) $)) (-15 -3145 (|t#1| $)) (-15 -2837 (|t#1| $ "value")) (-15 -3834 ((-112) $)) (-15 -2935 ((-660 |t#1|) $)) (-15 -3190 ((-577) $ $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -1444 ((-112) $ $)) (-15 -2725 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4471)) (PROGN (-15 -2966 ($ $ (-660 $))) (-15 -1895 (|t#1| $ "value" |t#1|)) (-15 -3211 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-3070 (($ $) 9 T ELT) (($ $ (-944)) 49 T ELT) (($ (-420 (-577))) 13 T ELT) (($ (-577)) 15 T ELT)) (-3400 (((-3 $ "failed") (-1197 $) (-944) (-880)) 24 T ELT) (((-3 $ "failed") (-1197 $) (-944)) 32 T ELT)) (-4286 (($ $ (-577)) 58 T ELT)) (-1920 (((-787)) 18 T ELT)) (-1900 (((-660 $) (-1197 $)) NIL T ELT) (((-660 $) (-1197 (-420 (-577)))) 63 T ELT) (((-660 $) (-1197 (-577))) 68 T ELT) (((-660 $) (-975 $)) 72 T ELT) (((-660 $) (-975 (-420 (-577)))) 76 T ELT) (((-660 $) (-975 (-577))) 80 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) 53 T ELT))) -(((-1036 |#1|) (-10 -8 (-15 -3070 (|#1| (-577))) (-15 -3070 (|#1| (-420 (-577)))) (-15 -3070 (|#1| |#1| (-944))) (-15 -1900 ((-660 |#1|) (-975 (-577)))) (-15 -1900 ((-660 |#1|) (-975 (-420 (-577))))) (-15 -1900 ((-660 |#1|) (-975 |#1|))) (-15 -1900 ((-660 |#1|) (-1197 (-577)))) (-15 -1900 ((-660 |#1|) (-1197 (-420 (-577))))) (-15 -1900 ((-660 |#1|) (-1197 |#1|))) (-15 -3400 ((-3 |#1| "failed") (-1197 |#1|) (-944))) (-15 -3400 ((-3 |#1| "failed") (-1197 |#1|) (-944) (-880))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -4286 (|#1| |#1| (-577))) (-15 -3070 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -1920 ((-787))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) (-1037)) (T -1036)) -((-1920 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1036 *3)) (-4 *3 (-1037))))) -(-10 -8 (-15 -3070 (|#1| (-577))) (-15 -3070 (|#1| (-420 (-577)))) (-15 -3070 (|#1| |#1| (-944))) (-15 -1900 ((-660 |#1|) (-975 (-577)))) (-15 -1900 ((-660 |#1|) (-975 (-420 (-577))))) (-15 -1900 ((-660 |#1|) (-975 |#1|))) (-15 -1900 ((-660 |#1|) (-1197 (-577)))) (-15 -1900 ((-660 |#1|) (-1197 (-420 (-577))))) (-15 -1900 ((-660 |#1|) (-1197 |#1|))) (-15 -3400 ((-3 |#1| "failed") (-1197 |#1|) (-944))) (-15 -3400 ((-3 |#1| "failed") (-1197 |#1|) (-944) (-880))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -4286 (|#1| |#1| (-577))) (-15 -3070 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -1920 ((-787))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 103 T ELT)) (-4122 (($ $) 104 T ELT)) (-3547 (((-112) $) 106 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 123 T ELT)) (-3836 (((-431 $) $) 124 T ELT)) (-3070 (($ $) 87 T ELT) (($ $ (-944)) 73 T ELT) (($ (-420 (-577))) 72 T ELT) (($ (-577)) 71 T ELT)) (-2435 (((-112) $ $) 114 T ELT)) (-2917 (((-577) $) 140 T ELT)) (-3790 (($) 18 T CONST)) (-3400 (((-3 $ "failed") (-1197 $) (-944) (-880)) 81 T ELT) (((-3 $ "failed") (-1197 $) (-944)) 80 T ELT)) (-2784 (((-3 (-577) "failed") $) 100 (|has| (-420 (-577)) (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| (-420 (-577)) (-1063 (-420 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) 95 T ELT)) (-2155 (((-577) $) 99 (|has| (-420 (-577)) (-1063 (-577))) ELT) (((-420 (-577)) $) 97 (|has| (-420 (-577)) (-1063 (-420 (-577)))) ELT) (((-420 (-577)) $) 96 T ELT)) (-2667 (($ $ (-880)) 70 T ELT)) (-1649 (($ $ (-880)) 69 T ELT)) (-3436 (($ $ $) 118 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 117 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 112 T ELT)) (-2182 (((-112) $) 125 T ELT)) (-4302 (((-112) $) 138 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 86 T ELT)) (-2178 (((-112) $) 139 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 121 T ELT)) (-2900 (($ $ $) 132 T ELT)) (-1457 (($ $ $) 133 T ELT)) (-1337 (((-3 (-1197 $) "failed") $) 82 T ELT)) (-1728 (((-3 (-880) "failed") $) 84 T ELT)) (-3192 (((-3 (-1197 $) "failed") $) 83 T ELT)) (-3508 (($ (-660 $)) 110 T ELT) (($ $ $) 109 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 126 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 111 T ELT)) (-3543 (($ (-660 $)) 108 T ELT) (($ $ $) 107 T ELT)) (-3056 (((-431 $) $) 122 T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 119 T ELT)) (-3478 (((-3 $ "failed") $ $) 102 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 113 T ELT)) (-4167 (((-787) $) 115 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 116 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 130 T ELT) (($ $) 101 T ELT) (($ (-420 (-577))) 94 T ELT) (($ (-577)) 93 T ELT) (($ (-420 (-577))) 90 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 105 T ELT)) (-4142 (((-420 (-577)) $ $) 68 T ELT)) (-1900 (((-660 $) (-1197 $)) 79 T ELT) (((-660 $) (-1197 (-420 (-577)))) 78 T ELT) (((-660 $) (-1197 (-577))) 77 T ELT) (((-660 $) (-975 $)) 76 T ELT) (((-660 $) (-975 (-420 (-577)))) 75 T ELT) (((-660 $) (-975 (-577))) 74 T ELT)) (-4318 (($ $) 141 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-3001 (((-112) $ $) 134 T ELT)) (-2978 (((-112) $ $) 136 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 135 T ELT)) (-2971 (((-112) $ $) 137 T ELT)) (-3051 (($ $ $) 131 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 127 T ELT) (($ $ (-420 (-577))) 85 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-420 (-577)) $) 129 T ELT) (($ $ (-420 (-577))) 128 T ELT) (($ (-577) $) 92 T ELT) (($ $ (-577)) 91 T ELT) (($ (-420 (-577)) $) 89 T ELT) (($ $ (-420 (-577))) 88 T ELT))) -(((-1037) (-141)) (T -1037)) -((-3070 (*1 *1 *1) (-4 *1 (-1037))) (-1728 (*1 *2 *1) (|partial| -12 (-4 *1 (-1037)) (-5 *2 (-880)))) (-3192 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037)))) (-1337 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037)))) (-3400 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-5 *4 (-880)) (-4 *1 (-1037)))) (-3400 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-4 *1 (-1037)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1197 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-3070 (*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-944)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1037)))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1037)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880)))) (-1649 (*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880)))) (-4142 (*1 *2 *1 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-420 (-577)))))) -(-13 (-148) (-864) (-174) (-375) (-424 (-420 (-577))) (-38 (-577)) (-38 (-420 (-577))) (-1027) (-10 -8 (-15 -1728 ((-3 (-880) "failed") $)) (-15 -3192 ((-3 (-1197 $) "failed") $)) (-15 -1337 ((-3 (-1197 $) "failed") $)) (-15 -3400 ((-3 $ "failed") (-1197 $) (-944) (-880))) (-15 -3400 ((-3 $ "failed") (-1197 $) (-944))) (-15 -1900 ((-660 $) (-1197 $))) (-15 -1900 ((-660 $) (-1197 (-420 (-577))))) (-15 -1900 ((-660 $) (-1197 (-577)))) (-15 -1900 ((-660 $) (-975 $))) (-15 -1900 ((-660 $) (-975 (-420 (-577))))) (-15 -1900 ((-660 $) (-975 (-577)))) (-15 -3070 ($ $ (-944))) (-15 -3070 ($ $)) (-15 -3070 ($ (-420 (-577)))) (-15 -3070 ($ (-577))) (-15 -2667 ($ $ (-880))) (-15 -1649 ($ $ (-880))) (-15 -4142 ((-420 (-577)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 #1=(-577)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-424 (-420 (-577))) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 #1#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 #1#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 #1#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-943) . T) ((-1027) . T) ((-1063 (-420 (-577))) . T) ((-1063 (-577)) |has| (-420 (-577)) (-1063 (-577))) ((-1076 #0#) . T) ((-1076 #1#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-1582 (((-2 (|:| |ans| |#2|) (|:| -3076 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT))) -(((-1038 |#1| |#2|) (-10 -7 (-15 -1582 ((-2 (|:| |ans| |#2|) (|:| -3076 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-27) (-443 |#1|))) (T -1038)) -((-1582 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1201)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-660 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2845 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1227) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3076 *4) (|:| |sol?| (-112)))) (-5 *1 (-1038 *8 *4))))) -(-10 -7 (-15 -1582 ((-2 (|:| |ans| |#2|) (|:| -3076 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1511 (((-3 (-660 |#2|) "failed") (-577) |#2| |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT))) -(((-1039 |#1| |#2|) (-10 -7 (-15 -1511 ((-3 (-660 |#2|) "failed") (-577) |#2| |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-27) (-443 |#1|))) (T -1039)) -((-1511 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1201)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-660 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2845 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1227) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) (-5 *2 (-660 *4)) (-5 *1 (-1039 *8 *4))))) -(-10 -7 (-15 -1511 ((-3 (-660 |#2|) "failed") (-577) |#2| |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2845 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2728 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2007 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)) 38 T ELT)) (-3209 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2818 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 69 T ELT)) (-3269 (((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|)) 74 T ELT))) -(((-1040 |#1| |#2|) (-10 -7 (-15 -3209 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2818 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3269 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -2728 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2007 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) (-13 (-375) (-148) (-1063 (-577))) (-1268 |#1|)) (T -1040)) -((-2728 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1268 *6)) (-4 *6 (-13 (-375) (-148) (-1063 *4))) (-5 *4 (-577)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2007 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1040 *6 *3)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1040 *4 *5)) (-5 *3 (-420 *5)))) (-3209 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) (|:| -2818 *6))) (-5 *1 (-1040 *5 *6)) (-5 *3 (-420 *6))))) -(-10 -7 (-15 -3209 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2818 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3269 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -2728 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2007 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) -((-1403 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2818 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3171 (((-3 (-660 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 34 T ELT))) -(((-1041 |#1| |#2|) (-10 -7 (-15 -1403 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2818 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3171 ((-3 (-660 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) (-13 (-375) (-148) (-1063 (-577))) (-1268 |#1|)) (T -1041)) -((-3171 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-420 *5))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-420 *5)))) (-1403 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -2818 *6))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-420 *6))))) -(-10 -7 (-15 -1403 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2818 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3171 ((-3 (-660 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) -((-3676 (((-1 |#1|) (-660 (-2 (|:| -3145 |#1|) (|:| -2539 (-577))))) 34 T ELT)) (-1890 (((-1 |#1|) (-1127 |#1|)) 42 T ELT)) (-3280 (((-1 |#1|) (-1292 |#1|) (-1292 (-577)) (-577)) 31 T ELT))) -(((-1042 |#1|) (-10 -7 (-15 -1890 ((-1 |#1|) (-1127 |#1|))) (-15 -3676 ((-1 |#1|) (-660 (-2 (|:| -3145 |#1|) (|:| -2539 (-577)))))) (-15 -3280 ((-1 |#1|) (-1292 |#1|) (-1292 (-577)) (-577)))) (-1125)) (T -1042)) -((-3280 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1292 *6)) (-5 *4 (-1292 (-577))) (-5 *5 (-577)) (-4 *6 (-1125)) (-5 *2 (-1 *6)) (-5 *1 (-1042 *6)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3145 *4) (|:| -2539 (-577))))) (-4 *4 (-1125)) (-5 *2 (-1 *4)) (-5 *1 (-1042 *4)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1127 *4)) (-4 *4 (-1125)) (-5 *2 (-1 *4)) (-5 *1 (-1042 *4))))) -(-10 -7 (-15 -1890 ((-1 |#1|) (-1127 |#1|))) (-15 -3676 ((-1 |#1|) (-660 (-2 (|:| -3145 |#1|) (|:| -2539 (-577)))))) (-15 -3280 ((-1 |#1|) (-1292 |#1|) (-1292 (-577)) (-577)))) -((-2536 (((-787) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2536 ((-787) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-13 (-380) (-375))) (T -1043)) -((-2536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-4 *4 (-1268 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) (-4 *9 (-13 (-380) (-375))) (-5 *2 (-787)) (-5 *1 (-1043 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2536 ((-787) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2085 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-1160) $) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1044) (-13 (-1108) (-10 -8 (-15 -2085 ((-1160) $)) (-15 -2682 ((-1160) $))))) (T -1044)) -((-2085 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044))))) -(-13 (-1108) (-10 -8 (-15 -2085 ((-1160) $)) (-15 -2682 ((-1160) $)))) -((-2256 (((-3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) "failed") |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) 32 T ELT) (((-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577))) 29 T ELT)) (-4077 (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577))) 34 T ELT) (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-420 (-577))) 30 T ELT) (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) 33 T ELT) (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1|) 28 T ELT)) (-1397 (((-660 (-420 (-577))) (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) 20 T ELT)) (-2925 (((-420 (-577)) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) 17 T ELT))) -(((-1045 |#1|) (-10 -7 (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1|)) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) "failed") |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -2925 ((-420 (-577)) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -1397 ((-660 (-420 (-577))) (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))))) (-1268 (-577))) (T -1045)) -((-1397 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-5 *2 (-660 (-420 (-577)))) (-5 *1 (-1045 *4)) (-4 *4 (-1268 (-577))))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) (-5 *2 (-420 (-577))) (-5 *1 (-1045 *4)) (-4 *4 (-1268 (-577))))) (-2256 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) (-2256 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-660 (-2 (|:| -3060 *5) (|:| -3076 *5)))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-2 (|:| -3060 *5) (|:| -3076 *5))))) (-4077 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-420 (-577))))) (-4077 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) (-4077 (*1 *2 *3) (-12 (-5 *2 (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577)))))) -(-10 -7 (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1|)) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) "failed") |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -2925 ((-420 (-577)) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -1397 ((-660 (-420 (-577))) (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))))) -((-2256 (((-3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) "failed") |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) 35 T ELT) (((-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577))) 32 T ELT)) (-4077 (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577))) 30 T ELT) (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-420 (-577))) 26 T ELT) (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) 28 T ELT) (((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1|) 24 T ELT))) -(((-1046 |#1|) (-10 -7 (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1|)) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) "failed") |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) (-1268 (-420 (-577)))) (T -1046)) -((-2256 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))))) (-2256 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *4)))) (-4077 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-660 (-2 (|:| -3060 *5) (|:| -3076 *5)))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *5)) (-5 *4 (-2 (|:| -3060 *5) (|:| -3076 *5))))) (-4077 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-5 *2 (-660 (-2 (|:| -3060 *4) (|:| -3076 *4)))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *4)))) (-4077 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))) (-5 *4 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) (-4077 (*1 *2 *3) (-12 (-5 *2 (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577))))))) -(-10 -7 (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1|)) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -4077 ((-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-420 (-577)))) (-15 -2256 ((-3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) "failed") |#1| (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))) (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) -((-2176 (((-228) $) 6 T ELT) (((-391) $) 9 T ELT))) -(((-1047) (-141)) (T -1047)) -NIL -(-13 (-627 (-228)) (-627 (-391))) -(((-627 (-228)) . T) ((-627 (-391)) . T)) -((-2773 (((-660 (-391)) (-975 (-577)) (-391)) 28 T ELT) (((-660 (-391)) (-975 (-420 (-577))) (-391)) 27 T ELT)) (-3723 (((-660 (-660 (-391))) (-660 (-975 (-577))) (-660 (-1201)) (-391)) 37 T ELT))) -(((-1048) (-10 -7 (-15 -2773 ((-660 (-391)) (-975 (-420 (-577))) (-391))) (-15 -2773 ((-660 (-391)) (-975 (-577)) (-391))) (-15 -3723 ((-660 (-660 (-391))) (-660 (-975 (-577))) (-660 (-1201)) (-391))))) (T -1048)) -((-3723 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 (-391)))) (-5 *1 (-1048)) (-5 *5 (-391)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 (-391))) (-5 *1 (-1048)) (-5 *4 (-391)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 (-391))) (-5 *1 (-1048)) (-5 *4 (-391))))) -(-10 -7 (-15 -2773 ((-660 (-391)) (-975 (-420 (-577))) (-391))) (-15 -2773 ((-660 (-391)) (-975 (-577)) (-391))) (-15 -3723 ((-660 (-660 (-391))) (-660 (-975 (-577))) (-660 (-1201)) (-391)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 75 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-3070 (($ $) NIL T ELT) (($ $ (-944)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) 70 T ELT)) (-3790 (($) NIL T CONST)) (-3400 (((-3 $ "failed") (-1197 $) (-944) (-880)) NIL T ELT) (((-3 $ "failed") (-1197 $) (-944)) 55 T ELT)) (-2784 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 (-577)) (-1063 (-420 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 116 T ELT) (((-3 (-577) "failed") $) NIL (-2811 (|has| (-420 (-577)) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) ELT)) (-2155 (((-420 (-577)) $) 17 (|has| (-420 (-577)) (-1063 (-420 (-577)))) ELT) (((-420 (-577)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-577) $) NIL (-2811 (|has| (-420 (-577)) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) ELT)) (-2667 (($ $ (-880)) 47 T ELT)) (-1649 (($ $ (-880)) 48 T ELT)) (-3436 (($ $ $) NIL T ELT)) (-1732 (((-420 (-577)) $ $) 21 T ELT)) (-1625 (((-3 $ "failed") $) 88 T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-4302 (((-112) $) 66 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL T ELT)) (-2178 (((-112) $) 69 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-1337 (((-3 (-1197 $) "failed") $) 83 T ELT)) (-1728 (((-3 (-880) "failed") $) 82 T ELT)) (-3192 (((-3 (-1197 $) "failed") $) 80 T ELT)) (-2437 (((-3 (-1086 $ (-1197 $)) "failed") $) 78 T ELT)) (-3508 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 89 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3603 (((-880) $) 87 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) 63 T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 119 T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-4142 (((-420 (-577)) $ $) 27 T ELT)) (-1900 (((-660 $) (-1197 $)) 61 T ELT) (((-660 $) (-1197 (-420 (-577)))) NIL T ELT) (((-660 $) (-1197 (-577))) NIL T ELT) (((-660 $) (-975 $)) NIL T ELT) (((-660 $) (-975 (-420 (-577)))) NIL T ELT) (((-660 $) (-975 (-577))) NIL T ELT)) (-2078 (($ (-1086 $ (-1197 $)) (-880)) 46 T ELT)) (-4318 (($ $) 22 T ELT)) (-2754 (($) 32 T CONST)) (-2767 (($) 39 T CONST)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 76 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 24 T ELT)) (-3051 (($ $ $) 37 T ELT)) (-3042 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3031 (($ $ $) 112 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-577) $) 98 T ELT) (($ $ (-577)) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1049 |#1|) (-13 (-1037) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -2078 ($ (-1086 $ (-1197 $)) (-880))) (-15 -2437 ((-3 (-1086 $ (-1197 $)) "failed") $)) (-15 -1732 ((-420 (-577)) $ $)))) (-13 (-864) (-375) (-1047))) (T -1049)) -((-2078 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-1049 *4) (-1197 (-1049 *4)))) (-5 *3 (-880)) (-5 *1 (-1049 *4)) (-4 *4 (-13 (-864) (-375) (-1047))))) (-2437 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 (-1049 *3) (-1197 (-1049 *3)))) (-5 *1 (-1049 *3)) (-4 *3 (-13 (-864) (-375) (-1047))))) (-1732 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1049 *3)) (-4 *3 (-13 (-864) (-375) (-1047)))))) -(-13 (-1037) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -2078 ($ (-1086 $ (-1197 $)) (-880))) (-15 -2437 ((-3 (-1086 $ (-1197 $)) "failed") $)) (-15 -1732 ((-420 (-577)) $ $)))) -((-3684 (((-2 (|:| -2007 |#2|) (|:| -1814 (-660 |#1|))) |#2| (-660 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-1050 |#1| |#2|) (-10 -7 (-15 -3684 (|#2| |#2| |#1|)) (-15 -3684 ((-2 (|:| -2007 |#2|) (|:| -1814 (-660 |#1|))) |#2| (-660 |#1|)))) (-375) (-672 |#1|)) (T -1050)) -((-3684 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -2007 *3) (|:| -1814 (-660 *5)))) (-5 *1 (-1050 *5 *3)) (-5 *4 (-660 *5)) (-4 *3 (-672 *5)))) (-3684 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-672 *3))))) -(-10 -7 (-15 -3684 (|#2| |#2| |#1|)) (-15 -3684 ((-2 (|:| -2007 |#2|) (|:| -1814 (-660 |#1|))) |#2| (-660 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3131 ((|#1| $ |#1|) 14 T ELT)) (-1895 ((|#1| $ |#1|) 12 T ELT)) (-1353 (($ |#1|) 10 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2837 ((|#1| $) 11 T ELT)) (-2905 ((|#1| $) 13 T ELT)) (-3603 (((-880) $) 21 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2949 (((-112) $ $) 9 T ELT))) -(((-1051 |#1|) (-13 (-1242) (-10 -8 (-15 -1353 ($ |#1|)) (-15 -2837 (|#1| $)) (-15 -1895 (|#1| $ |#1|)) (-15 -2905 (|#1| $)) (-15 -3131 (|#1| $ |#1|)) (-15 -2949 ((-112) $ $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) (-1242)) (T -1051)) -((-1353 (*1 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-2837 (*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-1895 (*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-2905 (*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-3131 (*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1051 *3)) (-4 *3 (-1242))))) -(-13 (-1242) (-10 -8 (-15 -1353 ($ |#1|)) (-15 -2837 (|#1| $)) (-15 -1895 (|#1| $ |#1|)) (-15 -2905 (|#1| $)) (-15 -3131 (|#1| $ |#1|)) (-15 -2949 ((-112) $ $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-1568 (((-660 $) (-660 |#4|)) 118 T ELT) (((-660 $) (-660 |#4|) (-112)) 119 T ELT) (((-660 $) (-660 |#4|) (-112) (-112)) 117 T ELT) (((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112)) 120 T ELT)) (-3206 (((-660 |#3|) $) NIL T ELT)) (-1905 (((-112) $) NIL T ELT)) (-1421 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3924 ((|#4| |#4| $) NIL T ELT)) (-2001 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| $) 112 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3730 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) 66 T ELT)) (-3790 (($) NIL T CONST)) (-4046 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) NIL T ELT)) (-2155 (($ (-660 |#4|)) NIL T ELT)) (-1663 (((-3 $ "failed") $) 45 T ELT)) (-2801 ((|#4| |#4| $) 69 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-3920 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3270 ((|#4| |#4| $) NIL T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) NIL T ELT)) (-2926 (((-112) |#4| $) NIL T ELT)) (-2687 (((-112) |#4| $) NIL T ELT)) (-2632 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4139 (((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112)) 133 T ELT)) (-3692 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1940 ((|#3| $) 38 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#4|) $) 19 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1365 (((-660 |#3|) $) NIL T ELT)) (-2639 (((-112) |#3| $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3650 (((-3 |#4| (-660 $)) |#4| |#4| $) NIL T ELT)) (-2048 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| |#4| $) 110 T ELT)) (-3942 (((-3 |#4| "failed") $) 42 T ELT)) (-3395 (((-660 $) |#4| $) 93 T ELT)) (-3343 (((-3 (-112) (-660 $)) |#4| $) NIL T ELT)) (-3422 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) |#4| $) 103 T ELT) (((-112) |#4| $) 64 T ELT)) (-4056 (((-660 $) |#4| $) 115 T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 116 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT)) (-2732 (((-660 $) (-660 |#4|) (-112) (-112) (-112)) 128 T ELT)) (-2346 (($ |#4| $) 82 T ELT) (($ (-660 |#4|) $) 83 T ELT) (((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79 T ELT)) (-3425 (((-660 |#4|) $) NIL T ELT)) (-4233 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1458 ((|#4| |#4| $) NIL T ELT)) (-2928 (((-112) $ $) NIL T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2108 ((|#4| |#4| $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-3 |#4| "failed") $) 40 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-1987 (($ $ |#4|) NIL T ELT) (((-660 $) |#4| $) 95 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 89 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 17 T ELT)) (-2693 (($) 14 T ELT)) (-3616 (((-787) $) NIL T ELT)) (-1452 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) NIL (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 22 T ELT)) (-3620 (($ $ |#3|) 52 T ELT)) (-2003 (($ $ |#3|) 54 T ELT)) (-3307 (($ $) NIL T ELT)) (-3344 (($ $ |#3|) NIL T ELT)) (-3603 (((-880) $) 35 T ELT) (((-660 |#4|) $) 46 T ELT)) (-2272 (((-787) $) NIL (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL T ELT)) (-3575 (((-660 $) |#4| $) 92 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) NIL T ELT)) (-4381 (((-112) |#4| $) NIL T ELT)) (-1401 (((-112) |#3| $) 65 T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1052 |#1| |#2| |#3| |#4|) (-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2346 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -2732 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -4139 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1052)) -((-2346 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *3))) (-5 *1 (-1052 *5 *6 *7 *3)) (-4 *3 (-1090 *5 *6 *7)))) (-1568 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) (-1568 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) (-2732 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1052 *5 *6 *7 *8))))) (-5 *1 (-1052 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) -(-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2346 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -2732 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -4139 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) -((-2815 (((-660 (-705 |#1|)) (-660 (-705 |#1|))) 70 T ELT) (((-705 |#1|) (-705 |#1|)) 69 T ELT) (((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-660 (-705 |#1|))) 68 T ELT) (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 65 T ELT)) (-4091 (((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944)) 63 T ELT) (((-705 |#1|) (-705 |#1|) (-944)) 62 T ELT)) (-1639 (((-660 (-705 (-577))) (-660 (-660 (-577)))) 81 T ELT) (((-660 (-705 (-577))) (-660 (-928 (-577))) (-577)) 80 T ELT) (((-705 (-577)) (-660 (-577))) 77 T ELT) (((-705 (-577)) (-928 (-577)) (-577)) 75 T ELT)) (-3479 (((-705 (-975 |#1|)) (-787)) 95 T ELT)) (-3560 (((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944)) 49 (|has| |#1| (-6 (-4472 "*"))) ELT) (((-705 |#1|) (-705 |#1|) (-944)) 47 (|has| |#1| (-6 (-4472 "*"))) ELT))) -(((-1053 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -3560 ((-705 |#1|) (-705 |#1|) (-944))) |%noBranch|) (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -3560 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) |%noBranch|) (-15 -3479 ((-705 (-975 |#1|)) (-787))) (-15 -4091 ((-705 |#1|) (-705 |#1|) (-944))) (-15 -4091 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) (-15 -2815 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -2815 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -2815 ((-705 |#1|) (-705 |#1|))) (-15 -2815 ((-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1639 ((-705 (-577)) (-928 (-577)) (-577))) (-15 -1639 ((-705 (-577)) (-660 (-577)))) (-15 -1639 ((-660 (-705 (-577))) (-660 (-928 (-577))) (-577))) (-15 -1639 ((-660 (-705 (-577))) (-660 (-660 (-577)))))) (-1074)) (T -1053)) -((-1639 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-577)))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-1053 *4)) (-4 *4 (-1074)))) (-1639 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-928 (-577)))) (-5 *4 (-577)) (-5 *2 (-660 (-705 *4))) (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1053 *4)) (-4 *4 (-1074)))) (-1639 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-577))) (-5 *4 (-577)) (-5 *2 (-705 *4)) (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-2815 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-2815 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-4091 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) (-4091 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-705 (-975 *4))) (-5 *1 (-1053 *4)) (-4 *4 (-1074)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) (|has| *4 (-6 (-4472 "*"))) (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (|has| *4 (-6 (-4472 "*"))) (-4 *4 (-1074)) (-5 *1 (-1053 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -3560 ((-705 |#1|) (-705 |#1|) (-944))) |%noBranch|) (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -3560 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) |%noBranch|) (-15 -3479 ((-705 (-975 |#1|)) (-787))) (-15 -4091 ((-705 |#1|) (-705 |#1|) (-944))) (-15 -4091 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) (-15 -2815 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -2815 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -2815 ((-705 |#1|) (-705 |#1|))) (-15 -2815 ((-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1639 ((-705 (-577)) (-928 (-577)) (-577))) (-15 -1639 ((-705 (-577)) (-660 (-577)))) (-15 -1639 ((-660 (-705 (-577))) (-660 (-928 (-577))) (-577))) (-15 -1639 ((-660 (-705 (-577))) (-660 (-660 (-577)))))) -((-2389 (((-705 |#1|) (-660 (-705 |#1|)) (-1292 |#1|)) 70 (|has| |#1| (-318)) ELT)) (-3333 (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 (-1292 |#1|))) 110 (|has| |#1| (-375)) ELT) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 |#1|)) 117 (|has| |#1| (-375)) ELT)) (-2377 (((-1292 |#1|) (-660 (-1292 |#1|)) (-577)) 135 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT)) (-2619 (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-944)) 123 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112)) 122 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|))) 121 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112) (-577) (-577)) 120 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT)) (-4096 (((-112) (-660 (-705 |#1|))) 103 (|has| |#1| (-375)) ELT) (((-112) (-660 (-705 |#1|)) (-577)) 106 (|has| |#1| (-375)) ELT)) (-3878 (((-1292 (-1292 |#1|)) (-660 (-705 |#1|)) (-1292 |#1|)) 67 (|has| |#1| (-318)) ELT)) (-2089 (((-705 |#1|) (-660 (-705 |#1|)) (-705 |#1|)) 47 T ELT)) (-3506 (((-705 |#1|) (-1292 (-1292 |#1|))) 40 T ELT)) (-4270 (((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-577)) 94 (|has| |#1| (-375)) ELT) (((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|))) 93 (|has| |#1| (-375)) ELT) (((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-112) (-577)) 101 (|has| |#1| (-375)) ELT))) -(((-1054 |#1|) (-10 -7 (-15 -3506 ((-705 |#1|) (-1292 (-1292 |#1|)))) (-15 -2089 ((-705 |#1|) (-660 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -3878 ((-1292 (-1292 |#1|)) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -2389 ((-705 |#1|) (-660 (-705 |#1|)) (-1292 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -4270 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-112) (-577))) (-15 -4270 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -4270 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-577))) (-15 -4096 ((-112) (-660 (-705 |#1|)) (-577))) (-15 -4096 ((-112) (-660 (-705 |#1|)))) (-15 -3333 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -3333 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 (-1292 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112) (-577) (-577))) (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)))) (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112))) (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-944))) (-15 -2377 ((-1292 |#1|) (-660 (-1292 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) (-1074)) (T -1054)) -((-2377 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1292 *5))) (-5 *4 (-577)) (-5 *2 (-1292 *5)) (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-2619 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1074)) (-5 *2 (-660 (-660 (-705 *4)))) (-5 *1 (-1054 *4)) (-5 *3 (-660 (-705 *4))))) (-2619 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) (-4 *6 (-1074)) (-5 *2 (-660 (-660 (-705 *6)))) (-5 *1 (-1054 *6)) (-5 *3 (-660 (-705 *6))))) (-3333 (*1 *2 *3 *4) (-12 (-5 *4 (-1292 (-1292 *5))) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-3333 (*1 *2 *3 *4) (-12 (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-1054 *4)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-1054 *5)))) (-4270 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-5 *2 (-705 *5)) (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-1074)))) (-4270 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-5 *1 (-1054 *4)) (-4 *4 (-375)) (-4 *4 (-1074)))) (-4270 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-660 (-705 *6))) (-5 *4 (-112)) (-5 *5 (-577)) (-5 *2 (-705 *6)) (-5 *1 (-1054 *6)) (-4 *6 (-375)) (-4 *6 (-1074)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-1292 *5)) (-4 *5 (-318)) (-4 *5 (-1074)) (-5 *2 (-705 *5)) (-5 *1 (-1054 *5)))) (-3878 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-4 *5 (-318)) (-4 *5 (-1074)) (-5 *2 (-1292 (-1292 *5))) (-5 *1 (-1054 *5)) (-5 *4 (-1292 *5)))) (-2089 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-4 *4 (-1074)) (-5 *1 (-1054 *4)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1292 (-1292 *4))) (-4 *4 (-1074)) (-5 *2 (-705 *4)) (-5 *1 (-1054 *4))))) -(-10 -7 (-15 -3506 ((-705 |#1|) (-1292 (-1292 |#1|)))) (-15 -2089 ((-705 |#1|) (-660 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -3878 ((-1292 (-1292 |#1|)) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -2389 ((-705 |#1|) (-660 (-705 |#1|)) (-1292 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -4270 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-112) (-577))) (-15 -4270 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -4270 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-577))) (-15 -4096 ((-112) (-660 (-705 |#1|)) (-577))) (-15 -4096 ((-112) (-660 (-705 |#1|)))) (-15 -3333 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -3333 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 (-1292 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112) (-577) (-577))) (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)))) (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112))) (-15 -2619 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-944))) (-15 -2377 ((-1292 |#1|) (-660 (-1292 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) -((-1446 ((|#1| (-944) |#1|) 18 T ELT))) -(((-1055 |#1|) (-10 -7 (-15 -1446 (|#1| (-944) |#1|))) (-13 (-1125) (-10 -8 (-15 -3031 ($ $ $))))) (T -1055)) -((-1446 (*1 *2 *3 *2) (-12 (-5 *3 (-944)) (-5 *1 (-1055 *2)) (-4 *2 (-13 (-1125) (-10 -8 (-15 -3031 ($ $ $)))))))) -(-10 -7 (-15 -1446 (|#1| (-944) |#1|))) -((-3292 (((-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577))))))) (-705 (-420 (-975 (-577))))) 67 T ELT)) (-1989 (((-660 (-705 (-327 (-577)))) (-327 (-577)) (-705 (-420 (-975 (-577))))) 52 T ELT)) (-3785 (((-660 (-327 (-577))) (-705 (-420 (-975 (-577))))) 45 T ELT)) (-1745 (((-660 (-705 (-327 (-577)))) (-705 (-420 (-975 (-577))))) 85 T ELT)) (-3221 (((-705 (-327 (-577))) (-705 (-327 (-577)))) 38 T ELT)) (-3368 (((-660 (-705 (-327 (-577)))) (-660 (-705 (-327 (-577))))) 74 T ELT)) (-1522 (((-3 (-705 (-327 (-577))) "failed") (-705 (-420 (-975 (-577))))) 82 T ELT))) -(((-1056) (-10 -7 (-15 -3292 ((-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577))))))) (-705 (-420 (-975 (-577)))))) (-15 -1989 ((-660 (-705 (-327 (-577)))) (-327 (-577)) (-705 (-420 (-975 (-577)))))) (-15 -3785 ((-660 (-327 (-577))) (-705 (-420 (-975 (-577)))))) (-15 -1522 ((-3 (-705 (-327 (-577))) "failed") (-705 (-420 (-975 (-577)))))) (-15 -3221 ((-705 (-327 (-577))) (-705 (-327 (-577))))) (-15 -3368 ((-660 (-705 (-327 (-577)))) (-660 (-705 (-327 (-577)))))) (-15 -1745 ((-660 (-705 (-327 (-577)))) (-705 (-420 (-975 (-577)))))))) (T -1056)) -((-1745 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056)))) (-1522 (*1 *2 *3) (|partial| -12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-327 (-577)))) (-5 *1 (-1056)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *4 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)) (-5 *3 (-327 (-577))))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577)))))))) (-5 *1 (-1056))))) -(-10 -7 (-15 -3292 ((-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577))))))) (-705 (-420 (-975 (-577)))))) (-15 -1989 ((-660 (-705 (-327 (-577)))) (-327 (-577)) (-705 (-420 (-975 (-577)))))) (-15 -3785 ((-660 (-327 (-577))) (-705 (-420 (-975 (-577)))))) (-15 -1522 ((-3 (-705 (-327 (-577))) "failed") (-705 (-420 (-975 (-577)))))) (-15 -3221 ((-705 (-327 (-577))) (-705 (-327 (-577))))) (-15 -3368 ((-660 (-705 (-327 (-577)))) (-660 (-705 (-327 (-577)))))) (-15 -1745 ((-660 (-705 (-327 (-577)))) (-705 (-420 (-975 (-577))))))) -((-2129 ((|#1| |#1| (-944)) 18 T ELT))) -(((-1057 |#1|) (-10 -7 (-15 -2129 (|#1| |#1| (-944)))) (-13 (-1125) (-10 -8 (-15 * ($ $ $))))) (T -1057)) -((-2129 (*1 *2 *2 *3) (-12 (-5 *3 (-944)) (-5 *1 (-1057 *2)) (-4 *2 (-13 (-1125) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2129 (|#1| |#1| (-944)))) -((-3603 ((|#1| (-323)) 11 T ELT) (((-1297) |#1|) 9 T ELT))) -(((-1058 |#1|) (-10 -7 (-15 -3603 ((-1297) |#1|)) (-15 -3603 (|#1| (-323)))) (-1242)) (T -1058)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1058 *2)) (-4 *2 (-1242)))) (-3603 (*1 *2 *3) (-12 (-5 *2 (-1297)) (-5 *1 (-1058 *3)) (-4 *3 (-1242))))) -(-10 -7 (-15 -3603 ((-1297) |#1|)) (-15 -3603 (|#1| (-323)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2498 (($ |#4|) 25 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2482 ((|#4| $) 27 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 46 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-1920 (((-787)) 43 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 21 T CONST)) (-2767 (($) 23 T CONST)) (-2949 (((-112) $ $) 40 T ELT)) (-3042 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 29 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1059 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2498 ($ |#4|)) (-15 -3603 ($ |#4|)) (-15 -2482 (|#4| $)))) (-375) (-809) (-865) (-972 |#1| |#2| |#3|) (-660 |#4|)) (T -1059)) -((-2498 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) (-14 *6 (-660 *2)))) (-3603 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) (-14 *6 (-660 *2)))) (-2482 (*1 *2 *1) (-12 (-4 *2 (-972 *3 *4 *5)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-14 *6 (-660 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2498 ($ |#4|)) (-15 -3603 ($ |#4|)) (-15 -2482 (|#4| $)))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL T ELT)) (-2790 (((-1297) $ (-1201) (-1201)) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-2533 (((-112) (-112)) 43 T ELT)) (-3967 (((-112) (-112)) 42 T ELT)) (-1895 (((-52) $ (-1201) (-52)) NIL T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 (-52) "failed") (-1201) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 (-52) "failed") (-1201) $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 (((-52) $ (-1201) (-52)) NIL (|has| $ (-6 -4471)) ELT)) (-2759 (((-52) $ (-1201)) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-1201) $) NIL (|has| (-1201) (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT)) (-2984 (((-1201) $) NIL (|has| (-1201) (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-52) (-1125)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT)) (-3740 (((-660 (-1201)) $) 37 T ELT)) (-2490 (((-112) (-1201) $) NIL T ELT)) (-3596 (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL T ELT)) (-3445 (((-660 (-1201)) $) NIL T ELT)) (-2187 (((-112) (-1201) $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-52) (-1125)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT)) (-1652 (((-52) $) NIL (|has| (-1201) (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) "failed") (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL T ELT)) (-2529 (($ $ (-52)) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-660 (-52)) (-660 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-660 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT)) (-3908 (((-660 (-52)) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 (((-52) $ (-1201)) 39 T ELT) (((-52) $ (-1201) (-52)) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (((-787) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT) (((-787) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL T ELT)) (-3603 (((-880) $) 41 (-2811 (|has| (-52) (-626 (-880))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1060) (-13 (-1218 (-1201) (-52)) (-10 -7 (-15 -2533 ((-112) (-112))) (-15 -3967 ((-112) (-112))) (-6 -4470)))) (T -1060)) -((-2533 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060)))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060))))) -(-13 (-1218 (-1201) (-52)) (-10 -7 (-15 -2533 ((-112) (-112))) (-15 -3967 ((-112) (-112))) (-6 -4470))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3201 (((-1160) $) 9 T ELT)) (-3603 (((-880) $) 15 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1061) (-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $))))) (T -1061)) -((-3201 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1061))))) -(-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)))) -((-2155 ((|#2| $) 10 T ELT))) -(((-1062 |#1| |#2|) (-10 -8 (-15 -2155 (|#2| |#1|))) (-1063 |#2|) (-1242)) (T -1062)) -NIL -(-10 -8 (-15 -2155 (|#2| |#1|))) -((-2784 (((-3 |#1| "failed") $) 9 T ELT)) (-2155 ((|#1| $) 8 T ELT)) (-3603 (($ |#1|) 6 T ELT))) -(((-1063 |#1|) (-141) (-1242)) (T -1063)) -((-2784 (*1 *2 *1) (|partial| -12 (-4 *1 (-1063 *2)) (-4 *2 (-1242)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1242))))) -(-13 (-629 |t#1|) (-10 -8 (-15 -2784 ((-3 |t#1| "failed") $)) (-15 -2155 (|t#1| $)))) -(((-629 |#1|) . T)) -((-4352 (((-660 (-660 (-305 (-420 (-975 |#2|))))) (-660 (-975 |#2|)) (-660 (-1201))) 38 T ELT))) -(((-1064 |#1| |#2|) (-10 -7 (-15 -4352 ((-660 (-660 (-305 (-420 (-975 |#2|))))) (-660 (-975 |#2|)) (-660 (-1201))))) (-569) (-13 (-569) (-1063 |#1|))) (T -1064)) -((-4352 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-4 *6 (-13 (-569) (-1063 *5))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *6)))))) (-5 *1 (-1064 *5 *6))))) -(-10 -7 (-15 -4352 ((-660 (-660 (-305 (-420 (-975 |#2|))))) (-660 (-975 |#2|)) (-660 (-1201))))) -((-2086 (((-391)) 17 T ELT)) (-1890 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-2818 (((-1 (-391)) (-787)) 48 T ELT)) (-3779 (((-391)) 37 T ELT)) (-4209 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-2363 (((-391)) 29 T ELT)) (-3928 (((-1 (-391)) (-391)) 30 T ELT)) (-2227 (((-391) (-787)) 43 T ELT)) (-3782 (((-1 (-391)) (-787)) 44 T ELT)) (-1985 (((-1 (-391)) (-787) (-787)) 47 T ELT)) (-3072 (((-1 (-391)) (-787) (-787)) 45 T ELT))) -(((-1065) (-10 -7 (-15 -2086 ((-391))) (-15 -3779 ((-391))) (-15 -2363 ((-391))) (-15 -2227 ((-391) (-787))) (-15 -1890 ((-1 (-391)) (-391) (-391))) (-15 -4209 ((-1 (-391)) (-391) (-391))) (-15 -3928 ((-1 (-391)) (-391))) (-15 -3782 ((-1 (-391)) (-787))) (-15 -3072 ((-1 (-391)) (-787) (-787))) (-15 -1985 ((-1 (-391)) (-787) (-787))) (-15 -2818 ((-1 (-391)) (-787))))) (T -1065)) -((-2818 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-1985 (*1 *2 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-3072 (*1 *2 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) (-4209 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) (-1890 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-391)) (-5 *1 (-1065)))) (-2363 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065)))) (-3779 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065)))) (-2086 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) -(-10 -7 (-15 -2086 ((-391))) (-15 -3779 ((-391))) (-15 -2363 ((-391))) (-15 -2227 ((-391) (-787))) (-15 -1890 ((-1 (-391)) (-391) (-391))) (-15 -4209 ((-1 (-391)) (-391) (-391))) (-15 -3928 ((-1 (-391)) (-391))) (-15 -3782 ((-1 (-391)) (-787))) (-15 -3072 ((-1 (-391)) (-787) (-787))) (-15 -1985 ((-1 (-391)) (-787) (-787))) (-15 -2818 ((-1 (-391)) (-787)))) -((-3056 (((-431 |#1|) |#1|) 33 T ELT))) -(((-1066 |#1|) (-10 -7 (-15 -3056 ((-431 |#1|) |#1|))) (-1268 (-420 (-975 (-577))))) (T -1066)) -((-3056 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-1268 (-420 (-975 (-577)))))))) -(-10 -7 (-15 -3056 ((-431 |#1|) |#1|))) -((-3627 (((-420 (-431 (-975 |#1|))) (-420 (-975 |#1|))) 14 T ELT))) -(((-1067 |#1|) (-10 -7 (-15 -3627 ((-420 (-431 (-975 |#1|))) (-420 (-975 |#1|))))) (-318)) (T -1067)) -((-3627 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-318)) (-5 *2 (-420 (-431 (-975 *4)))) (-5 *1 (-1067 *4))))) -(-10 -7 (-15 -3627 ((-420 (-431 (-975 |#1|))) (-420 (-975 |#1|))))) -((-3206 (((-660 (-1201)) (-420 (-975 |#1|))) 17 T ELT)) (-3024 (((-420 (-1197 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201)) 24 T ELT)) (-3194 (((-420 (-975 |#1|)) (-420 (-1197 (-420 (-975 |#1|)))) (-1201)) 26 T ELT)) (-4038 (((-3 (-1201) "failed") (-420 (-975 |#1|))) 20 T ELT)) (-3273 (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-305 (-420 (-975 |#1|))))) 32 T ELT) (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|)))) 33 T ELT) (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-1201)) (-660 (-420 (-975 |#1|)))) 28 T ELT) (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))) 29 T ELT)) (-3603 (((-420 (-975 |#1|)) |#1|) 11 T ELT))) -(((-1068 |#1|) (-10 -7 (-15 -3206 ((-660 (-1201)) (-420 (-975 |#1|)))) (-15 -4038 ((-3 (-1201) "failed") (-420 (-975 |#1|)))) (-15 -3024 ((-420 (-1197 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -3194 ((-420 (-975 |#1|)) (-420 (-1197 (-420 (-975 |#1|)))) (-1201))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-1201)) (-660 (-420 (-975 |#1|))))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -3603 ((-420 (-975 |#1|)) |#1|))) (-569)) (T -1068)) -((-3603 (*1 *2 *3) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-569)))) (-3273 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) (-5 *2 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *1 (-1068 *4)))) (-3273 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-5 *2 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *1 (-1068 *4)))) (-3273 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-1201))) (-5 *4 (-660 (-420 (-975 *5)))) (-5 *2 (-420 (-975 *5))) (-4 *5 (-569)) (-5 *1 (-1068 *5)))) (-3273 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-1068 *4)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1197 (-420 (-975 *5))))) (-5 *4 (-1201)) (-5 *2 (-420 (-975 *5))) (-5 *1 (-1068 *5)) (-4 *5 (-569)))) (-3024 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-569)) (-5 *2 (-420 (-1197 (-420 (-975 *5))))) (-5 *1 (-1068 *5)) (-5 *3 (-420 (-975 *5))))) (-4038 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-1201)) (-5 *1 (-1068 *4)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-1201))) (-5 *1 (-1068 *4))))) -(-10 -7 (-15 -3206 ((-660 (-1201)) (-420 (-975 |#1|)))) (-15 -4038 ((-3 (-1201) "failed") (-420 (-975 |#1|)))) (-15 -3024 ((-420 (-1197 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -3194 ((-420 (-975 |#1|)) (-420 (-1197 (-420 (-975 |#1|)))) (-1201))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-1201)) (-660 (-420 (-975 |#1|))))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -3273 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -3603 ((-420 (-975 |#1|)) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3790 (($) 18 T CONST)) (-2422 ((|#1| $) 23 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3849 ((|#1| $) 22 T ELT)) (-1840 ((|#1|) 20 T CONST)) (-3603 (((-880) $) 12 T ELT)) (-1886 ((|#1| $) 21 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT))) -(((-1069 |#1|) (-141) (-23)) (T -1069)) -((-2422 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23)))) (-1840 (*1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -2422 (|t#1| $)) (-15 -3849 (|t#1| $)) (-15 -1886 (|t#1| $)) (-15 -1840 (|t#1|) -2609))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3110 (($) 25 T CONST)) (-3790 (($) 18 T CONST)) (-2422 ((|#1| $) 23 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3849 ((|#1| $) 22 T ELT)) (-1840 ((|#1|) 20 T CONST)) (-3603 (((-880) $) 12 T ELT)) (-1886 ((|#1| $) 21 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT))) -(((-1070 |#1|) (-141) (-23)) (T -1070)) -((-3110 (*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-23))))) -(-13 (-1069 |t#1|) (-10 -8 (-15 -3110 ($) -2609))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1069 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 (-796 |#1| (-882 |#2|)))))) (-660 (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-1568 (((-660 $) (-660 (-796 |#1| (-882 |#2|)))) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112)) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112) (-112)) NIL T ELT)) (-3206 (((-660 (-882 |#2|)) $) NIL T ELT)) (-1905 (((-112) $) NIL T ELT)) (-1421 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-3924 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-2001 (((-660 (-2 (|:| |val| (-796 |#1| (-882 |#2|))) (|:| -2002 $))) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ (-882 |#2|)) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3730 (($ (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 (-796 |#1| (-882 |#2|)) "failed") $ (-882 |#2|)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-4046 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2483 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))) $ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-1399 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-2155 (($ (-660 (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-1663 (((-3 $ "failed") $) NIL T ELT)) (-2801 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT)) (-3920 (($ (-796 |#1| (-882 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-796 |#1| (-882 |#2|))) (|:| |den| |#1|)) (-796 |#1| (-882 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-3165 (((-112) (-796 |#1| (-882 |#2|)) $ (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-3270 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-2498 (((-796 |#1| (-882 |#2|)) (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $ (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT) (((-796 |#1| (-882 |#2|)) (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $ (-796 |#1| (-882 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-796 |#1| (-882 |#2|)) (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-3630 (((-2 (|:| -1970 (-660 (-796 |#1| (-882 |#2|)))) (|:| -3263 (-660 (-796 |#1| (-882 |#2|))))) $) NIL T ELT)) (-2926 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-2687 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-2632 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-3692 (((-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-1940 (((-882 |#2|) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-796 |#1| (-882 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT)) (-2826 (($ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $) NIL T ELT)) (-1365 (((-660 (-882 |#2|)) $) NIL T ELT)) (-2639 (((-112) (-882 |#2|) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3650 (((-3 (-796 |#1| (-882 |#2|)) (-660 $)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-2048 (((-660 (-2 (|:| |val| (-796 |#1| (-882 |#2|))) (|:| -2002 $))) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-3942 (((-3 (-796 |#1| (-882 |#2|)) "failed") $) NIL T ELT)) (-3395 (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-3343 (((-3 (-112) (-660 $)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-3422 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-4056 (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) $) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-660 $)) NIL T ELT) (((-660 $) (-796 |#1| (-882 |#2|)) (-660 $)) NIL T ELT)) (-2346 (($ (-796 |#1| (-882 |#2|)) $) NIL T ELT) (($ (-660 (-796 |#1| (-882 |#2|))) $) NIL T ELT)) (-3425 (((-660 (-796 |#1| (-882 |#2|))) $) NIL T ELT)) (-4233 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-1458 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-2928 (((-112) $ $) NIL T ELT)) (-4383 (((-2 (|:| |num| (-796 |#1| (-882 |#2|))) (|:| |den| |#1|)) (-796 |#1| (-882 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-2870 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-2108 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-3 (-796 |#1| (-882 |#2|)) "failed") $) NIL T ELT)) (-2153 (((-3 (-796 |#1| (-882 |#2|)) "failed") (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL T ELT)) (-3062 (((-3 $ "failed") $ (-796 |#1| (-882 |#2|))) NIL T ELT)) (-1987 (($ $ (-796 |#1| (-882 |#2|))) NIL T ELT) (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-660 $) (-796 |#1| (-882 |#2|)) (-660 $)) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) $) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-660 $)) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|)))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT) (($ $ (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT) (($ $ (-305 (-796 |#1| (-882 |#2|)))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT) (($ $ (-660 (-305 (-796 |#1| (-882 |#2|))))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-3616 (((-787) $) NIL T ELT)) (-1452 (((-787) (-796 |#1| (-882 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125))) ELT) (((-787) (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-796 |#1| (-882 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-3620 (($ $ (-882 |#2|)) NIL T ELT)) (-2003 (($ $ (-882 |#2|)) NIL T ELT)) (-3307 (($ $) NIL T ELT)) (-3344 (($ $ (-882 |#2|)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (((-660 (-796 |#1| (-882 |#2|))) $) NIL T ELT)) (-2272 (((-787) $) NIL (|has| (-882 |#2|) (-380)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 (-796 |#1| (-882 |#2|))))) "failed") (-660 (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 (-796 |#1| (-882 |#2|))))) "failed") (-660 (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL T ELT)) (-4353 (((-112) $ (-1 (-112) (-796 |#1| (-882 |#2|)) (-660 (-796 |#1| (-882 |#2|))))) NIL T ELT)) (-3575 (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL T ELT) (((-660 $) (-796 |#1| (-882 |#2|)) (-660 $)) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) $) NIL T ELT) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-660 $)) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 (-882 |#2|)) $) NIL T ELT)) (-4381 (((-112) (-796 |#1| (-882 |#2|)) $) NIL T ELT)) (-1401 (((-112) (-882 |#2|) $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1071 |#1| |#2|) (-13 (-1096 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) (-10 -8 (-15 -1568 ((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112) (-112))))) (-465) (-660 (-1201))) (T -1071)) -((-1568 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1071 *5 *6))))) -(-13 (-1096 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) (-10 -8 (-15 -1568 ((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112) (-112))))) -((-1890 (((-1 (-577)) (-1119 (-577))) 32 T ELT)) (-3931 (((-577) (-577) (-577) (-577) (-577)) 29 T ELT)) (-3573 (((-1 (-577)) |RationalNumber|) NIL T ELT)) (-2140 (((-1 (-577)) |RationalNumber|) NIL T ELT)) (-1774 (((-1 (-577)) (-577) |RationalNumber|) NIL T ELT))) -(((-1072) (-10 -7 (-15 -1890 ((-1 (-577)) (-1119 (-577)))) (-15 -1774 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3573 ((-1 (-577)) |RationalNumber|)) (-15 -2140 ((-1 (-577)) |RationalNumber|)) (-15 -3931 ((-577) (-577) (-577) (-577) (-577))))) (T -1072)) -((-3931 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1072)))) (-2140 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)))) (-3573 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)) (-5 *3 (-577)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1119 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) -(-10 -7 (-15 -1890 ((-1 (-577)) (-1119 (-577)))) (-15 -1774 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3573 ((-1 (-577)) |RationalNumber|)) (-15 -2140 ((-1 (-577)) |RationalNumber|)) (-15 -3931 ((-577) (-577) (-577) (-577) (-577)))) -((-3603 (((-880) $) NIL T ELT) (($ (-577)) 10 T ELT))) -(((-1073 |#1|) (-10 -8 (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-1074)) (T -1073)) -NIL -(-10 -8 (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-1074) (-141)) (T -1074)) -((-1920 (*1 *2) (-12 (-4 *1 (-1074)) (-5 *2 (-787))))) -(-13 (-1083) (-742) (-664 $) (-629 (-577)) (-10 -7 (-15 -1920 ((-787)) -2609) (-6 -4467))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2577 (((-420 (-975 |#2|)) (-660 |#2|) (-660 |#2|) (-787) (-787)) 54 T ELT))) -(((-1075 |#1| |#2|) (-10 -7 (-15 -2577 ((-420 (-975 |#2|)) (-660 |#2|) (-660 |#2|) (-787) (-787)))) (-1201) (-375)) (T -1075)) -((-2577 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-787)) (-4 *6 (-375)) (-5 *2 (-420 (-975 *6))) (-5 *1 (-1075 *5 *6)) (-14 *5 (-1201))))) -(-10 -7 (-15 -2577 ((-420 (-975 |#2|)) (-660 |#2|) (-660 |#2|) (-787) (-787)))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (* (($ $ |#1|) 14 T ELT))) -(((-1076 |#1|) (-141) (-1137)) (T -1076)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1137))))) -(-13 (-1125) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3755 (((-112) $) 38 T ELT)) (-2010 (((-112) $) 17 T ELT)) (-4022 (((-787) $) 13 T ELT)) (-4033 (((-787) $) 14 T ELT)) (-3534 (((-112) $) 30 T ELT)) (-2230 (((-112) $) 40 T ELT))) -(((-1077 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4033 ((-787) |#1|)) (-15 -4022 ((-787) |#1|)) (-15 -2230 ((-112) |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -2010 ((-112) |#1|))) (-1078 |#2| |#3| |#4| |#5| |#6|) (-787) (-787) (-1074) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1077)) -NIL -(-10 -8 (-15 -4033 ((-787) |#1|)) (-15 -4022 ((-787) |#1|)) (-15 -2230 ((-112) |#1|)) (-15 -3755 ((-112) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -2010 ((-112) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3755 (((-112) $) 56 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2010 (((-112) $) 58 T ELT)) (-4403 (((-112) $ (-787)) 66 T ELT)) (-3790 (($) 18 T CONST)) (-1863 (($ $) 39 (|has| |#3| (-318)) ELT)) (-1578 ((|#4| $ (-577)) 44 T ELT)) (-3503 (((-787) $) 38 (|has| |#3| (-569)) ELT)) (-2759 ((|#3| $ (-577) (-577)) 46 T ELT)) (-3692 (((-660 |#3|) $) 73 (|has| $ (-6 -4470)) ELT)) (-3225 (((-787) $) 37 (|has| |#3| (-569)) ELT)) (-1404 (((-660 |#5|) $) 36 (|has| |#3| (-569)) ELT)) (-4022 (((-787) $) 50 T ELT)) (-4033 (((-787) $) 49 T ELT)) (-1821 (((-112) $ (-787)) 65 T ELT)) (-4250 (((-577) $) 54 T ELT)) (-2952 (((-577) $) 52 T ELT)) (-2434 (((-660 |#3|) $) 74 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1484 (((-577) $) 53 T ELT)) (-3329 (((-577) $) 51 T ELT)) (-4307 (($ (-660 (-660 |#3|))) 59 T ELT)) (-2826 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#3| |#3|) $) 68 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 42 T ELT)) (-2347 (((-660 (-660 |#3|)) $) 48 T ELT)) (-3272 (((-112) $ (-787)) 64 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#3|) (-660 |#3|)) 80 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-305 |#3|)) 78 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-660 (-305 |#3|))) 77 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT)) (-3007 (((-112) $ $) 60 T ELT)) (-2856 (((-112) $) 63 T ELT)) (-2693 (($) 62 T ELT)) (-2837 ((|#3| $ (-577) (-577)) 47 T ELT) ((|#3| $ (-577) (-577) |#3|) 45 T ELT)) (-3534 (((-112) $) 57 T ELT)) (-1452 (((-787) |#3| $) 75 (-12 (|has| |#3| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 61 T ELT)) (-2859 ((|#5| $ (-577)) 43 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2285 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) 55 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#3|) 40 (|has| |#3| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#3| $) 27 T ELT) (($ $ |#3|) 31 T ELT)) (-3501 (((-787) $) 67 (|has| $ (-6 -4470)) ELT))) -(((-1078 |#1| |#2| |#3| |#4| |#5|) (-141) (-787) (-787) (-1074) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1078)) -((-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *5))) (-4 *5 (-1074)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-660 (-660 *5))))) (-2837 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074)))) (-2759 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074)))) (-2837 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *2 (-1074)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-1578 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *2 *7)) (-4 *6 (-1074)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-2859 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *7 *2)) (-4 *6 (-1074)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-2124 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-569)))) (-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-375)))) (-1863 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-787)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-787)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-660 *7))))) -(-13 (-111 |t#3| |t#3|) (-502 |t#3|) (-10 -8 (-6 -4470) (IF (|has| |t#3| (-174)) (-6 (-733 |t#3|)) |%noBranch|) (-15 -4307 ($ (-660 (-660 |t#3|)))) (-15 -2010 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -3755 ((-112) $)) (-15 -2230 ((-112) $)) (-15 -4250 ((-577) $)) (-15 -1484 ((-577) $)) (-15 -2952 ((-577) $)) (-15 -3329 ((-577) $)) (-15 -4022 ((-787) $)) (-15 -4033 ((-787) $)) (-15 -2347 ((-660 (-660 |t#3|)) $)) (-15 -2837 (|t#3| $ (-577) (-577))) (-15 -2759 (|t#3| $ (-577) (-577))) (-15 -2837 (|t#3| $ (-577) (-577) |t#3|)) (-15 -1578 (|t#4| $ (-577))) (-15 -2859 (|t#5| $ (-577))) (-15 -2124 ($ (-1 |t#3| |t#3|) $)) (-15 -2124 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-569)) (-15 -3478 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-375)) (-15 -3051 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-318)) (-15 -1863 ($ $)) |%noBranch|) (IF (|has| |t#3| (-569)) (PROGN (-15 -3503 ((-787) $)) (-15 -3225 ((-787) $)) (-15 -1404 ((-660 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-626 (-880)) . T) ((-320 |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ((-502 |#3|) . T) ((-527 |#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ((-662 (-577)) . T) ((-662 |#3|) . T) ((-664 |#3|) . T) ((-656 |#3|) |has| |#3| (-174)) ((-733 |#3|) |has| |#3| (-174)) ((-1076 |#3|) . T) ((-1081 |#3|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3755 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2010 (((-112) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1863 (($ $) 47 (|has| |#3| (-318)) ELT)) (-1578 (((-246 |#2| |#3|) $ (-577)) 36 T ELT)) (-2282 (($ (-705 |#3|)) 45 T ELT)) (-3503 (((-787) $) 49 (|has| |#3| (-569)) ELT)) (-2759 ((|#3| $ (-577) (-577)) NIL T ELT)) (-3692 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3225 (((-787) $) 51 (|has| |#3| (-569)) ELT)) (-1404 (((-660 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-569)) ELT)) (-4022 (((-787) $) NIL T ELT)) (-4033 (((-787) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4250 (((-577) $) NIL T ELT)) (-2952 (((-577) $) NIL T ELT)) (-2434 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT)) (-1484 (((-577) $) NIL T ELT)) (-3329 (((-577) $) NIL T ELT)) (-4307 (($ (-660 (-660 |#3|))) 31 T ELT)) (-2826 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-2347 (((-660 (-660 |#3|)) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#3| $ (-577) (-577)) NIL T ELT) ((|#3| $ (-577) (-577) |#3|) NIL T ELT)) (-3941 (((-135)) 59 (|has| |#3| (-375)) ELT)) (-3534 (((-112) $) NIL T ELT)) (-1452 (((-787) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT) (((-787) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) 65 (|has| |#3| (-627 (-549))) ELT)) (-2859 (((-246 |#1| |#3|) $ (-577)) 40 T ELT)) (-3603 (((-880) $) 19 T ELT) (((-705 |#3|) $) 42 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) NIL T ELT)) (-2754 (($) 16 T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1079 |#1| |#2| |#3|) (-13 (-1078 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-626 (-705 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1299 |#3|)) |%noBranch|) (IF (|has| |#3| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (-15 -2282 ($ (-705 |#3|))))) (-787) (-787) (-1074)) (T -1079)) -((-2282 (*1 *1 *2) (-12 (-5 *2 (-705 *5)) (-4 *5 (-1074)) (-5 *1 (-1079 *3 *4 *5)) (-14 *3 (-787)) (-14 *4 (-787))))) -(-13 (-1078 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-626 (-705 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1299 |#3|)) |%noBranch|) (IF (|has| |#3| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (-15 -2282 ($ (-705 |#3|))))) -((-2498 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-2124 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-1080 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2124 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2498 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-787) (-787) (-1074) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1078 |#1| |#2| |#3| |#4| |#5|) (-1074) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1078 |#1| |#2| |#7| |#8| |#9|)) (T -1080)) -((-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1074)) (-4 *2 (-1074)) (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *12 (-1078 *5 *6 *2 *10 *11)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1074)) (-4 *10 (-1074)) (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1078 *5 *6 *10 *11 *12)) (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) -(-10 -7 (-15 -2124 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2498 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ |#1|) 27 T ELT))) -(((-1081 |#1|) (-141) (-1083)) (T -1081)) -NIL -(-13 (-21) (-1076 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1076 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3052 (((-1201) $) 11 T ELT)) (-1601 ((|#1| $) 12 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-3602 (($ (-1201) |#1|) 10 T ELT)) (-3603 (((-880) $) 22 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2949 (((-112) $ $) 17 (|has| |#1| (-1125)) ELT))) -(((-1082 |#1| |#2|) (-13 (-1242) (-10 -8 (-15 -3602 ($ (-1201) |#1|)) (-15 -3052 ((-1201) $)) (-15 -1601 (|#1| $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) (-1118 |#2|) (-1242)) (T -1082)) -((-3602 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-4 *4 (-1242)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1118 *4)))) (-3052 (*1 *2 *1) (-12 (-4 *4 (-1242)) (-5 *2 (-1201)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1118 *4)))) (-1601 (*1 *2 *1) (-12 (-4 *2 (-1118 *3)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1242))))) -(-13 (-1242) (-10 -8 (-15 -3602 ($ (-1201) |#1|)) (-15 -3052 ((-1201) $)) (-15 -1601 (|#1| $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-1083) (-141)) (T -1083)) -NIL -(-13 (-21) (-1137)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3959 (($ $) 17 T ELT)) (-1609 (($ $) 25 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 55 T ELT)) (-4021 (($ $) 27 T ELT)) (-3053 (($ $) 12 T ELT)) (-1374 (($ $) 43 T ELT)) (-2176 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-911 (-391)) $) 36 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 31 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) 31 T ELT)) (-1920 (((-787)) 9 T ELT)) (-2360 (($ $) 45 T ELT))) -(((-1084 |#1|) (-10 -8 (-15 -1609 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -1374 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -4021 (|#1| |#1|)) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| (-577))) (-15 -2176 ((-228) |#1|)) (-15 -2176 ((-391) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| |#1|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-1085)) (T -1084)) -((-1920 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1084 *3)) (-4 *3 (-1085))))) -(-10 -8 (-15 -1609 (|#1| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -1374 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -4021 (|#1| |#1|)) (-15 -4359 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| (-577))) (-15 -2176 ((-228) |#1|)) (-15 -2176 ((-391) |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| |#1|)) (-15 -1920 ((-787))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2829 (((-577) $) 98 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-3959 (($ $) 96 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-3070 (($ $) 106 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-2917 (((-577) $) 123 T ELT)) (-3790 (($) 18 T CONST)) (-1609 (($ $) 95 T ELT)) (-2784 (((-3 (-577) "failed") $) 111 T ELT) (((-3 (-420 (-577)) "failed") $) 108 T ELT)) (-2155 (((-577) $) 112 T ELT) (((-420 (-577)) $) 109 T ELT)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-2182 (((-112) $) 79 T ELT)) (-4302 (((-112) $) 121 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 102 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 105 T ELT)) (-4021 (($ $) 101 T ELT)) (-2178 (((-112) $) 122 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-2900 (($ $ $) 115 T ELT)) (-1457 (($ $ $) 116 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3053 (($ $) 97 T ELT)) (-1374 (($ $) 99 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-2176 (((-391) $) 114 T ELT) (((-228) $) 113 T ELT) (((-911 (-391)) $) 103 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-577)) 110 T ELT) (($ (-420 (-577))) 107 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2360 (($ $) 100 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-4318 (($ $) 124 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-3001 (((-112) $ $) 117 T ELT)) (-2978 (((-112) $ $) 119 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 118 T ELT)) (-2971 (((-112) $ $) 120 T ELT)) (-3051 (($ $ $) 73 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 104 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) -(((-1085) (-141)) (T -1085)) -((-4318 (*1 *1 *1) (-4 *1 (-1085))) (-4021 (*1 *1 *1) (-4 *1 (-1085))) (-2360 (*1 *1 *1) (-4 *1 (-1085))) (-1374 (*1 *1 *1) (-4 *1 (-1085))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-1085)) (-5 *2 (-577)))) (-3053 (*1 *1 *1) (-4 *1 (-1085))) (-3959 (*1 *1 *1) (-4 *1 (-1085))) (-1609 (*1 *1 *1) (-4 *1 (-1085)))) -(-13 (-375) (-864) (-1047) (-1063 (-577)) (-1063 (-420 (-577))) (-1027) (-627 (-911 (-391))) (-905 (-391)) (-148) (-10 -8 (-15 -4021 ($ $)) (-15 -2360 ($ $)) (-15 -1374 ($ $)) (-15 -2829 ((-577) $)) (-15 -3053 ($ $)) (-15 -3959 ($ $)) (-15 -1609 ($ $)) (-15 -4318 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-228)) . T) ((-627 (-391)) . T) ((-627 (-911 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-905 (-391)) . T) ((-943) . T) ((-1027) . T) ((-1047) . T) ((-1063 (-420 (-577))) . T) ((-1063 (-577)) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) |#2| $) 26 T ELT)) (-3373 ((|#1| $) 10 T ELT)) (-2917 (((-577) |#2| $) 116 T ELT)) (-3400 (((-3 $ "failed") |#2| (-944)) 75 T ELT)) (-3076 ((|#1| $) 31 T ELT)) (-1732 ((|#1| |#2| $ |#1|) 40 T ELT)) (-2256 (($ $) 28 T ELT)) (-1625 (((-3 |#2| "failed") |#2| $) 111 T ELT)) (-4302 (((-112) |#2| $) NIL T ELT)) (-2178 (((-112) |#2| $) NIL T ELT)) (-2580 (((-112) |#2| $) 27 T ELT)) (-2132 ((|#1| $) 117 T ELT)) (-3060 ((|#1| $) 30 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1629 ((|#2| $) 102 T ELT)) (-3603 (((-880) $) 92 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-4142 ((|#1| |#2| $ |#1|) 41 T ELT)) (-1900 (((-660 $) |#2|) 77 T ELT)) (-2949 (((-112) $ $) 97 T ELT))) -(((-1086 |#1| |#2|) (-13 (-1093 |#1| |#2|) (-10 -8 (-15 -3060 (|#1| $)) (-15 -3076 (|#1| $)) (-15 -3373 (|#1| $)) (-15 -2132 (|#1| $)) (-15 -2256 ($ $)) (-15 -2580 ((-112) |#2| $)) (-15 -1732 (|#1| |#2| $ |#1|)))) (-13 (-864) (-375)) (-1268 |#1|)) (T -1086)) -((-1732 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-3060 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-3076 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-3373 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-2132 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-2256 (*1 *1 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-2580 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-864) (-375))) (-5 *2 (-112)) (-5 *1 (-1086 *4 *3)) (-4 *3 (-1268 *4))))) -(-13 (-1093 |#1| |#2|) (-10 -8 (-15 -3060 (|#1| $)) (-15 -3076 (|#1| $)) (-15 -3373 (|#1| $)) (-15 -2132 (|#1| $)) (-15 -2256 ($ $)) (-15 -2580 ((-112) |#2| $)) (-15 -1732 (|#1| |#2| $ |#1|)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-2199 (($ $ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($ $ $ $) NIL T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-2917 (((-577) $) NIL T ELT)) (-2879 (($ $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3982 (($ (-1201)) 10 T ELT) (($ (-577)) 7 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL T ELT)) (-3436 (($ $ $) NIL T ELT)) (-2850 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-705 (-577)) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2828 (((-112) $) NIL T ELT)) (-2950 (((-420 (-577)) $) NIL T ELT)) (-2352 (($) NIL T ELT) (($ $) NIL T ELT)) (-3447 (($ $ $) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3248 (($ $ $ $) NIL T ELT)) (-3309 (($ $ $) NIL T ELT)) (-4302 (((-112) $) NIL T ELT)) (-2738 (($ $ $) NIL T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2238 (((-112) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL T ELT)) (-2178 (((-112) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1912 (($ $ $ $) NIL T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-3510 (($ $) NIL T ELT)) (-3762 (($ $) NIL T ELT)) (-1512 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3371 (($ $ $) NIL T ELT)) (-3457 (($) NIL T CONST)) (-2470 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1968 (($ $) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3861 (((-112) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-3362 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2322 (($ $) NIL T ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-577) $) 16 T ELT) (((-549) $) NIL T ELT) (((-911 (-577)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (($ (-1201)) 9 T ELT)) (-3603 (((-880) $) 23 T ELT) (($ (-577)) 6 T ELT) (($ $) NIL T ELT) (($ (-577)) 6 T ELT)) (-1920 (((-787)) NIL T CONST)) (-1784 (((-112) $ $) NIL T ELT)) (-1774 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-3585 (($ $ $ $) NIL T ELT)) (-4318 (($ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT)) (-3042 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT))) -(((-1087) (-13 (-558) (-631 (-1201)) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -3982 ($ (-1201))) (-15 -3982 ($ (-577)))))) (T -1087)) -((-3982 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1087)))) (-3982 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1087))))) -(-13 (-558) (-631 (-1201)) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -3982 ($ (-1201))) (-15 -3982 ($ (-577))))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL T ELT)) (-2790 (((-1297) $ (-1201) (-1201)) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3044 (($) 9 T ELT)) (-1895 (((-52) $ (-1201) (-52)) NIL T ELT)) (-4199 (($ $) 32 T ELT)) (-1487 (($ $) 30 T ELT)) (-3243 (($ $) 29 T ELT)) (-2878 (($ $) 31 T ELT)) (-4350 (($ $) 35 T ELT)) (-2496 (($ $) 36 T ELT)) (-1869 (($ $) 28 T ELT)) (-4109 (($ $) 33 T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) 27 (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 (-52) "failed") (-1201) $) 43 T ELT)) (-3790 (($) NIL T CONST)) (-1693 (($) 7 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) 53 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 (-52) "failed") (-1201) $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT)) (-1338 (((-3 (-1183) "failed") $ (-1183) (-577)) 72 T ELT)) (-2840 (((-52) $ (-1201) (-52)) NIL (|has| $ (-6 -4471)) ELT)) (-2759 (((-52) $ (-1201)) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-1201) $) NIL (|has| (-1201) (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) 38 (|has| $ (-6 -4470)) ELT) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT)) (-2984 (((-1201) $) NIL (|has| (-1201) (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-52) (-1125)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT)) (-3740 (((-660 (-1201)) $) NIL T ELT)) (-2490 (((-112) (-1201) $) NIL T ELT)) (-3596 (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) 46 T ELT)) (-3445 (((-660 (-1201)) $) NIL T ELT)) (-2187 (((-112) (-1201) $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-52) (-1125)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT)) (-3482 (((-391) $ (-1201)) 52 T ELT)) (-1616 (((-660 (-1183)) $ (-1183)) 74 T ELT)) (-1652 (((-52) $) NIL (|has| (-1201) (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) "failed") (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL T ELT)) (-2529 (($ $ (-52)) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL (-12 (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-320 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (($ $ (-660 (-52)) (-660 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT) (($ $ (-660 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT)) (-3908 (((-660 (-52)) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 (((-52) $ (-1201)) NIL T ELT) (((-52) $ (-1201) (-52)) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL T ELT)) (-2915 (($ $ (-1201)) 54 T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-1125))) ELT) (((-787) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))) ELT) (((-787) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) 40 T ELT)) (-1685 (($ $ $) 41 T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-52) (-626 (-880))) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-626 (-880)))) ELT)) (-3955 (($ $ (-1201) (-391)) 50 T ELT)) (-4253 (($ $ (-1201) (-391)) 51 T ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 (-1201)) (|:| -2438 (-52)))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-52) (-102)) (|has| (-2 (|:| -4323 (-1201)) (|:| -2438 (-52))) (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1088) (-13 (-1218 (-1201) (-52)) (-10 -8 (-15 -1685 ($ $ $)) (-15 -1693 ($)) (-15 -1869 ($ $)) (-15 -3243 ($ $)) (-15 -1487 ($ $)) (-15 -2878 ($ $)) (-15 -4109 ($ $)) (-15 -4199 ($ $)) (-15 -4350 ($ $)) (-15 -2496 ($ $)) (-15 -3955 ($ $ (-1201) (-391))) (-15 -4253 ($ $ (-1201) (-391))) (-15 -3482 ((-391) $ (-1201))) (-15 -1616 ((-660 (-1183)) $ (-1183))) (-15 -2915 ($ $ (-1201))) (-15 -3044 ($)) (-15 -1338 ((-3 (-1183) "failed") $ (-1183) (-577))) (-6 -4470)))) (T -1088)) -((-1685 (*1 *1 *1 *1) (-5 *1 (-1088))) (-1693 (*1 *1) (-5 *1 (-1088))) (-1869 (*1 *1 *1) (-5 *1 (-1088))) (-3243 (*1 *1 *1) (-5 *1 (-1088))) (-1487 (*1 *1 *1) (-5 *1 (-1088))) (-2878 (*1 *1 *1) (-5 *1 (-1088))) (-4109 (*1 *1 *1) (-5 *1 (-1088))) (-4199 (*1 *1 *1) (-5 *1 (-1088))) (-4350 (*1 *1 *1) (-5 *1 (-1088))) (-2496 (*1 *1 *1) (-5 *1 (-1088))) (-3955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088)))) (-4253 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088)))) (-3482 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-391)) (-5 *1 (-1088)))) (-1616 (*1 *2 *1 *3) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1088)) (-5 *3 (-1183)))) (-2915 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1088)))) (-3044 (*1 *1) (-5 *1 (-1088))) (-1338 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-1088))))) -(-13 (-1218 (-1201) (-52)) (-10 -8 (-15 -1685 ($ $ $)) (-15 -1693 ($)) (-15 -1869 ($ $)) (-15 -3243 ($ $)) (-15 -1487 ($ $)) (-15 -2878 ($ $)) (-15 -4109 ($ $)) (-15 -4199 ($ $)) (-15 -4350 ($ $)) (-15 -2496 ($ $)) (-15 -3955 ($ $ (-1201) (-391))) (-15 -4253 ($ $ (-1201) (-391))) (-15 -3482 ((-391) $ (-1201))) (-15 -1616 ((-660 (-1183)) $ (-1183))) (-15 -2915 ($ $ (-1201))) (-15 -3044 ($)) (-15 -1338 ((-3 (-1183) "failed") $ (-1183) (-577))) (-6 -4470))) -((-3063 (($ $) 46 T ELT)) (-1556 (((-112) $ $) 82 T ELT)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 $ "failed") (-975 (-420 (-577)))) 247 T ELT) (((-3 $ "failed") (-975 (-577))) 246 T ELT) (((-3 $ "failed") (-975 |#2|)) 249 T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-975 (-420 (-577)))) 235 T ELT) (($ (-975 (-577))) 231 T ELT) (($ (-975 |#2|)) 255 T ELT)) (-3391 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3165 (((-112) $ $) 131 T ELT) (((-112) $ (-660 $)) 135 T ELT)) (-3889 (((-112) $) 60 T ELT)) (-2737 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 125 T ELT)) (-2651 (($ $) 160 T ELT)) (-1860 (($ $) 156 T ELT)) (-1755 (($ $) 155 T ELT)) (-2918 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-1842 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-1819 (((-112) $ $) 143 T ELT) (((-112) $ (-660 $)) 144 T ELT)) (-1940 ((|#4| $) 32 T ELT)) (-1442 (($ $ $) 128 T ELT)) (-3496 (((-112) $) 59 T ELT)) (-2180 (((-787) $) 35 T ELT)) (-2709 (($ $) 174 T ELT)) (-4398 (($ $) 171 T ELT)) (-1938 (((-660 $) $) 72 T ELT)) (-2302 (($ $) 62 T ELT)) (-4162 (($ $) 167 T ELT)) (-1729 (((-660 $) $) 69 T ELT)) (-2777 (($ $) 64 T ELT)) (-3365 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-2505 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2212 (-787))) $ $) 130 T ELT)) (-3054 (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $) 126 T ELT) (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $ |#4|) 127 T ELT)) (-2933 (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $) 121 T ELT) (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $ |#4|) 123 T ELT)) (-3415 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-1710 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-1472 (((-660 $) $) 54 T ELT)) (-4233 (((-112) $ $) 140 T ELT) (((-112) $ (-660 $)) 141 T ELT)) (-1458 (($ $ $) 116 T ELT)) (-3457 (($ $) 37 T ELT)) (-2928 (((-112) $ $) 80 T ELT)) (-2870 (((-112) $ $) 136 T ELT) (((-112) $ (-660 $)) 138 T ELT)) (-2108 (($ $ $) 112 T ELT)) (-2515 (($ $) 41 T ELT)) (-3543 ((|#2| |#2| $) 164 T ELT) (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1488 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3195 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-2986 (($ $) 49 T ELT)) (-1800 (($ $) 55 T ELT)) (-2176 (((-911 (-391)) $) NIL T ELT) (((-911 (-577)) $) NIL T ELT) (((-549) $) NIL T ELT) (($ (-975 (-420 (-577)))) 237 T ELT) (($ (-975 (-577))) 233 T ELT) (($ (-975 |#2|)) 248 T ELT) (((-1183) $) 279 T ELT) (((-975 |#2|) $) 184 T ELT)) (-3603 (((-880) $) 29 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-975 |#2|) $) 185 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-3434 (((-3 (-112) "failed") $ $) 79 T ELT))) -(((-1089 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3603 (|#1| |#1|)) (-15 -3543 (|#1| |#1| |#1|)) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 ((-975 |#2|) |#1|)) (-15 -2176 ((-975 |#2|) |#1|)) (-15 -2176 ((-1183) |#1|)) (-15 -2709 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -4162 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -3543 (|#2| |#2| |#1|)) (-15 -1488 (|#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -1488 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| |#2|)) (-15 -1860 (|#1| |#1|)) (-15 -1755 (|#1| |#1|)) (-15 -2176 (|#1| (-975 |#2|))) (-15 -2155 (|#1| (-975 |#2|))) (-15 -2784 ((-3 |#1| "failed") (-975 |#2|))) (-15 -2176 (|#1| (-975 (-577)))) (-15 -2155 (|#1| (-975 (-577)))) (-15 -2784 ((-3 |#1| "failed") (-975 (-577)))) (-15 -2176 (|#1| (-975 (-420 (-577))))) (-15 -2155 (|#1| (-975 (-420 (-577))))) (-15 -2784 ((-3 |#1| "failed") (-975 (-420 (-577))))) (-15 -1458 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -2505 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2212 (-787))) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -2737 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -3054 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1| |#4|)) (-15 -3054 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -2933 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2689 |#1|)) |#1| |#1| |#4|)) (-15 -2933 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -1710 (|#1| |#1| |#1| |#4|)) (-15 -3415 (|#1| |#1| |#1| |#4|)) (-15 -1710 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| |#4|)) (-15 -2918 (|#1| |#1| |#1| |#4|)) (-15 -1842 (|#1| |#1| |#1|)) (-15 -2918 (|#1| |#1| |#1|)) (-15 -1819 ((-112) |#1| (-660 |#1|))) (-15 -1819 ((-112) |#1| |#1|)) (-15 -4233 ((-112) |#1| (-660 |#1|))) (-15 -4233 ((-112) |#1| |#1|)) (-15 -2870 ((-112) |#1| (-660 |#1|))) (-15 -2870 ((-112) |#1| |#1|)) (-15 -3165 ((-112) |#1| (-660 |#1|))) (-15 -3165 ((-112) |#1| |#1|)) (-15 -1556 ((-112) |#1| |#1|)) (-15 -2928 ((-112) |#1| |#1|)) (-15 -3434 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1938 ((-660 |#1|) |#1|)) (-15 -1729 ((-660 |#1|) |#1|)) (-15 -2777 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -3889 ((-112) |#1|)) (-15 -3496 ((-112) |#1|)) (-15 -3391 (|#1| |#1| |#4|)) (-15 -3365 (|#1| |#1| |#4|)) (-15 -1800 (|#1| |#1|)) (-15 -1472 ((-660 |#1|) |#1|)) (-15 -2986 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -2515 (|#1| |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2180 ((-787) |#1|)) (-15 -1940 (|#4| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -3603 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2155 (|#4| |#1|)) (-15 -3365 (|#2| |#1|)) (-15 -3391 (|#1| |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-1090 |#2| |#3| |#4|) (-1074) (-809) (-865)) (T -1089)) -NIL -(-10 -8 (-15 -3603 (|#1| |#1|)) (-15 -3543 (|#1| |#1| |#1|)) (-15 -3543 (|#1| (-660 |#1|))) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 ((-975 |#2|) |#1|)) (-15 -2176 ((-975 |#2|) |#1|)) (-15 -2176 ((-1183) |#1|)) (-15 -2709 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -4162 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -3543 (|#2| |#2| |#1|)) (-15 -1488 (|#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -1488 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| |#2|)) (-15 -1860 (|#1| |#1|)) (-15 -1755 (|#1| |#1|)) (-15 -2176 (|#1| (-975 |#2|))) (-15 -2155 (|#1| (-975 |#2|))) (-15 -2784 ((-3 |#1| "failed") (-975 |#2|))) (-15 -2176 (|#1| (-975 (-577)))) (-15 -2155 (|#1| (-975 (-577)))) (-15 -2784 ((-3 |#1| "failed") (-975 (-577)))) (-15 -2176 (|#1| (-975 (-420 (-577))))) (-15 -2155 (|#1| (-975 (-420 (-577))))) (-15 -2784 ((-3 |#1| "failed") (-975 (-420 (-577))))) (-15 -1458 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -2505 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2212 (-787))) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -2737 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -3054 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1| |#4|)) (-15 -3054 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -2933 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2689 |#1|)) |#1| |#1| |#4|)) (-15 -2933 ((-2 (|:| -2940 |#1|) (|:| |gap| (-787)) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -1710 (|#1| |#1| |#1| |#4|)) (-15 -3415 (|#1| |#1| |#1| |#4|)) (-15 -1710 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| |#4|)) (-15 -2918 (|#1| |#1| |#1| |#4|)) (-15 -1842 (|#1| |#1| |#1|)) (-15 -2918 (|#1| |#1| |#1|)) (-15 -1819 ((-112) |#1| (-660 |#1|))) (-15 -1819 ((-112) |#1| |#1|)) (-15 -4233 ((-112) |#1| (-660 |#1|))) (-15 -4233 ((-112) |#1| |#1|)) (-15 -2870 ((-112) |#1| (-660 |#1|))) (-15 -2870 ((-112) |#1| |#1|)) (-15 -3165 ((-112) |#1| (-660 |#1|))) (-15 -3165 ((-112) |#1| |#1|)) (-15 -1556 ((-112) |#1| |#1|)) (-15 -2928 ((-112) |#1| |#1|)) (-15 -3434 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1938 ((-660 |#1|) |#1|)) (-15 -1729 ((-660 |#1|) |#1|)) (-15 -2777 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -3889 ((-112) |#1|)) (-15 -3496 ((-112) |#1|)) (-15 -3391 (|#1| |#1| |#4|)) (-15 -3365 (|#1| |#1| |#4|)) (-15 -1800 (|#1| |#1|)) (-15 -1472 ((-660 |#1|) |#1|)) (-15 -2986 (|#1| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -2515 (|#1| |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2180 ((-787) |#1|)) (-15 -1940 (|#4| |#1|)) (-15 -2176 ((-549) |#1|)) (-15 -2176 ((-911 (-577)) |#1|)) (-15 -2176 ((-911 (-391)) |#1|)) (-15 -3603 (|#1| |#4|)) (-15 -2784 ((-3 |#4| "failed") |#1|)) (-15 -2155 (|#4| |#1|)) (-15 -3365 (|#2| |#1|)) (-15 -3391 (|#1| |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 |#3|) $) 113 T ELT)) (-3024 (((-1197 $) $ |#3|) 128 T ELT) (((-1197 |#1|) $) 127 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 91 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) 115 T ELT) (((-787) $ (-660 |#3|)) 114 T ELT)) (-3063 (($ $) 278 T ELT)) (-1556 (((-112) $ $) 264 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-4072 (($ $ $) 223 (|has| |#1| (-569)) ELT)) (-2522 (((-660 $) $ $) 218 (|has| |#1| (-569)) ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)) ELT)) (-2001 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 $ "failed") (-975 (-420 (-577)))) 238 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201)))) ELT) (((-3 $ "failed") (-975 (-577))) 235 (-2811 (-12 (-2686 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) ELT) (((-3 $ "failed") (-975 |#1|)) 232 (-2811 (-12 (-2686 (|has| |#1| (-38 (-420 (-577))))) (-2686 (|has| |#1| (-38 (-577)))) (|has| |#3| (-627 (-1201)))) (-12 (-2686 (|has| |#1| (-558))) (-2686 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (-2686 (|has| |#1| (-1017 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) ELT)) (-2155 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1063 (-577))) ELT) ((|#3| $) 144 T ELT) (($ (-975 (-420 (-577)))) 237 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201)))) ELT) (($ (-975 (-577))) 234 (-2811 (-12 (-2686 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) ELT) (($ (-975 |#1|)) 231 (-2811 (-12 (-2686 (|has| |#1| (-38 (-420 (-577))))) (-2686 (|has| |#1| (-38 (-577)))) (|has| |#3| (-627 (-1201)))) (-12 (-2686 (|has| |#1| (-558))) (-2686 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (-2686 (|has| |#1| (-1017 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) ELT)) (-2653 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT) (($ $ $) 219 (|has| |#1| (-569)) ELT)) (-3391 (($ $) 161 T ELT) (($ $ |#3|) 273 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137 T ELT) (((-705 |#1|) (-705 $)) 136 T ELT)) (-3165 (((-112) $ $) 263 T ELT) (((-112) $ (-660 $)) 262 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3889 (((-112) $) 271 T ELT)) (-2737 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 243 T ELT)) (-2651 (($ $) 212 (|has| |#1| (-465)) ELT)) (-2308 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) 112 T ELT)) (-2182 (((-112) $) 99 (|has| |#1| (-932)) ELT)) (-1860 (($ $) 228 (|has| |#1| (-569)) ELT)) (-1755 (($ $) 229 (|has| |#1| (-569)) ELT)) (-2918 (($ $ $) 255 T ELT) (($ $ $ |#3|) 253 T ELT)) (-1842 (($ $ $) 254 T ELT) (($ $ $ |#3|) 252 T ELT)) (-3367 (($ $ |#1| |#2| $) 179 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| |#3| (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| |#3| (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-3306 (((-112) $) 35 T ELT)) (-2011 (((-787) $) 176 T ELT)) (-1819 (((-112) $ $) 257 T ELT) (((-112) $ (-660 $)) 256 T ELT)) (-4351 (($ $ $ $ $) 214 (|has| |#1| (-569)) ELT)) (-1940 ((|#3| $) 282 T ELT)) (-3194 (($ (-1197 |#1|) |#3|) 120 T ELT) (($ (-1197 $) |#3|) 119 T ELT)) (-4242 (((-660 $) $) 129 T ELT)) (-2148 (((-112) $) 159 T ELT)) (-3180 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-787)) 122 T ELT) (($ $ (-660 |#3|) (-660 (-787))) 121 T ELT)) (-1442 (($ $ $) 242 T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |#3|) 123 T ELT)) (-3496 (((-112) $) 272 T ELT)) (-2643 ((|#2| $) 177 T ELT) (((-787) $ |#3|) 125 T ELT) (((-660 (-787)) $ (-660 |#3|)) 124 T ELT)) (-2180 (((-787) $) 281 T ELT)) (-4373 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-4038 (((-3 |#3| "failed") $) 126 T ELT)) (-2709 (($ $) 209 (|has| |#1| (-465)) ELT)) (-4398 (($ $) 210 (|has| |#1| (-465)) ELT)) (-1938 (((-660 $) $) 267 T ELT)) (-2302 (($ $) 270 T ELT)) (-4162 (($ $) 211 (|has| |#1| (-465)) ELT)) (-1729 (((-660 $) $) 268 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135 T ELT) (((-705 |#1|) (-1292 $)) 134 T ELT)) (-2777 (($ $) 269 T ELT)) (-3354 (($ $) 156 T ELT)) (-3365 ((|#1| $) 155 T ELT) (($ $ |#3|) 274 T ELT)) (-3508 (($ (-660 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-2505 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2212 (-787))) $ $) 241 T ELT)) (-3054 (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $) 245 T ELT) (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $ |#3|) 244 T ELT)) (-2933 (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $) 247 T ELT) (((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $ |#3|) 246 T ELT)) (-3415 (($ $ $) 251 T ELT) (($ $ $ |#3|) 249 T ELT)) (-1710 (($ $ $) 250 T ELT) (($ $ $ |#3|) 248 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2048 (($ $ $) 217 (|has| |#1| (-569)) ELT)) (-1472 (((-660 $) $) 276 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 117 T ELT)) (-3910 (((-3 (-660 $) "failed") $) 118 T ELT)) (-1966 (((-3 (-2 (|:| |var| |#3|) (|:| -1527 (-787))) "failed") $) 116 T ELT)) (-4233 (((-112) $ $) 259 T ELT) (((-112) $ (-660 $)) 258 T ELT)) (-1458 (($ $ $) 239 T ELT)) (-3457 (($ $) 280 T ELT)) (-2928 (((-112) $ $) 265 T ELT)) (-2870 (((-112) $ $) 261 T ELT) (((-112) $ (-660 $)) 260 T ELT)) (-2108 (($ $ $) 240 T ELT)) (-2515 (($ $) 279 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3685 (((-2 (|:| -3543 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-569)) ELT)) (-2183 (((-2 (|:| -3543 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-569)) ELT)) (-3327 (((-112) $) 173 T ELT)) (-3340 ((|#1| $) 174 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)) ELT)) (-3543 ((|#1| |#1| $) 213 (|has| |#1| (-465)) ELT) (($ (-660 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) 102 (|has| |#1| (-932)) ELT)) (-4144 (((-2 (|:| -3543 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-569)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-1488 (($ $ |#1|) 226 (|has| |#1| (-569)) ELT) (($ $ $) 224 (|has| |#1| (-569)) ELT)) (-3195 (($ $ |#1|) 227 (|has| |#1| (-569)) ELT) (($ $ $) 225 (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-660 $) (-660 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-660 |#3|) (-660 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-660 |#3|) (-660 $)) 145 T ELT)) (-4447 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 |#3|) (-660 (-787))) 44 T ELT) (($ $ |#3| (-787)) 43 T ELT) (($ $ (-660 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3616 ((|#2| $) 157 T ELT) (((-787) $ |#3|) 133 T ELT) (((-660 (-787)) $ (-660 |#3|)) 132 T ELT)) (-2986 (($ $) 277 T ELT)) (-1800 (($ $) 275 T ELT)) (-2176 (((-911 (-391)) $) 85 (-12 (|has| |#3| (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) 84 (-12 (|has| |#3| (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT) (($ (-975 (-420 (-577)))) 236 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201)))) ELT) (($ (-975 (-577))) 233 (-2811 (-12 (-2686 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) ELT) (($ (-975 |#1|)) 230 (|has| |#3| (-627 (-1201))) ELT) (((-1183) $) 208 (-12 (|has| |#1| (-1063 (-577))) (|has| |#3| (-627 (-1201)))) ELT) (((-975 |#1|) $) 207 (|has| |#3| (-627 (-1201))) ELT)) (-2240 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (((-975 |#1|) $) 206 (|has| |#3| (-627 (-1201))) ELT) (($ (-420 (-577))) 81 (-2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) 175 T ELT)) (-3421 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-787)) 131 T ELT) (($ $ (-660 |#3|) (-660 (-787))) 130 T ELT)) (-3907 (((-3 $ "failed") $) 82 (-2811 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 32 T CONST)) (-3528 (($ $ $ (-787)) 180 (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2754 (($) 19 T CONST)) (-3434 (((-3 (-112) "failed") $ $) 266 T ELT)) (-2767 (($) 34 T CONST)) (-2213 (($ $ $ $ (-787)) 215 (|has| |#1| (-569)) ELT)) (-3968 (($ $ $ (-787)) 216 (|has| |#1| (-569)) ELT)) (-2136 (($ $ (-660 |#3|) (-660 (-787))) 47 T ELT) (($ $ |#3| (-787)) 46 T ELT) (($ $ (-660 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-1090 |#1| |#2| |#3|) (-141) (-1074) (-809) (-865)) (T -1090)) -((-1940 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-787)))) (-3457 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2515 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2986 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-1472 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-1800 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3391 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3496 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2777 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-1729 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-1938 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-3434 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2928 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-1556 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-3165 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-3165 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-2870 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2870 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-4233 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-1819 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-1819 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-2918 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-1842 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2918 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-1842 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3415 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-1710 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3415 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-1710 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-2933 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2689 *1))) (-4 *1 (-1090 *3 *4 *5)))) (-2933 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2689 *1))) (-4 *1 (-1090 *4 *5 *3)))) (-3054 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1090 *3 *4 *5)))) (-3054 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1090 *4 *5 *3)))) (-2737 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1090 *3 *4 *5)))) (-1442 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2505 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2212 (-787)))) (-4 *1 (-1090 *3 *4 *5)))) (-2108 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-1458 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2784 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)))) (-2784 (*1 *1 *2) (|partial| -2811 (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) (-2155 (*1 *1 *2) (-2811 (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) (-2176 (*1 *1 *2) (-2811 (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) (-2784 (*1 *1 *2) (|partial| -2811 (-12 (-5 *2 (-975 *3)) (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-2686 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2686 (-4 *3 (-558))) (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2686 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))))) (-2155 (*1 *1 *2) (-2811 (-12 (-5 *2 (-975 *3)) (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-2686 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2686 (-4 *3 (-558))) (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2686 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *5 (-627 (-1201))) (-4 *4 (-809)) (-4 *5 (-865)))) (-1755 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-1860 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3195 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-1488 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3195 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-1488 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-4072 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-4144 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -3543 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1090 *3 *4 *5)))) (-2183 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -3543 *1) (|:| |coef1| *1))) (-4 *1 (-1090 *3 *4 *5)))) (-3685 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -3543 *1) (|:| |coef2| *1))) (-4 *1 (-1090 *3 *4 *5)))) (-2653 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-2522 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-2048 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3968 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569)))) (-2213 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569)))) (-4351 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3543 (*1 *2 *2 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-2651 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-4162 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-4398 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-2709 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465))))) -(-13 (-972 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1940 (|t#3| $)) (-15 -2180 ((-787) $)) (-15 -3457 ($ $)) (-15 -2515 ($ $)) (-15 -3063 ($ $)) (-15 -2986 ($ $)) (-15 -1472 ((-660 $) $)) (-15 -1800 ($ $)) (-15 -3365 ($ $ |t#3|)) (-15 -3391 ($ $ |t#3|)) (-15 -3496 ((-112) $)) (-15 -3889 ((-112) $)) (-15 -2302 ($ $)) (-15 -2777 ($ $)) (-15 -1729 ((-660 $) $)) (-15 -1938 ((-660 $) $)) (-15 -3434 ((-3 (-112) "failed") $ $)) (-15 -2928 ((-112) $ $)) (-15 -1556 ((-112) $ $)) (-15 -3165 ((-112) $ $)) (-15 -3165 ((-112) $ (-660 $))) (-15 -2870 ((-112) $ $)) (-15 -2870 ((-112) $ (-660 $))) (-15 -4233 ((-112) $ $)) (-15 -4233 ((-112) $ (-660 $))) (-15 -1819 ((-112) $ $)) (-15 -1819 ((-112) $ (-660 $))) (-15 -2918 ($ $ $)) (-15 -1842 ($ $ $)) (-15 -2918 ($ $ $ |t#3|)) (-15 -1842 ($ $ $ |t#3|)) (-15 -3415 ($ $ $)) (-15 -1710 ($ $ $)) (-15 -3415 ($ $ $ |t#3|)) (-15 -1710 ($ $ $ |t#3|)) (-15 -2933 ((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $)) (-15 -2933 ((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2689 $)) $ $ |t#3|)) (-15 -3054 ((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -3054 ((-2 (|:| -2940 $) (|:| |gap| (-787)) (|:| -2669 $) (|:| -2689 $)) $ $ |t#3|)) (-15 -2737 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -1442 ($ $ $)) (-15 -2505 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2212 (-787))) $ $)) (-15 -2108 ($ $ $)) (-15 -1458 ($ $ $)) (IF (|has| |t#3| (-627 (-1201))) (PROGN (-6 (-626 (-975 |t#1|))) (-6 (-627 (-975 |t#1|))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -2784 ((-3 $ "failed") (-975 (-420 (-577))))) (-15 -2155 ($ (-975 (-420 (-577))))) (-15 -2176 ($ (-975 (-420 (-577))))) (-15 -2784 ((-3 $ "failed") (-975 (-577)))) (-15 -2155 ($ (-975 (-577)))) (-15 -2176 ($ (-975 (-577)))) (IF (|has| |t#1| (-1017 (-577))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-975 |t#1|))) (-15 -2155 ($ (-975 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-975 (-577)))) (-15 -2155 ($ (-975 (-577)))) (-15 -2176 ($ (-975 (-577)))) (IF (|has| |t#1| (-558)) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-975 |t#1|))) (-15 -2155 ($ (-975 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) |%noBranch| (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -2784 ((-3 $ "failed") (-975 |t#1|))) (-15 -2155 ($ (-975 |t#1|)))))) (-15 -2176 ($ (-975 |t#1|))) (IF (|has| |t#1| (-1063 (-577))) (-6 (-627 (-1183))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -1755 ($ $)) (-15 -1860 ($ $)) (-15 -3195 ($ $ |t#1|)) (-15 -1488 ($ $ |t#1|)) (-15 -3195 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4072 ($ $ $)) (-15 -4144 ((-2 (|:| -3543 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2183 ((-2 (|:| -3543 $) (|:| |coef1| $)) $ $)) (-15 -3685 ((-2 (|:| -3543 $) (|:| |coef2| $)) $ $)) (-15 -2653 ($ $ $)) (-15 -2522 ((-660 $) $ $)) (-15 -2048 ($ $ $)) (-15 -3968 ($ $ $ (-787))) (-15 -2213 ($ $ $ $ (-787))) (-15 -4351 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -3543 (|t#1| |t#1| $)) (-15 -2651 ($ $)) (-15 -4162 ($ $)) (-15 -4398 ($ $)) (-15 -2709 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 |#3|) . T) ((-629 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-626 (-880)) . T) ((-626 (-975 |#1|)) |has| |#3| (-627 (-1201))) ((-174) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) ((-627 (-975 |#1|)) |has| |#3| (-627 (-1201))) ((-627 (-1183)) -12 (|has| |#1| (-1063 (-577))) (|has| |#3| (-627 (-1201)))) ((-301) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2811 (|has| |#1| (-932)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-742) . T) ((-915 $ |#3|) . T) ((-921 |#3|) . T) ((-923 |#3|) . T) ((-905 (-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) ((-972 |#1| |#2| |#3|) . T) ((-932) |has| |#1| (-932)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1063 |#3|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-932))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3066 (((-660 (-1160)) $) 18 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 27 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-1160) $) 20 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1091) (-13 (-1108) (-10 -8 (-15 -3066 ((-660 (-1160)) $)) (-15 -2682 ((-1160) $))))) (T -1091)) -((-3066 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1091)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1091))))) -(-13 (-1108) (-10 -8 (-15 -3066 ((-660 (-1160)) $)) (-15 -2682 ((-1160) $)))) -((-3801 (((-112) |#3| $) 15 T ELT)) (-3400 (((-3 $ "failed") |#3| (-944)) 29 T ELT)) (-1625 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-4302 (((-112) |#3| $) 19 T ELT)) (-2178 (((-112) |#3| $) 17 T ELT))) -(((-1092 |#1| |#2| |#3|) (-10 -8 (-15 -3400 ((-3 |#1| "failed") |#3| (-944))) (-15 -1625 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4302 ((-112) |#3| |#1|)) (-15 -2178 ((-112) |#3| |#1|)) (-15 -3801 ((-112) |#3| |#1|))) (-1093 |#2| |#3|) (-13 (-864) (-375)) (-1268 |#2|)) (T -1092)) -NIL -(-10 -8 (-15 -3400 ((-3 |#1| "failed") |#3| (-944))) (-15 -1625 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4302 ((-112) |#3| |#1|)) (-15 -2178 ((-112) |#3| |#1|)) (-15 -3801 ((-112) |#3| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) |#2| $) 22 T ELT)) (-2917 (((-577) |#2| $) 23 T ELT)) (-3400 (((-3 $ "failed") |#2| (-944)) 16 T ELT)) (-1732 ((|#1| |#2| $ |#1|) 14 T ELT)) (-1625 (((-3 |#2| "failed") |#2| $) 19 T ELT)) (-4302 (((-112) |#2| $) 20 T ELT)) (-2178 (((-112) |#2| $) 21 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1629 ((|#2| $) 18 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-4142 ((|#1| |#2| $ |#1|) 15 T ELT)) (-1900 (((-660 $) |#2|) 17 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-1093 |#1| |#2|) (-141) (-13 (-864) (-375)) (-1268 |t#1|)) (T -1093)) -((-2917 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-577)))) (-3801 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-112)))) (-2178 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-112)))) (-4302 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-112)))) (-1625 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) (-4 *2 (-1268 *3)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) (-4 *2 (-1268 *3)))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-660 *1)) (-4 *1 (-1093 *4 *3)))) (-3400 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-944)) (-4 *4 (-13 (-864) (-375))) (-4 *1 (-1093 *4 *2)) (-4 *2 (-1268 *4)))) (-4142 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) (-4 *3 (-1268 *2)))) (-1732 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) (-4 *3 (-1268 *2))))) -(-13 (-1125) (-10 -8 (-15 -2917 ((-577) |t#2| $)) (-15 -3801 ((-112) |t#2| $)) (-15 -2178 ((-112) |t#2| $)) (-15 -4302 ((-112) |t#2| $)) (-15 -1625 ((-3 |t#2| "failed") |t#2| $)) (-15 -1629 (|t#2| $)) (-15 -1900 ((-660 $) |t#2|)) (-15 -3400 ((-3 $ "failed") |t#2| (-944))) (-15 -4142 (|t#1| |t#2| $ |t#1|)) (-15 -1732 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-2192 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-787)) 114 T ELT)) (-3971 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787)) 63 T ELT)) (-4308 (((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-787)) 99 T ELT)) (-3443 (((-787) (-660 |#4|) (-660 |#5|)) 30 T ELT)) (-2683 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787)) 65 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787) (-112)) 67 T ELT)) (-4337 (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112)) 86 T ELT) (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112)) 87 T ELT)) (-2176 (((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) 92 T ELT)) (-2142 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-112)) 62 T ELT)) (-1643 (((-787) (-660 |#4|) (-660 |#5|)) 21 T ELT))) -(((-1094 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1643 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3443 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -2142 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-112))) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2192 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-787))) (-15 -2176 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4308 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-787)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1094)) -((-4308 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) (-5 *1 (-1094 *4 *5 *6 *7 *8)))) (-2192 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-660 *11)) (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -2002 *11)))))) (-5 *6 (-787)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -2002 *11)))) (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-5 *1 (-1094 *7 *8 *9 *10 *11)))) (-4337 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-4337 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-2683 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1094 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3)))) (-3971 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3971 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-2142 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1643 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3443 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -2142 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-112))) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2192 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-787))) (-15 -2176 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4308 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-787)))) -((-2926 (((-112) |#5| $) 26 T ELT)) (-2687 (((-112) |#5| $) 29 T ELT)) (-2632 (((-112) |#5| $) 18 T ELT) (((-112) $) 52 T ELT)) (-4056 (((-660 $) |#5| $) NIL T ELT) (((-660 $) (-660 |#5|) $) 94 T ELT) (((-660 $) (-660 |#5|) (-660 $)) 92 T ELT) (((-660 $) |#5| (-660 $)) 95 T ELT)) (-1987 (($ $ |#5|) NIL T ELT) (((-660 $) |#5| $) NIL T ELT) (((-660 $) |#5| (-660 $)) 73 T ELT) (((-660 $) (-660 |#5|) $) 75 T ELT) (((-660 $) (-660 |#5|) (-660 $)) 77 T ELT)) (-3575 (((-660 $) |#5| $) NIL T ELT) (((-660 $) |#5| (-660 $)) 64 T ELT) (((-660 $) (-660 |#5|) $) 69 T ELT) (((-660 $) (-660 |#5|) (-660 $)) 71 T ELT)) (-4381 (((-112) |#5| $) 32 T ELT))) -(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1987 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -1987 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -1987 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -1987 ((-660 |#1|) |#5| |#1|)) (-15 -3575 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3575 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3575 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3575 ((-660 |#1|) |#5| |#1|)) (-15 -4056 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -4056 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -4056 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -4056 ((-660 |#1|) |#5| |#1|)) (-15 -2687 ((-112) |#5| |#1|)) (-15 -2632 ((-112) |#1|)) (-15 -4381 ((-112) |#5| |#1|)) (-15 -2926 ((-112) |#5| |#1|)) (-15 -2632 ((-112) |#5| |#1|)) (-15 -1987 (|#1| |#1| |#5|))) (-1096 |#2| |#3| |#4| |#5|) (-465) (-809) (-865) (-1090 |#2| |#3| |#4|)) (T -1095)) -NIL -(-10 -8 (-15 -1987 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -1987 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -1987 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -1987 ((-660 |#1|) |#5| |#1|)) (-15 -3575 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3575 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3575 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3575 ((-660 |#1|) |#5| |#1|)) (-15 -4056 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -4056 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -4056 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -4056 ((-660 |#1|) |#5| |#1|)) (-15 -2687 ((-112) |#5| |#1|)) (-15 -2632 ((-112) |#1|)) (-15 -4381 ((-112) |#5| |#1|)) (-15 -2926 ((-112) |#5| |#1|)) (-15 -2632 ((-112) |#5| |#1|)) (-15 -1987 (|#1| |#1| |#5|))) -((-3489 (((-112) $ $) 7 T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) 86 T ELT)) (-1568 (((-660 $) (-660 |#4|)) 87 T ELT) (((-660 $) (-660 |#4|) (-112)) 112 T ELT)) (-3206 (((-660 |#3|) $) 34 T ELT)) (-1905 (((-112) $) 27 T ELT)) (-1421 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3924 ((|#4| |#4| $) 93 T ELT)) (-2001 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| $) 127 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-4403 (((-112) $ (-787)) 45 T ELT)) (-3730 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3790 (($) 46 T CONST)) (-4046 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) 37 T ELT)) (-2155 (($ (-660 |#4|)) 36 T ELT)) (-1663 (((-3 $ "failed") $) 83 T ELT)) (-2801 ((|#4| |#4| $) 90 T ELT)) (-3289 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3270 ((|#4| |#4| $) 88 T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) 106 T ELT)) (-2926 (((-112) |#4| $) 137 T ELT)) (-2687 (((-112) |#4| $) 134 T ELT)) (-2632 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-3692 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1940 ((|#3| $) 35 T ELT)) (-1821 (((-112) $ (-787)) 44 T ELT)) (-2434 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1365 (((-660 |#3|) $) 33 T ELT)) (-2639 (((-112) |#3| $) 32 T ELT)) (-3272 (((-112) $ (-787)) 43 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3650 (((-3 |#4| (-660 $)) |#4| |#4| $) 129 T ELT)) (-2048 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| |#4| $) 128 T ELT)) (-3942 (((-3 |#4| "failed") $) 84 T ELT)) (-3395 (((-660 $) |#4| $) 130 T ELT)) (-3343 (((-3 (-112) (-660 $)) |#4| $) 133 T ELT)) (-3422 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-4056 (((-660 $) |#4| $) 126 T ELT) (((-660 $) (-660 |#4|) $) 125 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 124 T ELT) (((-660 $) |#4| (-660 $)) 123 T ELT)) (-2346 (($ |#4| $) 118 T ELT) (($ (-660 |#4|) $) 117 T ELT)) (-3425 (((-660 |#4|) $) 108 T ELT)) (-4233 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1458 ((|#4| |#4| $) 91 T ELT)) (-2928 (((-112) $ $) 111 T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-2108 ((|#4| |#4| $) 92 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1652 (((-3 |#4| "failed") $) 85 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-1987 (($ $ |#4|) 78 T ELT) (((-660 $) |#4| $) 116 T ELT) (((-660 $) |#4| (-660 $)) 115 T ELT) (((-660 $) (-660 |#4|) $) 114 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 113 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) 39 T ELT)) (-2856 (((-112) $) 42 T ELT)) (-2693 (($) 41 T ELT)) (-3616 (((-787) $) 107 T ELT)) (-1452 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 40 T ELT)) (-2176 (((-549) $) 70 (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 61 T ELT)) (-3620 (($ $ |#3|) 29 T ELT)) (-2003 (($ $ |#3|) 31 T ELT)) (-3307 (($ $) 89 T ELT)) (-3344 (($ $ |#3|) 30 T ELT)) (-3603 (((-880) $) 12 T ELT) (((-660 |#4|) $) 38 T ELT)) (-2272 (((-787) $) 77 (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99 T ELT)) (-3575 (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) 82 T ELT)) (-4381 (((-112) |#4| $) 136 T ELT)) (-1401 (((-112) |#3| $) 81 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-787) $) 47 (|has| $ (-6 -4470)) ELT))) -(((-1096 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1096)) -((-2632 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2926 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-4381 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2687 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-3343 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 (-112) (-660 *1))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3422 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *1)))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3422 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-3395 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3650 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 *3 (-660 *1))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-2048 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *1)))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-2001 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *1)))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-4056 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-4056 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *7)))) (-4056 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)))) (-4056 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) (-3575 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3575 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) (-3575 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *7)))) (-3575 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)))) (-2346 (*1 *1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2346 (*1 *1 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)))) (-1987 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-1987 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) (-1987 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *7)))) (-1987 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)))) (-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *5 *6 *7 *8))))) -(-13 (-1235 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2632 ((-112) |t#4| $)) (-15 -2926 ((-112) |t#4| $)) (-15 -4381 ((-112) |t#4| $)) (-15 -2632 ((-112) $)) (-15 -2687 ((-112) |t#4| $)) (-15 -3343 ((-3 (-112) (-660 $)) |t#4| $)) (-15 -3422 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) |t#4| $)) (-15 -3422 ((-112) |t#4| $)) (-15 -3395 ((-660 $) |t#4| $)) (-15 -3650 ((-3 |t#4| (-660 $)) |t#4| |t#4| $)) (-15 -2048 ((-660 (-2 (|:| |val| |t#4|) (|:| -2002 $))) |t#4| |t#4| $)) (-15 -2001 ((-660 (-2 (|:| |val| |t#4|) (|:| -2002 $))) |t#4| $)) (-15 -4056 ((-660 $) |t#4| $)) (-15 -4056 ((-660 $) (-660 |t#4|) $)) (-15 -4056 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -4056 ((-660 $) |t#4| (-660 $))) (-15 -3575 ((-660 $) |t#4| $)) (-15 -3575 ((-660 $) |t#4| (-660 $))) (-15 -3575 ((-660 $) (-660 |t#4|) $)) (-15 -3575 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -2346 ($ |t#4| $)) (-15 -2346 ($ (-660 |t#4|) $)) (-15 -1987 ((-660 $) |t#4| $)) (-15 -1987 ((-660 $) |t#4| (-660 $))) (-15 -1987 ((-660 $) (-660 |t#4|) $)) (-15 -1987 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -1568 ((-660 $) (-660 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) -((-2371 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|) 86 T ELT)) (-2396 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|) 127 T ELT)) (-3814 (((-660 |#5|) |#4| |#5|) 74 T ELT)) (-2149 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-4128 (((-1297)) 36 T ELT)) (-2868 (((-1297)) 25 T ELT)) (-1339 (((-1297) (-1183) (-1183) (-1183)) 32 T ELT)) (-1941 (((-1297) (-1183) (-1183) (-1183)) 21 T ELT)) (-3476 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#4| |#4| |#5|) 107 T ELT)) (-2114 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#3| (-112)) 118 T ELT) (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-3831 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|) 113 T ELT))) -(((-1097 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1941 ((-1297) (-1183) (-1183) (-1183))) (-15 -2868 ((-1297))) (-15 -1339 ((-1297) (-1183) (-1183) (-1183))) (-15 -4128 ((-1297))) (-15 -3476 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2114 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2114 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#3| (-112))) (-15 -3831 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2396 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2149 ((-112) |#4| |#5|)) (-15 -2149 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3814 ((-660 |#5|) |#4| |#5|)) (-15 -2371 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1097)) -((-2371 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3814 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2149 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2149 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2396 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3831 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -2002 *9)))) (-5 *1 (-1097 *6 *7 *4 *8 *9)))) (-2114 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1097 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-3476 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-4128 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1339 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-2868 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1941 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(-10 -7 (-15 -1941 ((-1297) (-1183) (-1183) (-1183))) (-15 -2868 ((-1297))) (-15 -1339 ((-1297) (-1183) (-1183) (-1183))) (-15 -4128 ((-1297))) (-15 -3476 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2114 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2114 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#3| (-112))) (-15 -3831 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2396 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2149 ((-112) |#4| |#5|)) (-15 -2149 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3814 ((-660 |#5|) |#4| |#5|)) (-15 -2371 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3014 (((-1241) $) 13 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3201 (((-1160) $) 10 T ELT)) (-3603 (((-880) $) 20 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1098) (-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -3014 ((-1241) $))))) (T -1098)) -((-3201 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1098)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1098))))) -(-13 (-1108) (-10 -8 (-15 -3201 ((-1160) $)) (-15 -3014 ((-1241) $)))) -((-2007 (((-112) $ $) 7 T ELT))) -(((-1099) (-13 (-1242) (-10 -8 (-15 -2007 ((-112) $ $))))) (T -1099)) -((-2007 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1099))))) -(-13 (-1242) (-10 -8 (-15 -2007 ((-112) $ $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2668 (((-1201) $) 8 T ELT)) (-2045 (((-1183) $) 17 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 11 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 14 T ELT))) -(((-1100 |#1|) (-13 (-1125) (-10 -8 (-15 -2668 ((-1201) $)))) (-1201)) (T -1100)) -((-2668 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1100 *3)) (-14 *3 *2)))) -(-13 (-1125) (-10 -8 (-15 -2668 ((-1201) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1651 (($ $ (-660 (-1201)) (-1 (-112) (-660 |#3|))) 34 T ELT)) (-3640 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-660 (-1201))) 21 T ELT)) (-2171 ((|#3| $) 13 T ELT)) (-2784 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-2155 (((-305 |#3|) $) NIL T ELT)) (-2279 (((-660 (-1201)) $) 16 T ELT)) (-2798 (((-911 |#1|) $) 11 T ELT)) (-2159 ((|#3| $) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-944)) 41 T ELT)) (-3603 (((-880) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 38 T ELT))) -(((-1101 |#1| |#2| |#3|) (-13 (-1125) (-297 |#3| |#3|) (-1063 (-305 |#3|)) (-10 -8 (-15 -3640 ($ |#3| |#3|)) (-15 -3640 ($ |#3| |#3| (-660 (-1201)))) (-15 -1651 ($ $ (-660 (-1201)) (-1 (-112) (-660 |#3|)))) (-15 -2798 ((-911 |#1|) $)) (-15 -2159 (|#3| $)) (-15 -2171 (|#3| $)) (-15 -2837 (|#3| $ |#3| (-944))) (-15 -2279 ((-660 (-1201)) $)))) (-1125) (-13 (-1074) (-905 |#1|) (-627 (-911 |#1|))) (-13 (-443 |#2|) (-905 |#1|) (-627 (-911 |#1|)))) (T -1101)) -((-3640 (*1 *1 *2 *2) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1101 *3 *4 *2)) (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))))) (-3640 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1101 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) (-1651 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1 (-112) (-660 *6))) (-4 *6 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1101 *4 *5 *6)))) (-2798 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 *2))) (-5 *2 (-911 *3)) (-5 *1 (-1101 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 *2))))) (-2159 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1101 *3 *4 *2)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) (-2171 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1101 *3 *4 *2)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) (-2837 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-944)) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1101 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) (-2279 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-5 *2 (-660 (-1201))) (-5 *1 (-1101 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) -(-13 (-1125) (-297 |#3| |#3|) (-1063 (-305 |#3|)) (-10 -8 (-15 -3640 ($ |#3| |#3|)) (-15 -3640 ($ |#3| |#3| (-660 (-1201)))) (-15 -1651 ($ $ (-660 (-1201)) (-1 (-112) (-660 |#3|)))) (-15 -2798 ((-911 |#1|) $)) (-15 -2159 (|#3| $)) (-15 -2171 (|#3| $)) (-15 -2837 (|#3| $ |#3| (-944))) (-15 -2279 ((-660 (-1201)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1618 (($ (-660 (-1101 |#1| |#2| |#3|))) 14 T ELT)) (-3046 (((-660 (-1101 |#1| |#2| |#3|)) $) 21 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-944)) 27 T ELT)) (-3603 (((-880) $) 17 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 20 T ELT))) -(((-1102 |#1| |#2| |#3|) (-13 (-1125) (-297 |#3| |#3|) (-10 -8 (-15 -1618 ($ (-660 (-1101 |#1| |#2| |#3|)))) (-15 -3046 ((-660 (-1101 |#1| |#2| |#3|)) $)) (-15 -2837 (|#3| $ |#3| (-944))))) (-1125) (-13 (-1074) (-905 |#1|) (-627 (-911 |#1|))) (-13 (-443 |#2|) (-905 |#1|) (-627 (-911 |#1|)))) (T -1102)) -((-1618 (*1 *1 *2) (-12 (-5 *2 (-660 (-1101 *3 *4 *5))) (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1102 *3 *4 *5)))) (-3046 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-5 *2 (-660 (-1101 *3 *4 *5))) (-5 *1 (-1102 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))))) (-2837 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-944)) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1102 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4))))))) -(-13 (-1125) (-297 |#3| |#3|) (-10 -8 (-15 -1618 ($ (-660 (-1101 |#1| |#2| |#3|)))) (-15 -3046 ((-660 (-1101 |#1| |#2| |#3|)) $)) (-15 -2837 (|#3| $ |#3| (-944))))) -((-3984 (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)) 88 T ELT) (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|))) 92 T ELT) (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112)) 90 T ELT))) -(((-1103 |#1| |#2|) (-10 -7 (-15 -3984 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -3984 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -3984 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)))) (-13 (-318) (-148)) (-660 (-1201))) (T -1103)) -((-3984 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *4)) (|:| -2729 (-660 (-975 *4)))))) (-5 *1 (-1103 *4 *5)) (-5 *3 (-660 (-975 *4))) (-14 *5 (-660 (-1201))))) (-3984 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201)))))) -(-10 -7 (-15 -3984 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -3984 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -3984 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)))) -((-3056 (((-431 |#3|) |#3|) 18 T ELT))) -(((-1104 |#1| |#2| |#3|) (-10 -7 (-15 -3056 ((-431 |#3|) |#3|))) (-1268 (-420 (-577))) (-13 (-375) (-148) (-740 (-420 (-577)) |#1|)) (-1268 |#2|)) (T -1104)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-13 (-375) (-148) (-740 (-420 (-577)) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1104 *4 *5 *3)) (-4 *3 (-1268 *5))))) -(-10 -7 (-15 -3056 ((-431 |#3|) |#3|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 136 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-375)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4436 (((-705 |#1|) (-1292 $)) NIL T ELT) (((-705 |#1|)) 121 T ELT)) (-2219 ((|#1| $) 125 T ELT)) (-1570 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-361)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3373 (((-787)) 43 (|has| |#1| (-380)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-1911 (($ (-1292 |#1|) (-1292 $)) NIL T ELT) (($ (-1292 |#1|)) 46 T ELT)) (-2969 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)) ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2678 (((-705 |#1|) $ (-1292 $)) NIL T ELT) (((-705 |#1|) $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 113 T ELT) (((-705 |#1|) (-705 $)) 108 T ELT)) (-2498 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-420 |#2|)) NIL (|has| |#1| (-375)) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3503 (((-944)) 84 T ELT)) (-2352 (($) 47 (|has| |#1| (-380)) ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-1742 (($) NIL (|has| |#1| (-361)) ELT)) (-4402 (((-112) $) NIL (|has| |#1| (-361)) ELT)) (-1865 (($ $ (-787)) NIL (|has| |#1| (-361)) ELT) (($ $) NIL (|has| |#1| (-361)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2536 (((-944) $) NIL (|has| |#1| (-361)) ELT) (((-849 (-944)) $) NIL (|has| |#1| (-361)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-4021 ((|#1| $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-361)) ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-3810 ((|#2| $) 91 (|has| |#1| (-375)) ELT)) (-2144 (((-944) $) 145 (|has| |#1| (-380)) ELT)) (-2482 ((|#2| $) 62 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3457 (($) NIL (|has| |#1| (-361)) CONST)) (-3251 (($ (-944)) 135 (|has| |#1| (-380)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3428 (($) 127 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3017 (((-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577))))) NIL (|has| |#1| (-361)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4447 ((|#1| (-1292 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-3816 (((-787) $) NIL (|has| |#1| (-361)) ELT) (((-3 (-787) "failed") $ $) NIL (|has| |#1| (-361)) ELT)) (-3362 (($ $ (-787)) NIL (-2811 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) NIL (-2811 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL (|has| |#1| (-375)) ELT)) (-3285 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT)) (-1629 ((|#2|) 81 T ELT)) (-2932 (($) NIL (|has| |#1| (-361)) ELT)) (-2729 (((-1292 |#1|) $ (-1292 $)) 96 T ELT) (((-705 |#1|) (-1292 $) (-1292 $)) NIL T ELT) (((-1292 |#1|) $) 75 T ELT) (((-705 |#1|) (-1292 $)) 92 T ELT)) (-2176 (((-1292 |#1|) $) NIL T ELT) (($ (-1292 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-361)) ELT)) (-3603 (((-880) $) 61 T ELT) (($ (-577)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-2600 ((|#2| $) 89 T ELT)) (-1920 (((-787)) 83 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2559 (((-1292 $)) 88 T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2754 (($) 32 T CONST)) (-2767 (($) 19 T CONST)) (-2136 (($ $ (-787)) NIL (-2811 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) NIL (-2811 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL (|has| |#1| (-375)) ELT)) (-2949 (((-112) $ $) 67 T ELT)) (-3051 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 69 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT))) -(((-1105 |#1| |#2| |#3|) (-740 |#1| |#2|) (-174) (-1268 |#1|) |#2|) (T -1105)) -NIL -(-740 |#1| |#2|) -((-3056 (((-431 |#3|) |#3|) 19 T ELT))) -(((-1106 |#1| |#2| |#3|) (-10 -7 (-15 -3056 ((-431 |#3|) |#3|))) (-1268 (-420 (-975 (-577)))) (-13 (-375) (-148) (-740 (-420 (-975 (-577))) |#1|)) (-1268 |#2|)) (T -1106)) -((-3056 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 (-975 (-577))))) (-4 *5 (-13 (-375) (-148) (-740 (-420 (-975 (-577))) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1106 *4 *5 *3)) (-4 *3 (-1268 *5))))) -(-10 -7 (-15 -3056 ((-431 |#3|) |#3|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2900 (($ $ $) 16 T ELT)) (-1457 (($ $ $) 17 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2359 (($) 6 T ELT)) (-2176 (((-1201) $) 20 T ELT)) (-3603 (((-880) $) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 15 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 9 T ELT))) -(((-1107) (-13 (-865) (-627 (-1201)) (-10 -8 (-15 -2359 ($))))) (T -1107)) -((-2359 (*1 *1) (-5 *1 (-1107)))) -(-13 (-865) (-627 (-1201)) (-10 -8 (-15 -2359 ($)))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-1206)) 17 T ELT) (((-1206) $) 16 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-1108) (-141)) (T -1108)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3269 (((-665 (-577)) $) 73 T ELT)) (-2780 (($ (-665 (-577))) 81 T ELT)) (-1363 (((-577) $) 48 (|has| (-577) (-318)) ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) 60 T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) 57 (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) 60 (|has| (-577) (-1068 (-577))) ELT)) (-3783 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1424 (($) NIL (|has| (-577) (-558)) ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-2042 (((-665 (-577)) $) 79 T ELT)) (-4339 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL T ELT)) (-2417 (((-577) $) 45 T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-2649 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4417 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL T ELT)) (-2443 (($) NIL (|has| (-577) (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4378 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) 50 T ELT)) (-3863 (((-1187 (-577)) $) 78 T ELT)) (-3556 (($ (-665 (-577)) (-665 (-577))) 82 T ELT)) (-3941 (((-577) $) 64 (|has| (-577) (-558)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3373 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-4081 (((-792) $) NIL T ELT)) (-2916 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) 15 (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-1674 (($ $) NIL T ELT)) (-2429 (((-577) $) 47 T ELT)) (-1786 (((-665 (-577)) $) 80 T ELT)) (-4463 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-3709 (((-885) $) 107 T ELT) (($ (-577)) 51 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 27 T ELT) (($ (-577)) 51 T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) 25 T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3331 (((-792)) 13 T CONST)) (-2431 (((-577) $) 62 (|has| (-577) (-558)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2215 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2839 (($) 14 T CONST)) (-2853 (($) 17 T CONST)) (-2389 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-3078 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3018 (((-112) $ $) 21 T ELT)) (-3067 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-3042 (((-112) $ $) 40 (|has| (-577) (-870)) ELT)) (-3139 (($ $ $) 36 T ELT) (($ (-577) (-577)) 38 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3114 (($ $ $) 28 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ $ (-577)) NIL T ELT))) +(((-1034 |#1|) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -3269 ((-665 (-577)) $)) (-15 -3863 ((-1187 (-577)) $)) (-15 -2042 ((-665 (-577)) $)) (-15 -1786 ((-665 (-577)) $)) (-15 -2780 ($ (-665 (-577)))) (-15 -3556 ($ (-665 (-577)) (-665 (-577)))))) (-577)) (T -1034)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-3556 (*1 *1 *2 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) +(-13 (-1022 (-577)) (-631 (-420 (-577))) (-10 -8 (-15 -4378 ((-420 (-577)) $)) (-15 -3269 ((-665 (-577)) $)) (-15 -3863 ((-1187 (-577)) $)) (-15 -2042 ((-665 (-577)) $)) (-15 -1786 ((-665 (-577)) $)) (-15 -2780 ($ (-665 (-577)))) (-15 -3556 ($ (-665 (-577)) (-665 (-577)))))) +((-3322 (((-52) (-420 (-577)) (-577)) 9 T ELT))) +(((-1035) (-10 -7 (-15 -3322 ((-52) (-420 (-577)) (-577))))) (T -1035)) +((-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) (-5 *1 (-1035))))) +(-10 -7 (-15 -3322 ((-52) (-420 (-577)) (-577)))) +((-3005 (((-577)) 23 T ELT)) (-1485 (((-577)) 28 T ELT)) (-2995 (((-1302) (-577)) 26 T ELT)) (-2530 (((-577) (-577)) 29 T ELT) (((-577)) 22 T ELT))) +(((-1036) (-10 -7 (-15 -2530 ((-577))) (-15 -3005 ((-577))) (-15 -2530 ((-577) (-577))) (-15 -2995 ((-1302) (-577))) (-15 -1485 ((-577))))) (T -1036)) +((-1485 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1036)))) (-2530 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) (-3005 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) (-2530 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036))))) +(-10 -7 (-15 -2530 ((-577))) (-15 -3005 ((-577))) (-15 -2530 ((-577) (-577))) (-15 -2995 ((-1302) (-577))) (-15 -1485 ((-577)))) +((-3332 (((-431 |#1|) |#1|) 43 T ELT)) (-3759 (((-431 |#1|) |#1|) 41 T ELT))) +(((-1037 |#1|) (-10 -7 (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3332 ((-431 |#1|) |#1|))) (-1273 (-420 (-577)))) (T -1037)) +((-3332 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-420 (-577)))))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-420 (-577))))))) +(-10 -7 (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3332 ((-431 |#1|) |#1|))) +((-1902 (((-3 (-420 (-577)) "failed") |#1|) 15 T ELT)) (-1356 (((-112) |#1|) 14 T ELT)) (-4035 (((-420 (-577)) |#1|) 10 T ELT))) +(((-1038 |#1|) (-10 -7 (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|))) (-1068 (-420 (-577)))) (T -1038)) +((-1902 (*1 *2 *3) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2)))) (-1356 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1068 (-420 (-577)))))) (-4035 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2))))) +(-10 -7 (-15 -4035 ((-420 (-577)) |#1|)) (-15 -1356 ((-112) |#1|)) (-15 -1902 ((-3 (-420 (-577)) "failed") |#1|))) +((-1957 ((|#2| $ "value" |#2|) 12 T ELT)) (-2916 ((|#2| $ "value") 10 T ELT)) (-2256 (((-112) $ $) 18 T ELT))) +(((-1039 |#1| |#2|) (-10 -8 (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -2256 ((-112) |#1| |#1|)) (-15 -2916 (|#2| |#1| "value"))) (-1040 |#2|) (-1247)) (T -1039)) +NIL +(-10 -8 (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -2256 ((-112) |#1| |#1|)) (-15 -2916 (|#2| |#1| "value"))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2305 (($) 7 T CONST)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1040 |#1|) (-141) (-1247)) (T -1040)) +((-3217 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3)))) (-2680 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-2916 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-2625 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3)))) (-2409 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-577)))) (-2256 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-3977 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-1907 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *1)) (|has| *1 (-6 -4500)) (-4 *1 (-1040 *3)) (-4 *3 (-1247)))) (-1957 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-4450 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) (-4 *2 (-1247))))) +(-13 (-502 |t#1|) (-10 -8 (-15 -3217 ((-665 $) $)) (-15 -2680 ((-665 $) $)) (-15 -3188 ((-112) $)) (-15 -3254 (|t#1| $)) (-15 -2916 (|t#1| $ "value")) (-15 -2625 ((-112) $)) (-15 -3196 ((-665 |t#1|) $)) (-15 -2409 ((-577) $ $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -2256 ((-112) $ $)) (-15 -3977 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4500)) (PROGN (-15 -1907 ($ $ (-665 $))) (-15 -1957 (|t#1| $ "value" |t#1|)) (-15 -4450 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3770 (($ $) 9 T ELT) (($ $ (-949)) 49 T ELT) (($ (-420 (-577))) 13 T ELT) (($ (-577)) 15 T ELT)) (-1940 (((-3 $ "failed") (-1202 $) (-949) (-885)) 24 T ELT) (((-3 $ "failed") (-1202 $) (-949)) 32 T ELT)) (-3368 (($ $ (-577)) 58 T ELT)) (-3331 (((-792)) 18 T ELT)) (-4331 (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-1202 (-420 (-577)))) 63 T ELT) (((-665 $) (-1202 (-577))) 68 T ELT) (((-665 $) (-980 $)) 72 T ELT) (((-665 $) (-980 (-420 (-577)))) 76 T ELT) (((-665 $) (-980 (-577))) 80 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) 53 T ELT))) +(((-1041 |#1|) (-10 -8 (-15 -3770 (|#1| (-577))) (-15 -3770 (|#1| (-420 (-577)))) (-15 -3770 (|#1| |#1| (-949))) (-15 -4331 ((-665 |#1|) (-980 (-577)))) (-15 -4331 ((-665 |#1|) (-980 (-420 (-577))))) (-15 -4331 ((-665 |#1|) (-980 |#1|))) (-15 -4331 ((-665 |#1|) (-1202 (-577)))) (-15 -4331 ((-665 |#1|) (-1202 (-420 (-577))))) (-15 -4331 ((-665 |#1|) (-1202 |#1|))) (-15 -1940 ((-3 |#1| "failed") (-1202 |#1|) (-949))) (-15 -1940 ((-3 |#1| "failed") (-1202 |#1|) (-949) (-885))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -3368 (|#1| |#1| (-577))) (-15 -3770 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3331 ((-792))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) (-1042)) (T -1041)) +((-3331 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1041 *3)) (-4 *3 (-1042))))) +(-10 -8 (-15 -3770 (|#1| (-577))) (-15 -3770 (|#1| (-420 (-577)))) (-15 -3770 (|#1| |#1| (-949))) (-15 -4331 ((-665 |#1|) (-980 (-577)))) (-15 -4331 ((-665 |#1|) (-980 (-420 (-577))))) (-15 -4331 ((-665 |#1|) (-980 |#1|))) (-15 -4331 ((-665 |#1|) (-1202 (-577)))) (-15 -4331 ((-665 |#1|) (-1202 (-420 (-577))))) (-15 -4331 ((-665 |#1|) (-1202 |#1|))) (-15 -1940 ((-3 |#1| "failed") (-1202 |#1|) (-949))) (-15 -1940 ((-3 |#1| "failed") (-1202 |#1|) (-949) (-885))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -3368 (|#1| |#1| (-577))) (-15 -3770 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3331 ((-792))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 103 T ELT)) (-2261 (($ $) 104 T ELT)) (-2538 (((-112) $) 106 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 123 T ELT)) (-3206 (((-431 $) $) 124 T ELT)) (-3770 (($ $) 87 T ELT) (($ $ (-949)) 73 T ELT) (($ (-420 (-577))) 72 T ELT) (($ (-577)) 71 T ELT)) (-2495 (((-112) $ $) 114 T ELT)) (-2578 (((-577) $) 140 T ELT)) (-2305 (($) 18 T CONST)) (-1940 (((-3 $ "failed") (-1202 $) (-949) (-885)) 81 T ELT) (((-3 $ "failed") (-1202 $) (-949)) 80 T ELT)) (-4335 (((-3 (-577) "failed") $) 100 (|has| (-420 (-577)) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) 95 T ELT)) (-3783 (((-577) $) 99 (|has| (-420 (-577)) (-1068 (-577))) ELT) (((-420 (-577)) $) 97 (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-420 (-577)) $) 96 T ELT)) (-1617 (($ $ (-885)) 70 T ELT)) (-2980 (($ $ (-885)) 69 T ELT)) (-3531 (($ $ $) 118 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 117 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 112 T ELT)) (-3567 (((-112) $) 125 T ELT)) (-4339 (((-112) $) 138 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 86 T ELT)) (-2649 (((-112) $) 139 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 121 T ELT)) (-3237 (($ $ $) 132 T ELT)) (-2930 (($ $ $) 133 T ELT)) (-2366 (((-3 (-1202 $) "failed") $) 82 T ELT)) (-2845 (((-3 (-885) "failed") $) 84 T ELT)) (-2667 (((-3 (-1202 $) "failed") $) 83 T ELT)) (-3606 (($ (-665 $)) 110 T ELT) (($ $ $) 109 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 126 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 111 T ELT)) (-3642 (($ (-665 $)) 108 T ELT) (($ $ $) 107 T ELT)) (-3759 (((-431 $) $) 122 T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 119 T ELT)) (-3574 (((-3 $ "failed") $ $) 102 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 113 T ELT)) (-4081 (((-792) $) 115 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 116 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 130 T ELT) (($ $) 101 T ELT) (($ (-420 (-577))) 94 T ELT) (($ (-577)) 93 T ELT) (($ (-420 (-577))) 90 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 105 T ELT)) (-4215 (((-420 (-577)) $ $) 68 T ELT)) (-4331 (((-665 $) (-1202 $)) 79 T ELT) (((-665 $) (-1202 (-420 (-577)))) 78 T ELT) (((-665 $) (-1202 (-577))) 77 T ELT) (((-665 $) (-980 $)) 76 T ELT) (((-665 $) (-980 (-420 (-577)))) 75 T ELT) (((-665 $) (-980 (-577))) 74 T ELT)) (-2215 (($ $) 141 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3078 (((-112) $ $) 134 T ELT)) (-3054 (((-112) $ $) 136 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 135 T ELT)) (-3042 (((-112) $ $) 137 T ELT)) (-3139 (($ $ $) 131 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 127 T ELT) (($ $ (-420 (-577))) 85 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-420 (-577)) $) 129 T ELT) (($ $ (-420 (-577))) 128 T ELT) (($ (-577) $) 92 T ELT) (($ $ (-577)) 91 T ELT) (($ (-420 (-577)) $) 89 T ELT) (($ $ (-420 (-577))) 88 T ELT))) +(((-1042) (-141)) (T -1042)) +((-3770 (*1 *1 *1) (-4 *1 (-1042))) (-2845 (*1 *2 *1) (|partial| -12 (-4 *1 (-1042)) (-5 *2 (-885)))) (-2667 (*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042)))) (-2366 (*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042)))) (-1940 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-5 *4 (-885)) (-4 *1 (-1042)))) (-1940 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-4 *1 (-1042)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1202 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-949)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1042)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1042)))) (-1617 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885)))) (-2980 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885)))) (-4215 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-420 (-577)))))) +(-13 (-148) (-869) (-174) (-375) (-424 (-420 (-577))) (-38 (-577)) (-38 (-420 (-577))) (-1032) (-10 -8 (-15 -2845 ((-3 (-885) "failed") $)) (-15 -2667 ((-3 (-1202 $) "failed") $)) (-15 -2366 ((-3 (-1202 $) "failed") $)) (-15 -1940 ((-3 $ "failed") (-1202 $) (-949) (-885))) (-15 -1940 ((-3 $ "failed") (-1202 $) (-949))) (-15 -4331 ((-665 $) (-1202 $))) (-15 -4331 ((-665 $) (-1202 (-420 (-577))))) (-15 -4331 ((-665 $) (-1202 (-577)))) (-15 -4331 ((-665 $) (-980 $))) (-15 -4331 ((-665 $) (-980 (-420 (-577))))) (-15 -4331 ((-665 $) (-980 (-577)))) (-15 -3770 ($ $ (-949))) (-15 -3770 ($ $)) (-15 -3770 ($ (-420 (-577)))) (-15 -3770 ($ (-577))) (-15 -1617 ($ $ (-885))) (-15 -2980 ($ $ (-885))) (-15 -4215 ((-420 (-577)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 #1=(-577)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-424 (-420 (-577))) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 #1#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 #1#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 #1#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-948) . T) ((-1032) . T) ((-1068 (-420 (-577))) . T) ((-1068 (-577)) |has| (-420 (-577)) (-1068 (-577))) ((-1081 #0#) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-3178 (((-2 (|:| |ans| |#2|) (|:| -3352 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT))) +(((-1043 |#1| |#2|) (-10 -7 (-15 -3178 ((-2 (|:| |ans| |#2|) (|:| -3352 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-27) (-443 |#1|))) (T -1043)) +((-3178 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1206)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-665 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3398 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1232) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3352 *4) (|:| |sol?| (-112)))) (-5 *1 (-1043 *8 *4))))) +(-10 -7 (-15 -3178 ((-2 (|:| |ans| |#2|) (|:| -3352 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-4131 (((-3 (-665 |#2|) "failed") (-577) |#2| |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT))) +(((-1044 |#1| |#2|) (-10 -7 (-15 -4131 ((-3 (-665 |#2|) "failed") (-577) |#2| |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-27) (-443 |#1|))) (T -1044)) +((-4131 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1206)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-665 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3398 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1232) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) (-5 *2 (-665 *4)) (-5 *1 (-1044 *8 *4))))) +(-10 -7 (-15 -4131 ((-3 (-665 |#2|) "failed") (-577) |#2| |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -3398 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-4091 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2281 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)) 38 T ELT)) (-4369 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2899 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 69 T ELT)) (-1557 (((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|)) 74 T ELT))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -4369 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2899 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1557 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -4091 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2281 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) (-13 (-375) (-148) (-1068 (-577))) (-1273 |#1|)) (T -1045)) +((-4091 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) (-4 *6 (-13 (-375) (-148) (-1068 *4))) (-5 *4 (-577)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2281 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1045 *6 *3)))) (-1557 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1045 *4 *5)) (-5 *3 (-420 *5)))) (-4369 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) (|:| -2899 *6))) (-5 *1 (-1045 *5 *6)) (-5 *3 (-420 *6))))) +(-10 -7 (-15 -4369 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2899 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1557 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -4091 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2281 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) +((-3154 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2899 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-2076 (((-3 (-665 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 34 T ELT))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -3154 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2899 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -2076 ((-3 (-665 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) (-13 (-375) (-148) (-1068 (-577))) (-1273 |#1|)) (T -1046)) +((-2076 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-420 *5))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-420 *5)))) (-3154 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -2899 *6))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-420 *6))))) +(-10 -7 (-15 -3154 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2899 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -2076 ((-3 (-665 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) +((-2614 (((-1 |#1|) (-665 (-2 (|:| -3254 |#1|) (|:| -2163 (-577))))) 34 T ELT)) (-2252 (((-1 |#1|) (-1132 |#1|)) 42 T ELT)) (-2735 (((-1 |#1|) (-1297 |#1|) (-1297 (-577)) (-577)) 31 T ELT))) +(((-1047 |#1|) (-10 -7 (-15 -2252 ((-1 |#1|) (-1132 |#1|))) (-15 -2614 ((-1 |#1|) (-665 (-2 (|:| -3254 |#1|) (|:| -2163 (-577)))))) (-15 -2735 ((-1 |#1|) (-1297 |#1|) (-1297 (-577)) (-577)))) (-1130)) (T -1047)) +((-2735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-577))) (-5 *5 (-577)) (-4 *6 (-1130)) (-5 *2 (-1 *6)) (-5 *1 (-1047 *6)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3254 *4) (|:| -2163 (-577))))) (-4 *4 (-1130)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-1130)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4))))) +(-10 -7 (-15 -2252 ((-1 |#1|) (-1132 |#1|))) (-15 -2614 ((-1 |#1|) (-665 (-2 (|:| -3254 |#1|) (|:| -2163 (-577)))))) (-15 -2735 ((-1 |#1|) (-1297 |#1|) (-1297 (-577)) (-577)))) +((-4030 (((-792) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4030 ((-792) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-13 (-380) (-375))) (T -1048)) +((-4030 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) (-4 *9 (-13 (-380) (-375))) (-5 *2 (-792)) (-5 *1 (-1048 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4030 ((-792) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3706 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-1165) $) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1049) (-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -2773 ((-1165) $))))) (T -1049)) +((-3706 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049))))) +(-13 (-1113) (-10 -8 (-15 -3706 ((-1165) $)) (-15 -2773 ((-1165) $)))) +((-2109 (((-3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) "failed") |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) 32 T ELT) (((-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577))) 29 T ELT)) (-3668 (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577))) 34 T ELT) (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-420 (-577))) 30 T ELT) (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) 33 T ELT) (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1|) 28 T ELT)) (-2617 (((-665 (-420 (-577))) (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) 20 T ELT)) (-3014 (((-420 (-577)) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) 17 T ELT))) +(((-1050 |#1|) (-10 -7 (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1|)) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) "failed") |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -3014 ((-420 (-577)) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -2617 ((-665 (-420 (-577))) (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))))) (-1273 (-577))) (T -1050)) +((-2617 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-5 *2 (-665 (-420 (-577)))) (-5 *1 (-1050 *4)) (-4 *4 (-1273 (-577))))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) (-5 *2 (-420 (-577))) (-5 *1 (-1050 *4)) (-4 *4 (-1273 (-577))))) (-2109 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) (-2109 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) (-3668 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-665 (-2 (|:| -3337 *5) (|:| -3352 *5)))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-2 (|:| -3337 *5) (|:| -3352 *5))))) (-3668 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-420 (-577))))) (-3668 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) (-3668 (*1 *2 *3) (-12 (-5 *2 (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577)))))) +(-10 -7 (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1|)) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) "failed") |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -3014 ((-420 (-577)) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -2617 ((-665 (-420 (-577))) (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))))) +((-2109 (((-3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) "failed") |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) 35 T ELT) (((-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577))) 32 T ELT)) (-3668 (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577))) 30 T ELT) (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-420 (-577))) 26 T ELT) (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) 28 T ELT) (((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1|) 24 T ELT))) +(((-1051 |#1|) (-10 -7 (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1|)) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) "failed") |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) (-1273 (-420 (-577)))) (T -1051)) +((-2109 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))))) (-2109 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *4)))) (-3668 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-665 (-2 (|:| -3337 *5) (|:| -3352 *5)))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -3337 *5) (|:| -3352 *5))))) (-3668 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-5 *2 (-665 (-2 (|:| -3337 *4) (|:| -3352 *4)))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *4)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))) (-5 *4 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) (-3668 (*1 *2 *3) (-12 (-5 *2 (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577))))))) +(-10 -7 (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1|)) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3668 ((-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-420 (-577)))) (-15 -2109 ((-3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) "failed") |#1| (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))) (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) +((-4463 (((-228) $) 6 T ELT) (((-391) $) 9 T ELT))) +(((-1052) (-141)) (T -1052)) +NIL +(-13 (-632 (-228)) (-632 (-391))) +(((-632 (-228)) . T) ((-632 (-391)) . T)) +((-2205 (((-665 (-391)) (-980 (-577)) (-391)) 28 T ELT) (((-665 (-391)) (-980 (-420 (-577))) (-391)) 27 T ELT)) (-4190 (((-665 (-665 (-391))) (-665 (-980 (-577))) (-665 (-1206)) (-391)) 37 T ELT))) +(((-1053) (-10 -7 (-15 -2205 ((-665 (-391)) (-980 (-420 (-577))) (-391))) (-15 -2205 ((-665 (-391)) (-980 (-577)) (-391))) (-15 -4190 ((-665 (-665 (-391))) (-665 (-980 (-577))) (-665 (-1206)) (-391))))) (T -1053)) +((-4190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 (-391)))) (-5 *1 (-1053)) (-5 *5 (-391)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 (-391))) (-5 *1 (-1053)) (-5 *4 (-391)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 (-391))) (-5 *1 (-1053)) (-5 *4 (-391))))) +(-10 -7 (-15 -2205 ((-665 (-391)) (-980 (-420 (-577))) (-391))) (-15 -2205 ((-665 (-391)) (-980 (-577)) (-391))) (-15 -4190 ((-665 (-665 (-391))) (-665 (-980 (-577))) (-665 (-1206)) (-391)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 75 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-3770 (($ $) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) 70 T ELT)) (-2305 (($) NIL T CONST)) (-1940 (((-3 $ "failed") (-1202 $) (-949) (-885)) NIL T ELT) (((-3 $ "failed") (-1202 $) (-949)) 55 T ELT)) (-4335 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 116 T ELT) (((-3 (-577) "failed") $) NIL (-2867 (|has| (-420 (-577)) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT)) (-3783 (((-420 (-577)) $) 17 (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-420 (-577)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-577) $) NIL (-2867 (|has| (-420 (-577)) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT)) (-1617 (($ $ (-885)) 47 T ELT)) (-2980 (($ $ (-885)) 48 T ELT)) (-3531 (($ $ $) NIL T ELT)) (-4078 (((-420 (-577)) $ $) 21 T ELT)) (-3167 (((-3 $ "failed") $) 88 T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-4339 (((-112) $) 66 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL T ELT)) (-2649 (((-112) $) 69 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-2366 (((-3 (-1202 $) "failed") $) 83 T ELT)) (-2845 (((-3 (-885) "failed") $) 82 T ELT)) (-2667 (((-3 (-1202 $) "failed") $) 80 T ELT)) (-1534 (((-3 (-1091 $ (-1202 $)) "failed") $) 78 T ELT)) (-3606 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 89 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3709 (((-885) $) 87 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) 63 T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-4215 (((-420 (-577)) $ $) 27 T ELT)) (-4331 (((-665 $) (-1202 $)) 61 T ELT) (((-665 $) (-1202 (-420 (-577)))) NIL T ELT) (((-665 $) (-1202 (-577))) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT) (((-665 $) (-980 (-420 (-577)))) NIL T ELT) (((-665 $) (-980 (-577))) NIL T ELT)) (-1964 (($ (-1091 $ (-1202 $)) (-885)) 46 T ELT)) (-2215 (($ $) 22 T ELT)) (-2839 (($) 32 T CONST)) (-2853 (($) 39 T CONST)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 76 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 24 T ELT)) (-3139 (($ $ $) 37 T ELT)) (-3128 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3114 (($ $ $) 112 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-577) $) 98 T ELT) (($ $ (-577)) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1054 |#1|) (-13 (-1042) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -1964 ($ (-1091 $ (-1202 $)) (-885))) (-15 -1534 ((-3 (-1091 $ (-1202 $)) "failed") $)) (-15 -4078 ((-420 (-577)) $ $)))) (-13 (-869) (-375) (-1052))) (T -1054)) +((-1964 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 (-1054 *4) (-1202 (-1054 *4)))) (-5 *3 (-885)) (-5 *1 (-1054 *4)) (-4 *4 (-13 (-869) (-375) (-1052))))) (-1534 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091 (-1054 *3) (-1202 (-1054 *3)))) (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-375) (-1052))))) (-4078 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-375) (-1052)))))) +(-13 (-1042) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -1964 ($ (-1091 $ (-1202 $)) (-885))) (-15 -1534 ((-3 (-1091 $ (-1202 $)) "failed") $)) (-15 -4078 ((-420 (-577)) $ $)))) +((-4224 (((-2 (|:| -2281 |#2|) (|:| -1868 (-665 |#1|))) |#2| (-665 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-1055 |#1| |#2|) (-10 -7 (-15 -4224 (|#2| |#2| |#1|)) (-15 -4224 ((-2 (|:| -2281 |#2|) (|:| -1868 (-665 |#1|))) |#2| (-665 |#1|)))) (-375) (-677 |#1|)) (T -1055)) +((-4224 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -2281 *3) (|:| -1868 (-665 *5)))) (-5 *1 (-1055 *5 *3)) (-5 *4 (-665 *5)) (-4 *3 (-677 *5)))) (-4224 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-1055 *3 *2)) (-4 *2 (-677 *3))))) +(-10 -7 (-15 -4224 (|#2| |#2| |#1|)) (-15 -4224 ((-2 (|:| -2281 |#2|) (|:| -1868 (-665 |#1|))) |#2| (-665 |#1|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3713 ((|#1| $ |#1|) 14 T ELT)) (-1957 ((|#1| $ |#1|) 12 T ELT)) (-3504 (($ |#1|) 10 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2916 ((|#1| $) 11 T ELT)) (-2390 ((|#1| $) 13 T ELT)) (-3709 (((-885) $) 21 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3018 (((-112) $ $) 9 T ELT))) +(((-1056 |#1|) (-13 (-1247) (-10 -8 (-15 -3504 ($ |#1|)) (-15 -2916 (|#1| $)) (-15 -1957 (|#1| $ |#1|)) (-15 -2390 (|#1| $)) (-15 -3713 (|#1| $ |#1|)) (-15 -3018 ((-112) $ $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) (-1247)) (T -1056)) +((-3504 (*1 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-2916 (*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-1957 (*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-2390 (*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-3713 (*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-3018 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1056 *3)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -3504 ($ |#1|)) (-15 -2916 (|#1| $)) (-15 -1957 (|#1| $ |#1|)) (-15 -2390 (|#1| $)) (-15 -3713 (|#1| $ |#1|)) (-15 -3018 ((-112) $ $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-1795 (((-665 $) (-665 |#4|)) 118 T ELT) (((-665 $) (-665 |#4|) (-112)) 119 T ELT) (((-665 $) (-665 |#4|) (-112) (-112)) 117 T ELT) (((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112)) 120 T ELT)) (-3891 (((-665 |#3|) $) NIL T ELT)) (-1507 (((-112) $) NIL T ELT)) (-2221 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3800 ((|#4| |#4| $) NIL T ELT)) (-2612 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| $) 112 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1440 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 66 T ELT)) (-2305 (($) NIL T CONST)) (-1603 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3783 (($ (-665 |#4|)) NIL T ELT)) (-4410 (((-3 $ "failed") $) 45 T ELT)) (-3145 ((|#4| |#4| $) 69 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4004 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3947 ((|#4| |#4| $) NIL T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) NIL T ELT)) (-3020 (((-112) |#4| $) NIL T ELT)) (-4005 (((-112) |#4| $) NIL T ELT)) (-1753 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4433 (((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112)) 133 T ELT)) (-2118 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1429 ((|#3| $) 38 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#4|) $) 19 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1683 (((-665 |#3|) $) NIL T ELT)) (-3692 (((-112) |#3| $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3036 (((-3 |#4| (-665 $)) |#4| |#4| $) NIL T ELT)) (-4045 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| |#4| $) 110 T ELT)) (-4026 (((-3 |#4| "failed") $) 42 T ELT)) (-1955 (((-665 $) |#4| $) 93 T ELT)) (-1377 (((-3 (-112) (-665 $)) |#4| $) NIL T ELT)) (-3132 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) |#4| $) 103 T ELT) (((-112) |#4| $) 64 T ELT)) (-1565 (((-665 $) |#4| $) 115 T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 116 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT)) (-1396 (((-665 $) (-665 |#4|) (-112) (-112) (-112)) 128 T ELT)) (-1963 (($ |#4| $) 82 T ELT) (($ (-665 |#4|) $) 83 T ELT) (((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79 T ELT)) (-1602 (((-665 |#4|) $) NIL T ELT)) (-1768 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2477 ((|#4| |#4| $) NIL T ELT)) (-2852 (((-112) $ $) NIL T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3881 ((|#4| |#4| $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-3 |#4| "failed") $) 40 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-2568 (($ $ |#4|) NIL T ELT) (((-665 $) |#4| $) 95 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 89 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 17 T ELT)) (-2833 (($) 14 T ELT)) (-1597 (((-792) $) NIL T ELT)) (-1481 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 22 T ELT)) (-1336 (($ $ |#3|) 52 T ELT)) (-3076 (($ $ |#3|) 54 T ELT)) (-2138 (($ $) NIL T ELT)) (-2951 (($ $ |#3|) NIL T ELT)) (-3709 (((-885) $) 35 T ELT) (((-665 |#4|) $) 46 T ELT)) (-3534 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-4197 (((-665 $) |#4| $) 92 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) NIL T ELT)) (-2259 (((-112) |#4| $) NIL T ELT)) (-2066 (((-112) |#3| $) 65 T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1057 |#1| |#2| |#3| |#4|) (-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1963 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1396 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -4433 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1057)) +((-1963 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *3))) (-5 *1 (-1057 *5 *6 *7 *3)) (-4 *3 (-1095 *5 *6 *7)))) (-1795 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-1795 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-1396 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-4433 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-665 *8)) (|:| |towers| (-665 (-1057 *5 *6 *7 *8))))) (-5 *1 (-1057 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) +(-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1963 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1396 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -4433 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) +((-3673 (((-665 (-710 |#1|)) (-665 (-710 |#1|))) 70 T ELT) (((-710 |#1|) (-710 |#1|)) 69 T ELT) (((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-665 (-710 |#1|))) 68 T ELT) (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 65 T ELT)) (-3439 (((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949)) 63 T ELT) (((-710 |#1|) (-710 |#1|) (-949)) 62 T ELT)) (-1592 (((-665 (-710 (-577))) (-665 (-665 (-577)))) 81 T ELT) (((-665 (-710 (-577))) (-665 (-933 (-577))) (-577)) 80 T ELT) (((-710 (-577)) (-665 (-577))) 77 T ELT) (((-710 (-577)) (-933 (-577)) (-577)) 75 T ELT)) (-2434 (((-710 (-980 |#1|)) (-792)) 95 T ELT)) (-1550 (((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949)) 49 (|has| |#1| (-6 (-4501 "*"))) ELT) (((-710 |#1|) (-710 |#1|) (-949)) 47 (|has| |#1| (-6 (-4501 "*"))) ELT))) +(((-1058 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1550 ((-710 |#1|) (-710 |#1|) (-949))) |%noBranch|) (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1550 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) |%noBranch|) (-15 -2434 ((-710 (-980 |#1|)) (-792))) (-15 -3439 ((-710 |#1|) (-710 |#1|) (-949))) (-15 -3439 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) (-15 -3673 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -3673 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3673 ((-710 |#1|) (-710 |#1|))) (-15 -3673 ((-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -1592 ((-710 (-577)) (-933 (-577)) (-577))) (-15 -1592 ((-710 (-577)) (-665 (-577)))) (-15 -1592 ((-665 (-710 (-577))) (-665 (-933 (-577))) (-577))) (-15 -1592 ((-665 (-710 (-577))) (-665 (-665 (-577)))))) (-1079)) (T -1058)) +((-1592 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-577)))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-1058 *4)) (-4 *4 (-1079)))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-933 (-577)))) (-5 *4 (-577)) (-5 *2 (-665 (-710 *4))) (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1058 *4)) (-4 *4 (-1079)))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-933 (-577))) (-5 *4 (-577)) (-5 *2 (-710 *4)) (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-3673 (*1 *2 *2 *2) (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-3673 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-3439 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) (-3439 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-710 (-980 *4))) (-5 *1 (-1058 *4)) (-4 *4 (-1079)))) (-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) (|has| *4 (-6 (-4501 "*"))) (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) (-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (|has| *4 (-6 (-4501 "*"))) (-4 *4 (-1079)) (-5 *1 (-1058 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1550 ((-710 |#1|) (-710 |#1|) (-949))) |%noBranch|) (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1550 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) |%noBranch|) (-15 -2434 ((-710 (-980 |#1|)) (-792))) (-15 -3439 ((-710 |#1|) (-710 |#1|) (-949))) (-15 -3439 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) (-15 -3673 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -3673 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3673 ((-710 |#1|) (-710 |#1|))) (-15 -3673 ((-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -1592 ((-710 (-577)) (-933 (-577)) (-577))) (-15 -1592 ((-710 (-577)) (-665 (-577)))) (-15 -1592 ((-665 (-710 (-577))) (-665 (-933 (-577))) (-577))) (-15 -1592 ((-665 (-710 (-577))) (-665 (-665 (-577)))))) +((-2101 (((-710 |#1|) (-665 (-710 |#1|)) (-1297 |#1|)) 70 (|has| |#1| (-318)) ELT)) (-4452 (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 (-1297 |#1|))) 110 (|has| |#1| (-375)) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 |#1|)) 117 (|has| |#1| (-375)) ELT)) (-3648 (((-1297 |#1|) (-665 (-1297 |#1|)) (-577)) 135 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT)) (-4401 (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-949)) 123 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112)) 122 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|))) 121 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112) (-577) (-577)) 120 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT)) (-3393 (((-112) (-665 (-710 |#1|))) 103 (|has| |#1| (-375)) ELT) (((-112) (-665 (-710 |#1|)) (-577)) 106 (|has| |#1| (-375)) ELT)) (-3444 (((-1297 (-1297 |#1|)) (-665 (-710 |#1|)) (-1297 |#1|)) 67 (|has| |#1| (-318)) ELT)) (-3742 (((-710 |#1|) (-665 (-710 |#1|)) (-710 |#1|)) 47 T ELT)) (-4218 (((-710 |#1|) (-1297 (-1297 |#1|))) 40 T ELT)) (-2206 (((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-577)) 94 (|has| |#1| (-375)) ELT) (((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|))) 93 (|has| |#1| (-375)) ELT) (((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-112) (-577)) 101 (|has| |#1| (-375)) ELT))) +(((-1059 |#1|) (-10 -7 (-15 -4218 ((-710 |#1|) (-1297 (-1297 |#1|)))) (-15 -3742 ((-710 |#1|) (-665 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -3444 ((-1297 (-1297 |#1|)) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -2101 ((-710 |#1|) (-665 (-710 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -2206 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-112) (-577))) (-15 -2206 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -2206 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-577))) (-15 -3393 ((-112) (-665 (-710 |#1|)) (-577))) (-15 -3393 ((-112) (-665 (-710 |#1|)))) (-15 -4452 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -4452 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112) (-577) (-577))) (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)))) (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112))) (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-949))) (-15 -3648 ((-1297 |#1|) (-665 (-1297 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) (-1079)) (T -1059)) +((-3648 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1297 *5))) (-5 *4 (-577)) (-5 *2 (-1297 *5)) (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-4401 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1079)) (-5 *2 (-665 (-665 (-710 *4)))) (-5 *1 (-1059 *4)) (-5 *3 (-665 (-710 *4))))) (-4401 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) (-4 *6 (-1079)) (-5 *2 (-665 (-665 (-710 *6)))) (-5 *1 (-1059 *6)) (-5 *3 (-665 (-710 *6))))) (-4452 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-4452 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) (-4 *4 (-1079)) (-5 *2 (-112)) (-5 *1 (-1059 *4)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-112)) (-5 *1 (-1059 *5)))) (-2206 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-5 *2 (-710 *5)) (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-1079)))) (-2206 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-375)) (-4 *4 (-1079)))) (-2206 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-665 (-710 *6))) (-5 *4 (-112)) (-5 *5 (-577)) (-5 *2 (-710 *6)) (-5 *1 (-1059 *6)) (-4 *6 (-375)) (-4 *6 (-1079)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-318)) (-4 *5 (-1079)) (-5 *2 (-710 *5)) (-5 *1 (-1059 *5)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-4 *5 (-318)) (-4 *5 (-1079)) (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1059 *5)) (-5 *4 (-1297 *5)))) (-3742 (*1 *2 *3 *2) (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-4 *4 (-1079)) (-5 *1 (-1059 *4)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1079)) (-5 *2 (-710 *4)) (-5 *1 (-1059 *4))))) +(-10 -7 (-15 -4218 ((-710 |#1|) (-1297 (-1297 |#1|)))) (-15 -3742 ((-710 |#1|) (-665 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -3444 ((-1297 (-1297 |#1|)) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -2101 ((-710 |#1|) (-665 (-710 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -2206 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-112) (-577))) (-15 -2206 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -2206 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-577))) (-15 -3393 ((-112) (-665 (-710 |#1|)) (-577))) (-15 -3393 ((-112) (-665 (-710 |#1|)))) (-15 -4452 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -4452 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112) (-577) (-577))) (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)))) (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112))) (-15 -4401 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-949))) (-15 -3648 ((-1297 |#1|) (-665 (-1297 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) +((-2936 ((|#1| (-949) |#1|) 18 T ELT))) +(((-1060 |#1|) (-10 -7 (-15 -2936 (|#1| (-949) |#1|))) (-13 (-1130) (-10 -8 (-15 -3114 ($ $ $))))) (T -1060)) +((-2936 (*1 *2 *3 *2) (-12 (-5 *3 (-949)) (-5 *1 (-1060 *2)) (-4 *2 (-13 (-1130) (-10 -8 (-15 -3114 ($ $ $)))))))) +(-10 -7 (-15 -2936 (|#1| (-949) |#1|))) +((-2095 (((-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577))))))) (-710 (-420 (-980 (-577))))) 67 T ELT)) (-3821 (((-665 (-710 (-327 (-577)))) (-327 (-577)) (-710 (-420 (-980 (-577))))) 52 T ELT)) (-2471 (((-665 (-327 (-577))) (-710 (-420 (-980 (-577))))) 45 T ELT)) (-2706 (((-665 (-710 (-327 (-577)))) (-710 (-420 (-980 (-577))))) 85 T ELT)) (-2942 (((-710 (-327 (-577))) (-710 (-327 (-577)))) 38 T ELT)) (-4180 (((-665 (-710 (-327 (-577)))) (-665 (-710 (-327 (-577))))) 74 T ELT)) (-4281 (((-3 (-710 (-327 (-577))) "failed") (-710 (-420 (-980 (-577))))) 82 T ELT))) +(((-1061) (-10 -7 (-15 -2095 ((-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577))))))) (-710 (-420 (-980 (-577)))))) (-15 -3821 ((-665 (-710 (-327 (-577)))) (-327 (-577)) (-710 (-420 (-980 (-577)))))) (-15 -2471 ((-665 (-327 (-577))) (-710 (-420 (-980 (-577)))))) (-15 -4281 ((-3 (-710 (-327 (-577))) "failed") (-710 (-420 (-980 (-577)))))) (-15 -2942 ((-710 (-327 (-577))) (-710 (-327 (-577))))) (-15 -4180 ((-665 (-710 (-327 (-577)))) (-665 (-710 (-327 (-577)))))) (-15 -2706 ((-665 (-710 (-327 (-577)))) (-710 (-420 (-980 (-577)))))))) (T -1061)) +((-2706 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061)))) (-4281 (*1 *2 *3) (|partial| -12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-327 (-577)))) (-5 *1 (-1061)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *4 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)) (-5 *3 (-327 (-577))))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577)))))))) (-5 *1 (-1061))))) +(-10 -7 (-15 -2095 ((-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577))))))) (-710 (-420 (-980 (-577)))))) (-15 -3821 ((-665 (-710 (-327 (-577)))) (-327 (-577)) (-710 (-420 (-980 (-577)))))) (-15 -2471 ((-665 (-327 (-577))) (-710 (-420 (-980 (-577)))))) (-15 -4281 ((-3 (-710 (-327 (-577))) "failed") (-710 (-420 (-980 (-577)))))) (-15 -2942 ((-710 (-327 (-577))) (-710 (-327 (-577))))) (-15 -4180 ((-665 (-710 (-327 (-577)))) (-665 (-710 (-327 (-577)))))) (-15 -2706 ((-665 (-710 (-327 (-577)))) (-710 (-420 (-980 (-577))))))) +((-3850 ((|#1| |#1| (-949)) 18 T ELT))) +(((-1062 |#1|) (-10 -7 (-15 -3850 (|#1| |#1| (-949)))) (-13 (-1130) (-10 -8 (-15 * ($ $ $))))) (T -1062)) +((-3850 (*1 *2 *2 *3) (-12 (-5 *3 (-949)) (-5 *1 (-1062 *2)) (-4 *2 (-13 (-1130) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3850 (|#1| |#1| (-949)))) +((-3709 ((|#1| (-323)) 11 T ELT) (((-1302) |#1|) 9 T ELT))) +(((-1063 |#1|) (-10 -7 (-15 -3709 ((-1302) |#1|)) (-15 -3709 (|#1| (-323)))) (-1247)) (T -1063)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1063 *2)) (-4 *2 (-1247)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-1302)) (-5 *1 (-1063 *3)) (-4 *3 (-1247))))) +(-10 -7 (-15 -3709 ((-1302) |#1|)) (-15 -3709 (|#1| (-323)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2060 (($ |#4|) 25 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2047 ((|#4| $) 27 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 46 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3331 (((-792)) 43 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 21 T CONST)) (-2853 (($) 23 T CONST)) (-3018 (((-112) $ $) 40 T ELT)) (-3128 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 29 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1064 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2060 ($ |#4|)) (-15 -3709 ($ |#4|)) (-15 -2047 (|#4| $)))) (-375) (-814) (-870) (-977 |#1| |#2| |#3|) (-665 |#4|)) (T -1064)) +((-2060 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) (-14 *6 (-665 *2)))) (-3709 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) (-14 *6 (-665 *2)))) (-2047 (*1 *2 *1) (-12 (-4 *2 (-977 *3 *4 *5)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-14 *6 (-665 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2060 ($ |#4|)) (-15 -3709 ($ |#4|)) (-15 -2047 (|#4| $)))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL T ELT)) (-1935 (((-1302) $ (-1206) (-1206)) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4154 (((-112) (-112)) 43 T ELT)) (-4189 (((-112) (-112)) 42 T ELT)) (-1957 (((-52) $ (-1206) (-52)) NIL T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 (-52) "failed") (-1206) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-52) "failed") (-1206) $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 (((-52) $ (-1206) (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-4353 (((-52) $ (-1206)) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-1425 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-52) (-1130)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT)) (-4001 (((-665 (-1206)) $) 37 T ELT)) (-4065 (((-112) (-1206) $) NIL T ELT)) (-2786 (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL T ELT)) (-2233 (((-665 (-1206)) $) NIL T ELT)) (-3972 (((-112) (-1206) $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-52) (-1130)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT)) (-4397 (((-52) $) NIL (|has| (-1206) (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) "failed") (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL T ELT)) (-2561 (($ $ (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-665 (-52)) (-665 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-665 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-4059 (((-665 (-52)) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 (((-52) $ (-1206)) 39 T ELT) (((-52) $ (-1206) (-52)) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (((-792) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT) (((-792) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL T ELT)) (-3709 (((-885) $) 41 (-2867 (|has| (-52) (-631 (-885))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1065) (-13 (-1223 (-1206) (-52)) (-10 -7 (-15 -4154 ((-112) (-112))) (-15 -4189 ((-112) (-112))) (-6 -4499)))) (T -1065)) +((-4154 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065)))) (-4189 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065))))) +(-13 (-1223 (-1206) (-52)) (-10 -7 (-15 -4154 ((-112) (-112))) (-15 -4189 ((-112) (-112))) (-6 -4499))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3477 (((-1165) $) 9 T ELT)) (-3709 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1066) (-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $))))) (T -1066)) +((-3477 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1066))))) +(-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)))) +((-3783 ((|#2| $) 10 T ELT))) +(((-1067 |#1| |#2|) (-10 -8 (-15 -3783 (|#2| |#1|))) (-1068 |#2|) (-1247)) (T -1067)) +NIL +(-10 -8 (-15 -3783 (|#2| |#1|))) +((-4335 (((-3 |#1| "failed") $) 9 T ELT)) (-3783 ((|#1| $) 8 T ELT)) (-3709 (($ |#1|) 6 T ELT))) +(((-1068 |#1|) (-141) (-1247)) (T -1068)) +((-4335 (*1 *2 *1) (|partial| -12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1247))))) +(-13 (-634 |t#1|) (-10 -8 (-15 -4335 ((-3 |t#1| "failed") $)) (-15 -3783 (|t#1| $)))) +(((-634 |#1|) . T)) +((-3784 (((-665 (-665 (-305 (-420 (-980 |#2|))))) (-665 (-980 |#2|)) (-665 (-1206))) 38 T ELT))) +(((-1069 |#1| |#2|) (-10 -7 (-15 -3784 ((-665 (-665 (-305 (-420 (-980 |#2|))))) (-665 (-980 |#2|)) (-665 (-1206))))) (-569) (-13 (-569) (-1068 |#1|))) (T -1069)) +((-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-4 *6 (-13 (-569) (-1068 *5))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *6)))))) (-5 *1 (-1069 *5 *6))))) +(-10 -7 (-15 -3784 ((-665 (-665 (-305 (-420 (-980 |#2|))))) (-665 (-980 |#2|)) (-665 (-1206))))) +((-1366 (((-391)) 17 T ELT)) (-2252 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-2899 (((-1 (-391)) (-792)) 48 T ELT)) (-1806 (((-391)) 37 T ELT)) (-4437 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-2222 (((-391)) 29 T ELT)) (-3700 (((-1 (-391)) (-391)) 30 T ELT)) (-4371 (((-391) (-792)) 43 T ELT)) (-4046 (((-1 (-391)) (-792)) 44 T ELT)) (-2057 (((-1 (-391)) (-792) (-792)) 47 T ELT)) (-3012 (((-1 (-391)) (-792) (-792)) 45 T ELT))) +(((-1070) (-10 -7 (-15 -1366 ((-391))) (-15 -1806 ((-391))) (-15 -2222 ((-391))) (-15 -4371 ((-391) (-792))) (-15 -2252 ((-1 (-391)) (-391) (-391))) (-15 -4437 ((-1 (-391)) (-391) (-391))) (-15 -3700 ((-1 (-391)) (-391))) (-15 -4046 ((-1 (-391)) (-792))) (-15 -3012 ((-1 (-391)) (-792) (-792))) (-15 -2057 ((-1 (-391)) (-792) (-792))) (-15 -2899 ((-1 (-391)) (-792))))) (T -1070)) +((-2899 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-3012 (*1 *2 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-3700 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) (-4437 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) (-2252 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) (-4371 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-391)) (-5 *1 (-1070)))) (-2222 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070)))) (-1806 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070)))) (-1366 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) +(-10 -7 (-15 -1366 ((-391))) (-15 -1806 ((-391))) (-15 -2222 ((-391))) (-15 -4371 ((-391) (-792))) (-15 -2252 ((-1 (-391)) (-391) (-391))) (-15 -4437 ((-1 (-391)) (-391) (-391))) (-15 -3700 ((-1 (-391)) (-391))) (-15 -4046 ((-1 (-391)) (-792))) (-15 -3012 ((-1 (-391)) (-792) (-792))) (-15 -2057 ((-1 (-391)) (-792) (-792))) (-15 -2899 ((-1 (-391)) (-792)))) +((-3759 (((-431 |#1|) |#1|) 33 T ELT))) +(((-1071 |#1|) (-10 -7 (-15 -3759 ((-431 |#1|) |#1|))) (-1273 (-420 (-980 (-577))))) (T -1071)) +((-3759 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-1273 (-420 (-980 (-577)))))))) +(-10 -7 (-15 -3759 ((-431 |#1|) |#1|))) +((-3980 (((-420 (-431 (-980 |#1|))) (-420 (-980 |#1|))) 14 T ELT))) +(((-1072 |#1|) (-10 -7 (-15 -3980 ((-420 (-431 (-980 |#1|))) (-420 (-980 |#1|))))) (-318)) (T -1072)) +((-3980 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-318)) (-5 *2 (-420 (-431 (-980 *4)))) (-5 *1 (-1072 *4))))) +(-10 -7 (-15 -3980 ((-420 (-431 (-980 |#1|))) (-420 (-980 |#1|))))) +((-3891 (((-665 (-1206)) (-420 (-980 |#1|))) 17 T ELT)) (-3732 (((-420 (-1202 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206)) 24 T ELT)) (-3882 (((-420 (-980 |#1|)) (-420 (-1202 (-420 (-980 |#1|)))) (-1206)) 26 T ELT)) (-3946 (((-3 (-1206) "failed") (-420 (-980 |#1|))) 20 T ELT)) (-3373 (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-305 (-420 (-980 |#1|))))) 32 T ELT) (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|)))) 33 T ELT) (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-1206)) (-665 (-420 (-980 |#1|)))) 28 T ELT) (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))) 29 T ELT)) (-3709 (((-420 (-980 |#1|)) |#1|) 11 T ELT))) +(((-1073 |#1|) (-10 -7 (-15 -3891 ((-665 (-1206)) (-420 (-980 |#1|)))) (-15 -3946 ((-3 (-1206) "failed") (-420 (-980 |#1|)))) (-15 -3732 ((-420 (-1202 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -3882 ((-420 (-980 |#1|)) (-420 (-1202 (-420 (-980 |#1|)))) (-1206))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-1206)) (-665 (-420 (-980 |#1|))))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -3709 ((-420 (-980 |#1|)) |#1|))) (-569)) (T -1073)) +((-3709 (*1 *2 *3) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-569)))) (-3373 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) (-5 *2 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *1 (-1073 *4)))) (-3373 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-5 *2 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *1 (-1073 *4)))) (-3373 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-665 (-1206))) (-5 *4 (-665 (-420 (-980 *5)))) (-5 *2 (-420 (-980 *5))) (-4 *5 (-569)) (-5 *1 (-1073 *5)))) (-3373 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-1073 *4)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1202 (-420 (-980 *5))))) (-5 *4 (-1206)) (-5 *2 (-420 (-980 *5))) (-5 *1 (-1073 *5)) (-4 *5 (-569)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-569)) (-5 *2 (-420 (-1202 (-420 (-980 *5))))) (-5 *1 (-1073 *5)) (-5 *3 (-420 (-980 *5))))) (-3946 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-1206)) (-5 *1 (-1073 *4)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-1206))) (-5 *1 (-1073 *4))))) +(-10 -7 (-15 -3891 ((-665 (-1206)) (-420 (-980 |#1|)))) (-15 -3946 ((-3 (-1206) "failed") (-420 (-980 |#1|)))) (-15 -3732 ((-420 (-1202 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -3882 ((-420 (-980 |#1|)) (-420 (-1202 (-420 (-980 |#1|)))) (-1206))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-1206)) (-665 (-420 (-980 |#1|))))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -3373 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -3709 ((-420 (-980 |#1|)) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2305 (($) 18 T CONST)) (-3355 ((|#1| $) 23 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4400 ((|#1| $) 22 T ELT)) (-2840 ((|#1|) 20 T CONST)) (-3709 (((-885) $) 12 T ELT)) (-3101 ((|#1| $) 21 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) +(((-1074 |#1|) (-141) (-23)) (T -1074)) +((-3355 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-2840 (*1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3355 (|t#1| $)) (-15 -4400 (|t#1| $)) (-15 -3101 (|t#1| $)) (-15 -2840 (|t#1|) -4212))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-4066 (($) 25 T CONST)) (-2305 (($) 18 T CONST)) (-3355 ((|#1| $) 23 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4400 ((|#1| $) 22 T ELT)) (-2840 ((|#1|) 20 T CONST)) (-3709 (((-885) $) 12 T ELT)) (-3101 ((|#1| $) 21 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) +(((-1075 |#1|) (-141) (-23)) (T -1075)) +((-4066 (*1 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(-13 (-1074 |t#1|) (-10 -8 (-15 -4066 ($) -4212))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1074 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 (-801 |#1| (-887 |#2|)))))) (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-1795 (((-665 $) (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112)) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112) (-112)) NIL T ELT)) (-3891 (((-665 (-887 |#2|)) $) NIL T ELT)) (-1507 (((-112) $) NIL T ELT)) (-2221 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2647 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-3800 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2612 (((-665 (-2 (|:| |val| (-801 |#1| (-887 |#2|))) (|:| -3613 $))) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ (-887 |#2|)) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1440 (($ (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-801 |#1| (-887 |#2|)) "failed") $ (-887 |#2|)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1603 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))) $ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-2379 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-3080 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-3783 (($ (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-4410 (((-3 $ "failed") $) NIL T ELT)) (-3145 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT)) (-4004 (($ (-801 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-801 |#1| (-887 |#2|))) (|:| |den| |#1|)) (-801 |#1| (-887 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-3894 (((-112) (-801 |#1| (-887 |#2|)) $ (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-3947 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2060 (((-801 |#1| (-887 |#2|)) (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $ (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (((-801 |#1| (-887 |#2|)) (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $ (-801 |#1| (-887 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-801 |#1| (-887 |#2|)) (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-1360 (((-2 (|:| -2040 (-665 (-801 |#1| (-887 |#2|)))) (|:| -3548 (-665 (-801 |#1| (-887 |#2|))))) $) NIL T ELT)) (-3020 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-4005 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-1753 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-2118 (((-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-1429 (((-887 |#2|) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-801 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT)) (-4409 (($ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-1683 (((-665 (-887 |#2|)) $) NIL T ELT)) (-3692 (((-112) (-887 |#2|) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3036 (((-3 (-801 |#1| (-887 |#2|)) (-665 $)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-4045 (((-665 (-2 (|:| |val| (-801 |#1| (-887 |#2|))) (|:| -3613 $))) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-4026 (((-3 (-801 |#1| (-887 |#2|)) "failed") $) NIL T ELT)) (-1955 (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-1377 (((-3 (-112) (-665 $)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-3132 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-1565 (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-665 $)) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) (-665 $)) NIL T ELT)) (-1963 (($ (-801 |#1| (-887 |#2|)) $) NIL T ELT) (($ (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-1602 (((-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-1768 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-2477 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2852 (((-112) $ $) NIL T ELT)) (-2842 (((-2 (|:| |num| (-801 |#1| (-887 |#2|))) (|:| |den| |#1|)) (-801 |#1| (-887 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-2873 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-3881 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-3 (-801 |#1| (-887 |#2|)) "failed") $) NIL T ELT)) (-2550 (((-3 (-801 |#1| (-887 |#2|)) "failed") (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-4008 (((-3 $ "failed") $ (-801 |#1| (-887 |#2|))) NIL T ELT)) (-2568 (($ $ (-801 |#1| (-887 |#2|))) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) (-665 $)) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-665 $)) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|)))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ $ (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ $ (-305 (-801 |#1| (-887 |#2|)))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ $ (-665 (-305 (-801 |#1| (-887 |#2|))))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-1597 (((-792) $) NIL T ELT)) (-1481 (((-792) (-801 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (((-792) (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-801 |#1| (-887 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-1336 (($ $ (-887 |#2|)) NIL T ELT)) (-3076 (($ $ (-887 |#2|)) NIL T ELT)) (-2138 (($ $) NIL T ELT)) (-2951 (($ $ (-887 |#2|)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (((-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-3534 (((-792) $) NIL (|has| (-887 |#2|) (-380)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 (-801 |#1| (-887 |#2|))))) "failed") (-665 (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 (-801 |#1| (-887 |#2|))))) "failed") (-665 (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-2939 (((-112) $ (-1 (-112) (-801 |#1| (-887 |#2|)) (-665 (-801 |#1| (-887 |#2|))))) NIL T ELT)) (-4197 (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) (-665 $)) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-665 $)) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 (-887 |#2|)) $) NIL T ELT)) (-2259 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2066 (((-112) (-887 |#2|) $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1076 |#1| |#2|) (-13 (-1101 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) (-10 -8 (-15 -1795 ((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112) (-112))))) (-465) (-665 (-1206))) (T -1076)) +((-1795 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1076 *5 *6))))) +(-13 (-1101 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) (-10 -8 (-15 -1795 ((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112) (-112))))) +((-2252 (((-1 (-577)) (-1124 (-577))) 32 T ELT)) (-3245 (((-577) (-577) (-577) (-577) (-577)) 29 T ELT)) (-3814 (((-1 (-577)) |RationalNumber|) NIL T ELT)) (-3615 (((-1 (-577)) |RationalNumber|) NIL T ELT)) (-2990 (((-1 (-577)) (-577) |RationalNumber|) NIL T ELT))) +(((-1077) (-10 -7 (-15 -2252 ((-1 (-577)) (-1124 (-577)))) (-15 -2990 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3814 ((-1 (-577)) |RationalNumber|)) (-15 -3615 ((-1 (-577)) |RationalNumber|)) (-15 -3245 ((-577) (-577) (-577) (-577) (-577))))) (T -1077)) +((-3245 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1077)))) (-3615 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)))) (-3814 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)) (-5 *3 (-577)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-1124 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) +(-10 -7 (-15 -2252 ((-1 (-577)) (-1124 (-577)))) (-15 -2990 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3814 ((-1 (-577)) |RationalNumber|)) (-15 -3615 ((-1 (-577)) |RationalNumber|)) (-15 -3245 ((-577) (-577) (-577) (-577) (-577)))) +((-3709 (((-885) $) NIL T ELT) (($ (-577)) 10 T ELT))) +(((-1078 |#1|) (-10 -8 (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-1079)) (T -1078)) +NIL +(-10 -8 (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-1079) (-141)) (T -1079)) +((-3331 (*1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-792))))) +(-13 (-1088) (-747) (-669 $) (-634 (-577)) (-10 -7 (-15 -3331 ((-792)) -4212) (-6 -4496))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3044 (((-420 (-980 |#2|)) (-665 |#2|) (-665 |#2|) (-792) (-792)) 54 T ELT))) +(((-1080 |#1| |#2|) (-10 -7 (-15 -3044 ((-420 (-980 |#2|)) (-665 |#2|) (-665 |#2|) (-792) (-792)))) (-1206) (-375)) (T -1080)) +((-3044 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-792)) (-4 *6 (-375)) (-5 *2 (-420 (-980 *6))) (-5 *1 (-1080 *5 *6)) (-14 *5 (-1206))))) +(-10 -7 (-15 -3044 ((-420 (-980 |#2|)) (-665 |#2|) (-665 |#2|) (-792) (-792)))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (* (($ $ |#1|) 14 T ELT))) +(((-1081 |#1|) (-141) (-1142)) (T -1081)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2)) (-4 *2 (-1142))))) +(-13 (-1130) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-4140 (((-112) $) 38 T ELT)) (-2671 (((-112) $) 17 T ELT)) (-2408 (((-792) $) 13 T ELT)) (-2420 (((-792) $) 14 T ELT)) (-4101 (((-112) $) 30 T ELT)) (-4444 (((-112) $) 40 T ELT))) +(((-1082 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2420 ((-792) |#1|)) (-15 -2408 ((-792) |#1|)) (-15 -4444 ((-112) |#1|)) (-15 -4140 ((-112) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -2671 ((-112) |#1|))) (-1083 |#2| |#3| |#4| |#5| |#6|) (-792) (-792) (-1079) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1082)) +NIL +(-10 -8 (-15 -2420 ((-792) |#1|)) (-15 -2408 ((-792) |#1|)) (-15 -4444 ((-112) |#1|)) (-15 -4140 ((-112) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -2671 ((-112) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-4140 (((-112) $) 56 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2671 (((-112) $) 58 T ELT)) (-1777 (((-112) $ (-792)) 66 T ELT)) (-2305 (($) 18 T CONST)) (-3280 (($ $) 39 (|has| |#3| (-318)) ELT)) (-4448 ((|#4| $ (-577)) 44 T ELT)) (-1641 (((-792) $) 38 (|has| |#3| (-569)) ELT)) (-4353 ((|#3| $ (-577) (-577)) 46 T ELT)) (-2118 (((-665 |#3|) $) 73 (|has| $ (-6 -4499)) ELT)) (-3480 (((-792) $) 37 (|has| |#3| (-569)) ELT)) (-4202 (((-665 |#5|) $) 36 (|has| |#3| (-569)) ELT)) (-2408 (((-792) $) 50 T ELT)) (-2420 (((-792) $) 49 T ELT)) (-3862 (((-112) $ (-792)) 65 T ELT)) (-4051 (((-577) $) 54 T ELT)) (-3232 (((-577) $) 52 T ELT)) (-2152 (((-665 |#3|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1766 (((-577) $) 53 T ELT)) (-3371 (((-577) $) 51 T ELT)) (-2374 (($ (-665 (-665 |#3|))) 59 T ELT)) (-4409 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#3| |#3|) $) 68 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 42 T ELT)) (-2905 (((-665 (-665 |#3|)) $) 48 T ELT)) (-3438 (((-112) $ (-792)) 64 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#3|) (-665 |#3|)) 80 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) 78 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 (-305 |#3|))) 77 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3701 (((-112) $ $) 60 T ELT)) (-2687 (((-112) $) 63 T ELT)) (-2833 (($) 62 T ELT)) (-2916 ((|#3| $ (-577) (-577)) 47 T ELT) ((|#3| $ (-577) (-577) |#3|) 45 T ELT)) (-4101 (((-112) $) 57 T ELT)) (-1481 (((-792) |#3| $) 75 (-12 (|has| |#3| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 61 T ELT)) (-1455 ((|#5| $ (-577)) 43 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1474 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) 55 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#3|) 40 (|has| |#3| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#3| $) 27 T ELT) (($ $ |#3|) 31 T ELT)) (-3600 (((-792) $) 67 (|has| $ (-6 -4499)) ELT))) +(((-1083 |#1| |#2| |#3| |#4| |#5|) (-141) (-792) (-792) (-1079) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1083)) +((-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *5))) (-4 *5 (-1079)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4444 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-665 (-665 *5))))) (-2916 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079)))) (-4353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079)))) (-2916 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *2 (-1079)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-4448 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *2 *7)) (-4 *6 (-1079)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-1455 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *7 *2)) (-4 *6 (-1079)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-4417 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-3574 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-569)))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-375)))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-792)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-792)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-665 *7))))) +(-13 (-111 |t#3| |t#3|) (-502 |t#3|) (-10 -8 (-6 -4499) (IF (|has| |t#3| (-174)) (-6 (-738 |t#3|)) |%noBranch|) (-15 -2374 ($ (-665 (-665 |t#3|)))) (-15 -2671 ((-112) $)) (-15 -4101 ((-112) $)) (-15 -4140 ((-112) $)) (-15 -4444 ((-112) $)) (-15 -4051 ((-577) $)) (-15 -1766 ((-577) $)) (-15 -3232 ((-577) $)) (-15 -3371 ((-577) $)) (-15 -2408 ((-792) $)) (-15 -2420 ((-792) $)) (-15 -2905 ((-665 (-665 |t#3|)) $)) (-15 -2916 (|t#3| $ (-577) (-577))) (-15 -4353 (|t#3| $ (-577) (-577))) (-15 -2916 (|t#3| $ (-577) (-577) |t#3|)) (-15 -4448 (|t#4| $ (-577))) (-15 -1455 (|t#5| $ (-577))) (-15 -4417 ($ (-1 |t#3| |t#3|) $)) (-15 -4417 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-569)) (-15 -3574 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-375)) (-15 -3139 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-318)) (-15 -3280 ($ $)) |%noBranch|) (IF (|has| |t#3| (-569)) (PROGN (-15 -1641 ((-792) $)) (-15 -3480 ((-792) $)) (-15 -4202 ((-665 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-631 (-885)) . T) ((-320 |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ((-502 |#3|) . T) ((-527 |#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ((-667 (-577)) . T) ((-667 |#3|) . T) ((-669 |#3|) . T) ((-661 |#3|) |has| |#3| (-174)) ((-738 |#3|) |has| |#3| (-174)) ((-1081 |#3|) . T) ((-1086 |#3|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4140 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2671 (((-112) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3280 (($ $) 47 (|has| |#3| (-318)) ELT)) (-4448 (((-246 |#2| |#3|) $ (-577)) 36 T ELT)) (-2244 (($ (-710 |#3|)) 45 T ELT)) (-1641 (((-792) $) 49 (|has| |#3| (-569)) ELT)) (-4353 ((|#3| $ (-577) (-577)) NIL T ELT)) (-2118 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3480 (((-792) $) 51 (|has| |#3| (-569)) ELT)) (-4202 (((-665 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-569)) ELT)) (-2408 (((-792) $) NIL T ELT)) (-2420 (((-792) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-4051 (((-577) $) NIL T ELT)) (-3232 (((-577) $) NIL T ELT)) (-2152 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1766 (((-577) $) NIL T ELT)) (-3371 (((-577) $) NIL T ELT)) (-2374 (($ (-665 (-665 |#3|))) 31 T ELT)) (-4409 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-2905 (((-665 (-665 |#3|)) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#3|) (-665 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#3| $ (-577) (-577)) NIL T ELT) ((|#3| $ (-577) (-577) |#3|) NIL T ELT)) (-4366 (((-135)) 59 (|has| |#3| (-375)) ELT)) (-4101 (((-112) $) NIL T ELT)) (-1481 (((-792) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT) (((-792) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) 65 (|has| |#3| (-632 (-549))) ELT)) (-1455 (((-246 |#1| |#3|) $ (-577)) 40 T ELT)) (-3709 (((-885) $) 19 T ELT) (((-710 |#3|) $) 42 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) NIL T ELT)) (-2839 (($) 16 T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1084 |#1| |#2| |#3|) (-13 (-1083 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-631 (-710 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1304 |#3|)) |%noBranch|) (IF (|has| |#3| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (-15 -2244 ($ (-710 |#3|))))) (-792) (-792) (-1079)) (T -1084)) +((-2244 (*1 *1 *2) (-12 (-5 *2 (-710 *5)) (-4 *5 (-1079)) (-5 *1 (-1084 *3 *4 *5)) (-14 *3 (-792)) (-14 *4 (-792))))) +(-13 (-1083 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-631 (-710 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1304 |#3|)) |%noBranch|) (IF (|has| |#3| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (-15 -2244 ($ (-710 |#3|))))) +((-2060 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4417 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-1085 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4417 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2060 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-792) (-792) (-1079) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1083 |#1| |#2| |#3| |#4| |#5|) (-1079) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1083 |#1| |#2| |#7| |#8| |#9|)) (T -1085)) +((-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1079)) (-4 *2 (-1079)) (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *12 (-1083 *5 *6 *2 *10 *11)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1079)) (-4 *10 (-1079)) (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1083 *5 *6 *10 *11 *12)) (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) +(-10 -7 (-15 -4417 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2060 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ |#1|) 27 T ELT))) +(((-1086 |#1|) (-141) (-1088)) (T -1086)) +NIL +(-13 (-21) (-1081 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1081 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3341 (((-1206) $) 11 T ELT)) (-3096 ((|#1| $) 12 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4220 (($ (-1206) |#1|) 10 T ELT)) (-3709 (((-885) $) 22 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3018 (((-112) $ $) 17 (|has| |#1| (-1130)) ELT))) +(((-1087 |#1| |#2|) (-13 (-1247) (-10 -8 (-15 -4220 ($ (-1206) |#1|)) (-15 -3341 ((-1206) $)) (-15 -3096 (|#1| $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) (-1123 |#2|) (-1247)) (T -1087)) +((-4220 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-4 *4 (-1247)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1123 *4)))) (-3341 (*1 *2 *1) (-12 (-4 *4 (-1247)) (-5 *2 (-1206)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1123 *4)))) (-3096 (*1 *2 *1) (-12 (-4 *2 (-1123 *3)) (-5 *1 (-1087 *2 *3)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -4220 ($ (-1206) |#1|)) (-15 -3341 ((-1206) $)) (-15 -3096 (|#1| $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-1088) (-141)) (T -1088)) +NIL +(-13 (-21) (-1142)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3610 (($ $) 17 T ELT)) (-3260 (($ $) 25 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 55 T ELT)) (-2794 (($ $) 27 T ELT)) (-4378 (($ $) 12 T ELT)) (-3941 (($ $) 43 T ELT)) (-4463 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-916 (-391)) $) 36 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 31 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) 31 T ELT)) (-3331 (((-792)) 9 T ELT)) (-2431 (($ $) 45 T ELT))) +(((-1089 |#1|) (-10 -8 (-15 -3260 (|#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2431 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| (-577))) (-15 -4463 ((-228) |#1|)) (-15 -4463 ((-391) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| |#1|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-1090)) (T -1089)) +((-3331 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1089 *3)) (-4 *3 (-1090))))) +(-10 -8 (-15 -3260 (|#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -2431 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -2425 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| (-577))) (-15 -4463 ((-228) |#1|)) (-15 -4463 ((-391) |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| |#1|)) (-15 -3331 ((-792))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1363 (((-577) $) 98 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-3610 (($ $) 96 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-3770 (($ $) 106 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2578 (((-577) $) 123 T ELT)) (-2305 (($) 18 T CONST)) (-3260 (($ $) 95 T ELT)) (-4335 (((-3 (-577) "failed") $) 111 T ELT) (((-3 (-420 (-577)) "failed") $) 108 T ELT)) (-3783 (((-577) $) 112 T ELT) (((-420 (-577)) $) 109 T ELT)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3567 (((-112) $) 79 T ELT)) (-4339 (((-112) $) 121 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 102 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 105 T ELT)) (-2794 (($ $) 101 T ELT)) (-2649 (((-112) $) 122 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3237 (($ $ $) 115 T ELT)) (-2930 (($ $ $) 116 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-4378 (($ $) 97 T ELT)) (-3941 (($ $) 99 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-4463 (((-391) $) 114 T ELT) (((-228) $) 113 T ELT) (((-916 (-391)) $) 103 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-577)) 110 T ELT) (($ (-420 (-577))) 107 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2431 (($ $) 100 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2215 (($ $) 124 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3078 (((-112) $ $) 117 T ELT)) (-3054 (((-112) $ $) 119 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 118 T ELT)) (-3042 (((-112) $ $) 120 T ELT)) (-3139 (($ $ $) 73 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 104 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) +(((-1090) (-141)) (T -1090)) +((-2215 (*1 *1 *1) (-4 *1 (-1090))) (-2794 (*1 *1 *1) (-4 *1 (-1090))) (-2431 (*1 *1 *1) (-4 *1 (-1090))) (-3941 (*1 *1 *1) (-4 *1 (-1090))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-577)))) (-4378 (*1 *1 *1) (-4 *1 (-1090))) (-3610 (*1 *1 *1) (-4 *1 (-1090))) (-3260 (*1 *1 *1) (-4 *1 (-1090)))) +(-13 (-375) (-869) (-1052) (-1068 (-577)) (-1068 (-420 (-577))) (-1032) (-632 (-916 (-391))) (-910 (-391)) (-148) (-10 -8 (-15 -2794 ($ $)) (-15 -2431 ($ $)) (-15 -3941 ($ $)) (-15 -1363 ((-577) $)) (-15 -4378 ($ $)) (-15 -3610 ($ $)) (-15 -3260 ($ $)) (-15 -2215 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-228)) . T) ((-632 (-391)) . T) ((-632 (-916 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-391)) . T) ((-948) . T) ((-1032) . T) ((-1052) . T) ((-1068 (-420 (-577))) . T) ((-1068 (-577)) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) |#2| $) 26 T ELT)) (-3005 ((|#1| $) 10 T ELT)) (-2578 (((-577) |#2| $) 116 T ELT)) (-1940 (((-3 $ "failed") |#2| (-949)) 75 T ELT)) (-3352 ((|#1| $) 31 T ELT)) (-4078 ((|#1| |#2| $ |#1|) 40 T ELT)) (-2109 (($ $) 28 T ELT)) (-3167 (((-3 |#2| "failed") |#2| $) 111 T ELT)) (-4339 (((-112) |#2| $) NIL T ELT)) (-2649 (((-112) |#2| $) NIL T ELT)) (-2377 (((-112) |#2| $) 27 T ELT)) (-2655 ((|#1| $) 117 T ELT)) (-3337 ((|#1| $) 30 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4263 ((|#2| $) 102 T ELT)) (-3709 (((-885) $) 92 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4215 ((|#1| |#2| $ |#1|) 41 T ELT)) (-4331 (((-665 $) |#2|) 77 T ELT)) (-3018 (((-112) $ $) 97 T ELT))) +(((-1091 |#1| |#2|) (-13 (-1098 |#1| |#2|) (-10 -8 (-15 -3337 (|#1| $)) (-15 -3352 (|#1| $)) (-15 -3005 (|#1| $)) (-15 -2655 (|#1| $)) (-15 -2109 ($ $)) (-15 -2377 ((-112) |#2| $)) (-15 -4078 (|#1| |#2| $ |#1|)))) (-13 (-869) (-375)) (-1273 |#1|)) (T -1091)) +((-4078 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3337 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3352 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3005 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-2655 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-2109 (*1 *1 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-2377 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-869) (-375))) (-5 *2 (-112)) (-5 *1 (-1091 *4 *3)) (-4 *3 (-1273 *4))))) +(-13 (-1098 |#1| |#2|) (-10 -8 (-15 -3337 (|#1| $)) (-15 -3352 (|#1| $)) (-15 -3005 (|#1| $)) (-15 -2655 (|#1| $)) (-15 -2109 ($ $)) (-15 -2377 ((-112) |#2| $)) (-15 -4078 (|#1| |#2| $ |#1|)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2940 (($ $ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4002 (($ $ $ $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-2578 (((-577) $) NIL T ELT)) (-4387 (($ $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1825 (($ (-1206)) 10 T ELT) (($ (-577)) 7 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL T ELT)) (-3531 (($ $ $) NIL T ELT)) (-3187 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-1356 (((-112) $) NIL T ELT)) (-4035 (((-420 (-577)) $) NIL T ELT)) (-1424 (($) NIL T ELT) (($ $) NIL T ELT)) (-3541 (($ $ $) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-1714 (($ $ $ $) NIL T ELT)) (-3215 (($ $ $) NIL T ELT)) (-4339 (((-112) $) NIL T ELT)) (-2381 (($ $ $) NIL T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2310 (((-112) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL T ELT)) (-2649 (((-112) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4098 (($ $ $ $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3106 (($ $) NIL T ELT)) (-4166 (($ $) NIL T ELT)) (-3163 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4097 (($ $ $) NIL T ELT)) (-2443 (($) NIL T CONST)) (-2143 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2964 (($ $) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2820 (((-112) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-3641 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2593 (($ $) NIL T ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-577) $) 16 T ELT) (((-549) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (($ (-1206)) 9 T ELT)) (-3709 (((-885) $) 23 T ELT) (($ (-577)) 6 T ELT) (($ $) NIL T ELT) (($ (-577)) 6 T ELT)) (-3331 (((-792)) NIL T CONST)) (-3790 (((-112) $ $) NIL T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (($) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2449 (($ $ $ $) NIL T ELT)) (-2215 (($ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3128 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT))) +(((-1092) (-13 (-558) (-636 (-1206)) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -1825 ($ (-1206))) (-15 -1825 ($ (-577)))))) (T -1092)) +((-1825 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1092)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1092))))) +(-13 (-558) (-636 (-1206)) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -1825 ($ (-1206))) (-15 -1825 ($ (-577))))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL T ELT)) (-1935 (((-1302) $ (-1206) (-1206)) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1886 (($) 9 T ELT)) (-1957 (((-52) $ (-1206) (-52)) NIL T ELT)) (-1647 (($ $) 32 T ELT)) (-2129 (($ $) 30 T ELT)) (-2207 (($ $) 29 T ELT)) (-3865 (($ $) 31 T ELT)) (-3060 (($ $) 35 T ELT)) (-2717 (($ $) 36 T ELT)) (-2910 (($ $) 28 T ELT)) (-3098 (($ $) 33 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) 27 (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 (-52) "failed") (-1206) $) 43 T ELT)) (-2305 (($) NIL T CONST)) (-2889 (($) 7 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) 53 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-52) "failed") (-1206) $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4379 (((-3 (-1188) "failed") $ (-1188) (-577)) 72 T ELT)) (-4420 (((-52) $ (-1206) (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-4353 (((-52) $ (-1206)) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) 38 (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-1425 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-52) (-1130)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT)) (-4001 (((-665 (-1206)) $) NIL T ELT)) (-4065 (((-112) (-1206) $) NIL T ELT)) (-2786 (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) 46 T ELT)) (-2233 (((-665 (-1206)) $) NIL T ELT)) (-3972 (((-112) (-1206) $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-52) (-1130)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT)) (-3739 (((-391) $ (-1206)) 52 T ELT)) (-4302 (((-665 (-1188)) $ (-1188)) 74 T ELT)) (-4397 (((-52) $) NIL (|has| (-1206) (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) "failed") (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL T ELT)) (-2561 (($ $ (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL (-12 (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-320 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (($ $ (-665 (-52)) (-665 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-665 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-4059 (((-665 (-52)) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 (((-52) $ (-1206)) NIL T ELT) (((-52) $ (-1206) (-52)) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL T ELT)) (-2302 (($ $ (-1206)) 54 T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-1130))) ELT) (((-792) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT) (((-792) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) 40 T ELT)) (-1702 (($ $ $) 41 T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-52) (-631 (-885))) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-631 (-885)))) ELT)) (-3064 (($ $ (-1206) (-391)) 50 T ELT)) (-3102 (($ $ (-1206) (-391)) 51 T ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 (-1206)) (|:| -2727 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-52) (-102)) (|has| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1093) (-13 (-1223 (-1206) (-52)) (-10 -8 (-15 -1702 ($ $ $)) (-15 -2889 ($)) (-15 -2910 ($ $)) (-15 -2207 ($ $)) (-15 -2129 ($ $)) (-15 -3865 ($ $)) (-15 -3098 ($ $)) (-15 -1647 ($ $)) (-15 -3060 ($ $)) (-15 -2717 ($ $)) (-15 -3064 ($ $ (-1206) (-391))) (-15 -3102 ($ $ (-1206) (-391))) (-15 -3739 ((-391) $ (-1206))) (-15 -4302 ((-665 (-1188)) $ (-1188))) (-15 -2302 ($ $ (-1206))) (-15 -1886 ($)) (-15 -4379 ((-3 (-1188) "failed") $ (-1188) (-577))) (-6 -4499)))) (T -1093)) +((-1702 (*1 *1 *1 *1) (-5 *1 (-1093))) (-2889 (*1 *1) (-5 *1 (-1093))) (-2910 (*1 *1 *1) (-5 *1 (-1093))) (-2207 (*1 *1 *1) (-5 *1 (-1093))) (-2129 (*1 *1 *1) (-5 *1 (-1093))) (-3865 (*1 *1 *1) (-5 *1 (-1093))) (-3098 (*1 *1 *1) (-5 *1 (-1093))) (-1647 (*1 *1 *1) (-5 *1 (-1093))) (-3060 (*1 *1 *1) (-5 *1 (-1093))) (-2717 (*1 *1 *1) (-5 *1 (-1093))) (-3064 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093)))) (-3102 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093)))) (-3739 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-391)) (-5 *1 (-1093)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1093)) (-5 *3 (-1188)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1093)))) (-1886 (*1 *1) (-5 *1 (-1093))) (-4379 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-1093))))) +(-13 (-1223 (-1206) (-52)) (-10 -8 (-15 -1702 ($ $ $)) (-15 -2889 ($)) (-15 -2910 ($ $)) (-15 -2207 ($ $)) (-15 -2129 ($ $)) (-15 -3865 ($ $)) (-15 -3098 ($ $)) (-15 -1647 ($ $)) (-15 -3060 ($ $)) (-15 -2717 ($ $)) (-15 -3064 ($ $ (-1206) (-391))) (-15 -3102 ($ $ (-1206) (-391))) (-15 -3739 ((-391) $ (-1206))) (-15 -4302 ((-665 (-1188)) $ (-1188))) (-15 -2302 ($ $ (-1206))) (-15 -1886 ($)) (-15 -4379 ((-3 (-1188) "failed") $ (-1188) (-577))) (-6 -4499))) +((-2688 (($ $) 46 T ELT)) (-2817 (((-112) $ $) 82 T ELT)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 $ "failed") (-980 (-420 (-577)))) 247 T ELT) (((-3 $ "failed") (-980 (-577))) 246 T ELT) (((-3 $ "failed") (-980 |#2|)) 249 T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-980 (-420 (-577)))) 235 T ELT) (($ (-980 (-577))) 231 T ELT) (($ (-980 |#2|)) 255 T ELT)) (-4048 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3894 (((-112) $ $) 131 T ELT) (((-112) $ (-665 $)) 135 T ELT)) (-3856 (((-112) $) 60 T ELT)) (-1771 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 125 T ELT)) (-2528 (($ $) 160 T ELT)) (-4069 (($ $) 156 T ELT)) (-2006 (($ $) 155 T ELT)) (-1456 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-1593 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-1398 (((-112) $ $) 143 T ELT) (((-112) $ (-665 $)) 144 T ELT)) (-1429 ((|#4| $) 32 T ELT)) (-1376 (($ $ $) 128 T ELT)) (-2682 (((-112) $) 59 T ELT)) (-3271 (((-792) $) 35 T ELT)) (-3189 (($ $) 174 T ELT)) (-4102 (($ $) 171 T ELT)) (-1347 (((-665 $) $) 72 T ELT)) (-4203 (($ $) 62 T ELT)) (-2280 (($ $) 167 T ELT)) (-1836 (((-665 $) $) 69 T ELT)) (-2943 (($ $) 64 T ELT)) (-4025 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3099 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3403 (-792))) $ $) 130 T ELT)) (-2073 (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $) 126 T ELT) (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $ |#4|) 127 T ELT)) (-3395 (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $) 121 T ELT) (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $ |#4|) 123 T ELT)) (-3421 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-2251 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-2321 (((-665 $) $) 54 T ELT)) (-1768 (((-112) $ $) 140 T ELT) (((-112) $ (-665 $)) 141 T ELT)) (-2477 (($ $ $) 116 T ELT)) (-2443 (($ $) 37 T ELT)) (-2852 (((-112) $ $) 80 T ELT)) (-2873 (((-112) $ $) 136 T ELT) (((-112) $ (-665 $)) 138 T ELT)) (-3881 (($ $ $) 112 T ELT)) (-2392 (($ $) 41 T ELT)) (-3642 ((|#2| |#2| $) 164 T ELT) (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1358 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3380 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-4217 (($ $) 49 T ELT)) (-3638 (($ $) 55 T ELT)) (-4463 (((-916 (-391)) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-549) $) NIL T ELT) (($ (-980 (-420 (-577)))) 237 T ELT) (($ (-980 (-577))) 233 T ELT) (($ (-980 |#2|)) 248 T ELT) (((-1188) $) 279 T ELT) (((-980 |#2|) $) 184 T ELT)) (-3709 (((-885) $) 29 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-980 |#2|) $) 185 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-4402 (((-3 (-112) "failed") $ $) 79 T ELT))) +(((-1094 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3709 (|#1| |#1|)) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 ((-980 |#2|) |#1|)) (-15 -4463 ((-980 |#2|) |#1|)) (-15 -4463 ((-1188) |#1|)) (-15 -3189 (|#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -3642 (|#2| |#2| |#1|)) (-15 -1358 (|#1| |#1| |#1|)) (-15 -3380 (|#1| |#1| |#1|)) (-15 -1358 (|#1| |#1| |#2|)) (-15 -3380 (|#1| |#1| |#2|)) (-15 -4069 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -4463 (|#1| (-980 |#2|))) (-15 -3783 (|#1| (-980 |#2|))) (-15 -4335 ((-3 |#1| "failed") (-980 |#2|))) (-15 -4463 (|#1| (-980 (-577)))) (-15 -3783 (|#1| (-980 (-577)))) (-15 -4335 ((-3 |#1| "failed") (-980 (-577)))) (-15 -4463 (|#1| (-980 (-420 (-577))))) (-15 -3783 (|#1| (-980 (-420 (-577))))) (-15 -4335 ((-3 |#1| "failed") (-980 (-420 (-577))))) (-15 -2477 (|#1| |#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -3099 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3403 (-792))) |#1| |#1|)) (-15 -1376 (|#1| |#1| |#1|)) (-15 -1771 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -2073 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1| |#4|)) (-15 -2073 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -3395 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2519 |#1|)) |#1| |#1| |#4|)) (-15 -3395 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -2251 (|#1| |#1| |#1| |#4|)) (-15 -3421 (|#1| |#1| |#1| |#4|)) (-15 -2251 (|#1| |#1| |#1|)) (-15 -3421 (|#1| |#1| |#1|)) (-15 -1593 (|#1| |#1| |#1| |#4|)) (-15 -1456 (|#1| |#1| |#1| |#4|)) (-15 -1593 (|#1| |#1| |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1398 ((-112) |#1| (-665 |#1|))) (-15 -1398 ((-112) |#1| |#1|)) (-15 -1768 ((-112) |#1| (-665 |#1|))) (-15 -1768 ((-112) |#1| |#1|)) (-15 -2873 ((-112) |#1| (-665 |#1|))) (-15 -2873 ((-112) |#1| |#1|)) (-15 -3894 ((-112) |#1| (-665 |#1|))) (-15 -3894 ((-112) |#1| |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -2852 ((-112) |#1| |#1|)) (-15 -4402 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1347 ((-665 |#1|) |#1|)) (-15 -1836 ((-665 |#1|) |#1|)) (-15 -2943 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -3856 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -4048 (|#1| |#1| |#4|)) (-15 -4025 (|#1| |#1| |#4|)) (-15 -3638 (|#1| |#1|)) (-15 -2321 ((-665 |#1|) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -2392 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3271 ((-792) |#1|)) (-15 -1429 (|#4| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -3709 (|#1| |#4|)) (-15 -4335 ((-3 |#4| "failed") |#1|)) (-15 -3783 (|#4| |#1|)) (-15 -4025 (|#2| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-1095 |#2| |#3| |#4|) (-1079) (-814) (-870)) (T -1094)) +NIL +(-10 -8 (-15 -3709 (|#1| |#1|)) (-15 -3642 (|#1| |#1| |#1|)) (-15 -3642 (|#1| (-665 |#1|))) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 ((-980 |#2|) |#1|)) (-15 -4463 ((-980 |#2|) |#1|)) (-15 -4463 ((-1188) |#1|)) (-15 -3189 (|#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -2528 (|#1| |#1|)) (-15 -3642 (|#2| |#2| |#1|)) (-15 -1358 (|#1| |#1| |#1|)) (-15 -3380 (|#1| |#1| |#1|)) (-15 -1358 (|#1| |#1| |#2|)) (-15 -3380 (|#1| |#1| |#2|)) (-15 -4069 (|#1| |#1|)) (-15 -2006 (|#1| |#1|)) (-15 -4463 (|#1| (-980 |#2|))) (-15 -3783 (|#1| (-980 |#2|))) (-15 -4335 ((-3 |#1| "failed") (-980 |#2|))) (-15 -4463 (|#1| (-980 (-577)))) (-15 -3783 (|#1| (-980 (-577)))) (-15 -4335 ((-3 |#1| "failed") (-980 (-577)))) (-15 -4463 (|#1| (-980 (-420 (-577))))) (-15 -3783 (|#1| (-980 (-420 (-577))))) (-15 -4335 ((-3 |#1| "failed") (-980 (-420 (-577))))) (-15 -2477 (|#1| |#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -3099 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3403 (-792))) |#1| |#1|)) (-15 -1376 (|#1| |#1| |#1|)) (-15 -1771 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -2073 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1| |#4|)) (-15 -2073 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -3395 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2519 |#1|)) |#1| |#1| |#4|)) (-15 -3395 ((-2 (|:| -4473 |#1|) (|:| |gap| (-792)) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -2251 (|#1| |#1| |#1| |#4|)) (-15 -3421 (|#1| |#1| |#1| |#4|)) (-15 -2251 (|#1| |#1| |#1|)) (-15 -3421 (|#1| |#1| |#1|)) (-15 -1593 (|#1| |#1| |#1| |#4|)) (-15 -1456 (|#1| |#1| |#1| |#4|)) (-15 -1593 (|#1| |#1| |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1398 ((-112) |#1| (-665 |#1|))) (-15 -1398 ((-112) |#1| |#1|)) (-15 -1768 ((-112) |#1| (-665 |#1|))) (-15 -1768 ((-112) |#1| |#1|)) (-15 -2873 ((-112) |#1| (-665 |#1|))) (-15 -2873 ((-112) |#1| |#1|)) (-15 -3894 ((-112) |#1| (-665 |#1|))) (-15 -3894 ((-112) |#1| |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -2852 ((-112) |#1| |#1|)) (-15 -4402 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1347 ((-665 |#1|) |#1|)) (-15 -1836 ((-665 |#1|) |#1|)) (-15 -2943 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -3856 ((-112) |#1|)) (-15 -2682 ((-112) |#1|)) (-15 -4048 (|#1| |#1| |#4|)) (-15 -4025 (|#1| |#1| |#4|)) (-15 -3638 (|#1| |#1|)) (-15 -2321 ((-665 |#1|) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -2392 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3271 ((-792) |#1|)) (-15 -1429 (|#4| |#1|)) (-15 -4463 ((-549) |#1|)) (-15 -4463 ((-916 (-577)) |#1|)) (-15 -4463 ((-916 (-391)) |#1|)) (-15 -3709 (|#1| |#4|)) (-15 -4335 ((-3 |#4| "failed") |#1|)) (-15 -3783 (|#4| |#1|)) (-15 -4025 (|#2| |#1|)) (-15 -4048 (|#1| |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 |#3|) $) 113 T ELT)) (-3732 (((-1202 $) $ |#3|) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 91 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) 115 T ELT) (((-792) $ (-665 |#3|)) 114 T ELT)) (-2688 (($ $) 278 T ELT)) (-2817 (((-112) $ $) 264 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3473 (($ $ $) 223 (|has| |#1| (-569)) ELT)) (-2795 (((-665 $) $ $) 218 (|has| |#1| (-569)) ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-2612 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 $ "failed") (-980 (-420 (-577)))) 238 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206)))) ELT) (((-3 $ "failed") (-980 (-577))) 235 (-2867 (-12 (-2779 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT) (((-3 $ "failed") (-980 |#1|)) 232 (-2867 (-12 (-2779 (|has| |#1| (-38 (-420 (-577))))) (-2779 (|has| |#1| (-38 (-577)))) (|has| |#3| (-632 (-1206)))) (-12 (-2779 (|has| |#1| (-558))) (-2779 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (-2779 (|has| |#1| (-1022 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT)) (-3783 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) 144 T ELT) (($ (-980 (-420 (-577)))) 237 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206)))) ELT) (($ (-980 (-577))) 234 (-2867 (-12 (-2779 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT) (($ (-980 |#1|)) 231 (-2867 (-12 (-2779 (|has| |#1| (-38 (-420 (-577))))) (-2779 (|has| |#1| (-38 (-577)))) (|has| |#3| (-632 (-1206)))) (-12 (-2779 (|has| |#1| (-558))) (-2779 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (-2779 (|has| |#1| (-1022 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT)) (-3868 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT) (($ $ $) 219 (|has| |#1| (-569)) ELT)) (-4048 (($ $) 161 T ELT) (($ $ |#3|) 273 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-3894 (((-112) $ $) 263 T ELT) (((-112) $ (-665 $)) 262 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3856 (((-112) $) 271 T ELT)) (-1771 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 243 T ELT)) (-2528 (($ $) 212 (|has| |#1| (-465)) ELT)) (-2796 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) 112 T ELT)) (-3567 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-4069 (($ $) 228 (|has| |#1| (-569)) ELT)) (-2006 (($ $) 229 (|has| |#1| (-569)) ELT)) (-1456 (($ $ $) 255 T ELT) (($ $ $ |#3|) 253 T ELT)) (-1593 (($ $ $) 254 T ELT) (($ $ $ |#3|) 252 T ELT)) (-4365 (($ $ |#1| |#2| $) 179 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| |#3| (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3357 (((-112) $) 35 T ELT)) (-2662 (((-792) $) 176 T ELT)) (-1398 (((-112) $ $) 257 T ELT) (((-112) $ (-665 $)) 256 T ELT)) (-1908 (($ $ $ $ $) 214 (|has| |#1| (-569)) ELT)) (-1429 ((|#3| $) 282 T ELT)) (-3882 (($ (-1202 |#1|) |#3|) 120 T ELT) (($ (-1202 $) |#3|) 119 T ELT)) (-2102 (((-665 $) $) 129 T ELT)) (-2696 (((-112) $) 159 T ELT)) (-3872 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-792)) 122 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 121 T ELT)) (-1376 (($ $ $) 242 T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |#3|) 123 T ELT)) (-2682 (((-112) $) 272 T ELT)) (-4340 ((|#2| $) 177 T ELT) (((-792) $ |#3|) 125 T ELT) (((-665 (-792)) $ (-665 |#3|)) 124 T ELT)) (-3271 (((-792) $) 281 T ELT)) (-4329 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-3946 (((-3 |#3| "failed") $) 126 T ELT)) (-3189 (($ $) 209 (|has| |#1| (-465)) ELT)) (-4102 (($ $) 210 (|has| |#1| (-465)) ELT)) (-1347 (((-665 $) $) 267 T ELT)) (-4203 (($ $) 270 T ELT)) (-2280 (($ $) 211 (|has| |#1| (-465)) ELT)) (-1836 (((-665 $) $) 268 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-2943 (($ $) 269 T ELT)) (-4014 (($ $) 156 T ELT)) (-4025 ((|#1| $) 155 T ELT) (($ $ |#3|) 274 T ELT)) (-3606 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-3099 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3403 (-792))) $ $) 241 T ELT)) (-2073 (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $) 245 T ELT) (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $ |#3|) 244 T ELT)) (-3395 (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $) 247 T ELT) (((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $ |#3|) 246 T ELT)) (-3421 (($ $ $) 251 T ELT) (($ $ $ |#3|) 249 T ELT)) (-2251 (($ $ $) 250 T ELT) (($ $ $ |#3|) 248 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-4045 (($ $ $) 217 (|has| |#1| (-569)) ELT)) (-2321 (((-665 $) $) 276 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 117 T ELT)) (-1796 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2547 (((-3 (-2 (|:| |var| |#3|) (|:| -2328 (-792))) "failed") $) 116 T ELT)) (-1768 (((-112) $ $) 259 T ELT) (((-112) $ (-665 $)) 258 T ELT)) (-2477 (($ $ $) 239 T ELT)) (-2443 (($ $) 280 T ELT)) (-2852 (((-112) $ $) 265 T ELT)) (-2873 (((-112) $ $) 261 T ELT) (((-112) $ (-665 $)) 260 T ELT)) (-3881 (($ $ $) 240 T ELT)) (-2392 (($ $) 279 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4178 (((-2 (|:| -3642 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-569)) ELT)) (-1749 (((-2 (|:| -3642 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-569)) ELT)) (-3988 (((-112) $) 173 T ELT)) (-3999 ((|#1| $) 174 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-3642 ((|#1| |#1| $) 213 (|has| |#1| (-465)) ELT) (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-3777 (((-2 (|:| -3642 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-1358 (($ $ |#1|) 226 (|has| |#1| (-569)) ELT) (($ $ $) 224 (|has| |#1| (-569)) ELT)) (-3380 (($ $ |#1|) 227 (|has| |#1| (-569)) ELT) (($ $ $) 225 (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-665 |#3|) (-665 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-665 |#3|) (-665 $)) 145 T ELT)) (-3846 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 |#3|) (-665 (-792))) 44 T ELT) (($ $ |#3| (-792)) 43 T ELT) (($ $ (-665 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-1597 ((|#2| $) 157 T ELT) (((-792) $ |#3|) 133 T ELT) (((-665 (-792)) $ (-665 |#3|)) 132 T ELT)) (-4217 (($ $) 277 T ELT)) (-3638 (($ $) 275 T ELT)) (-4463 (((-916 (-391)) $) 85 (-12 (|has| |#3| (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| |#3| (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT) (($ (-980 (-420 (-577)))) 236 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206)))) ELT) (($ (-980 (-577))) 233 (-2867 (-12 (-2779 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT) (($ (-980 |#1|)) 230 (|has| |#3| (-632 (-1206))) ELT) (((-1188) $) 208 (-12 (|has| |#1| (-1068 (-577))) (|has| |#3| (-632 (-1206)))) ELT) (((-980 |#1|) $) 207 (|has| |#3| (-632 (-1206))) ELT)) (-2407 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (((-980 |#1|) $) 206 (|has| |#3| (-632 (-1206))) ELT) (($ (-420 (-577))) 81 (-2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) 175 T ELT)) (-4171 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-792)) 131 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 130 T ELT)) (-2708 (((-3 $ "failed") $) 82 (-2867 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 32 T CONST)) (-2576 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2839 (($) 19 T CONST)) (-4402 (((-3 (-112) "failed") $ $) 266 T ELT)) (-2853 (($) 34 T CONST)) (-1553 (($ $ $ $ (-792)) 215 (|has| |#1| (-569)) ELT)) (-4100 (($ $ $ (-792)) 216 (|has| |#1| (-569)) ELT)) (-2389 (($ $ (-665 |#3|) (-665 (-792))) 47 T ELT) (($ $ |#3| (-792)) 46 T ELT) (($ $ (-665 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-1095 |#1| |#2| |#3|) (-141) (-1079) (-814) (-870)) (T -1095)) +((-1429 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-792)))) (-2443 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2392 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2688 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-4217 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2321 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-3638 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-4025 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-4048 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-3856 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2943 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-1836 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-1347 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-4402 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2852 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2817 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-3894 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-2873 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2873 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-1768 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-1398 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-1398 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-1456 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-1593 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-1456 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-1593 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3421 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2251 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3421 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-2251 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3395 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2519 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3395 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2519 *1))) (-4 *1 (-1095 *4 *5 *3)))) (-2073 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-2073 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1095 *4 *5 *3)))) (-1771 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-1376 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3099 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3403 (-792)))) (-4 *1 (-1095 *3 *4 *5)))) (-3881 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2477 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-4335 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)))) (-4335 (*1 *1 *2) (|partial| -2867 (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) (-3783 (*1 *1 *2) (-2867 (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) (-4463 (*1 *1 *2) (-2867 (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) (-4335 (*1 *1 *2) (|partial| -2867 (-12 (-5 *2 (-980 *3)) (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-2779 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2779 (-4 *3 (-558))) (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2779 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))))) (-3783 (*1 *1 *2) (-2867 (-12 (-5 *2 (-980 *3)) (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-2779 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2779 (-4 *3 (-558))) (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2779 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *5 (-632 (-1206))) (-4 *4 (-814)) (-4 *5 (-870)))) (-2006 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-4069 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3380 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-1358 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3380 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-1358 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3473 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3777 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -3642 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -3642 *1) (|:| |coef1| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-4178 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -3642 *1) (|:| |coef2| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3868 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-2795 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-4045 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-4100 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569)))) (-1553 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569)))) (-1908 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3642 (*1 *2 *2 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-2528 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-2280 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-4102 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-3189 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465))))) +(-13 (-977 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1429 (|t#3| $)) (-15 -3271 ((-792) $)) (-15 -2443 ($ $)) (-15 -2392 ($ $)) (-15 -2688 ($ $)) (-15 -4217 ($ $)) (-15 -2321 ((-665 $) $)) (-15 -3638 ($ $)) (-15 -4025 ($ $ |t#3|)) (-15 -4048 ($ $ |t#3|)) (-15 -2682 ((-112) $)) (-15 -3856 ((-112) $)) (-15 -4203 ($ $)) (-15 -2943 ($ $)) (-15 -1836 ((-665 $) $)) (-15 -1347 ((-665 $) $)) (-15 -4402 ((-3 (-112) "failed") $ $)) (-15 -2852 ((-112) $ $)) (-15 -2817 ((-112) $ $)) (-15 -3894 ((-112) $ $)) (-15 -3894 ((-112) $ (-665 $))) (-15 -2873 ((-112) $ $)) (-15 -2873 ((-112) $ (-665 $))) (-15 -1768 ((-112) $ $)) (-15 -1768 ((-112) $ (-665 $))) (-15 -1398 ((-112) $ $)) (-15 -1398 ((-112) $ (-665 $))) (-15 -1456 ($ $ $)) (-15 -1593 ($ $ $)) (-15 -1456 ($ $ $ |t#3|)) (-15 -1593 ($ $ $ |t#3|)) (-15 -3421 ($ $ $)) (-15 -2251 ($ $ $)) (-15 -3421 ($ $ $ |t#3|)) (-15 -2251 ($ $ $ |t#3|)) (-15 -3395 ((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $)) (-15 -3395 ((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2519 $)) $ $ |t#3|)) (-15 -2073 ((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -2073 ((-2 (|:| -4473 $) (|:| |gap| (-792)) (|:| -2203 $) (|:| -2519 $)) $ $ |t#3|)) (-15 -1771 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -1376 ($ $ $)) (-15 -3099 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3403 (-792))) $ $)) (-15 -3881 ($ $ $)) (-15 -2477 ($ $ $)) (IF (|has| |t#3| (-632 (-1206))) (PROGN (-6 (-631 (-980 |t#1|))) (-6 (-632 (-980 |t#1|))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4335 ((-3 $ "failed") (-980 (-420 (-577))))) (-15 -3783 ($ (-980 (-420 (-577))))) (-15 -4463 ($ (-980 (-420 (-577))))) (-15 -4335 ((-3 $ "failed") (-980 (-577)))) (-15 -3783 ($ (-980 (-577)))) (-15 -4463 ($ (-980 (-577)))) (IF (|has| |t#1| (-1022 (-577))) |%noBranch| (PROGN (-15 -4335 ((-3 $ "failed") (-980 |t#1|))) (-15 -3783 ($ (-980 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -4335 ((-3 $ "failed") (-980 (-577)))) (-15 -3783 ($ (-980 (-577)))) (-15 -4463 ($ (-980 (-577)))) (IF (|has| |t#1| (-558)) |%noBranch| (PROGN (-15 -4335 ((-3 $ "failed") (-980 |t#1|))) (-15 -3783 ($ (-980 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) |%noBranch| (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -4335 ((-3 $ "failed") (-980 |t#1|))) (-15 -3783 ($ (-980 |t#1|)))))) (-15 -4463 ($ (-980 |t#1|))) (IF (|has| |t#1| (-1068 (-577))) (-6 (-632 (-1188))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -2006 ($ $)) (-15 -4069 ($ $)) (-15 -3380 ($ $ |t#1|)) (-15 -1358 ($ $ |t#1|)) (-15 -3380 ($ $ $)) (-15 -1358 ($ $ $)) (-15 -3473 ($ $ $)) (-15 -3777 ((-2 (|:| -3642 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1749 ((-2 (|:| -3642 $) (|:| |coef1| $)) $ $)) (-15 -4178 ((-2 (|:| -3642 $) (|:| |coef2| $)) $ $)) (-15 -3868 ($ $ $)) (-15 -2795 ((-665 $) $ $)) (-15 -4045 ($ $ $)) (-15 -4100 ($ $ $ (-792))) (-15 -1553 ($ $ $ $ (-792))) (-15 -1908 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -3642 (|t#1| |t#1| $)) (-15 -2528 ($ $)) (-15 -2280 ($ $)) (-15 -4102 ($ $)) (-15 -3189 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 |#3|) . T) ((-634 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-631 (-885)) . T) ((-631 (-980 |#1|)) |has| |#3| (-632 (-1206))) ((-174) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ((-632 (-980 |#1|)) |has| |#3| (-632 (-1206))) ((-632 (-1188)) -12 (|has| |#1| (-1068 (-577))) (|has| |#3| (-632 (-1206)))) ((-301) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2867 (|has| |#1| (-937)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-747) . T) ((-920 $ |#3|) . T) ((-926 |#3|) . T) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ((-977 |#1| |#2| |#3|) . T) ((-937) |has| |#1| (-937)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1068 |#3|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-937))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3356 (((-665 (-1165)) $) 18 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 27 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-1165) $) 20 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1096) (-13 (-1113) (-10 -8 (-15 -3356 ((-665 (-1165)) $)) (-15 -2773 ((-1165) $))))) (T -1096)) +((-3356 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1096)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1096))))) +(-13 (-1113) (-10 -8 (-15 -3356 ((-665 (-1165)) $)) (-15 -2773 ((-1165) $)))) +((-4113 (((-112) |#3| $) 15 T ELT)) (-1940 (((-3 $ "failed") |#3| (-949)) 29 T ELT)) (-3167 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-4339 (((-112) |#3| $) 19 T ELT)) (-2649 (((-112) |#3| $) 17 T ELT))) +(((-1097 |#1| |#2| |#3|) (-10 -8 (-15 -1940 ((-3 |#1| "failed") |#3| (-949))) (-15 -3167 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4339 ((-112) |#3| |#1|)) (-15 -2649 ((-112) |#3| |#1|)) (-15 -4113 ((-112) |#3| |#1|))) (-1098 |#2| |#3|) (-13 (-869) (-375)) (-1273 |#2|)) (T -1097)) +NIL +(-10 -8 (-15 -1940 ((-3 |#1| "failed") |#3| (-949))) (-15 -3167 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4339 ((-112) |#3| |#1|)) (-15 -2649 ((-112) |#3| |#1|)) (-15 -4113 ((-112) |#3| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) |#2| $) 22 T ELT)) (-2578 (((-577) |#2| $) 23 T ELT)) (-1940 (((-3 $ "failed") |#2| (-949)) 16 T ELT)) (-4078 ((|#1| |#2| $ |#1|) 14 T ELT)) (-3167 (((-3 |#2| "failed") |#2| $) 19 T ELT)) (-4339 (((-112) |#2| $) 20 T ELT)) (-2649 (((-112) |#2| $) 21 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4263 ((|#2| $) 18 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4215 ((|#1| |#2| $ |#1|) 15 T ELT)) (-4331 (((-665 $) |#2|) 17 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-1098 |#1| |#2|) (-141) (-13 (-869) (-375)) (-1273 |t#1|)) (T -1098)) +((-2578 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-577)))) (-4113 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-112)))) (-2649 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-112)))) (-4339 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-112)))) (-3167 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) (-4 *2 (-1273 *3)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) (-4 *2 (-1273 *3)))) (-4331 (*1 *2 *3) (-12 (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-665 *1)) (-4 *1 (-1098 *4 *3)))) (-1940 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-949)) (-4 *4 (-13 (-869) (-375))) (-4 *1 (-1098 *4 *2)) (-4 *2 (-1273 *4)))) (-4215 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) (-4 *3 (-1273 *2)))) (-4078 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) (-4 *3 (-1273 *2))))) +(-13 (-1130) (-10 -8 (-15 -2578 ((-577) |t#2| $)) (-15 -4113 ((-112) |t#2| $)) (-15 -2649 ((-112) |t#2| $)) (-15 -4339 ((-112) |t#2| $)) (-15 -3167 ((-3 |t#2| "failed") |t#2| $)) (-15 -4263 (|t#2| $)) (-15 -4331 ((-665 $) |t#2|)) (-15 -1940 ((-3 $ "failed") |t#2| (-949))) (-15 -4215 (|t#1| |t#2| $ |t#1|)) (-15 -4078 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3426 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-792)) 114 T ELT)) (-3746 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792)) 63 T ELT)) (-2623 (((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-792)) 99 T ELT)) (-3595 (((-792) (-665 |#4|) (-665 |#5|)) 30 T ELT)) (-2777 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792)) 65 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792) (-112)) 67 T ELT)) (-4267 (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112)) 86 T ELT) (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112)) 87 T ELT)) (-4463 (((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) 92 T ELT)) (-3045 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-112)) 62 T ELT)) (-3818 (((-792) (-665 |#4|) (-665 |#5|)) 21 T ELT))) +(((-1099 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3818 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3595 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3045 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-112))) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-792))) (-15 -4463 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2623 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-792)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1099)) +((-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-4463 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) (-5 *1 (-1099 *4 *5 *6 *7 *8)))) (-3426 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-665 *11)) (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -3613 *11)))))) (-5 *6 (-792)) (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -3613 *11)))) (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-5 *1 (-1099 *7 *8 *9 *10 *11)))) (-4267 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-4267 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-2777 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-2777 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1099 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) (-3746 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3746 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3818 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3595 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3045 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-112))) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-792))) (-15 -4463 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2623 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-792)))) +((-3020 (((-112) |#5| $) 26 T ELT)) (-4005 (((-112) |#5| $) 29 T ELT)) (-1753 (((-112) |#5| $) 18 T ELT) (((-112) $) 52 T ELT)) (-1565 (((-665 $) |#5| $) NIL T ELT) (((-665 $) (-665 |#5|) $) 94 T ELT) (((-665 $) (-665 |#5|) (-665 $)) 92 T ELT) (((-665 $) |#5| (-665 $)) 95 T ELT)) (-2568 (($ $ |#5|) NIL T ELT) (((-665 $) |#5| $) NIL T ELT) (((-665 $) |#5| (-665 $)) 73 T ELT) (((-665 $) (-665 |#5|) $) 75 T ELT) (((-665 $) (-665 |#5|) (-665 $)) 77 T ELT)) (-4197 (((-665 $) |#5| $) NIL T ELT) (((-665 $) |#5| (-665 $)) 64 T ELT) (((-665 $) (-665 |#5|) $) 69 T ELT) (((-665 $) (-665 |#5|) (-665 $)) 71 T ELT)) (-2259 (((-112) |#5| $) 32 T ELT))) +(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2568 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -2568 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -2568 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -2568 ((-665 |#1|) |#5| |#1|)) (-15 -4197 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -4197 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -4197 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -4197 ((-665 |#1|) |#5| |#1|)) (-15 -1565 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -1565 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -1565 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -1565 ((-665 |#1|) |#5| |#1|)) (-15 -4005 ((-112) |#5| |#1|)) (-15 -1753 ((-112) |#1|)) (-15 -2259 ((-112) |#5| |#1|)) (-15 -3020 ((-112) |#5| |#1|)) (-15 -1753 ((-112) |#5| |#1|)) (-15 -2568 (|#1| |#1| |#5|))) (-1101 |#2| |#3| |#4| |#5|) (-465) (-814) (-870) (-1095 |#2| |#3| |#4|)) (T -1100)) +NIL +(-10 -8 (-15 -2568 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -2568 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -2568 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -2568 ((-665 |#1|) |#5| |#1|)) (-15 -4197 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -4197 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -4197 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -4197 ((-665 |#1|) |#5| |#1|)) (-15 -1565 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -1565 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -1565 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -1565 ((-665 |#1|) |#5| |#1|)) (-15 -4005 ((-112) |#5| |#1|)) (-15 -1753 ((-112) |#1|)) (-15 -2259 ((-112) |#5| |#1|)) (-15 -3020 ((-112) |#5| |#1|)) (-15 -1753 ((-112) |#5| |#1|)) (-15 -2568 (|#1| |#1| |#5|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-1795 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-3891 (((-665 |#3|) $) 34 T ELT)) (-1507 (((-112) $) 27 T ELT)) (-2221 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3800 ((|#4| |#4| $) 93 T ELT)) (-2612 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| $) 127 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1777 (((-112) $ (-792)) 45 T ELT)) (-1440 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2305 (($) 46 T CONST)) (-1603 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3783 (($ (-665 |#4|)) 36 T ELT)) (-4410 (((-3 $ "failed") $) 83 T ELT)) (-3145 ((|#4| |#4| $) 90 T ELT)) (-3589 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3947 ((|#4| |#4| $) 88 T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) 106 T ELT)) (-3020 (((-112) |#4| $) 137 T ELT)) (-4005 (((-112) |#4| $) 134 T ELT)) (-1753 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2118 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1429 ((|#3| $) 35 T ELT)) (-3862 (((-112) $ (-792)) 44 T ELT)) (-2152 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1683 (((-665 |#3|) $) 33 T ELT)) (-3692 (((-112) |#3| $) 32 T ELT)) (-3438 (((-112) $ (-792)) 43 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3036 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-4045 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| |#4| $) 128 T ELT)) (-4026 (((-3 |#4| "failed") $) 84 T ELT)) (-1955 (((-665 $) |#4| $) 130 T ELT)) (-1377 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-3132 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-1565 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-1963 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-1602 (((-665 |#4|) $) 108 T ELT)) (-1768 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-2477 ((|#4| |#4| $) 91 T ELT)) (-2852 (((-112) $ $) 111 T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-3881 ((|#4| |#4| $) 92 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4397 (((-3 |#4| "failed") $) 85 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2568 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) 39 T ELT)) (-2687 (((-112) $) 42 T ELT)) (-2833 (($) 41 T ELT)) (-1597 (((-792) $) 107 T ELT)) (-1481 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 40 T ELT)) (-4463 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 61 T ELT)) (-1336 (($ $ |#3|) 29 T ELT)) (-3076 (($ $ |#3|) 31 T ELT)) (-2138 (($ $) 89 T ELT)) (-2951 (($ $ |#3|) 30 T ELT)) (-3709 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3534 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-4197 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) 82 T ELT)) (-2259 (((-112) |#4| $) 136 T ELT)) (-2066 (((-112) |#3| $) 81 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) +(((-1101 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1101)) +((-1753 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-3020 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2259 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-4005 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-1377 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 (-112) (-665 *1))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3132 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3132 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-1955 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3036 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 *3 (-665 *1))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4045 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-2612 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-1565 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-1565 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-1565 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-1565 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-4197 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4197 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-4197 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-1963 (*1 *1 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-1963 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *6)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)))) (-2568 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-2568 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-2568 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-2568 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *5 *6 *7 *8))))) +(-13 (-1240 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1753 ((-112) |t#4| $)) (-15 -3020 ((-112) |t#4| $)) (-15 -2259 ((-112) |t#4| $)) (-15 -1753 ((-112) $)) (-15 -4005 ((-112) |t#4| $)) (-15 -1377 ((-3 (-112) (-665 $)) |t#4| $)) (-15 -3132 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) |t#4| $)) (-15 -3132 ((-112) |t#4| $)) (-15 -1955 ((-665 $) |t#4| $)) (-15 -3036 ((-3 |t#4| (-665 $)) |t#4| |t#4| $)) (-15 -4045 ((-665 (-2 (|:| |val| |t#4|) (|:| -3613 $))) |t#4| |t#4| $)) (-15 -2612 ((-665 (-2 (|:| |val| |t#4|) (|:| -3613 $))) |t#4| $)) (-15 -1565 ((-665 $) |t#4| $)) (-15 -1565 ((-665 $) (-665 |t#4|) $)) (-15 -1565 ((-665 $) (-665 |t#4|) (-665 $))) (-15 -1565 ((-665 $) |t#4| (-665 $))) (-15 -4197 ((-665 $) |t#4| $)) (-15 -4197 ((-665 $) |t#4| (-665 $))) (-15 -4197 ((-665 $) (-665 |t#4|) $)) (-15 -4197 ((-665 $) (-665 |t#4|) (-665 $))) (-15 -1963 ($ |t#4| $)) (-15 -1963 ($ (-665 |t#4|) $)) (-15 -2568 ((-665 $) |t#4| $)) (-15 -2568 ((-665 $) |t#4| (-665 $))) (-15 -2568 ((-665 $) (-665 |t#4|) $)) (-15 -2568 ((-665 $) (-665 |t#4|) (-665 $))) (-15 -1795 ((-665 $) (-665 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-2432 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|) 86 T ELT)) (-3164 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|) 127 T ELT)) (-2195 (((-665 |#5|) |#4| |#5|) 74 T ELT)) (-3580 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-2776 (((-1302)) 36 T ELT)) (-2619 (((-1302)) 25 T ELT)) (-4147 (((-1302) (-1188) (-1188) (-1188)) 32 T ELT)) (-1444 (((-1302) (-1188) (-1188) (-1188)) 21 T ELT)) (-1779 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#4| |#4| |#5|) 107 T ELT)) (-2781 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#3| (-112)) 118 T ELT) (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-2658 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|) 113 T ELT))) +(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1444 ((-1302) (-1188) (-1188) (-1188))) (-15 -2619 ((-1302))) (-15 -4147 ((-1302) (-1188) (-1188) (-1188))) (-15 -2776 ((-1302))) (-15 -1779 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -2781 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2781 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#3| (-112))) (-15 -2658 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -3164 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -3580 ((-112) |#4| |#5|)) (-15 -3580 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -2195 ((-665 |#5|) |#4| |#5|)) (-15 -2432 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1102)) +((-2432 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2195 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3580 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3580 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3164 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2658 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -3613 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-2781 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-1779 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2776 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-4147 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-2619 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-1444 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -1444 ((-1302) (-1188) (-1188) (-1188))) (-15 -2619 ((-1302))) (-15 -4147 ((-1302) (-1188) (-1188) (-1188))) (-15 -2776 ((-1302))) (-15 -1779 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -2781 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2781 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#3| (-112))) (-15 -2658 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -3164 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -3580 ((-112) |#4| |#5|)) (-15 -3580 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -2195 ((-665 |#5|) |#4| |#5|)) (-15 -2432 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3117 (((-1246) $) 13 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3477 (((-1165) $) 10 T ELT)) (-3709 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1103) (-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3117 ((-1246) $))))) (T -1103)) +((-3477 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1103)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1103))))) +(-13 (-1113) (-10 -8 (-15 -3477 ((-1165) $)) (-15 -3117 ((-1246) $)))) +((-2281 (((-112) $ $) 7 T ELT))) +(((-1104) (-13 (-1247) (-10 -8 (-15 -2281 ((-112) $ $))))) (T -1104)) +((-2281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1104))))) +(-13 (-1247) (-10 -8 (-15 -2281 ((-112) $ $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2758 (((-1206) $) 8 T ELT)) (-3235 (((-1188) $) 17 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 11 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 14 T ELT))) +(((-1105 |#1|) (-13 (-1130) (-10 -8 (-15 -2758 ((-1206) $)))) (-1206)) (T -1105)) +((-2758 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1105 *3)) (-14 *3 *2)))) +(-13 (-1130) (-10 -8 (-15 -2758 ((-1206) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1856 (($ $ (-665 (-1206)) (-1 (-112) (-665 |#3|))) 34 T ELT)) (-3292 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-665 (-1206))) 21 T ELT)) (-2416 ((|#3| $) 13 T ELT)) (-4335 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3783 (((-305 |#3|) $) NIL T ELT)) (-4054 (((-665 (-1206)) $) 16 T ELT)) (-2878 (((-916 |#1|) $) 11 T ELT)) (-2404 ((|#3| $) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-949)) 41 T ELT)) (-3709 (((-885) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 38 T ELT))) +(((-1106 |#1| |#2| |#3|) (-13 (-1130) (-297 |#3| |#3|) (-1068 (-305 |#3|)) (-10 -8 (-15 -3292 ($ |#3| |#3|)) (-15 -3292 ($ |#3| |#3| (-665 (-1206)))) (-15 -1856 ($ $ (-665 (-1206)) (-1 (-112) (-665 |#3|)))) (-15 -2878 ((-916 |#1|) $)) (-15 -2404 (|#3| $)) (-15 -2416 (|#3| $)) (-15 -2916 (|#3| $ |#3| (-949))) (-15 -4054 ((-665 (-1206)) $)))) (-1130) (-13 (-1079) (-910 |#1|) (-632 (-916 |#1|))) (-13 (-443 |#2|) (-910 |#1|) (-632 (-916 |#1|)))) (T -1106)) +((-3292 (*1 *1 *2 *2) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))))) (-3292 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) (-1856 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1 (-112) (-665 *6))) (-4 *6 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1106 *4 *5 *6)))) (-2878 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 *2))) (-5 *2 (-916 *3)) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 *2))))) (-2404 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) (-2416 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) (-2916 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) (-4054 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-5 *2 (-665 (-1206))) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) +(-13 (-1130) (-297 |#3| |#3|) (-1068 (-305 |#3|)) (-10 -8 (-15 -3292 ($ |#3| |#3|)) (-15 -3292 ($ |#3| |#3| (-665 (-1206)))) (-15 -1856 ($ $ (-665 (-1206)) (-1 (-112) (-665 |#3|)))) (-15 -2878 ((-916 |#1|) $)) (-15 -2404 (|#3| $)) (-15 -2416 (|#3| $)) (-15 -2916 (|#3| $ |#3| (-949))) (-15 -4054 ((-665 (-1206)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-1817 (($ (-665 (-1106 |#1| |#2| |#3|))) 14 T ELT)) (-1433 (((-665 (-1106 |#1| |#2| |#3|)) $) 21 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-949)) 27 T ELT)) (-3709 (((-885) $) 17 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 20 T ELT))) +(((-1107 |#1| |#2| |#3|) (-13 (-1130) (-297 |#3| |#3|) (-10 -8 (-15 -1817 ($ (-665 (-1106 |#1| |#2| |#3|)))) (-15 -1433 ((-665 (-1106 |#1| |#2| |#3|)) $)) (-15 -2916 (|#3| $ |#3| (-949))))) (-1130) (-13 (-1079) (-910 |#1|) (-632 (-916 |#1|))) (-13 (-443 |#2|) (-910 |#1|) (-632 (-916 |#1|)))) (T -1107)) +((-1817 (*1 *1 *2) (-12 (-5 *2 (-665 (-1106 *3 *4 *5))) (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1107 *3 *4 *5)))) (-1433 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-5 *2 (-665 (-1106 *3 *4 *5))) (-5 *1 (-1107 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))))) (-2916 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1107 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4))))))) +(-13 (-1130) (-297 |#3| |#3|) (-10 -8 (-15 -1817 ($ (-665 (-1106 |#1| |#2| |#3|)))) (-15 -1433 ((-665 (-1106 |#1| |#2| |#3|)) $)) (-15 -2916 (|#3| $ |#3| (-949))))) +((-2919 (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)) 88 T ELT) (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|))) 92 T ELT) (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112)) 90 T ELT))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -2919 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -2919 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -2919 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)))) (-13 (-318) (-148)) (-665 (-1206))) (T -1108)) +((-2919 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))))) (-2919 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *4)) (|:| -3762 (-665 (-980 *4)))))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-665 (-980 *4))) (-14 *5 (-665 (-1206))))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206)))))) +(-10 -7 (-15 -2919 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -2919 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -2919 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)))) +((-3759 (((-431 |#3|) |#3|) 18 T ELT))) +(((-1109 |#1| |#2| |#3|) (-10 -7 (-15 -3759 ((-431 |#3|) |#3|))) (-1273 (-420 (-577))) (-13 (-375) (-148) (-745 (-420 (-577)) |#1|)) (-1273 |#2|)) (T -1109)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-13 (-375) (-148) (-745 (-420 (-577)) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1109 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -3759 ((-431 |#3|) |#3|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 136 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-375)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2901 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) 121 T ELT)) (-2318 ((|#1| $) 125 T ELT)) (-2061 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-361)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3005 (((-792)) 43 (|has| |#1| (-380)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-2385 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) 46 T ELT)) (-2262 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)) ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3921 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 113 T ELT) (((-710 |#1|) (-710 $)) 108 T ELT)) (-2060 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-420 |#2|)) NIL (|has| |#1| (-375)) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1641 (((-949)) 84 T ELT)) (-1424 (($) 47 (|has| |#1| (-380)) ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-2213 (($) NIL (|has| |#1| (-361)) ELT)) (-3275 (((-112) $) NIL (|has| |#1| (-361)) ELT)) (-3987 (($ $ (-792)) NIL (|has| |#1| (-361)) ELT) (($ $) NIL (|has| |#1| (-361)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4030 (((-949) $) NIL (|has| |#1| (-361)) ELT) (((-854 (-949)) $) NIL (|has| |#1| (-361)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2794 ((|#1| $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-361)) ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2346 ((|#2| $) 91 (|has| |#1| (-375)) ELT)) (-2686 (((-949) $) 145 (|has| |#1| (-380)) ELT)) (-2047 ((|#2| $) 62 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2443 (($) NIL (|has| |#1| (-361)) CONST)) (-3354 (($ (-949)) 135 (|has| |#1| (-380)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2343 (($) 127 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3718 (((-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577))))) NIL (|has| |#1| (-361)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3846 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-3038 (((-792) $) NIL (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| |#1| (-361)) ELT)) (-3641 (($ $ (-792)) NIL (-2867 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) NIL (-2867 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL (|has| |#1| (-375)) ELT)) (-4040 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT)) (-4263 ((|#2|) 81 T ELT)) (-3475 (($) NIL (|has| |#1| (-361)) ELT)) (-3762 (((-1297 |#1|) $ (-1297 $)) 96 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 75 T ELT) (((-710 |#1|) (-1297 $)) 92 T ELT)) (-4463 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-361)) ELT)) (-3709 (((-885) $) 61 T ELT) (($ (-577)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-2932 ((|#2| $) 89 T ELT)) (-3331 (((-792)) 83 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2104 (((-1297 $)) 88 T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2839 (($) 32 T CONST)) (-2853 (($) 19 T CONST)) (-2389 (($ $ (-792)) NIL (-2867 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) NIL (-2867 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL (|has| |#1| (-375)) ELT)) (-3018 (((-112) $ $) 67 T ELT)) (-3139 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 69 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT))) +(((-1110 |#1| |#2| |#3|) (-745 |#1| |#2|) (-174) (-1273 |#1|) |#2|) (T -1110)) +NIL +(-745 |#1| |#2|) +((-3759 (((-431 |#3|) |#3|) 19 T ELT))) +(((-1111 |#1| |#2| |#3|) (-10 -7 (-15 -3759 ((-431 |#3|) |#3|))) (-1273 (-420 (-980 (-577)))) (-13 (-375) (-148) (-745 (-420 (-980 (-577))) |#1|)) (-1273 |#2|)) (T -1111)) +((-3759 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 (-980 (-577))))) (-4 *5 (-13 (-375) (-148) (-745 (-420 (-980 (-577))) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(-10 -7 (-15 -3759 ((-431 |#3|) |#3|))) +((-3586 (((-112) $ $) NIL T ELT)) (-3237 (($ $ $) 16 T ELT)) (-2930 (($ $ $) 17 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1367 (($) 6 T ELT)) (-4463 (((-1206) $) 20 T ELT)) (-3709 (((-885) $) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 15 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 9 T ELT))) +(((-1112) (-13 (-870) (-632 (-1206)) (-10 -8 (-15 -1367 ($))))) (T -1112)) +((-1367 (*1 *1) (-5 *1 (-1112)))) +(-13 (-870) (-632 (-1206)) (-10 -8 (-15 -1367 ($)))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-1211)) 17 T ELT) (((-1211) $) 16 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-1113) (-141)) (T -1113)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-629 #0=(-1206)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1242) . T)) -((-2044 ((|#1| |#1| (-1 (-577) |#1| |#1|)) 42 T ELT) ((|#1| |#1| (-1 (-112) |#1|)) 33 T ELT)) (-2883 (((-1297)) 21 T ELT)) (-4104 (((-660 |#1|)) 13 T ELT))) -(((-1109 |#1|) (-10 -7 (-15 -2883 ((-1297))) (-15 -4104 ((-660 |#1|))) (-15 -2044 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2044 (|#1| |#1| (-1 (-577) |#1| |#1|)))) (-133)) (T -1109)) -((-2044 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2)))) (-2044 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2)))) (-4104 (*1 *2) (-12 (-5 *2 (-660 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-133)))) (-2883 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1109 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -2883 ((-1297))) (-15 -4104 ((-660 |#1|))) (-15 -2044 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2044 (|#1| |#1| (-1 (-577) |#1| |#1|)))) -((-3111 (($ (-109) $) 20 T ELT)) (-2874 (((-707 (-109)) (-519) $) 19 T ELT)) (-2693 (($) 7 T ELT)) (-1467 (($) 21 T ELT)) (-1733 (($) 22 T ELT)) (-1475 (((-660 (-177)) $) 10 T ELT)) (-3603 (((-880) $) 25 T ELT))) -(((-1110) (-13 (-626 (-880)) (-10 -8 (-15 -2693 ($)) (-15 -1475 ((-660 (-177)) $)) (-15 -2874 ((-707 (-109)) (-519) $)) (-15 -3111 ($ (-109) $)) (-15 -1467 ($)) (-15 -1733 ($))))) (T -1110)) -((-2693 (*1 *1) (-5 *1 (-1110))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-660 (-177))) (-5 *1 (-1110)))) (-2874 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-1110)))) (-3111 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1110)))) (-1467 (*1 *1) (-5 *1 (-1110))) (-1733 (*1 *1) (-5 *1 (-1110)))) -(-13 (-626 (-880)) (-10 -8 (-15 -2693 ($)) (-15 -1475 ((-660 (-177)) $)) (-15 -2874 ((-707 (-109)) (-519) $)) (-15 -3111 ($ (-109) $)) (-15 -1467 ($)) (-15 -1733 ($)))) -((-2979 (((-1292 (-705 |#1|)) (-660 (-705 |#1|))) 45 T ELT) (((-1292 (-705 (-975 |#1|))) (-660 (-1201)) (-705 (-975 |#1|))) 75 T ELT) (((-1292 (-705 (-420 (-975 |#1|)))) (-660 (-1201)) (-705 (-420 (-975 |#1|)))) 92 T ELT)) (-2729 (((-1292 |#1|) (-705 |#1|) (-660 (-705 |#1|))) 39 T ELT))) -(((-1111 |#1|) (-10 -7 (-15 -2979 ((-1292 (-705 (-420 (-975 |#1|)))) (-660 (-1201)) (-705 (-420 (-975 |#1|))))) (-15 -2979 ((-1292 (-705 (-975 |#1|))) (-660 (-1201)) (-705 (-975 |#1|)))) (-15 -2979 ((-1292 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -2729 ((-1292 |#1|) (-705 |#1|) (-660 (-705 |#1|))))) (-375)) (T -1111)) -((-2729 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-705 *5))) (-5 *3 (-705 *5)) (-4 *5 (-375)) (-5 *2 (-1292 *5)) (-5 *1 (-1111 *5)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-1111 *4)))) (-2979 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) (-5 *2 (-1292 (-705 (-975 *5)))) (-5 *1 (-1111 *5)) (-5 *4 (-705 (-975 *5))))) (-2979 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) (-5 *2 (-1292 (-705 (-420 (-975 *5))))) (-5 *1 (-1111 *5)) (-5 *4 (-705 (-420 (-975 *5))))))) -(-10 -7 (-15 -2979 ((-1292 (-705 (-420 (-975 |#1|)))) (-660 (-1201)) (-705 (-420 (-975 |#1|))))) (-15 -2979 ((-1292 (-705 (-975 |#1|))) (-660 (-1201)) (-705 (-975 |#1|)))) (-15 -2979 ((-1292 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -2729 ((-1292 |#1|) (-705 |#1|) (-660 (-705 |#1|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2959 (((-660 (-787)) $) NIL T ELT) (((-660 (-787)) $ (-1201)) NIL T ELT)) (-2539 (((-787) $) NIL T ELT) (((-787) $ (-1201)) NIL T ELT)) (-3206 (((-660 (-1113 (-1201))) $) NIL T ELT)) (-3024 (((-1197 $) $ (-1113 (-1201))) NIL T ELT) (((-1197 |#1|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-1113 (-1201)))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2475 (($ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-1113 (-1201)) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL T ELT) (((-3 (-1150 |#1| (-1201)) "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-1113 (-1201)) $) NIL T ELT) (((-1201) $) NIL T ELT) (((-1150 |#1| (-1201)) $) NIL T ELT)) (-2653 (($ $ $ (-1113 (-1201))) NIL (|has| |#1| (-174)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1113 (-1201))) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-544 (-1113 (-1201))) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1113 (-1201)) (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1113 (-1201)) (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-2536 (((-787) $ (-1201)) NIL T ELT) (((-787) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-3194 (($ (-1197 |#1|) (-1113 (-1201))) NIL T ELT) (($ (-1197 $) (-1113 (-1201))) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-544 (-1113 (-1201)))) NIL T ELT) (($ $ (-1113 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-1113 (-1201))) NIL T ELT)) (-2643 (((-544 (-1113 (-1201))) $) NIL T ELT) (((-787) $ (-1113 (-1201))) NIL T ELT) (((-660 (-787)) $ (-660 (-1113 (-1201)))) NIL T ELT)) (-4373 (($ (-1 (-544 (-1113 (-1201))) (-544 (-1113 (-1201)))) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4417 (((-1 $ (-787)) (-1201)) NIL T ELT) (((-1 $ (-787)) $) NIL (|has| |#1| (-239)) ELT)) (-4038 (((-3 (-1113 (-1201)) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2646 (((-1113 (-1201)) $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2330 (((-112) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-1113 (-1201))) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-2268 (($ $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1113 (-1201)) |#1|) NIL T ELT) (($ $ (-660 (-1113 (-1201))) (-660 |#1|)) NIL T ELT) (($ $ (-1113 (-1201)) $) NIL T ELT) (($ $ (-660 (-1113 (-1201))) (-660 $)) NIL T ELT) (($ $ (-1201) $) NIL (|has| |#1| (-239)) ELT) (($ $ (-660 (-1201)) (-660 $)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-4447 (($ $ (-1113 (-1201))) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL T ELT) (($ $ (-1113 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-1113 (-1201)))) NIL T ELT) (($ $ (-1113 (-1201))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-1727 (((-660 (-1201)) $) NIL T ELT)) (-3616 (((-544 (-1113 (-1201))) $) NIL T ELT) (((-787) $ (-1113 (-1201))) NIL T ELT) (((-660 (-787)) $ (-660 (-1113 (-1201)))) NIL T ELT) (((-787) $ (-1201)) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-1113 (-1201)) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1113 (-1201)) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1113 (-1201)) (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1113 (-1201))) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1113 (-1201))) NIL T ELT) (($ (-1201)) NIL T ELT) (($ (-1150 |#1| (-1201))) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-544 (-1113 (-1201)))) NIL T ELT) (($ $ (-1113 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL T ELT) (($ $ (-1113 (-1201)) (-787)) NIL T ELT) (($ $ (-660 (-1113 (-1201)))) NIL T ELT) (($ $ (-1113 (-1201))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-787)) NIL (|has| |#1| (-238)) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1112 |#1|) (-13 (-261 |#1| (-1201) (-1113 (-1201)) (-544 (-1113 (-1201)))) (-1063 (-1150 |#1| (-1201)))) (-1074)) (T -1112)) -NIL -(-13 (-261 |#1| (-1201) (-1113 (-1201)) (-544 (-1113 (-1201)))) (-1063 (-1150 |#1| (-1201)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2539 (((-787) $) NIL T ELT)) (-3052 ((|#1| $) 10 T ELT)) (-2784 (((-3 |#1| "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT)) (-2536 (((-787) $) 11 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-4417 (($ |#1| (-787)) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3362 (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2136 (($ $ (-787)) NIL T ELT) (($ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 16 T ELT))) -(((-1113 |#1|) (-276 |#1|) (-865)) (T -1113)) +(((-93) . T) ((-102) . T) ((-634 #0=(-1211)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1247) . T)) +((-2337 ((|#1| |#1| (-1 (-577) |#1| |#1|)) 42 T ELT) ((|#1| |#1| (-1 (-112) |#1|)) 33 T ELT)) (-1948 (((-1302)) 21 T ELT)) (-4324 (((-665 |#1|)) 13 T ELT))) +(((-1114 |#1|) (-10 -7 (-15 -1948 ((-1302))) (-15 -4324 ((-665 |#1|))) (-15 -2337 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2337 (|#1| |#1| (-1 (-577) |#1| |#1|)))) (-133)) (T -1114)) +((-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2)))) (-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2)))) (-4324 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-133)))) (-1948 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1114 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -1948 ((-1302))) (-15 -4324 ((-665 |#1|))) (-15 -2337 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2337 (|#1| |#1| (-1 (-577) |#1| |#1|)))) +((-2996 (($ (-109) $) 20 T ELT)) (-2231 (((-712 (-109)) (-519) $) 19 T ELT)) (-2833 (($) 7 T ELT)) (-4322 (($) 21 T ELT)) (-1881 (($) 22 T ELT)) (-1459 (((-665 (-177)) $) 10 T ELT)) (-3709 (((-885) $) 25 T ELT))) +(((-1115) (-13 (-631 (-885)) (-10 -8 (-15 -2833 ($)) (-15 -1459 ((-665 (-177)) $)) (-15 -2231 ((-712 (-109)) (-519) $)) (-15 -2996 ($ (-109) $)) (-15 -4322 ($)) (-15 -1881 ($))))) (T -1115)) +((-2833 (*1 *1) (-5 *1 (-1115))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-665 (-177))) (-5 *1 (-1115)))) (-2231 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-1115)))) (-2996 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1115)))) (-4322 (*1 *1) (-5 *1 (-1115))) (-1881 (*1 *1) (-5 *1 (-1115)))) +(-13 (-631 (-885)) (-10 -8 (-15 -2833 ($)) (-15 -1459 ((-665 (-177)) $)) (-15 -2231 ((-712 (-109)) (-519) $)) (-15 -2996 ($ (-109) $)) (-15 -4322 ($)) (-15 -1881 ($)))) +((-2410 (((-1297 (-710 |#1|)) (-665 (-710 |#1|))) 45 T ELT) (((-1297 (-710 (-980 |#1|))) (-665 (-1206)) (-710 (-980 |#1|))) 75 T ELT) (((-1297 (-710 (-420 (-980 |#1|)))) (-665 (-1206)) (-710 (-420 (-980 |#1|)))) 92 T ELT)) (-3762 (((-1297 |#1|) (-710 |#1|) (-665 (-710 |#1|))) 39 T ELT))) +(((-1116 |#1|) (-10 -7 (-15 -2410 ((-1297 (-710 (-420 (-980 |#1|)))) (-665 (-1206)) (-710 (-420 (-980 |#1|))))) (-15 -2410 ((-1297 (-710 (-980 |#1|))) (-665 (-1206)) (-710 (-980 |#1|)))) (-15 -2410 ((-1297 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3762 ((-1297 |#1|) (-710 |#1|) (-665 (-710 |#1|))))) (-375)) (T -1116)) +((-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-710 *5))) (-5 *3 (-710 *5)) (-4 *5 (-375)) (-5 *2 (-1297 *5)) (-5 *1 (-1116 *5)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-1116 *4)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) (-5 *2 (-1297 (-710 (-980 *5)))) (-5 *1 (-1116 *5)) (-5 *4 (-710 (-980 *5))))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) (-5 *2 (-1297 (-710 (-420 (-980 *5))))) (-5 *1 (-1116 *5)) (-5 *4 (-710 (-420 (-980 *5))))))) +(-10 -7 (-15 -2410 ((-1297 (-710 (-420 (-980 |#1|)))) (-665 (-1206)) (-710 (-420 (-980 |#1|))))) (-15 -2410 ((-1297 (-710 (-980 |#1|))) (-665 (-1206)) (-710 (-980 |#1|)))) (-15 -2410 ((-1297 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3762 ((-1297 |#1|) (-710 |#1|) (-665 (-710 |#1|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1698 (((-665 (-792)) $) NIL T ELT) (((-665 (-792)) $ (-1206)) NIL T ELT)) (-2163 (((-792) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-3891 (((-665 (-1118 (-1206))) $) NIL T ELT)) (-3732 (((-1202 $) $ (-1118 (-1206))) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1118 (-1206)))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-1821 (($ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1118 (-1206)) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 (-1155 |#1| (-1206)) "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1118 (-1206)) $) NIL T ELT) (((-1206) $) NIL T ELT) (((-1155 |#1| (-1206)) $) NIL T ELT)) (-3868 (($ $ $ (-1118 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1118 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-544 (-1118 (-1206))) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1118 (-1206)) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1118 (-1206)) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-4030 (((-792) $ (-1206)) NIL T ELT) (((-792) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-3882 (($ (-1202 |#1|) (-1118 (-1206))) NIL T ELT) (($ (-1202 $) (-1118 (-1206))) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-544 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-1118 (-1206))) NIL T ELT)) (-4340 (((-544 (-1118 (-1206))) $) NIL T ELT) (((-792) $ (-1118 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-1118 (-1206)))) NIL T ELT)) (-4329 (($ (-1 (-544 (-1118 (-1206))) (-544 (-1118 (-1206)))) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2512 (((-1 $ (-792)) (-1206)) NIL T ELT) (((-1 $ (-792)) $) NIL (|has| |#1| (-239)) ELT)) (-3946 (((-3 (-1118 (-1206)) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-2357 (((-1118 (-1206)) $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3288 (((-112) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-1118 (-1206))) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1118 (-1206)) |#1|) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 |#1|)) NIL T ELT) (($ $ (-1118 (-1206)) $) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 $)) NIL T ELT) (($ $ (-1206) $) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 $)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-3846 (($ $ (-1118 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-4434 (((-665 (-1206)) $) NIL T ELT)) (-1597 (((-544 (-1118 (-1206))) $) NIL T ELT) (((-792) $ (-1118 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-1118 (-1206)))) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-1118 (-1206)) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1118 (-1206)) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1118 (-1206)) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1118 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1118 (-1206))) NIL T ELT) (($ (-1206)) NIL T ELT) (($ (-1155 |#1| (-1206))) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-544 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1117 |#1|) (-13 (-261 |#1| (-1206) (-1118 (-1206)) (-544 (-1118 (-1206)))) (-1068 (-1155 |#1| (-1206)))) (-1079)) (T -1117)) +NIL +(-13 (-261 |#1| (-1206) (-1118 (-1206)) (-544 (-1118 (-1206)))) (-1068 (-1155 |#1| (-1206)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2163 (((-792) $) NIL T ELT)) (-3341 ((|#1| $) 10 T ELT)) (-4335 (((-3 |#1| "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT)) (-4030 (((-792) $) 11 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-2512 (($ |#1| (-792)) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3641 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2389 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 16 T ELT))) +(((-1118 |#1|) (-276 |#1|) (-870)) (T -1118)) NIL (-276 |#1|) -((-2124 (((-660 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 29 (|has| |#1| (-864)) ELT) (((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 14 T ELT))) -(((-1114 |#1| |#2|) (-10 -7 (-15 -2124 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (IF (|has| |#1| (-864)) (-15 -2124 ((-660 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) |%noBranch|)) (-1242) (-1242)) (T -1114)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-864)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-660 *6)) (-5 *1 (-1114 *5 *6)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1119 *6)) (-5 *1 (-1114 *5 *6))))) -(-10 -7 (-15 -2124 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (IF (|has| |#1| (-864)) (-15 -2124 ((-660 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 16 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-4445 (((-660 (-1160)) $) 10 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1115) (-13 (-1108) (-10 -8 (-15 -4445 ((-660 (-1160)) $))))) (T -1115)) -((-4445 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1115))))) -(-13 (-1108) (-10 -8 (-15 -4445 ((-660 (-1160)) $)))) -((-2124 (((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)) 19 T ELT))) -(((-1116 |#1| |#2|) (-10 -7 (-15 -2124 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) (-1242) (-1242)) (T -1116)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1117 *6)) (-5 *1 (-1116 *5 *6))))) -(-10 -7 (-15 -2124 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| (-1119 |#1|) (-1125)) ELT)) (-3052 (((-1201) $) NIL T ELT)) (-1601 (((-1119 |#1|) $) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| (-1119 |#1|) (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| (-1119 |#1|) (-1125)) ELT)) (-3602 (($ (-1201) (-1119 |#1|)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| (-1119 |#1|) (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| (-1119 |#1|) (-1125)) ELT)) (-2949 (((-112) $ $) NIL (|has| (-1119 |#1|) (-1125)) ELT))) -(((-1117 |#1|) (-13 (-1242) (-10 -8 (-15 -3602 ($ (-1201) (-1119 |#1|))) (-15 -3052 ((-1201) $)) (-15 -1601 ((-1119 |#1|) $)) (IF (|has| (-1119 |#1|) (-1125)) (-6 (-1125)) |%noBranch|))) (-1242)) (T -1117)) -((-3602 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1119 *4)) (-4 *4 (-1242)) (-5 *1 (-1117 *4)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1117 *3)) (-4 *3 (-1242)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1117 *3)) (-4 *3 (-1242))))) -(-13 (-1242) (-10 -8 (-15 -3602 ($ (-1201) (-1119 |#1|))) (-15 -3052 ((-1201) $)) (-15 -1601 ((-1119 |#1|) $)) (IF (|has| (-1119 |#1|) (-1125)) (-6 (-1125)) |%noBranch|))) -((-1601 (($ |#1| |#1|) 8 T ELT)) (-1880 ((|#1| $) 11 T ELT)) (-3175 ((|#1| $) 13 T ELT)) (-3531 (((-577) $) 9 T ELT)) (-2526 ((|#1| $) 10 T ELT)) (-3542 ((|#1| $) 12 T ELT)) (-2176 (($ |#1|) 6 T ELT)) (-1856 (($ |#1| |#1|) 15 T ELT)) (-2707 (($ $ (-577)) 14 T ELT))) -(((-1118 |#1|) (-141) (-1242)) (T -1118)) -((-1856 (*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-2707 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1118 *3)) (-4 *3 (-1242)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1242)) (-5 *2 (-577)))) (-1601 (*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) -(-13 (-631 |t#1|) (-10 -8 (-15 -1856 ($ |t#1| |t#1|)) (-15 -2707 ($ $ (-577))) (-15 -3175 (|t#1| $)) (-15 -3542 (|t#1| $)) (-15 -1880 (|t#1| $)) (-15 -2526 (|t#1| $)) (-15 -3531 ((-577) $)) (-15 -1601 ($ |t#1| |t#1|)))) -(((-631 |#1|) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-1601 (($ |#1| |#1|) 16 T ELT)) (-2124 (((-660 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-864)) ELT)) (-1880 ((|#1| $) 12 T ELT)) (-3175 ((|#1| $) 11 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3531 (((-577) $) 15 T ELT)) (-2526 ((|#1| $) 14 T ELT)) (-3542 ((|#1| $) 13 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-3694 (((-660 |#1|) $) 44 (|has| |#1| (-864)) ELT) (((-660 |#1|) (-660 $)) 43 (|has| |#1| (-864)) ELT)) (-2176 (($ |#1|) 29 T ELT)) (-3603 (((-880) $) 28 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-1856 (($ |#1| |#1|) 10 T ELT)) (-2707 (($ $ (-577)) 17 T ELT)) (-2949 (((-112) $ $) 22 (|has| |#1| (-1125)) ELT))) -(((-1119 |#1|) (-13 (-1118 |#1|) (-10 -7 (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-660 |#1|))) |%noBranch|))) (-1242)) (T -1119)) -NIL -(-13 (-1118 |#1|) (-10 -7 (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-660 |#1|))) |%noBranch|))) -((-1601 (($ |#1| |#1|) 8 T ELT)) (-2124 ((|#2| (-1 |#1| |#1|) $) 16 T ELT)) (-1880 ((|#1| $) 11 T ELT)) (-3175 ((|#1| $) 13 T ELT)) (-3531 (((-577) $) 9 T ELT)) (-2526 ((|#1| $) 10 T ELT)) (-3542 ((|#1| $) 12 T ELT)) (-3694 ((|#2| (-660 $)) 18 T ELT) ((|#2| $) 17 T ELT)) (-2176 (($ |#1|) 6 T ELT)) (-1856 (($ |#1| |#1|) 15 T ELT)) (-2707 (($ $ (-577)) 14 T ELT))) -(((-1120 |#1| |#2|) (-141) (-864) (-1174 |t#1|)) (T -1120)) -((-3694 (*1 *2 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) (-4 *2 (-1174 *4)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-864)) (-4 *2 (-1174 *3)))) (-2124 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) (-4 *2 (-1174 *4))))) -(-13 (-1118 |t#1|) (-10 -8 (-15 -3694 (|t#2| (-660 $))) (-15 -3694 (|t#2| $)) (-15 -2124 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-631 |#1|) . T) ((-1118 |#1|) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3942 (((-1160) $) 12 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 18 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2682 (((-660 (-1160)) $) 10 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1121) (-13 (-1108) (-10 -8 (-15 -2682 ((-660 (-1160)) $)) (-15 -3942 ((-1160) $))))) (T -1121)) -((-2682 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1121)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1121))))) -(-13 (-1108) (-10 -8 (-15 -2682 ((-660 (-1160)) $)) (-15 -3942 ((-1160) $)))) -((-1872 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3470 (($ $ $) 10 T ELT)) (-3127 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1122 |#1| |#2|) (-10 -8 (-15 -1872 (|#1| |#2| |#1|)) (-15 -1872 (|#1| |#1| |#2|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| |#1|))) (-1123 |#2|) (-1125)) (T -1122)) -NIL -(-10 -8 (-15 -1872 (|#1| |#2| |#1|)) (-15 -1872 (|#1| |#1| |#2|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-1872 (($ $ $) 19 T ELT) (($ $ |#1|) 18 T ELT) (($ |#1| $) 17 T ELT)) (-3470 (($ $ $) 21 T ELT)) (-2401 (((-112) $ $) 20 T ELT)) (-4403 (((-112) $ (-787)) 36 T ELT)) (-2096 (($) 26 T ELT) (($ (-660 |#1|)) 25 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 37 T CONST)) (-3289 (($ $) 60 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#1| $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4470)) ELT)) (-3692 (((-660 |#1|) $) 44 (|has| $ (-6 -4470)) ELT)) (-2394 (((-112) $ $) 29 T ELT)) (-1821 (((-112) $ (-787)) 35 T ELT)) (-2434 (((-660 |#1|) $) 45 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3272 (((-112) $ (-787)) 34 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-4056 (($ $ $) 24 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#1|) (-660 |#1|)) 51 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 (-305 |#1|))) 48 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 30 T ELT)) (-2856 (((-112) $) 33 T ELT)) (-2693 (($) 32 T ELT)) (-3127 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT)) (-1452 (((-787) |#1| $) 46 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 31 T ELT)) (-2176 (((-549) $) 61 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 52 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-3122 (($) 28 T ELT) (($ (-660 |#1|)) 27 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-787) $) 38 (|has| $ (-6 -4470)) ELT))) -(((-1123 |#1|) (-141) (-1125)) (T -1123)) -((-2394 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-3122 (*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-3122 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) (-2096 (*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2096 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) (-4056 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-3127 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-3470 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2401 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-1872 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-1872 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-1872 (*1 *1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) -(-13 (-1125) (-152 |t#1|) (-10 -8 (-6 -4460) (-15 -2394 ((-112) $ $)) (-15 -3122 ($)) (-15 -3122 ($ (-660 |t#1|))) (-15 -2096 ($)) (-15 -2096 ($ (-660 |t#1|))) (-15 -4056 ($ $ $)) (-15 -3127 ($ $ $)) (-15 -3127 ($ $ |t#1|)) (-15 -3470 ($ $ $)) (-15 -2401 ((-112) $ $)) (-15 -1872 ($ $ $)) (-15 -1872 ($ $ |t#1|)) (-15 -1872 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) . T) ((-1242) . T)) -((-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 8 T ELT))) -(((-1124 |#1|) (-10 -8 (-15 -2045 ((-1183) |#1|)) (-15 -1440 ((-1145) |#1|))) (-1125)) (T -1124)) -NIL -(-10 -8 (-15 -2045 ((-1183) |#1|)) (-15 -1440 ((-1145) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-1125) (-141)) (T -1125)) -((-1440 (*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1145)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1183))))) -(-13 (-102) (-626 (-880)) (-10 -8 (-15 -1440 ((-1145) $)) (-15 -2045 ((-1183) $)))) -(((-102) . T) ((-626 (-880)) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) 36 T ELT)) (-1812 (($ (-660 (-944))) 70 T ELT)) (-3499 (((-3 $ "failed") $ (-944) (-944)) 81 T ELT)) (-2352 (($) 40 T ELT)) (-1645 (((-112) (-944) $) 42 T ELT)) (-2144 (((-944) $) 64 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) 39 T ELT)) (-1990 (((-3 $ "failed") $ (-944)) 77 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3291 (((-1292 $)) 47 T ELT)) (-3745 (((-660 (-944)) $) 27 T ELT)) (-2630 (((-787) $ (-944) (-944)) 78 T ELT)) (-3603 (((-880) $) 32 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 24 T ELT))) -(((-1126 |#1| |#2|) (-13 (-380) (-10 -8 (-15 -1990 ((-3 $ "failed") $ (-944))) (-15 -3499 ((-3 $ "failed") $ (-944) (-944))) (-15 -3745 ((-660 (-944)) $)) (-15 -1812 ($ (-660 (-944)))) (-15 -3291 ((-1292 $))) (-15 -1645 ((-112) (-944) $)) (-15 -2630 ((-787) $ (-944) (-944))))) (-944) (-944)) (T -1126)) -((-1990 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3499 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-3291 (*1 *2) (-12 (-5 *2 (-1292 (-1126 *3 *4))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-1645 (*1 *2 *3 *1) (-12 (-5 *3 (-944)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2630 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-787)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-380) (-10 -8 (-15 -1990 ((-3 $ "failed") $ (-944))) (-15 -3499 ((-3 $ "failed") $ (-944) (-944))) (-15 -3745 ((-660 (-944)) $)) (-15 -1812 ($ (-660 (-944)))) (-15 -3291 ((-1292 $))) (-15 -1645 ((-112) (-944) $)) (-15 -2630 ((-787) $ (-944) (-944))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1596 (($) NIL (|has| |#1| (-380)) ELT)) (-1872 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3470 (($ $ $) 81 T ELT)) (-2401 (((-112) $ $) 82 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#1| (-380)) ELT)) (-2096 (($ (-660 |#1|)) NIL T ELT) (($) 13 T ELT)) (-2236 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3266 (($ |#1| $) 74 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4470)) ELT)) (-2352 (($) NIL (|has| |#1| (-380)) ELT)) (-3692 (((-660 |#1|) $) 19 (|has| $ (-6 -4470)) ELT)) (-2394 (((-112) $ $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2900 ((|#1| $) 55 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1457 ((|#1| $) 53 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2144 (((-944) $) NIL (|has| |#1| (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4056 (($ $ $) 79 T ELT)) (-3596 ((|#1| $) 25 T ELT)) (-4345 (($ |#1| $) 69 T ELT)) (-3251 (($ (-944)) NIL (|has| |#1| (-380)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31 T ELT)) (-3439 ((|#1| $) 27 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 21 T ELT)) (-2693 (($) 11 T ELT)) (-3127 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-4360 (($) NIL T ELT) (($ (-660 |#1|)) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 16 T ELT)) (-2176 (((-549) $) 50 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 62 T ELT)) (-1597 (($ $) NIL (|has| |#1| (-380)) ELT)) (-3603 (((-880) $) NIL T ELT)) (-3227 (((-787) $) NIL T ELT)) (-3122 (($ (-660 |#1|)) NIL T ELT) (($) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3231 (($ (-660 |#1|)) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 52 T ELT)) (-3501 (((-787) $) 10 (|has| $ (-6 -4470)) ELT))) -(((-1127 |#1|) (-438 |#1|) (-1125)) (T -1127)) +((-4417 (((-665 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 29 (|has| |#1| (-869)) ELT) (((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 14 T ELT))) +(((-1119 |#1| |#2|) (-10 -7 (-15 -4417 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (IF (|has| |#1| (-869)) (-15 -4417 ((-665 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1119)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-665 *6)) (-5 *1 (-1119 *5 *6)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1124 *6)) (-5 *1 (-1119 *5 *6))))) +(-10 -7 (-15 -4417 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (IF (|has| |#1| (-869)) (-15 -4417 ((-665 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2884 (((-665 (-1165)) $) 10 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1120) (-13 (-1113) (-10 -8 (-15 -2884 ((-665 (-1165)) $))))) (T -1120)) +((-2884 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1120))))) +(-13 (-1113) (-10 -8 (-15 -2884 ((-665 (-1165)) $)))) +((-4417 (((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 19 T ELT))) +(((-1121 |#1| |#2|) (-10 -7 (-15 -4417 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)))) (-1247) (-1247)) (T -1121)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6))))) +(-10 -7 (-15 -4417 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)))) +((-3586 (((-112) $ $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-3341 (((-1206) $) NIL T ELT)) (-3096 (((-1124 |#1|) $) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-4220 (($ (-1206) (-1124 |#1|)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-3018 (((-112) $ $) NIL (|has| (-1124 |#1|) (-1130)) ELT))) +(((-1122 |#1|) (-13 (-1247) (-10 -8 (-15 -4220 ($ (-1206) (-1124 |#1|))) (-15 -3341 ((-1206) $)) (-15 -3096 ((-1124 |#1|) $)) (IF (|has| (-1124 |#1|) (-1130)) (-6 (-1130)) |%noBranch|))) (-1247)) (T -1122)) +((-4220 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1124 *4)) (-4 *4 (-1247)) (-5 *1 (-1122 *4)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1247))))) +(-13 (-1247) (-10 -8 (-15 -4220 ($ (-1206) (-1124 |#1|))) (-15 -3341 ((-1206) $)) (-15 -3096 ((-1124 |#1|) $)) (IF (|has| (-1124 |#1|) (-1130)) (-6 (-1130)) |%noBranch|))) +((-3096 (($ |#1| |#1|) 8 T ELT)) (-3518 ((|#1| $) 11 T ELT)) (-3423 ((|#1| $) 13 T ELT)) (-4449 (((-577) $) 9 T ELT)) (-1349 ((|#1| $) 10 T ELT)) (-4457 ((|#1| $) 12 T ELT)) (-4463 (($ |#1|) 6 T ELT)) (-1915 (($ |#1| |#1|) 15 T ELT)) (-2770 (($ $ (-577)) 14 T ELT))) +(((-1123 |#1|) (-141) (-1247)) (T -1123)) +((-1915 (*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-2770 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1123 *3)) (-4 *3 (-1247)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-4457 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-4449 (*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1247)) (-5 *2 (-577)))) (-3096 (*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) +(-13 (-636 |t#1|) (-10 -8 (-15 -1915 ($ |t#1| |t#1|)) (-15 -2770 ($ $ (-577))) (-15 -3423 (|t#1| $)) (-15 -4457 (|t#1| $)) (-15 -3518 (|t#1| $)) (-15 -1349 (|t#1| $)) (-15 -4449 ((-577) $)) (-15 -3096 ($ |t#1| |t#1|)))) +(((-636 |#1|) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3096 (($ |#1| |#1|) 16 T ELT)) (-4417 (((-665 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-869)) ELT)) (-3518 ((|#1| $) 12 T ELT)) (-3423 ((|#1| $) 11 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4449 (((-577) $) 15 T ELT)) (-1349 ((|#1| $) 14 T ELT)) (-4457 ((|#1| $) 13 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3138 (((-665 |#1|) $) 44 (|has| |#1| (-869)) ELT) (((-665 |#1|) (-665 $)) 43 (|has| |#1| (-869)) ELT)) (-4463 (($ |#1|) 29 T ELT)) (-3709 (((-885) $) 28 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-1915 (($ |#1| |#1|) 10 T ELT)) (-2770 (($ $ (-577)) 17 T ELT)) (-3018 (((-112) $ $) 22 (|has| |#1| (-1130)) ELT))) +(((-1124 |#1|) (-13 (-1123 |#1|) (-10 -7 (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-665 |#1|))) |%noBranch|))) (-1247)) (T -1124)) +NIL +(-13 (-1123 |#1|) (-10 -7 (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-665 |#1|))) |%noBranch|))) +((-3096 (($ |#1| |#1|) 8 T ELT)) (-4417 ((|#2| (-1 |#1| |#1|) $) 16 T ELT)) (-3518 ((|#1| $) 11 T ELT)) (-3423 ((|#1| $) 13 T ELT)) (-4449 (((-577) $) 9 T ELT)) (-1349 ((|#1| $) 10 T ELT)) (-4457 ((|#1| $) 12 T ELT)) (-3138 ((|#2| (-665 $)) 18 T ELT) ((|#2| $) 17 T ELT)) (-4463 (($ |#1|) 6 T ELT)) (-1915 (($ |#1| |#1|) 15 T ELT)) (-2770 (($ $ (-577)) 14 T ELT))) +(((-1125 |#1| |#2|) (-141) (-869) (-1179 |t#1|)) (T -1125)) +((-3138 (*1 *2 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) (-4 *2 (-1179 *4)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-869)) (-4 *2 (-1179 *3)))) (-4417 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) (-4 *2 (-1179 *4))))) +(-13 (-1123 |t#1|) (-10 -8 (-15 -3138 (|t#2| (-665 $))) (-15 -3138 (|t#2| $)) (-15 -4417 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-636 |#1|) . T) ((-1123 |#1|) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4026 (((-1165) $) 12 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 18 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2773 (((-665 (-1165)) $) 10 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1126) (-13 (-1113) (-10 -8 (-15 -2773 ((-665 (-1165)) $)) (-15 -4026 ((-1165) $))))) (T -1126)) +((-2773 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1126)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1126))))) +(-13 (-1113) (-10 -8 (-15 -2773 ((-665 (-1165)) $)) (-15 -4026 ((-1165) $)))) +((-1931 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-2481 (($ $ $) 10 T ELT)) (-3165 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1127 |#1| |#2|) (-10 -8 (-15 -1931 (|#1| |#2| |#1|)) (-15 -1931 (|#1| |#1| |#2|)) (-15 -1931 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#2|)) (-15 -3165 (|#1| |#1| |#1|))) (-1128 |#2|) (-1130)) (T -1127)) +NIL +(-10 -8 (-15 -1931 (|#1| |#2| |#1|)) (-15 -1931 (|#1| |#1| |#2|)) (-15 -1931 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#2|)) (-15 -3165 (|#1| |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-1931 (($ $ $) 19 T ELT) (($ $ |#1|) 18 T ELT) (($ |#1| $) 17 T ELT)) (-2481 (($ $ $) 21 T ELT)) (-2710 (((-112) $ $) 20 T ELT)) (-1777 (((-112) $ (-792)) 36 T ELT)) (-2181 (($) 26 T ELT) (($ (-665 |#1|)) 25 T ELT)) (-1440 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 37 T CONST)) (-3589 (($ $) 60 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#1| $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2118 (((-665 |#1|) $) 44 (|has| $ (-6 -4499)) ELT)) (-2049 (((-112) $ $) 29 T ELT)) (-3862 (((-112) $ (-792)) 35 T ELT)) (-2152 (((-665 |#1|) $) 45 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3438 (((-112) $ (-792)) 34 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1565 (($ $ $) 24 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#1|) (-665 |#1|)) 51 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 (-305 |#1|))) 48 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 30 T ELT)) (-2687 (((-112) $) 33 T ELT)) (-2833 (($) 32 T ELT)) (-3165 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT)) (-1481 (((-792) |#1| $) 46 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 31 T ELT)) (-4463 (((-549) $) 61 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 52 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-3823 (($) 28 T ELT) (($ (-665 |#1|)) 27 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-792) $) 38 (|has| $ (-6 -4499)) ELT))) +(((-1128 |#1|) (-141) (-1130)) (T -1128)) +((-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-3823 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3823 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) (-2181 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) (-1565 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3165 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2481 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2710 (*1 *2 *1 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-1931 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-1931 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-1931 (*1 *1 *2 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) +(-13 (-1130) (-152 |t#1|) (-10 -8 (-6 -4489) (-15 -2049 ((-112) $ $)) (-15 -3823 ($)) (-15 -3823 ($ (-665 |t#1|))) (-15 -2181 ($)) (-15 -2181 ($ (-665 |t#1|))) (-15 -1565 ($ $ $)) (-15 -3165 ($ $ $)) (-15 -3165 ($ $ |t#1|)) (-15 -2481 ($ $ $)) (-15 -2710 ((-112) $ $)) (-15 -1931 ($ $ $)) (-15 -1931 ($ $ |t#1|)) (-15 -1931 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) . T) ((-1247) . T)) +((-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 8 T ELT))) +(((-1129 |#1|) (-10 -8 (-15 -3235 ((-1188) |#1|)) (-15 -1470 ((-1150) |#1|))) (-1130)) (T -1129)) +NIL +(-10 -8 (-15 -3235 ((-1188) |#1|)) (-15 -1470 ((-1150) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-1130) (-141)) (T -1130)) +((-1470 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1150)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1188))))) +(-13 (-102) (-631 (-885)) (-10 -8 (-15 -1470 ((-1150) $)) (-15 -3235 ((-1188) $)))) +(((-102) . T) ((-631 (-885)) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) 36 T ELT)) (-3257 (($ (-665 (-949))) 70 T ELT)) (-3041 (((-3 $ "failed") $ (-949) (-949)) 81 T ELT)) (-1424 (($) 40 T ELT)) (-3519 (((-112) (-949) $) 42 T ELT)) (-2686 (((-949) $) 64 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) 39 T ELT)) (-2285 (((-3 $ "failed") $ (-949)) 77 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1373 (((-1297 $)) 47 T ELT)) (-3715 (((-665 (-949)) $) 27 T ELT)) (-1797 (((-792) $ (-949) (-949)) 78 T ELT)) (-3709 (((-885) $) 32 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 24 T ELT))) +(((-1131 |#1| |#2|) (-13 (-380) (-10 -8 (-15 -2285 ((-3 $ "failed") $ (-949))) (-15 -3041 ((-3 $ "failed") $ (-949) (-949))) (-15 -3715 ((-665 (-949)) $)) (-15 -3257 ($ (-665 (-949)))) (-15 -1373 ((-1297 $))) (-15 -3519 ((-112) (-949) $)) (-15 -1797 ((-792) $ (-949) (-949))))) (-949) (-949)) (T -1131)) +((-2285 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3041 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-3257 (*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-1373 (*1 *2) (-12 (-5 *2 (-1297 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-3519 (*1 *2 *3 *1) (-12 (-5 *3 (-949)) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-792)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-380) (-10 -8 (-15 -2285 ((-3 $ "failed") $ (-949))) (-15 -3041 ((-3 $ "failed") $ (-949) (-949))) (-15 -3715 ((-665 (-949)) $)) (-15 -3257 ($ (-665 (-949)))) (-15 -1373 ((-1297 $))) (-15 -3519 ((-112) (-949) $)) (-15 -1797 ((-792) $ (-949) (-949))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3170 (($) NIL (|has| |#1| (-380)) ELT)) (-1931 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-2481 (($ $ $) 81 T ELT)) (-2710 (((-112) $ $) 82 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2181 (($ (-665 |#1|)) NIL T ELT) (($) 13 T ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1894 (($ |#1| $) 74 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4499)) ELT)) (-1424 (($) NIL (|has| |#1| (-380)) ELT)) (-2118 (((-665 |#1|) $) 19 (|has| $ (-6 -4499)) ELT)) (-2049 (((-112) $ $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-3237 ((|#1| $) 55 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2930 ((|#1| $) 53 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2686 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1565 (($ $ $) 79 T ELT)) (-2786 ((|#1| $) 25 T ELT)) (-4375 (($ |#1| $) 69 T ELT)) (-3354 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31 T ELT)) (-3205 ((|#1| $) 27 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 21 T ELT)) (-2833 (($) 11 T ELT)) (-3165 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-3470 (($) NIL T ELT) (($ (-665 |#1|)) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 16 T ELT)) (-4463 (((-549) $) 50 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 62 T ELT)) (-3435 (($ $) NIL (|has| |#1| (-380)) ELT)) (-3709 (((-885) $) NIL T ELT)) (-4408 (((-792) $) NIL T ELT)) (-3823 (($ (-665 |#1|)) NIL T ELT) (($) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3886 (($ (-665 |#1|)) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 52 T ELT)) (-3600 (((-792) $) 10 (|has| $ (-6 -4499)) ELT))) +(((-1132 |#1|) (-438 |#1|) (-1130)) (T -1132)) NIL (-438 |#1|) -((-3489 (((-112) $ $) 7 T ELT)) (-3364 (((-112) $) 33 T ELT)) (-3188 ((|#2| $) 28 T ELT)) (-1848 (((-112) $) 34 T ELT)) (-1355 ((|#1| $) 29 T ELT)) (-3074 (((-112) $) 36 T ELT)) (-2557 (((-112) $) 38 T ELT)) (-1539 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3789 (((-112) $) 32 T ELT)) (-3214 ((|#3| $) 27 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-2156 (((-112) $) 31 T ELT)) (-3068 ((|#4| $) 26 T ELT)) (-3010 ((|#5| $) 25 T ELT)) (-2007 (((-112) $ $) 39 T ELT)) (-2837 (($ $ (-577)) 41 T ELT) (($ $ (-660 (-577))) 40 T ELT)) (-3133 (((-660 $) $) 30 T ELT)) (-2176 (($ |#1|) 47 T ELT) (($ |#2|) 46 T ELT) (($ |#3|) 45 T ELT) (($ |#4|) 44 T ELT) (($ |#5|) 43 T ELT) (($ (-660 $)) 42 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-1617 (($ $) 23 T ELT)) (-4290 (($ $) 24 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-4105 (((-112) $) 37 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-577) $) 22 T ELT))) -(((-1128 |#1| |#2| |#3| |#4| |#5|) (-141) (-1125) (-1125) (-1125) (-1125) (-1125)) (T -1128)) -((-2007 (*1 *2 *1 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-3133 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-1128 *3 *4 *5 *6 *7)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *2 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *2 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *2)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-4290 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)))) (-1617 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-577))))) -(-13 (-1125) (-631 |t#1|) (-631 |t#2|) (-631 |t#3|) (-631 |t#4|) (-631 |t#4|) (-631 |t#5|) (-631 (-660 $)) (-297 (-577) $) (-297 (-660 (-577)) $) (-10 -8 (-15 -2007 ((-112) $ $)) (-15 -2557 ((-112) $)) (-15 -4105 ((-112) $)) (-15 -3074 ((-112) $)) (-15 -1539 ((-112) $)) (-15 -1848 ((-112) $)) (-15 -3364 ((-112) $)) (-15 -3789 ((-112) $)) (-15 -2156 ((-112) $)) (-15 -3133 ((-660 $) $)) (-15 -1355 (|t#1| $)) (-15 -3188 (|t#2| $)) (-15 -3214 (|t#3| $)) (-15 -3068 (|t#4| $)) (-15 -3010 (|t#5| $)) (-15 -4290 ($ $)) (-15 -1617 ($ $)) (-15 -3501 ((-577) $)))) -(((-102) . T) ((-626 (-880)) . T) ((-631 (-660 $)) . T) ((-631 |#1|) . T) ((-631 |#2|) . T) ((-631 |#3|) . T) ((-631 |#4|) . T) ((-631 |#5|) . T) ((-297 (-577) $) . T) ((-297 (-660 (-577)) $) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3364 (((-112) $) NIL T ELT)) (-3188 (((-1201) $) NIL T ELT)) (-1848 (((-112) $) NIL T ELT)) (-1355 (((-1183) $) NIL T ELT)) (-3074 (((-112) $) NIL T ELT)) (-2557 (((-112) $) NIL T ELT)) (-1539 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3789 (((-112) $) NIL T ELT)) (-3214 (((-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2156 (((-112) $) NIL T ELT)) (-3068 (((-228) $) NIL T ELT)) (-3010 (((-880) $) NIL T ELT)) (-2007 (((-112) $ $) NIL T ELT)) (-2837 (($ $ (-577)) NIL T ELT) (($ $ (-660 (-577))) NIL T ELT)) (-3133 (((-660 $) $) NIL T ELT)) (-2176 (($ (-1183)) NIL T ELT) (($ (-1201)) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-228)) NIL T ELT) (($ (-880)) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-4290 (($ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-4105 (((-112) $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3501 (((-577) $) NIL T ELT))) -(((-1129) (-1128 (-1183) (-1201) (-577) (-228) (-880))) (T -1129)) -NIL -(-1128 (-1183) (-1201) (-577) (-228) (-880)) -((-3489 (((-112) $ $) NIL T ELT)) (-3364 (((-112) $) 45 T ELT)) (-3188 ((|#2| $) 48 T ELT)) (-1848 (((-112) $) 20 T ELT)) (-1355 ((|#1| $) 21 T ELT)) (-3074 (((-112) $) 42 T ELT)) (-2557 (((-112) $) 14 T ELT)) (-1539 (((-112) $) 44 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3789 (((-112) $) 46 T ELT)) (-3214 ((|#3| $) 50 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2156 (((-112) $) 47 T ELT)) (-3068 ((|#4| $) 49 T ELT)) (-3010 ((|#5| $) 51 T ELT)) (-2007 (((-112) $ $) 41 T ELT)) (-2837 (($ $ (-577)) 62 T ELT) (($ $ (-660 (-577))) 64 T ELT)) (-3133 (((-660 $) $) 27 T ELT)) (-2176 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-660 $)) 52 T ELT)) (-3603 (((-880) $) 28 T ELT)) (-1617 (($ $) 26 T ELT)) (-4290 (($ $) 58 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-4105 (((-112) $) 23 T ELT)) (-2949 (((-112) $ $) 40 T ELT)) (-3501 (((-577) $) 60 T ELT))) -(((-1130 |#1| |#2| |#3| |#4| |#5|) (-1128 |#1| |#2| |#3| |#4| |#5|) (-1125) (-1125) (-1125) (-1125) (-1125)) (T -1130)) -NIL -(-1128 |#1| |#2| |#3| |#4| |#5|) -((-3794 (((-1297) $) 22 T ELT)) (-2672 (($ (-1201) (-447) |#2|) 11 T ELT)) (-3603 (((-880) $) 16 T ELT))) -(((-1131 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -2672 ($ (-1201) (-447) |#2|)))) (-1125) (-443 |#1|)) (T -1131)) -((-2672 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-447)) (-4 *5 (-1125)) (-5 *1 (-1131 *5 *4)) (-4 *4 (-443 *5))))) -(-13 (-408) (-10 -8 (-15 -2672 ($ (-1201) (-447) |#2|)))) -((-3609 (((-112) |#5| |#5|) 44 T ELT)) (-3465 (((-112) |#5| |#5|) 59 T ELT)) (-1479 (((-112) |#5| (-660 |#5|)) 82 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-1991 (((-112) (-660 |#4|) (-660 |#4|)) 65 T ELT)) (-2841 (((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) 70 T ELT)) (-1896 (((-1297)) 32 T ELT)) (-3427 (((-1297) (-1183) (-1183) (-1183)) 28 T ELT)) (-3079 (((-660 |#5|) (-660 |#5|)) 101 T ELT)) (-4424 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) 93 T ELT)) (-4066 (((-660 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112)) 123 T ELT)) (-3721 (((-112) |#5| |#5|) 53 T ELT)) (-1854 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-3704 (((-112) (-660 |#4|) (-660 |#4|)) 64 T ELT)) (-3461 (((-112) (-660 |#4|) (-660 |#4|)) 66 T ELT)) (-2928 (((-112) (-660 |#4|) (-660 |#4|)) 67 T ELT)) (-2350 (((-3 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)) 118 T ELT)) (-3322 (((-660 |#5|) (-660 |#5|)) 49 T ELT))) -(((-1132 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3427 ((-1297) (-1183) (-1183) (-1183))) (-15 -1896 ((-1297))) (-15 -3609 ((-112) |#5| |#5|)) (-15 -3322 ((-660 |#5|) (-660 |#5|))) (-15 -3721 ((-112) |#5| |#5|)) (-15 -3465 ((-112) |#5| |#5|)) (-15 -1991 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3704 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3461 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2928 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1854 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1479 ((-112) |#5| |#5|)) (-15 -1479 ((-112) |#5| (-660 |#5|))) (-15 -3079 ((-660 |#5|) (-660 |#5|))) (-15 -2841 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4424 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-15 -4066 ((-660 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -2350 ((-3 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1132)) -((-2350 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| -2007 (-660 *9)) (|:| -2002 *4) (|:| |ineq| (-660 *9)))) (-5 *1 (-1132 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) (-4 *4 (-1096 *6 *7 *8 *9)))) (-4066 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| -2007 (-660 *9)) (|:| -2002 *10) (|:| |ineq| (-660 *9))))) (-5 *1 (-1132 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) (-4424 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -2002 *7)))) (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1132 *3 *4 *5 *6 *7)))) (-2841 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1132 *3 *4 *5 *6 *7)))) (-1479 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1132 *5 *6 *7 *8 *3)))) (-1479 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-1854 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-2928 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-3461 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-3704 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1991 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-3465 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3721 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1132 *3 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-1896 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1132 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-3427 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(-10 -7 (-15 -3427 ((-1297) (-1183) (-1183) (-1183))) (-15 -1896 ((-1297))) (-15 -3609 ((-112) |#5| |#5|)) (-15 -3322 ((-660 |#5|) (-660 |#5|))) (-15 -3721 ((-112) |#5| |#5|)) (-15 -3465 ((-112) |#5| |#5|)) (-15 -1991 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3704 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -3461 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2928 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1854 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1479 ((-112) |#5| |#5|)) (-15 -1479 ((-112) |#5| (-660 |#5|))) (-15 -3079 ((-660 |#5|) (-660 |#5|))) (-15 -2841 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4424 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-15 -4066 ((-660 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -2350 ((-3 (-2 (|:| -2007 (-660 |#4|)) (|:| -2002 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3335 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|) 108 T ELT)) (-2468 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#4| |#4| |#5|) 80 T ELT)) (-4234 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|) 102 T ELT)) (-3654 (((-660 |#5|) |#4| |#5|) 124 T ELT)) (-2758 (((-660 |#5|) |#4| |#5|) 131 T ELT)) (-3797 (((-660 |#5|) |#4| |#5|) 132 T ELT)) (-2137 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|) 109 T ELT)) (-3217 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|) 130 T ELT)) (-4249 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-2165 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#3| (-112)) 92 T ELT) (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-1748 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|) 87 T ELT)) (-4128 (((-1297)) 36 T ELT)) (-2868 (((-1297)) 25 T ELT)) (-1339 (((-1297) (-1183) (-1183) (-1183)) 32 T ELT)) (-1941 (((-1297) (-1183) (-1183) (-1183)) 21 T ELT))) -(((-1133 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1941 ((-1297) (-1183) (-1183) (-1183))) (-15 -2868 ((-1297))) (-15 -1339 ((-1297) (-1183) (-1183) (-1183))) (-15 -4128 ((-1297))) (-15 -2468 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2165 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2165 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#3| (-112))) (-15 -1748 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -4234 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -4249 ((-112) |#4| |#5|)) (-15 -2137 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3654 ((-660 |#5|) |#4| |#5|)) (-15 -3217 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -2758 ((-660 |#5|) |#4| |#5|)) (-15 -4249 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3797 ((-660 |#5|) |#4| |#5|)) (-15 -3335 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1133)) -((-3335 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3797 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-4249 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2758 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3217 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3654 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2137 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-4249 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-4234 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-1748 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -2002 *9)))) (-5 *1 (-1133 *6 *7 *4 *8 *9)))) (-2165 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1133 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-2468 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-4128 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1339 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-2868 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1941 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(-10 -7 (-15 -1941 ((-1297) (-1183) (-1183) (-1183))) (-15 -2868 ((-1297))) (-15 -1339 ((-1297) (-1183) (-1183) (-1183))) (-15 -4128 ((-1297))) (-15 -2468 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -2165 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2165 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) |#3| (-112))) (-15 -1748 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -4234 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#4| |#5|)) (-15 -4249 ((-112) |#4| |#5|)) (-15 -2137 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3654 ((-660 |#5|) |#4| |#5|)) (-15 -3217 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -2758 ((-660 |#5|) |#4| |#5|)) (-15 -4249 ((-660 (-2 (|:| |val| (-112)) (|:| -2002 |#5|))) |#4| |#5|)) (-15 -3797 ((-660 |#5|) |#4| |#5|)) (-15 -3335 ((-660 (-2 (|:| |val| |#4|) (|:| -2002 |#5|))) |#4| |#5|))) -((-3489 (((-112) $ $) 7 T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) 86 T ELT)) (-1568 (((-660 $) (-660 |#4|)) 87 T ELT) (((-660 $) (-660 |#4|) (-112)) 112 T ELT)) (-3206 (((-660 |#3|) $) 34 T ELT)) (-1905 (((-112) $) 27 T ELT)) (-1421 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3924 ((|#4| |#4| $) 93 T ELT)) (-2001 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| $) 127 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-4403 (((-112) $ (-787)) 45 T ELT)) (-3730 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3790 (($) 46 T CONST)) (-4046 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) 37 T ELT)) (-2155 (($ (-660 |#4|)) 36 T ELT)) (-1663 (((-3 $ "failed") $) 83 T ELT)) (-2801 ((|#4| |#4| $) 90 T ELT)) (-3289 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3270 ((|#4| |#4| $) 88 T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) 106 T ELT)) (-2926 (((-112) |#4| $) 137 T ELT)) (-2687 (((-112) |#4| $) 134 T ELT)) (-2632 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-3692 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1940 ((|#3| $) 35 T ELT)) (-1821 (((-112) $ (-787)) 44 T ELT)) (-2434 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1365 (((-660 |#3|) $) 33 T ELT)) (-2639 (((-112) |#3| $) 32 T ELT)) (-3272 (((-112) $ (-787)) 43 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3650 (((-3 |#4| (-660 $)) |#4| |#4| $) 129 T ELT)) (-2048 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| |#4| $) 128 T ELT)) (-3942 (((-3 |#4| "failed") $) 84 T ELT)) (-3395 (((-660 $) |#4| $) 130 T ELT)) (-3343 (((-3 (-112) (-660 $)) |#4| $) 133 T ELT)) (-3422 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-4056 (((-660 $) |#4| $) 126 T ELT) (((-660 $) (-660 |#4|) $) 125 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 124 T ELT) (((-660 $) |#4| (-660 $)) 123 T ELT)) (-2346 (($ |#4| $) 118 T ELT) (($ (-660 |#4|) $) 117 T ELT)) (-3425 (((-660 |#4|) $) 108 T ELT)) (-4233 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1458 ((|#4| |#4| $) 91 T ELT)) (-2928 (((-112) $ $) 111 T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-2108 ((|#4| |#4| $) 92 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1652 (((-3 |#4| "failed") $) 85 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-1987 (($ $ |#4|) 78 T ELT) (((-660 $) |#4| $) 116 T ELT) (((-660 $) |#4| (-660 $)) 115 T ELT) (((-660 $) (-660 |#4|) $) 114 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 113 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) 39 T ELT)) (-2856 (((-112) $) 42 T ELT)) (-2693 (($) 41 T ELT)) (-3616 (((-787) $) 107 T ELT)) (-1452 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 40 T ELT)) (-2176 (((-549) $) 70 (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 61 T ELT)) (-3620 (($ $ |#3|) 29 T ELT)) (-2003 (($ $ |#3|) 31 T ELT)) (-3307 (($ $) 89 T ELT)) (-3344 (($ $ |#3|) 30 T ELT)) (-3603 (((-880) $) 12 T ELT) (((-660 |#4|) $) 38 T ELT)) (-2272 (((-787) $) 77 (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99 T ELT)) (-3575 (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) 82 T ELT)) (-4381 (((-112) |#4| $) 136 T ELT)) (-1401 (((-112) |#3| $) 81 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-787) $) 47 (|has| $ (-6 -4470)) ELT))) -(((-1134 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1134)) -NIL -(-13 (-1096 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) -((-1650 (((-660 (-577)) (-577) (-577) (-577)) 38 T ELT)) (-1838 (((-660 (-577)) (-577) (-577) (-577)) 28 T ELT)) (-3635 (((-660 (-577)) (-577) (-577) (-577)) 33 T ELT)) (-4010 (((-577) (-577) (-577)) 21 T ELT)) (-2384 (((-1292 (-577)) (-660 (-577)) (-1292 (-577)) (-577)) 77 T ELT) (((-1292 (-577)) (-1292 (-577)) (-1292 (-577)) (-577)) 72 T ELT)) (-4119 (((-660 (-577)) (-660 (-944)) (-660 (-577)) (-112)) 54 T ELT)) (-1548 (((-705 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577))) 76 T ELT)) (-1855 (((-705 (-577)) (-660 (-944)) (-660 (-577))) 59 T ELT)) (-3674 (((-660 (-705 (-577))) (-660 (-944))) 65 T ELT)) (-3045 (((-660 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577))) 80 T ELT)) (-3124 (((-705 (-577)) (-660 (-577)) (-660 (-577)) (-660 (-577))) 90 T ELT))) -(((-1135) (-10 -7 (-15 -3124 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-660 (-577)))) (-15 -3045 ((-660 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -3674 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -1855 ((-705 (-577)) (-660 (-944)) (-660 (-577)))) (-15 -1548 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -4119 ((-660 (-577)) (-660 (-944)) (-660 (-577)) (-112))) (-15 -2384 ((-1292 (-577)) (-1292 (-577)) (-1292 (-577)) (-577))) (-15 -2384 ((-1292 (-577)) (-660 (-577)) (-1292 (-577)) (-577))) (-15 -4010 ((-577) (-577) (-577))) (-15 -3635 ((-660 (-577)) (-577) (-577) (-577))) (-15 -1838 ((-660 (-577)) (-577) (-577) (-577))) (-15 -1650 ((-660 (-577)) (-577) (-577) (-577))))) (T -1135)) -((-1650 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577)))) (-1838 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577)))) (-3635 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577)))) (-4010 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1135)))) (-2384 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-660 (-577))) (-5 *4 (-577)) (-5 *1 (-1135)))) (-2384 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-577)) (-5 *1 (-1135)))) (-4119 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-660 (-577))) (-5 *3 (-660 (-944))) (-5 *4 (-112)) (-5 *1 (-1135)))) (-1548 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-705 (-577))) (-5 *3 (-660 (-577))) (-5 *1 (-1135)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1135)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-1135)))) (-3045 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *3 (-705 (-577))) (-5 *1 (-1135)))) (-3124 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1135))))) -(-10 -7 (-15 -3124 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-660 (-577)))) (-15 -3045 ((-660 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -3674 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -1855 ((-705 (-577)) (-660 (-944)) (-660 (-577)))) (-15 -1548 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -4119 ((-660 (-577)) (-660 (-944)) (-660 (-577)) (-112))) (-15 -2384 ((-1292 (-577)) (-1292 (-577)) (-1292 (-577)) (-577))) (-15 -2384 ((-1292 (-577)) (-660 (-577)) (-1292 (-577)) (-577))) (-15 -4010 ((-577) (-577) (-577))) (-15 -3635 ((-660 (-577)) (-577) (-577) (-577))) (-15 -1838 ((-660 (-577)) (-577) (-577) (-577))) (-15 -1650 ((-660 (-577)) (-577) (-577) (-577)))) -((** (($ $ (-944)) 10 T ELT))) -(((-1136 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-944)))) (-1137)) (T -1136)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-944)))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (** (($ $ (-944)) 14 T ELT)) (* (($ $ $) 15 T ELT))) -(((-1137) (-141)) (T -1137)) -((* (*1 *1 *1 *1) (-4 *1 (-1137))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-944))))) -(-13 (-1125) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-944))))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-3801 (((-112) $) NIL (|has| |#3| (-23)) ELT)) (-3303 (($ (-944)) NIL (|has| |#3| (-1074)) ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-2510 (($ $ $) NIL (|has| |#3| (-809)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3373 (((-787)) NIL (|has| |#3| (-380)) ELT)) (-1895 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))) ELT) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1125)) ELT)) (-2155 (((-577) $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))) ELT) ((|#3| $) NIL (|has| |#3| (-1125)) ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) NIL (|has| |#3| (-1074)) ELT) (((-705 |#3|) (-705 $)) NIL (|has| |#3| (-1074)) ELT)) (-1625 (((-3 $ "failed") $) NIL (|has| |#3| (-1074)) ELT)) (-2352 (($) NIL (|has| |#3| (-380)) ELT)) (-2840 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#3| $ (-577)) 12 T ELT)) (-3692 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL (|has| |#3| (-1074)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#3| (-865)) ELT)) (-2434 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#3| (-865)) ELT)) (-2826 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2144 (((-944) $) NIL (|has| |#3| (-380)) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))) ELT) (((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-1292 $) $) NIL (|has| |#3| (-1074)) ELT) (((-705 |#3|) (-1292 $)) NIL (|has| |#3| (-1074)) ELT)) (-2045 (((-1183) $) NIL (|has| |#3| (-1125)) ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-3251 (($ (-944)) NIL (|has| |#3| (-380)) ELT)) (-1440 (((-1145) $) NIL (|has| |#3| (-1125)) ELT)) (-1652 ((|#3| $) NIL (|has| (-577) (-865)) ELT)) (-2529 (($ $ |#3|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT) (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT)) (-3908 (((-660 |#3|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#3| $ (-577) |#3|) NIL T ELT) ((|#3| $ (-577)) NIL T ELT)) (-3366 ((|#3| $ $) NIL (|has| |#3| (-1074)) ELT)) (-3097 (($ (-1292 |#3|)) NIL T ELT)) (-3941 (((-135)) NIL (|has| |#3| (-375)) ELT)) (-3362 (($ $ (-787)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))) ELT) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-3603 (((-1292 |#3|) $) NIL T ELT) (($ (-577)) NIL (-2811 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))) ELT) (($ |#3|) NIL (|has| |#3| (-1125)) ELT) (((-880) $) NIL (|has| |#3| (-626 (-880))) ELT)) (-1920 (((-787)) NIL (|has| |#3| (-1074)) CONST)) (-2726 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2754 (($) NIL (|has| |#3| (-23)) CONST)) (-2767 (($) NIL (|has| |#3| (-1074)) CONST)) (-2136 (($ $ (-787)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))) ELT) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-1201)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#3| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#3| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#3| (-865)) ELT)) (-2971 (((-112) $ $) 24 (|has| |#3| (-865)) ELT)) (-3051 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-3042 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3031 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-787)) NIL (|has| |#3| (-1074)) ELT) (($ $ (-944)) NIL (|has| |#3| (-1074)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1074)) ELT) (($ $ |#3|) NIL (|has| |#3| (-742)) ELT) (($ |#3| $) NIL (|has| |#3| (-742)) ELT) (($ (-577) $) NIL (|has| |#3| (-21)) ELT) (($ (-787) $) NIL (|has| |#3| (-23)) ELT) (($ (-944) $) NIL (|has| |#3| (-25)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1138 |#1| |#2| |#3|) (-244 |#1| |#3|) (-787) (-787) (-809)) (T -1138)) +((-3586 (((-112) $ $) 7 T ELT)) (-1457 (((-112) $) 33 T ELT)) (-3465 ((|#2| $) 28 T ELT)) (-3195 (((-112) $) 34 T ELT)) (-1378 ((|#1| $) 29 T ELT)) (-4277 (((-112) $) 36 T ELT)) (-4141 (((-112) $) 38 T ELT)) (-3282 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1861 (((-112) $) 32 T ELT)) (-3492 ((|#3| $) 27 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3315 (((-112) $) 31 T ELT)) (-3172 ((|#4| $) 26 T ELT)) (-3295 ((|#5| $) 25 T ELT)) (-2281 (((-112) $ $) 39 T ELT)) (-2916 (($ $ (-577)) 41 T ELT) (($ $ (-665 (-577))) 40 T ELT)) (-3833 (((-665 $) $) 30 T ELT)) (-4463 (($ |#1|) 47 T ELT) (($ |#2|) 46 T ELT) (($ |#3|) 45 T ELT) (($ |#4|) 44 T ELT) (($ |#5|) 43 T ELT) (($ (-665 $)) 42 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2451 (($ $) 23 T ELT)) (-2313 (($ $) 24 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1788 (((-112) $) 37 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-577) $) 22 T ELT))) +(((-1133 |#1| |#2| |#3| |#4| |#5|) (-141) (-1130) (-1130) (-1130) (-1130) (-1130)) (T -1133)) +((-2281 (*1 *2 *1 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-3833 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-1133 *3 *4 *5 *6 *7)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *2 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *2 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *2)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-577))))) +(-13 (-1130) (-636 |t#1|) (-636 |t#2|) (-636 |t#3|) (-636 |t#4|) (-636 |t#4|) (-636 |t#5|) (-636 (-665 $)) (-297 (-577) $) (-297 (-665 (-577)) $) (-10 -8 (-15 -2281 ((-112) $ $)) (-15 -4141 ((-112) $)) (-15 -1788 ((-112) $)) (-15 -4277 ((-112) $)) (-15 -3282 ((-112) $)) (-15 -3195 ((-112) $)) (-15 -1457 ((-112) $)) (-15 -1861 ((-112) $)) (-15 -3315 ((-112) $)) (-15 -3833 ((-665 $) $)) (-15 -1378 (|t#1| $)) (-15 -3465 (|t#2| $)) (-15 -3492 (|t#3| $)) (-15 -3172 (|t#4| $)) (-15 -3295 (|t#5| $)) (-15 -2313 ($ $)) (-15 -2451 ($ $)) (-15 -3600 ((-577) $)))) +(((-102) . T) ((-631 (-885)) . T) ((-636 (-665 $)) . T) ((-636 |#1|) . T) ((-636 |#2|) . T) ((-636 |#3|) . T) ((-636 |#4|) . T) ((-636 |#5|) . T) ((-297 (-577) $) . T) ((-297 (-665 (-577)) $) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-1457 (((-112) $) NIL T ELT)) (-3465 (((-1206) $) NIL T ELT)) (-3195 (((-112) $) NIL T ELT)) (-1378 (((-1188) $) NIL T ELT)) (-4277 (((-112) $) NIL T ELT)) (-4141 (((-112) $) NIL T ELT)) (-3282 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1861 (((-112) $) NIL T ELT)) (-3492 (((-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3315 (((-112) $) NIL T ELT)) (-3172 (((-228) $) NIL T ELT)) (-3295 (((-885) $) NIL T ELT)) (-2281 (((-112) $ $) NIL T ELT)) (-2916 (($ $ (-577)) NIL T ELT) (($ $ (-665 (-577))) NIL T ELT)) (-3833 (((-665 $) $) NIL T ELT)) (-4463 (($ (-1188)) NIL T ELT) (($ (-1206)) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-228)) NIL T ELT) (($ (-885)) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2451 (($ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1788 (((-112) $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3600 (((-577) $) NIL T ELT))) +(((-1134) (-1133 (-1188) (-1206) (-577) (-228) (-885))) (T -1134)) +NIL +(-1133 (-1188) (-1206) (-577) (-228) (-885)) +((-3586 (((-112) $ $) NIL T ELT)) (-1457 (((-112) $) 45 T ELT)) (-3465 ((|#2| $) 48 T ELT)) (-3195 (((-112) $) 20 T ELT)) (-1378 ((|#1| $) 21 T ELT)) (-4277 (((-112) $) 42 T ELT)) (-4141 (((-112) $) 14 T ELT)) (-3282 (((-112) $) 44 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1861 (((-112) $) 46 T ELT)) (-3492 ((|#3| $) 50 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3315 (((-112) $) 47 T ELT)) (-3172 ((|#4| $) 49 T ELT)) (-3295 ((|#5| $) 51 T ELT)) (-2281 (((-112) $ $) 41 T ELT)) (-2916 (($ $ (-577)) 62 T ELT) (($ $ (-665 (-577))) 64 T ELT)) (-3833 (((-665 $) $) 27 T ELT)) (-4463 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-665 $)) 52 T ELT)) (-3709 (((-885) $) 28 T ELT)) (-2451 (($ $) 26 T ELT)) (-2313 (($ $) 58 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1788 (((-112) $) 23 T ELT)) (-3018 (((-112) $ $) 40 T ELT)) (-3600 (((-577) $) 60 T ELT))) +(((-1135 |#1| |#2| |#3| |#4| |#5|) (-1133 |#1| |#2| |#3| |#4| |#5|) (-1130) (-1130) (-1130) (-1130) (-1130)) (T -1135)) +NIL +(-1133 |#1| |#2| |#3| |#4| |#5|) +((-3495 (((-1302) $) 22 T ELT)) (-4252 (($ (-1206) (-447) |#2|) 11 T ELT)) (-3709 (((-885) $) 16 T ELT))) +(((-1136 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -4252 ($ (-1206) (-447) |#2|)))) (-1130) (-443 |#1|)) (T -1136)) +((-4252 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-447)) (-4 *5 (-1130)) (-5 *1 (-1136 *5 *4)) (-4 *4 (-443 *5))))) +(-13 (-408) (-10 -8 (-15 -4252 ($ (-1206) (-447) |#2|)))) +((-2075 (((-112) |#5| |#5|) 44 T ELT)) (-3303 (((-112) |#5| |#5|) 59 T ELT)) (-3596 (((-112) |#5| (-665 |#5|)) 82 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-3569 (((-112) (-665 |#4|) (-665 |#4|)) 65 T ELT)) (-1984 (((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) 70 T ELT)) (-3127 (((-1302)) 32 T ELT)) (-2605 (((-1302) (-1188) (-1188) (-1188)) 28 T ELT)) (-1741 (((-665 |#5|) (-665 |#5|)) 101 T ELT)) (-2292 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) 93 T ELT)) (-2597 (((-665 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112)) 123 T ELT)) (-1341 (((-112) |#5| |#5|) 53 T ELT)) (-1639 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-1388 (((-112) (-665 |#4|) (-665 |#4|)) 64 T ELT)) (-1720 (((-112) (-665 |#4|) (-665 |#4|)) 66 T ELT)) (-2852 (((-112) (-665 |#4|) (-665 |#4|)) 67 T ELT)) (-4095 (((-3 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)) 118 T ELT)) (-2333 (((-665 |#5|) (-665 |#5|)) 49 T ELT))) +(((-1137 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2605 ((-1302) (-1188) (-1188) (-1188))) (-15 -3127 ((-1302))) (-15 -2075 ((-112) |#5| |#5|)) (-15 -2333 ((-665 |#5|) (-665 |#5|))) (-15 -1341 ((-112) |#5| |#5|)) (-15 -3303 ((-112) |#5| |#5|)) (-15 -3569 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1388 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1720 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2852 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1639 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3596 ((-112) |#5| |#5|)) (-15 -3596 ((-112) |#5| (-665 |#5|))) (-15 -1741 ((-665 |#5|) (-665 |#5|))) (-15 -1984 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2292 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-15 -2597 ((-665 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4095 ((-3 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1137)) +((-4095 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| -2281 (-665 *9)) (|:| -3613 *4) (|:| |ineq| (-665 *9)))) (-5 *1 (-1137 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) (-4 *4 (-1101 *6 *7 *8 *9)))) (-2597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| -2281 (-665 *9)) (|:| -3613 *10) (|:| |ineq| (-665 *9))))) (-5 *1 (-1137 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -3613 *7)))) (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-1984 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1137 *5 *6 *7 *8 *3)))) (-3596 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-1639 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-2852 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-1720 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-1388 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3569 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3303 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-1341 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-2075 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3127 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1137 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-2605 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -2605 ((-1302) (-1188) (-1188) (-1188))) (-15 -3127 ((-1302))) (-15 -2075 ((-112) |#5| |#5|)) (-15 -2333 ((-665 |#5|) (-665 |#5|))) (-15 -1341 ((-112) |#5| |#5|)) (-15 -3303 ((-112) |#5| |#5|)) (-15 -3569 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1388 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1720 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2852 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1639 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3596 ((-112) |#5| |#5|)) (-15 -3596 ((-112) |#5| (-665 |#5|))) (-15 -1741 ((-665 |#5|) (-665 |#5|))) (-15 -1984 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2292 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-15 -2597 ((-665 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4095 ((-3 (-2 (|:| -2281 (-665 |#4|)) (|:| -3613 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2879 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|) 108 T ELT)) (-2683 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#4| |#4| |#5|) 80 T ELT)) (-4414 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|) 102 T ELT)) (-3842 (((-665 |#5|) |#4| |#5|) 124 T ELT)) (-4039 (((-665 |#5|) |#4| |#5|) 131 T ELT)) (-2499 (((-665 |#5|) |#4| |#5|) 132 T ELT)) (-3081 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|) 109 T ELT)) (-2019 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|) 130 T ELT)) (-2473 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-2436 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#3| (-112)) 92 T ELT) (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-3233 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|) 87 T ELT)) (-2776 (((-1302)) 36 T ELT)) (-2619 (((-1302)) 25 T ELT)) (-4147 (((-1302) (-1188) (-1188) (-1188)) 32 T ELT)) (-1444 (((-1302) (-1188) (-1188) (-1188)) 21 T ELT))) +(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1444 ((-1302) (-1188) (-1188) (-1188))) (-15 -2619 ((-1302))) (-15 -4147 ((-1302) (-1188) (-1188) (-1188))) (-15 -2776 ((-1302))) (-15 -2683 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -2436 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2436 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#3| (-112))) (-15 -3233 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -4414 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -2473 ((-112) |#4| |#5|)) (-15 -3081 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -3842 ((-665 |#5|) |#4| |#5|)) (-15 -2019 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -4039 ((-665 |#5|) |#4| |#5|)) (-15 -2473 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -2499 ((-665 |#5|) |#4| |#5|)) (-15 -2879 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1138)) +((-2879 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2499 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2473 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-4039 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2019 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3842 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3081 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2473 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-4414 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3233 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -3613 *9)))) (-5 *1 (-1138 *6 *7 *4 *8 *9)))) (-2436 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-2683 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2776 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-4147 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-2619 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-1444 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(-10 -7 (-15 -1444 ((-1302) (-1188) (-1188) (-1188))) (-15 -2619 ((-1302))) (-15 -4147 ((-1302) (-1188) (-1188) (-1188))) (-15 -2776 ((-1302))) (-15 -2683 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -2436 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2436 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) |#3| (-112))) (-15 -3233 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -4414 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#4| |#5|)) (-15 -2473 ((-112) |#4| |#5|)) (-15 -3081 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -3842 ((-665 |#5|) |#4| |#5|)) (-15 -2019 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -4039 ((-665 |#5|) |#4| |#5|)) (-15 -2473 ((-665 (-2 (|:| |val| (-112)) (|:| -3613 |#5|))) |#4| |#5|)) (-15 -2499 ((-665 |#5|) |#4| |#5|)) (-15 -2879 ((-665 (-2 (|:| |val| |#4|) (|:| -3613 |#5|))) |#4| |#5|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-1795 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-3891 (((-665 |#3|) $) 34 T ELT)) (-1507 (((-112) $) 27 T ELT)) (-2221 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3800 ((|#4| |#4| $) 93 T ELT)) (-2612 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| $) 127 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1777 (((-112) $ (-792)) 45 T ELT)) (-1440 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2305 (($) 46 T CONST)) (-1603 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3783 (($ (-665 |#4|)) 36 T ELT)) (-4410 (((-3 $ "failed") $) 83 T ELT)) (-3145 ((|#4| |#4| $) 90 T ELT)) (-3589 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3947 ((|#4| |#4| $) 88 T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) 106 T ELT)) (-3020 (((-112) |#4| $) 137 T ELT)) (-4005 (((-112) |#4| $) 134 T ELT)) (-1753 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2118 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1429 ((|#3| $) 35 T ELT)) (-3862 (((-112) $ (-792)) 44 T ELT)) (-2152 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1683 (((-665 |#3|) $) 33 T ELT)) (-3692 (((-112) |#3| $) 32 T ELT)) (-3438 (((-112) $ (-792)) 43 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3036 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-4045 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| |#4| $) 128 T ELT)) (-4026 (((-3 |#4| "failed") $) 84 T ELT)) (-1955 (((-665 $) |#4| $) 130 T ELT)) (-1377 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-3132 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-1565 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-1963 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-1602 (((-665 |#4|) $) 108 T ELT)) (-1768 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-2477 ((|#4| |#4| $) 91 T ELT)) (-2852 (((-112) $ $) 111 T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-3881 ((|#4| |#4| $) 92 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4397 (((-3 |#4| "failed") $) 85 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2568 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) 39 T ELT)) (-2687 (((-112) $) 42 T ELT)) (-2833 (($) 41 T ELT)) (-1597 (((-792) $) 107 T ELT)) (-1481 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 40 T ELT)) (-4463 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 61 T ELT)) (-1336 (($ $ |#3|) 29 T ELT)) (-3076 (($ $ |#3|) 31 T ELT)) (-2138 (($ $) 89 T ELT)) (-2951 (($ $ |#3|) 30 T ELT)) (-3709 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3534 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-4197 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) 82 T ELT)) (-2259 (((-112) |#4| $) 136 T ELT)) (-2066 (((-112) |#3| $) 81 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) +(((-1139 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1139)) +NIL +(-13 (-1101 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-4357 (((-665 (-577)) (-577) (-577) (-577)) 38 T ELT)) (-3174 (((-665 (-577)) (-577) (-577) (-577)) 28 T ELT)) (-2765 (((-665 (-577)) (-577) (-577) (-577)) 33 T ELT)) (-2991 (((-577) (-577) (-577)) 21 T ELT)) (-2103 (((-1297 (-577)) (-665 (-577)) (-1297 (-577)) (-577)) 77 T ELT) (((-1297 (-577)) (-1297 (-577)) (-1297 (-577)) (-577)) 72 T ELT)) (-3066 (((-665 (-577)) (-665 (-949)) (-665 (-577)) (-112)) 54 T ELT)) (-3996 (((-710 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577))) 76 T ELT)) (-2468 (((-710 (-577)) (-665 (-949)) (-665 (-577))) 59 T ELT)) (-3510 (((-665 (-710 (-577))) (-665 (-949))) 65 T ELT)) (-2973 (((-665 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577))) 80 T ELT)) (-2912 (((-710 (-577)) (-665 (-577)) (-665 (-577)) (-665 (-577))) 90 T ELT))) +(((-1140) (-10 -7 (-15 -2912 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-665 (-577)))) (-15 -2973 ((-665 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -3510 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -2468 ((-710 (-577)) (-665 (-949)) (-665 (-577)))) (-15 -3996 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -3066 ((-665 (-577)) (-665 (-949)) (-665 (-577)) (-112))) (-15 -2103 ((-1297 (-577)) (-1297 (-577)) (-1297 (-577)) (-577))) (-15 -2103 ((-1297 (-577)) (-665 (-577)) (-1297 (-577)) (-577))) (-15 -2991 ((-577) (-577) (-577))) (-15 -2765 ((-665 (-577)) (-577) (-577) (-577))) (-15 -3174 ((-665 (-577)) (-577) (-577) (-577))) (-15 -4357 ((-665 (-577)) (-577) (-577) (-577))))) (T -1140)) +((-4357 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577)))) (-3174 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577)))) (-2765 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577)))) (-2991 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1140)))) (-2103 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-665 (-577))) (-5 *4 (-577)) (-5 *1 (-1140)))) (-2103 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-577)) (-5 *1 (-1140)))) (-3066 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-665 (-577))) (-5 *3 (-665 (-949))) (-5 *4 (-112)) (-5 *1 (-1140)))) (-3996 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-710 (-577))) (-5 *3 (-665 (-577))) (-5 *1 (-1140)))) (-2468 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1140)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-1140)))) (-2973 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *3 (-710 (-577))) (-5 *1 (-1140)))) (-2912 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1140))))) +(-10 -7 (-15 -2912 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-665 (-577)))) (-15 -2973 ((-665 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -3510 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -2468 ((-710 (-577)) (-665 (-949)) (-665 (-577)))) (-15 -3996 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -3066 ((-665 (-577)) (-665 (-949)) (-665 (-577)) (-112))) (-15 -2103 ((-1297 (-577)) (-1297 (-577)) (-1297 (-577)) (-577))) (-15 -2103 ((-1297 (-577)) (-665 (-577)) (-1297 (-577)) (-577))) (-15 -2991 ((-577) (-577) (-577))) (-15 -2765 ((-665 (-577)) (-577) (-577) (-577))) (-15 -3174 ((-665 (-577)) (-577) (-577) (-577))) (-15 -4357 ((-665 (-577)) (-577) (-577) (-577)))) +((** (($ $ (-949)) 10 T ELT))) +(((-1141 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-949)))) (-1142)) (T -1141)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-949)))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT)) (* (($ $ $) 15 T ELT))) +(((-1142) (-141)) (T -1142)) +((* (*1 *1 *1 *1) (-4 *1 (-1142))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1142)) (-5 *2 (-949))))) +(-13 (-1130) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-949))))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-4113 (((-112) $) NIL (|has| |#3| (-23)) ELT)) (-1385 (($ (-949)) NIL (|has| |#3| (-1079)) ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-4208 (($ $ $) NIL (|has| |#3| (-814)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-3005 (((-792)) NIL (|has| |#3| (-380)) ELT)) (-1957 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1130)) ELT)) (-3783 (((-577) $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT) ((|#3| $) NIL (|has| |#3| (-1130)) ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-710 $)) NIL (|has| |#3| (-1079)) ELT)) (-3167 (((-3 $ "failed") $) NIL (|has| |#3| (-1079)) ELT)) (-1424 (($) NIL (|has| |#3| (-380)) ELT)) (-4420 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#3| $ (-577)) 12 T ELT)) (-2118 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL (|has| |#3| (-1079)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-2152 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-4409 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2686 (((-949) $) NIL (|has| |#3| (-380)) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-1297 $)) NIL (|has| |#3| (-1079)) ELT)) (-3235 (((-1188) $) NIL (|has| |#3| (-1130)) ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-3354 (($ (-949)) NIL (|has| |#3| (-380)) ELT)) (-1470 (((-1150) $) NIL (|has| |#3| (-1130)) ELT)) (-4397 ((|#3| $) NIL (|has| (-577) (-870)) ELT)) (-2561 (($ $ |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 |#3|) (-665 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-4059 (((-665 |#3|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#3| $ (-577) |#3|) NIL T ELT) ((|#3| $ (-577)) NIL T ELT)) (-4047 ((|#3| $ $) NIL (|has| |#3| (-1079)) ELT)) (-3805 (($ (-1297 |#3|)) NIL T ELT)) (-4366 (((-135)) NIL (|has| |#3| (-375)) ELT)) (-3641 (($ $ (-792)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-3709 (((-1297 |#3|) $) NIL T ELT) (($ (-577)) NIL (-2867 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT) (($ |#3|) NIL (|has| |#3| (-1130)) ELT) (((-885) $) NIL (|has| |#3| (-631 (-885))) ELT)) (-3331 (((-792)) NIL (|has| |#3| (-1079)) CONST)) (-2643 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2839 (($) NIL (|has| |#3| (-23)) CONST)) (-2853 (($) NIL (|has| |#3| (-1079)) CONST)) (-2389 (($ $ (-792)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-3042 (((-112) $ $) 24 (|has| |#3| (-870)) ELT)) (-3139 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-3128 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3114 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#3| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1079)) ELT) (($ $ |#3|) NIL (|has| |#3| (-747)) ELT) (($ |#3| $) NIL (|has| |#3| (-747)) ELT) (($ (-577) $) NIL (|has| |#3| (-21)) ELT) (($ (-792) $) NIL (|has| |#3| (-23)) ELT) (($ (-949) $) NIL (|has| |#3| (-25)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1143 |#1| |#2| |#3|) (-244 |#1| |#3|) (-792) (-792) (-814)) (T -1143)) NIL (-244 |#1| |#3|) -((-3301 (((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 50 T ELT)) (-1749 (((-577) (-1265 |#2| |#1|)) 94 (|has| |#1| (-465)) ELT)) (-4102 (((-577) (-1265 |#2| |#1|)) 76 T ELT)) (-1953 (((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 58 T ELT)) (-2843 (((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 93 (|has| |#1| (-465)) ELT)) (-3795 (((-660 |#1|) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 61 T ELT)) (-2393 (((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 75 T ELT))) -(((-1139 |#1| |#2|) (-10 -7 (-15 -3301 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -1953 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -3795 ((-660 |#1|) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2393 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -4102 ((-577) (-1265 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2843 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -1749 ((-577) (-1265 |#2| |#1|)))) |%noBranch|)) (-836) (-1201)) (T -1139)) -((-1749 (*1 *2 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-2843 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-2393 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-3795 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 *4)) (-5 *1 (-1139 *4 *5)))) (-1953 (*1 *2 *3 *3) (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4)))) (-3301 (*1 *2 *3 *3) (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4))))) -(-10 -7 (-15 -3301 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -1953 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -3795 ((-660 |#1|) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2393 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -4102 ((-577) (-1265 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2843 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -1749 ((-577) (-1265 |#2| |#1|)))) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3641 (($ (-519) (-1143)) 13 T ELT)) (-2698 (((-1143) $) 19 T ELT)) (-2668 (((-519) $) 16 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 26 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1140) (-13 (-1108) (-10 -8 (-15 -3641 ($ (-519) (-1143))) (-15 -2668 ((-519) $)) (-15 -2698 ((-1143) $))))) (T -1140)) -((-3641 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-1140)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1140)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1140))))) -(-13 (-1108) (-10 -8 (-15 -3641 ($ (-519) (-1143))) (-15 -2668 ((-519) $)) (-15 -2698 ((-1143) $)))) -((-2917 (((-3 (-577) "failed") |#2| (-1201) |#2| (-1183)) 19 T ELT) (((-3 (-577) "failed") |#2| (-1201) (-859 |#2|)) 17 T ELT) (((-3 (-577) "failed") |#2|) 60 T ELT))) -(((-1141 |#1| |#2|) (-10 -7 (-15 -2917 ((-3 (-577) "failed") |#2|)) (-15 -2917 ((-3 (-577) "failed") |#2| (-1201) (-859 |#2|))) (-15 -2917 ((-3 (-577) "failed") |#2| (-1201) |#2| (-1183)))) (-13 (-569) (-1063 (-577)) (-654 (-577)) (-465)) (-13 (-27) (-1227) (-443 |#1|))) (T -1141)) -((-2917 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-1183)) (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1141 *6 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))))) (-2917 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1141 *6 *3)))) (-2917 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1141 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4)))))) -(-10 -7 (-15 -2917 ((-3 (-577) "failed") |#2|)) (-15 -2917 ((-3 (-577) "failed") |#2| (-1201) (-859 |#2|))) (-15 -2917 ((-3 (-577) "failed") |#2| (-1201) |#2| (-1183)))) -((-2917 (((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)) (-1183)) 38 T ELT) (((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-859 (-420 (-975 |#1|)))) 33 T ELT) (((-3 (-577) "failed") (-420 (-975 |#1|))) 14 T ELT))) -(((-1142 |#1|) (-10 -7 (-15 -2917 ((-3 (-577) "failed") (-420 (-975 |#1|)))) (-15 -2917 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-859 (-420 (-975 |#1|))))) (-15 -2917 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)) (-1183)))) (-465)) (T -1142)) -((-2917 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1201)) (-5 *5 (-1183)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *6)))) (-2917 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 (-420 (-975 *6)))) (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *6)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *4))))) -(-10 -7 (-15 -2917 ((-3 (-577) "failed") (-420 (-975 |#1|)))) (-15 -2917 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-859 (-420 (-975 |#1|))))) (-15 -2917 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)) (-1183)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3014 (((-1206) $) 12 T ELT)) (-2963 (((-660 (-1206)) $) 14 T ELT)) (-2698 (($ (-660 (-1206)) (-1206)) 10 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 29 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 17 T ELT))) -(((-1143) (-13 (-1125) (-10 -8 (-15 -2698 ($ (-660 (-1206)) (-1206))) (-15 -3014 ((-1206) $)) (-15 -2963 ((-660 (-1206)) $))))) (T -1143)) -((-2698 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1206))) (-5 *3 (-1206)) (-5 *1 (-1143)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1143)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1143))))) -(-13 (-1125) (-10 -8 (-15 -2698 ($ (-660 (-1206)) (-1206))) (-15 -3014 ((-1206) $)) (-15 -2963 ((-660 (-1206)) $)))) -((-3698 (((-327 (-577)) (-48)) 12 T ELT))) -(((-1144) (-10 -7 (-15 -3698 ((-327 (-577)) (-48))))) (T -1144)) -((-3698 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1144))))) -(-10 -7 (-15 -3698 ((-327 (-577)) (-48)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3516 (($ $) 44 T ELT)) (-3801 (((-112) $) 70 T ELT)) (-2727 (($ $ $) 53 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 98 T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-2199 (($ $ $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($ $ $ $) 81 T ELT)) (-2001 (($ $) NIL T ELT)) (-3836 (((-431 $) $) NIL T ELT)) (-2435 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) 83 T ELT)) (-2917 (((-577) $) NIL T ELT)) (-2879 (($ $ $) 78 T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL T ELT)) (-3436 (($ $ $) 64 T ELT)) (-2850 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 92 T ELT) (((-705 (-577)) (-705 $)) 32 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-1493 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2828 (((-112) $) NIL T ELT)) (-2950 (((-420 (-577)) $) NIL T ELT)) (-2352 (($) 95 T ELT) (($ $) 96 T ELT)) (-3447 (($ $ $) 63 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL T ELT)) (-2182 (((-112) $) NIL T ELT)) (-3248 (($ $ $ $) NIL T ELT)) (-3309 (($ $ $) 93 T ELT)) (-4302 (((-112) $) NIL T ELT)) (-2738 (($ $ $) NIL T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL T ELT)) (-2713 (($ $ $) 52 T ELT)) (-3306 (((-112) $) 72 T ELT)) (-2238 (((-112) $) 69 T ELT)) (-2686 (($ $) 45 T ELT)) (-1454 (((-3 $ "failed") $) NIL T ELT)) (-2178 (((-112) $) 82 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-1912 (($ $ $ $) 79 T ELT)) (-2900 (($ $ $) 74 T ELT) (($) 42 T CONST)) (-1457 (($ $ $) 73 T ELT) (($) 41 T CONST)) (-3510 (($ $) NIL T ELT)) (-2144 (((-944) $) 88 T ELT)) (-3762 (($ $) 77 T ELT)) (-1512 (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL T ELT) (((-705 (-577)) (-1292 $)) NIL T ELT)) (-3508 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3371 (($ $ $) NIL T ELT)) (-3457 (($) NIL T CONST)) (-3251 (($ (-944)) 87 T ELT)) (-2470 (($ $) 57 T ELT)) (-1440 (((-1145) $) 76 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL T ELT)) (-3543 (($ $ $) 67 T ELT) (($ (-660 $)) NIL T ELT)) (-1968 (($ $) NIL T ELT)) (-3056 (((-431 $) $) NIL T ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL T ELT)) (-3861 (((-112) $) NIL T ELT)) (-4167 (((-787) $) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 66 T ELT)) (-3362 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2322 (($ $) 58 T ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-577) $) 17 T ELT) (((-549) $) NIL T ELT) (((-911 (-577)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-228) $) NIL T ELT)) (-3603 (((-880) $) 35 T ELT) (($ (-577)) 94 T ELT) (($ $) NIL T ELT) (($ (-577)) 94 T ELT)) (-1920 (((-787)) NIL T CONST)) (-1784 (((-112) $ $) NIL T ELT)) (-1774 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2762 (($) 40 T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2700 (($ $ $) 50 T ELT)) (-3585 (($ $ $ $) 80 T ELT)) (-4318 (($ $) 68 T ELT)) (-3559 (($ $ $) 47 T ELT)) (-2754 (($) 7 T CONST)) (-3863 (($ $ $) 51 T ELT)) (-2767 (($) 39 T CONST)) (-1422 (((-1183) $) 26 T ELT) (((-1183) $ (-112)) 27 T ELT) (((-1297) (-838) $) 28 T ELT) (((-1297) (-838) $ (-112)) 29 T ELT)) (-3875 (($ $) 48 T ELT)) (-2136 (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-3853 (($ $ $) 49 T ELT)) (-3001 (((-112) $ $) 56 T ELT)) (-2978 (((-112) $ $) 54 T ELT)) (-2949 (((-112) $ $) 43 T ELT)) (-2988 (((-112) $ $) 55 T ELT)) (-2971 (((-112) $ $) 10 T ELT)) (-3549 (($ $ $) 46 T ELT)) (-3042 (($ $) 16 T ELT) (($ $ $) 60 T ELT)) (-3031 (($ $ $) 59 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 62 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 38 T ELT) (($ $ $) 37 T ELT) (($ (-577) $) 38 T ELT))) -(((-1145) (-13 (-558) (-860) (-113) (-677) (-844) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -2727 ($ $ $)) (-15 -3875 ($ $)) (-15 -3853 ($ $ $)) (-15 -3863 ($ $ $))))) (T -1145)) -((-2727 (*1 *1 *1 *1) (-5 *1 (-1145))) (-3875 (*1 *1 *1) (-5 *1 (-1145))) (-3853 (*1 *1 *1 *1) (-5 *1 (-1145))) (-3863 (*1 *1 *1 *1) (-5 *1 (-1145)))) -(-13 (-558) (-860) (-113) (-677) (-844) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -2727 ($ $ $)) (-15 -3875 ($ $)) (-15 -3853 ($ $ $)) (-15 -3863 ($ $ $)))) +((-4472 (((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 50 T ELT)) (-1594 (((-577) (-1270 |#2| |#1|)) 94 (|has| |#1| (-465)) ELT)) (-3652 (((-577) (-1270 |#2| |#1|)) 76 T ELT)) (-3197 (((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 58 T ELT)) (-3619 (((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 93 (|has| |#1| (-465)) ELT)) (-2825 (((-665 |#1|) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 61 T ELT)) (-2900 (((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 75 T ELT))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -4472 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3197 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -2825 ((-665 |#1|) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -2900 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3652 ((-577) (-1270 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -3619 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -1594 ((-577) (-1270 |#2| |#1|)))) |%noBranch|)) (-841) (-1206)) (T -1144)) +((-1594 (*1 *2 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-3619 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-2900 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-2825 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 *4)) (-5 *1 (-1144 *4 *5)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4)))) (-4472 (*1 *2 *3 *3) (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4))))) +(-10 -7 (-15 -4472 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3197 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -2825 ((-665 |#1|) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -2900 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3652 ((-577) (-1270 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -3619 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -1594 ((-577) (-1270 |#2| |#1|)))) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4116 (($ (-519) (-1148)) 13 T ELT)) (-2978 (((-1148) $) 19 T ELT)) (-2758 (((-519) $) 16 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 26 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1145) (-13 (-1113) (-10 -8 (-15 -4116 ($ (-519) (-1148))) (-15 -2758 ((-519) $)) (-15 -2978 ((-1148) $))))) (T -1145)) +((-4116 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-1145)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1145)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1145))))) +(-13 (-1113) (-10 -8 (-15 -4116 ($ (-519) (-1148))) (-15 -2758 ((-519) $)) (-15 -2978 ((-1148) $)))) +((-2578 (((-3 (-577) "failed") |#2| (-1206) |#2| (-1188)) 19 T ELT) (((-3 (-577) "failed") |#2| (-1206) (-864 |#2|)) 17 T ELT) (((-3 (-577) "failed") |#2|) 60 T ELT))) +(((-1146 |#1| |#2|) (-10 -7 (-15 -2578 ((-3 (-577) "failed") |#2|)) (-15 -2578 ((-3 (-577) "failed") |#2| (-1206) (-864 |#2|))) (-15 -2578 ((-3 (-577) "failed") |#2| (-1206) |#2| (-1188)))) (-13 (-569) (-1068 (-577)) (-659 (-577)) (-465)) (-13 (-27) (-1232) (-443 |#1|))) (T -1146)) +((-2578 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-1188)) (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1146 *6 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))))) (-2578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1146 *6 *3)))) (-2578 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1146 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4)))))) +(-10 -7 (-15 -2578 ((-3 (-577) "failed") |#2|)) (-15 -2578 ((-3 (-577) "failed") |#2| (-1206) (-864 |#2|))) (-15 -2578 ((-3 (-577) "failed") |#2| (-1206) |#2| (-1188)))) +((-2578 (((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)) (-1188)) 38 T ELT) (((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-864 (-420 (-980 |#1|)))) 33 T ELT) (((-3 (-577) "failed") (-420 (-980 |#1|))) 14 T ELT))) +(((-1147 |#1|) (-10 -7 (-15 -2578 ((-3 (-577) "failed") (-420 (-980 |#1|)))) (-15 -2578 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-864 (-420 (-980 |#1|))))) (-15 -2578 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)) (-1188)))) (-465)) (T -1147)) +((-2578 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1206)) (-5 *5 (-1188)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *6)))) (-2578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 (-420 (-980 *6)))) (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *6)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *4))))) +(-10 -7 (-15 -2578 ((-3 (-577) "failed") (-420 (-980 |#1|)))) (-15 -2578 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-864 (-420 (-980 |#1|))))) (-15 -2578 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)) (-1188)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3117 (((-1211) $) 12 T ELT)) (-3059 (((-665 (-1211)) $) 14 T ELT)) (-2978 (($ (-665 (-1211)) (-1211)) 10 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 29 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 17 T ELT))) +(((-1148) (-13 (-1130) (-10 -8 (-15 -2978 ($ (-665 (-1211)) (-1211))) (-15 -3117 ((-1211) $)) (-15 -3059 ((-665 (-1211)) $))))) (T -1148)) +((-2978 (*1 *1 *2 *3) (-12 (-5 *2 (-665 (-1211))) (-5 *3 (-1211)) (-5 *1 (-1148)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1148)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1148))))) +(-13 (-1130) (-10 -8 (-15 -2978 ($ (-665 (-1211)) (-1211))) (-15 -3117 ((-1211) $)) (-15 -3059 ((-665 (-1211)) $)))) +((-1468 (((-327 (-577)) (-48)) 12 T ELT))) +(((-1149) (-10 -7 (-15 -1468 ((-327 (-577)) (-48))))) (T -1149)) +((-1468 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1149))))) +(-10 -7 (-15 -1468 ((-327 (-577)) (-48)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) 44 T ELT)) (-4113 (((-112) $) 70 T ELT)) (-2814 (($ $ $) 53 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 98 T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2940 (($ $ $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-4002 (($ $ $ $) 81 T ELT)) (-2612 (($ $) NIL T ELT)) (-3206 (((-431 $) $) NIL T ELT)) (-2495 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) 83 T ELT)) (-2578 (((-577) $) NIL T ELT)) (-4387 (($ $ $) 78 T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL T ELT)) (-3531 (($ $ $) 64 T ELT)) (-3187 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 92 T ELT) (((-710 (-577)) (-710 $)) 32 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1902 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-1356 (((-112) $) NIL T ELT)) (-4035 (((-420 (-577)) $) NIL T ELT)) (-1424 (($) 95 T ELT) (($ $) 96 T ELT)) (-3541 (($ $ $) 63 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL T ELT)) (-3567 (((-112) $) NIL T ELT)) (-1714 (($ $ $ $) NIL T ELT)) (-3215 (($ $ $) 93 T ELT)) (-4339 (((-112) $) NIL T ELT)) (-2381 (($ $ $) NIL T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-2802 (($ $ $) 52 T ELT)) (-3357 (((-112) $) 72 T ELT)) (-2310 (((-112) $) 69 T ELT)) (-2779 (($ $) 45 T ELT)) (-2004 (((-3 $ "failed") $) NIL T ELT)) (-2649 (((-112) $) 82 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4098 (($ $ $ $) 79 T ELT)) (-3237 (($ $ $) 74 T ELT) (($) 42 T CONST)) (-2930 (($ $ $) 73 T ELT) (($) 41 T CONST)) (-3106 (($ $) NIL T ELT)) (-2686 (((-949) $) 88 T ELT)) (-4166 (($ $) 77 T ELT)) (-3163 (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-3606 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4097 (($ $ $) NIL T ELT)) (-2443 (($) NIL T CONST)) (-3354 (($ (-949)) 87 T ELT)) (-2143 (($ $) 57 T ELT)) (-1470 (((-1150) $) 76 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-3642 (($ $ $) 67 T ELT) (($ (-665 $)) NIL T ELT)) (-2964 (($ $) NIL T ELT)) (-3759 (((-431 $) $) NIL T ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2820 (((-112) $) NIL T ELT)) (-4081 (((-792) $) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 66 T ELT)) (-3641 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2593 (($ $) 58 T ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-577) $) 17 T ELT) (((-549) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-228) $) NIL T ELT)) (-3709 (((-885) $) 35 T ELT) (($ (-577)) 94 T ELT) (($ $) NIL T ELT) (($ (-577)) 94 T ELT)) (-3331 (((-792)) NIL T CONST)) (-3790 (((-112) $ $) NIL T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4356 (($) 40 T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2790 (($ $ $) 50 T ELT)) (-2449 (($ $ $ $) 80 T ELT)) (-2215 (($ $) 68 T ELT)) (-3660 (($ $ $) 47 T ELT)) (-2839 (($) 7 T CONST)) (-4114 (($ $ $) 51 T ELT)) (-2853 (($) 39 T CONST)) (-4136 (((-1188) $) 26 T ELT) (((-1188) $ (-112)) 27 T ELT) (((-1302) (-843) $) 28 T ELT) (((-1302) (-843) $ (-112)) 29 T ELT)) (-4125 (($ $) 48 T ELT)) (-2389 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-4103 (($ $ $) 49 T ELT)) (-3078 (((-112) $ $) 56 T ELT)) (-3054 (((-112) $ $) 54 T ELT)) (-3018 (((-112) $ $) 43 T ELT)) (-3067 (((-112) $ $) 55 T ELT)) (-3042 (((-112) $ $) 10 T ELT)) (-3647 (($ $ $) 46 T ELT)) (-3128 (($ $) 16 T ELT) (($ $ $) 60 T ELT)) (-3114 (($ $ $) 59 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 62 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 38 T ELT) (($ $ $) 37 T ELT) (($ (-577) $) 38 T ELT))) +(((-1150) (-13 (-558) (-865) (-113) (-682) (-849) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -2814 ($ $ $)) (-15 -4125 ($ $)) (-15 -4103 ($ $ $)) (-15 -4114 ($ $ $))))) (T -1150)) +((-2814 (*1 *1 *1 *1) (-5 *1 (-1150))) (-4125 (*1 *1 *1) (-5 *1 (-1150))) (-4103 (*1 *1 *1 *1) (-5 *1 (-1150))) (-4114 (*1 *1 *1 *1) (-5 *1 (-1150)))) +(-13 (-558) (-865) (-113) (-682) (-849) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -2814 ($ $ $)) (-15 -4125 ($ $)) (-15 -4103 ($ $ $)) (-15 -4114 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2554 ((|#1| $) 45 T ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3790 (($) 7 T CONST)) (-2223 ((|#1| |#1| $) 47 T ELT)) (-2204 ((|#1| $) 46 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 40 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-3439 ((|#1| $) 42 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2395 (((-787) $) 44 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) 43 T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1146 |#1|) (-141) (-1242)) (T -1146)) -((-2223 (*1 *2 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4470) (-15 -2223 (|t#1| |t#1| $)) (-15 -2204 (|t#1| $)) (-15 -2554 (|t#1| $)) (-15 -2395 ((-787) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-2219 ((|#3| $) 87 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 50 T ELT)) (-2155 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL T ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL T ELT) (((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) 84 T ELT) (((-705 |#3|) (-705 $)) 76 T ELT)) (-3362 (($ $ (-1 |#3| |#3|) (-787)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-3294 ((|#3| $) 89 T ELT)) (-2080 ((|#4| $) 43 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 24 T ELT) (($ $ (-577)) 95 T ELT))) -(((-1147 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3294 (|#3| |#1|)) (-15 -2219 (|#3| |#1|)) (-15 -2080 (|#4| |#1|)) (-15 -2850 ((-705 |#3|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -3603 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -3603 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3603 ((-880) |#1|))) (-1148 |#2| |#3| |#4| |#5|) (-787) (-1074) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1147)) -NIL -(-10 -8 (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3294 (|#3| |#1|)) (-15 -2219 (|#3| |#1|)) (-15 -2080 (|#4| |#1|)) (-15 -2850 ((-705 |#3|) (-705 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -2850 ((-705 (-577)) (-705 |#1|))) (-15 -3603 (|#1| |#3|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3362 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -3603 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2219 ((|#2| $) 80 T ELT)) (-3755 (((-112) $) 124 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2010 (((-112) $) 122 T ELT)) (-4403 (((-112) $ (-787)) 114 T ELT)) (-1390 (($ |#2|) 83 T ELT)) (-3790 (($) 18 T CONST)) (-1863 (($ $) 141 (|has| |#2| (-318)) ELT)) (-1578 ((|#3| $ (-577)) 136 T ELT)) (-2784 (((-3 (-577) "failed") $) 99 (|has| |#2| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 96 (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) 93 T ELT)) (-2155 (((-577) $) 98 (|has| |#2| (-1063 (-577))) ELT) (((-420 (-577)) $) 95 (|has| |#2| (-1063 (-420 (-577)))) ELT) ((|#2| $) 94 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 89 (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 88 (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 87 T ELT) (((-705 |#2|) (-705 $)) 86 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3503 (((-787) $) 142 (|has| |#2| (-569)) ELT)) (-2759 ((|#2| $ (-577) (-577)) 134 T ELT)) (-3692 (((-660 |#2|) $) 107 (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-3225 (((-787) $) 143 (|has| |#2| (-569)) ELT)) (-1404 (((-660 |#4|) $) 144 (|has| |#2| (-569)) ELT)) (-4022 (((-787) $) 130 T ELT)) (-4033 (((-787) $) 131 T ELT)) (-1821 (((-112) $ (-787)) 115 T ELT)) (-3979 ((|#2| $) 75 (|has| |#2| (-6 (-4472 "*"))) ELT)) (-4250 (((-577) $) 126 T ELT)) (-2952 (((-577) $) 128 T ELT)) (-2434 (((-660 |#2|) $) 106 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1484 (((-577) $) 127 T ELT)) (-3329 (((-577) $) 129 T ELT)) (-4307 (($ (-660 (-660 |#2|))) 121 T ELT)) (-2826 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2| |#2|) $ $) 138 T ELT) (($ (-1 |#2| |#2|) $) 112 T ELT)) (-2347 (((-660 (-660 |#2|)) $) 132 T ELT)) (-3272 (((-112) $ (-787)) 116 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 91 (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 90 (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) 85 T ELT) (((-705 |#2|) (-1292 $)) 84 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3564 (((-3 $ "failed") $) 74 (|has| |#2| (-375)) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3478 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) 103 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) 102 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 100 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) 120 T ELT)) (-2856 (((-112) $) 117 T ELT)) (-2693 (($) 118 T ELT)) (-2837 ((|#2| $ (-577) (-577) |#2|) 135 T ELT) ((|#2| $ (-577) (-577)) 133 T ELT)) (-3362 (($ $ (-1 |#2| |#2|) (-787)) 57 T ELT) (($ $ (-1 |#2| |#2|)) 56 T ELT) (($ $) 47 (|has| |#2| (-238)) ELT) (($ $ (-787)) 45 (|has| |#2| (-238)) ELT) (($ $ (-1201)) 55 (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 53 (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 52 (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 51 (|has| |#2| (-923 (-1201))) ELT)) (-3294 ((|#2| $) 79 T ELT)) (-3937 (($ (-660 |#2|)) 82 T ELT)) (-3534 (((-112) $) 123 T ELT)) (-2080 ((|#3| $) 81 T ELT)) (-2534 ((|#2| $) 76 (|has| |#2| (-6 (-4472 "*"))) ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) 105 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 119 T ELT)) (-2859 ((|#4| $ (-577)) 137 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 97 (|has| |#2| (-1063 (-420 (-577)))) ELT) (($ |#2|) 92 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) 125 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1 |#2| |#2|) (-787)) 59 T ELT) (($ $ (-1 |#2| |#2|)) 58 T ELT) (($ $) 46 (|has| |#2| (-238)) ELT) (($ $ (-787)) 44 (|has| |#2| (-238)) ELT) (($ $ (-1201)) 54 (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 50 (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 49 (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 48 (|has| |#2| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#2|) 140 (|has| |#2| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 73 (|has| |#2| (-375)) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#2|) 146 T ELT) (($ |#2| $) 145 T ELT) ((|#4| $ |#4|) 78 T ELT) ((|#3| |#3| $) 77 T ELT)) (-3501 (((-787) $) 113 (|has| $ (-6 -4470)) ELT))) -(((-1148 |#1| |#2| |#3| |#4|) (-141) (-787) (-1074) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1148)) -((-1390 (*1 *1 *2) (-12 (-4 *2 (-1074)) (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-660 *4)) (-4 *4 (-1074)) (-4 *1 (-1148 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1074)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1074)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1148 *3 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-3564 (*1 *1 *1) (|partial| -12 (-4 *1 (-1148 *2 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1148 *3 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-375))))) -(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1078 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-389 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-733 |t#2|)) |%noBranch|) (-15 -1390 ($ |t#2|)) (-15 -3937 ($ (-660 |t#2|))) (-15 -2080 (|t#3| $)) (-15 -2219 (|t#2| $)) (-15 -3294 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4472 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2534 (|t#2| $)) (-15 -3979 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-375)) (PROGN (-15 -3564 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4472 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-629 #0=(-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-235 $) -2811 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) -2811 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-273 |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-389 |#2|) . T) ((-424 |#2|) . T) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-662 $) . T) ((-664 #1=(-577)) |has| |#2| (-654 (-577))) ((-664 |#2|) . T) ((-664 $) . T) ((-656 |#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-6 (-4472 "*")))) ((-654 #1#) |has| |#2| (-654 (-577))) ((-654 |#2|) . T) ((-733 |#2|) -2811 (|has| |#2| (-174)) (|has| |#2| (-6 (-4472 "*")))) ((-742) . T) ((-915 $ #2=(-1201)) -2811 (|has| |#2| (-923 (-1201))) (|has| |#2| (-921 (-1201)))) ((-921 (-1201)) |has| |#2| (-921 (-1201))) ((-923 #2#) -2811 (|has| |#2| (-923 (-1201))) (|has| |#2| (-921 (-1201)))) ((-1078 |#1| |#1| |#2| |#3| |#4|) . T) ((-1063 #0#) |has| |#2| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#2| (-1063 (-577))) ((-1063 |#2|) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-1766 ((|#4| |#4|) 81 T ELT)) (-3207 ((|#4| |#4|) 76 T ELT)) (-4225 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|))) |#4| |#3|) 91 T ELT)) (-3552 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-1870 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3207 (|#4| |#4|)) (-15 -1870 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1766 (|#4| |#4|)) (-15 -3552 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4225 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|))) |#4| |#3|))) (-318) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -1149)) -((-4225 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) (-5 *1 (-1149 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-1766 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) -(-10 -7 (-15 -3207 (|#4| |#4|)) (-15 -1870 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1766 (|#4| |#4|)) (-15 -3552 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4225 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2559 (-660 |#3|))) |#4| |#3|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 18 T ELT)) (-3206 (((-660 |#2|) $) 174 T ELT)) (-3024 (((-1197 $) $ |#2|) 60 T ELT) (((-1197 |#1|) $) 49 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 116 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 118 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 120 (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 |#2|)) 213 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) 167 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-2155 ((|#1| $) 165 T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) ((|#2| $) NIL T ELT)) (-2653 (($ $ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-3391 (($ $) 217 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) 90 T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-544 |#2|) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577)))) ELT)) (-3306 (((-112) $) 20 T ELT)) (-2011 (((-787) $) 30 T ELT)) (-3194 (($ (-1197 |#1|) |#2|) 54 T ELT) (($ (-1197 $) |#2|) 71 T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) 38 T ELT)) (-3180 (($ |#1| (-544 |#2|)) 78 T ELT) (($ $ |#2| (-787)) 58 T ELT) (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ |#2|) NIL T ELT)) (-2643 (((-544 |#2|) $) 205 T ELT) (((-787) $ |#2|) 206 T ELT) (((-660 (-787)) $ (-660 |#2|)) 207 T ELT)) (-4373 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-4038 (((-3 |#2| "failed") $) 177 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) 216 T ELT)) (-3365 ((|#1| $) 43 T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| |#2|) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) 39 T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 148 (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) 153 (|has| |#1| (-465)) ELT) (($ $ $) 138 (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-932)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-569)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-660 |#2|) (-660 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-660 |#2|) (-660 $)) 194 T ELT)) (-4447 (($ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) 215 T ELT)) (-3616 (((-544 |#2|) $) 201 T ELT) (((-787) $ |#2|) 196 T ELT) (((-660 (-787)) $ (-660 |#2|)) 199 T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549)))) ELT)) (-2240 ((|#1| $) 134 (|has| |#1| (-465)) ELT) (($ $ |#2|) 137 (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-3603 (((-880) $) 159 T ELT) (($ (-577)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-4198 (((-660 |#1|) $) 162 T ELT)) (-3421 ((|#1| $ (-544 |#2|)) 80 T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 87 T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) 123 (|has| |#1| (-569)) ELT)) (-2754 (($) 12 T CONST)) (-2767 (($) 14 T CONST)) (-2136 (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2949 (((-112) $ $) 106 T ELT)) (-3051 (($ $ |#1|) 132 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3031 (($ $ $) 55 T ELT)) (** (($ $ (-944)) 110 T ELT) (($ $ (-787)) 109 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1150 |#1| |#2|) (-972 |#1| (-544 |#2|) |#2|) (-1074) (-865)) (T -1150)) -NIL -(-972 |#1| (-544 |#2|) |#2|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 |#2|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2642 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2616 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2666 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2817 (((-975 |#1|) $ (-787)) NIL T ELT) (((-975 |#1|) $ (-787) (-787)) NIL T ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-787) $ |#2|) NIL T ELT) (((-787) $ |#2| (-787)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ $ (-660 |#2|) (-660 (-544 |#2|))) NIL T ELT) (($ $ |#2| (-544 |#2|)) NIL T ELT) (($ |#1| (-544 |#2|)) NIL T ELT) (($ $ |#2| (-787)) 63 T ELT) (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3716 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4129 (($ $ |#2|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3032 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1987 (($ $ (-787)) 16 T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2079 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (($ $ |#2| $) 106 T ELT) (($ $ (-660 |#2|) (-660 $)) 99 T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT)) (-3362 (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-3616 (((-544 |#2|) $) NIL T ELT)) (-3911 (((-1 (-1182 |#3|) |#3|) (-660 |#2|) (-660 (-1182 |#3|))) 87 T ELT)) (-2680 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 18 T ELT)) (-3603 (((-880) $) 198 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-174)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3421 ((|#1| $ (-544 |#2|)) NIL T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT) ((|#3| $ (-787)) 43 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2897 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 52 T CONST)) (-2767 (($) 62 T CONST)) (-2136 (($ $ (-660 |#2|) (-660 (-787))) NIL T ELT) (($ $ |#2| (-787)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) 200 (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 66 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-420 (-577))) 117 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 115 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1151 |#1| |#2| |#3|) (-13 (-756 |#1| |#2|) (-10 -8 (-15 -3421 (|#3| $ (-787))) (-15 -3603 ($ |#2|)) (-15 -3603 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3911 ((-1 (-1182 |#3|) |#3|) (-660 |#2|) (-660 (-1182 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $ |#2| |#1|)) (-15 -3032 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1074) (-865) (-972 |#1| (-544 |#2|) |#2|)) (T -1151)) -((-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *2 (-972 *4 (-544 *5) *5)) (-5 *1 (-1151 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-865)))) (-3603 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *2 (-865)) (-5 *1 (-1151 *3 *2 *4)) (-4 *4 (-972 *3 (-544 *2) *2)))) (-3603 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-972 *3 (-544 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-972 *3 (-544 *4) *4)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1182 *7))) (-4 *6 (-865)) (-4 *7 (-972 *5 (-544 *6) *6)) (-4 *5 (-1074)) (-5 *2 (-1 (-1182 *7) *7)) (-5 *1 (-1151 *5 *6 *7)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-4 *2 (-865)) (-5 *1 (-1151 *3 *2 *4)) (-4 *4 (-972 *3 (-544 *2) *2)))) (-3032 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1151 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074)) (-4 *3 (-865)) (-5 *1 (-1151 *4 *3 *5)) (-4 *5 (-972 *4 (-544 *3) *3))))) -(-13 (-756 |#1| |#2|) (-10 -8 (-15 -3421 (|#3| $ (-787))) (-15 -3603 ($ |#2|)) (-15 -3603 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3911 ((-1 (-1182 |#3|) |#3|) (-660 |#2|) (-660 (-1182 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $ |#2| |#1|)) (-15 -3032 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3489 (((-112) $ $) 7 T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) 86 T ELT)) (-1568 (((-660 $) (-660 |#4|)) 87 T ELT) (((-660 $) (-660 |#4|) (-112)) 112 T ELT)) (-3206 (((-660 |#3|) $) 34 T ELT)) (-1905 (((-112) $) 27 T ELT)) (-1421 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3924 ((|#4| |#4| $) 93 T ELT)) (-2001 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| $) 127 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-4403 (((-112) $ (-787)) 45 T ELT)) (-3730 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3790 (($) 46 T CONST)) (-4046 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) 37 T ELT)) (-2155 (($ (-660 |#4|)) 36 T ELT)) (-1663 (((-3 $ "failed") $) 83 T ELT)) (-2801 ((|#4| |#4| $) 90 T ELT)) (-3289 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3270 ((|#4| |#4| $) 88 T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) 106 T ELT)) (-2926 (((-112) |#4| $) 137 T ELT)) (-2687 (((-112) |#4| $) 134 T ELT)) (-2632 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-3692 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1940 ((|#3| $) 35 T ELT)) (-1821 (((-112) $ (-787)) 44 T ELT)) (-2434 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1365 (((-660 |#3|) $) 33 T ELT)) (-2639 (((-112) |#3| $) 32 T ELT)) (-3272 (((-112) $ (-787)) 43 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3650 (((-3 |#4| (-660 $)) |#4| |#4| $) 129 T ELT)) (-2048 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| |#4| $) 128 T ELT)) (-3942 (((-3 |#4| "failed") $) 84 T ELT)) (-3395 (((-660 $) |#4| $) 130 T ELT)) (-3343 (((-3 (-112) (-660 $)) |#4| $) 133 T ELT)) (-3422 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-4056 (((-660 $) |#4| $) 126 T ELT) (((-660 $) (-660 |#4|) $) 125 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 124 T ELT) (((-660 $) |#4| (-660 $)) 123 T ELT)) (-2346 (($ |#4| $) 118 T ELT) (($ (-660 |#4|) $) 117 T ELT)) (-3425 (((-660 |#4|) $) 108 T ELT)) (-4233 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1458 ((|#4| |#4| $) 91 T ELT)) (-2928 (((-112) $ $) 111 T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-2108 ((|#4| |#4| $) 92 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1652 (((-3 |#4| "failed") $) 85 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-1987 (($ $ |#4|) 78 T ELT) (((-660 $) |#4| $) 116 T ELT) (((-660 $) |#4| (-660 $)) 115 T ELT) (((-660 $) (-660 |#4|) $) 114 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 113 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) 39 T ELT)) (-2856 (((-112) $) 42 T ELT)) (-2693 (($) 41 T ELT)) (-3616 (((-787) $) 107 T ELT)) (-1452 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 40 T ELT)) (-2176 (((-549) $) 70 (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 61 T ELT)) (-3620 (($ $ |#3|) 29 T ELT)) (-2003 (($ $ |#3|) 31 T ELT)) (-3307 (($ $) 89 T ELT)) (-3344 (($ $ |#3|) 30 T ELT)) (-3603 (((-880) $) 12 T ELT) (((-660 |#4|) $) 38 T ELT)) (-2272 (((-787) $) 77 (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99 T ELT)) (-3575 (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) 82 T ELT)) (-4381 (((-112) |#4| $) 136 T ELT)) (-1401 (((-112) |#3| $) 81 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-787) $) 47 (|has| $ (-6 -4470)) ELT))) -(((-1152 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1152)) -NIL -(-13 (-1134 |t#1| |t#2| |t#3| |t#4|) (-800 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-800 |#1| |#2| |#3| |#4|) . T) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1134 |#1| |#2| |#3| |#4|) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) -((-2773 (((-660 |#2|) |#1|) 15 T ELT)) (-2404 (((-660 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-660 |#2|) |#1|) 61 T ELT)) (-4145 (((-660 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-660 |#2|) |#1|) 59 T ELT)) (-2442 ((|#2| |#1|) 54 T ELT)) (-4289 (((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-2789 (((-660 |#2|) |#2| |#2|) 42 T ELT) (((-660 |#2|) |#1|) 58 T ELT)) (-2658 (((-660 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-660 |#2|) |#1|) 60 T ELT)) (-4406 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-4103 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-2274 ((|#2| |#2| |#2|) 50 T ELT)) (-2568 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -2773 ((-660 |#2|) |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -4289 ((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2789 ((-660 |#2|) |#1|)) (-15 -4145 ((-660 |#2|) |#1|)) (-15 -2658 ((-660 |#2|) |#1|)) (-15 -2404 ((-660 |#2|) |#1|)) (-15 -2789 ((-660 |#2|) |#2| |#2|)) (-15 -4145 ((-660 |#2|) |#2| |#2| |#2|)) (-15 -2658 ((-660 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2404 ((-660 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2274 (|#2| |#2| |#2|)) (-15 -4103 (|#2| |#2| |#2| |#2|)) (-15 -2568 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4406 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1268 |#2|) (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (T -1153)) -((-4406 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-2568 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-4103 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-2274 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-2404 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-2658 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-4145 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-2789 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-2658 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-2789 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-4289 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-2 (|:| |solns| (-660 *5)) (|:| |maps| (-660 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1153 *3 *5)) (-4 *3 (-1268 *5)))) (-2442 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -2773 ((-660 |#2|) |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -4289 ((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2789 ((-660 |#2|) |#1|)) (-15 -4145 ((-660 |#2|) |#1|)) (-15 -2658 ((-660 |#2|) |#1|)) (-15 -2404 ((-660 |#2|) |#1|)) (-15 -2789 ((-660 |#2|) |#2| |#2|)) (-15 -4145 ((-660 |#2|) |#2| |#2| |#2|)) (-15 -2658 ((-660 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2404 ((-660 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2274 (|#2| |#2| |#2|)) (-15 -4103 (|#2| |#2| |#2| |#2|)) (-15 -2568 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4406 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-4078 (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|))))) 118 T ELT) (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201))) 117 T ELT) (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|)))) 115 T ELT) (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 113 T ELT) (((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|)))) 97 T ELT) (((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))) (-1201)) 98 T ELT) (((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|))) 92 T ELT) (((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)) (-1201)) 82 T ELT)) (-2033 (((-660 (-660 (-327 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 111 T ELT) (((-660 (-327 |#1|)) (-420 (-975 |#1|)) (-1201)) 54 T ELT)) (-3932 (((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-420 (-975 |#1|)) (-1201)) 122 T ELT) (((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201)) 121 T ELT))) -(((-1154 |#1|) (-10 -7 (-15 -4078 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4078 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)))) (-15 -4078 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -4078 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -2033 ((-660 (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -2033 ((-660 (-660 (-327 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -3932 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -3932 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-420 (-975 |#1|)) (-1201)))) (-13 (-318) (-148))) (T -1154)) -((-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-327 *5)))) (-5 *1 (-1154 *5)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-327 *5))) (-5 *1 (-1154 *5)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *4))))) (-5 *1 (-1154 *4)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-420 (-975 *5))))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *4))))) (-5 *1 (-1154 *4)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1154 *5)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1154 *5))))) -(-10 -7 (-15 -4078 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4078 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)))) (-15 -4078 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -4078 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -4078 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -2033 ((-660 (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -2033 ((-660 (-660 (-327 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -3932 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -3932 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-420 (-975 |#1|)) (-1201)))) -((-2270 (((-420 (-1197 (-327 |#1|))) (-1292 (-327 |#1|)) (-420 (-1197 (-327 |#1|))) (-577)) 36 T ELT)) (-2508 (((-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|)))) 48 T ELT))) -(((-1155 |#1|) (-10 -7 (-15 -2508 ((-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))))) (-15 -2270 ((-420 (-1197 (-327 |#1|))) (-1292 (-327 |#1|)) (-420 (-1197 (-327 |#1|))) (-577)))) (-569)) (T -1155)) -((-2270 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-420 (-1197 (-327 *5)))) (-5 *3 (-1292 (-327 *5))) (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1155 *5)))) (-2508 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-420 (-1197 (-327 *3)))) (-4 *3 (-569)) (-5 *1 (-1155 *3))))) -(-10 -7 (-15 -2508 ((-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))))) (-15 -2270 ((-420 (-1197 (-327 |#1|))) (-1292 (-327 |#1|)) (-420 (-1197 (-327 |#1|))) (-577)))) -((-2773 (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-327 |#1|))) (-660 (-1201))) 244 T ELT) (((-660 (-305 (-327 |#1|))) (-327 |#1|) (-1201)) 23 T ELT) (((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1201)) 29 T ELT) (((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|))) 28 T ELT) (((-660 (-305 (-327 |#1|))) (-327 |#1|)) 24 T ELT))) -(((-1156 |#1|) (-10 -7 (-15 -2773 ((-660 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -2773 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -2773 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1201))) (-15 -2773 ((-660 (-305 (-327 |#1|))) (-327 |#1|) (-1201))) (-15 -2773 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-327 |#1|))) (-660 (-1201))))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (T -1156)) -((-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1156 *5)) (-5 *3 (-660 (-305 (-327 *5)))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) (-5 *3 (-327 *5)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) (-5 *3 (-305 (-327 *5))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-305 (-327 *4))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-327 *4))))) -(-10 -7 (-15 -2773 ((-660 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -2773 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -2773 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1201))) (-15 -2773 ((-660 (-305 (-327 |#1|))) (-327 |#1|) (-1201))) (-15 -2773 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-327 |#1|))) (-660 (-1201))))) -((-4032 ((|#2| |#2|) 28 (|has| |#1| (-865)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25 T ELT)) (-4075 ((|#2| |#2|) 27 (|has| |#1| (-865)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22 T ELT))) -(((-1157 |#1| |#2|) (-10 -7 (-15 -4075 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4032 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-865)) (PROGN (-15 -4075 (|#2| |#2|)) (-15 -4032 (|#2| |#2|))) |%noBranch|)) (-1242) (-13 (-617 (-577) |#1|) (-10 -7 (-6 -4470) (-6 -4471)))) (T -1157)) -((-4032 (*1 *2 *2) (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471)))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471)))))) (-4032 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471)))))) (-4075 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471))))))) -(-10 -7 (-15 -4075 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4032 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-865)) (PROGN (-15 -4075 (|#2| |#2|)) (-15 -4032 (|#2| |#2|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-2760 (((-1189 3 |#1|) $) 141 T ELT)) (-2251 (((-112) $) 101 T ELT)) (-3864 (($ $ (-660 (-966 |#1|))) 44 T ELT) (($ $ (-660 (-660 |#1|))) 104 T ELT) (($ (-660 (-966 |#1|))) 103 T ELT) (((-660 (-966 |#1|)) $) 102 T ELT)) (-2399 (((-112) $) 72 T ELT)) (-2820 (($ $ (-966 |#1|)) 76 T ELT) (($ $ (-660 |#1|)) 81 T ELT) (($ $ (-787)) 83 T ELT) (($ (-966 |#1|)) 77 T ELT) (((-966 |#1|) $) 75 T ELT)) (-2746 (((-2 (|:| -4446 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787))) $) 139 T ELT)) (-2938 (((-787) $) 53 T ELT)) (-2561 (((-787) $) 52 T ELT)) (-3456 (($ $ (-787) (-966 |#1|)) 67 T ELT)) (-4185 (((-112) $) 111 T ELT)) (-2555 (($ $ (-660 (-660 (-966 |#1|))) (-660 (-173)) (-173)) 118 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-660 (-173)) (-173)) 120 T ELT) (($ $ (-660 (-660 (-966 |#1|))) (-112) (-112)) 115 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-112) (-112)) 127 T ELT) (($ (-660 (-660 (-966 |#1|)))) 116 T ELT) (($ (-660 (-660 (-966 |#1|))) (-112) (-112)) 117 T ELT) (((-660 (-660 (-966 |#1|))) $) 114 T ELT)) (-1334 (($ (-660 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-2277 (((-660 (-173)) $) 133 T ELT)) (-3189 (((-660 (-966 |#1|)) $) 130 T ELT)) (-2150 (((-660 (-660 (-173))) $) 132 T ELT)) (-4002 (((-660 (-660 (-660 (-966 |#1|)))) $) NIL T ELT)) (-1360 (((-660 (-660 (-660 (-787)))) $) 131 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2197 (((-787) $ (-660 (-966 |#1|))) 65 T ELT)) (-1508 (((-112) $) 84 T ELT)) (-3965 (($ $ (-660 (-966 |#1|))) 86 T ELT) (($ $ (-660 (-660 |#1|))) 92 T ELT) (($ (-660 (-966 |#1|))) 87 T ELT) (((-660 (-966 |#1|)) $) 85 T ELT)) (-4043 (($) 48 T ELT) (($ (-1189 3 |#1|)) 49 T ELT)) (-1914 (($ $) 63 T ELT)) (-3807 (((-660 $) $) 62 T ELT)) (-2232 (($ (-660 $)) 59 T ELT)) (-3286 (((-660 $) $) 61 T ELT)) (-3603 (((-880) $) 146 T ELT)) (-3397 (((-112) $) 94 T ELT)) (-3019 (($ $ (-660 (-966 |#1|))) 96 T ELT) (($ $ (-660 (-660 |#1|))) 99 T ELT) (($ (-660 (-966 |#1|))) 97 T ELT) (((-660 (-966 |#1|)) $) 95 T ELT)) (-2603 (($ $) 140 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1158 |#1|) (-1159 |#1|) (-1074)) (T -1158)) -NIL -(-1159 |#1|) -((-3489 (((-112) $ $) 7 T ELT)) (-2760 (((-1189 3 |#1|) $) 14 T ELT)) (-2251 (((-112) $) 30 T ELT)) (-3864 (($ $ (-660 (-966 |#1|))) 34 T ELT) (($ $ (-660 (-660 |#1|))) 33 T ELT) (($ (-660 (-966 |#1|))) 32 T ELT) (((-660 (-966 |#1|)) $) 31 T ELT)) (-2399 (((-112) $) 45 T ELT)) (-2820 (($ $ (-966 |#1|)) 50 T ELT) (($ $ (-660 |#1|)) 49 T ELT) (($ $ (-787)) 48 T ELT) (($ (-966 |#1|)) 47 T ELT) (((-966 |#1|) $) 46 T ELT)) (-2746 (((-2 (|:| -4446 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787))) $) 16 T ELT)) (-2938 (((-787) $) 59 T ELT)) (-2561 (((-787) $) 60 T ELT)) (-3456 (($ $ (-787) (-966 |#1|)) 51 T ELT)) (-4185 (((-112) $) 22 T ELT)) (-2555 (($ $ (-660 (-660 (-966 |#1|))) (-660 (-173)) (-173)) 29 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-660 (-173)) (-173)) 28 T ELT) (($ $ (-660 (-660 (-966 |#1|))) (-112) (-112)) 27 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-112) (-112)) 26 T ELT) (($ (-660 (-660 (-966 |#1|)))) 25 T ELT) (($ (-660 (-660 (-966 |#1|))) (-112) (-112)) 24 T ELT) (((-660 (-660 (-966 |#1|))) $) 23 T ELT)) (-1334 (($ (-660 $)) 58 T ELT) (($ $ $) 57 T ELT)) (-2277 (((-660 (-173)) $) 17 T ELT)) (-3189 (((-660 (-966 |#1|)) $) 21 T ELT)) (-2150 (((-660 (-660 (-173))) $) 18 T ELT)) (-4002 (((-660 (-660 (-660 (-966 |#1|)))) $) 19 T ELT)) (-1360 (((-660 (-660 (-660 (-787)))) $) 20 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-2197 (((-787) $ (-660 (-966 |#1|))) 52 T ELT)) (-1508 (((-112) $) 40 T ELT)) (-3965 (($ $ (-660 (-966 |#1|))) 44 T ELT) (($ $ (-660 (-660 |#1|))) 43 T ELT) (($ (-660 (-966 |#1|))) 42 T ELT) (((-660 (-966 |#1|)) $) 41 T ELT)) (-4043 (($) 62 T ELT) (($ (-1189 3 |#1|)) 61 T ELT)) (-1914 (($ $) 53 T ELT)) (-3807 (((-660 $) $) 54 T ELT)) (-2232 (($ (-660 $)) 56 T ELT)) (-3286 (((-660 $) $) 55 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-3397 (((-112) $) 35 T ELT)) (-3019 (($ $ (-660 (-966 |#1|))) 39 T ELT) (($ $ (-660 (-660 |#1|))) 38 T ELT) (($ (-660 (-966 |#1|))) 37 T ELT) (((-660 (-966 |#1|)) $) 36 T ELT)) (-2603 (($ $) 15 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-1159 |#1|) (-141) (-1074)) (T -1159)) -((-3603 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-880)))) (-4043 (*1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-1189 3 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1334 (*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-2232 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3286 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)))) (-3807 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)))) (-1914 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-2197 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-966 *4))) (-4 *1 (-1159 *4)) (-4 *4 (-1074)) (-5 *2 (-787)))) (-3456 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-966 *4)) (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) (-2820 (*1 *1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-2820 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-2820 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-2820 (*1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-966 *3)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3965 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3965 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3019 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3019 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3864 (*1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-2555 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-660 (-966 *5)))) (-5 *3 (-660 (-173))) (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074)))) (-2555 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-660 (-173))) (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074)))) (-2555 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) (-2555 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-112)) (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 *3)))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-2555 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) (-4 *4 (-1074)) (-4 *1 (-1159 *4)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-966 *3)))))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-660 (-787))))))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-660 (-966 *3))))))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-173)))))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-173))))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -4446 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787)))))) (-2603 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-1189 3 *3))))) -(-13 (-1125) (-10 -8 (-15 -4043 ($)) (-15 -4043 ($ (-1189 3 |t#1|))) (-15 -2561 ((-787) $)) (-15 -2938 ((-787) $)) (-15 -1334 ($ (-660 $))) (-15 -1334 ($ $ $)) (-15 -2232 ($ (-660 $))) (-15 -3286 ((-660 $) $)) (-15 -3807 ((-660 $) $)) (-15 -1914 ($ $)) (-15 -2197 ((-787) $ (-660 (-966 |t#1|)))) (-15 -3456 ($ $ (-787) (-966 |t#1|))) (-15 -2820 ($ $ (-966 |t#1|))) (-15 -2820 ($ $ (-660 |t#1|))) (-15 -2820 ($ $ (-787))) (-15 -2820 ($ (-966 |t#1|))) (-15 -2820 ((-966 |t#1|) $)) (-15 -2399 ((-112) $)) (-15 -3965 ($ $ (-660 (-966 |t#1|)))) (-15 -3965 ($ $ (-660 (-660 |t#1|)))) (-15 -3965 ($ (-660 (-966 |t#1|)))) (-15 -3965 ((-660 (-966 |t#1|)) $)) (-15 -1508 ((-112) $)) (-15 -3019 ($ $ (-660 (-966 |t#1|)))) (-15 -3019 ($ $ (-660 (-660 |t#1|)))) (-15 -3019 ($ (-660 (-966 |t#1|)))) (-15 -3019 ((-660 (-966 |t#1|)) $)) (-15 -3397 ((-112) $)) (-15 -3864 ($ $ (-660 (-966 |t#1|)))) (-15 -3864 ($ $ (-660 (-660 |t#1|)))) (-15 -3864 ($ (-660 (-966 |t#1|)))) (-15 -3864 ((-660 (-966 |t#1|)) $)) (-15 -2251 ((-112) $)) (-15 -2555 ($ $ (-660 (-660 (-966 |t#1|))) (-660 (-173)) (-173))) (-15 -2555 ($ $ (-660 (-660 (-660 |t#1|))) (-660 (-173)) (-173))) (-15 -2555 ($ $ (-660 (-660 (-966 |t#1|))) (-112) (-112))) (-15 -2555 ($ $ (-660 (-660 (-660 |t#1|))) (-112) (-112))) (-15 -2555 ($ (-660 (-660 (-966 |t#1|))))) (-15 -2555 ($ (-660 (-660 (-966 |t#1|))) (-112) (-112))) (-15 -2555 ((-660 (-660 (-966 |t#1|))) $)) (-15 -4185 ((-112) $)) (-15 -3189 ((-660 (-966 |t#1|)) $)) (-15 -1360 ((-660 (-660 (-660 (-787)))) $)) (-15 -4002 ((-660 (-660 (-660 (-966 |t#1|)))) $)) (-15 -2150 ((-660 (-660 (-173))) $)) (-15 -2277 ((-660 (-173)) $)) (-15 -2746 ((-2 (|:| -4446 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787))) $)) (-15 -2603 ($ $)) (-15 -2760 ((-1189 3 |t#1|) $)) (-15 -3603 ((-880) $)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 184 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) 7 T ELT)) (-2739 (((-112) $ (|[\|\|]| (-537))) 19 T ELT) (((-112) $ (|[\|\|]| (-221))) 23 T ELT) (((-112) $ (|[\|\|]| (-692))) 27 T ELT) (((-112) $ (|[\|\|]| (-1302))) 31 T ELT) (((-112) $ (|[\|\|]| (-139))) 35 T ELT) (((-112) $ (|[\|\|]| (-619))) 39 T ELT) (((-112) $ (|[\|\|]| (-134))) 43 T ELT) (((-112) $ (|[\|\|]| (-1140))) 47 T ELT) (((-112) $ (|[\|\|]| (-96))) 51 T ELT) (((-112) $ (|[\|\|]| (-697))) 55 T ELT) (((-112) $ (|[\|\|]| (-530))) 59 T ELT) (((-112) $ (|[\|\|]| (-1091))) 63 T ELT) (((-112) $ (|[\|\|]| (-1303))) 67 T ELT) (((-112) $ (|[\|\|]| (-538))) 71 T ELT) (((-112) $ (|[\|\|]| (-1176))) 75 T ELT) (((-112) $ (|[\|\|]| (-155))) 79 T ELT) (((-112) $ (|[\|\|]| (-687))) 83 T ELT) (((-112) $ (|[\|\|]| (-322))) 87 T ELT) (((-112) $ (|[\|\|]| (-1061))) 91 T ELT) (((-112) $ (|[\|\|]| (-182))) 95 T ELT) (((-112) $ (|[\|\|]| (-995))) 99 T ELT) (((-112) $ (|[\|\|]| (-1098))) 103 T ELT) (((-112) $ (|[\|\|]| (-1115))) 107 T ELT) (((-112) $ (|[\|\|]| (-1121))) 111 T ELT) (((-112) $ (|[\|\|]| (-639))) 115 T ELT) (((-112) $ (|[\|\|]| (-1191))) 119 T ELT) (((-112) $ (|[\|\|]| (-157))) 123 T ELT) (((-112) $ (|[\|\|]| (-138))) 127 T ELT) (((-112) $ (|[\|\|]| (-491))) 131 T ELT) (((-112) $ (|[\|\|]| (-605))) 135 T ELT) (((-112) $ (|[\|\|]| (-519))) 139 T ELT) (((-112) $ (|[\|\|]| (-1183))) 143 T ELT) (((-112) $ (|[\|\|]| (-577))) 147 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1964 (((-537) $) 20 T ELT) (((-221) $) 24 T ELT) (((-692) $) 28 T ELT) (((-1302) $) 32 T ELT) (((-139) $) 36 T ELT) (((-619) $) 40 T ELT) (((-134) $) 44 T ELT) (((-1140) $) 48 T ELT) (((-96) $) 52 T ELT) (((-697) $) 56 T ELT) (((-530) $) 60 T ELT) (((-1091) $) 64 T ELT) (((-1303) $) 68 T ELT) (((-538) $) 72 T ELT) (((-1176) $) 76 T ELT) (((-155) $) 80 T ELT) (((-687) $) 84 T ELT) (((-322) $) 88 T ELT) (((-1061) $) 92 T ELT) (((-182) $) 96 T ELT) (((-995) $) 100 T ELT) (((-1098) $) 104 T ELT) (((-1115) $) 108 T ELT) (((-1121) $) 112 T ELT) (((-639) $) 116 T ELT) (((-1191) $) 120 T ELT) (((-157) $) 124 T ELT) (((-138) $) 128 T ELT) (((-491) $) 132 T ELT) (((-605) $) 136 T ELT) (((-519) $) 140 T ELT) (((-1183) $) 144 T ELT) (((-577) $) 148 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1160) (-1162)) (T -1160)) -NIL -(-1162) -((-4364 (((-660 (-1206)) (-1183)) 9 T ELT))) -(((-1161) (-10 -7 (-15 -4364 ((-660 (-1206)) (-1183))))) (T -1161)) -((-4364 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-1161))))) -(-10 -7 (-15 -4364 ((-660 (-1206)) (-1183)))) -((-3489 (((-112) $ $) 7 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-1206)) 17 T ELT) (((-1206) $) 16 T ELT)) (-2739 (((-112) $ (|[\|\|]| (-537))) 85 T ELT) (((-112) $ (|[\|\|]| (-221))) 83 T ELT) (((-112) $ (|[\|\|]| (-692))) 81 T ELT) (((-112) $ (|[\|\|]| (-1302))) 79 T ELT) (((-112) $ (|[\|\|]| (-139))) 77 T ELT) (((-112) $ (|[\|\|]| (-619))) 75 T ELT) (((-112) $ (|[\|\|]| (-134))) 73 T ELT) (((-112) $ (|[\|\|]| (-1140))) 71 T ELT) (((-112) $ (|[\|\|]| (-96))) 69 T ELT) (((-112) $ (|[\|\|]| (-697))) 67 T ELT) (((-112) $ (|[\|\|]| (-530))) 65 T ELT) (((-112) $ (|[\|\|]| (-1091))) 63 T ELT) (((-112) $ (|[\|\|]| (-1303))) 61 T ELT) (((-112) $ (|[\|\|]| (-538))) 59 T ELT) (((-112) $ (|[\|\|]| (-1176))) 57 T ELT) (((-112) $ (|[\|\|]| (-155))) 55 T ELT) (((-112) $ (|[\|\|]| (-687))) 53 T ELT) (((-112) $ (|[\|\|]| (-322))) 51 T ELT) (((-112) $ (|[\|\|]| (-1061))) 49 T ELT) (((-112) $ (|[\|\|]| (-182))) 47 T ELT) (((-112) $ (|[\|\|]| (-995))) 45 T ELT) (((-112) $ (|[\|\|]| (-1098))) 43 T ELT) (((-112) $ (|[\|\|]| (-1115))) 41 T ELT) (((-112) $ (|[\|\|]| (-1121))) 39 T ELT) (((-112) $ (|[\|\|]| (-639))) 37 T ELT) (((-112) $ (|[\|\|]| (-1191))) 35 T ELT) (((-112) $ (|[\|\|]| (-157))) 33 T ELT) (((-112) $ (|[\|\|]| (-138))) 31 T ELT) (((-112) $ (|[\|\|]| (-491))) 29 T ELT) (((-112) $ (|[\|\|]| (-605))) 27 T ELT) (((-112) $ (|[\|\|]| (-519))) 25 T ELT) (((-112) $ (|[\|\|]| (-1183))) 23 T ELT) (((-112) $ (|[\|\|]| (-577))) 21 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-1964 (((-537) $) 84 T ELT) (((-221) $) 82 T ELT) (((-692) $) 80 T ELT) (((-1302) $) 78 T ELT) (((-139) $) 76 T ELT) (((-619) $) 74 T ELT) (((-134) $) 72 T ELT) (((-1140) $) 70 T ELT) (((-96) $) 68 T ELT) (((-697) $) 66 T ELT) (((-530) $) 64 T ELT) (((-1091) $) 62 T ELT) (((-1303) $) 60 T ELT) (((-538) $) 58 T ELT) (((-1176) $) 56 T ELT) (((-155) $) 54 T ELT) (((-687) $) 52 T ELT) (((-322) $) 50 T ELT) (((-1061) $) 48 T ELT) (((-182) $) 46 T ELT) (((-995) $) 44 T ELT) (((-1098) $) 42 T ELT) (((-1115) $) 40 T ELT) (((-1121) $) 38 T ELT) (((-639) $) 36 T ELT) (((-1191) $) 34 T ELT) (((-157) $) 32 T ELT) (((-138) $) 30 T ELT) (((-491) $) 28 T ELT) (((-605) $) 26 T ELT) (((-519) $) 24 T ELT) (((-1183) $) 22 T ELT) (((-577) $) 20 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-1162) (-141)) (T -1162)) -((-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-537)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-221)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-692)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1302))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1302)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-139)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-619)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-134)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1140)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-96)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-697)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-530)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1091)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1303))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1303)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-538)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1176)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-155)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-687)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-322)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1061)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-182)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-995))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-995)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1098)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1115)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1121)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-639)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1191)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-157)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-138)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-491)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-605)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-519)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1183)))) (-2739 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-577))))) -(-13 (-1108) (-1287) (-10 -8 (-15 -2739 ((-112) $ (|[\|\|]| (-537)))) (-15 -1964 ((-537) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-221)))) (-15 -1964 ((-221) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-692)))) (-15 -1964 ((-692) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1302)))) (-15 -1964 ((-1302) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-139)))) (-15 -1964 ((-139) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-619)))) (-15 -1964 ((-619) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-134)))) (-15 -1964 ((-134) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1140)))) (-15 -1964 ((-1140) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-96)))) (-15 -1964 ((-96) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-697)))) (-15 -1964 ((-697) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-530)))) (-15 -1964 ((-530) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1091)))) (-15 -1964 ((-1091) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1303)))) (-15 -1964 ((-1303) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-538)))) (-15 -1964 ((-538) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1176)))) (-15 -1964 ((-1176) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-155)))) (-15 -1964 ((-155) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-687)))) (-15 -1964 ((-687) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-322)))) (-15 -1964 ((-322) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1061)))) (-15 -1964 ((-1061) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-182)))) (-15 -1964 ((-182) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-995)))) (-15 -1964 ((-995) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1098)))) (-15 -1964 ((-1098) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1115)))) (-15 -1964 ((-1115) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1121)))) (-15 -1964 ((-1121) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-639)))) (-15 -1964 ((-639) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1191)))) (-15 -1964 ((-1191) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-157)))) (-15 -1964 ((-157) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-138)))) (-15 -1964 ((-138) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-491)))) (-15 -1964 ((-491) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-605)))) (-15 -1964 ((-605) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-519)))) (-15 -1964 ((-519) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-1183)))) (-15 -1964 ((-1183) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-577)))) (-15 -1964 ((-577) $)))) -(((-93) . T) ((-102) . T) ((-629 #0=(-1206)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1108) . T) ((-1242) . T) ((-1287) . T)) -((-2478 (((-1297) (-660 (-880))) 22 T ELT) (((-1297) (-880)) 21 T ELT)) (-2747 (((-1297) (-660 (-880))) 20 T ELT) (((-1297) (-880)) 19 T ELT)) (-3794 (((-1297) (-660 (-880))) 18 T ELT) (((-1297) (-880)) 10 T ELT) (((-1297) (-1183) (-880)) 16 T ELT))) -(((-1163) (-10 -7 (-15 -3794 ((-1297) (-1183) (-880))) (-15 -3794 ((-1297) (-880))) (-15 -2747 ((-1297) (-880))) (-15 -2478 ((-1297) (-880))) (-15 -3794 ((-1297) (-660 (-880)))) (-15 -2747 ((-1297) (-660 (-880)))) (-15 -2478 ((-1297) (-660 (-880)))))) (T -1163)) -((-2478 (*1 *2 *3) (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163))))) -(-10 -7 (-15 -3794 ((-1297) (-1183) (-880))) (-15 -3794 ((-1297) (-880))) (-15 -2747 ((-1297) (-880))) (-15 -2478 ((-1297) (-880))) (-15 -3794 ((-1297) (-660 (-880)))) (-15 -2747 ((-1297) (-660 (-880)))) (-15 -2478 ((-1297) (-660 (-880))))) -((-3512 (($ $ $) 10 T ELT)) (-1666 (($ $) 9 T ELT)) (-2920 (($ $ $) 13 T ELT)) (-3241 (($ $ $) 15 T ELT)) (-4291 (($ $ $) 12 T ELT)) (-1586 (($ $ $) 14 T ELT)) (-3691 (($ $) 17 T ELT)) (-1888 (($ $) 16 T ELT)) (-4318 (($ $) 6 T ELT)) (-2345 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3072 (($ $ $) 8 T ELT))) -(((-1164) (-141)) (T -1164)) -((-3691 (*1 *1 *1) (-4 *1 (-1164))) (-1888 (*1 *1 *1) (-4 *1 (-1164))) (-3241 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1586 (*1 *1 *1 *1) (-4 *1 (-1164))) (-2920 (*1 *1 *1 *1) (-4 *1 (-1164))) (-4291 (*1 *1 *1 *1) (-4 *1 (-1164))) (-2345 (*1 *1 *1 *1) (-4 *1 (-1164))) (-3512 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1666 (*1 *1 *1) (-4 *1 (-1164))) (-3072 (*1 *1 *1 *1) (-4 *1 (-1164))) (-2345 (*1 *1 *1) (-4 *1 (-1164))) (-4318 (*1 *1 *1) (-4 *1 (-1164)))) -(-13 (-10 -8 (-15 -4318 ($ $)) (-15 -2345 ($ $)) (-15 -3072 ($ $ $)) (-15 -1666 ($ $)) (-15 -3512 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -4291 ($ $ $)) (-15 -2920 ($ $ $)) (-15 -1586 ($ $ $)) (-15 -3241 ($ $ $)) (-15 -1888 ($ $)) (-15 -3691 ($ $)))) -((-3489 (((-112) $ $) 44 T ELT)) (-3145 ((|#1| $) 17 T ELT)) (-3493 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39 T ELT)) (-1775 (((-112) $) 19 T ELT)) (-2000 (($ $ |#1|) 30 T ELT)) (-1623 (($ $ (-112)) 32 T ELT)) (-1759 (($ $) 33 T ELT)) (-3390 (($ $ |#2|) 31 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1984 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2856 (((-112) $) 16 T ELT)) (-2693 (($) 13 T ELT)) (-1914 (($ $) 29 T ELT)) (-3614 (($ |#1| |#2| (-112)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -2002 |#2|))) 23 T ELT) (((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -2002 |#2|)))) 26 T ELT) (((-660 $) |#1| (-660 |#2|)) 28 T ELT)) (-3219 ((|#2| $) 18 T ELT)) (-3603 (((-880) $) 53 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 42 T ELT))) -(((-1165 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -2693 ($)) (-15 -2856 ((-112) $)) (-15 -3145 (|#1| $)) (-15 -3219 (|#2| $)) (-15 -1775 ((-112) $)) (-15 -3614 ($ |#1| |#2| (-112))) (-15 -3614 ($ |#1| |#2|)) (-15 -3614 ($ (-2 (|:| |val| |#1|) (|:| -2002 |#2|)))) (-15 -3614 ((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -2002 |#2|))))) (-15 -3614 ((-660 $) |#1| (-660 |#2|))) (-15 -1914 ($ $)) (-15 -2000 ($ $ |#1|)) (-15 -3390 ($ $ |#2|)) (-15 -1623 ($ $ (-112))) (-15 -1759 ($ $)) (-15 -1984 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3493 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1125) (-34)) (-13 (-1125) (-34))) (T -1165)) -((-2693 (*1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-3145 (*1 *2 *1) (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *2 *3)) (-4 *3 (-13 (-1125) (-34))))) (-3219 (*1 *2 *1) (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *3 *2)) (-4 *3 (-13 (-1125) (-34))))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-3614 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3614 (*1 *1 *2 *3) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2002 *4))) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1165 *3 *4)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |val| *4) (|:| -2002 *5)))) (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-660 (-1165 *4 *5))) (-5 *1 (-1165 *4 *5)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *5)) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-660 (-1165 *3 *5))) (-5 *1 (-1165 *3 *5)) (-4 *3 (-13 (-1125) (-34))))) (-1914 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-2000 (*1 *1 *1 *2) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3390 (*1 *1 *1 *2) (-12 (-5 *1 (-1165 *3 *2)) (-4 *3 (-13 (-1125) (-34))) (-4 *2 (-13 (-1125) (-34))))) (-1623 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-1759 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-1984 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1165 *5 *6)))) (-3493 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34)))))) -(-13 (-1125) (-10 -8 (-15 -2693 ($)) (-15 -2856 ((-112) $)) (-15 -3145 (|#1| $)) (-15 -3219 (|#2| $)) (-15 -1775 ((-112) $)) (-15 -3614 ($ |#1| |#2| (-112))) (-15 -3614 ($ |#1| |#2|)) (-15 -3614 ($ (-2 (|:| |val| |#1|) (|:| -2002 |#2|)))) (-15 -3614 ((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -2002 |#2|))))) (-15 -3614 ((-660 $) |#1| (-660 |#2|))) (-15 -1914 ($ $)) (-15 -2000 ($ $ |#1|)) (-15 -3390 ($ $ |#2|)) (-15 -1623 ($ $ (-112))) (-15 -1759 ($ $)) (-15 -1984 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3493 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-3489 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-102)) ELT)) (-3145 (((-1165 |#1| |#2|) $) 27 T ELT)) (-3275 (($ $) 91 T ELT)) (-1858 (((-112) (-1165 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100 T ELT)) (-1476 (($ $ $ (-660 (-1165 |#1| |#2|))) 108 T ELT) (($ $ $ (-660 (-1165 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3211 (((-1165 |#1| |#2|) $ (-1165 |#1| |#2|)) 46 (|has| $ (-6 -4471)) ELT)) (-1895 (((-1165 |#1| |#2|) $ "value" (-1165 |#1| |#2|)) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 44 (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-3760 (((-660 (-2 (|:| |val| |#1|) (|:| -2002 |#2|))) $) 95 T ELT)) (-3266 (($ (-1165 |#1| |#2|) $) 42 T ELT)) (-3920 (($ (-1165 |#1| |#2|) $) 34 T ELT)) (-3692 (((-660 (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 54 T ELT)) (-1627 (((-112) (-1165 |#1| |#2|) $) 97 T ELT)) (-2725 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-1125)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 (-1165 |#1| |#2|)) $) 58 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-1165 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-1165 |#1| |#2|) (-1125))) ELT)) (-2826 (($ (-1 (-1165 |#1| |#2|) (-1165 |#1| |#2|)) $) 50 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-1165 |#1| |#2|) (-1165 |#1| |#2|)) $) 49 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2935 (((-660 (-1165 |#1| |#2|)) $) 56 T ELT)) (-2284 (((-112) $) 45 T ELT)) (-2045 (((-1183) $) NIL (|has| (-1165 |#1| |#2|) (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| (-1165 |#1| |#2|) (-1125)) ELT)) (-3170 (((-3 $ "failed") $) 89 T ELT)) (-2659 (((-112) (-1 (-112) (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-1165 |#1| |#2|)))) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125))) ELT) (($ $ (-305 (-1165 |#1| |#2|))) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125))) ELT) (($ $ (-1165 |#1| |#2|) (-1165 |#1| |#2|)) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125))) ELT) (($ $ (-660 (-1165 |#1| |#2|)) (-660 (-1165 |#1| |#2|))) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125))) ELT)) (-3007 (((-112) $ $) 53 T ELT)) (-2856 (((-112) $) 24 T ELT)) (-2693 (($) 26 T ELT)) (-2837 (((-1165 |#1| |#2|) $ "value") NIL T ELT)) (-3190 (((-577) $ $) NIL T ELT)) (-3834 (((-112) $) 47 T ELT)) (-1452 (((-787) (-1 (-112) (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-1165 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-1165 |#1| |#2|) (-1125))) ELT)) (-1914 (($ $) 52 T ELT)) (-3614 (($ (-1165 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-660 $)) 13 T ELT) (($ |#1| |#2| (-660 (-1165 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-660 |#2|)) 18 T ELT)) (-2479 (((-660 |#2|) $) 96 T ELT)) (-3603 (((-880) $) 87 (|has| (-1165 |#1| |#2|) (-626 (-880))) ELT)) (-2333 (((-660 $) $) 31 T ELT)) (-1444 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-102)) ELT)) (-2285 (((-112) (-1 (-112) (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 70 (|has| (-1165 |#1| |#2|) (-102)) ELT)) (-3501 (((-787) $) 64 (|has| $ (-6 -4470)) ELT))) -(((-1166 |#1| |#2|) (-13 (-1035 (-1165 |#1| |#2|)) (-10 -8 (-6 -4471) (-6 -4470) (-15 -3170 ((-3 $ "failed") $)) (-15 -3275 ($ $)) (-15 -3614 ($ (-1165 |#1| |#2|))) (-15 -3614 ($ |#1| |#2| (-660 $))) (-15 -3614 ($ |#1| |#2| (-660 (-1165 |#1| |#2|)))) (-15 -3614 ($ |#1| |#2| |#1| (-660 |#2|))) (-15 -2479 ((-660 |#2|) $)) (-15 -3760 ((-660 (-2 (|:| |val| |#1|) (|:| -2002 |#2|))) $)) (-15 -1627 ((-112) (-1165 |#1| |#2|) $)) (-15 -1858 ((-112) (-1165 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3920 ($ (-1165 |#1| |#2|) $)) (-15 -3266 ($ (-1165 |#1| |#2|) $)) (-15 -1476 ($ $ $ (-660 (-1165 |#1| |#2|)))) (-15 -1476 ($ $ $ (-660 (-1165 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1125) (-34)) (-13 (-1125) (-34))) (T -1166)) -((-3170 (*1 *1 *1) (|partial| -12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3275 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-3614 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-660 (-1166 *2 *3))) (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3614 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-660 (-1165 *2 *3))) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))) (-5 *1 (-1166 *2 *3)))) (-3614 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-13 (-1125) (-34))) (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-660 *4)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) (-5 *1 (-1166 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-1627 (*1 *2 *3 *1) (-12 (-5 *3 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1166 *4 *5)))) (-1858 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1165 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1166 *5 *6)))) (-3920 (*1 *1 *2 *1) (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-3266 (*1 *1 *2 *1) (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-1476 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-660 (-1165 *3 *4))) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-1476 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1165 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) (-5 *1 (-1166 *4 *5))))) -(-13 (-1035 (-1165 |#1| |#2|)) (-10 -8 (-6 -4471) (-6 -4470) (-15 -3170 ((-3 $ "failed") $)) (-15 -3275 ($ $)) (-15 -3614 ($ (-1165 |#1| |#2|))) (-15 -3614 ($ |#1| |#2| (-660 $))) (-15 -3614 ($ |#1| |#2| (-660 (-1165 |#1| |#2|)))) (-15 -3614 ($ |#1| |#2| |#1| (-660 |#2|))) (-15 -2479 ((-660 |#2|) $)) (-15 -3760 ((-660 (-2 (|:| |val| |#1|) (|:| -2002 |#2|))) $)) (-15 -1627 ((-112) (-1165 |#1| |#2|) $)) (-15 -1858 ((-112) (-1165 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3920 ($ (-1165 |#1| |#2|) $)) (-15 -3266 ($ (-1165 |#1| |#2|) $)) (-15 -1476 ($ $ $ (-660 (-1165 |#1| |#2|)))) (-15 -1476 ($ $ $ (-660 (-1165 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2660 (($ $) NIL T ELT)) (-2219 ((|#2| $) NIL T ELT)) (-3755 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3208 (($ (-705 |#2|)) 56 T ELT)) (-2010 (((-112) $) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1390 (($ |#2|) 14 T ELT)) (-3790 (($) NIL T CONST)) (-1863 (($ $) 69 (|has| |#2| (-318)) ELT)) (-1578 (((-246 |#1| |#2|) $ (-577)) 42 T ELT)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) 83 T ELT)) (-3503 (((-787) $) 71 (|has| |#2| (-569)) ELT)) (-2759 ((|#2| $ (-577) (-577)) NIL T ELT)) (-3692 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-3225 (((-787) $) 73 (|has| |#2| (-569)) ELT)) (-1404 (((-660 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-569)) ELT)) (-4022 (((-787) $) NIL T ELT)) (-4223 (($ |#2|) 25 T ELT)) (-4033 (((-787) $) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-3979 ((|#2| $) 67 (|has| |#2| (-6 (-4472 "*"))) ELT)) (-4250 (((-577) $) NIL T ELT)) (-2952 (((-577) $) NIL T ELT)) (-2434 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-1484 (((-577) $) NIL T ELT)) (-3329 (((-577) $) NIL T ELT)) (-4307 (($ (-660 (-660 |#2|))) 37 T ELT)) (-2826 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2347 (((-660 (-660 |#2|)) $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3564 (((-3 $ "failed") $) 80 (|has| |#2| (-375)) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2659 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) ((|#2| $ (-577) (-577)) NIL T ELT)) (-3362 (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-3294 ((|#2| $) NIL T ELT)) (-3937 (($ (-660 |#2|)) 50 T ELT)) (-3534 (((-112) $) NIL T ELT)) (-2080 (((-246 |#1| |#2|) $) NIL T ELT)) (-2534 ((|#2| $) 65 (|has| |#2| (-6 (-4472 "*"))) ELT)) (-1452 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) 89 (|has| |#2| (-627 (-549))) ELT)) (-2859 (((-246 |#1| |#2|) $ (-577)) 44 T ELT)) (-3603 (((-880) $) 47 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (((-705 |#2|) $) 52 T ELT)) (-1920 (((-787)) 23 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2230 (((-112) $) NIL T ELT)) (-2754 (($) 16 T CONST)) (-2767 (($) 21 T CONST)) (-2136 (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-787)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 63 T ELT) (($ $ (-577)) 82 (|has| |#2| (-375)) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1167 |#1| |#2|) (-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-10 -8 (-15 -4223 ($ |#2|)) (-15 -2660 ($ $)) (-15 -3208 ($ (-705 |#2|))) (IF (|has| |#2| (-6 (-4472 "*"))) (-6 -4459) |%noBranch|) (IF (|has| |#2| (-6 (-4472 "*"))) (IF (|has| |#2| (-6 -4467)) (-6 -4467) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) (-787) (-1074)) (T -1167)) -((-4223 (*1 *1 *2) (-12 (-5 *1 (-1167 *3 *2)) (-14 *3 (-787)) (-4 *2 (-1074)))) (-2660 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-787)) (-4 *3 (-1074)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-705 *4)) (-4 *4 (-1074)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-787))))) -(-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-10 -8 (-15 -4223 ($ |#2|)) (-15 -2660 ($ $)) (-15 -3208 ($ (-705 |#2|))) (IF (|has| |#2| (-6 (-4472 "*"))) (-6 -4459) |%noBranch|) (IF (|has| |#2| (-6 (-4472 "*"))) (IF (|has| |#2| (-6 -4467)) (-6 -4467) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) -((-1345 (($ $) 19 T ELT)) (-1480 (($ $ (-145)) 10 T ELT) (($ $ (-142)) 14 T ELT)) (-3432 (((-112) $ $) 24 T ELT)) (-2976 (($ $) 17 T ELT)) (-2837 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT) (($ $ $) 31 T ELT)) (-3603 (($ (-145)) 29 T ELT) (((-880) $) NIL T ELT))) -(((-1168 |#1|) (-10 -8 (-15 -3603 ((-880) |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -1480 (|#1| |#1| (-142))) (-15 -1480 (|#1| |#1| (-145))) (-15 -3603 (|#1| (-145))) (-15 -3432 ((-112) |#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -2837 ((-145) |#1| (-577))) (-15 -2837 ((-145) |#1| (-577) (-145)))) (-1169)) (T -1168)) -NIL -(-10 -8 (-15 -3603 ((-880) |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -1480 (|#1| |#1| (-142))) (-15 -1480 (|#1| |#1| (-145))) (-15 -3603 (|#1| (-145))) (-15 -3432 ((-112) |#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -2837 ((-145) |#1| (-577))) (-15 -2837 ((-145) |#1| (-577) (-145)))) -((-3489 (((-112) $ $) 20 (|has| (-145) (-102)) ELT)) (-2628 (($ $) 123 T ELT)) (-1345 (($ $) 124 T ELT)) (-1480 (($ $ (-145)) 111 T ELT) (($ $ (-142)) 110 T ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-3407 (((-112) $ $) 121 T ELT)) (-3389 (((-112) $ $ (-577)) 120 T ELT)) (-3333 (((-660 $) $ (-145)) 113 T ELT) (((-660 $) $ (-142)) 112 T ELT)) (-4438 (((-112) (-1 (-112) (-145) (-145)) $) 101 T ELT) (((-112) $) 95 (|has| (-145) (-865)) ELT)) (-3246 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4471)) ELT) (($ $) 91 (-12 (|has| (-145) (-865)) (|has| $ (-6 -4471))) ELT)) (-2312 (($ (-1 (-112) (-145) (-145)) $) 102 T ELT) (($ $) 96 (|has| (-145) (-865)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 (((-145) $ (-577) (-145)) 53 (|has| $ (-6 -4471)) ELT) (((-145) $ (-1259 (-577)) (-145)) 60 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-1541 (($ $ (-145)) 107 T ELT) (($ $ (-142)) 106 T ELT)) (-1932 (($ $) 93 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 103 T ELT)) (-3946 (($ $ (-1259 (-577)) $) 117 T ELT)) (-3289 (($ $) 80 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ (-145) $) 79 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4470)) ELT)) (-2498 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4470)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4470)) ELT)) (-2840 (((-145) $ (-577) (-145)) 54 (|has| $ (-6 -4471)) ELT)) (-2759 (((-145) $ (-577)) 52 T ELT)) (-3432 (((-112) $ $) 122 T ELT)) (-3728 (((-577) (-1 (-112) (-145)) $) 100 T ELT) (((-577) (-145) $) 99 (|has| (-145) (-1125)) ELT) (((-577) (-145) $ (-577)) 98 (|has| (-145) (-1125)) ELT) (((-577) $ $ (-577)) 116 T ELT) (((-577) (-142) $ (-577)) 115 T ELT)) (-3692 (((-660 (-145)) $) 31 (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) (-145)) 70 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 85 (|has| (-145) (-865)) ELT)) (-1334 (($ (-1 (-112) (-145) (-145)) $ $) 104 T ELT) (($ $ $) 97 (|has| (-145) (-865)) ELT)) (-2434 (((-660 (-145)) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 86 (|has| (-145) (-865)) ELT)) (-1958 (((-112) $ $ (-145)) 118 T ELT)) (-2494 (((-787) $ $ (-145)) 119 T ELT)) (-2826 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-145) (-145)) $) 36 T ELT) (($ (-1 (-145) (-145) (-145)) $ $) 65 T ELT)) (-3107 (($ $) 125 T ELT)) (-2976 (($ $) 126 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-1552 (($ $ (-145)) 109 T ELT) (($ $ (-142)) 108 T ELT)) (-2045 (((-1183) $) 23 (|has| (-145) (-1125)) ELT)) (-2218 (($ (-145) $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| (-145) (-1125)) ELT)) (-1652 (((-145) $) 43 (|has| (-577) (-865)) ELT)) (-2153 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73 T ELT)) (-2529 (($ $ (-145)) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-145)))) 27 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-305 (-145))) 26 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-660 (-145)) (-660 (-145))) 24 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-3908 (((-660 (-145)) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 (((-145) $ (-577) (-145)) 51 T ELT) (((-145) $ (-577)) 50 T ELT) (($ $ (-1259 (-577))) 71 T ELT) (($ $ $) 105 T ELT)) (-3490 (($ $ (-577)) 64 T ELT) (($ $ (-1259 (-577))) 63 T ELT)) (-1452 (((-787) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) (-145) $) 29 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))) ELT)) (-2875 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 81 (|has| (-145) (-627 (-549))) ELT)) (-3614 (($ (-660 (-145))) 72 T ELT)) (-1685 (($ $ (-145)) 69 T ELT) (($ (-145) $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-660 $)) 66 T ELT)) (-3603 (($ (-145)) 114 T ELT) (((-880) $) 18 (|has| (-145) (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| (-145) (-102)) ELT)) (-2285 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) 87 (|has| (-145) (-865)) ELT)) (-2978 (((-112) $ $) 89 (|has| (-145) (-865)) ELT)) (-2949 (((-112) $ $) 19 (|has| (-145) (-102)) ELT)) (-2988 (((-112) $ $) 88 (|has| (-145) (-865)) ELT)) (-2971 (((-112) $ $) 90 (|has| (-145) (-865)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2841 ((|#1| $) 45 T ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-2305 (($) 7 T CONST)) (-1839 ((|#1| |#1| $) 47 T ELT)) (-2268 ((|#1| $) 46 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 40 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3205 ((|#1| $) 42 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2105 (((-792) $) 44 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) 43 T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1151 |#1|) (-141) (-1247)) (T -1151)) +((-1839 (*1 *2 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-2841 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4499) (-15 -1839 (|t#1| |t#1| $)) (-15 -2268 (|t#1| $)) (-15 -2841 (|t#1| $)) (-15 -2105 ((-792) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-2318 ((|#3| $) 87 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 50 T ELT)) (-3783 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) 84 T ELT) (((-710 |#3|) (-710 $)) 76 T ELT)) (-3641 (($ $ (-1 |#3| |#3|) (-792)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-1566 ((|#3| $) 89 T ELT)) (-4293 ((|#4| $) 43 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 24 T ELT) (($ $ (-577)) 95 T ELT))) +(((-1152 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -1566 (|#3| |#1|)) (-15 -2318 (|#3| |#1|)) (-15 -4293 (|#4| |#1|)) (-15 -3187 ((-710 |#3|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3709 (|#1| |#3|)) (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3783 (|#3| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -3709 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -3709 ((-885) |#1|))) (-1153 |#2| |#3| |#4| |#5|) (-792) (-1079) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1152)) +NIL +(-10 -8 (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -1566 (|#3| |#1|)) (-15 -2318 (|#3| |#1|)) (-15 -4293 (|#4| |#1|)) (-15 -3187 ((-710 |#3|) (-710 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -3187 ((-710 (-577)) (-710 |#1|))) (-15 -3709 (|#1| |#3|)) (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3783 (|#3| |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3641 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -3709 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2318 ((|#2| $) 80 T ELT)) (-4140 (((-112) $) 124 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2671 (((-112) $) 122 T ELT)) (-1777 (((-112) $ (-792)) 114 T ELT)) (-4316 (($ |#2|) 83 T ELT)) (-2305 (($) 18 T CONST)) (-3280 (($ $) 141 (|has| |#2| (-318)) ELT)) (-4448 ((|#3| $ (-577)) 136 T ELT)) (-4335 (((-3 (-577) "failed") $) 99 (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 96 (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) 93 T ELT)) (-3783 (((-577) $) 98 (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) 95 (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) 94 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 89 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 88 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 87 T ELT) (((-710 |#2|) (-710 $)) 86 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1641 (((-792) $) 142 (|has| |#2| (-569)) ELT)) (-4353 ((|#2| $ (-577) (-577)) 134 T ELT)) (-2118 (((-665 |#2|) $) 107 (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-3480 (((-792) $) 143 (|has| |#2| (-569)) ELT)) (-4202 (((-665 |#4|) $) 144 (|has| |#2| (-569)) ELT)) (-2408 (((-792) $) 130 T ELT)) (-2420 (((-792) $) 131 T ELT)) (-3862 (((-112) $ (-792)) 115 T ELT)) (-2607 ((|#2| $) 75 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-4051 (((-577) $) 126 T ELT)) (-3232 (((-577) $) 128 T ELT)) (-2152 (((-665 |#2|) $) 106 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1766 (((-577) $) 127 T ELT)) (-3371 (((-577) $) 129 T ELT)) (-2374 (($ (-665 (-665 |#2|))) 121 T ELT)) (-4409 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2| |#2|) $ $) 138 T ELT) (($ (-1 |#2| |#2|) $) 112 T ELT)) (-2905 (((-665 (-665 |#2|)) $) 132 T ELT)) (-3438 (((-112) $ (-792)) 116 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 91 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 90 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 85 T ELT) (((-710 |#2|) (-1297 $)) 84 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1767 (((-3 $ "failed") $) 74 (|has| |#2| (-375)) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3574 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) 103 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 102 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 100 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) 120 T ELT)) (-2687 (((-112) $) 117 T ELT)) (-2833 (($) 118 T ELT)) (-2916 ((|#2| $ (-577) (-577) |#2|) 135 T ELT) ((|#2| $ (-577) (-577)) 133 T ELT)) (-3641 (($ $ (-1 |#2| |#2|) (-792)) 57 T ELT) (($ $ (-1 |#2| |#2|)) 56 T ELT) (($ $) 47 (|has| |#2| (-238)) ELT) (($ $ (-792)) 45 (|has| |#2| (-238)) ELT) (($ $ (-1206)) 55 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 53 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 52 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 51 (|has| |#2| (-928 (-1206))) ELT)) (-1566 ((|#2| $) 79 T ELT)) (-3650 (($ (-665 |#2|)) 82 T ELT)) (-4101 (((-112) $) 123 T ELT)) (-4293 ((|#3| $) 81 T ELT)) (-3422 ((|#2| $) 76 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) 105 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 119 T ELT)) (-1455 ((|#4| $ (-577)) 137 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 97 (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) 92 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) 125 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1 |#2| |#2|) (-792)) 59 T ELT) (($ $ (-1 |#2| |#2|)) 58 T ELT) (($ $) 46 (|has| |#2| (-238)) ELT) (($ $ (-792)) 44 (|has| |#2| (-238)) ELT) (($ $ (-1206)) 54 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 50 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 49 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 48 (|has| |#2| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#2|) 140 (|has| |#2| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 73 (|has| |#2| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#2|) 146 T ELT) (($ |#2| $) 145 T ELT) ((|#4| $ |#4|) 78 T ELT) ((|#3| |#3| $) 77 T ELT)) (-3600 (((-792) $) 113 (|has| $ (-6 -4499)) ELT))) +(((-1153 |#1| |#2| |#3| |#4|) (-141) (-792) (-1079) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1153)) +((-4316 (*1 *1 *2) (-12 (-4 *2 (-1079)) (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-3650 (*1 *1 *2) (-12 (-5 *2 (-665 *4)) (-4 *4 (-1079)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-4293 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1079)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1079)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1153 *3 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-1767 (*1 *1 *1) (|partial| -12 (-4 *1 (-1153 *2 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-375))))) +(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1083 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-389 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-738 |t#2|)) |%noBranch|) (-15 -4316 ($ |t#2|)) (-15 -3650 ($ (-665 |t#2|))) (-15 -4293 (|t#3| $)) (-15 -2318 (|t#2| $)) (-15 -1566 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4501 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3422 (|t#2| $)) (-15 -2607 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-375)) (PROGN (-15 -1767 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4501 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-634 #0=(-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-235 $) -2867 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) -2867 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-273 |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-389 |#2|) . T) ((-424 |#2|) . T) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-669 #1=(-577)) |has| |#2| (-659 (-577))) ((-669 |#2|) . T) ((-669 $) . T) ((-661 |#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-6 (-4501 "*")))) ((-659 #1#) |has| |#2| (-659 (-577))) ((-659 |#2|) . T) ((-738 |#2|) -2867 (|has| |#2| (-174)) (|has| |#2| (-6 (-4501 "*")))) ((-747) . T) ((-920 $ #2=(-1206)) -2867 (|has| |#2| (-928 (-1206))) (|has| |#2| (-926 (-1206)))) ((-926 (-1206)) |has| |#2| (-926 (-1206))) ((-928 #2#) -2867 (|has| |#2| (-928 (-1206))) (|has| |#2| (-926 (-1206)))) ((-1083 |#1| |#1| |#2| |#3| |#4|) . T) ((-1068 #0#) |has| |#2| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#2| (-1068 (-577))) ((-1068 |#2|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-4307 ((|#4| |#4|) 81 T ELT)) (-3234 ((|#4| |#4|) 76 T ELT)) (-3728 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|))) |#4| |#3|) 91 T ELT)) (-3325 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-2067 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3234 (|#4| |#4|)) (-15 -2067 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4307 (|#4| |#4|)) (-15 -3325 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3728 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|))) |#4| |#3|))) (-318) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1154)) +((-3728 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) (-5 *1 (-1154 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-4307 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3234 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) +(-10 -7 (-15 -3234 (|#4| |#4|)) (-15 -2067 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4307 (|#4| |#4|)) (-15 -3325 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3728 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2104 (-665 |#3|))) |#4| |#3|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 18 T ELT)) (-3891 (((-665 |#2|) $) 174 T ELT)) (-3732 (((-1202 $) $ |#2|) 60 T ELT) (((-1202 |#1|) $) 49 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 116 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 118 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 120 (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 |#2|)) 213 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) 167 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3783 ((|#1| $) 165 T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) ((|#2| $) NIL T ELT)) (-3868 (($ $ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-4048 (($ $) 217 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) 90 T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-544 |#2|) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-3357 (((-112) $) 20 T ELT)) (-2662 (((-792) $) 30 T ELT)) (-3882 (($ (-1202 |#1|) |#2|) 54 T ELT) (($ (-1202 $) |#2|) 71 T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) 38 T ELT)) (-3872 (($ |#1| (-544 |#2|)) 78 T ELT) (($ $ |#2| (-792)) 58 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ |#2|) NIL T ELT)) (-4340 (((-544 |#2|) $) 205 T ELT) (((-792) $ |#2|) 206 T ELT) (((-665 (-792)) $ (-665 |#2|)) 207 T ELT)) (-4329 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3946 (((-3 |#2| "failed") $) 177 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) 216 T ELT)) (-4025 ((|#1| $) 43 T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| |#2|) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) 39 T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 148 (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) 153 (|has| |#1| (-465)) ELT) (($ $ $) 138 (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-569)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-665 |#2|) (-665 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-665 |#2|) (-665 $)) 194 T ELT)) (-3846 (($ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) 215 T ELT)) (-1597 (((-544 |#2|) $) 201 T ELT) (((-792) $ |#2|) 196 T ELT) (((-665 (-792)) $ (-665 |#2|)) 199 T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2407 ((|#1| $) 134 (|has| |#1| (-465)) ELT) (($ $ |#2|) 137 (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-3709 (((-885) $) 159 T ELT) (($ (-577)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-4343 (((-665 |#1|) $) 162 T ELT)) (-4171 ((|#1| $ (-544 |#2|)) 80 T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 87 T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) 123 (|has| |#1| (-569)) ELT)) (-2839 (($) 12 T CONST)) (-2853 (($) 14 T CONST)) (-2389 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3018 (((-112) $ $) 106 T ELT)) (-3139 (($ $ |#1|) 132 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3114 (($ $ $) 55 T ELT)) (** (($ $ (-949)) 110 T ELT) (($ $ (-792)) 109 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1155 |#1| |#2|) (-977 |#1| (-544 |#2|) |#2|) (-1079) (-870)) (T -1155)) +NIL +(-977 |#1| (-544 |#2|) |#2|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 |#2|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1660 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1638 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1682 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2498 (((-980 |#1|) $ (-792)) NIL T ELT) (((-980 |#1|) $ (-792) (-792)) NIL T ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-792) $ |#2|) NIL T ELT) (((-792) $ |#2| (-792)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ $ (-665 |#2|) (-665 (-544 |#2|))) NIL T ELT) (($ $ |#2| (-544 |#2|)) NIL T ELT) (($ |#1| (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) 63 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3825 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1869 (($ $ |#2|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3210 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2568 (($ $ (-792)) 16 T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2355 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (($ $ |#2| $) 106 T ELT) (($ $ (-665 |#2|) (-665 $)) 99 T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT)) (-3641 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-1597 (((-544 |#2|) $) NIL T ELT)) (-3691 (((-1 (-1187 |#3|) |#3|) (-665 |#2|) (-665 (-1187 |#3|))) 87 T ELT)) (-1692 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 18 T ELT)) (-3709 (((-885) $) 198 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-174)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-4171 ((|#1| $ (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) ((|#3| $ (-792)) 43 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4468 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 52 T CONST)) (-2853 (($) 62 T CONST)) (-2389 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) 200 (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 66 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-420 (-577))) 117 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 115 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1156 |#1| |#2| |#3|) (-13 (-761 |#1| |#2|) (-10 -8 (-15 -4171 (|#3| $ (-792))) (-15 -3709 ($ |#2|)) (-15 -3709 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3691 ((-1 (-1187 |#3|) |#3|) (-665 |#2|) (-665 (-1187 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $ |#2| |#1|)) (-15 -3210 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1079) (-870) (-977 |#1| (-544 |#2|) |#2|)) (T -1156)) +((-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *2 (-977 *4 (-544 *5) *5)) (-5 *1 (-1156 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-3709 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-977 *3 (-544 *2) *2)))) (-3709 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) (-4 *2 (-977 *3 (-544 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) (-4 *2 (-977 *3 (-544 *4) *4)))) (-3691 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1187 *7))) (-4 *6 (-870)) (-4 *7 (-977 *5 (-544 *6) *6)) (-4 *5 (-1079)) (-5 *2 (-1 (-1187 *7) *7)) (-5 *1 (-1156 *5 *6 *7)))) (-1869 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-977 *3 (-544 *2) *2)))) (-3210 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1156 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *1 (-1156 *4 *3 *5)) (-4 *5 (-977 *4 (-544 *3) *3))))) +(-13 (-761 |#1| |#2|) (-10 -8 (-15 -4171 (|#3| $ (-792))) (-15 -3709 ($ |#2|)) (-15 -3709 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3691 ((-1 (-1187 |#3|) |#3|) (-665 |#2|) (-665 (-1187 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $ |#2| |#1|)) (-15 -3210 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-1795 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-3891 (((-665 |#3|) $) 34 T ELT)) (-1507 (((-112) $) 27 T ELT)) (-2221 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3800 ((|#4| |#4| $) 93 T ELT)) (-2612 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| $) 127 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1777 (((-112) $ (-792)) 45 T ELT)) (-1440 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2305 (($) 46 T CONST)) (-1603 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3783 (($ (-665 |#4|)) 36 T ELT)) (-4410 (((-3 $ "failed") $) 83 T ELT)) (-3145 ((|#4| |#4| $) 90 T ELT)) (-3589 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3947 ((|#4| |#4| $) 88 T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) 106 T ELT)) (-3020 (((-112) |#4| $) 137 T ELT)) (-4005 (((-112) |#4| $) 134 T ELT)) (-1753 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2118 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1429 ((|#3| $) 35 T ELT)) (-3862 (((-112) $ (-792)) 44 T ELT)) (-2152 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1683 (((-665 |#3|) $) 33 T ELT)) (-3692 (((-112) |#3| $) 32 T ELT)) (-3438 (((-112) $ (-792)) 43 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3036 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-4045 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| |#4| $) 128 T ELT)) (-4026 (((-3 |#4| "failed") $) 84 T ELT)) (-1955 (((-665 $) |#4| $) 130 T ELT)) (-1377 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-3132 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-1565 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-1963 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-1602 (((-665 |#4|) $) 108 T ELT)) (-1768 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-2477 ((|#4| |#4| $) 91 T ELT)) (-2852 (((-112) $ $) 111 T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-3881 ((|#4| |#4| $) 92 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4397 (((-3 |#4| "failed") $) 85 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2568 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) 39 T ELT)) (-2687 (((-112) $) 42 T ELT)) (-2833 (($) 41 T ELT)) (-1597 (((-792) $) 107 T ELT)) (-1481 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 40 T ELT)) (-4463 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 61 T ELT)) (-1336 (($ $ |#3|) 29 T ELT)) (-3076 (($ $ |#3|) 31 T ELT)) (-2138 (($ $) 89 T ELT)) (-2951 (($ $ |#3|) 30 T ELT)) (-3709 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3534 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-4197 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) 82 T ELT)) (-2259 (((-112) |#4| $) 136 T ELT)) (-2066 (((-112) |#3| $) 81 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) +(((-1157 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1157)) +NIL +(-13 (-1139 |t#1| |t#2| |t#3| |t#4|) (-805 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-805 |#1| |#2| |#3| |#4|) . T) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1139 |#1| |#2| |#3| |#4|) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) +((-2205 (((-665 |#2|) |#1|) 15 T ELT)) (-3625 (((-665 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-665 |#2|) |#1|) 61 T ELT)) (-4345 (((-665 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-665 |#2|) |#1|) 59 T ELT)) (-4167 ((|#2| |#1|) 54 T ELT)) (-2549 (((-2 (|:| |solns| (-665 |#2|)) (|:| |maps| (-665 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-2480 (((-665 |#2|) |#2| |#2|) 42 T ELT) (((-665 |#2|) |#1|) 58 T ELT)) (-1516 (((-665 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-665 |#2|) |#1|) 60 T ELT)) (-3517 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-2158 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-2892 ((|#2| |#2| |#2|) 50 T ELT)) (-1759 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1158 |#1| |#2|) (-10 -7 (-15 -2205 ((-665 |#2|) |#1|)) (-15 -4167 (|#2| |#1|)) (-15 -2549 ((-2 (|:| |solns| (-665 |#2|)) (|:| |maps| (-665 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2480 ((-665 |#2|) |#1|)) (-15 -4345 ((-665 |#2|) |#1|)) (-15 -1516 ((-665 |#2|) |#1|)) (-15 -3625 ((-665 |#2|) |#1|)) (-15 -2480 ((-665 |#2|) |#2| |#2|)) (-15 -4345 ((-665 |#2|) |#2| |#2| |#2|)) (-15 -1516 ((-665 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3625 ((-665 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2|)) (-15 -2158 (|#2| |#2| |#2| |#2|)) (-15 -1759 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3517 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1273 |#2|) (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (T -1158)) +((-3517 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-1759 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-2158 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-2892 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3625 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-1516 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-4345 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-2480 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3625 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-4345 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-2480 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-2 (|:| |solns| (-665 *5)) (|:| |maps| (-665 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1158 *3 *5)) (-4 *3 (-1273 *5)))) (-4167 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -2205 ((-665 |#2|) |#1|)) (-15 -4167 (|#2| |#1|)) (-15 -2549 ((-2 (|:| |solns| (-665 |#2|)) (|:| |maps| (-665 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2480 ((-665 |#2|) |#1|)) (-15 -4345 ((-665 |#2|) |#1|)) (-15 -1516 ((-665 |#2|) |#1|)) (-15 -3625 ((-665 |#2|) |#1|)) (-15 -2480 ((-665 |#2|) |#2| |#2|)) (-15 -4345 ((-665 |#2|) |#2| |#2| |#2|)) (-15 -1516 ((-665 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3625 ((-665 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2892 (|#2| |#2| |#2|)) (-15 -2158 (|#2| |#2| |#2| |#2|)) (-15 -1759 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3517 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3871 (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|))))) 118 T ELT) (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206))) 117 T ELT) (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|)))) 115 T ELT) (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 113 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|)))) 97 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))) (-1206)) 98 T ELT) (((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|))) 92 T ELT) (((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)) (-1206)) 82 T ELT)) (-4342 (((-665 (-665 (-327 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 111 T ELT) (((-665 (-327 |#1|)) (-420 (-980 |#1|)) (-1206)) 54 T ELT)) (-4394 (((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-420 (-980 |#1|)) (-1206)) 122 T ELT) (((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206)) 121 T ELT))) +(((-1159 |#1|) (-10 -7 (-15 -3871 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -3871 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)))) (-15 -3871 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -3871 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -4342 ((-665 (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -4342 ((-665 (-665 (-327 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -4394 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -4394 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-420 (-980 |#1|)) (-1206)))) (-13 (-318) (-148))) (T -1159)) +((-4394 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-4394 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-4342 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-327 *5)))) (-5 *1 (-1159 *5)))) (-4342 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-327 *5))) (-5 *1 (-1159 *5)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *4))))) (-5 *1 (-1159 *4)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-305 (-420 (-980 *5))))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *4))))) (-5 *1 (-1159 *4)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1159 *5)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1159 *5))))) +(-10 -7 (-15 -3871 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -3871 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)))) (-15 -3871 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -3871 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -3871 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -4342 ((-665 (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -4342 ((-665 (-665 (-327 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -4394 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -4394 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-420 (-980 |#1|)) (-1206)))) +((-3344 (((-420 (-1202 (-327 |#1|))) (-1297 (-327 |#1|)) (-420 (-1202 (-327 |#1|))) (-577)) 36 T ELT)) (-3276 (((-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|)))) 48 T ELT))) +(((-1160 |#1|) (-10 -7 (-15 -3276 ((-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))))) (-15 -3344 ((-420 (-1202 (-327 |#1|))) (-1297 (-327 |#1|)) (-420 (-1202 (-327 |#1|))) (-577)))) (-569)) (T -1160)) +((-3344 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-420 (-1202 (-327 *5)))) (-5 *3 (-1297 (-327 *5))) (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1160 *5)))) (-3276 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-420 (-1202 (-327 *3)))) (-4 *3 (-569)) (-5 *1 (-1160 *3))))) +(-10 -7 (-15 -3276 ((-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))))) (-15 -3344 ((-420 (-1202 (-327 |#1|))) (-1297 (-327 |#1|)) (-420 (-1202 (-327 |#1|))) (-577)))) +((-2205 (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-327 |#1|))) (-665 (-1206))) 244 T ELT) (((-665 (-305 (-327 |#1|))) (-327 |#1|) (-1206)) 23 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1206)) 29 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|))) 28 T ELT) (((-665 (-305 (-327 |#1|))) (-327 |#1|)) 24 T ELT))) +(((-1161 |#1|) (-10 -7 (-15 -2205 ((-665 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -2205 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -2205 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1206))) (-15 -2205 ((-665 (-305 (-327 |#1|))) (-327 |#1|) (-1206))) (-15 -2205 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-327 |#1|))) (-665 (-1206))))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (T -1161)) +((-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1161 *5)) (-5 *3 (-665 (-305 (-327 *5)))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-327 *5)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-305 (-327 *5))))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-305 (-327 *4))))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-327 *4))))) +(-10 -7 (-15 -2205 ((-665 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -2205 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -2205 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1206))) (-15 -2205 ((-665 (-305 (-327 |#1|))) (-327 |#1|) (-1206))) (-15 -2205 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-327 |#1|))) (-665 (-1206))))) +((-3878 ((|#2| |#2|) 28 (|has| |#1| (-870)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25 T ELT)) (-3646 ((|#2| |#2|) 27 (|has| |#1| (-870)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22 T ELT))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3878 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-870)) (PROGN (-15 -3646 (|#2| |#2|)) (-15 -3878 (|#2| |#2|))) |%noBranch|)) (-1247) (-13 (-617 (-577) |#1|) (-10 -7 (-6 -4499) (-6 -4500)))) (T -1162)) +((-3878 (*1 *2 *2) (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500)))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500)))))) (-3878 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500)))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500))))))) +(-10 -7 (-15 -3646 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3878 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-870)) (PROGN (-15 -3646 (|#2| |#2|)) (-15 -3878 (|#2| |#2|))) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-1368 (((-1194 3 |#1|) $) 141 T ELT)) (-3973 (((-112) $) 101 T ELT)) (-4169 (($ $ (-665 (-971 |#1|))) 44 T ELT) (($ $ (-665 (-665 |#1|))) 104 T ELT) (($ (-665 (-971 |#1|))) 103 T ELT) (((-665 (-971 |#1|)) $) 102 T ELT)) (-2025 (((-112) $) 72 T ELT)) (-3159 (($ $ (-971 |#1|)) 76 T ELT) (($ $ (-665 |#1|)) 81 T ELT) (($ $ (-792)) 83 T ELT) (($ (-971 |#1|)) 77 T ELT) (((-971 |#1|) $) 75 T ELT)) (-4346 (((-2 (|:| -2524 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792))) $) 139 T ELT)) (-2033 (((-792) $) 53 T ELT)) (-3603 (((-792) $) 52 T ELT)) (-4162 (($ $ (-792) (-971 |#1|)) 67 T ELT)) (-4231 (((-112) $) 111 T ELT)) (-3364 (($ $ (-665 (-665 (-971 |#1|))) (-665 (-173)) (-173)) 118 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-665 (-173)) (-173)) 120 T ELT) (($ $ (-665 (-665 (-971 |#1|))) (-112) (-112)) 115 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-112) (-112)) 127 T ELT) (($ (-665 (-665 (-971 |#1|)))) 116 T ELT) (($ (-665 (-665 (-971 |#1|))) (-112) (-112)) 117 T ELT) (((-665 (-665 (-971 |#1|))) $) 114 T ELT)) (-3771 (($ (-665 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-2442 (((-665 (-173)) $) 133 T ELT)) (-3482 (((-665 (-971 |#1|)) $) 130 T ELT)) (-1859 (((-665 (-665 (-173))) $) 132 T ELT)) (-1944 (((-665 (-665 (-665 (-971 |#1|)))) $) NIL T ELT)) (-2330 (((-665 (-665 (-665 (-792)))) $) 131 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2575 (((-792) $ (-665 (-971 |#1|))) 65 T ELT)) (-1735 (((-112) $) 84 T ELT)) (-3889 (($ $ (-665 (-971 |#1|))) 86 T ELT) (($ $ (-665 (-665 |#1|))) 92 T ELT) (($ (-665 (-971 |#1|))) 87 T ELT) (((-665 (-971 |#1|)) $) 85 T ELT)) (-4226 (($) 48 T ELT) (($ (-1194 3 |#1|)) 49 T ELT)) (-1977 (($ $) 63 T ELT)) (-1612 (((-665 $) $) 62 T ELT)) (-2162 (($ (-665 $)) 59 T ELT)) (-4023 (((-665 $) $) 61 T ELT)) (-3709 (((-885) $) 146 T ELT)) (-4372 (((-112) $) 94 T ELT)) (-3133 (($ $ (-665 (-971 |#1|))) 96 T ELT) (($ $ (-665 (-665 |#1|))) 99 T ELT) (($ (-665 (-971 |#1|))) 97 T ELT) (((-665 (-971 |#1|)) $) 95 T ELT)) (-1751 (($ $) 140 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1163 |#1|) (-1164 |#1|) (-1079)) (T -1163)) +NIL +(-1164 |#1|) +((-3586 (((-112) $ $) 7 T ELT)) (-1368 (((-1194 3 |#1|) $) 14 T ELT)) (-3973 (((-112) $) 30 T ELT)) (-4169 (($ $ (-665 (-971 |#1|))) 34 T ELT) (($ $ (-665 (-665 |#1|))) 33 T ELT) (($ (-665 (-971 |#1|))) 32 T ELT) (((-665 (-971 |#1|)) $) 31 T ELT)) (-2025 (((-112) $) 45 T ELT)) (-3159 (($ $ (-971 |#1|)) 50 T ELT) (($ $ (-665 |#1|)) 49 T ELT) (($ $ (-792)) 48 T ELT) (($ (-971 |#1|)) 47 T ELT) (((-971 |#1|) $) 46 T ELT)) (-4346 (((-2 (|:| -2524 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792))) $) 16 T ELT)) (-2033 (((-792) $) 59 T ELT)) (-3603 (((-792) $) 60 T ELT)) (-4162 (($ $ (-792) (-971 |#1|)) 51 T ELT)) (-4231 (((-112) $) 22 T ELT)) (-3364 (($ $ (-665 (-665 (-971 |#1|))) (-665 (-173)) (-173)) 29 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-665 (-173)) (-173)) 28 T ELT) (($ $ (-665 (-665 (-971 |#1|))) (-112) (-112)) 27 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-112) (-112)) 26 T ELT) (($ (-665 (-665 (-971 |#1|)))) 25 T ELT) (($ (-665 (-665 (-971 |#1|))) (-112) (-112)) 24 T ELT) (((-665 (-665 (-971 |#1|))) $) 23 T ELT)) (-3771 (($ (-665 $)) 58 T ELT) (($ $ $) 57 T ELT)) (-2442 (((-665 (-173)) $) 17 T ELT)) (-3482 (((-665 (-971 |#1|)) $) 21 T ELT)) (-1859 (((-665 (-665 (-173))) $) 18 T ELT)) (-1944 (((-665 (-665 (-665 (-971 |#1|)))) $) 19 T ELT)) (-2330 (((-665 (-665 (-665 (-792)))) $) 20 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2575 (((-792) $ (-665 (-971 |#1|))) 52 T ELT)) (-1735 (((-112) $) 40 T ELT)) (-3889 (($ $ (-665 (-971 |#1|))) 44 T ELT) (($ $ (-665 (-665 |#1|))) 43 T ELT) (($ (-665 (-971 |#1|))) 42 T ELT) (((-665 (-971 |#1|)) $) 41 T ELT)) (-4226 (($) 62 T ELT) (($ (-1194 3 |#1|)) 61 T ELT)) (-1977 (($ $) 53 T ELT)) (-1612 (((-665 $) $) 54 T ELT)) (-2162 (($ (-665 $)) 56 T ELT)) (-4023 (((-665 $) $) 55 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-4372 (((-112) $) 35 T ELT)) (-3133 (($ $ (-665 (-971 |#1|))) 39 T ELT) (($ $ (-665 (-665 |#1|))) 38 T ELT) (($ (-665 (-971 |#1|))) 37 T ELT) (((-665 (-971 |#1|)) $) 36 T ELT)) (-1751 (($ $) 15 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-1164 |#1|) (-141) (-1079)) (T -1164)) +((-3709 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-885)))) (-4226 (*1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-1194 3 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-2033 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4023 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)))) (-1612 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)))) (-1977 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-2575 (*1 *2 *1 *3) (-12 (-5 *3 (-665 (-971 *4))) (-4 *1 (-1164 *4)) (-4 *4 (-1079)) (-5 *2 (-792)))) (-4162 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-971 *4)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-971 *3)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-4372 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-4169 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4169 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4169 (*1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-665 (-971 *5)))) (-5 *3 (-665 (-173))) (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-665 (-173))) (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) (-3364 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-3364 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-112)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 *3)))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3364 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) (-4 *4 (-1079)) (-4 *1 (-1164 *4)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-971 *3)))))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-665 (-792))))))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-665 (-971 *3))))))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-173)))))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-173))))) (-4346 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2524 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792)))))) (-1751 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-1194 3 *3))))) +(-13 (-1130) (-10 -8 (-15 -4226 ($)) (-15 -4226 ($ (-1194 3 |t#1|))) (-15 -3603 ((-792) $)) (-15 -2033 ((-792) $)) (-15 -3771 ($ (-665 $))) (-15 -3771 ($ $ $)) (-15 -2162 ($ (-665 $))) (-15 -4023 ((-665 $) $)) (-15 -1612 ((-665 $) $)) (-15 -1977 ($ $)) (-15 -2575 ((-792) $ (-665 (-971 |t#1|)))) (-15 -4162 ($ $ (-792) (-971 |t#1|))) (-15 -3159 ($ $ (-971 |t#1|))) (-15 -3159 ($ $ (-665 |t#1|))) (-15 -3159 ($ $ (-792))) (-15 -3159 ($ (-971 |t#1|))) (-15 -3159 ((-971 |t#1|) $)) (-15 -2025 ((-112) $)) (-15 -3889 ($ $ (-665 (-971 |t#1|)))) (-15 -3889 ($ $ (-665 (-665 |t#1|)))) (-15 -3889 ($ (-665 (-971 |t#1|)))) (-15 -3889 ((-665 (-971 |t#1|)) $)) (-15 -1735 ((-112) $)) (-15 -3133 ($ $ (-665 (-971 |t#1|)))) (-15 -3133 ($ $ (-665 (-665 |t#1|)))) (-15 -3133 ($ (-665 (-971 |t#1|)))) (-15 -3133 ((-665 (-971 |t#1|)) $)) (-15 -4372 ((-112) $)) (-15 -4169 ($ $ (-665 (-971 |t#1|)))) (-15 -4169 ($ $ (-665 (-665 |t#1|)))) (-15 -4169 ($ (-665 (-971 |t#1|)))) (-15 -4169 ((-665 (-971 |t#1|)) $)) (-15 -3973 ((-112) $)) (-15 -3364 ($ $ (-665 (-665 (-971 |t#1|))) (-665 (-173)) (-173))) (-15 -3364 ($ $ (-665 (-665 (-665 |t#1|))) (-665 (-173)) (-173))) (-15 -3364 ($ $ (-665 (-665 (-971 |t#1|))) (-112) (-112))) (-15 -3364 ($ $ (-665 (-665 (-665 |t#1|))) (-112) (-112))) (-15 -3364 ($ (-665 (-665 (-971 |t#1|))))) (-15 -3364 ($ (-665 (-665 (-971 |t#1|))) (-112) (-112))) (-15 -3364 ((-665 (-665 (-971 |t#1|))) $)) (-15 -4231 ((-112) $)) (-15 -3482 ((-665 (-971 |t#1|)) $)) (-15 -2330 ((-665 (-665 (-665 (-792)))) $)) (-15 -1944 ((-665 (-665 (-665 (-971 |t#1|)))) $)) (-15 -1859 ((-665 (-665 (-173))) $)) (-15 -2442 ((-665 (-173)) $)) (-15 -4346 ((-2 (|:| -2524 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792))) $)) (-15 -1751 ($ $)) (-15 -1368 ((-1194 3 |t#1|) $)) (-15 -3709 ((-885) $)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 184 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) 7 T ELT)) (-2827 (((-112) $ (|[\|\|]| (-537))) 19 T ELT) (((-112) $ (|[\|\|]| (-221))) 23 T ELT) (((-112) $ (|[\|\|]| (-697))) 27 T ELT) (((-112) $ (|[\|\|]| (-1307))) 31 T ELT) (((-112) $ (|[\|\|]| (-139))) 35 T ELT) (((-112) $ (|[\|\|]| (-618))) 39 T ELT) (((-112) $ (|[\|\|]| (-134))) 43 T ELT) (((-112) $ (|[\|\|]| (-1145))) 47 T ELT) (((-112) $ (|[\|\|]| (-96))) 51 T ELT) (((-112) $ (|[\|\|]| (-702))) 55 T ELT) (((-112) $ (|[\|\|]| (-530))) 59 T ELT) (((-112) $ (|[\|\|]| (-1096))) 63 T ELT) (((-112) $ (|[\|\|]| (-1308))) 67 T ELT) (((-112) $ (|[\|\|]| (-538))) 71 T ELT) (((-112) $ (|[\|\|]| (-1181))) 75 T ELT) (((-112) $ (|[\|\|]| (-155))) 79 T ELT) (((-112) $ (|[\|\|]| (-692))) 83 T ELT) (((-112) $ (|[\|\|]| (-322))) 87 T ELT) (((-112) $ (|[\|\|]| (-1066))) 91 T ELT) (((-112) $ (|[\|\|]| (-182))) 95 T ELT) (((-112) $ (|[\|\|]| (-1000))) 99 T ELT) (((-112) $ (|[\|\|]| (-1103))) 103 T ELT) (((-112) $ (|[\|\|]| (-1120))) 107 T ELT) (((-112) $ (|[\|\|]| (-1126))) 111 T ELT) (((-112) $ (|[\|\|]| (-644))) 115 T ELT) (((-112) $ (|[\|\|]| (-1196))) 119 T ELT) (((-112) $ (|[\|\|]| (-157))) 123 T ELT) (((-112) $ (|[\|\|]| (-138))) 127 T ELT) (((-112) $ (|[\|\|]| (-491))) 131 T ELT) (((-112) $ (|[\|\|]| (-605))) 135 T ELT) (((-112) $ (|[\|\|]| (-519))) 139 T ELT) (((-112) $ (|[\|\|]| (-1188))) 143 T ELT) (((-112) $ (|[\|\|]| (-577))) 147 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2035 (((-537) $) 20 T ELT) (((-221) $) 24 T ELT) (((-697) $) 28 T ELT) (((-1307) $) 32 T ELT) (((-139) $) 36 T ELT) (((-618) $) 40 T ELT) (((-134) $) 44 T ELT) (((-1145) $) 48 T ELT) (((-96) $) 52 T ELT) (((-702) $) 56 T ELT) (((-530) $) 60 T ELT) (((-1096) $) 64 T ELT) (((-1308) $) 68 T ELT) (((-538) $) 72 T ELT) (((-1181) $) 76 T ELT) (((-155) $) 80 T ELT) (((-692) $) 84 T ELT) (((-322) $) 88 T ELT) (((-1066) $) 92 T ELT) (((-182) $) 96 T ELT) (((-1000) $) 100 T ELT) (((-1103) $) 104 T ELT) (((-1120) $) 108 T ELT) (((-1126) $) 112 T ELT) (((-644) $) 116 T ELT) (((-1196) $) 120 T ELT) (((-157) $) 124 T ELT) (((-138) $) 128 T ELT) (((-491) $) 132 T ELT) (((-605) $) 136 T ELT) (((-519) $) 140 T ELT) (((-1188) $) 144 T ELT) (((-577) $) 148 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1165) (-1167)) (T -1165)) +NIL +(-1167) +((-3225 (((-665 (-1211)) (-1188)) 9 T ELT))) +(((-1166) (-10 -7 (-15 -3225 ((-665 (-1211)) (-1188))))) (T -1166)) +((-3225 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-1166))))) +(-10 -7 (-15 -3225 ((-665 (-1211)) (-1188)))) +((-3586 (((-112) $ $) 7 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-1211)) 17 T ELT) (((-1211) $) 16 T ELT)) (-2827 (((-112) $ (|[\|\|]| (-537))) 85 T ELT) (((-112) $ (|[\|\|]| (-221))) 83 T ELT) (((-112) $ (|[\|\|]| (-697))) 81 T ELT) (((-112) $ (|[\|\|]| (-1307))) 79 T ELT) (((-112) $ (|[\|\|]| (-139))) 77 T ELT) (((-112) $ (|[\|\|]| (-618))) 75 T ELT) (((-112) $ (|[\|\|]| (-134))) 73 T ELT) (((-112) $ (|[\|\|]| (-1145))) 71 T ELT) (((-112) $ (|[\|\|]| (-96))) 69 T ELT) (((-112) $ (|[\|\|]| (-702))) 67 T ELT) (((-112) $ (|[\|\|]| (-530))) 65 T ELT) (((-112) $ (|[\|\|]| (-1096))) 63 T ELT) (((-112) $ (|[\|\|]| (-1308))) 61 T ELT) (((-112) $ (|[\|\|]| (-538))) 59 T ELT) (((-112) $ (|[\|\|]| (-1181))) 57 T ELT) (((-112) $ (|[\|\|]| (-155))) 55 T ELT) (((-112) $ (|[\|\|]| (-692))) 53 T ELT) (((-112) $ (|[\|\|]| (-322))) 51 T ELT) (((-112) $ (|[\|\|]| (-1066))) 49 T ELT) (((-112) $ (|[\|\|]| (-182))) 47 T ELT) (((-112) $ (|[\|\|]| (-1000))) 45 T ELT) (((-112) $ (|[\|\|]| (-1103))) 43 T ELT) (((-112) $ (|[\|\|]| (-1120))) 41 T ELT) (((-112) $ (|[\|\|]| (-1126))) 39 T ELT) (((-112) $ (|[\|\|]| (-644))) 37 T ELT) (((-112) $ (|[\|\|]| (-1196))) 35 T ELT) (((-112) $ (|[\|\|]| (-157))) 33 T ELT) (((-112) $ (|[\|\|]| (-138))) 31 T ELT) (((-112) $ (|[\|\|]| (-491))) 29 T ELT) (((-112) $ (|[\|\|]| (-605))) 27 T ELT) (((-112) $ (|[\|\|]| (-519))) 25 T ELT) (((-112) $ (|[\|\|]| (-1188))) 23 T ELT) (((-112) $ (|[\|\|]| (-577))) 21 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2035 (((-537) $) 84 T ELT) (((-221) $) 82 T ELT) (((-697) $) 80 T ELT) (((-1307) $) 78 T ELT) (((-139) $) 76 T ELT) (((-618) $) 74 T ELT) (((-134) $) 72 T ELT) (((-1145) $) 70 T ELT) (((-96) $) 68 T ELT) (((-702) $) 66 T ELT) (((-530) $) 64 T ELT) (((-1096) $) 62 T ELT) (((-1308) $) 60 T ELT) (((-538) $) 58 T ELT) (((-1181) $) 56 T ELT) (((-155) $) 54 T ELT) (((-692) $) 52 T ELT) (((-322) $) 50 T ELT) (((-1066) $) 48 T ELT) (((-182) $) 46 T ELT) (((-1000) $) 44 T ELT) (((-1103) $) 42 T ELT) (((-1120) $) 40 T ELT) (((-1126) $) 38 T ELT) (((-644) $) 36 T ELT) (((-1196) $) 34 T ELT) (((-157) $) 32 T ELT) (((-138) $) 30 T ELT) (((-491) $) 28 T ELT) (((-605) $) 26 T ELT) (((-519) $) 24 T ELT) (((-1188) $) 22 T ELT) (((-577) $) 20 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-1167) (-141)) (T -1167)) +((-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-537)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-221)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-697)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1307))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1307)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-139)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-618)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-134)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1145)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-96)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-702))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-702)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-530)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1096)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1308)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-538)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1181)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-155)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-692)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-322)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1066)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-182)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1000)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1103)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1120))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1120)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1126)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-644))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-644)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1196))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1196)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-157)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-138)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-491)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-605)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-519)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1188)))) (-2827 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-2035 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-577))))) +(-13 (-1113) (-1292) (-10 -8 (-15 -2827 ((-112) $ (|[\|\|]| (-537)))) (-15 -2035 ((-537) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-221)))) (-15 -2035 ((-221) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-697)))) (-15 -2035 ((-697) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1307)))) (-15 -2035 ((-1307) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-139)))) (-15 -2035 ((-139) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-618)))) (-15 -2035 ((-618) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-134)))) (-15 -2035 ((-134) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1145)))) (-15 -2035 ((-1145) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-96)))) (-15 -2035 ((-96) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-702)))) (-15 -2035 ((-702) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-530)))) (-15 -2035 ((-530) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1096)))) (-15 -2035 ((-1096) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1308)))) (-15 -2035 ((-1308) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-538)))) (-15 -2035 ((-538) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1181)))) (-15 -2035 ((-1181) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-155)))) (-15 -2035 ((-155) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-692)))) (-15 -2035 ((-692) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-322)))) (-15 -2035 ((-322) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1066)))) (-15 -2035 ((-1066) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-182)))) (-15 -2035 ((-182) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1000)))) (-15 -2035 ((-1000) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1103)))) (-15 -2035 ((-1103) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1120)))) (-15 -2035 ((-1120) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1126)))) (-15 -2035 ((-1126) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-644)))) (-15 -2035 ((-644) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1196)))) (-15 -2035 ((-1196) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-157)))) (-15 -2035 ((-157) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-138)))) (-15 -2035 ((-138) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-491)))) (-15 -2035 ((-491) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-605)))) (-15 -2035 ((-605) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-519)))) (-15 -2035 ((-519) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-1188)))) (-15 -2035 ((-1188) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-577)))) (-15 -2035 ((-577) $)))) +(((-93) . T) ((-102) . T) ((-634 #0=(-1211)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1113) . T) ((-1247) . T) ((-1292) . T)) +((-3620 (((-1302) (-665 (-885))) 22 T ELT) (((-1302) (-885)) 21 T ELT)) (-3466 (((-1302) (-665 (-885))) 20 T ELT) (((-1302) (-885)) 19 T ELT)) (-3495 (((-1302) (-665 (-885))) 18 T ELT) (((-1302) (-885)) 10 T ELT) (((-1302) (-1188) (-885)) 16 T ELT))) +(((-1168) (-10 -7 (-15 -3495 ((-1302) (-1188) (-885))) (-15 -3495 ((-1302) (-885))) (-15 -3466 ((-1302) (-885))) (-15 -3620 ((-1302) (-885))) (-15 -3495 ((-1302) (-665 (-885)))) (-15 -3466 ((-1302) (-665 (-885)))) (-15 -3620 ((-1302) (-665 (-885)))))) (T -1168)) +((-3620 (*1 *2 *3) (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3495 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168))))) +(-10 -7 (-15 -3495 ((-1302) (-1188) (-885))) (-15 -3495 ((-1302) (-885))) (-15 -3466 ((-1302) (-885))) (-15 -3620 ((-1302) (-885))) (-15 -3495 ((-1302) (-665 (-885)))) (-15 -3466 ((-1302) (-665 (-885)))) (-15 -3620 ((-1302) (-665 (-885))))) +((-4172 (($ $ $) 10 T ELT)) (-2843 (($ $) 9 T ELT)) (-2830 (($ $ $) 13 T ELT)) (-2238 (($ $ $) 15 T ELT)) (-3923 (($ $ $) 12 T ELT)) (-3026 (($ $ $) 14 T ELT)) (-4089 (($ $) 17 T ELT)) (-1889 (($ $) 16 T ELT)) (-2215 (($ $) 6 T ELT)) (-3802 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3012 (($ $ $) 8 T ELT))) (((-1169) (-141)) (T -1169)) -((-2976 (*1 *1 *1) (-4 *1 (-1169))) (-3107 (*1 *1 *1) (-4 *1 (-1169))) (-1345 (*1 *1 *1) (-4 *1 (-1169))) (-2628 (*1 *1 *1) (-4 *1 (-1169))) (-3432 (*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112)))) (-3407 (*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112)))) (-3389 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-577)) (-5 *2 (-112)))) (-2494 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-787)))) (-1958 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3946 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1259 (-577))))) (-3728 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577)))) (-3728 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577)) (-5 *3 (-142)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1169)))) (-3333 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-660 *1)) (-4 *1 (-1169)))) (-3333 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-660 *1)) (-4 *1 (-1169)))) (-1480 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145)))) (-1480 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) (-1552 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145)))) (-1552 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) (-1541 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145)))) (-1541 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) (-2837 (*1 *1 *1 *1) (-4 *1 (-1169)))) -(-13 (-19 (-145)) (-10 -8 (-15 -2976 ($ $)) (-15 -3107 ($ $)) (-15 -1345 ($ $)) (-15 -2628 ($ $)) (-15 -3432 ((-112) $ $)) (-15 -3407 ((-112) $ $)) (-15 -3389 ((-112) $ $ (-577))) (-15 -2494 ((-787) $ $ (-145))) (-15 -1958 ((-112) $ $ (-145))) (-15 -3946 ($ $ (-1259 (-577)) $)) (-15 -3728 ((-577) $ $ (-577))) (-15 -3728 ((-577) (-142) $ (-577))) (-15 -3603 ($ (-145))) (-15 -3333 ((-660 $) $ (-145))) (-15 -3333 ((-660 $) $ (-142))) (-15 -1480 ($ $ (-145))) (-15 -1480 ($ $ (-142))) (-15 -1552 ($ $ (-145))) (-15 -1552 ($ $ (-142))) (-15 -1541 ($ $ (-145))) (-15 -1541 ($ $ (-142))) (-15 -2837 ($ $ $)))) -(((-34) . T) ((-102) -2811 (|has| (-145) (-1125)) (|has| (-145) (-865)) (|has| (-145) (-102))) ((-626 (-880)) -2811 (|has| (-145) (-1125)) (|has| (-145) (-865)) (|has| (-145) (-626 (-880)))) ((-152 #0=(-145)) . T) ((-627 (-549)) |has| (-145) (-627 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ((-667 #0#) . T) ((-19 #0#) . T) ((-865) |has| (-145) (-865)) ((-868) |has| (-145) (-865)) ((-1125) -2811 (|has| (-145) (-1125)) (|has| (-145) (-865))) ((-1242) . T)) -((-2192 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-787)) 112 T ELT)) (-3971 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787)) 61 T ELT)) (-4308 (((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-787)) 97 T ELT)) (-3443 (((-787) (-660 |#4|) (-660 |#5|)) 30 T ELT)) (-2683 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787)) 63 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787) (-112)) 65 T ELT)) (-4337 (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112)) 84 T ELT) (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112)) 85 T ELT)) (-2176 (((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) 90 T ELT)) (-2142 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|) 60 T ELT)) (-1643 (((-787) (-660 |#4|) (-660 |#5|)) 21 T ELT))) -(((-1170 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1643 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3443 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -2142 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2192 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-787))) (-15 -2176 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4308 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-787)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3| |#4|)) (T -1170)) -((-4308 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1134 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) (-5 *1 (-1170 *4 *5 *6 *7 *8)))) (-2192 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-660 *11)) (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -2002 *11)))))) (-5 *6 (-787)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -2002 *11)))) (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) (-4 *11 (-1134 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-5 *1 (-1170 *7 *8 *9 *10 *11)))) (-4337 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-4337 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-2683 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) (-2683 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1170 *7 *8 *9 *3 *4)) (-4 *4 (-1134 *7 *8 *9 *3)))) (-3971 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3)))) (-3971 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) (-2142 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1643 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3443 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -2142 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -3971 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5| (-787))) (-15 -2683 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) |#4| |#5|)) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -4337 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2192 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))))) (-787))) (-15 -2176 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|)))) (-15 -4308 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -2002 |#5|))) (-787)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-1568 (((-660 $) (-660 |#4|)) 124 T ELT) (((-660 $) (-660 |#4|) (-112)) 125 T ELT) (((-660 $) (-660 |#4|) (-112) (-112)) 123 T ELT) (((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112)) 126 T ELT)) (-3206 (((-660 |#3|) $) NIL T ELT)) (-1905 (((-112) $) NIL T ELT)) (-1421 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3924 ((|#4| |#4| $) NIL T ELT)) (-2001 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| $) 97 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3730 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) 75 T ELT)) (-3790 (($) NIL T CONST)) (-4046 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) NIL T ELT)) (-2155 (($ (-660 |#4|)) NIL T ELT)) (-1663 (((-3 $ "failed") $) 45 T ELT)) (-2801 ((|#4| |#4| $) 78 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-3920 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3270 ((|#4| |#4| $) NIL T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) NIL T ELT)) (-2926 (((-112) |#4| $) NIL T ELT)) (-2687 (((-112) |#4| $) NIL T ELT)) (-2632 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4139 (((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112)) 139 T ELT)) (-3692 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1940 ((|#3| $) 38 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#4|) $) 19 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1365 (((-660 |#3|) $) NIL T ELT)) (-2639 (((-112) |#3| $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3650 (((-3 |#4| (-660 $)) |#4| |#4| $) NIL T ELT)) (-2048 (((-660 (-2 (|:| |val| |#4|) (|:| -2002 $))) |#4| |#4| $) 117 T ELT)) (-3942 (((-3 |#4| "failed") $) 42 T ELT)) (-3395 (((-660 $) |#4| $) 102 T ELT)) (-3343 (((-3 (-112) (-660 $)) |#4| $) NIL T ELT)) (-3422 (((-660 (-2 (|:| |val| (-112)) (|:| -2002 $))) |#4| $) 112 T ELT) (((-112) |#4| $) 65 T ELT)) (-4056 (((-660 $) |#4| $) 121 T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 122 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT)) (-2732 (((-660 $) (-660 |#4|) (-112) (-112) (-112)) 134 T ELT)) (-2346 (($ |#4| $) 88 T ELT) (($ (-660 |#4|) $) 89 T ELT) (((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87 T ELT)) (-3425 (((-660 |#4|) $) NIL T ELT)) (-4233 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1458 ((|#4| |#4| $) NIL T ELT)) (-2928 (((-112) $ $) NIL T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2108 ((|#4| |#4| $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-3 |#4| "failed") $) 40 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-1987 (($ $ |#4|) NIL T ELT) (((-660 $) |#4| $) 104 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 99 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 17 T ELT)) (-2693 (($) 14 T ELT)) (-3616 (((-787) $) NIL T ELT)) (-1452 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) NIL (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 22 T ELT)) (-3620 (($ $ |#3|) 52 T ELT)) (-2003 (($ $ |#3|) 54 T ELT)) (-3307 (($ $) NIL T ELT)) (-3344 (($ $ |#3|) NIL T ELT)) (-3603 (((-880) $) 35 T ELT) (((-660 |#4|) $) 46 T ELT)) (-2272 (((-787) $) NIL (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL T ELT)) (-3575 (((-660 $) |#4| $) 66 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) NIL T ELT)) (-4381 (((-112) |#4| $) NIL T ELT)) (-1401 (((-112) |#3| $) 74 T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1171 |#1| |#2| |#3| |#4|) (-13 (-1134 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2346 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -2732 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -4139 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1171)) -((-2346 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *3))) (-5 *1 (-1171 *5 *6 *7 *3)) (-4 *3 (-1090 *5 *6 *7)))) (-1568 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) (-1568 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) (-2732 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) (-4139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1171 *5 *6 *7 *8))))) (-5 *1 (-1171 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) -(-13 (-1134 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2346 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -1568 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -2732 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -4139 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2554 ((|#1| $) 37 T ELT)) (-3936 (($ (-660 |#1|)) 45 T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2223 ((|#1| |#1| $) 40 T ELT)) (-2204 ((|#1| $) 35 T ELT)) (-3692 (((-660 |#1|) $) 18 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3596 ((|#1| $) 38 T ELT)) (-4345 (($ |#1| $) 41 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-3439 ((|#1| $) 36 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 32 T ELT)) (-2693 (($) 43 T ELT)) (-2395 (((-787) $) 30 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 27 T ELT)) (-3603 (((-880) $) 14 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3231 (($ (-660 |#1|)) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 17 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 31 (|has| $ (-6 -4470)) ELT))) -(((-1172 |#1|) (-13 (-1146 |#1|) (-10 -8 (-15 -3936 ($ (-660 |#1|))))) (-1242)) (T -1172)) -((-3936 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1172 *3))))) -(-13 (-1146 |#1|) (-10 -8 (-15 -3936 ($ (-660 |#1|))))) -((-1895 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) NIL T ELT) (($ $ "rest" $) NIL T ELT) ((|#2| $ "last" |#2|) NIL T ELT) ((|#2| $ (-1259 (-577)) |#2|) 53 T ELT) ((|#2| $ (-577) |#2|) 50 T ELT)) (-3919 (((-112) $) 12 T ELT)) (-2826 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-1652 ((|#2| $) NIL T ELT) (($ $ (-787)) 17 T ELT)) (-2529 (($ $ |#2|) 49 T ELT)) (-1861 (((-112) $) 11 T ELT)) (-2837 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#2| $ "last") NIL T ELT) (($ $ (-1259 (-577))) 36 T ELT) ((|#2| $ (-577)) 26 T ELT) ((|#2| $ (-577) |#2|) NIL T ELT)) (-1584 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-1685 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-660 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1173 |#1| |#2|) (-10 -8 (-15 -3919 ((-112) |#1|)) (-15 -1861 ((-112) |#1|)) (-15 -1895 (|#2| |#1| (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577))) (-15 -2529 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -1685 (|#1| |#1| |#2|)) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1895 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -1895 (|#2| |#1| "last" |#2|)) (-15 -1895 (|#1| |#1| "rest" |#1|)) (-15 -1895 (|#2| |#1| "first" |#2|)) (-15 -1584 (|#1| |#1| |#2|)) (-15 -1584 (|#1| |#1| |#1|)) (-15 -2837 (|#2| |#1| "last")) (-15 -2837 (|#1| |#1| "rest")) (-15 -1652 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "first")) (-15 -1652 (|#2| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -2837 (|#2| |#1| "value")) (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|))) (-1174 |#2|) (-1242)) (T -1173)) -NIL -(-10 -8 (-15 -3919 ((-112) |#1|)) (-15 -1861 ((-112) |#1|)) (-15 -1895 (|#2| |#1| (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577) |#2|)) (-15 -2837 (|#2| |#1| (-577))) (-15 -2529 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| (-1259 (-577)))) (-15 -1685 (|#1| |#1| |#2|)) (-15 -1685 (|#1| (-660 |#1|))) (-15 -1895 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -1895 (|#2| |#1| "last" |#2|)) (-15 -1895 (|#1| |#1| "rest" |#1|)) (-15 -1895 (|#2| |#1| "first" |#2|)) (-15 -1584 (|#1| |#1| |#2|)) (-15 -1584 (|#1| |#1| |#1|)) (-15 -2837 (|#2| |#1| "last")) (-15 -2837 (|#1| |#1| "rest")) (-15 -1652 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "first")) (-15 -1652 (|#2| |#1|)) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -2837 (|#2| |#1| "value")) (-15 -2826 (|#1| (-1 |#2| |#2|) |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-4148 ((|#1| $) 66 T ELT)) (-3063 (($ $) 68 T ELT)) (-2790 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) 53 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 57 (|has| $ (-6 -4471)) ELT)) (-2946 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 119 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4470)) ELT)) (-4135 ((|#1| $) 67 T ELT)) (-3790 (($) 7 T CONST)) (-1663 (($ $) 74 T ELT) (($ $ (-787)) 72 T ELT)) (-3289 (($ $) 101 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4470)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2840 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 89 T ELT)) (-3919 (((-112) $) 85 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-4223 (($ (-787) |#1|) 111 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 97 (|has| (-577) (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 96 (|has| (-577) (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) 71 T ELT) (($ $ (-787)) 69 T ELT)) (-2218 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-3445 (((-660 (-577)) $) 94 T ELT)) (-2187 (((-112) (-577) $) 93 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 77 T ELT) (($ $ (-787)) 75 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-2529 (($ $ |#1|) 98 (|has| $ (-6 -4471)) ELT)) (-1861 (((-112) $) 86 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 92 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1259 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3490 (($ $ (-1259 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-4243 (($ $) 63 T ELT)) (-1839 (($ $) 60 (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) 64 T ELT)) (-3855 (($ $) 65 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 100 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 109 T ELT)) (-1584 (($ $ $) 62 (|has| $ (-6 -4471)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4471)) ELT)) (-1685 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-660 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1174 |#1|) (-141) (-1242)) (T -1174)) -((-1861 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) -(-13 (-1280 |t#1|) (-667 |t#1|) (-10 -8 (-15 -1861 ((-112) $)) (-15 -3919 ((-112) $)))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T) ((-1280 |#1|) . T)) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2790 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#2| $ |#1| |#2|) NIL T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-3740 (((-660 |#1|) $) NIL T ELT)) (-2490 (((-112) |#1| $) NIL T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3445 (((-660 |#1|) $) NIL T ELT)) (-2187 (((-112) |#1| $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#2| $) NIL (|has| |#1| (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1175 |#1| |#2| |#3|) (-1218 |#1| |#2|) (-1125) (-1125) |#2|) (T -1175)) -NIL -(-1218 |#1| |#2|) -((-3489 (((-112) $ $) NIL T ELT)) (-3098 (((-707 (-1160)) $) 27 T ELT)) (-1641 (((-1160) $) 15 T ELT)) (-2872 (((-1160) $) 17 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1405 (((-519) $) 13 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 37 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1176) (-13 (-1108) (-10 -8 (-15 -1405 ((-519) $)) (-15 -2872 ((-1160) $)) (-15 -3098 ((-707 (-1160)) $)) (-15 -1641 ((-1160) $))))) (T -1176)) -((-1405 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1176)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-707 (-1160))) (-5 *1 (-1176)))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176))))) -(-13 (-1108) (-10 -8 (-15 -1405 ((-519) $)) (-15 -2872 ((-1160) $)) (-15 -3098 ((-707 (-1160)) $)) (-15 -1641 ((-1160) $)))) -((-3489 (((-112) $ $) 7 T ELT)) (-1454 (((-3 $ "failed") $) 14 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3457 (($) 15 T CONST)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2949 (((-112) $ $) 8 T ELT))) -(((-1177) (-141)) (T -1177)) -((-3457 (*1 *1) (-4 *1 (-1177))) (-1454 (*1 *1 *1) (|partial| -4 *1 (-1177)))) -(-13 (-1125) (-10 -8 (-15 -3457 ($) -2609) (-15 -1454 ((-3 $ "failed") $)))) -(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) -((-2511 (((-1182 |#1|) (-1182 |#1|)) 17 T ELT)) (-4097 (((-1182 |#1|) (-1182 |#1|)) 13 T ELT)) (-2381 (((-1182 |#1|) (-1182 |#1|) (-577) (-577)) 20 T ELT)) (-3947 (((-1182 |#1|) (-1182 |#1|)) 15 T ELT))) -(((-1178 |#1|) (-10 -7 (-15 -4097 ((-1182 |#1|) (-1182 |#1|))) (-15 -3947 ((-1182 |#1|) (-1182 |#1|))) (-15 -2511 ((-1182 |#1|) (-1182 |#1|))) (-15 -2381 ((-1182 |#1|) (-1182 |#1|) (-577) (-577)))) (-13 (-569) (-148))) (T -1178)) -((-2381 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1178 *4)))) (-2511 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1178 *3)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1178 *3)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1178 *3))))) -(-10 -7 (-15 -4097 ((-1182 |#1|) (-1182 |#1|))) (-15 -3947 ((-1182 |#1|) (-1182 |#1|))) (-15 -2511 ((-1182 |#1|) (-1182 |#1|))) (-15 -2381 ((-1182 |#1|) (-1182 |#1|) (-577) (-577)))) -((-1685 (((-1182 |#1|) (-1182 (-1182 |#1|))) 15 T ELT))) -(((-1179 |#1|) (-10 -7 (-15 -1685 ((-1182 |#1|) (-1182 (-1182 |#1|))))) (-1242)) (T -1179)) -((-1685 (*1 *2 *3) (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-1242))))) -(-10 -7 (-15 -1685 ((-1182 |#1|) (-1182 (-1182 |#1|))))) -((-1979 (((-1182 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)) 25 T ELT)) (-2498 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)) 26 T ELT)) (-2124 (((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|)) 16 T ELT))) -(((-1180 |#1| |#2|) (-10 -7 (-15 -2124 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|))) (-15 -1979 ((-1182 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|))) (-15 -2498 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)))) (-1242) (-1242)) (T -1180)) -((-2498 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-1180 *5 *2)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1182 *6)) (-4 *6 (-1242)) (-4 *3 (-1242)) (-5 *2 (-1182 *3)) (-5 *1 (-1180 *6 *3)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6))))) -(-10 -7 (-15 -2124 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|))) (-15 -1979 ((-1182 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|))) (-15 -2498 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)))) -((-2124 (((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-1182 |#2|)) 21 T ELT))) -(((-1181 |#1| |#2| |#3|) (-10 -7 (-15 -2124 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-1182 |#2|)))) (-1242) (-1242) (-1242)) (T -1181)) -((-2124 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-1182 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) (-5 *1 (-1181 *6 *7 *8))))) -(-10 -7 (-15 -2124 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-1182 |#2|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) NIL T ELT)) (-4148 ((|#1| $) NIL T ELT)) (-3063 (($ $) 67 T ELT)) (-2790 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)) ELT)) (-2034 (($ $ (-577)) 128 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1974 (((-880) $) 56 (|has| |#1| (-1125)) ELT)) (-2163 (((-112)) 55 (|has| |#1| (-1125)) ELT)) (-3211 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 115 (|has| $ (-6 -4471)) ELT) (($ $ (-577) $) 141 T ELT)) (-2946 ((|#1| $ |#1|) 125 (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) 120 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) 124 (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 112 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-577) |#1|) 77 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 80 T ELT)) (-4135 ((|#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2036 (($ $) 14 T ELT)) (-1663 (($ $) 40 T ELT) (($ $ (-787)) 111 T ELT)) (-1725 (((-112) (-660 |#1|) $) 134 (|has| |#1| (-1125)) ELT)) (-1726 (($ (-660 |#1|)) 130 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) 79 T ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3919 (((-112) $) NIL T ELT)) (-3692 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1468 (((-1297) (-577) $) 140 (|has| |#1| (-1125)) ELT)) (-3451 (((-787) $) 137 T ELT)) (-1830 (((-660 $) $) NIL T ELT)) (-2725 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 85 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 89 T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2935 (((-660 |#1|) $) NIL T ELT)) (-2284 (((-112) $) NIL T ELT)) (-2453 (($ $) 113 T ELT)) (-4312 (((-112) $) 13 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) NIL T ELT) (($ $ (-787)) NIL T ELT)) (-2218 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) 96 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-3661 (($ (-1 |#1|)) 143 T ELT) (($ (-1 |#1| |#1|) |#1|) 144 T ELT)) (-3800 ((|#1| $) 10 T ELT)) (-1652 ((|#1| $) 39 T ELT) (($ $ (-787)) 65 T ELT)) (-3435 (((-2 (|:| |cycle?| (-112)) (|:| -1986 (-787)) (|:| |period| (-787))) (-787) $) 34 T ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3705 (($ (-1 (-112) |#1|) $) 145 T ELT)) (-3717 (($ (-1 (-112) |#1|) $) 146 T ELT)) (-2529 (($ $ |#1|) 90 (|has| $ (-6 -4471)) ELT)) (-1987 (($ $ (-577)) 45 T ELT)) (-1861 (((-112) $) 94 T ELT)) (-3028 (((-112) $) 12 T ELT)) (-1758 (((-112) $) 136 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 30 T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) 20 T ELT)) (-2693 (($) 60 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT) ((|#1| $ (-577)) 75 T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-3190 (((-577) $ $) 64 T ELT)) (-3490 (($ $ (-1259 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1697 (($ (-1 $)) 63 T ELT)) (-3834 (((-112) $) 91 T ELT)) (-4243 (($ $) 92 T ELT)) (-1839 (($ $) 116 (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) NIL T ELT)) (-3855 (($ $) NIL T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 59 T ELT)) (-2176 (((-549) $) NIL (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 73 T ELT)) (-2908 (($ |#1| $) 114 T ELT)) (-1584 (($ $ $) 118 (|has| $ (-6 -4471)) ELT) (($ $ |#1|) 119 (|has| $ (-6 -4471)) ELT)) (-1685 (($ $ $) 101 T ELT) (($ |#1| $) 61 T ELT) (($ (-660 $)) 106 T ELT) (($ $ |#1|) 100 T ELT)) (-2544 (($ $) 66 T ELT)) (-3603 (($ (-660 |#1|)) 129 T ELT) (((-880) $) 57 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) NIL T ELT)) (-1444 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 132 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1182 |#1|) (-13 (-690 |#1|) (-629 (-660 |#1|)) (-10 -8 (-6 -4471) (-15 -1726 ($ (-660 |#1|))) (IF (|has| |#1| (-1125)) (-15 -1725 ((-112) (-660 |#1|) $)) |%noBranch|) (-15 -3435 ((-2 (|:| |cycle?| (-112)) (|:| -1986 (-787)) (|:| |period| (-787))) (-787) $)) (-15 -1697 ($ (-1 $))) (-15 -2908 ($ |#1| $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -1468 ((-1297) (-577) $)) (-15 -1974 ((-880) $)) (-15 -2163 ((-112)))) |%noBranch|) (-15 -1687 ($ $ (-577) $)) (-15 -3661 ($ (-1 |#1|))) (-15 -3661 ($ (-1 |#1| |#1|) |#1|)) (-15 -3705 ($ (-1 (-112) |#1|) $)) (-15 -3717 ($ (-1 (-112) |#1|) $)))) (-1242)) (T -1182)) -((-1726 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-1725 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-4 *4 (-1242)) (-5 *2 (-112)) (-5 *1 (-1182 *4)))) (-3435 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1986 (-787)) (|:| |period| (-787)))) (-5 *1 (-1182 *4)) (-4 *4 (-1242)) (-5 *3 (-787)))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-1 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1242)))) (-2908 (*1 *1 *2 *1) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1242)))) (-1468 (*1 *2 *3 *1) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1182 *4)) (-4 *4 (-1125)) (-4 *4 (-1242)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) (-4 *3 (-1242)))) (-2163 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) (-4 *3 (-1242)))) (-1687 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1182 *3)) (-4 *3 (-1242)))) (-3661 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-3661 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-3705 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-3717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) -(-13 (-690 |#1|) (-629 (-660 |#1|)) (-10 -8 (-6 -4471) (-15 -1726 ($ (-660 |#1|))) (IF (|has| |#1| (-1125)) (-15 -1725 ((-112) (-660 |#1|) $)) |%noBranch|) (-15 -3435 ((-2 (|:| |cycle?| (-112)) (|:| -1986 (-787)) (|:| |period| (-787))) (-787) $)) (-15 -1697 ($ (-1 $))) (-15 -2908 ($ |#1| $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -1468 ((-1297) (-577) $)) (-15 -1974 ((-880) $)) (-15 -2163 ((-112)))) |%noBranch|) (-15 -1687 ($ $ (-577) $)) (-15 -3661 ($ (-1 |#1|))) (-15 -3661 ($ (-1 |#1| |#1|) |#1|)) (-15 -3705 ($ (-1 (-112) |#1|) $)) (-15 -3717 ($ (-1 (-112) |#1|) $)))) -((-3489 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-2628 (($ $) NIL T ELT)) (-1345 (($ $) NIL T ELT)) (-1480 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-3407 (((-112) $ $) NIL T ELT)) (-3389 (((-112) $ $ (-577)) NIL T ELT)) (-1355 (($ (-577)) 8 T ELT) (($ (-228)) 10 T ELT)) (-3333 (((-660 $) $ (-145)) NIL T ELT) (((-660 $) $ (-142)) NIL T ELT)) (-4438 (((-112) (-1 (-112) (-145) (-145)) $) NIL T ELT) (((-112) $) NIL (|has| (-145) (-865)) ELT)) (-3246 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-145) (-865))) ELT)) (-2312 (($ (-1 (-112) (-145) (-145)) $) NIL T ELT) (($ $) NIL (|has| (-145) (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4471)) ELT) (((-145) $ (-1259 (-577)) (-145)) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1541 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3946 (($ $ (-1259 (-577)) $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-3920 (($ (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4470)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4471)) ELT)) (-2759 (((-145) $ (-577)) NIL T ELT)) (-3432 (((-112) $ $) NIL T ELT)) (-3728 (((-577) (-1 (-112) (-145)) $) NIL T ELT) (((-577) (-145) $) NIL (|has| (-145) (-1125)) ELT) (((-577) (-145) $ (-577)) NIL (|has| (-145) (-1125)) ELT) (((-577) $ $ (-577)) NIL T ELT) (((-577) (-142) $ (-577)) NIL T ELT)) (-3692 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-4223 (($ (-787) (-145)) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| (-145) (-865)) ELT)) (-1334 (($ (-1 (-112) (-145) (-145)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-145) (-865)) ELT)) (-2434 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-2984 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| (-145) (-865)) ELT)) (-1958 (((-112) $ $ (-145)) NIL T ELT)) (-2494 (((-787) $ $ (-145)) NIL T ELT)) (-2826 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-145) (-145)) $) NIL T ELT) (($ (-1 (-145) (-145) (-145)) $ $) NIL T ELT)) (-3107 (($ $) NIL T ELT)) (-2976 (($ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-1552 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-2045 (((-1183) $) NIL (|has| (-145) (-1125)) ELT)) (-2218 (($ (-145) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| (-145) (-1125)) ELT)) (-1652 (((-145) $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-2529 (($ $ (-145)) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT) (($ $ (-660 (-145)) (-660 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-3908 (((-660 (-145)) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT) (($ $ $) NIL T ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-145) (-627 (-549))) ELT)) (-3614 (($ (-660 (-145))) NIL T ELT)) (-1685 (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (($ (-145)) NIL T ELT) (((-880) $) NIL (|has| (-145) (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-2285 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)) ELT)) (-1422 (((-1183) $) 21 T ELT) (((-1183) $ (-112)) 23 T ELT) (((-1297) (-838) $) 24 T ELT) (((-1297) (-838) $ (-112)) 25 T ELT)) (-3001 (((-112) $ $) NIL (|has| (-145) (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| (-145) (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| (-145) (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| (-145) (-865)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1183) (-13 (-1169) (-844) (-10 -8 (-15 -1355 ($ (-577))) (-15 -1355 ($ (-228)))))) (T -1183)) -((-1355 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1183)))) (-1355 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1183))))) -(-13 (-1169) (-844) (-10 -8 (-15 -1355 ($ (-577))) (-15 -1355 ($ (-228))))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT)) (-2790 (((-1297) $ (-1183) (-1183)) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-1183) |#1|) NIL T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#1| "failed") (-1183) $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#1| "failed") (-1183) $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-1183) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-1183)) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-1183) $) NIL (|has| (-1183) (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-1183) $) NIL (|has| (-1183) (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125)) (|has| |#1| (-1125))) ELT)) (-3740 (((-660 (-1183)) $) NIL T ELT)) (-2490 (((-112) (-1183) $) NIL T ELT)) (-3596 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL T ELT)) (-3445 (((-660 (-1183)) $) NIL T ELT)) (-2187 (((-112) (-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125)) (|has| |#1| (-1125))) ELT)) (-1652 ((|#1| $) NIL (|has| (-1183) (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) "failed") (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL (-12 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-320 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-1183)) NIL T ELT) ((|#1| $ (-1183) |#1|) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-1125))) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-626 (-880))) (|has| |#1| (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 (-1183)) (|:| -2438 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1184 |#1|) (-13 (-1218 (-1183) |#1|) (-10 -7 (-6 -4470))) (-1125)) (T -1184)) -NIL -(-13 (-1218 (-1183) |#1|) (-10 -7 (-6 -4470))) -((-1701 (((-1182 |#1|) (-1182 |#1|)) 83 T ELT)) (-1625 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 39 T ELT)) (-3786 (((-1182 |#1|) (-420 (-577)) (-1182 |#1|)) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2212 (((-1182 |#1|) |#1| (-1182 |#1|)) 139 (|has| |#1| (-375)) ELT)) (-3283 (((-1182 |#1|) (-1182 |#1|)) 97 T ELT)) (-3857 (((-1182 (-577)) (-577)) 63 T ELT)) (-1967 (((-1182 |#1|) (-1182 (-1182 |#1|))) 116 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2103 (((-1182 |#1|) (-577) (-577) (-1182 |#1|)) 102 T ELT)) (-1740 (((-1182 |#1|) |#1| (-577)) 51 T ELT)) (-2420 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 66 T ELT)) (-2368 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 136 (|has| |#1| (-375)) ELT)) (-3352 (((-1182 |#1|) |#1| (-1 (-1182 |#1|))) 115 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3551 (((-1182 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1182 |#1|))) 137 (|has| |#1| (-375)) ELT)) (-2624 (((-1182 |#1|) (-1182 |#1|)) 96 T ELT)) (-4433 (((-1182 |#1|) (-1182 |#1|)) 82 T ELT)) (-2334 (((-1182 |#1|) (-577) (-577) (-1182 |#1|)) 103 T ELT)) (-4129 (((-1182 |#1|) |#1| (-1182 |#1|)) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2147 (((-1182 (-577)) (-577)) 62 T ELT)) (-2719 (((-1182 |#1|) |#1|) 65 T ELT)) (-3346 (((-1182 |#1|) (-1182 |#1|) (-577) (-577)) 99 T ELT)) (-4273 (((-1182 |#1|) (-1 |#1| (-577)) (-1182 |#1|)) 72 T ELT)) (-3478 (((-3 (-1182 |#1|) "failed") (-1182 |#1|) (-1182 |#1|)) 37 T ELT)) (-3245 (((-1182 |#1|) (-1182 |#1|)) 98 T ELT)) (-3273 (((-1182 |#1|) (-1182 |#1|) |#1|) 77 T ELT)) (-2326 (((-1182 |#1|) (-1182 |#1|)) 68 T ELT)) (-4016 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 78 T ELT)) (-3603 (((-1182 |#1|) |#1|) 73 T ELT)) (-1665 (((-1182 |#1|) (-1182 (-1182 |#1|))) 88 T ELT)) (-3051 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 38 T ELT)) (-3042 (((-1182 |#1|) (-1182 |#1|)) 21 T ELT) (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 23 T ELT)) (-3031 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 17 T ELT)) (* (((-1182 |#1|) (-1182 |#1|) |#1|) 29 T ELT) (((-1182 |#1|) |#1| (-1182 |#1|)) 26 T ELT) (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 27 T ELT))) -(((-1185 |#1|) (-10 -7 (-15 -3031 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3042 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3042 ((-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -3478 ((-3 (-1182 |#1|) "failed") (-1182 |#1|) (-1182 |#1|))) (-15 -3051 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -1625 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -1740 ((-1182 |#1|) |#1| (-577))) (-15 -2147 ((-1182 (-577)) (-577))) (-15 -3857 ((-1182 (-577)) (-577))) (-15 -2719 ((-1182 |#1|) |#1|)) (-15 -2420 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2326 ((-1182 |#1|) (-1182 |#1|))) (-15 -4273 ((-1182 |#1|) (-1 |#1| (-577)) (-1182 |#1|))) (-15 -3603 ((-1182 |#1|) |#1|)) (-15 -3273 ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -4016 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4433 ((-1182 |#1|) (-1182 |#1|))) (-15 -1701 ((-1182 |#1|) (-1182 |#1|))) (-15 -1665 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -2624 ((-1182 |#1|) (-1182 |#1|))) (-15 -3283 ((-1182 |#1|) (-1182 |#1|))) (-15 -3245 ((-1182 |#1|) (-1182 |#1|))) (-15 -3346 ((-1182 |#1|) (-1182 |#1|) (-577) (-577))) (-15 -2103 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (-15 -2334 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 -3352 ((-1182 |#1|) |#1| (-1 (-1182 |#1|)))) (-15 -1967 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -3786 ((-1182 |#1|) (-420 (-577)) (-1182 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -2368 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3551 ((-1182 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1182 |#1|)))) (-15 -2212 ((-1182 |#1|) |#1| (-1182 |#1|)))) |%noBranch|)) (-1074)) (T -1185)) -((-2212 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1182 *4))) (-4 *4 (-375)) (-4 *4 (-1074)) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)))) (-2368 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3786 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1074)) (-5 *3 (-420 (-577))) (-5 *1 (-1185 *4)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1182 *3))) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)))) (-4129 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-2334 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-2103 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-3346 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) (-4 *4 (-1074)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4433 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4016 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3273 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3603 (*1 *2 *3) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) (-4273 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-2326 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-2420 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-2719 (*1 *2 *3) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) (-3857 (*1 *2 *3) (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) (-5 *3 (-577)))) (-2147 (*1 *2 *3) (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) (-5 *3 (-577)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) (-1625 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3478 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3042 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) -(-10 -7 (-15 -3031 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3042 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3042 ((-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -3478 ((-3 (-1182 |#1|) "failed") (-1182 |#1|) (-1182 |#1|))) (-15 -3051 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -1625 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -1740 ((-1182 |#1|) |#1| (-577))) (-15 -2147 ((-1182 (-577)) (-577))) (-15 -3857 ((-1182 (-577)) (-577))) (-15 -2719 ((-1182 |#1|) |#1|)) (-15 -2420 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2326 ((-1182 |#1|) (-1182 |#1|))) (-15 -4273 ((-1182 |#1|) (-1 |#1| (-577)) (-1182 |#1|))) (-15 -3603 ((-1182 |#1|) |#1|)) (-15 -3273 ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -4016 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4433 ((-1182 |#1|) (-1182 |#1|))) (-15 -1701 ((-1182 |#1|) (-1182 |#1|))) (-15 -1665 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -2624 ((-1182 |#1|) (-1182 |#1|))) (-15 -3283 ((-1182 |#1|) (-1182 |#1|))) (-15 -3245 ((-1182 |#1|) (-1182 |#1|))) (-15 -3346 ((-1182 |#1|) (-1182 |#1|) (-577) (-577))) (-15 -2103 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (-15 -2334 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 -3352 ((-1182 |#1|) |#1| (-1 (-1182 |#1|)))) (-15 -1967 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -3786 ((-1182 |#1|) (-420 (-577)) (-1182 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -2368 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3551 ((-1182 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1182 |#1|)))) (-15 -2212 ((-1182 |#1|) |#1| (-1182 |#1|)))) |%noBranch|)) -((-2642 (((-1182 |#1|) (-1182 |#1|)) 60 T ELT)) (-2501 (((-1182 |#1|) (-1182 |#1|)) 42 T ELT)) (-2616 (((-1182 |#1|) (-1182 |#1|)) 56 T ELT)) (-2471 (((-1182 |#1|) (-1182 |#1|)) 38 T ELT)) (-2666 (((-1182 |#1|) (-1182 |#1|)) 63 T ELT)) (-2523 (((-1182 |#1|) (-1182 |#1|)) 45 T ELT)) (-3716 (((-1182 |#1|) (-1182 |#1|)) 34 T ELT)) (-2079 (((-1182 |#1|) (-1182 |#1|)) 29 T ELT)) (-2680 (((-1182 |#1|) (-1182 |#1|)) 64 T ELT)) (-2535 (((-1182 |#1|) (-1182 |#1|)) 46 T ELT)) (-2655 (((-1182 |#1|) (-1182 |#1|)) 61 T ELT)) (-2512 (((-1182 |#1|) (-1182 |#1|)) 43 T ELT)) (-2631 (((-1182 |#1|) (-1182 |#1|)) 58 T ELT)) (-2486 (((-1182 |#1|) (-1182 |#1|)) 40 T ELT)) (-2722 (((-1182 |#1|) (-1182 |#1|)) 68 T ELT)) (-2570 (((-1182 |#1|) (-1182 |#1|)) 50 T ELT)) (-2694 (((-1182 |#1|) (-1182 |#1|)) 66 T ELT)) (-2546 (((-1182 |#1|) (-1182 |#1|)) 48 T ELT)) (-2748 (((-1182 |#1|) (-1182 |#1|)) 71 T ELT)) (-2592 (((-1182 |#1|) (-1182 |#1|)) 53 T ELT)) (-2897 (((-1182 |#1|) (-1182 |#1|)) 72 T ELT)) (-2604 (((-1182 |#1|) (-1182 |#1|)) 54 T ELT)) (-2734 (((-1182 |#1|) (-1182 |#1|)) 70 T ELT)) (-2581 (((-1182 |#1|) (-1182 |#1|)) 52 T ELT)) (-2708 (((-1182 |#1|) (-1182 |#1|)) 69 T ELT)) (-2558 (((-1182 |#1|) (-1182 |#1|)) 51 T ELT)) (** (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 36 T ELT))) -(((-1186 |#1|) (-10 -7 (-15 -2079 ((-1182 |#1|) (-1182 |#1|))) (-15 -3716 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2471 ((-1182 |#1|) (-1182 |#1|))) (-15 -2486 ((-1182 |#1|) (-1182 |#1|))) (-15 -2501 ((-1182 |#1|) (-1182 |#1|))) (-15 -2512 ((-1182 |#1|) (-1182 |#1|))) (-15 -2523 ((-1182 |#1|) (-1182 |#1|))) (-15 -2535 ((-1182 |#1|) (-1182 |#1|))) (-15 -2546 ((-1182 |#1|) (-1182 |#1|))) (-15 -2558 ((-1182 |#1|) (-1182 |#1|))) (-15 -2570 ((-1182 |#1|) (-1182 |#1|))) (-15 -2581 ((-1182 |#1|) (-1182 |#1|))) (-15 -2592 ((-1182 |#1|) (-1182 |#1|))) (-15 -2604 ((-1182 |#1|) (-1182 |#1|))) (-15 -2616 ((-1182 |#1|) (-1182 |#1|))) (-15 -2631 ((-1182 |#1|) (-1182 |#1|))) (-15 -2642 ((-1182 |#1|) (-1182 |#1|))) (-15 -2655 ((-1182 |#1|) (-1182 |#1|))) (-15 -2666 ((-1182 |#1|) (-1182 |#1|))) (-15 -2680 ((-1182 |#1|) (-1182 |#1|))) (-15 -2694 ((-1182 |#1|) (-1182 |#1|))) (-15 -2708 ((-1182 |#1|) (-1182 |#1|))) (-15 -2722 ((-1182 |#1|) (-1182 |#1|))) (-15 -2734 ((-1182 |#1|) (-1182 |#1|))) (-15 -2748 ((-1182 |#1|) (-1182 |#1|))) (-15 -2897 ((-1182 |#1|) (-1182 |#1|)))) (-38 (-420 (-577)))) (T -1186)) -((-2897 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2722 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2694 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2655 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2631 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2512 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2486 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3))))) -(-10 -7 (-15 -2079 ((-1182 |#1|) (-1182 |#1|))) (-15 -3716 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2471 ((-1182 |#1|) (-1182 |#1|))) (-15 -2486 ((-1182 |#1|) (-1182 |#1|))) (-15 -2501 ((-1182 |#1|) (-1182 |#1|))) (-15 -2512 ((-1182 |#1|) (-1182 |#1|))) (-15 -2523 ((-1182 |#1|) (-1182 |#1|))) (-15 -2535 ((-1182 |#1|) (-1182 |#1|))) (-15 -2546 ((-1182 |#1|) (-1182 |#1|))) (-15 -2558 ((-1182 |#1|) (-1182 |#1|))) (-15 -2570 ((-1182 |#1|) (-1182 |#1|))) (-15 -2581 ((-1182 |#1|) (-1182 |#1|))) (-15 -2592 ((-1182 |#1|) (-1182 |#1|))) (-15 -2604 ((-1182 |#1|) (-1182 |#1|))) (-15 -2616 ((-1182 |#1|) (-1182 |#1|))) (-15 -2631 ((-1182 |#1|) (-1182 |#1|))) (-15 -2642 ((-1182 |#1|) (-1182 |#1|))) (-15 -2655 ((-1182 |#1|) (-1182 |#1|))) (-15 -2666 ((-1182 |#1|) (-1182 |#1|))) (-15 -2680 ((-1182 |#1|) (-1182 |#1|))) (-15 -2694 ((-1182 |#1|) (-1182 |#1|))) (-15 -2708 ((-1182 |#1|) (-1182 |#1|))) (-15 -2722 ((-1182 |#1|) (-1182 |#1|))) (-15 -2734 ((-1182 |#1|) (-1182 |#1|))) (-15 -2748 ((-1182 |#1|) (-1182 |#1|))) (-15 -2897 ((-1182 |#1|) (-1182 |#1|)))) -((-2642 (((-1182 |#1|) (-1182 |#1|)) 102 T ELT)) (-2501 (((-1182 |#1|) (-1182 |#1|)) 61 T ELT)) (-2640 (((-2 (|:| -2616 (-1182 |#1|)) (|:| -2631 (-1182 |#1|))) (-1182 |#1|)) 98 T ELT)) (-2616 (((-1182 |#1|) (-1182 |#1|)) 99 T ELT)) (-4052 (((-2 (|:| -2471 (-1182 |#1|)) (|:| -2486 (-1182 |#1|))) (-1182 |#1|)) 54 T ELT)) (-2471 (((-1182 |#1|) (-1182 |#1|)) 55 T ELT)) (-2666 (((-1182 |#1|) (-1182 |#1|)) 104 T ELT)) (-2523 (((-1182 |#1|) (-1182 |#1|)) 68 T ELT)) (-3716 (((-1182 |#1|) (-1182 |#1|)) 40 T ELT)) (-2079 (((-1182 |#1|) (-1182 |#1|)) 37 T ELT)) (-2680 (((-1182 |#1|) (-1182 |#1|)) 105 T ELT)) (-2535 (((-1182 |#1|) (-1182 |#1|)) 69 T ELT)) (-2655 (((-1182 |#1|) (-1182 |#1|)) 103 T ELT)) (-2512 (((-1182 |#1|) (-1182 |#1|)) 64 T ELT)) (-2631 (((-1182 |#1|) (-1182 |#1|)) 100 T ELT)) (-2486 (((-1182 |#1|) (-1182 |#1|)) 56 T ELT)) (-2722 (((-1182 |#1|) (-1182 |#1|)) 113 T ELT)) (-2570 (((-1182 |#1|) (-1182 |#1|)) 88 T ELT)) (-2694 (((-1182 |#1|) (-1182 |#1|)) 107 T ELT)) (-2546 (((-1182 |#1|) (-1182 |#1|)) 84 T ELT)) (-2748 (((-1182 |#1|) (-1182 |#1|)) 117 T ELT)) (-2592 (((-1182 |#1|) (-1182 |#1|)) 92 T ELT)) (-2897 (((-1182 |#1|) (-1182 |#1|)) 119 T ELT)) (-2604 (((-1182 |#1|) (-1182 |#1|)) 94 T ELT)) (-2734 (((-1182 |#1|) (-1182 |#1|)) 115 T ELT)) (-2581 (((-1182 |#1|) (-1182 |#1|)) 90 T ELT)) (-2708 (((-1182 |#1|) (-1182 |#1|)) 109 T ELT)) (-2558 (((-1182 |#1|) (-1182 |#1|)) 86 T ELT)) (** (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 41 T ELT))) -(((-1187 |#1|) (-10 -7 (-15 -2079 ((-1182 |#1|) (-1182 |#1|))) (-15 -3716 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4052 ((-2 (|:| -2471 (-1182 |#1|)) (|:| -2486 (-1182 |#1|))) (-1182 |#1|))) (-15 -2471 ((-1182 |#1|) (-1182 |#1|))) (-15 -2486 ((-1182 |#1|) (-1182 |#1|))) (-15 -2501 ((-1182 |#1|) (-1182 |#1|))) (-15 -2512 ((-1182 |#1|) (-1182 |#1|))) (-15 -2523 ((-1182 |#1|) (-1182 |#1|))) (-15 -2535 ((-1182 |#1|) (-1182 |#1|))) (-15 -2546 ((-1182 |#1|) (-1182 |#1|))) (-15 -2558 ((-1182 |#1|) (-1182 |#1|))) (-15 -2570 ((-1182 |#1|) (-1182 |#1|))) (-15 -2581 ((-1182 |#1|) (-1182 |#1|))) (-15 -2592 ((-1182 |#1|) (-1182 |#1|))) (-15 -2604 ((-1182 |#1|) (-1182 |#1|))) (-15 -2640 ((-2 (|:| -2616 (-1182 |#1|)) (|:| -2631 (-1182 |#1|))) (-1182 |#1|))) (-15 -2616 ((-1182 |#1|) (-1182 |#1|))) (-15 -2631 ((-1182 |#1|) (-1182 |#1|))) (-15 -2642 ((-1182 |#1|) (-1182 |#1|))) (-15 -2655 ((-1182 |#1|) (-1182 |#1|))) (-15 -2666 ((-1182 |#1|) (-1182 |#1|))) (-15 -2680 ((-1182 |#1|) (-1182 |#1|))) (-15 -2694 ((-1182 |#1|) (-1182 |#1|))) (-15 -2708 ((-1182 |#1|) (-1182 |#1|))) (-15 -2722 ((-1182 |#1|) (-1182 |#1|))) (-15 -2734 ((-1182 |#1|) (-1182 |#1|))) (-15 -2748 ((-1182 |#1|) (-1182 |#1|))) (-15 -2897 ((-1182 |#1|) (-1182 |#1|)))) (-38 (-420 (-577)))) (T -1187)) -((-2897 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2722 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2694 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2655 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2631 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2640 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -2616 (-1182 *4)) (|:| -2631 (-1182 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2523 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2512 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2486 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -2471 (-1182 *4)) (|:| -2486 (-1182 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3))))) -(-10 -7 (-15 -2079 ((-1182 |#1|) (-1182 |#1|))) (-15 -3716 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4052 ((-2 (|:| -2471 (-1182 |#1|)) (|:| -2486 (-1182 |#1|))) (-1182 |#1|))) (-15 -2471 ((-1182 |#1|) (-1182 |#1|))) (-15 -2486 ((-1182 |#1|) (-1182 |#1|))) (-15 -2501 ((-1182 |#1|) (-1182 |#1|))) (-15 -2512 ((-1182 |#1|) (-1182 |#1|))) (-15 -2523 ((-1182 |#1|) (-1182 |#1|))) (-15 -2535 ((-1182 |#1|) (-1182 |#1|))) (-15 -2546 ((-1182 |#1|) (-1182 |#1|))) (-15 -2558 ((-1182 |#1|) (-1182 |#1|))) (-15 -2570 ((-1182 |#1|) (-1182 |#1|))) (-15 -2581 ((-1182 |#1|) (-1182 |#1|))) (-15 -2592 ((-1182 |#1|) (-1182 |#1|))) (-15 -2604 ((-1182 |#1|) (-1182 |#1|))) (-15 -2640 ((-2 (|:| -2616 (-1182 |#1|)) (|:| -2631 (-1182 |#1|))) (-1182 |#1|))) (-15 -2616 ((-1182 |#1|) (-1182 |#1|))) (-15 -2631 ((-1182 |#1|) (-1182 |#1|))) (-15 -2642 ((-1182 |#1|) (-1182 |#1|))) (-15 -2655 ((-1182 |#1|) (-1182 |#1|))) (-15 -2666 ((-1182 |#1|) (-1182 |#1|))) (-15 -2680 ((-1182 |#1|) (-1182 |#1|))) (-15 -2694 ((-1182 |#1|) (-1182 |#1|))) (-15 -2708 ((-1182 |#1|) (-1182 |#1|))) (-15 -2722 ((-1182 |#1|) (-1182 |#1|))) (-15 -2734 ((-1182 |#1|) (-1182 |#1|))) (-15 -2748 ((-1182 |#1|) (-1182 |#1|))) (-15 -2897 ((-1182 |#1|) (-1182 |#1|)))) -((-4426 (((-981 |#2|) |#2| |#2|) 50 T ELT)) (-2308 ((|#2| |#2| |#1|) 19 (|has| |#1| (-318)) ELT))) -(((-1188 |#1| |#2|) (-10 -7 (-15 -4426 ((-981 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -2308 (|#2| |#2| |#1|)) |%noBranch|)) (-569) (-1268 |#1|)) (T -1188)) -((-2308 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1188 *3 *2)) (-4 *2 (-1268 *3)))) (-4426 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-981 *3)) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -4426 ((-981 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -2308 (|#2| |#2| |#1|)) |%noBranch|)) -((-3489 (((-112) $ $) NIL T ELT)) (-3392 (($ $ (-660 (-787))) 79 T ELT)) (-2760 (($) 33 T ELT)) (-4232 (($ $) 51 T ELT)) (-4221 (((-660 $) $) 60 T ELT)) (-2414 (((-112) $) 19 T ELT)) (-2064 (((-660 (-966 |#2|)) $) 86 T ELT)) (-3767 (($ $) 80 T ELT)) (-3922 (((-787) $) 47 T ELT)) (-4223 (($) 32 T ELT)) (-3589 (($ $ (-660 (-787)) (-966 |#2|)) 72 T ELT) (($ $ (-660 (-787)) (-787)) 73 T ELT) (($ $ (-787) (-966 |#2|)) 75 T ELT)) (-1334 (($ $ $) 57 T ELT) (($ (-660 $)) 59 T ELT)) (-2090 (((-787) $) 87 T ELT)) (-2284 (((-112) $) 15 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2779 (((-112) $) 22 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3544 (((-173) $) 85 T ELT)) (-1657 (((-966 |#2|) $) 81 T ELT)) (-3702 (((-787) $) 82 T ELT)) (-2021 (((-112) $) 84 T ELT)) (-3521 (($ $ (-660 (-787)) (-173)) 78 T ELT)) (-3202 (($ $) 52 T ELT)) (-3603 (((-880) $) 99 T ELT)) (-1689 (($ $ (-660 (-787)) (-112)) 77 T ELT)) (-2333 (((-660 $) $) 11 T ELT)) (-4300 (($ $ (-787)) 46 T ELT)) (-3008 (($ $) 43 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2275 (($ $ $ (-966 |#2|) (-787)) 68 T ELT)) (-4031 (($ $ (-966 |#2|)) 67 T ELT)) (-2601 (($ $ (-660 (-787)) (-966 |#2|)) 66 T ELT) (($ $ (-660 (-787)) (-787)) 70 T ELT) (((-787) $ (-966 |#2|)) 71 T ELT)) (-2949 (((-112) $ $) 92 T ELT))) -(((-1189 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -2284 ((-112) $)) (-15 -2414 ((-112) $)) (-15 -2779 ((-112) $)) (-15 -4223 ($)) (-15 -2760 ($)) (-15 -3008 ($ $)) (-15 -4300 ($ $ (-787))) (-15 -2333 ((-660 $) $)) (-15 -3922 ((-787) $)) (-15 -4232 ($ $)) (-15 -3202 ($ $)) (-15 -1334 ($ $ $)) (-15 -1334 ($ (-660 $))) (-15 -4221 ((-660 $) $)) (-15 -2601 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -4031 ($ $ (-966 |#2|))) (-15 -2275 ($ $ $ (-966 |#2|) (-787))) (-15 -3589 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -2601 ($ $ (-660 (-787)) (-787))) (-15 -3589 ($ $ (-660 (-787)) (-787))) (-15 -2601 ((-787) $ (-966 |#2|))) (-15 -3589 ($ $ (-787) (-966 |#2|))) (-15 -1689 ($ $ (-660 (-787)) (-112))) (-15 -3521 ($ $ (-660 (-787)) (-173))) (-15 -3392 ($ $ (-660 (-787)))) (-15 -1657 ((-966 |#2|) $)) (-15 -3702 ((-787) $)) (-15 -2021 ((-112) $)) (-15 -3544 ((-173) $)) (-15 -2090 ((-787) $)) (-15 -3767 ($ $)) (-15 -2064 ((-660 (-966 |#2|)) $)))) (-944) (-1074)) (T -1189)) -((-2284 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-4223 (*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-2760 (*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3008 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-4300 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-4232 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3202 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-1334 (*1 *1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-2601 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-4031 (*1 *1 *1 *2) (-12 (-5 *2 (-966 *4)) (-4 *4 (-1074)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)))) (-2275 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-966 *5)) (-5 *3 (-787)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-3589 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-2601 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-3589 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-2601 (*1 *2 *1 *3) (-12 (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *2 (-787)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-3589 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-1689 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-112)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-3521 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-173)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-966 *4)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3767 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-660 (-966 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074))))) -(-13 (-1125) (-10 -8 (-15 -2284 ((-112) $)) (-15 -2414 ((-112) $)) (-15 -2779 ((-112) $)) (-15 -4223 ($)) (-15 -2760 ($)) (-15 -3008 ($ $)) (-15 -4300 ($ $ (-787))) (-15 -2333 ((-660 $) $)) (-15 -3922 ((-787) $)) (-15 -4232 ($ $)) (-15 -3202 ($ $)) (-15 -1334 ($ $ $)) (-15 -1334 ($ (-660 $))) (-15 -4221 ((-660 $) $)) (-15 -2601 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -4031 ($ $ (-966 |#2|))) (-15 -2275 ($ $ $ (-966 |#2|) (-787))) (-15 -3589 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -2601 ($ $ (-660 (-787)) (-787))) (-15 -3589 ($ $ (-660 (-787)) (-787))) (-15 -2601 ((-787) $ (-966 |#2|))) (-15 -3589 ($ $ (-787) (-966 |#2|))) (-15 -1689 ($ $ (-660 (-787)) (-112))) (-15 -3521 ($ $ (-660 (-787)) (-173))) (-15 -3392 ($ $ (-660 (-787)))) (-15 -1657 ((-966 |#2|) $)) (-15 -3702 ((-787) $)) (-15 -2021 ((-112) $)) (-15 -3544 ((-173) $)) (-15 -2090 ((-787) $)) (-15 -3767 ($ $)) (-15 -2064 ((-660 (-966 |#2|)) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2171 ((|#2| $) 11 T ELT)) (-2159 ((|#1| $) 10 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3614 (($ |#1| |#2|) 9 T ELT)) (-3603 (((-880) $) 16 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1190 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -3614 ($ |#1| |#2|)) (-15 -2159 (|#1| $)) (-15 -2171 (|#2| $)))) (-1125) (-1125)) (T -1190)) -((-3614 (*1 *1 *2 *3) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-2159 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-1125)))) (-2171 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-1125))))) -(-13 (-1125) (-10 -8 (-15 -3614 ($ |#1| |#2|)) (-15 -2159 (|#1| $)) (-15 -2171 (|#2| $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1408 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 15 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1191) (-13 (-1108) (-10 -8 (-15 -1408 ((-1160) $))))) (T -1191)) -((-1408 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1191))))) -(-13 (-1108) (-10 -8 (-15 -1408 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 (((-1199 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 11 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-4122 (($ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3547 (((-112) $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3959 (($ $ (-577)) NIL T ELT) (($ $ (-577) (-577)) 75 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL T ELT)) (-4110 (((-1199 |#1| |#2| |#3|) $) 42 T ELT)) (-1790 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-3268 (((-1199 |#1| |#2| |#3|) $) 33 T ELT)) (-2642 (($ $) 116 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2917 (((-577) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL T ELT)) (-2666 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 34 T ELT) (((-3 (-1201) "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT)) (-2155 (((-1199 |#1| |#2| |#3|) $) 140 T ELT) (((-1201) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-577) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT)) (-1459 (($ $) 37 T ELT) (($ (-577) $) 38 T ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-1199 |#1| |#2| |#3|)) (-705 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-1199 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1199 |#1| |#2| |#3|)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-705 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT)) (-1625 (((-3 $ "failed") $) 54 T ELT)) (-3254 (((-420 (-975 |#1|)) $ (-577)) 74 (|has| |#1| (-569)) ELT) (((-420 (-975 |#1|)) $ (-577) (-577)) 76 (|has| |#1| (-569)) ELT)) (-2352 (($) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4302 (((-112) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-2307 (((-112) $) 28 T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-905 (-391))) (|has| |#1| (-375))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-905 (-577))) (|has| |#1| (-375))) ELT)) (-2536 (((-577) $) NIL T ELT) (((-577) $ (-577)) 26 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2781 (((-1199 |#1| |#2| |#3|) $) 44 (|has| |#1| (-375)) ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1454 (((-3 $ "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))) ELT)) (-2178 (((-112) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-3681 (($ $ (-944)) NIL T ELT)) (-2720 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-577)) 19 T ELT) (($ $ (-1107) (-577)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-577))) NIL T ELT)) (-2900 (($ $ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-1457 (($ $ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)) ELT)) (-3716 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1512 (((-705 (-1199 |#1| |#2| |#3|)) (-1292 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-1199 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1199 |#1| |#2| |#3|)))) (-1292 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3281 (($ (-577) (-1199 |#1| |#2| |#3|)) 36 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4129 (($ $) 79 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT) (($ $ (-1288 |#2|)) 80 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3457 (($) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3053 (($ $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-1374 (((-1199 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-577)) 158 T ELT)) (-3478 (((-3 $ "failed") $ $) 55 (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2079 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1201) (-1199 |#1| |#2| |#3|)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-527 (-1201) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1201)) (-660 (-1199 |#1| |#2| |#3|))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-527 (-1201) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-305 (-1199 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-305 (-1199 |#1| |#2| |#3|))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1199 |#1| |#2| |#3|)) (-660 (-1199 |#1| |#2| |#3|))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-577)) NIL T ELT) (($ $ $) 61 (|has| (-577) (-1137)) ELT) (($ $ (-1199 |#1| |#2| |#3|)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-297 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1288 |#2|)) 57 T ELT) (($ $) 56 (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT)) (-3069 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2797 (((-1199 |#1| |#2| |#3|) $) 46 (|has| |#1| (-375)) ELT)) (-3616 (((-577) $) 43 T ELT)) (-2680 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 118 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 114 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2176 (((-549) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-627 (-549))) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375))) ELT) (((-228) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375))) ELT) (((-911 (-391)) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-627 (-911 (-391)))) (|has| |#1| (-375))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-627 (-911 (-577)))) (|has| |#1| (-375))) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) 162 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1199 |#1| |#2| |#3|)) 30 T ELT) (($ (-1288 |#2|)) 25 T ELT) (($ (-1201)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375))) ELT) (($ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT) (($ (-420 (-577))) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-3421 ((|#1| $ (-577)) 77 T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) 12 T ELT)) (-2360 (((-1199 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2694 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 108 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 110 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4318 (($ $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-2754 (($) 21 T CONST)) (-2767 (($) 16 T CONST)) (-2136 (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1288 |#2|)) NIL T ELT) (($ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT)) (-3001 (((-112) $ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2978 (((-112) $ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2971 (((-112) $ $) NIL (-2811 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 49 (|has| |#1| (-375)) ELT) (($ (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) 50 (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 23 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 60 T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1199 |#1| |#2| |#3|)) 48 (|has| |#1| (-375)) ELT) (($ (-1199 |#1| |#2| |#3|) $) 47 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1192 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1199 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1192)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(-13 (-1254 |#1| (-1199 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) -((-3158 ((|#2| |#2| (-1117 |#2|)) 26 T ELT) ((|#2| |#2| (-1201)) 28 T ELT))) -(((-1193 |#1| |#2|) (-10 -7 (-15 -3158 (|#2| |#2| (-1201))) (-15 -3158 (|#2| |#2| (-1117 |#2|)))) (-13 (-569) (-1063 (-577)) (-654 (-577))) (-13 (-443 |#1|) (-161) (-27) (-1227))) (T -1193)) -((-3158 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227))) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1193 *4 *2)))) (-3158 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1193 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227)))))) -(-10 -7 (-15 -3158 (|#2| |#2| (-1201))) (-15 -3158 (|#2| |#2| (-1117 |#2|)))) -((-3158 (((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1117 (-420 (-975 |#1|)))) 31 T ELT) (((-420 (-975 |#1|)) (-975 |#1|) (-1117 (-975 |#1|))) 44 T ELT) (((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1201)) 33 T ELT) (((-420 (-975 |#1|)) (-975 |#1|) (-1201)) 36 T ELT))) -(((-1194 |#1|) (-10 -7 (-15 -3158 ((-420 (-975 |#1|)) (-975 |#1|) (-1201))) (-15 -3158 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -3158 ((-420 (-975 |#1|)) (-975 |#1|) (-1117 (-975 |#1|)))) (-15 -3158 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1117 (-420 (-975 |#1|)))))) (-13 (-569) (-1063 (-577)))) (T -1194)) -((-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-3 *3 (-327 *5))) (-5 *1 (-1194 *5)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-975 *5))) (-5 *3 (-975 *5)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 *3)) (-5 *1 (-1194 *5)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-3 (-420 (-975 *5)) (-327 *5))) (-5 *1 (-1194 *5)) (-5 *3 (-420 (-975 *5))))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 (-975 *5))) (-5 *1 (-1194 *5)) (-5 *3 (-975 *5))))) -(-10 -7 (-15 -3158 ((-420 (-975 |#1|)) (-975 |#1|) (-1201))) (-15 -3158 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -3158 ((-420 (-975 |#1|)) (-975 |#1|) (-1117 (-975 |#1|)))) (-15 -3158 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1117 (-420 (-975 |#1|)))))) -((-2124 (((-1197 |#2|) (-1 |#2| |#1|) (-1197 |#1|)) 13 T ELT))) -(((-1195 |#1| |#2|) (-10 -7 (-15 -2124 ((-1197 |#2|) (-1 |#2| |#1|) (-1197 |#1|)))) (-1074) (-1074)) (T -1195)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1197 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1197 *6)) (-5 *1 (-1195 *5 *6))))) -(-10 -7 (-15 -2124 ((-1197 |#2|) (-1 |#2| |#1|) (-1197 |#1|)))) -((-3836 (((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))) 51 T ELT)) (-3056 (((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))) 52 T ELT))) -(((-1196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|)))) (-15 -3836 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))))) (-809) (-865) (-465) (-972 |#3| |#1| |#2|)) (T -1196)) -((-3836 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7))))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7)))))) -(-10 -7 (-15 -3056 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|)))) (-15 -3836 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))))) -((-3489 (((-112) $ $) 171 T ELT)) (-3801 (((-112) $) 43 T ELT)) (-1563 (((-1292 |#1|) $ (-787)) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3893 (($ (-1197 |#1|)) NIL T ELT)) (-3024 (((-1197 $) $ (-1107)) 82 T ELT) (((-1197 |#1|) $) 71 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) 164 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-1107))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4072 (($ $ $) 158 (|has| |#1| (-569)) ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 95 (|has| |#1| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 115 (|has| |#1| (-932)) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3890 (($ $ (-787)) 61 T ELT)) (-2167 (($ $ (-787)) 63 T ELT)) (-4221 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-1107) "failed") $) NIL T ELT)) (-2155 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-1107) $) NIL T ELT)) (-2653 (($ $ $ (-1107)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) 160 (|has| |#1| (-174)) ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) 80 T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#1|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4123 (($ $ $) 131 T ELT)) (-2474 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2737 (((-2 (|:| -2940 |#1|) (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2308 (($ $) 165 (|has| |#1| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-787) $) 69 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-4116 (((-880) $ (-880)) 148 T ELT)) (-2536 (((-787) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-112) $) 48 T ELT)) (-2011 (((-787) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)) ELT)) (-3194 (($ (-1197 |#1|) (-1107)) 73 T ELT) (($ (-1197 $) (-1107)) 89 T ELT)) (-3681 (($ $ (-787)) 51 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) 87 T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-1107)) NIL T ELT) (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 153 T ELT)) (-2643 (((-787) $) NIL T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-4373 (($ (-1 (-787) (-787)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2432 (((-1197 |#1|) $) NIL T ELT)) (-4038 (((-3 (-1107) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL T ELT) (((-705 |#1|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) 76 T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2454 (((-2 (|:| -2669 $) (|:| -2689 $)) $ (-787)) 60 T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-1107)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-4129 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3457 (($) NIL (|has| |#1| (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) 50 T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 103 (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) 167 (|has| |#1| (-465)) ELT)) (-1391 (($ $ (-787) |#1| $) 123 T ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 101 (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 100 (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) 108 (|has| |#1| (-932)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 124 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1107) |#1|) NIL T ELT) (($ $ (-660 (-1107)) (-660 |#1|)) NIL T ELT) (($ $ (-1107) $) NIL T ELT) (($ $ (-660 (-1107)) (-660 $)) NIL T ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ |#1|) 150 T ELT) (($ $ $) 151 T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-4036 (((-3 $ "failed") $ (-787)) 54 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 172 (|has| |#1| (-375)) ELT)) (-4447 (($ $ (-1107)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) 156 (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-3616 (((-787) $) 78 T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) 162 (|has| |#1| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-3603 (((-880) $) 149 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1107)) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) 41 (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) 17 T CONST)) (-2767 (($) 19 T CONST)) (-2136 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) 120 T ELT)) (-3051 (($ $ |#1|) 173 (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 90 T ELT)) (** (($ $ (-944)) 14 T ELT) (($ $ (-787)) 12 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 129 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1197 |#1|) (-13 (-1268 |#1|) (-10 -8 (-15 -4116 ((-880) $ (-880))) (-15 -1391 ($ $ (-787) |#1| $)))) (-1074)) (T -1197)) -((-4116 (*1 *2 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1197 *3)) (-4 *3 (-1074)))) (-1391 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1197 *3)) (-4 *3 (-1074))))) -(-13 (-1268 |#1|) (-10 -8 (-15 -4116 ((-880) $ (-880))) (-15 -1391 ($ $ (-787) |#1| $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 11 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-2642 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-2666 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 33 T ELT) (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 36 T ELT)) (-2155 (((-1192 |#1| |#2| |#3|) $) NIL T ELT) (((-1199 |#1| |#2| |#3|) $) NIL T ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2703 (((-420 (-577)) $) 59 T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3293 (($ (-420 (-577)) (-1192 |#1| |#2| |#3|)) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-420 (-577))) 20 T ELT) (($ $ (-1107) (-420 (-577))) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3716 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4029 (((-1192 |#1| |#2| |#3|) $) 41 T ELT)) (-2246 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3281 (((-1192 |#1| |#2| |#3|) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4129 (($ $) 39 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT) (($ $ (-1288 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-420 (-577))) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2079 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1288 |#2|)) 38 T ELT)) (-3616 (((-420 (-577)) $) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) 62 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1192 |#1| |#2| |#3|)) 30 T ELT) (($ (-1199 |#1| |#2| |#3|)) 31 T ELT) (($ (-1288 |#2|)) 26 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-420 (-577))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 22 T CONST)) (-2767 (($) 16 T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1288 |#2|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 24 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1198 |#1| |#2| |#3|) (-13 (-1275 |#1| (-1192 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1199 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1198)) -((-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(-13 (-1275 |#1| (-1192 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1199 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 129 T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 119 T ELT)) (-3198 (((-1265 |#2| |#1|) $ (-787)) 69 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-787)) 85 T ELT) (($ $ (-787) (-787)) 82 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|))) $) 105 T ELT)) (-2642 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2616 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1182 |#1|)) 113 T ELT)) (-2666 (($ $) 177 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 25 T ELT)) (-2353 (($ $) 28 T ELT)) (-2817 (((-975 |#1|) $ (-787)) 81 T ELT) (((-975 |#1|) $ (-787) (-787)) 83 T ELT)) (-2307 (((-112) $) 124 T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-787) $) 126 T ELT) (((-787) $ (-787)) 128 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) NIL T ELT)) (-2720 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) 13 T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3716 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4129 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT) (($ $ (-1288 |#2|)) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1987 (($ $ (-787)) 15 T ELT)) (-3478 (((-3 $ "failed") $ $) 26 (|has| |#1| (-569)) ELT)) (-2079 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-787)))) ELT)) (-2837 ((|#1| $ (-787)) 122 T ELT) (($ $ $) 132 (|has| (-787) (-1137)) ELT)) (-3362 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-1288 |#2|)) 31 T ELT)) (-3616 (((-787) $) NIL T ELT)) (-2680 (($ $) 179 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) 206 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 130 (|has| |#1| (-174)) ELT) (($ (-1265 |#2| |#1|)) 55 T ELT) (($ (-1288 |#2|)) 36 T ELT)) (-4198 (((-1182 |#1|) $) 101 T ELT)) (-3421 ((|#1| $ (-787)) 121 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) 58 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 165 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-787)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 167 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 163 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 17 T CONST)) (-2767 (($) 20 T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-1288 |#2|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3031 (($ $ $) 35 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-375)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1199 |#1| |#2| |#3|) (-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1265 |#2| |#1|))) (-15 -3198 ((-1265 |#2| |#1|) $ (-787))) (-15 -3603 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1199)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-1199 *3 *4 *5)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1199 *4 *5 *6)) (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1265 |#2| |#1|))) (-15 -3198 ((-1265 |#2| |#1|) $ (-787))) (-15 -3603 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) -((-3603 (((-880) $) 33 T ELT) (($ (-1201)) 35 T ELT)) (-2811 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-2799 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3193 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-3178 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-3164 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-3153 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-2068 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) -(((-1200) (-13 (-626 (-880)) (-10 -8 (-15 -3603 ($ (-1201))) (-15 -3193 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3164 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3178 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3153 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2811 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2068 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2799 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2799 ($ $))))) (T -1200)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1200)))) (-3193 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-3164 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-3178 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-3153 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2811 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2068 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2799 (*1 *1 *1) (-5 *1 (-1200)))) -(-13 (-626 (-880)) (-10 -8 (-15 -3603 ($ (-1201))) (-15 -3193 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3164 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3178 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3153 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2811 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2068 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2799 ($ (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2799 ($ $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1366 (($ $ (-660 (-880))) 62 T ELT)) (-2375 (($ $ (-660 (-880))) 60 T ELT)) (-1355 (((-1183) $) 101 T ELT)) (-3775 (((-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880)))) $) 108 T ELT)) (-2210 (((-112) $) 23 T ELT)) (-2886 (($ $ (-660 (-660 (-880)))) 59 T ELT) (($ $ (-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880))))) 99 T ELT)) (-3790 (($) 163 T CONST)) (-4028 (((-1297)) 135 T ELT)) (-4359 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 69 T ELT) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 76 T ELT)) (-4223 (($) 122 T ELT) (($ $) 131 T ELT)) (-2668 (($ $) 100 T ELT)) (-2900 (($ $ $) NIL T ELT)) (-1457 (($ $ $) NIL T ELT)) (-2880 (((-660 $) $) 136 T ELT)) (-2045 (((-1183) $) 114 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2837 (($ $ (-660 (-880))) 61 T ELT)) (-2176 (((-549) $) 48 T ELT) (((-1201) $) 49 T ELT) (((-911 (-577)) $) 80 T ELT) (((-911 (-391)) $) 78 T ELT)) (-3603 (((-880) $) 55 T ELT) (($ (-1183)) 50 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2578 (($ $ (-660 (-880))) 63 T ELT)) (-1422 (((-1183) $) 34 T ELT) (((-1183) $ (-112)) 35 T ELT) (((-1297) (-838) $) 36 T ELT) (((-1297) (-838) $ (-112)) 37 T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 51 T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) 52 T ELT))) -(((-1201) (-13 (-865) (-627 (-549)) (-844) (-627 (-1201)) (-629 (-1183)) (-627 (-911 (-577))) (-627 (-911 (-391))) (-905 (-577)) (-905 (-391)) (-10 -8 (-15 -4223 ($)) (-15 -4223 ($ $)) (-15 -4028 ((-1297))) (-15 -2668 ($ $)) (-15 -2210 ((-112) $)) (-15 -3775 ((-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880)))) $)) (-15 -2886 ($ $ (-660 (-660 (-880))))) (-15 -2886 ($ $ (-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880)))))) (-15 -2375 ($ $ (-660 (-880)))) (-15 -1366 ($ $ (-660 (-880)))) (-15 -2578 ($ $ (-660 (-880)))) (-15 -2837 ($ $ (-660 (-880)))) (-15 -1355 ((-1183) $)) (-15 -2880 ((-660 $) $)) (-15 -3790 ($) -2609)))) (T -1201)) -((-4223 (*1 *1) (-5 *1 (-1201))) (-4223 (*1 *1 *1) (-5 *1 (-1201))) (-4028 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1201)))) (-2668 (*1 *1 *1) (-5 *1 (-1201))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880))))) (-5 *1 (-1201)))) (-2886 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-1201)))) (-2886 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880))))) (-5 *1 (-1201)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-1366 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1201)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1201)))) (-3790 (*1 *1) (-5 *1 (-1201)))) -(-13 (-865) (-627 (-549)) (-844) (-627 (-1201)) (-629 (-1183)) (-627 (-911 (-577))) (-627 (-911 (-391))) (-905 (-577)) (-905 (-391)) (-10 -8 (-15 -4223 ($)) (-15 -4223 ($ $)) (-15 -4028 ((-1297))) (-15 -2668 ($ $)) (-15 -2210 ((-112) $)) (-15 -3775 ((-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880)))) $)) (-15 -2886 ($ $ (-660 (-660 (-880))))) (-15 -2886 ($ $ (-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) (|:| |args| (-660 (-880)))))) (-15 -2375 ($ $ (-660 (-880)))) (-15 -1366 ($ $ (-660 (-880)))) (-15 -2578 ($ $ (-660 (-880)))) (-15 -2837 ($ $ (-660 (-880)))) (-15 -1355 ((-1183) $)) (-15 -2880 ((-660 $) $)) (-15 -3790 ($) -2609))) -((-2730 (((-1292 |#1|) |#1| (-944)) 18 T ELT) (((-1292 |#1|) (-660 |#1|)) 25 T ELT))) -(((-1202 |#1|) (-10 -7 (-15 -2730 ((-1292 |#1|) (-660 |#1|))) (-15 -2730 ((-1292 |#1|) |#1| (-944)))) (-1074)) (T -1202)) -((-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-1292 *3)) (-5 *1 (-1202 *3)) (-4 *3 (-1074)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1074)) (-5 *2 (-1292 *4)) (-5 *1 (-1202 *4))))) -(-10 -7 (-15 -2730 ((-1292 |#1|) (-660 |#1|))) (-15 -2730 ((-1292 |#1|) |#1| (-944)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-2155 (((-577) $) NIL (|has| |#1| (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2308 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3367 (($ $ |#1| (-996) $) NIL T ELT)) (-3306 (((-112) $) 17 T ELT)) (-2011 (((-787) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-996)) NIL T ELT)) (-2643 (((-996) $) NIL T ELT)) (-4373 (($ (-1 (-996) (-996)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#1| $) NIL T ELT)) (-1391 (($ $ (-996) |#1| $) NIL (-12 (|has| (-996) (-132)) (|has| |#1| (-569))) ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-3616 (((-996) $) NIL T ELT)) (-2240 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-996)) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2754 (($) 10 T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 21 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1203 |#1|) (-13 (-337 |#1| (-996)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-996) (-132)) (-15 -1391 ($ $ (-996) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) (-1074)) (T -1203)) -((-1391 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-996)) (-4 *2 (-132)) (-5 *1 (-1203 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) -(-13 (-337 |#1| (-996)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-996) (-132)) (-15 -1391 ($ $ (-996) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) -((-1385 (((-1205) (-1201) $) 25 T ELT)) (-3963 (($) 29 T ELT)) (-3818 (((-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-1201) $) 22 T ELT)) (-2945 (((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -4154 "void")) $) 41 T ELT) (((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) 42 T ELT) (((-1297) (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) 43 T ELT)) (-1519 (((-1297) (-1201)) 58 T ELT)) (-3405 (((-1297) (-1201) $) 55 T ELT) (((-1297) (-1201)) 56 T ELT) (((-1297)) 57 T ELT)) (-2664 (((-1297) (-1201)) 37 T ELT)) (-4410 (((-1201)) 36 T ELT)) (-2693 (($) 34 T ELT)) (-1523 (((-450) (-1201) (-450) (-1201) $) 45 T ELT) (((-450) (-660 (-1201)) (-450) (-1201) $) 49 T ELT) (((-450) (-1201) (-450)) 46 T ELT) (((-450) (-1201) (-450) (-1201)) 50 T ELT)) (-4194 (((-1201)) 35 T ELT)) (-3603 (((-880) $) 28 T ELT)) (-4363 (((-1297)) 30 T ELT) (((-1297) (-1201)) 33 T ELT)) (-2207 (((-660 (-1201)) (-1201) $) 24 T ELT)) (-1456 (((-1297) (-1201) (-660 (-1201)) $) 38 T ELT) (((-1297) (-1201) (-660 (-1201))) 39 T ELT) (((-1297) (-660 (-1201))) 40 T ELT))) -(((-1204) (-13 (-626 (-880)) (-10 -8 (-15 -3963 ($)) (-15 -4363 ((-1297))) (-15 -4363 ((-1297) (-1201))) (-15 -1523 ((-450) (-1201) (-450) (-1201) $)) (-15 -1523 ((-450) (-660 (-1201)) (-450) (-1201) $)) (-15 -1523 ((-450) (-1201) (-450))) (-15 -1523 ((-450) (-1201) (-450) (-1201))) (-15 -2664 ((-1297) (-1201))) (-15 -4194 ((-1201))) (-15 -4410 ((-1201))) (-15 -1456 ((-1297) (-1201) (-660 (-1201)) $)) (-15 -1456 ((-1297) (-1201) (-660 (-1201)))) (-15 -1456 ((-1297) (-660 (-1201)))) (-15 -2945 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -4154 "void")) $)) (-15 -2945 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -4154 "void")))) (-15 -2945 ((-1297) (-3 (|:| |fst| (-447)) (|:| -4154 "void")))) (-15 -3405 ((-1297) (-1201) $)) (-15 -3405 ((-1297) (-1201))) (-15 -3405 ((-1297))) (-15 -1519 ((-1297) (-1201))) (-15 -2693 ($)) (-15 -3818 ((-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-1201) $)) (-15 -2207 ((-660 (-1201)) (-1201) $)) (-15 -1385 ((-1205) (-1201) $))))) (T -1204)) -((-3963 (*1 *1) (-5 *1 (-1204))) (-4363 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204)))) (-4363 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-1523 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) (-1523 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *4 (-1201)) (-5 *1 (-1204)))) (-1523 (*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) (-1523 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-4194 (*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204)))) (-4410 (*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204)))) (-1456 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-1456 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-2945 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1201)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-2945 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3405 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3405 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3405 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-2693 (*1 *1) (-5 *1 (-1204))) (-3818 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *1 (-1204)))) (-2207 (*1 *2 *3 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1204)) (-5 *3 (-1201)))) (-1385 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1205)) (-5 *1 (-1204))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3963 ($)) (-15 -4363 ((-1297))) (-15 -4363 ((-1297) (-1201))) (-15 -1523 ((-450) (-1201) (-450) (-1201) $)) (-15 -1523 ((-450) (-660 (-1201)) (-450) (-1201) $)) (-15 -1523 ((-450) (-1201) (-450))) (-15 -1523 ((-450) (-1201) (-450) (-1201))) (-15 -2664 ((-1297) (-1201))) (-15 -4194 ((-1201))) (-15 -4410 ((-1201))) (-15 -1456 ((-1297) (-1201) (-660 (-1201)) $)) (-15 -1456 ((-1297) (-1201) (-660 (-1201)))) (-15 -1456 ((-1297) (-660 (-1201)))) (-15 -2945 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -4154 "void")) $)) (-15 -2945 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -4154 "void")))) (-15 -2945 ((-1297) (-3 (|:| |fst| (-447)) (|:| -4154 "void")))) (-15 -3405 ((-1297) (-1201) $)) (-15 -3405 ((-1297) (-1201))) (-15 -3405 ((-1297))) (-15 -1519 ((-1297) (-1201))) (-15 -2693 ($)) (-15 -3818 ((-3 (|:| |fst| (-447)) (|:| -4154 "void")) (-1201) $)) (-15 -2207 ((-660 (-1201)) (-1201) $)) (-15 -1385 ((-1205) (-1201) $)))) -((-3142 (((-660 (-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) $) 66 T ELT)) (-1354 (((-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))) (-447) $) 47 T ELT)) (-3748 (($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-450))))) 17 T ELT)) (-1519 (((-1297) $) 73 T ELT)) (-4146 (((-660 (-1201)) $) 22 T ELT)) (-1497 (((-1129) $) 60 T ELT)) (-2684 (((-450) (-1201) $) 27 T ELT)) (-2914 (((-660 (-1201)) $) 30 T ELT)) (-2693 (($) 19 T ELT)) (-1523 (((-450) (-660 (-1201)) (-450) $) 25 T ELT) (((-450) (-1201) (-450) $) 24 T ELT)) (-3603 (((-880) $) 9 T ELT) (((-1214 (-1201) (-450)) $) 13 T ELT))) -(((-1205) (-13 (-626 (-880)) (-10 -8 (-15 -3603 ((-1214 (-1201) (-450)) $)) (-15 -2693 ($)) (-15 -1523 ((-450) (-660 (-1201)) (-450) $)) (-15 -1523 ((-450) (-1201) (-450) $)) (-15 -2684 ((-450) (-1201) $)) (-15 -4146 ((-660 (-1201)) $)) (-15 -1354 ((-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))) (-447) $)) (-15 -2914 ((-660 (-1201)) $)) (-15 -3142 ((-660 (-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) $)) (-15 -1497 ((-1129) $)) (-15 -1519 ((-1297) $)) (-15 -3748 ($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-450))))))))) (T -1205)) -((-3603 (*1 *2 *1) (-12 (-5 *2 (-1214 (-1201) (-450))) (-5 *1 (-1205)))) (-2693 (*1 *1) (-5 *1 (-1205))) (-1523 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *1 (-1205)))) (-1523 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1205)))) (-2684 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-450)) (-5 *1 (-1205)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205)))) (-1354 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) (-5 *1 (-1205)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))))) (-5 *1 (-1205)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1205)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1205)))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-450))))) (-5 *1 (-1205))))) -(-13 (-626 (-880)) (-10 -8 (-15 -3603 ((-1214 (-1201) (-450)) $)) (-15 -2693 ($)) (-15 -1523 ((-450) (-660 (-1201)) (-450) $)) (-15 -1523 ((-450) (-1201) (-450) $)) (-15 -2684 ((-450) (-1201) $)) (-15 -4146 ((-660 (-1201)) $)) (-15 -1354 ((-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))) (-447) $)) (-15 -2914 ((-660 (-1201)) $)) (-15 -3142 ((-660 (-660 (-3 (|:| -2668 (-1201)) (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) $)) (-15 -1497 ((-1129) $)) (-15 -1519 ((-1297) $)) (-15 -3748 ($ (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-450)))))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2784 (((-3 (-577) "failed") $) 29 T ELT) (((-3 (-228) "failed") $) 35 T ELT) (((-3 (-519) "failed") $) 43 T ELT) (((-3 (-1183) "failed") $) 47 T ELT)) (-2155 (((-577) $) 30 T ELT) (((-228) $) 36 T ELT) (((-519) $) 40 T ELT) (((-1183) $) 48 T ELT)) (-3448 (((-112) $) 53 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3736 (((-3 (-577) (-228) (-519) (-1183) $) $) 55 T ELT)) (-2008 (((-660 $) $) 57 T ELT)) (-2176 (((-1129) $) 24 T ELT) (($ (-1129)) 25 T ELT)) (-2247 (((-112) $) 56 T ELT)) (-3603 (((-880) $) 23 T ELT) (($ (-577)) 26 T ELT) (($ (-228)) 32 T ELT) (($ (-519)) 38 T ELT) (($ (-1183)) 44 T ELT) (((-549) $) 59 T ELT) (((-577) $) 31 T ELT) (((-228) $) 37 T ELT) (((-519) $) 41 T ELT) (((-1183) $) 49 T ELT)) (-2739 (((-112) $ (|[\|\|]| (-577))) 10 T ELT) (((-112) $ (|[\|\|]| (-228))) 13 T ELT) (((-112) $ (|[\|\|]| (-519))) 19 T ELT) (((-112) $ (|[\|\|]| (-1183))) 16 T ELT)) (-4266 (($ (-519) (-660 $)) 51 T ELT) (($ $ (-660 $)) 52 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1964 (((-577) $) 27 T ELT) (((-228) $) 33 T ELT) (((-519) $) 39 T ELT) (((-1183) $) 45 T ELT)) (-2949 (((-112) $ $) 7 T ELT))) -(((-1206) (-13 (-1287) (-1125) (-1063 (-577)) (-1063 (-228)) (-1063 (-519)) (-1063 (-1183)) (-626 (-549)) (-10 -8 (-15 -2176 ((-1129) $)) (-15 -2176 ($ (-1129))) (-15 -3603 ((-577) $)) (-15 -1964 ((-577) $)) (-15 -3603 ((-228) $)) (-15 -1964 ((-228) $)) (-15 -3603 ((-519) $)) (-15 -1964 ((-519) $)) (-15 -3603 ((-1183) $)) (-15 -1964 ((-1183) $)) (-15 -4266 ($ (-519) (-660 $))) (-15 -4266 ($ $ (-660 $))) (-15 -3448 ((-112) $)) (-15 -3736 ((-3 (-577) (-228) (-519) (-1183) $) $)) (-15 -2008 ((-660 $) $)) (-15 -2247 ((-112) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-577)))) (-15 -2739 ((-112) $ (|[\|\|]| (-228)))) (-15 -2739 ((-112) $ (|[\|\|]| (-519)))) (-15 -2739 ((-112) $ (|[\|\|]| (-1183))))))) (T -1206)) -((-2176 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) (-4266 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-1206))) (-5 *1 (-1206)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1183) (-1206))) (-5 *1 (-1206)))) (-2008 (*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1206)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1206)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1206)))) (-2739 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-1206))))) -(-13 (-1287) (-1125) (-1063 (-577)) (-1063 (-228)) (-1063 (-519)) (-1063 (-1183)) (-626 (-549)) (-10 -8 (-15 -2176 ((-1129) $)) (-15 -2176 ($ (-1129))) (-15 -3603 ((-577) $)) (-15 -1964 ((-577) $)) (-15 -3603 ((-228) $)) (-15 -1964 ((-228) $)) (-15 -3603 ((-519) $)) (-15 -1964 ((-519) $)) (-15 -3603 ((-1183) $)) (-15 -1964 ((-1183) $)) (-15 -4266 ($ (-519) (-660 $))) (-15 -4266 ($ $ (-660 $))) (-15 -3448 ((-112) $)) (-15 -3736 ((-3 (-577) (-228) (-519) (-1183) $) $)) (-15 -2008 ((-660 $) $)) (-15 -2247 ((-112) $)) (-15 -2739 ((-112) $ (|[\|\|]| (-577)))) (-15 -2739 ((-112) $ (|[\|\|]| (-228)))) (-15 -2739 ((-112) $ (|[\|\|]| (-519)))) (-15 -2739 ((-112) $ (|[\|\|]| (-1183)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) 22 T ELT)) (-3790 (($) 12 T CONST)) (-2352 (($) 26 T ELT)) (-2900 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-1457 (($ $ $) NIL T ELT) (($) 20 T CONST)) (-2144 (((-944) $) 24 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) 23 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-1207 |#1|) (-13 (-860) (-10 -8 (-15 -3790 ($) -2609))) (-944)) (T -1207)) -((-3790 (*1 *1) (-12 (-5 *1 (-1207 *2)) (-14 *2 (-944))))) -(-13 (-860) (-10 -8 (-15 -3790 ($) -2609))) +((-4089 (*1 *1 *1) (-4 *1 (-1169))) (-1889 (*1 *1 *1) (-4 *1 (-1169))) (-2238 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3026 (*1 *1 *1 *1) (-4 *1 (-1169))) (-2830 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3923 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3802 (*1 *1 *1 *1) (-4 *1 (-1169))) (-4172 (*1 *1 *1 *1) (-4 *1 (-1169))) (-2843 (*1 *1 *1) (-4 *1 (-1169))) (-3012 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3802 (*1 *1 *1) (-4 *1 (-1169))) (-2215 (*1 *1 *1) (-4 *1 (-1169)))) +(-13 (-10 -8 (-15 -2215 ($ $)) (-15 -3802 ($ $)) (-15 -3012 ($ $ $)) (-15 -2843 ($ $)) (-15 -4172 ($ $ $)) (-15 -3802 ($ $ $)) (-15 -3923 ($ $ $)) (-15 -2830 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -2238 ($ $ $)) (-15 -1889 ($ $)) (-15 -4089 ($ $)))) +((-3586 (((-112) $ $) 44 T ELT)) (-3254 ((|#1| $) 17 T ELT)) (-1503 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39 T ELT)) (-2684 (((-112) $) 19 T ELT)) (-2937 (($ $ |#1|) 30 T ELT)) (-3808 (($ $ (-112)) 32 T ELT)) (-1675 (($ $) 33 T ELT)) (-1577 (($ $ |#2|) 31 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3588 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2687 (((-112) $) 16 T ELT)) (-2833 (($) 13 T ELT)) (-1977 (($ $) 29 T ELT)) (-3722 (($ |#1| |#2| (-112)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -3613 |#2|))) 23 T ELT) (((-665 $) (-665 (-2 (|:| |val| |#1|) (|:| -3613 |#2|)))) 26 T ELT) (((-665 $) |#1| (-665 |#2|)) 28 T ELT)) (-2236 ((|#2| $) 18 T ELT)) (-3709 (((-885) $) 53 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 42 T ELT))) +(((-1170 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -2833 ($)) (-15 -2687 ((-112) $)) (-15 -3254 (|#1| $)) (-15 -2236 (|#2| $)) (-15 -2684 ((-112) $)) (-15 -3722 ($ |#1| |#2| (-112))) (-15 -3722 ($ |#1| |#2|)) (-15 -3722 ($ (-2 (|:| |val| |#1|) (|:| -3613 |#2|)))) (-15 -3722 ((-665 $) (-665 (-2 (|:| |val| |#1|) (|:| -3613 |#2|))))) (-15 -3722 ((-665 $) |#1| (-665 |#2|))) (-15 -1977 ($ $)) (-15 -2937 ($ $ |#1|)) (-15 -1577 ($ $ |#2|)) (-15 -3808 ($ $ (-112))) (-15 -1675 ($ $)) (-15 -3588 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1503 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1130) (-34)) (-13 (-1130) (-34))) (T -1170)) +((-2833 (*1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-3254 (*1 *2 *1) (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *2 *3)) (-4 *3 (-13 (-1130) (-34))))) (-2236 (*1 *2 *1) (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1130) (-34))))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-3722 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-3722 (*1 *1 *2 *3) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3613 *4))) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1170 *3 *4)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |val| *4) (|:| -3613 *5)))) (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-665 (-1170 *4 *5))) (-5 *1 (-1170 *4 *5)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *5)) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-665 (-1170 *3 *5))) (-5 *1 (-1170 *3 *5)) (-4 *3 (-13 (-1130) (-34))))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2937 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-1577 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1130) (-34))) (-4 *2 (-13 (-1130) (-34))))) (-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-1675 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-3588 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1170 *5 *6)))) (-1503 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34)))))) +(-13 (-1130) (-10 -8 (-15 -2833 ($)) (-15 -2687 ((-112) $)) (-15 -3254 (|#1| $)) (-15 -2236 (|#2| $)) (-15 -2684 ((-112) $)) (-15 -3722 ($ |#1| |#2| (-112))) (-15 -3722 ($ |#1| |#2|)) (-15 -3722 ($ (-2 (|:| |val| |#1|) (|:| -3613 |#2|)))) (-15 -3722 ((-665 $) (-665 (-2 (|:| |val| |#1|) (|:| -3613 |#2|))))) (-15 -3722 ((-665 $) |#1| (-665 |#2|))) (-15 -1977 ($ $)) (-15 -2937 ($ $ |#1|)) (-15 -1577 ($ $ |#2|)) (-15 -3808 ($ $ (-112))) (-15 -1675 ($ $)) (-15 -3588 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1503 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3586 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-3254 (((-1170 |#1| |#2|) $) 27 T ELT)) (-2125 (($ $) 91 T ELT)) (-1802 (((-112) (-1170 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100 T ELT)) (-3724 (($ $ $ (-665 (-1170 |#1| |#2|))) 108 T ELT) (($ $ $ (-665 (-1170 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4450 (((-1170 |#1| |#2|) $ (-1170 |#1| |#2|)) 46 (|has| $ (-6 -4500)) ELT)) (-1957 (((-1170 |#1| |#2|) $ "value" (-1170 |#1| |#2|)) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 44 (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-2759 (((-665 (-2 (|:| |val| |#1|) (|:| -3613 |#2|))) $) 95 T ELT)) (-1894 (($ (-1170 |#1| |#2|) $) 42 T ELT)) (-4004 (($ (-1170 |#1| |#2|) $) 34 T ELT)) (-2118 (((-665 (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 54 T ELT)) (-2043 (((-112) (-1170 |#1| |#2|) $) 97 T ELT)) (-3977 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 (-1170 |#1| |#2|)) $) 58 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-1170 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-1170 |#1| |#2|) (-1130))) ELT)) (-4409 (($ (-1 (-1170 |#1| |#2|) (-1170 |#1| |#2|)) $) 50 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-1170 |#1| |#2|) (-1170 |#1| |#2|)) $) 49 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3196 (((-665 (-1170 |#1| |#2|)) $) 56 T ELT)) (-3188 (((-112) $) 45 T ELT)) (-3235 (((-1188) $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-2800 (((-3 $ "failed") $) 89 T ELT)) (-3446 (((-112) (-1 (-112) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-1170 |#1| |#2|)))) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT) (($ $ (-305 (-1170 |#1| |#2|))) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT) (($ $ (-1170 |#1| |#2|) (-1170 |#1| |#2|)) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT) (($ $ (-665 (-1170 |#1| |#2|)) (-665 (-1170 |#1| |#2|))) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT)) (-3701 (((-112) $ $) 53 T ELT)) (-2687 (((-112) $) 24 T ELT)) (-2833 (($) 26 T ELT)) (-2916 (((-1170 |#1| |#2|) $ "value") NIL T ELT)) (-2409 (((-577) $ $) NIL T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1481 (((-792) (-1 (-112) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-1170 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-1170 |#1| |#2|) (-1130))) ELT)) (-1977 (($ $) 52 T ELT)) (-3722 (($ (-1170 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-665 $)) 13 T ELT) (($ |#1| |#2| (-665 (-1170 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-665 |#2|)) 18 T ELT)) (-2154 (((-665 |#2|) $) 96 T ELT)) (-3709 (((-885) $) 87 (|has| (-1170 |#1| |#2|) (-631 (-885))) ELT)) (-3217 (((-665 $) $) 31 T ELT)) (-2256 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-1474 (((-112) (-1 (-112) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 70 (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-3600 (((-792) $) 64 (|has| $ (-6 -4499)) ELT))) +(((-1171 |#1| |#2|) (-13 (-1040 (-1170 |#1| |#2|)) (-10 -8 (-6 -4500) (-6 -4499) (-15 -2800 ((-3 $ "failed") $)) (-15 -2125 ($ $)) (-15 -3722 ($ (-1170 |#1| |#2|))) (-15 -3722 ($ |#1| |#2| (-665 $))) (-15 -3722 ($ |#1| |#2| (-665 (-1170 |#1| |#2|)))) (-15 -3722 ($ |#1| |#2| |#1| (-665 |#2|))) (-15 -2154 ((-665 |#2|) $)) (-15 -2759 ((-665 (-2 (|:| |val| |#1|) (|:| -3613 |#2|))) $)) (-15 -2043 ((-112) (-1170 |#1| |#2|) $)) (-15 -1802 ((-112) (-1170 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -4004 ($ (-1170 |#1| |#2|) $)) (-15 -1894 ($ (-1170 |#1| |#2|) $)) (-15 -3724 ($ $ $ (-665 (-1170 |#1| |#2|)))) (-15 -3724 ($ $ $ (-665 (-1170 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1130) (-34)) (-13 (-1130) (-34))) (T -1171)) +((-2800 (*1 *1 *1) (|partial| -12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2125 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-3722 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-665 (-1171 *2 *3))) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-3722 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-665 (-1170 *2 *3))) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))) (-5 *1 (-1171 *2 *3)))) (-3722 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-13 (-1130) (-34))) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-665 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-2043 (*1 *2 *3 *1) (-12 (-5 *3 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *4 *5)))) (-1802 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1170 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *5 *6)))) (-4004 (*1 *1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-1894 (*1 *1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-3724 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-665 (-1170 *3 *4))) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-3724 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1170 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) (-5 *1 (-1171 *4 *5))))) +(-13 (-1040 (-1170 |#1| |#2|)) (-10 -8 (-6 -4500) (-6 -4499) (-15 -2800 ((-3 $ "failed") $)) (-15 -2125 ($ $)) (-15 -3722 ($ (-1170 |#1| |#2|))) (-15 -3722 ($ |#1| |#2| (-665 $))) (-15 -3722 ($ |#1| |#2| (-665 (-1170 |#1| |#2|)))) (-15 -3722 ($ |#1| |#2| |#1| (-665 |#2|))) (-15 -2154 ((-665 |#2|) $)) (-15 -2759 ((-665 (-2 (|:| |val| |#1|) (|:| -3613 |#2|))) $)) (-15 -2043 ((-112) (-1170 |#1| |#2|) $)) (-15 -1802 ((-112) (-1170 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -4004 ($ (-1170 |#1| |#2|) $)) (-15 -1894 ($ (-1170 |#1| |#2|) $)) (-15 -3724 ($ $ $ (-665 (-1170 |#1| |#2|)))) (-15 -3724 ($ $ $ (-665 (-1170 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2444 (($ $) NIL T ELT)) (-2318 ((|#2| $) NIL T ELT)) (-4140 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3659 (($ (-710 |#2|)) 56 T ELT)) (-2671 (((-112) $) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4316 (($ |#2|) 14 T ELT)) (-2305 (($) NIL T CONST)) (-3280 (($ $) 69 (|has| |#2| (-318)) ELT)) (-4448 (((-246 |#1| |#2|) $ (-577)) 42 T ELT)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) 83 T ELT)) (-1641 (((-792) $) 71 (|has| |#2| (-569)) ELT)) (-4353 ((|#2| $ (-577) (-577)) NIL T ELT)) (-2118 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-3480 (((-792) $) 73 (|has| |#2| (-569)) ELT)) (-4202 (((-665 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-569)) ELT)) (-2408 (((-792) $) NIL T ELT)) (-3236 (($ |#2|) 25 T ELT)) (-2420 (((-792) $) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2607 ((|#2| $) 67 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-4051 (((-577) $) NIL T ELT)) (-3232 (((-577) $) NIL T ELT)) (-2152 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1766 (((-577) $) NIL T ELT)) (-3371 (((-577) $) NIL T ELT)) (-2374 (($ (-665 (-665 |#2|))) 37 T ELT)) (-4409 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2905 (((-665 (-665 |#2|)) $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1767 (((-3 $ "failed") $) 80 (|has| |#2| (-375)) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-3446 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) ((|#2| $ (-577) (-577)) NIL T ELT)) (-3641 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-1566 ((|#2| $) NIL T ELT)) (-3650 (($ (-665 |#2|)) 50 T ELT)) (-4101 (((-112) $) NIL T ELT)) (-4293 (((-246 |#1| |#2|) $) NIL T ELT)) (-3422 ((|#2| $) 65 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-1481 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) 89 (|has| |#2| (-632 (-549))) ELT)) (-1455 (((-246 |#1| |#2|) $ (-577)) 44 T ELT)) (-3709 (((-885) $) 47 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (((-710 |#2|) $) 52 T ELT)) (-3331 (((-792)) 23 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4444 (((-112) $) NIL T ELT)) (-2839 (($) 16 T CONST)) (-2853 (($) 21 T CONST)) (-2389 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 63 T ELT) (($ $ (-577)) 82 (|has| |#2| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1172 |#1| |#2|) (-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-10 -8 (-15 -3236 ($ |#2|)) (-15 -2444 ($ $)) (-15 -3659 ($ (-710 |#2|))) (IF (|has| |#2| (-6 (-4501 "*"))) (-6 -4488) |%noBranch|) (IF (|has| |#2| (-6 (-4501 "*"))) (IF (|has| |#2| (-6 -4496)) (-6 -4496) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) (-792) (-1079)) (T -1172)) +((-3236 (*1 *1 *2) (-12 (-5 *1 (-1172 *3 *2)) (-14 *3 (-792)) (-4 *2 (-1079)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-14 *2 (-792)) (-4 *3 (-1079)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-710 *4)) (-4 *4 (-1079)) (-5 *1 (-1172 *3 *4)) (-14 *3 (-792))))) +(-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-10 -8 (-15 -3236 ($ |#2|)) (-15 -2444 ($ $)) (-15 -3659 ($ (-710 |#2|))) (IF (|has| |#2| (-6 (-4501 "*"))) (-6 -4488) |%noBranch|) (IF (|has| |#2| (-6 (-4501 "*"))) (IF (|has| |#2| (-6 -4496)) (-6 -4496) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) +((-3890 (($ $) 19 T ELT)) (-3788 (($ $ (-145)) 10 T ELT) (($ $ (-142)) 14 T ELT)) (-3025 (((-112) $ $) 24 T ELT)) (-3110 (($ $) 17 T ELT)) (-2916 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) (($ $ $) 31 T ELT)) (-3709 (($ (-145)) 29 T ELT) (((-885) $) NIL T ELT))) +(((-1173 |#1|) (-10 -8 (-15 -3709 ((-885) |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| (-142))) (-15 -3788 (|#1| |#1| (-145))) (-15 -3709 (|#1| (-145))) (-15 -3025 ((-112) |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -2916 ((-145) |#1| (-577))) (-15 -2916 ((-145) |#1| (-577) (-145)))) (-1174)) (T -1173)) +NIL +(-10 -8 (-15 -3709 ((-885) |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| (-142))) (-15 -3788 (|#1| |#1| (-145))) (-15 -3709 (|#1| (-145))) (-15 -3025 ((-112) |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -3110 (|#1| |#1|)) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -2916 ((-145) |#1| (-577))) (-15 -2916 ((-145) |#1| (-577) (-145)))) +((-3586 (((-112) $ $) 20 (|has| (-145) (-102)) ELT)) (-1732 (($ $) 123 T ELT)) (-3890 (($ $) 124 T ELT)) (-3788 (($ $ (-145)) 111 T ELT) (($ $ (-142)) 110 T ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3000 (((-112) $ $) 121 T ELT)) (-2976 (((-112) $ $ (-577)) 120 T ELT)) (-4452 (((-665 $) $ (-145)) 113 T ELT) (((-665 $) $ (-142)) 112 T ELT)) (-3279 (((-112) (-1 (-112) (-145) (-145)) $) 101 T ELT) (((-112) $) 95 (|has| (-145) (-870)) ELT)) (-2629 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| (-145) (-870)) (|has| $ (-6 -4500))) ELT)) (-1381 (($ (-1 (-112) (-145) (-145)) $) 102 T ELT) (($ $) 96 (|has| (-145) (-870)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 (((-145) $ (-577) (-145)) 53 (|has| $ (-6 -4500)) ELT) (((-145) $ (-1264 (-577)) (-145)) 60 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-1564 (($ $ (-145)) 107 T ELT) (($ $ (-142)) 106 T ELT)) (-2609 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 103 T ELT)) (-3158 (($ $ (-1264 (-577)) $) 117 T ELT)) (-3589 (($ $) 80 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ (-145) $) 79 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4499)) ELT)) (-2060 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4499)) ELT)) (-4420 (((-145) $ (-577) (-145)) 54 (|has| $ (-6 -4500)) ELT)) (-4353 (((-145) $ (-577)) 52 T ELT)) (-3025 (((-112) $ $) 122 T ELT)) (-3948 (((-577) (-1 (-112) (-145)) $) 100 T ELT) (((-577) (-145) $) 99 (|has| (-145) (-1130)) ELT) (((-577) (-145) $ (-577)) 98 (|has| (-145) (-1130)) ELT) (((-577) $ $ (-577)) 116 T ELT) (((-577) (-142) $ (-577)) 115 T ELT)) (-2118 (((-665 (-145)) $) 31 (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) (-145)) 70 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 85 (|has| (-145) (-870)) ELT)) (-3771 (($ (-1 (-112) (-145) (-145)) $ $) 104 T ELT) (($ $ $) 97 (|has| (-145) (-870)) ELT)) (-2152 (((-665 (-145)) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 86 (|has| (-145) (-870)) ELT)) (-2028 (((-112) $ $ (-145)) 118 T ELT)) (-2166 (((-792) $ $ (-145)) 119 T ELT)) (-4409 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-145) (-145)) $) 36 T ELT) (($ (-1 (-145) (-145) (-145)) $ $) 65 T ELT)) (-4234 (($ $) 125 T ELT)) (-3110 (($ $) 126 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-1575 (($ $ (-145)) 109 T ELT) (($ $ (-142)) 108 T ELT)) (-3235 (((-1188) $) 23 (|has| (-145) (-1130)) ELT)) (-2317 (($ (-145) $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| (-145) (-1130)) ELT)) (-4397 (((-145) $) 43 (|has| (-577) (-870)) ELT)) (-2550 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73 T ELT)) (-2561 (($ $ (-145)) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-145)))) 27 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) 26 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-145)) (-665 (-145))) 24 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-4059 (((-665 (-145)) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 (((-145) $ (-577) (-145)) 51 T ELT) (((-145) $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT) (($ $ $) 105 T ELT)) (-3587 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-1481 (((-792) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-145) $) 29 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT)) (-2338 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 81 (|has| (-145) (-632 (-549))) ELT)) (-3722 (($ (-665 (-145))) 72 T ELT)) (-1702 (($ $ (-145)) 69 T ELT) (($ (-145) $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-3709 (($ (-145)) 114 T ELT) (((-885) $) 18 (|has| (-145) (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| (-145) (-102)) ELT)) (-1474 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) 87 (|has| (-145) (-870)) ELT)) (-3054 (((-112) $ $) 89 (|has| (-145) (-870)) ELT)) (-3018 (((-112) $ $) 19 (|has| (-145) (-102)) ELT)) (-3067 (((-112) $ $) 88 (|has| (-145) (-870)) ELT)) (-3042 (((-112) $ $) 90 (|has| (-145) (-870)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1174) (-141)) (T -1174)) +((-3110 (*1 *1 *1) (-4 *1 (-1174))) (-4234 (*1 *1 *1) (-4 *1 (-1174))) (-3890 (*1 *1 *1) (-4 *1 (-1174))) (-1732 (*1 *1 *1) (-4 *1 (-1174))) (-3025 (*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112)))) (-3000 (*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112)))) (-2976 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-577)) (-5 *2 (-112)))) (-2166 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-792)))) (-2028 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3158 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-1264 (-577))))) (-3948 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577)))) (-3948 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577)) (-5 *3 (-142)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1174)))) (-4452 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-665 *1)) (-4 *1 (-1174)))) (-4452 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-665 *1)) (-4 *1 (-1174)))) (-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145)))) (-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) (-1575 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145)))) (-1575 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) (-1564 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145)))) (-1564 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) (-2916 (*1 *1 *1 *1) (-4 *1 (-1174)))) +(-13 (-19 (-145)) (-10 -8 (-15 -3110 ($ $)) (-15 -4234 ($ $)) (-15 -3890 ($ $)) (-15 -1732 ($ $)) (-15 -3025 ((-112) $ $)) (-15 -3000 ((-112) $ $)) (-15 -2976 ((-112) $ $ (-577))) (-15 -2166 ((-792) $ $ (-145))) (-15 -2028 ((-112) $ $ (-145))) (-15 -3158 ($ $ (-1264 (-577)) $)) (-15 -3948 ((-577) $ $ (-577))) (-15 -3948 ((-577) (-142) $ (-577))) (-15 -3709 ($ (-145))) (-15 -4452 ((-665 $) $ (-145))) (-15 -4452 ((-665 $) $ (-142))) (-15 -3788 ($ $ (-145))) (-15 -3788 ($ $ (-142))) (-15 -1575 ($ $ (-145))) (-15 -1575 ($ $ (-142))) (-15 -1564 ($ $ (-145))) (-15 -1564 ($ $ (-142))) (-15 -2916 ($ $ $)))) +(((-34) . T) ((-102) -2867 (|has| (-145) (-1130)) (|has| (-145) (-870)) (|has| (-145) (-102))) ((-631 (-885)) -2867 (|has| (-145) (-1130)) (|has| (-145) (-870)) (|has| (-145) (-631 (-885)))) ((-152 #0=(-145)) . T) ((-632 (-549)) |has| (-145) (-632 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ((-672 #0#) . T) ((-19 #0#) . T) ((-870) |has| (-145) (-870)) ((-873) |has| (-145) (-870)) ((-1130) -2867 (|has| (-145) (-1130)) (|has| (-145) (-870))) ((-1247) . T)) +((-3426 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-792)) 112 T ELT)) (-3746 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792)) 61 T ELT)) (-2623 (((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-792)) 97 T ELT)) (-3595 (((-792) (-665 |#4|) (-665 |#5|)) 30 T ELT)) (-2777 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792)) 63 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792) (-112)) 65 T ELT)) (-4267 (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112)) 84 T ELT) (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112)) 85 T ELT)) (-4463 (((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) 90 T ELT)) (-3045 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|) 60 T ELT)) (-3818 (((-792) (-665 |#4|) (-665 |#5|)) 21 T ELT))) +(((-1175 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3818 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3595 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3045 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-792))) (-15 -4463 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2623 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-792)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3| |#4|)) (T -1175)) +((-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-4463 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1139 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) (-5 *1 (-1175 *4 *5 *6 *7 *8)))) (-3426 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-665 *11)) (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -3613 *11)))))) (-5 *6 (-792)) (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -3613 *11)))) (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) (-4 *11 (-1139 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-5 *1 (-1175 *7 *8 *9 *10 *11)))) (-4267 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-4267 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-2777 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) (-2777 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1175 *7 *8 *9 *3 *4)) (-4 *4 (-1139 *7 *8 *9 *3)))) (-3746 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-3746 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) (-3045 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3818 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3595 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -3045 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -3746 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5| (-792))) (-15 -2777 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) |#4| |#5|)) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -4267 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3426 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))))) (-792))) (-15 -4463 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|)))) (-15 -2623 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -3613 |#5|))) (-792)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-1795 (((-665 $) (-665 |#4|)) 124 T ELT) (((-665 $) (-665 |#4|) (-112)) 125 T ELT) (((-665 $) (-665 |#4|) (-112) (-112)) 123 T ELT) (((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112)) 126 T ELT)) (-3891 (((-665 |#3|) $) NIL T ELT)) (-1507 (((-112) $) NIL T ELT)) (-2221 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3800 ((|#4| |#4| $) NIL T ELT)) (-2612 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| $) 97 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1440 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 75 T ELT)) (-2305 (($) NIL T CONST)) (-1603 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3783 (($ (-665 |#4|)) NIL T ELT)) (-4410 (((-3 $ "failed") $) 45 T ELT)) (-3145 ((|#4| |#4| $) 78 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4004 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3947 ((|#4| |#4| $) NIL T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) NIL T ELT)) (-3020 (((-112) |#4| $) NIL T ELT)) (-4005 (((-112) |#4| $) NIL T ELT)) (-1753 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4433 (((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112)) 139 T ELT)) (-2118 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1429 ((|#3| $) 38 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#4|) $) 19 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1683 (((-665 |#3|) $) NIL T ELT)) (-3692 (((-112) |#3| $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3036 (((-3 |#4| (-665 $)) |#4| |#4| $) NIL T ELT)) (-4045 (((-665 (-2 (|:| |val| |#4|) (|:| -3613 $))) |#4| |#4| $) 117 T ELT)) (-4026 (((-3 |#4| "failed") $) 42 T ELT)) (-1955 (((-665 $) |#4| $) 102 T ELT)) (-1377 (((-3 (-112) (-665 $)) |#4| $) NIL T ELT)) (-3132 (((-665 (-2 (|:| |val| (-112)) (|:| -3613 $))) |#4| $) 112 T ELT) (((-112) |#4| $) 65 T ELT)) (-1565 (((-665 $) |#4| $) 121 T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 122 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT)) (-1396 (((-665 $) (-665 |#4|) (-112) (-112) (-112)) 134 T ELT)) (-1963 (($ |#4| $) 88 T ELT) (($ (-665 |#4|) $) 89 T ELT) (((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87 T ELT)) (-1602 (((-665 |#4|) $) NIL T ELT)) (-1768 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2477 ((|#4| |#4| $) NIL T ELT)) (-2852 (((-112) $ $) NIL T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3881 ((|#4| |#4| $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-3 |#4| "failed") $) 40 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-2568 (($ $ |#4|) NIL T ELT) (((-665 $) |#4| $) 104 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 99 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 17 T ELT)) (-2833 (($) 14 T ELT)) (-1597 (((-792) $) NIL T ELT)) (-1481 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 22 T ELT)) (-1336 (($ $ |#3|) 52 T ELT)) (-3076 (($ $ |#3|) 54 T ELT)) (-2138 (($ $) NIL T ELT)) (-2951 (($ $ |#3|) NIL T ELT)) (-3709 (((-885) $) 35 T ELT) (((-665 |#4|) $) 46 T ELT)) (-3534 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-4197 (((-665 $) |#4| $) 66 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) NIL T ELT)) (-2259 (((-112) |#4| $) NIL T ELT)) (-2066 (((-112) |#3| $) 74 T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1176 |#1| |#2| |#3| |#4|) (-13 (-1139 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1963 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1396 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -4433 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1176)) +((-1963 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *3))) (-5 *1 (-1176 *5 *6 *7 *3)) (-4 *3 (-1095 *5 *6 *7)))) (-1795 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-1795 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-1396 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-4433 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-665 *8)) (|:| |towers| (-665 (-1176 *5 *6 *7 *8))))) (-5 *1 (-1176 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) +(-13 (-1139 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1963 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -1795 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1396 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -4433 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2841 ((|#1| $) 37 T ELT)) (-3597 (($ (-665 |#1|)) 45 T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1839 ((|#1| |#1| $) 40 T ELT)) (-2268 ((|#1| $) 35 T ELT)) (-2118 (((-665 |#1|) $) 18 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2786 ((|#1| $) 38 T ELT)) (-4375 (($ |#1| $) 41 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3205 ((|#1| $) 36 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 32 T ELT)) (-2833 (($) 43 T ELT)) (-2105 (((-792) $) 30 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 27 T ELT)) (-3709 (((-885) $) 14 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3886 (($ (-665 |#1|)) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 17 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 31 (|has| $ (-6 -4499)) ELT))) +(((-1177 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -3597 ($ (-665 |#1|))))) (-1247)) (T -1177)) +((-3597 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1177 *3))))) +(-13 (-1151 |#1|) (-10 -8 (-15 -3597 ($ (-665 |#1|))))) +((-1957 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) NIL T ELT) (($ $ "rest" $) NIL T ELT) ((|#2| $ "last" |#2|) NIL T ELT) ((|#2| $ (-1264 (-577)) |#2|) 53 T ELT) ((|#2| $ (-577) |#2|) 50 T ELT)) (-4236 (((-112) $) 12 T ELT)) (-4409 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4397 ((|#2| $) NIL T ELT) (($ $ (-792)) 17 T ELT)) (-2561 (($ $ |#2|) 49 T ELT)) (-3661 (((-112) $) 11 T ELT)) (-2916 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#2| $ "last") NIL T ELT) (($ $ (-1264 (-577))) 36 T ELT) ((|#2| $ (-577)) 26 T ELT) ((|#2| $ (-577) |#2|) NIL T ELT)) (-2562 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-1702 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-665 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1178 |#1| |#2|) (-10 -8 (-15 -4236 ((-112) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -1957 (|#2| |#1| (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577))) (-15 -2561 (|#1| |#1| |#2|)) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -1702 (|#1| |#1| |#2|)) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1957 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -1957 (|#2| |#1| "last" |#2|)) (-15 -1957 (|#1| |#1| "rest" |#1|)) (-15 -1957 (|#2| |#1| "first" |#2|)) (-15 -2562 (|#1| |#1| |#2|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2916 (|#2| |#1| "last")) (-15 -2916 (|#1| |#1| "rest")) (-15 -4397 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "first")) (-15 -4397 (|#2| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -2916 (|#2| |#1| "value")) (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|))) (-1179 |#2|) (-1247)) (T -1178)) +NIL +(-10 -8 (-15 -4236 ((-112) |#1|)) (-15 -3661 ((-112) |#1|)) (-15 -1957 (|#2| |#1| (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577) |#2|)) (-15 -2916 (|#2| |#1| (-577))) (-15 -2561 (|#1| |#1| |#2|)) (-15 -2916 (|#1| |#1| (-1264 (-577)))) (-15 -1702 (|#1| |#1| |#2|)) (-15 -1702 (|#1| (-665 |#1|))) (-15 -1957 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -1957 (|#2| |#1| "last" |#2|)) (-15 -1957 (|#1| |#1| "rest" |#1|)) (-15 -1957 (|#2| |#1| "first" |#2|)) (-15 -2562 (|#1| |#1| |#2|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2916 (|#2| |#1| "last")) (-15 -2916 (|#1| |#1| "rest")) (-15 -4397 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "first")) (-15 -4397 (|#2| |#1|)) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#1|)) (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -2916 (|#2| |#1| "value")) (-15 -4409 (|#1| (-1 |#2| |#2|) |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-1893 ((|#1| $) 66 T ELT)) (-2688 (($ $) 68 T ELT)) (-1935 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-1968 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 119 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4499)) ELT)) (-1883 ((|#1| $) 67 T ELT)) (-2305 (($) 7 T CONST)) (-4410 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-3589 (($ $) 101 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4499)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4420 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 89 T ELT)) (-4236 (((-112) $) 85 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3236 (($ (-792) |#1|) 111 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 97 (|has| (-577) (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 96 (|has| (-577) (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-2317 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-2233 (((-665 (-577)) $) 94 T ELT)) (-3972 (((-112) (-577) $) 93 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-2561 (($ $ |#1|) 98 (|has| $ (-6 -4500)) ELT)) (-3661 (((-112) $) 86 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 92 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-3587 (($ $ (-1264 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1659 (($ $) 63 T ELT)) (-1697 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) 64 T ELT)) (-2554 (($ $) 65 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 100 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 109 T ELT)) (-2562 (($ $ $) 62 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4500)) ELT)) (-1702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-665 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1179 |#1|) (-141) (-1247)) (T -1179)) +((-3661 (*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) +(-13 (-1285 |t#1|) (-672 |t#1|) (-10 -8 (-15 -3661 ((-112) $)) (-15 -4236 ((-112) $)))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T) ((-1285 |#1|) . T)) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1935 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4001 (((-665 |#1|) $) NIL T ELT)) (-4065 (((-112) |#1| $) NIL T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2233 (((-665 |#1|) $) NIL T ELT)) (-3972 (((-112) |#1| $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1180 |#1| |#2| |#3|) (-1223 |#1| |#2|) (-1130) (-1130) |#2|) (T -1180)) +NIL +(-1223 |#1| |#2|) +((-3586 (((-112) $ $) NIL T ELT)) (-2454 (((-712 (-1165)) $) 27 T ELT)) (-1662 (((-1165) $) 15 T ELT)) (-2493 (((-1165) $) 17 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2147 (((-519) $) 13 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 37 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1181) (-13 (-1113) (-10 -8 (-15 -2147 ((-519) $)) (-15 -2493 ((-1165) $)) (-15 -2454 ((-712 (-1165)) $)) (-15 -1662 ((-1165) $))))) (T -1181)) +((-2147 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1181)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-712 (-1165))) (-5 *1 (-1181)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181))))) +(-13 (-1113) (-10 -8 (-15 -2147 ((-519) $)) (-15 -2493 ((-1165) $)) (-15 -2454 ((-712 (-1165)) $)) (-15 -1662 ((-1165) $)))) +((-3586 (((-112) $ $) 7 T ELT)) (-2004 (((-3 $ "failed") $) 14 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-2443 (($) 15 T CONST)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-3018 (((-112) $ $) 8 T ELT))) +(((-1182) (-141)) (T -1182)) +((-2443 (*1 *1) (-4 *1 (-1182))) (-2004 (*1 *1 *1) (|partial| -4 *1 (-1182)))) +(-13 (-1130) (-10 -8 (-15 -2443 ($) -4212) (-15 -2004 ((-3 $ "failed") $)))) +(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) +((-2161 (((-1187 |#1|) (-1187 |#1|)) 17 T ELT)) (-3952 (((-1187 |#1|) (-1187 |#1|)) 13 T ELT)) (-1952 (((-1187 |#1|) (-1187 |#1|) (-577) (-577)) 20 T ELT)) (-1843 (((-1187 |#1|) (-1187 |#1|)) 15 T ELT))) +(((-1183 |#1|) (-10 -7 (-15 -3952 ((-1187 |#1|) (-1187 |#1|))) (-15 -1843 ((-1187 |#1|) (-1187 |#1|))) (-15 -2161 ((-1187 |#1|) (-1187 |#1|))) (-15 -1952 ((-1187 |#1|) (-1187 |#1|) (-577) (-577)))) (-13 (-569) (-148))) (T -1183)) +((-1952 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1183 *4)))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1183 *3)))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1183 *3)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1183 *3))))) +(-10 -7 (-15 -3952 ((-1187 |#1|) (-1187 |#1|))) (-15 -1843 ((-1187 |#1|) (-1187 |#1|))) (-15 -2161 ((-1187 |#1|) (-1187 |#1|))) (-15 -1952 ((-1187 |#1|) (-1187 |#1|) (-577) (-577)))) +((-1702 (((-1187 |#1|) (-1187 (-1187 |#1|))) 15 T ELT))) +(((-1184 |#1|) (-10 -7 (-15 -1702 ((-1187 |#1|) (-1187 (-1187 |#1|))))) (-1247)) (T -1184)) +((-1702 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1184 *4)) (-4 *4 (-1247))))) +(-10 -7 (-15 -1702 ((-1187 |#1|) (-1187 (-1187 |#1|))))) +((-4256 (((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)) 25 T ELT)) (-2060 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)) 26 T ELT)) (-4417 (((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|)) 16 T ELT))) +(((-1185 |#1| |#2|) (-10 -7 (-15 -4417 ((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|))) (-15 -4256 ((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|))) (-15 -2060 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)))) (-1247) (-1247)) (T -1185)) +((-2060 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1185 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1187 *6)) (-4 *6 (-1247)) (-4 *3 (-1247)) (-5 *2 (-1187 *3)) (-5 *1 (-1185 *6 *3)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1187 *6)) (-5 *1 (-1185 *5 *6))))) +(-10 -7 (-15 -4417 ((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|))) (-15 -4256 ((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|))) (-15 -2060 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)))) +((-4417 (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)) 21 T ELT))) +(((-1186 |#1| |#2| |#3|) (-10 -7 (-15 -4417 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)))) (-1247) (-1247) (-1247)) (T -1186)) +((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-1187 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) (-5 *1 (-1186 *6 *7 *8))))) +(-10 -7 (-15 -4417 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) NIL T ELT)) (-1893 ((|#1| $) NIL T ELT)) (-2688 (($ $) 67 T ELT)) (-1935 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2815 (($ $ (-577)) 128 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-4105 (((-885) $) 56 (|has| |#1| (-1130)) ELT)) (-4017 (((-112)) 55 (|has| |#1| (-1130)) ELT)) (-4450 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 115 (|has| $ (-6 -4500)) ELT) (($ $ (-577) $) 141 T ELT)) (-1968 ((|#1| $ |#1|) 125 (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) 120 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 124 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 112 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 77 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 80 T ELT)) (-1883 ((|#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-2733 (($ $) 14 T ELT)) (-4410 (($ $) 40 T ELT) (($ $ (-792)) 111 T ELT)) (-1736 (((-112) (-665 |#1|) $) 134 (|has| |#1| (-1130)) ELT)) (-3835 (($ (-665 |#1|)) 130 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) 79 T ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-4236 (((-112) $) NIL T ELT)) (-2118 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2656 (((-1302) (-577) $) 140 (|has| |#1| (-1130)) ELT)) (-1527 (((-792) $) 137 T ELT)) (-2680 (((-665 $) $) NIL T ELT)) (-3977 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 85 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 89 T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3196 (((-665 |#1|) $) NIL T ELT)) (-3188 (((-112) $) NIL T ELT)) (-1939 (($ $) 113 T ELT)) (-3202 (((-112) $) 13 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2317 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) 96 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2475 (($ (-1 |#1|)) 143 T ELT) (($ (-1 |#1| |#1|) |#1|) 144 T ELT)) (-4016 ((|#1| $) 10 T ELT)) (-4397 ((|#1| $) 39 T ELT) (($ $ (-792)) 65 T ELT)) (-1873 (((-2 (|:| |cycle?| (-112)) (|:| -4192 (-792)) (|:| |period| (-792))) (-792) $) 34 T ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3149 (($ (-1 (-112) |#1|) $) 145 T ELT)) (-1428 (($ (-1 (-112) |#1|) $) 146 T ELT)) (-2561 (($ $ |#1|) 90 (|has| $ (-6 -4500)) ELT)) (-2568 (($ $ (-577)) 45 T ELT)) (-3661 (((-112) $) 94 T ELT)) (-1729 (((-112) $) 12 T ELT)) (-2711 (((-112) $) 136 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 30 T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) 20 T ELT)) (-2833 (($) 60 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) 75 T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-2409 (((-577) $ $) 64 T ELT)) (-3587 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-3401 (($ (-1 $)) 63 T ELT)) (-2625 (((-112) $) 91 T ELT)) (-1659 (($ $) 92 T ELT)) (-1697 (($ $) 116 (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) NIL T ELT)) (-2554 (($ $) NIL T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 59 T ELT)) (-4463 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 73 T ELT)) (-2986 (($ |#1| $) 114 T ELT)) (-2562 (($ $ $) 118 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 119 (|has| $ (-6 -4500)) ELT)) (-1702 (($ $ $) 101 T ELT) (($ |#1| $) 61 T ELT) (($ (-665 $)) 106 T ELT) (($ $ |#1|) 100 T ELT)) (-4165 (($ $) 66 T ELT)) (-3709 (($ (-665 |#1|)) 129 T ELT) (((-885) $) 57 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) NIL T ELT)) (-2256 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 132 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1187 |#1|) (-13 (-695 |#1|) (-634 (-665 |#1|)) (-10 -8 (-6 -4500) (-15 -3835 ($ (-665 |#1|))) (IF (|has| |#1| (-1130)) (-15 -1736 ((-112) (-665 |#1|) $)) |%noBranch|) (-15 -1873 ((-2 (|:| |cycle?| (-112)) (|:| -4192 (-792)) (|:| |period| (-792))) (-792) $)) (-15 -3401 ($ (-1 $))) (-15 -2986 ($ |#1| $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -2656 ((-1302) (-577) $)) (-15 -4105 ((-885) $)) (-15 -4017 ((-112)))) |%noBranch|) (-15 -2704 ($ $ (-577) $)) (-15 -2475 ($ (-1 |#1|))) (-15 -2475 ($ (-1 |#1| |#1|) |#1|)) (-15 -3149 ($ (-1 (-112) |#1|) $)) (-15 -1428 ($ (-1 (-112) |#1|) $)))) (-1247)) (T -1187)) +((-3835 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-1736 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-4 *4 (-1247)) (-5 *2 (-112)) (-5 *1 (-1187 *4)))) (-1873 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4192 (-792)) (|:| |period| (-792)))) (-5 *1 (-1187 *4)) (-4 *4 (-1247)) (-5 *3 (-792)))) (-3401 (*1 *1 *2) (-12 (-5 *2 (-1 (-1187 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1247)))) (-2986 (*1 *1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-1247)))) (-2656 (*1 *2 *3 *1) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1187 *4)) (-4 *4 (-1130)) (-4 *4 (-1247)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) (-4 *3 (-1247)))) (-4017 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) (-4 *3 (-1247)))) (-2704 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1187 *3)) (-4 *3 (-1247)))) (-2475 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-2475 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-3149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-1428 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) +(-13 (-695 |#1|) (-634 (-665 |#1|)) (-10 -8 (-6 -4500) (-15 -3835 ($ (-665 |#1|))) (IF (|has| |#1| (-1130)) (-15 -1736 ((-112) (-665 |#1|) $)) |%noBranch|) (-15 -1873 ((-2 (|:| |cycle?| (-112)) (|:| -4192 (-792)) (|:| |period| (-792))) (-792) $)) (-15 -3401 ($ (-1 $))) (-15 -2986 ($ |#1| $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -2656 ((-1302) (-577) $)) (-15 -4105 ((-885) $)) (-15 -4017 ((-112)))) |%noBranch|) (-15 -2704 ($ $ (-577) $)) (-15 -2475 ($ (-1 |#1|))) (-15 -2475 ($ (-1 |#1| |#1|) |#1|)) (-15 -3149 ($ (-1 (-112) |#1|) $)) (-15 -1428 ($ (-1 (-112) |#1|) $)))) +((-3586 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-1732 (($ $) NIL T ELT)) (-3890 (($ $) NIL T ELT)) (-3788 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3000 (((-112) $ $) NIL T ELT)) (-2976 (((-112) $ $ (-577)) NIL T ELT)) (-1378 (($ (-577)) 8 T ELT) (($ (-228)) 10 T ELT)) (-4452 (((-665 $) $ (-145)) NIL T ELT) (((-665 $) $ (-142)) NIL T ELT)) (-3279 (((-112) (-1 (-112) (-145) (-145)) $) NIL T ELT) (((-112) $) NIL (|has| (-145) (-870)) ELT)) (-2629 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-145) (-870))) ELT)) (-1381 (($ (-1 (-112) (-145) (-145)) $) NIL T ELT) (($ $) NIL (|has| (-145) (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4500)) ELT) (((-145) $ (-1264 (-577)) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-1564 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3158 (($ $ (-1264 (-577)) $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-4004 (($ (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-4353 (((-145) $ (-577)) NIL T ELT)) (-3025 (((-112) $ $) NIL T ELT)) (-3948 (((-577) (-1 (-112) (-145)) $) NIL T ELT) (((-577) (-145) $) NIL (|has| (-145) (-1130)) ELT) (((-577) (-145) $ (-577)) NIL (|has| (-145) (-1130)) ELT) (((-577) $ $ (-577)) NIL T ELT) (((-577) (-142) $ (-577)) NIL T ELT)) (-2118 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3236 (($ (-792) (-145)) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-3771 (($ (-1 (-112) (-145) (-145)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-2152 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1425 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-2028 (((-112) $ $ (-145)) NIL T ELT)) (-2166 (((-792) $ $ (-145)) NIL T ELT)) (-4409 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-145) (-145)) $) NIL T ELT) (($ (-1 (-145) (-145) (-145)) $ $) NIL T ELT)) (-4234 (($ $) NIL T ELT)) (-3110 (($ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-1575 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-3235 (((-1188) $) NIL (|has| (-145) (-1130)) ELT)) (-2317 (($ (-145) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| (-145) (-1130)) ELT)) (-4397 (((-145) $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-2561 (($ $ (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-145)) (-665 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-4059 (((-665 (-145)) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) (($ $ $) NIL T ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-145) (-632 (-549))) ELT)) (-3722 (($ (-665 (-145))) NIL T ELT)) (-1702 (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (($ (-145)) NIL T ELT) (((-885) $) NIL (|has| (-145) (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-1474 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-4136 (((-1188) $) 21 T ELT) (((-1188) $ (-112)) 23 T ELT) (((-1302) (-843) $) 24 T ELT) (((-1302) (-843) $ (-112)) 25 T ELT)) (-3078 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1188) (-13 (-1174) (-849) (-10 -8 (-15 -1378 ($ (-577))) (-15 -1378 ($ (-228)))))) (T -1188)) +((-1378 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1188)))) (-1378 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1188))))) +(-13 (-1174) (-849) (-10 -8 (-15 -1378 ($ (-577))) (-15 -1378 ($ (-228))))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT)) (-1935 (((-1302) $ (-1188) (-1188)) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-1188) |#1|) NIL T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#1| "failed") (-1188) $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#1| "failed") (-1188) $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-1188) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-1188)) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130)) (|has| |#1| (-1130))) ELT)) (-4001 (((-665 (-1188)) $) NIL T ELT)) (-4065 (((-112) (-1188) $) NIL T ELT)) (-2786 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL T ELT)) (-2233 (((-665 (-1188)) $) NIL T ELT)) (-3972 (((-112) (-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130)) (|has| |#1| (-1130))) ELT)) (-4397 ((|#1| $) NIL (|has| (-1188) (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) "failed") (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL (-12 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-320 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-1188)) NIL T ELT) ((|#1| $ (-1188) |#1|) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-1130))) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-631 (-885))) (|has| |#1| (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1189 |#1|) (-13 (-1223 (-1188) |#1|) (-10 -7 (-6 -4499))) (-1130)) (T -1189)) +NIL +(-13 (-1223 (-1188) |#1|) (-10 -7 (-6 -4499))) +((-2363 (((-1187 |#1|) (-1187 |#1|)) 83 T ELT)) (-3167 (((-3 (-1187 |#1|) "failed") (-1187 |#1|)) 39 T ELT)) (-3533 (((-1187 |#1|) (-420 (-577)) (-1187 |#1|)) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3403 (((-1187 |#1|) |#1| (-1187 |#1|)) 139 (|has| |#1| (-375)) ELT)) (-3515 (((-1187 |#1|) (-1187 |#1|)) 97 T ELT)) (-3118 (((-1187 (-577)) (-577)) 63 T ELT)) (-2748 (((-1187 |#1|) (-1187 (-1187 |#1|))) 116 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2193 (((-1187 |#1|) (-577) (-577) (-1187 |#1|)) 102 T ELT)) (-3305 (((-1187 |#1|) |#1| (-577)) 51 T ELT)) (-1989 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 66 T ELT)) (-3799 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 136 (|has| |#1| (-375)) ELT)) (-3006 (((-1187 |#1|) |#1| (-1 (-1187 |#1|))) 115 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (((-1187 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1187 |#1|))) 137 (|has| |#1| (-375)) ELT)) (-2418 (((-1187 |#1|) (-1187 |#1|)) 96 T ELT)) (-2783 (((-1187 |#1|) (-1187 |#1|)) 82 T ELT)) (-2488 (((-1187 |#1|) (-577) (-577) (-1187 |#1|)) 103 T ELT)) (-1869 (((-1187 |#1|) |#1| (-1187 |#1|)) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2447 (((-1187 (-577)) (-577)) 62 T ELT)) (-2269 (((-1187 |#1|) |#1|) 65 T ELT)) (-2886 (((-1187 |#1|) (-1187 |#1|) (-577) (-577)) 99 T ELT)) (-3051 (((-1187 |#1|) (-1 |#1| (-577)) (-1187 |#1|)) 72 T ELT)) (-3574 (((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|)) 37 T ELT)) (-2897 (((-1187 |#1|) (-1187 |#1|)) 98 T ELT)) (-3373 (((-1187 |#1|) (-1187 |#1|) |#1|) 77 T ELT)) (-4219 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-4198 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 78 T ELT)) (-3709 (((-1187 |#1|) |#1|) 73 T ELT)) (-3717 (((-1187 |#1|) (-1187 (-1187 |#1|))) 88 T ELT)) (-3139 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 38 T ELT)) (-3128 (((-1187 |#1|) (-1187 |#1|)) 21 T ELT) (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 23 T ELT)) (-3114 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 17 T ELT)) (* (((-1187 |#1|) (-1187 |#1|) |#1|) 29 T ELT) (((-1187 |#1|) |#1| (-1187 |#1|)) 26 T ELT) (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 27 T ELT))) +(((-1190 |#1|) (-10 -7 (-15 -3114 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3128 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3128 ((-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3574 ((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|))) (-15 -3139 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3167 ((-3 (-1187 |#1|) "failed") (-1187 |#1|))) (-15 -3305 ((-1187 |#1|) |#1| (-577))) (-15 -2447 ((-1187 (-577)) (-577))) (-15 -3118 ((-1187 (-577)) (-577))) (-15 -2269 ((-1187 |#1|) |#1|)) (-15 -1989 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4219 ((-1187 |#1|) (-1187 |#1|))) (-15 -3051 ((-1187 |#1|) (-1 |#1| (-577)) (-1187 |#1|))) (-15 -3709 ((-1187 |#1|) |#1|)) (-15 -3373 ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -4198 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2783 ((-1187 |#1|) (-1187 |#1|))) (-15 -2363 ((-1187 |#1|) (-1187 |#1|))) (-15 -3717 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -2418 ((-1187 |#1|) (-1187 |#1|))) (-15 -3515 ((-1187 |#1|) (-1187 |#1|))) (-15 -2897 ((-1187 |#1|) (-1187 |#1|))) (-15 -2886 ((-1187 |#1|) (-1187 |#1|) (-577) (-577))) (-15 -2193 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (-15 -2488 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 -3006 ((-1187 |#1|) |#1| (-1 (-1187 |#1|)))) (-15 -2748 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -3533 ((-1187 |#1|) (-420 (-577)) (-1187 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3799 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2393 ((-1187 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1187 |#1|)))) (-15 -3403 ((-1187 |#1|) |#1| (-1187 |#1|)))) |%noBranch|)) (-1079)) (T -1190)) +((-3403 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1187 *4))) (-4 *4 (-375)) (-4 *4 (-1079)) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3533 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1079)) (-5 *3 (-420 (-577))) (-5 *1 (-1190 *4)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079)))) (-3006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1187 *3))) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)))) (-1869 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2488 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-2193 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-2886 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-2897 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) (-4 *4 (-1079)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-4198 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3373 (*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) (-3051 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-1989 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) (-3118 (*1 *2 *3) (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) (-5 *3 (-577)))) (-2447 (*1 *2 *3) (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) (-5 *3 (-577)))) (-3305 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) (-3167 (*1 *2 *2) (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3139 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3574 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3114 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) +(-10 -7 (-15 -3114 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3128 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3128 ((-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3574 ((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|))) (-15 -3139 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3167 ((-3 (-1187 |#1|) "failed") (-1187 |#1|))) (-15 -3305 ((-1187 |#1|) |#1| (-577))) (-15 -2447 ((-1187 (-577)) (-577))) (-15 -3118 ((-1187 (-577)) (-577))) (-15 -2269 ((-1187 |#1|) |#1|)) (-15 -1989 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4219 ((-1187 |#1|) (-1187 |#1|))) (-15 -3051 ((-1187 |#1|) (-1 |#1| (-577)) (-1187 |#1|))) (-15 -3709 ((-1187 |#1|) |#1|)) (-15 -3373 ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -4198 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2783 ((-1187 |#1|) (-1187 |#1|))) (-15 -2363 ((-1187 |#1|) (-1187 |#1|))) (-15 -3717 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -2418 ((-1187 |#1|) (-1187 |#1|))) (-15 -3515 ((-1187 |#1|) (-1187 |#1|))) (-15 -2897 ((-1187 |#1|) (-1187 |#1|))) (-15 -2886 ((-1187 |#1|) (-1187 |#1|) (-577) (-577))) (-15 -2193 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (-15 -2488 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 -3006 ((-1187 |#1|) |#1| (-1 (-1187 |#1|)))) (-15 -2748 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -3533 ((-1187 |#1|) (-420 (-577)) (-1187 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3799 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2393 ((-1187 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1187 |#1|)))) (-15 -3403 ((-1187 |#1|) |#1| (-1187 |#1|)))) |%noBranch|)) +((-1660 (((-1187 |#1|) (-1187 |#1|)) 60 T ELT)) (-2785 (((-1187 |#1|) (-1187 |#1|)) 42 T ELT)) (-1638 (((-1187 |#1|) (-1187 |#1|)) 56 T ELT)) (-2757 (((-1187 |#1|) (-1187 |#1|)) 38 T ELT)) (-1682 (((-1187 |#1|) (-1187 |#1|)) 63 T ELT)) (-2809 (((-1187 |#1|) (-1187 |#1|)) 45 T ELT)) (-3825 (((-1187 |#1|) (-1187 |#1|)) 34 T ELT)) (-2355 (((-1187 |#1|) (-1187 |#1|)) 29 T ELT)) (-1692 (((-1187 |#1|) (-1187 |#1|)) 64 T ELT)) (-2821 (((-1187 |#1|) (-1187 |#1|)) 46 T ELT)) (-1671 (((-1187 |#1|) (-1187 |#1|)) 61 T ELT)) (-2797 (((-1187 |#1|) (-1187 |#1|)) 43 T ELT)) (-1648 (((-1187 |#1|) (-1187 |#1|)) 58 T ELT)) (-2772 (((-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-1727 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-2861 (((-1187 |#1|) (-1187 |#1|)) 50 T ELT)) (-1703 (((-1187 |#1|) (-1187 |#1|)) 66 T ELT)) (-2834 (((-1187 |#1|) (-1187 |#1|)) 48 T ELT)) (-1748 (((-1187 |#1|) (-1187 |#1|)) 71 T ELT)) (-1616 (((-1187 |#1|) (-1187 |#1|)) 53 T ELT)) (-4468 (((-1187 |#1|) (-1187 |#1|)) 72 T ELT)) (-1626 (((-1187 |#1|) (-1187 |#1|)) 54 T ELT)) (-1737 (((-1187 |#1|) (-1187 |#1|)) 70 T ELT)) (-2874 (((-1187 |#1|) (-1187 |#1|)) 52 T ELT)) (-1715 (((-1187 |#1|) (-1187 |#1|)) 69 T ELT)) (-2847 (((-1187 |#1|) (-1187 |#1|)) 51 T ELT)) (** (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 36 T ELT))) +(((-1191 |#1|) (-10 -7 (-15 -2355 ((-1187 |#1|) (-1187 |#1|))) (-15 -3825 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2757 ((-1187 |#1|) (-1187 |#1|))) (-15 -2772 ((-1187 |#1|) (-1187 |#1|))) (-15 -2785 ((-1187 |#1|) (-1187 |#1|))) (-15 -2797 ((-1187 |#1|) (-1187 |#1|))) (-15 -2809 ((-1187 |#1|) (-1187 |#1|))) (-15 -2821 ((-1187 |#1|) (-1187 |#1|))) (-15 -2834 ((-1187 |#1|) (-1187 |#1|))) (-15 -2847 ((-1187 |#1|) (-1187 |#1|))) (-15 -2861 ((-1187 |#1|) (-1187 |#1|))) (-15 -2874 ((-1187 |#1|) (-1187 |#1|))) (-15 -1616 ((-1187 |#1|) (-1187 |#1|))) (-15 -1626 ((-1187 |#1|) (-1187 |#1|))) (-15 -1638 ((-1187 |#1|) (-1187 |#1|))) (-15 -1648 ((-1187 |#1|) (-1187 |#1|))) (-15 -1660 ((-1187 |#1|) (-1187 |#1|))) (-15 -1671 ((-1187 |#1|) (-1187 |#1|))) (-15 -1682 ((-1187 |#1|) (-1187 |#1|))) (-15 -1692 ((-1187 |#1|) (-1187 |#1|))) (-15 -1703 ((-1187 |#1|) (-1187 |#1|))) (-15 -1715 ((-1187 |#1|) (-1187 |#1|))) (-15 -1727 ((-1187 |#1|) (-1187 |#1|))) (-15 -1737 ((-1187 |#1|) (-1187 |#1|))) (-15 -1748 ((-1187 |#1|) (-1187 |#1|))) (-15 -4468 ((-1187 |#1|) (-1187 |#1|)))) (-38 (-420 (-577)))) (T -1191)) +((-4468 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1671 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2809 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2797 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-2355 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3))))) +(-10 -7 (-15 -2355 ((-1187 |#1|) (-1187 |#1|))) (-15 -3825 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2757 ((-1187 |#1|) (-1187 |#1|))) (-15 -2772 ((-1187 |#1|) (-1187 |#1|))) (-15 -2785 ((-1187 |#1|) (-1187 |#1|))) (-15 -2797 ((-1187 |#1|) (-1187 |#1|))) (-15 -2809 ((-1187 |#1|) (-1187 |#1|))) (-15 -2821 ((-1187 |#1|) (-1187 |#1|))) (-15 -2834 ((-1187 |#1|) (-1187 |#1|))) (-15 -2847 ((-1187 |#1|) (-1187 |#1|))) (-15 -2861 ((-1187 |#1|) (-1187 |#1|))) (-15 -2874 ((-1187 |#1|) (-1187 |#1|))) (-15 -1616 ((-1187 |#1|) (-1187 |#1|))) (-15 -1626 ((-1187 |#1|) (-1187 |#1|))) (-15 -1638 ((-1187 |#1|) (-1187 |#1|))) (-15 -1648 ((-1187 |#1|) (-1187 |#1|))) (-15 -1660 ((-1187 |#1|) (-1187 |#1|))) (-15 -1671 ((-1187 |#1|) (-1187 |#1|))) (-15 -1682 ((-1187 |#1|) (-1187 |#1|))) (-15 -1692 ((-1187 |#1|) (-1187 |#1|))) (-15 -1703 ((-1187 |#1|) (-1187 |#1|))) (-15 -1715 ((-1187 |#1|) (-1187 |#1|))) (-15 -1727 ((-1187 |#1|) (-1187 |#1|))) (-15 -1737 ((-1187 |#1|) (-1187 |#1|))) (-15 -1748 ((-1187 |#1|) (-1187 |#1|))) (-15 -4468 ((-1187 |#1|) (-1187 |#1|)))) +((-1660 (((-1187 |#1|) (-1187 |#1|)) 102 T ELT)) (-2785 (((-1187 |#1|) (-1187 |#1|)) 61 T ELT)) (-2981 (((-2 (|:| -1638 (-1187 |#1|)) (|:| -1648 (-1187 |#1|))) (-1187 |#1|)) 98 T ELT)) (-1638 (((-1187 |#1|) (-1187 |#1|)) 99 T ELT)) (-3937 (((-2 (|:| -2757 (-1187 |#1|)) (|:| -2772 (-1187 |#1|))) (-1187 |#1|)) 54 T ELT)) (-2757 (((-1187 |#1|) (-1187 |#1|)) 55 T ELT)) (-1682 (((-1187 |#1|) (-1187 |#1|)) 104 T ELT)) (-2809 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-3825 (((-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-2355 (((-1187 |#1|) (-1187 |#1|)) 37 T ELT)) (-1692 (((-1187 |#1|) (-1187 |#1|)) 105 T ELT)) (-2821 (((-1187 |#1|) (-1187 |#1|)) 69 T ELT)) (-1671 (((-1187 |#1|) (-1187 |#1|)) 103 T ELT)) (-2797 (((-1187 |#1|) (-1187 |#1|)) 64 T ELT)) (-1648 (((-1187 |#1|) (-1187 |#1|)) 100 T ELT)) (-2772 (((-1187 |#1|) (-1187 |#1|)) 56 T ELT)) (-1727 (((-1187 |#1|) (-1187 |#1|)) 113 T ELT)) (-2861 (((-1187 |#1|) (-1187 |#1|)) 88 T ELT)) (-1703 (((-1187 |#1|) (-1187 |#1|)) 107 T ELT)) (-2834 (((-1187 |#1|) (-1187 |#1|)) 84 T ELT)) (-1748 (((-1187 |#1|) (-1187 |#1|)) 117 T ELT)) (-1616 (((-1187 |#1|) (-1187 |#1|)) 92 T ELT)) (-4468 (((-1187 |#1|) (-1187 |#1|)) 119 T ELT)) (-1626 (((-1187 |#1|) (-1187 |#1|)) 94 T ELT)) (-1737 (((-1187 |#1|) (-1187 |#1|)) 115 T ELT)) (-2874 (((-1187 |#1|) (-1187 |#1|)) 90 T ELT)) (-1715 (((-1187 |#1|) (-1187 |#1|)) 109 T ELT)) (-2847 (((-1187 |#1|) (-1187 |#1|)) 86 T ELT)) (** (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 41 T ELT))) +(((-1192 |#1|) (-10 -7 (-15 -2355 ((-1187 |#1|) (-1187 |#1|))) (-15 -3825 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3937 ((-2 (|:| -2757 (-1187 |#1|)) (|:| -2772 (-1187 |#1|))) (-1187 |#1|))) (-15 -2757 ((-1187 |#1|) (-1187 |#1|))) (-15 -2772 ((-1187 |#1|) (-1187 |#1|))) (-15 -2785 ((-1187 |#1|) (-1187 |#1|))) (-15 -2797 ((-1187 |#1|) (-1187 |#1|))) (-15 -2809 ((-1187 |#1|) (-1187 |#1|))) (-15 -2821 ((-1187 |#1|) (-1187 |#1|))) (-15 -2834 ((-1187 |#1|) (-1187 |#1|))) (-15 -2847 ((-1187 |#1|) (-1187 |#1|))) (-15 -2861 ((-1187 |#1|) (-1187 |#1|))) (-15 -2874 ((-1187 |#1|) (-1187 |#1|))) (-15 -1616 ((-1187 |#1|) (-1187 |#1|))) (-15 -1626 ((-1187 |#1|) (-1187 |#1|))) (-15 -2981 ((-2 (|:| -1638 (-1187 |#1|)) (|:| -1648 (-1187 |#1|))) (-1187 |#1|))) (-15 -1638 ((-1187 |#1|) (-1187 |#1|))) (-15 -1648 ((-1187 |#1|) (-1187 |#1|))) (-15 -1660 ((-1187 |#1|) (-1187 |#1|))) (-15 -1671 ((-1187 |#1|) (-1187 |#1|))) (-15 -1682 ((-1187 |#1|) (-1187 |#1|))) (-15 -1692 ((-1187 |#1|) (-1187 |#1|))) (-15 -1703 ((-1187 |#1|) (-1187 |#1|))) (-15 -1715 ((-1187 |#1|) (-1187 |#1|))) (-15 -1727 ((-1187 |#1|) (-1187 |#1|))) (-15 -1737 ((-1187 |#1|) (-1187 |#1|))) (-15 -1748 ((-1187 |#1|) (-1187 |#1|))) (-15 -4468 ((-1187 |#1|) (-1187 |#1|)))) (-38 (-420 (-577)))) (T -1192)) +((-4468 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1748 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1715 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1671 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1648 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2981 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -1638 (-1187 *4)) (|:| -1648 (-1187 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2809 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2797 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-3937 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -2757 (-1187 *4)) (|:| -2772 (-1187 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-2355 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3))))) +(-10 -7 (-15 -2355 ((-1187 |#1|) (-1187 |#1|))) (-15 -3825 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3937 ((-2 (|:| -2757 (-1187 |#1|)) (|:| -2772 (-1187 |#1|))) (-1187 |#1|))) (-15 -2757 ((-1187 |#1|) (-1187 |#1|))) (-15 -2772 ((-1187 |#1|) (-1187 |#1|))) (-15 -2785 ((-1187 |#1|) (-1187 |#1|))) (-15 -2797 ((-1187 |#1|) (-1187 |#1|))) (-15 -2809 ((-1187 |#1|) (-1187 |#1|))) (-15 -2821 ((-1187 |#1|) (-1187 |#1|))) (-15 -2834 ((-1187 |#1|) (-1187 |#1|))) (-15 -2847 ((-1187 |#1|) (-1187 |#1|))) (-15 -2861 ((-1187 |#1|) (-1187 |#1|))) (-15 -2874 ((-1187 |#1|) (-1187 |#1|))) (-15 -1616 ((-1187 |#1|) (-1187 |#1|))) (-15 -1626 ((-1187 |#1|) (-1187 |#1|))) (-15 -2981 ((-2 (|:| -1638 (-1187 |#1|)) (|:| -1648 (-1187 |#1|))) (-1187 |#1|))) (-15 -1638 ((-1187 |#1|) (-1187 |#1|))) (-15 -1648 ((-1187 |#1|) (-1187 |#1|))) (-15 -1660 ((-1187 |#1|) (-1187 |#1|))) (-15 -1671 ((-1187 |#1|) (-1187 |#1|))) (-15 -1682 ((-1187 |#1|) (-1187 |#1|))) (-15 -1692 ((-1187 |#1|) (-1187 |#1|))) (-15 -1703 ((-1187 |#1|) (-1187 |#1|))) (-15 -1715 ((-1187 |#1|) (-1187 |#1|))) (-15 -1727 ((-1187 |#1|) (-1187 |#1|))) (-15 -1737 ((-1187 |#1|) (-1187 |#1|))) (-15 -1748 ((-1187 |#1|) (-1187 |#1|))) (-15 -4468 ((-1187 |#1|) (-1187 |#1|)))) +((-3540 (((-986 |#2|) |#2| |#2|) 50 T ELT)) (-2796 ((|#2| |#2| |#1|) 19 (|has| |#1| (-318)) ELT))) +(((-1193 |#1| |#2|) (-10 -7 (-15 -3540 ((-986 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -2796 (|#2| |#2| |#1|)) |%noBranch|)) (-569) (-1273 |#1|)) (T -1193)) +((-2796 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1193 *3 *2)) (-4 *2 (-1273 *3)))) (-3540 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-986 *3)) (-5 *1 (-1193 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3540 ((-986 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -2796 (|#2| |#2| |#1|)) |%noBranch|)) +((-3586 (((-112) $ $) NIL T ELT)) (-4238 (($ $ (-665 (-792))) 79 T ELT)) (-1368 (($) 33 T ELT)) (-3573 (($ $) 51 T ELT)) (-2723 (((-665 $) $) 60 T ELT)) (-1700 (((-112) $) 19 T ELT)) (-4083 (((-665 (-971 |#2|)) $) 86 T ELT)) (-1846 (($ $) 80 T ELT)) (-2920 (((-792) $) 47 T ELT)) (-3236 (($) 32 T ELT)) (-1436 (($ $ (-665 (-792)) (-971 |#2|)) 72 T ELT) (($ $ (-665 (-792)) (-792)) 73 T ELT) (($ $ (-792) (-971 |#2|)) 75 T ELT)) (-3771 (($ $ $) 57 T ELT) (($ (-665 $)) 59 T ELT)) (-3714 (((-792) $) 87 T ELT)) (-3188 (((-112) $) 15 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3485 (((-112) $) 22 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3212 (((-173) $) 85 T ELT)) (-3304 (((-971 |#2|) $) 81 T ELT)) (-2217 (((-792) $) 82 T ELT)) (-3124 (((-112) $) 84 T ELT)) (-3404 (($ $ (-665 (-792)) (-173)) 78 T ELT)) (-2214 (($ $) 52 T ELT)) (-3709 (((-885) $) 99 T ELT)) (-3542 (($ $ (-665 (-792)) (-112)) 77 T ELT)) (-3217 (((-665 $) $) 11 T ELT)) (-3895 (($ $ (-792)) 46 T ELT)) (-3990 (($ $) 43 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3576 (($ $ $ (-971 |#2|) (-792)) 68 T ELT)) (-2001 (($ $ (-971 |#2|)) 67 T ELT)) (-2768 (($ $ (-665 (-792)) (-971 |#2|)) 66 T ELT) (($ $ (-665 (-792)) (-792)) 70 T ELT) (((-792) $ (-971 |#2|)) 71 T ELT)) (-3018 (((-112) $ $) 92 T ELT))) +(((-1194 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3188 ((-112) $)) (-15 -1700 ((-112) $)) (-15 -3485 ((-112) $)) (-15 -3236 ($)) (-15 -1368 ($)) (-15 -3990 ($ $)) (-15 -3895 ($ $ (-792))) (-15 -3217 ((-665 $) $)) (-15 -2920 ((-792) $)) (-15 -3573 ($ $)) (-15 -2214 ($ $)) (-15 -3771 ($ $ $)) (-15 -3771 ($ (-665 $))) (-15 -2723 ((-665 $) $)) (-15 -2768 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -2001 ($ $ (-971 |#2|))) (-15 -3576 ($ $ $ (-971 |#2|) (-792))) (-15 -1436 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -2768 ($ $ (-665 (-792)) (-792))) (-15 -1436 ($ $ (-665 (-792)) (-792))) (-15 -2768 ((-792) $ (-971 |#2|))) (-15 -1436 ($ $ (-792) (-971 |#2|))) (-15 -3542 ($ $ (-665 (-792)) (-112))) (-15 -3404 ($ $ (-665 (-792)) (-173))) (-15 -4238 ($ $ (-665 (-792)))) (-15 -3304 ((-971 |#2|) $)) (-15 -2217 ((-792) $)) (-15 -3124 ((-112) $)) (-15 -3212 ((-173) $)) (-15 -3714 ((-792) $)) (-15 -1846 ($ $)) (-15 -4083 ((-665 (-971 |#2|)) $)))) (-949) (-1079)) (T -1194)) +((-3188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3236 (*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-1368 (*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-3990 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3573 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-2214 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-3771 (*1 *1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-2768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-2001 (*1 *1 *1 *2) (-12 (-5 *2 (-971 *4)) (-4 *4 (-1079)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)))) (-3576 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-971 *5)) (-5 *3 (-792)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-2768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *2 (-792)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-3542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-112)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-173)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-4238 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-971 *4)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-1846 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-665 (-971 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079))))) +(-13 (-1130) (-10 -8 (-15 -3188 ((-112) $)) (-15 -1700 ((-112) $)) (-15 -3485 ((-112) $)) (-15 -3236 ($)) (-15 -1368 ($)) (-15 -3990 ($ $)) (-15 -3895 ($ $ (-792))) (-15 -3217 ((-665 $) $)) (-15 -2920 ((-792) $)) (-15 -3573 ($ $)) (-15 -2214 ($ $)) (-15 -3771 ($ $ $)) (-15 -3771 ($ (-665 $))) (-15 -2723 ((-665 $) $)) (-15 -2768 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -2001 ($ $ (-971 |#2|))) (-15 -3576 ($ $ $ (-971 |#2|) (-792))) (-15 -1436 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -2768 ($ $ (-665 (-792)) (-792))) (-15 -1436 ($ $ (-665 (-792)) (-792))) (-15 -2768 ((-792) $ (-971 |#2|))) (-15 -1436 ($ $ (-792) (-971 |#2|))) (-15 -3542 ($ $ (-665 (-792)) (-112))) (-15 -3404 ($ $ (-665 (-792)) (-173))) (-15 -4238 ($ $ (-665 (-792)))) (-15 -3304 ((-971 |#2|) $)) (-15 -2217 ((-792) $)) (-15 -3124 ((-112) $)) (-15 -3212 ((-173) $)) (-15 -3714 ((-792) $)) (-15 -1846 ($ $)) (-15 -4083 ((-665 (-971 |#2|)) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2416 ((|#2| $) 11 T ELT)) (-2404 ((|#1| $) 10 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3722 (($ |#1| |#2|) 9 T ELT)) (-3709 (((-885) $) 16 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1195 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3722 ($ |#1| |#2|)) (-15 -2404 (|#1| $)) (-15 -2416 (|#2| $)))) (-1130) (-1130)) (T -1195)) +((-3722 (*1 *1 *2 *3) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-2404 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-1130)))) (-2416 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3722 ($ |#1| |#2|)) (-15 -2404 (|#1| $)) (-15 -2416 (|#2| $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-2994 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1196) (-13 (-1113) (-10 -8 (-15 -2994 ((-1165) $))))) (T -1196)) +((-2994 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1196))))) +(-13 (-1113) (-10 -8 (-15 -2994 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 (((-1204 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 11 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2261 (($ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2538 (((-112) $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3610 (($ $ (-577)) NIL T ELT) (($ $ (-577) (-577)) 75 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL T ELT)) (-2349 (((-1204 |#1| |#2| |#3|) $) 42 T ELT)) (-1532 (((-3 (-1204 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-3938 (((-1204 |#1| |#2| |#3|) $) 33 T ELT)) (-1660 (($ $) 116 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2578 (((-577) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL T ELT)) (-1682 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-1204 |#1| |#2| |#3|) "failed") $) 34 T ELT) (((-3 (-1206) "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3783 (((-1204 |#1| |#2| |#3|) $) 140 T ELT) (((-1206) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-577) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3258 (($ $) 37 T ELT) (($ (-577) $) 38 T ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-1204 |#1| |#2| |#3|)) (-710 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-1204 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1204 |#1| |#2| |#3|)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3167 (((-3 $ "failed") $) 54 T ELT)) (-3752 (((-420 (-980 |#1|)) $ (-577)) 74 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 76 (|has| |#1| (-569)) ELT)) (-1424 (($) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4339 (((-112) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-1655 (((-112) $) 28 T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-910 (-577))) (|has| |#1| (-375))) ELT)) (-4030 (((-577) $) NIL T ELT) (((-577) $ (-577)) 26 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2417 (((-1204 |#1| |#2| |#3|) $) 44 (|has| |#1| (-375)) ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2004 (((-3 $ "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) ELT)) (-2649 (((-112) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-3720 (($ $ (-949)) NIL T ELT)) (-3956 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-577)) 19 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-3237 (($ $ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2930 (($ $ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)) ELT)) (-3825 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3163 (((-710 (-1204 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-1204 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1204 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3949 (($ (-577) (-1204 |#1| |#2| |#3|)) 36 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-1869 (($ $) 79 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 80 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2443 (($) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4378 (($ $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-3941 (((-1204 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-577)) 158 T ELT)) (-3574 (((-3 $ "failed") $ $) 55 (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2355 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) (-1204 |#1| |#2| |#3|)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-527 (-1206) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 (-1204 |#1| |#2| |#3|))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-527 (-1206) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 (-1204 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-305 (-1204 |#1| |#2| |#3|))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1204 |#1| |#2| |#3|)) (-665 (-1204 |#1| |#2| |#3|))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-577)) NIL T ELT) (($ $ $) 61 (|has| (-577) (-1142)) ELT) (($ $ (-1204 |#1| |#2| |#3|)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-297 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) 57 T ELT) (($ $) 56 (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-1674 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2429 (((-1204 |#1| |#2| |#3|) $) 46 (|has| |#1| (-375)) ELT)) (-1597 (((-577) $) 43 T ELT)) (-1692 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 118 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 114 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4463 (((-549) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-632 (-549))) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-228) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) 162 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1204 |#1| |#2| |#3|)) 30 T ELT) (($ (-1293 |#2|)) 25 T ELT) (($ (-1206)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT) (($ (-420 (-577))) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-4171 ((|#1| $ (-577)) 77 T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) 12 T ELT)) (-2431 (((-1204 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-1703 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 108 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 110 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2215 (($ $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2839 (($) 21 T CONST)) (-2853 (($) 16 T CONST)) (-2389 (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) NIL T ELT) (($ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-3078 (((-112) $ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3054 (((-112) $ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3042 (((-112) $ $) NIL (-2867 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 49 (|has| |#1| (-375)) ELT) (($ (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) 50 (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 23 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 60 T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1204 |#1| |#2| |#3|)) 48 (|has| |#1| (-375)) ELT) (($ (-1204 |#1| |#2| |#3|) $) 47 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1197 |#1| |#2| |#3|) (-13 (-1259 |#1| (-1204 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1197)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1259 |#1| (-1204 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) +((-3452 ((|#2| |#2| (-1122 |#2|)) 26 T ELT) ((|#2| |#2| (-1206)) 28 T ELT))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2| (-1206))) (-15 -3452 (|#2| |#2| (-1122 |#2|)))) (-13 (-569) (-1068 (-577)) (-659 (-577))) (-13 (-443 |#1|) (-161) (-27) (-1232))) (T -1198)) +((-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232))) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1198 *4 *2)))) (-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232)))))) +(-10 -7 (-15 -3452 (|#2| |#2| (-1206))) (-15 -3452 (|#2| |#2| (-1122 |#2|)))) +((-3452 (((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1122 (-420 (-980 |#1|)))) 31 T ELT) (((-420 (-980 |#1|)) (-980 |#1|) (-1122 (-980 |#1|))) 44 T ELT) (((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1206)) 33 T ELT) (((-420 (-980 |#1|)) (-980 |#1|) (-1206)) 36 T ELT))) +(((-1199 |#1|) (-10 -7 (-15 -3452 ((-420 (-980 |#1|)) (-980 |#1|) (-1206))) (-15 -3452 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -3452 ((-420 (-980 |#1|)) (-980 |#1|) (-1122 (-980 |#1|)))) (-15 -3452 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1122 (-420 (-980 |#1|)))))) (-13 (-569) (-1068 (-577)))) (T -1199)) +((-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-3 *3 (-327 *5))) (-5 *1 (-1199 *5)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-980 *5))) (-5 *3 (-980 *5)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 *3)) (-5 *1 (-1199 *5)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-3 (-420 (-980 *5)) (-327 *5))) (-5 *1 (-1199 *5)) (-5 *3 (-420 (-980 *5))))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 (-980 *5))) (-5 *1 (-1199 *5)) (-5 *3 (-980 *5))))) +(-10 -7 (-15 -3452 ((-420 (-980 |#1|)) (-980 |#1|) (-1206))) (-15 -3452 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -3452 ((-420 (-980 |#1|)) (-980 |#1|) (-1122 (-980 |#1|)))) (-15 -3452 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1122 (-420 (-980 |#1|)))))) +((-4417 (((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 13 T ELT))) +(((-1200 |#1| |#2|) (-10 -7 (-15 -4417 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)))) (-1079) (-1079)) (T -1200)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1202 *6)) (-5 *1 (-1200 *5 *6))))) +(-10 -7 (-15 -4417 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)))) +((-3206 (((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))) 51 T ELT)) (-3759 (((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))) 52 T ELT))) +(((-1201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|)))) (-15 -3206 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))))) (-814) (-870) (-465) (-977 |#3| |#1| |#2|)) (T -1201)) +((-3206 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7))))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7)))))) +(-10 -7 (-15 -3759 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|)))) (-15 -3206 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))))) +((-3586 (((-112) $ $) 171 T ELT)) (-4113 (((-112) $) 43 T ELT)) (-1400 (((-1297 |#1|) $ (-792)) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3527 (($ (-1202 |#1|)) NIL T ELT)) (-3732 (((-1202 $) $ (-1112)) 82 T ELT) (((-1202 |#1|) $) 71 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) 164 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3473 (($ $ $) 158 (|has| |#1| (-569)) ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 95 (|has| |#1| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 115 (|has| |#1| (-937)) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-3796 (($ $ (-792)) 61 T ELT)) (-1370 (($ $ (-792)) 63 T ELT)) (-2723 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3783 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT)) (-3868 (($ $ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) 160 (|has| |#1| (-174)) ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) 80 T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1668 (($ $ $) 131 T ELT)) (-2347 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1771 (((-2 (|:| -4473 |#1|) (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-2796 (($ $) 165 (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-792) $) 69 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-2880 (((-885) $ (-885)) 148 T ELT)) (-4030 (((-792) $ $) NIL (|has| |#1| (-569)) ELT)) (-3357 (((-112) $) 48 T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-3882 (($ (-1202 |#1|) (-1112)) 73 T ELT) (($ (-1202 $) (-1112)) 89 T ELT)) (-3720 (($ $ (-792)) 51 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) 87 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 153 T ELT)) (-4340 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4329 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4120 (((-1202 |#1|) $) NIL T ELT)) (-3946 (((-3 (-1112) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) 76 T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4462 (((-2 (|:| -2203 $) (|:| -2519 $)) $ (-792)) 60 T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-1112)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1869 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2443 (($) NIL (|has| |#1| (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) 50 T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 103 (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) 167 (|has| |#1| (-465)) ELT)) (-1818 (($ $ (-792) |#1| $) 123 T ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 101 (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 100 (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) 108 (|has| |#1| (-937)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 124 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ |#1|) 150 T ELT) (($ $ $) 151 T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-3626 (((-3 $ "failed") $ (-792)) 54 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 172 (|has| |#1| (-375)) ELT)) (-3846 (($ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) 156 (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-1597 (((-792) $) 78 T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) 162 (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2162 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-3709 (((-885) $) 149 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1112)) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) 41 (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) 17 T CONST)) (-2853 (($) 19 T CONST)) (-2389 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) 120 T ELT)) (-3139 (($ $ |#1|) 173 (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 90 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 12 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 129 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1202 |#1|) (-13 (-1273 |#1|) (-10 -8 (-15 -2880 ((-885) $ (-885))) (-15 -1818 ($ $ (-792) |#1| $)))) (-1079)) (T -1202)) +((-2880 (*1 *2 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1202 *3)) (-4 *3 (-1079)))) (-1818 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1202 *3)) (-4 *3 (-1079))))) +(-13 (-1273 |#1|) (-10 -8 (-15 -2880 ((-885) $ (-885))) (-15 -1818 ($ $ (-792) |#1| $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 11 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-1660 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1682 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-1197 |#1| |#2| |#3|) "failed") $) 33 T ELT) (((-3 (-1204 |#1| |#2| |#3|) "failed") $) 36 T ELT)) (-3783 (((-1197 |#1| |#2| |#3|) $) NIL T ELT) (((-1204 |#1| |#2| |#3|) $) NIL T ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3069 (((-420 (-577)) $) 59 T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3960 (($ (-420 (-577)) (-1197 |#1| |#2| |#3|)) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-420 (-577))) 20 T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3825 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4132 (((-1197 |#1| |#2| |#3|) $) 41 T ELT)) (-4036 (((-3 (-1197 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3949 (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-1869 (($ $) 39 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-420 (-577))) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2355 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) 38 T ELT)) (-1597 (((-420 (-577)) $) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) 62 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1197 |#1| |#2| |#3|)) 30 T ELT) (($ (-1204 |#1| |#2| |#3|)) 31 T ELT) (($ (-1293 |#2|)) 26 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-420 (-577))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 22 T CONST)) (-2853 (($) 16 T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 24 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1203 |#1| |#2| |#3|) (-13 (-1280 |#1| (-1197 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1204 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1203)) +((-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1280 |#1| (-1197 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1204 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 129 T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 119 T ELT)) (-3554 (((-1270 |#2| |#1|) $ (-792)) 69 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-792)) 85 T ELT) (($ $ (-792) (-792)) 82 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|))) $) 105 T ELT)) (-1660 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1638 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1187 |#1|)) 113 T ELT)) (-1682 (($ $) 177 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 25 T ELT)) (-3575 (($ $) 28 T ELT)) (-2498 (((-980 |#1|) $ (-792)) 81 T ELT) (((-980 |#1|) $ (-792) (-792)) 83 T ELT)) (-1655 (((-112) $) 124 T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-792) $) 126 T ELT) (((-792) $ (-792)) 128 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) NIL T ELT)) (-3956 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) 13 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3825 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1869 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2568 (($ $ (-792)) 15 T ELT)) (-3574 (((-3 $ "failed") $ $) 26 (|has| |#1| (-569)) ELT)) (-2355 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-792)))) ELT)) (-2916 ((|#1| $ (-792)) 122 T ELT) (($ $ $) 132 (|has| (-792) (-1142)) ELT)) (-3641 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) 31 T ELT)) (-1597 (((-792) $) NIL T ELT)) (-1692 (($ $) 179 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) 206 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 130 (|has| |#1| (-174)) ELT) (($ (-1270 |#2| |#1|)) 55 T ELT) (($ (-1293 |#2|)) 36 T ELT)) (-4343 (((-1187 |#1|) $) 101 T ELT)) (-4171 ((|#1| $ (-792)) 121 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) 58 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 165 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-792)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 167 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 163 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 17 T CONST)) (-2853 (($) 20 T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3114 (($ $ $) 35 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-375)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1204 |#1| |#2| |#3|) (-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1270 |#2| |#1|))) (-15 -3554 ((-1270 |#2| |#1|) $ (-792))) (-15 -3709 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1204)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-1204 *3 *4 *5)))) (-3554 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1204 *4 *5 *6)) (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1270 |#2| |#1|))) (-15 -3554 ((-1270 |#2| |#1|) $ (-792))) (-15 -3709 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) +((-3709 (((-885) $) 33 T ELT) (($ (-1206)) 35 T ELT)) (-2867 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-2854 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3296 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-3283 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-3272 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-3261 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-2130 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) +(((-1205) (-13 (-631 (-885)) (-10 -8 (-15 -3709 ($ (-1206))) (-15 -3296 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3272 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3283 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3261 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2867 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2130 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2854 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2854 ($ $))))) (T -1205)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1205)))) (-3296 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-3272 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-3283 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-3261 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-2867 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-2130 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-2854 (*1 *1 *1) (-5 *1 (-1205)))) +(-13 (-631 (-885)) (-10 -8 (-15 -3709 ($ (-1206))) (-15 -3296 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3272 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3283 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3261 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2867 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2130 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2854 ($ (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2854 ($ $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3389 (($ $ (-665 (-885))) 62 T ELT)) (-1462 (($ $ (-665 (-885))) 60 T ELT)) (-1378 (((-1188) $) 101 T ELT)) (-4177 (((-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885)))) $) 108 T ELT)) (-4264 (((-112) $) 23 T ELT)) (-4358 (($ $ (-665 (-665 (-885)))) 59 T ELT) (($ $ (-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885))))) 99 T ELT)) (-2305 (($) 163 T CONST)) (-4355 (((-1302)) 135 T ELT)) (-2425 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 69 T ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 76 T ELT)) (-3236 (($) 122 T ELT) (($ $) 131 T ELT)) (-2758 (($ $) 100 T ELT)) (-3237 (($ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-4415 (((-665 $) $) 136 T ELT)) (-3235 (((-1188) $) 114 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2916 (($ $ (-665 (-885))) 61 T ELT)) (-4463 (((-549) $) 48 T ELT) (((-1206) $) 49 T ELT) (((-916 (-577)) $) 80 T ELT) (((-916 (-391)) $) 78 T ELT)) (-3709 (((-885) $) 55 T ELT) (($ (-1188)) 50 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1628 (($ $ (-665 (-885))) 63 T ELT)) (-4136 (((-1188) $) 34 T ELT) (((-1188) $ (-112)) 35 T ELT) (((-1302) (-843) $) 36 T ELT) (((-1302) (-843) $ (-112)) 37 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 51 T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) 52 T ELT))) +(((-1206) (-13 (-870) (-632 (-549)) (-849) (-632 (-1206)) (-634 (-1188)) (-632 (-916 (-577))) (-632 (-916 (-391))) (-910 (-577)) (-910 (-391)) (-10 -8 (-15 -3236 ($)) (-15 -3236 ($ $)) (-15 -4355 ((-1302))) (-15 -2758 ($ $)) (-15 -4264 ((-112) $)) (-15 -4177 ((-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885)))) $)) (-15 -4358 ($ $ (-665 (-665 (-885))))) (-15 -4358 ($ $ (-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885)))))) (-15 -1462 ($ $ (-665 (-885)))) (-15 -3389 ($ $ (-665 (-885)))) (-15 -1628 ($ $ (-665 (-885)))) (-15 -2916 ($ $ (-665 (-885)))) (-15 -1378 ((-1188) $)) (-15 -4415 ((-665 $) $)) (-15 -2305 ($) -4212)))) (T -1206)) +((-3236 (*1 *1) (-5 *1 (-1206))) (-3236 (*1 *1 *1) (-5 *1 (-1206))) (-4355 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1206)))) (-2758 (*1 *1 *1) (-5 *1 (-1206))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885))))) (-5 *1 (-1206)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-1206)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885))))) (-5 *1 (-1206)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-3389 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1206)))) (-4415 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1206)))) (-2305 (*1 *1) (-5 *1 (-1206)))) +(-13 (-870) (-632 (-549)) (-849) (-632 (-1206)) (-634 (-1188)) (-632 (-916 (-577))) (-632 (-916 (-391))) (-910 (-577)) (-910 (-391)) (-10 -8 (-15 -3236 ($)) (-15 -3236 ($ $)) (-15 -4355 ((-1302))) (-15 -2758 ($ $)) (-15 -4264 ((-112) $)) (-15 -4177 ((-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885)))) $)) (-15 -4358 ($ $ (-665 (-665 (-885))))) (-15 -4358 ($ $ (-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) (|:| |args| (-665 (-885)))))) (-15 -1462 ($ $ (-665 (-885)))) (-15 -3389 ($ $ (-665 (-885)))) (-15 -1628 ($ $ (-665 (-885)))) (-15 -2916 ($ $ (-665 (-885)))) (-15 -1378 ((-1188) $)) (-15 -4415 ((-665 $) $)) (-15 -2305 ($) -4212))) +((-2611 (((-1297 |#1|) |#1| (-949)) 18 T ELT) (((-1297 |#1|) (-665 |#1|)) 25 T ELT))) +(((-1207 |#1|) (-10 -7 (-15 -2611 ((-1297 |#1|) (-665 |#1|))) (-15 -2611 ((-1297 |#1|) |#1| (-949)))) (-1079)) (T -1207)) +((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-1297 *3)) (-5 *1 (-1207 *3)) (-4 *3 (-1079)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)) (-5 *1 (-1207 *4))))) +(-10 -7 (-15 -2611 ((-1297 |#1|) (-665 |#1|))) (-15 -2611 ((-1297 |#1|) |#1| (-949)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3783 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2796 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4365 (($ $ |#1| (-1001) $) NIL T ELT)) (-3357 (((-112) $) 17 T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-1001)) NIL T ELT)) (-4340 (((-1001) $) NIL T ELT)) (-4329 (($ (-1 (-1001) (-1001)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#1| $) NIL T ELT)) (-1818 (($ $ (-1001) |#1| $) NIL (-12 (|has| (-1001) (-132)) (|has| |#1| (-569))) ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-1597 (((-1001) $) NIL T ELT)) (-2407 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-1001)) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2839 (($) 10 T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 21 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1208 |#1|) (-13 (-337 |#1| (-1001)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-1001) (-132)) (-15 -1818 ($ $ (-1001) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) (-1079)) (T -1208)) +((-1818 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-1001)) (-4 *2 (-132)) (-5 *1 (-1208 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) +(-13 (-337 |#1| (-1001)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-1001) (-132)) (-15 -1818 ($ $ (-1001) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) +((-2079 (((-1210) (-1206) $) 25 T ELT)) (-2246 (($) 29 T ELT)) (-3057 (((-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-1206) $) 22 T ELT)) (-2632 (((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -1900 "void")) $) 41 T ELT) (((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) 42 T ELT) (((-1302) (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) 43 T ELT)) (-3560 (((-1302) (-1206)) 58 T ELT)) (-3278 (((-1302) (-1206) $) 55 T ELT) (((-1302) (-1206)) 56 T ELT) (((-1302)) 57 T ELT)) (-2640 (((-1302) (-1206)) 37 T ELT)) (-1670 (((-1206)) 36 T ELT)) (-2833 (($) 34 T ELT)) (-3015 (((-450) (-1206) (-450) (-1206) $) 45 T ELT) (((-450) (-665 (-1206)) (-450) (-1206) $) 49 T ELT) (((-450) (-1206) (-450)) 46 T ELT) (((-450) (-1206) (-450) (-1206)) 50 T ELT)) (-3416 (((-1206)) 35 T ELT)) (-3709 (((-885) $) 28 T ELT)) (-2157 (((-1302)) 30 T ELT) (((-1302) (-1206)) 33 T ELT)) (-3687 (((-665 (-1206)) (-1206) $) 24 T ELT)) (-2071 (((-1302) (-1206) (-665 (-1206)) $) 38 T ELT) (((-1302) (-1206) (-665 (-1206))) 39 T ELT) (((-1302) (-665 (-1206))) 40 T ELT))) +(((-1209) (-13 (-631 (-885)) (-10 -8 (-15 -2246 ($)) (-15 -2157 ((-1302))) (-15 -2157 ((-1302) (-1206))) (-15 -3015 ((-450) (-1206) (-450) (-1206) $)) (-15 -3015 ((-450) (-665 (-1206)) (-450) (-1206) $)) (-15 -3015 ((-450) (-1206) (-450))) (-15 -3015 ((-450) (-1206) (-450) (-1206))) (-15 -2640 ((-1302) (-1206))) (-15 -3416 ((-1206))) (-15 -1670 ((-1206))) (-15 -2071 ((-1302) (-1206) (-665 (-1206)) $)) (-15 -2071 ((-1302) (-1206) (-665 (-1206)))) (-15 -2071 ((-1302) (-665 (-1206)))) (-15 -2632 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -1900 "void")) $)) (-15 -2632 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -1900 "void")))) (-15 -2632 ((-1302) (-3 (|:| |fst| (-447)) (|:| -1900 "void")))) (-15 -3278 ((-1302) (-1206) $)) (-15 -3278 ((-1302) (-1206))) (-15 -3278 ((-1302))) (-15 -3560 ((-1302) (-1206))) (-15 -2833 ($)) (-15 -3057 ((-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-1206) $)) (-15 -3687 ((-665 (-1206)) (-1206) $)) (-15 -2079 ((-1210) (-1206) $))))) (T -1209)) +((-2246 (*1 *1) (-5 *1 (-1209))) (-2157 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3015 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) (-3015 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *4 (-1206)) (-5 *1 (-1209)))) (-3015 (*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) (-3015 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3416 (*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209)))) (-1670 (*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209)))) (-2071 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2071 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2632 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1206)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3278 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3278 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2833 (*1 *1) (-5 *1 (-1209))) (-3057 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *1 (-1209)))) (-3687 (*1 *2 *3 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1209)) (-5 *3 (-1206)))) (-2079 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1210)) (-5 *1 (-1209))))) +(-13 (-631 (-885)) (-10 -8 (-15 -2246 ($)) (-15 -2157 ((-1302))) (-15 -2157 ((-1302) (-1206))) (-15 -3015 ((-450) (-1206) (-450) (-1206) $)) (-15 -3015 ((-450) (-665 (-1206)) (-450) (-1206) $)) (-15 -3015 ((-450) (-1206) (-450))) (-15 -3015 ((-450) (-1206) (-450) (-1206))) (-15 -2640 ((-1302) (-1206))) (-15 -3416 ((-1206))) (-15 -1670 ((-1206))) (-15 -2071 ((-1302) (-1206) (-665 (-1206)) $)) (-15 -2071 ((-1302) (-1206) (-665 (-1206)))) (-15 -2071 ((-1302) (-665 (-1206)))) (-15 -2632 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -1900 "void")) $)) (-15 -2632 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -1900 "void")))) (-15 -2632 ((-1302) (-3 (|:| |fst| (-447)) (|:| -1900 "void")))) (-15 -3278 ((-1302) (-1206) $)) (-15 -3278 ((-1302) (-1206))) (-15 -3278 ((-1302))) (-15 -3560 ((-1302) (-1206))) (-15 -2833 ($)) (-15 -3057 ((-3 (|:| |fst| (-447)) (|:| -1900 "void")) (-1206) $)) (-15 -3687 ((-665 (-1206)) (-1206) $)) (-15 -2079 ((-1210) (-1206) $)))) +((-4455 (((-665 (-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) $) 66 T ELT)) (-3968 (((-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))) (-447) $) 47 T ELT)) (-3445 (($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-450))))) 17 T ELT)) (-3560 (((-1302) $) 73 T ELT)) (-1726 (((-665 (-1206)) $) 22 T ELT)) (-1540 (((-1134) $) 60 T ELT)) (-2372 (((-450) (-1206) $) 27 T ELT)) (-1643 (((-665 (-1206)) $) 30 T ELT)) (-2833 (($) 19 T ELT)) (-3015 (((-450) (-665 (-1206)) (-450) $) 25 T ELT) (((-450) (-1206) (-450) $) 24 T ELT)) (-3709 (((-885) $) 9 T ELT) (((-1219 (-1206) (-450)) $) 13 T ELT))) +(((-1210) (-13 (-631 (-885)) (-10 -8 (-15 -3709 ((-1219 (-1206) (-450)) $)) (-15 -2833 ($)) (-15 -3015 ((-450) (-665 (-1206)) (-450) $)) (-15 -3015 ((-450) (-1206) (-450) $)) (-15 -2372 ((-450) (-1206) $)) (-15 -1726 ((-665 (-1206)) $)) (-15 -3968 ((-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))) (-447) $)) (-15 -1643 ((-665 (-1206)) $)) (-15 -4455 ((-665 (-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) $)) (-15 -1540 ((-1134) $)) (-15 -3560 ((-1302) $)) (-15 -3445 ($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-450))))))))) (T -1210)) +((-3709 (*1 *2 *1) (-12 (-5 *2 (-1219 (-1206) (-450))) (-5 *1 (-1210)))) (-2833 (*1 *1) (-5 *1 (-1210))) (-3015 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *1 (-1210)))) (-3015 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1210)))) (-2372 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-450)) (-5 *1 (-1210)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210)))) (-3968 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) (-5 *1 (-1210)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210)))) (-4455 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))))) (-5 *1 (-1210)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1210)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1210)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-450))))) (-5 *1 (-1210))))) +(-13 (-631 (-885)) (-10 -8 (-15 -3709 ((-1219 (-1206) (-450)) $)) (-15 -2833 ($)) (-15 -3015 ((-450) (-665 (-1206)) (-450) $)) (-15 -3015 ((-450) (-1206) (-450) $)) (-15 -2372 ((-450) (-1206) $)) (-15 -1726 ((-665 (-1206)) $)) (-15 -3968 ((-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))) (-447) $)) (-15 -1643 ((-665 (-1206)) $)) (-15 -4455 ((-665 (-665 (-3 (|:| -2758 (-1206)) (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) $)) (-15 -1540 ((-1134) $)) (-15 -3560 ((-1302) $)) (-15 -3445 ($ (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-450)))))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4335 (((-3 (-577) "failed") $) 29 T ELT) (((-3 (-228) "failed") $) 35 T ELT) (((-3 (-519) "failed") $) 43 T ELT) (((-3 (-1188) "failed") $) 47 T ELT)) (-3783 (((-577) $) 30 T ELT) (((-228) $) 36 T ELT) (((-519) $) 40 T ELT) (((-1188) $) 48 T ELT)) (-2345 (((-112) $) 53 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2890 (((-3 (-577) (-228) (-519) (-1188) $) $) 55 T ELT)) (-4111 (((-665 $) $) 57 T ELT)) (-4463 (((-1134) $) 24 T ELT) (($ (-1134)) 25 T ELT)) (-3505 (((-112) $) 56 T ELT)) (-3709 (((-885) $) 23 T ELT) (($ (-577)) 26 T ELT) (($ (-228)) 32 T ELT) (($ (-519)) 38 T ELT) (($ (-1188)) 44 T ELT) (((-549) $) 59 T ELT) (((-577) $) 31 T ELT) (((-228) $) 37 T ELT) (((-519) $) 41 T ELT) (((-1188) $) 49 T ELT)) (-2827 (((-112) $ (|[\|\|]| (-577))) 10 T ELT) (((-112) $ (|[\|\|]| (-228))) 13 T ELT) (((-112) $ (|[\|\|]| (-519))) 19 T ELT) (((-112) $ (|[\|\|]| (-1188))) 16 T ELT)) (-3383 (($ (-519) (-665 $)) 51 T ELT) (($ $ (-665 $)) 52 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2035 (((-577) $) 27 T ELT) (((-228) $) 33 T ELT) (((-519) $) 39 T ELT) (((-1188) $) 45 T ELT)) (-3018 (((-112) $ $) 7 T ELT))) +(((-1211) (-13 (-1292) (-1130) (-1068 (-577)) (-1068 (-228)) (-1068 (-519)) (-1068 (-1188)) (-631 (-549)) (-10 -8 (-15 -4463 ((-1134) $)) (-15 -4463 ($ (-1134))) (-15 -3709 ((-577) $)) (-15 -2035 ((-577) $)) (-15 -3709 ((-228) $)) (-15 -2035 ((-228) $)) (-15 -3709 ((-519) $)) (-15 -2035 ((-519) $)) (-15 -3709 ((-1188) $)) (-15 -2035 ((-1188) $)) (-15 -3383 ($ (-519) (-665 $))) (-15 -3383 ($ $ (-665 $))) (-15 -2345 ((-112) $)) (-15 -2890 ((-3 (-577) (-228) (-519) (-1188) $) $)) (-15 -4111 ((-665 $) $)) (-15 -3505 ((-112) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-577)))) (-15 -2827 ((-112) $ (|[\|\|]| (-228)))) (-15 -2827 ((-112) $ (|[\|\|]| (-519)))) (-15 -2827 ((-112) $ (|[\|\|]| (-1188))))))) (T -1211)) +((-4463 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) (-4463 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) (-3383 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-1211))) (-5 *1 (-1211)))) (-3383 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1188) (-1211))) (-5 *1 (-1211)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1211)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1211)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1211)))) (-2827 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-1211))))) +(-13 (-1292) (-1130) (-1068 (-577)) (-1068 (-228)) (-1068 (-519)) (-1068 (-1188)) (-631 (-549)) (-10 -8 (-15 -4463 ((-1134) $)) (-15 -4463 ($ (-1134))) (-15 -3709 ((-577) $)) (-15 -2035 ((-577) $)) (-15 -3709 ((-228) $)) (-15 -2035 ((-228) $)) (-15 -3709 ((-519) $)) (-15 -2035 ((-519) $)) (-15 -3709 ((-1188) $)) (-15 -2035 ((-1188) $)) (-15 -3383 ($ (-519) (-665 $))) (-15 -3383 ($ $ (-665 $))) (-15 -2345 ((-112) $)) (-15 -2890 ((-3 (-577) (-228) (-519) (-1188) $) $)) (-15 -4111 ((-665 $) $)) (-15 -3505 ((-112) $)) (-15 -2827 ((-112) $ (|[\|\|]| (-577)))) (-15 -2827 ((-112) $ (|[\|\|]| (-228)))) (-15 -2827 ((-112) $ (|[\|\|]| (-519)))) (-15 -2827 ((-112) $ (|[\|\|]| (-1188)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) 22 T ELT)) (-2305 (($) 12 T CONST)) (-1424 (($) 26 T ELT)) (-3237 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2930 (($ $ $) NIL T ELT) (($) 20 T CONST)) (-2686 (((-949) $) 24 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) 23 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-1212 |#1|) (-13 (-865) (-10 -8 (-15 -2305 ($) -4212))) (-949)) (T -1212)) +((-2305 (*1 *1) (-12 (-5 *1 (-1212 *2)) (-14 *2 (-949))))) +(-13 (-865) (-10 -8 (-15 -2305 ($) -4212))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) 19 T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) 12 T CONST)) (-1457 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2356 (($ $ $) 21 T ELT)) (-2348 (($ $ $) 20 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-1208 |#1|) (-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609))) (-944)) (T -1208)) -((-2348 (*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) (-2356 (*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) (-3790 (*1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944))))) -(-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3611 (($ $) 24 T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) 19 T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) 12 T CONST)) (-2930 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2469 (($ $ $) 21 T ELT)) (-2458 (($ $ $) 20 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3660 (($ $ $) 23 T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT)) (-3647 (($ $ $) 22 T ELT))) +(((-1213 |#1|) (-13 (-865) (-682) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212))) (-949)) (T -1213)) +((-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) (-2469 (*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) (-2305 (*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949))))) +(-13 (-865) (-682) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 9 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 7 T ELT))) -(((-1209) (-1125)) (T -1209)) -NIL -(-1125) -((-1474 (((-660 (-660 (-975 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 69 T ELT)) (-2773 (((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|)))) 80 T ELT) (((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|))) 76 T ELT) (((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201)) 81 T ELT) (((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201)) 75 T ELT) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|))))) 106 T ELT) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|)))) 105 T ELT) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201))) 107 T ELT) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 104 T ELT))) -(((-1210 |#1|) (-10 -7 (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))))) (-15 -1474 ((-660 (-660 (-975 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))))) (-569)) (T -1210)) -((-1474 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-975 *5)))) (-5 *1 (-1210 *5)))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) (-5 *1 (-1210 *4)) (-5 *3 (-305 (-420 (-975 *4)))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) (-5 *1 (-1210 *4)) (-5 *3 (-420 (-975 *4))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) (-5 *3 (-305 (-420 (-975 *5)))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) (-5 *3 (-420 (-975 *5))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-1210 *4)) (-5 *3 (-660 (-305 (-420 (-975 *4))))))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-1210 *4)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-1210 *5)) (-5 *3 (-660 (-305 (-420 (-975 *5))))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-1210 *5))))) -(-10 -7 (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))))) (-15 -2773 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)))) (-15 -2773 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))))) (-15 -1474 ((-660 (-660 (-975 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))))) -((-3099 (((-1183)) 7 T ELT)) (-3238 (((-1183)) 11 T CONST)) (-3693 (((-1297) (-1183)) 13 T ELT)) (-1489 (((-1183)) 8 T CONST)) (-2987 (((-131)) 10 T CONST))) -(((-1211) (-13 (-1242) (-10 -7 (-15 -3099 ((-1183))) (-15 -1489 ((-1183)) -2609) (-15 -2987 ((-131)) -2609) (-15 -3238 ((-1183)) -2609) (-15 -3693 ((-1297) (-1183)))))) (T -1211)) -((-3099 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211)))) (-1489 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211)))) (-2987 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1211)))) (-3238 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1211))))) -(-13 (-1242) (-10 -7 (-15 -3099 ((-1183))) (-15 -1489 ((-1183)) -2609) (-15 -2987 ((-131)) -2609) (-15 -3238 ((-1183)) -2609) (-15 -3693 ((-1297) (-1183))))) -((-2909 (((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|)))) 56 T ELT)) (-3934 (((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|))) 38 T ELT)) (-2383 (((-1213 (-660 |#1|)) (-660 |#1|)) 49 T ELT)) (-3844 (((-660 (-660 |#1|)) (-660 |#1|)) 45 T ELT)) (-3515 (((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))) 53 T ELT)) (-2049 (((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|)))) 52 T ELT)) (-2177 (((-660 (-660 |#1|)) (-660 (-660 |#1|))) 43 T ELT)) (-3564 (((-660 |#1|) (-660 |#1|)) 46 T ELT)) (-3249 (((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|)))) 32 T ELT)) (-1648 (((-660 (-660 (-660 |#1|))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|)))) 29 T ELT)) (-1754 (((-2 (|:| |fs| (-112)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|))) 24 T ELT)) (-1327 (((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|)))) 58 T ELT)) (-2203 (((-660 (-660 |#1|)) (-1213 (-660 |#1|))) 60 T ELT))) -(((-1212 |#1|) (-10 -7 (-15 -1754 ((-2 (|:| |fs| (-112)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|)))) (-15 -1648 ((-660 (-660 (-660 |#1|))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -3249 ((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -2909 ((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -1327 ((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -2203 ((-660 (-660 |#1|)) (-1213 (-660 |#1|)))) (-15 -3934 ((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)))) (-15 -2383 ((-1213 (-660 |#1|)) (-660 |#1|))) (-15 -2177 ((-660 (-660 |#1|)) (-660 (-660 |#1|)))) (-15 -3844 ((-660 (-660 |#1|)) (-660 |#1|))) (-15 -3564 ((-660 |#1|) (-660 |#1|))) (-15 -2049 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))))) (-15 -3515 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))))) (-865)) (T -1212)) -((-3515 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-2 (|:| |f1| (-660 *4)) (|:| |f2| (-660 (-660 (-660 *4)))) (|:| |f3| (-660 (-660 *4))) (|:| |f4| (-660 (-660 (-660 *4)))))) (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 (-660 *4)))))) (-2049 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-865)) (-5 *3 (-660 *6)) (-5 *5 (-660 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-660 *5)) (|:| |f3| *5) (|:| |f4| (-660 *5)))) (-5 *1 (-1212 *6)) (-5 *4 (-660 *5)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-1212 *3)))) (-3844 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)) (-5 *3 (-660 *4)))) (-2177 (*1 *2 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-865)) (-5 *1 (-1212 *3)))) (-2383 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-1213 (-660 *4))) (-5 *1 (-1212 *4)) (-5 *3 (-660 *4)))) (-3934 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 (-660 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 *4))))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-1213 (-660 *4))) (-4 *4 (-865)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)) (-4 *4 (-865)))) (-2909 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) (-4 *4 (-865)) (-5 *1 (-1212 *4)))) (-3249 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-660 *4)) (-4 *4 (-865)) (-5 *1 (-1212 *4)))) (-1648 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-660 *5)) (-4 *5 (-865)) (-5 *1 (-1212 *5)))) (-1754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-865)) (-5 *4 (-660 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-660 *4)))) (-5 *1 (-1212 *6)) (-5 *5 (-660 *4))))) -(-10 -7 (-15 -1754 ((-2 (|:| |fs| (-112)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|)))) (-15 -1648 ((-660 (-660 (-660 |#1|))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -3249 ((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -2909 ((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -1327 ((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -2203 ((-660 (-660 |#1|)) (-1213 (-660 |#1|)))) (-15 -3934 ((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)))) (-15 -2383 ((-1213 (-660 |#1|)) (-660 |#1|))) (-15 -2177 ((-660 (-660 |#1|)) (-660 (-660 |#1|)))) (-15 -3844 ((-660 (-660 |#1|)) (-660 |#1|))) (-15 -3564 ((-660 |#1|) (-660 |#1|))) (-15 -2049 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))))) (-15 -3515 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))))) -((-3763 (($ (-660 (-660 |#1|))) 10 T ELT)) (-2347 (((-660 (-660 |#1|)) $) 11 T ELT)) (-3603 (((-880) $) 33 T ELT))) -(((-1213 |#1|) (-10 -8 (-15 -3763 ($ (-660 (-660 |#1|)))) (-15 -2347 ((-660 (-660 |#1|)) $)) (-15 -3603 ((-880) $))) (-1125)) (T -1213)) -((-3603 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1213 *3)) (-4 *3 (-1125)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1125)))) (-3763 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-1213 *3))))) -(-10 -8 (-15 -3763 ($ (-660 (-660 |#1|)))) (-15 -2347 ((-660 (-660 |#1|)) $)) (-15 -3603 ((-880) $))) -((-3489 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4212 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2790 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#2| $ |#1| |#2|) NIL T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-2984 ((|#1| $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-3740 (((-660 |#1|) $) NIL T ELT)) (-2490 (((-112) |#1| $) NIL T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-3445 (((-660 |#1|) $) NIL T ELT)) (-2187 (((-112) |#1| $) NIL T ELT)) (-1440 (((-1145) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| |#2| (-1125))) ELT)) (-1652 ((|#2| $) NIL (|has| |#1| (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL T ELT)) (-2529 (($ $ |#2|) NIL (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4360 (($) NIL T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-3603 (((-880) $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))) ELT)) (-2726 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) NIL T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) NIL (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1214 |#1| |#2|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125)) (T -1214)) -NIL -(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) -((-3489 (((-112) $ $) NIL T ELT)) (-2085 (($ |#1| (-55)) 10 T ELT)) (-2668 ((|#1| $) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3152 (((-112) $ |#1|) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-1376 (((-55) $) 14 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1215 |#1|) (-13 (-851 |#1|) (-10 -8 (-15 -2085 ($ |#1| (-55))))) (-1125)) (T -1215)) -((-2085 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1215 *2)) (-4 *2 (-1125))))) -(-13 (-851 |#1|) (-10 -8 (-15 -2085 ($ |#1| (-55))))) -((-1824 ((|#1| (-660 |#1|)) 46 T ELT)) (-4444 ((|#1| |#1| (-577)) 24 T ELT)) (-4293 (((-1197 |#1|) |#1| (-944)) 20 T ELT))) -(((-1216 |#1|) (-10 -7 (-15 -1824 (|#1| (-660 |#1|))) (-15 -4293 ((-1197 |#1|) |#1| (-944))) (-15 -4444 (|#1| |#1| (-577)))) (-375)) (T -1216)) -((-4444 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1216 *2)) (-4 *2 (-375)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-1197 *3)) (-5 *1 (-1216 *3)) (-4 *3 (-375)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-1216 *2)) (-4 *2 (-375))))) -(-10 -7 (-15 -1824 (|#1| (-660 |#1|))) (-15 -4293 ((-1197 |#1|) |#1| (-944))) (-15 -4444 (|#1| |#1| (-577)))) -((-4212 (($) 10 T ELT) (($ (-660 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)))) 14 T ELT)) (-3266 (($ (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) $) 67 T ELT) (($ (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) 39 T ELT) (((-660 |#3|) $) 41 T ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-3596 (((-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) $) 60 T ELT)) (-4345 (($ (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) $) 16 T ELT)) (-3445 (((-660 |#2|) $) 19 T ELT)) (-2187 (((-112) |#2| $) 65 T ELT)) (-2153 (((-3 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) "failed") (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) 64 T ELT)) (-3439 (((-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) $) 69 T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 73 T ELT)) (-3908 (((-660 |#3|) $) 43 T ELT)) (-2837 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) NIL T ELT) (((-787) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) $) NIL T ELT) (((-787) |#3| $) NIL T ELT) (((-787) (-1 (-112) |#3|) $) 79 T ELT)) (-3603 (((-880) $) 27 T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 71 T ELT)) (-2949 (((-112) $ $) 51 T ELT))) -(((-1217 |#1| |#2| |#3|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2124 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4212 (|#1| (-660 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))))) (-15 -4212 (|#1|)) (-15 -2124 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2826 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1452 ((-787) (-1 (-112) |#3|) |#1|)) (-15 -3692 ((-660 |#3|) |#1|)) (-15 -1452 ((-787) |#3| |#1|)) (-15 -2837 (|#3| |#1| |#2| |#3|)) (-15 -2837 (|#3| |#1| |#2|)) (-15 -3908 ((-660 |#3|) |#1|)) (-15 -2187 ((-112) |#2| |#1|)) (-15 -3445 ((-660 |#2|) |#1|)) (-15 -3266 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3266 (|#1| (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -3266 (|#1| (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -2153 ((-3 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) "failed") (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -3596 ((-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -4345 (|#1| (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -3439 ((-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -1452 ((-787) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -3692 ((-660 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -1452 ((-787) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2659 ((-112) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2285 ((-112) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2826 (|#1| (-1 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2124 (|#1| (-1 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|))) (-1218 |#2| |#3|) (-1125) (-1125)) (T -1217)) -NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -3603 ((-880) |#1|)) (-15 -2124 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4212 (|#1| (-660 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))))) (-15 -4212 (|#1|)) (-15 -2124 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2826 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2285 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2659 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1452 ((-787) (-1 (-112) |#3|) |#1|)) (-15 -3692 ((-660 |#3|) |#1|)) (-15 -1452 ((-787) |#3| |#1|)) (-15 -2837 (|#3| |#1| |#2| |#3|)) (-15 -2837 (|#3| |#1| |#2|)) (-15 -3908 ((-660 |#3|) |#1|)) (-15 -2187 ((-112) |#2| |#1|)) (-15 -3445 ((-660 |#2|) |#1|)) (-15 -3266 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3266 (|#1| (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -3266 (|#1| (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -2153 ((-3 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) "failed") (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -3596 ((-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -4345 (|#1| (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -3439 ((-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -1452 ((-787) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) |#1|)) (-15 -3692 ((-660 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -1452 ((-787) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2659 ((-112) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2285 ((-112) (-1 (-112) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2826 (|#1| (-1 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|)) (-15 -2124 (|#1| (-1 (-2 (|:| -4323 |#2|) (|:| -2438 |#3|)) (-2 (|:| -4323 |#2|) (|:| -2438 |#3|))) |#1|))) -((-3489 (((-112) $ $) 20 (-2811 (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ELT)) (-4212 (($) 73 T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 72 T ELT)) (-2790 (((-1297) $ |#1| |#1|) 100 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#2| $ |#1| |#2|) 74 T ELT)) (-2236 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 46 (|has| $ (-6 -4470)) ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 56 (|has| $ (-6 -4470)) ELT)) (-2258 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3790 (($) 7 T CONST)) (-3289 (($ $) 59 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT)) (-3266 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 48 (|has| $ (-6 -4470)) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 47 (|has| $ (-6 -4470)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-3920 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 55 (|has| $ (-6 -4470)) ELT)) (-2498 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 57 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 54 (|has| $ (-6 -4470)) ELT) (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 53 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#2| $ |#1|) 89 T ELT)) (-3692 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 31 (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) 80 (|has| $ (-6 -4470)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 ((|#1| $) 97 (|has| |#1| (-865)) ELT)) (-2434 (((-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 30 (|has| $ (-6 -4470)) ELT) (((-660 |#2|) $) 81 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 ((|#1| $) 96 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 35 (|has| $ (-6 -4471)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2045 (((-1183) $) 23 (-2811 (|has| |#2| (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-3740 (((-660 |#1|) $) 64 T ELT)) (-2490 (((-112) |#1| $) 65 T ELT)) (-3596 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 40 T ELT)) (-4345 (($ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 41 T ELT)) (-3445 (((-660 |#1|) $) 94 T ELT)) (-2187 (((-112) |#1| $) 93 T ELT)) (-1440 (((-1145) $) 22 (-2811 (|has| |#2| (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT)) (-1652 ((|#2| $) 98 (|has| |#1| (-865)) ELT)) (-2153 (((-3 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) "failed") (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 52 T ELT)) (-2529 (($ $ |#2|) 99 (|has| $ (-6 -4471)) ELT)) (-3439 (((-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 42 T ELT)) (-2659 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 33 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))))) 27 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-305 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 26 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) 25 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 24 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT) (($ $ (-660 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))) ELT)) (-3908 (((-660 |#2|) $) 92 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT)) (-4360 (($) 50 T ELT) (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 49 T ELT)) (-1452 (((-787) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) |#2| $) 82 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 60 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ELT)) (-3614 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 51 T ELT)) (-3603 (((-880) $) 18 (-2811 (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880)))) ELT)) (-2726 (((-112) $ $) 21 (-2811 (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ELT)) (-3231 (($ (-660 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) 43 T ELT)) (-2285 (((-112) (-1 (-112) (-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) $) 34 (|has| $ (-6 -4470)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (-2811 (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1218 |#1| |#2|) (-141) (-1125) (-1125)) (T -1218)) -((-1895 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-4212 (*1 *1) (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-4212 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4323 *3) (|:| -2438 *4)))) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *1 (-1218 *3 *4)))) (-2124 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) -(-13 (-623 |t#1| |t#2|) (-617 |t#1| |t#2|) (-10 -8 (-15 -1895 (|t#2| $ |t#1| |t#2|)) (-15 -4212 ($)) (-15 -4212 ($ (-660 (-2 (|:| -4323 |t#1|) (|:| -2438 |t#2|))))) (-15 -2124 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4323 |#1|) (|:| -2438 |#2|))) . T) ((-102) -2811 (|has| |#2| (-1125)) (|has| |#2| (-102)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-102))) ((-626 (-880)) -2811 (|has| |#2| (-1125)) (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-626 (-880)))) ((-152 #0#) . T) ((-627 (-549)) |has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-627 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 #0#) -12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-502 #0#) . T) ((-502 |#2|) . T) ((-617 |#1| |#2|) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-320 (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)))) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-623 |#1| |#2|) . T) ((-1125) -2811 (|has| |#2| (-1125)) (|has| (-2 (|:| -4323 |#1|) (|:| -2438 |#2|)) (-1125))) ((-1242) . T)) -((-2556 (((-112)) 29 T ELT)) (-2910 (((-1297) (-1183)) 31 T ELT)) (-2336 (((-112)) 41 T ELT)) (-4316 (((-1297)) 39 T ELT)) (-3299 (((-1297) (-1183) (-1183)) 30 T ELT)) (-3147 (((-112)) 42 T ELT)) (-4345 (((-1297) |#1| |#2|) 53 T ELT)) (-2259 (((-1297)) 26 T ELT)) (-2763 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-4092 (((-1297)) 40 T ELT))) -(((-1219 |#1| |#2|) (-10 -7 (-15 -2259 ((-1297))) (-15 -3299 ((-1297) (-1183) (-1183))) (-15 -2910 ((-1297) (-1183))) (-15 -4316 ((-1297))) (-15 -4092 ((-1297))) (-15 -2556 ((-112))) (-15 -2336 ((-112))) (-15 -3147 ((-112))) (-15 -2763 ((-3 |#2| "failed") |#1|)) (-15 -4345 ((-1297) |#1| |#2|))) (-1125) (-1125)) (T -1219)) -((-4345 (*1 *2 *3 *4) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2763 (*1 *2 *3) (|partial| -12 (-4 *2 (-1125)) (-5 *1 (-1219 *3 *2)) (-4 *3 (-1125)))) (-3147 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2336 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2556 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-4092 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-4316 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2910 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)))) (-3299 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)))) (-2259 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) -(-10 -7 (-15 -2259 ((-1297))) (-15 -3299 ((-1297) (-1183) (-1183))) (-15 -2910 ((-1297) (-1183))) (-15 -4316 ((-1297))) (-15 -4092 ((-1297))) (-15 -2556 ((-112))) (-15 -2336 ((-112))) (-15 -3147 ((-112))) (-15 -2763 ((-3 |#2| "failed") |#1|)) (-15 -4345 ((-1297) |#1| |#2|))) -((-1804 (((-1183) (-1183)) 22 T ELT)) (-3952 (((-52) (-1183)) 25 T ELT))) -(((-1220) (-10 -7 (-15 -3952 ((-52) (-1183))) (-15 -1804 ((-1183) (-1183))))) (T -1220)) -((-1804 (*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1220)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-1220))))) -(-10 -7 (-15 -3952 ((-52) (-1183))) (-15 -1804 ((-1183) (-1183)))) -((-3603 (((-1222) |#1|) 11 T ELT))) -(((-1221 |#1|) (-10 -7 (-15 -3603 ((-1222) |#1|))) (-1125)) (T -1221)) -((-3603 (*1 *2 *3) (-12 (-5 *2 (-1222)) (-5 *1 (-1221 *3)) (-4 *3 (-1125))))) -(-10 -7 (-15 -3603 ((-1222) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-2916 (((-660 (-1183)) $) 39 T ELT)) (-4183 (((-660 (-1183)) $ (-660 (-1183))) 42 T ELT)) (-1486 (((-660 (-1183)) $ (-660 (-1183))) 41 T ELT)) (-2676 (((-660 (-1183)) $ (-660 (-1183))) 43 T ELT)) (-4271 (((-660 (-1183)) $) 38 T ELT)) (-4223 (($) 28 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3939 (((-660 (-1183)) $) 40 T ELT)) (-1992 (((-1297) $ (-577)) 35 T ELT) (((-1297) $) 36 T ELT)) (-2176 (($ (-880) (-577)) 33 T ELT) (($ (-880) (-577) (-880)) NIL T ELT)) (-3603 (((-880) $) 49 T ELT) (($ (-880)) 32 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1222) (-13 (-1125) (-629 (-880)) (-10 -8 (-15 -2176 ($ (-880) (-577))) (-15 -2176 ($ (-880) (-577) (-880))) (-15 -1992 ((-1297) $ (-577))) (-15 -1992 ((-1297) $)) (-15 -3939 ((-660 (-1183)) $)) (-15 -2916 ((-660 (-1183)) $)) (-15 -4223 ($)) (-15 -4271 ((-660 (-1183)) $)) (-15 -2676 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -4183 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -1486 ((-660 (-1183)) $ (-660 (-1183))))))) (T -1222)) -((-2176 (*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) (-2176 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) (-1992 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1222)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1222)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-4223 (*1 *1) (-5 *1 (-1222))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-2676 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-4183 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-1486 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) -(-13 (-1125) (-629 (-880)) (-10 -8 (-15 -2176 ($ (-880) (-577))) (-15 -2176 ($ (-880) (-577) (-880))) (-15 -1992 ((-1297) $ (-577))) (-15 -1992 ((-1297) $)) (-15 -3939 ((-660 (-1183)) $)) (-15 -2916 ((-660 (-1183)) $)) (-15 -4223 ($)) (-15 -4271 ((-660 (-1183)) $)) (-15 -2676 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -4183 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -1486 ((-660 (-1183)) $ (-660 (-1183)))))) -((-3489 (((-112) $ $) NIL T ELT)) (-4370 (((-1183) $ (-1183)) 17 T ELT) (((-1183) $) 16 T ELT)) (-3777 (((-1183) $ (-1183)) 15 T ELT)) (-1935 (($ $ (-1183)) NIL T ELT)) (-3332 (((-3 (-1183) "failed") $) 11 T ELT)) (-2674 (((-1183) $) 8 T ELT)) (-3412 (((-3 (-1183) "failed") $) 12 T ELT)) (-1776 (((-1183) $) 9 T ELT)) (-3263 (($ (-401)) NIL T ELT) (($ (-401) (-1183)) NIL T ELT)) (-2668 (((-401) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1576 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1770 (((-112) $) 21 T ELT)) (-3603 (((-880) $) NIL T ELT)) (-3349 (($ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1223) (-13 (-376 (-401) (-1183)) (-10 -8 (-15 -4370 ((-1183) $ (-1183))) (-15 -4370 ((-1183) $)) (-15 -2674 ((-1183) $)) (-15 -3332 ((-3 (-1183) "failed") $)) (-15 -3412 ((-3 (-1183) "failed") $)) (-15 -1770 ((-112) $))))) (T -1223)) -((-4370 (*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-4370 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-3332 (*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-3412 (*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223))))) -(-13 (-376 (-401) (-1183)) (-10 -8 (-15 -4370 ((-1183) $ (-1183))) (-15 -4370 ((-1183) $)) (-15 -2674 ((-1183) $)) (-15 -3332 ((-3 (-1183) "failed") $)) (-15 -3412 ((-3 (-1183) "failed") $)) (-15 -1770 ((-112) $)))) -((-2917 (((-3 (-577) "failed") |#1|) 19 T ELT)) (-2524 (((-3 (-577) "failed") |#1|) 14 T ELT)) (-4255 (((-577) (-1183)) 33 T ELT))) -(((-1224 |#1|) (-10 -7 (-15 -2917 ((-3 (-577) "failed") |#1|)) (-15 -2524 ((-3 (-577) "failed") |#1|)) (-15 -4255 ((-577) (-1183)))) (-1074)) (T -1224)) -((-4255 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-1224 *4)) (-4 *4 (-1074)))) (-2524 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074)))) (-2917 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074))))) -(-10 -7 (-15 -2917 ((-3 (-577) "failed") |#1|)) (-15 -2524 ((-3 (-577) "failed") |#1|)) (-15 -4255 ((-577) (-1183)))) -((-2757 (((-1158 (-228))) 9 T ELT))) -(((-1225) (-10 -7 (-15 -2757 ((-1158 (-228)))))) (T -1225)) -((-2757 (*1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1225))))) -(-10 -7 (-15 -2757 ((-1158 (-228))))) -((-2824 (($) 12 T ELT)) (-2722 (($ $) 36 T ELT)) (-2694 (($ $) 34 T ELT)) (-2546 (($ $) 26 T ELT)) (-2748 (($ $) 18 T ELT)) (-2897 (($ $) 16 T ELT)) (-2734 (($ $) 20 T ELT)) (-2581 (($ $) 31 T ELT)) (-2708 (($ $) 35 T ELT)) (-2558 (($ $) 30 T ELT))) -(((-1226 |#1|) (-10 -8 (-15 -2824 (|#1|)) (-15 -2722 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -2558 (|#1| |#1|))) (-1227)) (T -1226)) -NIL -(-10 -8 (-15 -2824 (|#1|)) (-15 -2722 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -2558 (|#1| |#1|))) -((-2642 (($ $) 26 T ELT)) (-2501 (($ $) 11 T ELT)) (-2616 (($ $) 27 T ELT)) (-2471 (($ $) 10 T ELT)) (-2666 (($ $) 28 T ELT)) (-2523 (($ $) 9 T ELT)) (-2824 (($) 16 T ELT)) (-3716 (($ $) 19 T ELT)) (-2079 (($ $) 18 T ELT)) (-2680 (($ $) 29 T ELT)) (-2535 (($ $) 8 T ELT)) (-2655 (($ $) 30 T ELT)) (-2512 (($ $) 7 T ELT)) (-2631 (($ $) 31 T ELT)) (-2486 (($ $) 6 T ELT)) (-2722 (($ $) 20 T ELT)) (-2570 (($ $) 32 T ELT)) (-2694 (($ $) 21 T ELT)) (-2546 (($ $) 33 T ELT)) (-2748 (($ $) 22 T ELT)) (-2592 (($ $) 34 T ELT)) (-2897 (($ $) 23 T ELT)) (-2604 (($ $) 35 T ELT)) (-2734 (($ $) 24 T ELT)) (-2581 (($ $) 36 T ELT)) (-2708 (($ $) 25 T ELT)) (-2558 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1227) (-141)) (T -1227)) -((-2824 (*1 *1) (-4 *1 (-1227)))) -(-13 (-1230) (-95) (-506) (-35) (-295) (-10 -8 (-15 -2824 ($)))) -(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-1230) . T)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 19 T ELT)) (-1335 (($ |#1| (-660 $)) 28 T ELT) (($ (-660 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-4403 (((-112) $ (-787)) 72 T ELT)) (-3211 ((|#1| $ |#1|) 14 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 13 (|has| $ (-6 -4471)) ELT)) (-3790 (($) NIL T CONST)) (-3692 (((-660 |#1|) $) 77 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 64 T ELT)) (-2725 (((-112) $ $) 50 (|has| |#1| (-1125)) ELT)) (-1821 (((-112) $ (-787)) 62 T ELT)) (-2434 (((-660 |#1|) $) 78 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3272 (((-112) $ (-787)) 60 T ELT)) (-2935 (((-660 |#1|) $) 55 T ELT)) (-2284 (((-112) $) 53 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 107 T ELT)) (-2856 (((-112) $) 9 T ELT)) (-2693 (($) 10 T ELT)) (-2837 ((|#1| $ "value") NIL T ELT)) (-3190 (((-577) $ $) 48 T ELT)) (-1356 (((-660 $) $) 89 T ELT)) (-4251 (((-112) $ $) 110 T ELT)) (-2635 (((-660 $) $) 105 T ELT)) (-2234 (($ $) 106 T ELT)) (-3834 (((-112) $) 84 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 17 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-1914 (($ $) 88 T ELT)) (-3603 (((-880) $) 91 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 12 T ELT)) (-1444 (((-112) $ $) 39 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 37 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 58 (|has| $ (-6 -4470)) ELT))) -(((-1228 |#1|) (-13 (-1035 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -1335 ($ |#1| (-660 $))) (-15 -1335 ($ (-660 |#1|))) (-15 -1335 ($ |#1|)) (-15 -3834 ((-112) $)) (-15 -2234 ($ $)) (-15 -2635 ((-660 $) $)) (-15 -4251 ((-112) $ $)) (-15 -1356 ((-660 $) $)))) (-1125)) (T -1228)) -((-3834 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125)))) (-1335 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-1228 *2))) (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1228 *3)))) (-1335 (*1 *1 *2) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) (-2234 (*1 *1 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125)))) (-4251 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) -(-13 (-1035 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -1335 ($ |#1| (-660 $))) (-15 -1335 ($ (-660 |#1|))) (-15 -1335 ($ |#1|)) (-15 -3834 ((-112) $)) (-15 -2234 ($ $)) (-15 -2635 ((-660 $) $)) (-15 -4251 ((-112) $ $)) (-15 -1356 ((-660 $) $)))) -((-2501 (($ $) 15 T ELT)) (-2523 (($ $) 12 T ELT)) (-2535 (($ $) 10 T ELT)) (-2512 (($ $) 17 T ELT))) -(((-1229 |#1|) (-10 -8 (-15 -2512 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2501 (|#1| |#1|))) (-1230)) (T -1229)) -NIL -(-10 -8 (-15 -2512 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2501 (|#1| |#1|))) -((-2501 (($ $) 11 T ELT)) (-2471 (($ $) 10 T ELT)) (-2523 (($ $) 9 T ELT)) (-2535 (($ $) 8 T ELT)) (-2512 (($ $) 7 T ELT)) (-2486 (($ $) 6 T ELT))) -(((-1230) (-141)) (T -1230)) -((-2501 (*1 *1 *1) (-4 *1 (-1230))) (-2471 (*1 *1 *1) (-4 *1 (-1230))) (-2523 (*1 *1 *1) (-4 *1 (-1230))) (-2535 (*1 *1 *1) (-4 *1 (-1230))) (-2512 (*1 *1 *1) (-4 *1 (-1230))) (-2486 (*1 *1 *1) (-4 *1 (-1230)))) -(-13 (-10 -8 (-15 -2486 ($ $)) (-15 -2512 ($ $)) (-15 -2535 ($ $)) (-15 -2523 ($ $)) (-15 -2471 ($ $)) (-15 -2501 ($ $)))) -((-3639 ((|#2| |#2|) 98 T ELT)) (-3236 (((-112) |#2|) 29 T ELT)) (-3081 ((|#2| |#2|) 33 T ELT)) (-3091 ((|#2| |#2|) 35 T ELT)) (-3545 ((|#2| |#2| (-1201)) 92 T ELT) ((|#2| |#2|) 93 T ELT)) (-2808 (((-171 |#2|) |#2|) 31 T ELT)) (-2039 ((|#2| |#2| (-1201)) 94 T ELT) ((|#2| |#2|) 95 T ELT))) -(((-1231 |#1| |#2|) (-10 -7 (-15 -3545 (|#2| |#2|)) (-15 -3545 (|#2| |#2| (-1201))) (-15 -2039 (|#2| |#2|)) (-15 -2039 (|#2| |#2| (-1201))) (-15 -3639 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3236 ((-112) |#2|)) (-15 -2808 ((-171 |#2|) |#2|))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -1231)) -((-2808 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-171 *3)) (-5 *1 (-1231 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-3236 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) (-5 *1 (-1231 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-2039 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-2039 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-3545 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-3545 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) -(-10 -7 (-15 -3545 (|#2| |#2|)) (-15 -3545 (|#2| |#2| (-1201))) (-15 -2039 (|#2| |#2|)) (-15 -2039 (|#2| |#2| (-1201))) (-15 -3639 (|#2| |#2|)) (-15 -3081 (|#2| |#2|)) (-15 -3091 (|#2| |#2|)) (-15 -3236 ((-112) |#2|)) (-15 -2808 ((-171 |#2|) |#2|))) -((-4348 ((|#4| |#4| |#1|) 31 T ELT)) (-2088 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1232 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4348 (|#4| |#4| |#1|)) (-15 -2088 (|#4| |#4| |#1|))) (-569) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -1232)) -((-2088 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-4348 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) -(-10 -7 (-15 -4348 (|#4| |#4| |#1|)) (-15 -2088 (|#4| |#4| |#1|))) -((-3915 ((|#2| |#2|) 148 T ELT)) (-2819 ((|#2| |#2|) 145 T ELT)) (-4229 ((|#2| |#2|) 136 T ELT)) (-3297 ((|#2| |#2|) 133 T ELT)) (-2610 ((|#2| |#2|) 141 T ELT)) (-1795 ((|#2| |#2|) 129 T ELT)) (-1387 ((|#2| |#2|) 44 T ELT)) (-2962 ((|#2| |#2|) 105 T ELT)) (-3698 ((|#2| |#2|) 88 T ELT)) (-3688 ((|#2| |#2|) 143 T ELT)) (-3958 ((|#2| |#2|) 131 T ELT)) (-1913 ((|#2| |#2|) 153 T ELT)) (-4099 ((|#2| |#2|) 151 T ELT)) (-2462 ((|#2| |#2|) 152 T ELT)) (-4333 ((|#2| |#2|) 150 T ELT)) (-3341 ((|#2| |#2|) 163 T ELT)) (-1535 ((|#2| |#2|) 30 (-12 (|has| |#2| (-627 (-911 |#1|))) (|has| |#2| (-905 |#1|)) (|has| |#1| (-627 (-911 |#1|))) (|has| |#1| (-905 |#1|))) ELT)) (-4006 ((|#2| |#2|) 89 T ELT)) (-1466 ((|#2| |#2|) 154 T ELT)) (-3694 ((|#2| |#2|) 155 T ELT)) (-4200 ((|#2| |#2|) 142 T ELT)) (-1503 ((|#2| |#2|) 130 T ELT)) (-1917 ((|#2| |#2|) 149 T ELT)) (-2579 ((|#2| |#2|) 147 T ELT)) (-2324 ((|#2| |#2|) 137 T ELT)) (-3181 ((|#2| |#2|) 135 T ELT)) (-4049 ((|#2| |#2|) 139 T ELT)) (-1358 ((|#2| |#2|) 127 T ELT))) -(((-1233 |#1| |#2|) (-10 -7 (-15 -3694 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -2962 (|#2| |#2|)) (-15 -1387 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -1466 (|#2| |#2|)) (-15 -1358 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3688 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3297 (|#2| |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -4333 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1913 (|#2| |#2|)) (IF (|has| |#1| (-905 |#1|)) (IF (|has| |#1| (-627 (-911 |#1|))) (IF (|has| |#2| (-627 (-911 |#1|))) (IF (|has| |#2| (-905 |#1|)) (-15 -1535 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-465) (-13 (-443 |#1|) (-1227))) (T -1233)) -((-1535 (*1 *2 *2) (-12 (-4 *3 (-627 (-911 *3))) (-4 *3 (-905 *3)) (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-627 (-911 *3))) (-4 *2 (-905 *3)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1913 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-4333 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2579 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2819 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3297 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-4229 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3688 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1917 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1358 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1466 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1387 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2962 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3341 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227)))))) -(-10 -7 (-15 -3694 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -2962 (|#2| |#2|)) (-15 -1387 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -1466 (|#2| |#2|)) (-15 -1358 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3688 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3297 (|#2| |#2|)) (-15 -2819 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -4333 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -1913 (|#2| |#2|)) (IF (|has| |#1| (-905 |#1|)) (IF (|has| |#1| (-627 (-911 |#1|))) (IF (|has| |#2| (-627 (-911 |#1|))) (IF (|has| |#2| (-905 |#1|)) (-15 -1535 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1531 (((-112) |#5| $) 68 T ELT) (((-112) $) 110 T ELT)) (-3924 ((|#5| |#5| $) 83 T ELT)) (-3730 (($ (-1 (-112) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 127 T ELT)) (-2483 (((-660 |#5|) (-660 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81 T ELT)) (-2784 (((-3 $ "failed") (-660 |#5|)) 135 T ELT)) (-1663 (((-3 $ "failed") $) 120 T ELT)) (-2801 ((|#5| |#5| $) 102 T ELT)) (-3165 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36 T ELT)) (-3270 ((|#5| |#5| $) 106 T ELT)) (-2498 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77 T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#5|)) (|:| -3263 (-660 |#5|))) $) 63 T ELT)) (-1819 (((-112) |#5| $) 66 T ELT) (((-112) $) 111 T ELT)) (-1940 ((|#4| $) 116 T ELT)) (-3942 (((-3 |#5| "failed") $) 118 T ELT)) (-3425 (((-660 |#5|) $) 55 T ELT)) (-4233 (((-112) |#5| $) 75 T ELT) (((-112) $) 115 T ELT)) (-1458 ((|#5| |#5| $) 89 T ELT)) (-2928 (((-112) $ $) 29 T ELT)) (-2870 (((-112) |#5| $) 71 T ELT) (((-112) $) 113 T ELT)) (-2108 ((|#5| |#5| $) 86 T ELT)) (-1652 (((-3 |#5| "failed") $) 117 T ELT)) (-1987 (($ $ |#5|) 136 T ELT)) (-3616 (((-787) $) 60 T ELT)) (-3614 (($ (-660 |#5|)) 133 T ELT)) (-3620 (($ $ |#4|) 131 T ELT)) (-2003 (($ $ |#4|) 129 T ELT)) (-3307 (($ $) 128 T ELT)) (-3603 (((-880) $) NIL T ELT) (((-660 |#5|) $) 121 T ELT)) (-2272 (((-787) $) 140 T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51 T ELT)) (-4353 (((-112) $ (-1 (-112) |#5| (-660 |#5|))) 108 T ELT)) (-2939 (((-660 |#4|) $) 123 T ELT)) (-1401 (((-112) |#4| $) 126 T ELT)) (-2949 (((-112) $ $) 20 T ELT))) -(((-1234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2272 ((-787) |#1|)) (-15 -1987 (|#1| |#1| |#5|)) (-15 -3730 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1401 ((-112) |#4| |#1|)) (-15 -2939 ((-660 |#4|) |#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -3942 ((-3 |#5| "failed") |#1|)) (-15 -1652 ((-3 |#5| "failed") |#1|)) (-15 -3270 (|#5| |#5| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2801 (|#5| |#5| |#1|)) (-15 -1458 (|#5| |#5| |#1|)) (-15 -2108 (|#5| |#5| |#1|)) (-15 -3924 (|#5| |#5| |#1|)) (-15 -2483 ((-660 |#5|) (-660 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2498 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4233 ((-112) |#1|)) (-15 -2870 ((-112) |#1|)) (-15 -1531 ((-112) |#1|)) (-15 -4353 ((-112) |#1| (-1 (-112) |#5| (-660 |#5|)))) (-15 -4233 ((-112) |#5| |#1|)) (-15 -2870 ((-112) |#5| |#1|)) (-15 -1531 ((-112) |#5| |#1|)) (-15 -3165 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1819 ((-112) |#1|)) (-15 -1819 ((-112) |#5| |#1|)) (-15 -3630 ((-2 (|:| -1970 (-660 |#5|)) (|:| -3263 (-660 |#5|))) |#1|)) (-15 -3616 ((-787) |#1|)) (-15 -3425 ((-660 |#5|) |#1|)) (-15 -3200 ((-3 (-2 (|:| |bas| |#1|) (|:| -2554 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3200 ((-3 (-2 (|:| |bas| |#1|) (|:| -2554 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2928 ((-112) |#1| |#1|)) (-15 -3620 (|#1| |#1| |#4|)) (-15 -2003 (|#1| |#1| |#4|)) (-15 -1940 (|#4| |#1|)) (-15 -2784 ((-3 |#1| "failed") (-660 |#5|))) (-15 -3603 ((-660 |#5|) |#1|)) (-15 -3614 (|#1| (-660 |#5|))) (-15 -2498 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2498 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3730 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2498 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) (-1235 |#2| |#3| |#4| |#5|) (-569) (-809) (-865) (-1090 |#2| |#3| |#4|)) (T -1234)) -NIL -(-10 -8 (-15 -2272 ((-787) |#1|)) (-15 -1987 (|#1| |#1| |#5|)) (-15 -3730 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1401 ((-112) |#4| |#1|)) (-15 -2939 ((-660 |#4|) |#1|)) (-15 -1663 ((-3 |#1| "failed") |#1|)) (-15 -3942 ((-3 |#5| "failed") |#1|)) (-15 -1652 ((-3 |#5| "failed") |#1|)) (-15 -3270 (|#5| |#5| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2801 (|#5| |#5| |#1|)) (-15 -1458 (|#5| |#5| |#1|)) (-15 -2108 (|#5| |#5| |#1|)) (-15 -3924 (|#5| |#5| |#1|)) (-15 -2483 ((-660 |#5|) (-660 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2498 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4233 ((-112) |#1|)) (-15 -2870 ((-112) |#1|)) (-15 -1531 ((-112) |#1|)) (-15 -4353 ((-112) |#1| (-1 (-112) |#5| (-660 |#5|)))) (-15 -4233 ((-112) |#5| |#1|)) (-15 -2870 ((-112) |#5| |#1|)) (-15 -1531 ((-112) |#5| |#1|)) (-15 -3165 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1819 ((-112) |#1|)) (-15 -1819 ((-112) |#5| |#1|)) (-15 -3630 ((-2 (|:| -1970 (-660 |#5|)) (|:| -3263 (-660 |#5|))) |#1|)) (-15 -3616 ((-787) |#1|)) (-15 -3425 ((-660 |#5|) |#1|)) (-15 -3200 ((-3 (-2 (|:| |bas| |#1|) (|:| -2554 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3200 ((-3 (-2 (|:| |bas| |#1|) (|:| -2554 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2928 ((-112) |#1| |#1|)) (-15 -3620 (|#1| |#1| |#4|)) (-15 -2003 (|#1| |#1| |#4|)) (-15 -1940 (|#4| |#1|)) (-15 -2784 ((-3 |#1| "failed") (-660 |#5|))) (-15 -3603 ((-660 |#5|) |#1|)) (-15 -3614 (|#1| (-660 |#5|))) (-15 -2498 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2498 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3730 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2498 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3603 ((-880) |#1|)) (-15 -2949 ((-112) |#1| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) 86 T ELT)) (-1568 (((-660 $) (-660 |#4|)) 87 T ELT)) (-3206 (((-660 |#3|) $) 34 T ELT)) (-1905 (((-112) $) 27 T ELT)) (-1421 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3924 ((|#4| |#4| $) 93 T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-4403 (((-112) $ (-787)) 45 T ELT)) (-3730 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3790 (($) 46 T CONST)) (-4046 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) 37 T ELT)) (-2155 (($ (-660 |#4|)) 36 T ELT)) (-1663 (((-3 $ "failed") $) 83 T ELT)) (-2801 ((|#4| |#4| $) 90 T ELT)) (-3289 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3270 ((|#4| |#4| $) 88 T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) 106 T ELT)) (-3692 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1940 ((|#3| $) 35 T ELT)) (-1821 (((-112) $ (-787)) 44 T ELT)) (-2434 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1365 (((-660 |#3|) $) 33 T ELT)) (-2639 (((-112) |#3| $) 32 T ELT)) (-3272 (((-112) $ (-787)) 43 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3942 (((-3 |#4| "failed") $) 84 T ELT)) (-3425 (((-660 |#4|) $) 108 T ELT)) (-4233 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1458 ((|#4| |#4| $) 91 T ELT)) (-2928 (((-112) $ $) 111 T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-2108 ((|#4| |#4| $) 92 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1652 (((-3 |#4| "failed") $) 85 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3062 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-1987 (($ $ |#4|) 78 T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) 39 T ELT)) (-2856 (((-112) $) 42 T ELT)) (-2693 (($) 41 T ELT)) (-3616 (((-787) $) 107 T ELT)) (-1452 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))) ELT) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) 40 T ELT)) (-2176 (((-549) $) 70 (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) 61 T ELT)) (-3620 (($ $ |#3|) 29 T ELT)) (-2003 (($ $ |#3|) 31 T ELT)) (-3307 (($ $) 89 T ELT)) (-3344 (($ $ |#3|) 30 T ELT)) (-3603 (((-880) $) 12 T ELT) (((-660 |#4|) $) 38 T ELT)) (-2272 (((-787) $) 77 (|has| |#3| (-380)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99 T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) 82 T ELT)) (-1401 (((-112) |#3| $) 81 T ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3501 (((-787) $) 47 (|has| $ (-6 -4470)) ELT))) -(((-1235 |#1| |#2| |#3| |#4|) (-141) (-569) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1235)) -((-2928 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-3200 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2554 (-660 *8)))) (-5 *3 (-660 *8)) (-4 *1 (-1235 *5 *6 *7 *8)))) (-3200 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2554 (-660 *9)))) (-5 *3 (-660 *9)) (-4 *1 (-1235 *6 *7 *8 *9)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *6)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-787)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-2 (|:| -1970 (-660 *6)) (|:| -3263 (-660 *6)))))) (-1819 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-3165 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1235 *5 *6 *7 *3)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)))) (-1531 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2870 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-4233 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-660 *7))) (-4 *1 (-1235 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-1531 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2498 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1235 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *2 (-1090 *5 *6 *7)))) (-2483 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1235 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)))) (-3924 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2108 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-1458 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2801 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4)))) (-3270 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1235 *4 *5 *6 *7)))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| -1970 *1) (|:| -3263 (-660 *7))))) (-5 *3 (-660 *7)) (-4 *1 (-1235 *4 *5 *6 *7)))) (-1652 (*1 *2 *1) (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-3942 (*1 *2 *1) (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-1663 (*1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4)))) (-2939 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) (-1401 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112)))) (-3730 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1235 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *2 (-1090 *4 *5 *3)))) (-3062 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-1987 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *5 (-380)) (-5 *2 (-787))))) -(-13 (-1001 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -2928 ((-112) $ $)) (-15 -3200 ((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |t#4|))) "failed") (-660 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3200 ((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |t#4|))) "failed") (-660 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3425 ((-660 |t#4|) $)) (-15 -3616 ((-787) $)) (-15 -3630 ((-2 (|:| -1970 (-660 |t#4|)) (|:| -3263 (-660 |t#4|))) $)) (-15 -1819 ((-112) |t#4| $)) (-15 -1819 ((-112) $)) (-15 -3165 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1531 ((-112) |t#4| $)) (-15 -2870 ((-112) |t#4| $)) (-15 -4233 ((-112) |t#4| $)) (-15 -4353 ((-112) $ (-1 (-112) |t#4| (-660 |t#4|)))) (-15 -1531 ((-112) $)) (-15 -2870 ((-112) $)) (-15 -4233 ((-112) $)) (-15 -2498 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2483 ((-660 |t#4|) (-660 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3924 (|t#4| |t#4| $)) (-15 -2108 (|t#4| |t#4| $)) (-15 -1458 (|t#4| |t#4| $)) (-15 -2801 (|t#4| |t#4| $)) (-15 -3307 ($ $)) (-15 -3270 (|t#4| |t#4| $)) (-15 -1568 ((-660 $) (-660 |t#4|))) (-15 -1546 ((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |t#4|)))) (-660 |t#4|))) (-15 -1652 ((-3 |t#4| "failed") $)) (-15 -3942 ((-3 |t#4| "failed") $)) (-15 -1663 ((-3 $ "failed") $)) (-15 -2939 ((-660 |t#3|) $)) (-15 -1401 ((-112) |t#3| $)) (-15 -3730 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3062 ((-3 $ "failed") $ |t#4|)) (-15 -1987 ($ $ |t#4|)) (IF (|has| |t#3| (-380)) (-15 -2272 ((-787) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1201)) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2642 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2666 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2817 (((-975 |#1|) $ (-787)) 17 T ELT) (((-975 |#1|) $ (-787) (-787)) NIL T ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-787) $ (-1201)) NIL T ELT) (((-787) $ (-1201) (-787)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ $ (-660 (-1201)) (-660 (-544 (-1201)))) NIL T ELT) (($ $ (-1201) (-544 (-1201))) NIL T ELT) (($ |#1| (-544 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3716 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4129 (($ $ (-1201)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3032 (($ (-1 $) (-1201) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1987 (($ $ (-787)) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2079 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (($ $ (-1201) $) NIL T ELT) (($ $ (-660 (-1201)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT)) (-3362 (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT)) (-3616 (((-544 (-1201)) $) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-1201)) NIL T ELT) (($ (-975 |#1|)) NIL T ELT)) (-3421 ((|#1| $ (-544 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (((-975 |#1|) $ (-787)) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2897 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2136 (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1236 |#1|) (-13 (-756 |#1| (-1201)) (-10 -8 (-15 -3421 ((-975 |#1|) $ (-787))) (-15 -3603 ($ (-1201))) (-15 -3603 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $ (-1201) |#1|)) (-15 -3032 ($ (-1 $) (-1201) |#1|))) |%noBranch|))) (-1074)) (T -1236)) -((-3421 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-975 *4)) (-5 *1 (-1236 *4)) (-4 *4 (-1074)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-1074)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-5 *1 (-1236 *3)))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)))) (-3032 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1236 *4))) (-5 *3 (-1201)) (-5 *1 (-1236 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074))))) -(-13 (-756 |#1| (-1201)) (-10 -8 (-15 -3421 ((-975 |#1|) $ (-787))) (-15 -3603 ($ (-1201))) (-15 -3603 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $ (-1201) |#1|)) (-15 -3032 ($ (-1 $) (-1201) |#1|))) |%noBranch|))) -((-1431 (($ |#1| (-660 (-660 (-966 (-228)))) (-112)) 19 T ELT)) (-2794 (((-112) $ (-112)) 18 T ELT)) (-1739 (((-112) $) 17 T ELT)) (-3319 (((-660 (-660 (-966 (-228)))) $) 13 T ELT)) (-1656 ((|#1| $) 8 T ELT)) (-1947 (((-112) $) 15 T ELT))) -(((-1237 |#1|) (-10 -8 (-15 -1656 (|#1| $)) (-15 -3319 ((-660 (-660 (-966 (-228)))) $)) (-15 -1947 ((-112) $)) (-15 -1739 ((-112) $)) (-15 -2794 ((-112) $ (-112))) (-15 -1431 ($ |#1| (-660 (-660 (-966 (-228)))) (-112)))) (-999)) (T -1237)) -((-1431 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-112)) (-5 *1 (-1237 *2)) (-4 *2 (-999)))) (-2794 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-1656 (*1 *2 *1) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-999))))) -(-10 -8 (-15 -1656 (|#1| $)) (-15 -3319 ((-660 (-660 (-966 (-228)))) $)) (-15 -1947 ((-112) $)) (-15 -1739 ((-112) $)) (-15 -2794 ((-112) $ (-112))) (-15 -1431 ($ |#1| (-660 (-660 (-966 (-228)))) (-112)))) -((-3303 (((-966 (-228)) (-966 (-228))) 31 T ELT)) (-2820 (((-966 (-228)) (-228) (-228) (-228) (-228)) 10 T ELT)) (-1682 (((-660 (-966 (-228))) (-966 (-228)) (-966 (-228)) (-966 (-228)) (-228) (-660 (-660 (-228)))) 56 T ELT)) (-3366 (((-228) (-966 (-228)) (-966 (-228))) 27 T ELT)) (-1598 (((-966 (-228)) (-966 (-228)) (-966 (-228))) 28 T ELT)) (-1810 (((-660 (-660 (-228))) (-577)) 44 T ELT)) (-3042 (((-966 (-228)) (-966 (-228)) (-966 (-228))) 26 T ELT)) (-3031 (((-966 (-228)) (-966 (-228)) (-966 (-228))) 24 T ELT)) (* (((-966 (-228)) (-228) (-966 (-228))) 22 T ELT))) -(((-1238) (-10 -7 (-15 -2820 ((-966 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-966 (-228)) (-228) (-966 (-228)))) (-15 -3031 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3042 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3366 ((-228) (-966 (-228)) (-966 (-228)))) (-15 -1598 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3303 ((-966 (-228)) (-966 (-228)))) (-15 -1810 ((-660 (-660 (-228))) (-577))) (-15 -1682 ((-660 (-966 (-228))) (-966 (-228)) (-966 (-228)) (-966 (-228)) (-228) (-660 (-660 (-228))))))) (T -1238)) -((-1682 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-660 (-660 (-228)))) (-5 *4 (-228)) (-5 *2 (-660 (-966 *4))) (-5 *1 (-1238)) (-5 *3 (-966 *4)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-1238)))) (-3303 (*1 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (-1598 (*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (-3366 (*1 *2 *3 *3) (-12 (-5 *3 (-966 (-228))) (-5 *2 (-228)) (-5 *1 (-1238)))) (-3042 (*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-966 (-228))) (-5 *3 (-228)) (-5 *1 (-1238)))) (-2820 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)) (-5 *3 (-228))))) -(-10 -7 (-15 -2820 ((-966 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-966 (-228)) (-228) (-966 (-228)))) (-15 -3031 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3042 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3366 ((-228) (-966 (-228)) (-966 (-228)))) (-15 -1598 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3303 ((-966 (-228)) (-966 (-228)))) (-15 -1810 ((-660 (-660 (-228))) (-577))) (-15 -1682 ((-660 (-966 (-228))) (-966 (-228)) (-966 (-228)) (-966 (-228)) (-228) (-660 (-660 (-228)))))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-3730 ((|#1| $ (-787)) 18 T ELT)) (-3762 (((-787) $) 13 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-3603 (((-981 |#1|) $) 12 T ELT) (($ (-981 |#1|)) 11 T ELT) (((-880) $) 29 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-2949 (((-112) $ $) 22 (|has| |#1| (-1125)) ELT))) -(((-1239 |#1|) (-13 (-503 (-981 |#1|)) (-10 -8 (-15 -3730 (|#1| $ (-787))) (-15 -3762 ((-787) $)) (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) (-1242)) (T -1239)) -((-3730 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-1239 *2)) (-4 *2 (-1242)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1239 *3)) (-4 *3 (-1242))))) -(-13 (-503 (-981 |#1|)) (-10 -8 (-15 -3730 (|#1| $ (-787))) (-15 -3762 ((-787) $)) (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) -((-3380 (((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)) (-577)) 94 T ELT)) (-1600 (((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|))) 86 T ELT)) (-3356 (((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|))) 70 T ELT))) -(((-1240 |#1|) (-10 -7 (-15 -1600 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -3356 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -3380 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)) (-577)))) (-361)) (T -1240)) -((-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1197 (-1197 *5)))) (-5 *1 (-1240 *5)) (-5 *3 (-1197 (-1197 *5))))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4))))) (-1600 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4)))))) -(-10 -7 (-15 -1600 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -3356 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -3380 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)) (-577)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 9 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1241) (-1108)) (T -1241)) -NIL -(-1108) -NIL -(((-1242) (-141)) (T -1242)) -NIL -(-13 (-10 -7 (-6 -4106))) -((-3769 (((-112)) 18 T ELT)) (-2861 (((-1297) (-660 |#1|) (-660 |#1|)) 22 T ELT) (((-1297) (-660 |#1|)) 23 T ELT)) (-1821 (((-112) |#1| |#1|) 37 (|has| |#1| (-865)) ELT)) (-3272 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29 T ELT) (((-3 (-112) "failed") |#1| |#1|) 27 T ELT)) (-3401 ((|#1| (-660 |#1|)) 38 (|has| |#1| (-865)) ELT) ((|#1| (-660 |#1|) (-1 (-112) |#1| |#1|)) 32 T ELT)) (-1526 (((-2 (|:| -1880 (-660 |#1|)) (|:| -2526 (-660 |#1|)))) 20 T ELT))) -(((-1243 |#1|) (-10 -7 (-15 -2861 ((-1297) (-660 |#1|))) (-15 -2861 ((-1297) (-660 |#1|) (-660 |#1|))) (-15 -1526 ((-2 (|:| -1880 (-660 |#1|)) (|:| -2526 (-660 |#1|))))) (-15 -3272 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3272 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3401 (|#1| (-660 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3769 ((-112))) (IF (|has| |#1| (-865)) (PROGN (-15 -3401 (|#1| (-660 |#1|))) (-15 -1821 ((-112) |#1| |#1|))) |%noBranch|)) (-1125)) (T -1243)) -((-1821 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-865)) (-4 *3 (-1125)))) (-3401 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-865)) (-5 *1 (-1243 *2)))) (-3769 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1243 *2)) (-4 *2 (-1125)))) (-3272 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-1243 *3)))) (-3272 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) (-1526 (*1 *2) (-12 (-5 *2 (-2 (|:| -1880 (-660 *3)) (|:| -2526 (-660 *3)))) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) (-2861 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) (-5 *1 (-1243 *4)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) (-5 *1 (-1243 *4))))) -(-10 -7 (-15 -2861 ((-1297) (-660 |#1|))) (-15 -2861 ((-1297) (-660 |#1|) (-660 |#1|))) (-15 -1526 ((-2 (|:| -1880 (-660 |#1|)) (|:| -2526 (-660 |#1|))))) (-15 -3272 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3272 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3401 (|#1| (-660 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3769 ((-112))) (IF (|has| |#1| (-865)) (PROGN (-15 -3401 (|#1| (-660 |#1|))) (-15 -1821 ((-112) |#1| |#1|))) |%noBranch|)) -((-1505 (((-1297) (-660 (-1201)) (-660 (-1201))) 14 T ELT) (((-1297) (-660 (-1201))) 12 T ELT)) (-2574 (((-1297)) 16 T ELT)) (-4191 (((-2 (|:| -2526 (-660 (-1201))) (|:| -1880 (-660 (-1201))))) 20 T ELT))) -(((-1244) (-10 -7 (-15 -1505 ((-1297) (-660 (-1201)))) (-15 -1505 ((-1297) (-660 (-1201)) (-660 (-1201)))) (-15 -4191 ((-2 (|:| -2526 (-660 (-1201))) (|:| -1880 (-660 (-1201)))))) (-15 -2574 ((-1297))))) (T -1244)) -((-2574 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1244)))) (-4191 (*1 *2) (-12 (-5 *2 (-2 (|:| -2526 (-660 (-1201))) (|:| -1880 (-660 (-1201))))) (-5 *1 (-1244)))) (-1505 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244))))) -(-10 -7 (-15 -1505 ((-1297) (-660 (-1201)))) (-15 -1505 ((-1297) (-660 (-1201)) (-660 (-1201)))) (-15 -4191 ((-2 (|:| -2526 (-660 (-1201))) (|:| -1880 (-660 (-1201)))))) (-15 -2574 ((-1297)))) -((-2001 (($ $) 17 T ELT)) (-2182 (((-112) $) 28 T ELT))) -(((-1245 |#1|) (-10 -8 (-15 -2001 (|#1| |#1|)) (-15 -2182 ((-112) |#1|))) (-1246)) (T -1245)) -NIL -(-10 -8 (-15 -2001 (|#1| |#1|)) (-15 -2182 ((-112) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 57 T ELT)) (-3836 (((-431 $) $) 58 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2182 (((-112) $) 59 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3056 (((-431 $) $) 56 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-1246) (-141)) (T -1246)) -((-2182 (*1 *2 *1) (-12 (-4 *1 (-1246)) (-5 *2 (-112)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246)))) (-2001 (*1 *1 *1) (-4 *1 (-1246))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246))))) -(-13 (-465) (-10 -8 (-15 -2182 ((-112) $)) (-15 -3836 ((-431 $) $)) (-15 -2001 ($ $)) (-15 -3056 ((-431 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2356 (($ $ $) NIL T ELT)) (-2348 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-1247) (-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609)))) (T -1247)) -((-2348 (*1 *1 *1 *1) (-5 *1 (-1247))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1247))) (-3790 (*1 *1) (-5 *1 (-1247)))) -(-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 9 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 7 T ELT))) +(((-1214) (-1130)) (T -1214)) +NIL +(-1130) +((-3503 (((-665 (-665 (-980 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 69 T ELT)) (-2205 (((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|)))) 80 T ELT) (((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|))) 76 T ELT) (((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206)) 81 T ELT) (((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206)) 75 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|))))) 106 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|)))) 105 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206))) 107 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 104 T ELT))) +(((-1215 |#1|) (-10 -7 (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))))) (-15 -3503 ((-665 (-665 (-980 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))))) (-569)) (T -1215)) +((-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-980 *5)))) (-5 *1 (-1215 *5)))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) (-5 *1 (-1215 *4)) (-5 *3 (-305 (-420 (-980 *4)))))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) (-5 *1 (-1215 *4)) (-5 *3 (-420 (-980 *4))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) (-5 *3 (-305 (-420 (-980 *5)))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) (-5 *3 (-420 (-980 *5))))) (-2205 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-1215 *4)) (-5 *3 (-665 (-305 (-420 (-980 *4))))))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-1215 *4)))) (-2205 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-1215 *5)) (-5 *3 (-665 (-305 (-420 (-980 *5))))))) (-2205 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-1215 *5))))) +(-10 -7 (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))))) (-15 -2205 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)))) (-15 -2205 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))))) (-15 -3503 ((-665 (-665 (-980 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))))) +((-3971 (((-1188)) 7 T ELT)) (-1975 (((-1188)) 11 T CONST)) (-3781 (((-1302) (-1188)) 13 T ELT)) (-4151 (((-1188)) 8 T CONST)) (-3103 (((-131)) 10 T CONST))) +(((-1216) (-13 (-1247) (-10 -7 (-15 -3971 ((-1188))) (-15 -4151 ((-1188)) -4212) (-15 -3103 ((-131)) -4212) (-15 -1975 ((-1188)) -4212) (-15 -3781 ((-1302) (-1188)))))) (T -1216)) +((-3971 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216)))) (-4151 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216)))) (-3103 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1216)))) (-1975 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216)))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1216))))) +(-13 (-1247) (-10 -7 (-15 -3971 ((-1188))) (-15 -4151 ((-1188)) -4212) (-15 -3103 ((-131)) -4212) (-15 -1975 ((-1188)) -4212) (-15 -3781 ((-1302) (-1188))))) +((-2736 (((-665 (-665 |#1|)) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|)))) 56 T ELT)) (-4003 (((-665 (-665 (-665 |#1|))) (-665 (-665 |#1|))) 38 T ELT)) (-1406 (((-1218 (-665 |#1|)) (-665 |#1|)) 49 T ELT)) (-4337 (((-665 (-665 |#1|)) (-665 |#1|)) 45 T ELT)) (-3789 (((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 (-665 (-665 |#1|)))) 53 T ELT)) (-3547 (((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 |#1|) (-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|)))) 52 T ELT)) (-3022 (((-665 (-665 |#1|)) (-665 (-665 |#1|))) 43 T ELT)) (-1767 (((-665 |#1|) (-665 |#1|)) 46 T ELT)) (-1858 (((-665 (-665 (-665 |#1|))) (-665 |#1|) (-665 (-665 (-665 |#1|)))) 32 T ELT)) (-2362 (((-665 (-665 (-665 |#1|))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 (-665 |#1|)))) 29 T ELT)) (-2857 (((-2 (|:| |fs| (-112)) (|:| |sd| (-665 |#1|)) (|:| |td| (-665 (-665 |#1|)))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 |#1|))) 24 T ELT)) (-2627 (((-665 (-665 |#1|)) (-665 (-665 (-665 |#1|)))) 58 T ELT)) (-2832 (((-665 (-665 |#1|)) (-1218 (-665 |#1|))) 60 T ELT))) +(((-1217 |#1|) (-10 -7 (-15 -2857 ((-2 (|:| |fs| (-112)) (|:| |sd| (-665 |#1|)) (|:| |td| (-665 (-665 |#1|)))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 |#1|)))) (-15 -2362 ((-665 (-665 (-665 |#1|))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -1858 ((-665 (-665 (-665 |#1|))) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -2736 ((-665 (-665 |#1|)) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -2627 ((-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -2832 ((-665 (-665 |#1|)) (-1218 (-665 |#1|)))) (-15 -4003 ((-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)))) (-15 -1406 ((-1218 (-665 |#1|)) (-665 |#1|))) (-15 -3022 ((-665 (-665 |#1|)) (-665 (-665 |#1|)))) (-15 -4337 ((-665 (-665 |#1|)) (-665 |#1|))) (-15 -1767 ((-665 |#1|) (-665 |#1|))) (-15 -3547 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 |#1|) (-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))))) (-15 -3789 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 (-665 (-665 |#1|)))))) (-870)) (T -1217)) +((-3789 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-2 (|:| |f1| (-665 *4)) (|:| |f2| (-665 (-665 (-665 *4)))) (|:| |f3| (-665 (-665 *4))) (|:| |f4| (-665 (-665 (-665 *4)))))) (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 (-665 *4)))))) (-3547 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-870)) (-5 *3 (-665 *6)) (-5 *5 (-665 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-665 *5)) (|:| |f3| *5) (|:| |f4| (-665 *5)))) (-5 *1 (-1217 *6)) (-5 *4 (-665 *5)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-1217 *3)))) (-4337 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)) (-5 *3 (-665 *4)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-870)) (-5 *1 (-1217 *3)))) (-1406 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-1218 (-665 *4))) (-5 *1 (-1217 *4)) (-5 *3 (-665 *4)))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 (-665 *4)))) (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 *4))))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-1218 (-665 *4))) (-4 *4 (-870)) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)) (-4 *4 (-870)))) (-2736 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) (-4 *4 (-870)) (-5 *1 (-1217 *4)))) (-1858 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-665 *4)) (-4 *4 (-870)) (-5 *1 (-1217 *4)))) (-2362 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-665 *5)) (-4 *5 (-870)) (-5 *1 (-1217 *5)))) (-2857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-870)) (-5 *4 (-665 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-665 *4)))) (-5 *1 (-1217 *6)) (-5 *5 (-665 *4))))) +(-10 -7 (-15 -2857 ((-2 (|:| |fs| (-112)) (|:| |sd| (-665 |#1|)) (|:| |td| (-665 (-665 |#1|)))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 |#1|)))) (-15 -2362 ((-665 (-665 (-665 |#1|))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -1858 ((-665 (-665 (-665 |#1|))) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -2736 ((-665 (-665 |#1|)) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -2627 ((-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -2832 ((-665 (-665 |#1|)) (-1218 (-665 |#1|)))) (-15 -4003 ((-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)))) (-15 -1406 ((-1218 (-665 |#1|)) (-665 |#1|))) (-15 -3022 ((-665 (-665 |#1|)) (-665 (-665 |#1|)))) (-15 -4337 ((-665 (-665 |#1|)) (-665 |#1|))) (-15 -1767 ((-665 |#1|) (-665 |#1|))) (-15 -3547 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 |#1|) (-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))))) (-15 -3789 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 (-665 (-665 |#1|)))))) +((-1477 (($ (-665 (-665 |#1|))) 10 T ELT)) (-2905 (((-665 (-665 |#1|)) $) 11 T ELT)) (-3709 (((-885) $) 33 T ELT))) +(((-1218 |#1|) (-10 -8 (-15 -1477 ($ (-665 (-665 |#1|)))) (-15 -2905 ((-665 (-665 |#1|)) $)) (-15 -3709 ((-885) $))) (-1130)) (T -1218)) +((-3709 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1218 *3)) (-4 *3 (-1130)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 *3))) (-5 *1 (-1218 *3)) (-4 *3 (-1130)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-1218 *3))))) +(-10 -8 (-15 -1477 ($ (-665 (-665 |#1|)))) (-15 -2905 ((-665 (-665 |#1|)) $)) (-15 -3709 ((-885) $))) +((-3586 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3223 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1935 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1425 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4001 (((-665 |#1|) $) NIL T ELT)) (-4065 (((-112) |#1| $) NIL T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-2233 (((-665 |#1|) $) NIL T ELT)) (-3972 (((-112) |#1| $) NIL T ELT)) (-1470 (((-1150) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4397 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL T ELT)) (-2561 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3470 (($) NIL T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-3709 (((-885) $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2643 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) NIL T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) NIL (-2867 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1219 |#1| |#2|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130)) (T -1219)) +NIL +(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) +((-3586 (((-112) $ $) NIL T ELT)) (-3706 (($ |#1| (-55)) 10 T ELT)) (-2758 ((|#1| $) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4241 (((-112) $ |#1|) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3622 (((-55) $) 14 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1220 |#1|) (-13 (-856 |#1|) (-10 -8 (-15 -3706 ($ |#1| (-55))))) (-1130)) (T -1220)) +((-3706 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1220 *2)) (-4 *2 (-1130))))) +(-13 (-856 |#1|) (-10 -8 (-15 -3706 ($ |#1| (-55))))) +((-2153 ((|#1| (-665 |#1|)) 46 T ELT)) (-3478 ((|#1| |#1| (-577)) 24 T ELT)) (-3849 (((-1202 |#1|) |#1| (-949)) 20 T ELT))) +(((-1221 |#1|) (-10 -7 (-15 -2153 (|#1| (-665 |#1|))) (-15 -3849 ((-1202 |#1|) |#1| (-949))) (-15 -3478 (|#1| |#1| (-577)))) (-375)) (T -1221)) +((-3478 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1221 *2)) (-4 *2 (-375)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-1202 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-375)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-1221 *2)) (-4 *2 (-375))))) +(-10 -7 (-15 -2153 (|#1| (-665 |#1|))) (-15 -3849 ((-1202 |#1|) |#1| (-949))) (-15 -3478 (|#1| |#1| (-577)))) +((-3223 (($) 10 T ELT) (($ (-665 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)))) 14 T ELT)) (-1894 (($ (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) $) 67 T ELT) (($ (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) 39 T ELT) (((-665 |#3|) $) 41 T ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-2786 (((-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) $) 60 T ELT)) (-4375 (($ (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) $) 16 T ELT)) (-2233 (((-665 |#2|) $) 19 T ELT)) (-3972 (((-112) |#2| $) 65 T ELT)) (-2550 (((-3 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) "failed") (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) 64 T ELT)) (-3205 (((-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) $) 69 T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 73 T ELT)) (-4059 (((-665 |#3|) $) 43 T ELT)) (-2916 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) NIL T ELT) (((-792) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) $) NIL T ELT) (((-792) |#3| $) NIL T ELT) (((-792) (-1 (-112) |#3|) $) 79 T ELT)) (-3709 (((-885) $) 27 T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 71 T ELT)) (-3018 (((-112) $ $) 51 T ELT))) +(((-1222 |#1| |#2| |#3|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -4417 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3223 (|#1| (-665 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))))) (-15 -3223 (|#1|)) (-15 -4417 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4409 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1481 ((-792) (-1 (-112) |#3|) |#1|)) (-15 -2118 ((-665 |#3|) |#1|)) (-15 -1481 ((-792) |#3| |#1|)) (-15 -2916 (|#3| |#1| |#2| |#3|)) (-15 -2916 (|#3| |#1| |#2|)) (-15 -4059 ((-665 |#3|) |#1|)) (-15 -3972 ((-112) |#2| |#1|)) (-15 -2233 ((-665 |#2|) |#1|)) (-15 -1894 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1894 (|#1| (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -1894 (|#1| (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -2550 ((-3 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) "failed") (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -2786 ((-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -4375 (|#1| (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -3205 ((-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -1481 ((-792) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -2118 ((-665 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -1481 ((-792) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -3446 ((-112) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -1474 ((-112) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -4409 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -4417 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|))) (-1223 |#2| |#3|) (-1130) (-1130)) (T -1222)) +NIL +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3709 ((-885) |#1|)) (-15 -4417 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3223 (|#1| (-665 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))))) (-15 -3223 (|#1|)) (-15 -4417 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4409 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1474 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3446 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1481 ((-792) (-1 (-112) |#3|) |#1|)) (-15 -2118 ((-665 |#3|) |#1|)) (-15 -1481 ((-792) |#3| |#1|)) (-15 -2916 (|#3| |#1| |#2| |#3|)) (-15 -2916 (|#3| |#1| |#2|)) (-15 -4059 ((-665 |#3|) |#1|)) (-15 -3972 ((-112) |#2| |#1|)) (-15 -2233 ((-665 |#2|) |#1|)) (-15 -1894 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1894 (|#1| (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -1894 (|#1| (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -2550 ((-3 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) "failed") (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -2786 ((-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -4375 (|#1| (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -3205 ((-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -1481 ((-792) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) |#1|)) (-15 -2118 ((-665 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -1481 ((-792) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -3446 ((-112) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -1474 ((-112) (-1 (-112) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -4409 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|)) (-15 -4417 (|#1| (-1 (-2 (|:| -4376 |#2|) (|:| -2727 |#3|)) (-2 (|:| -4376 |#2|) (|:| -2727 |#3|))) |#1|))) +((-3586 (((-112) $ $) 20 (-2867 (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ELT)) (-3223 (($) 73 T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 72 T ELT)) (-1935 (((-1302) $ |#1| |#1|) 100 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#2| $ |#1| |#2|) 74 T ELT)) (-3730 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 46 (|has| $ (-6 -4499)) ELT)) (-1440 (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 56 (|has| $ (-6 -4499)) ELT)) (-2359 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2305 (($) 7 T CONST)) (-3589 (($ $) 59 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1894 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 47 (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-4004 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 55 (|has| $ (-6 -4499)) ELT)) (-2060 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 57 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 54 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 53 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#2| $ |#1|) 89 T ELT)) (-2118 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 31 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 80 (|has| $ (-6 -4499)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 ((|#1| $) 97 (|has| |#1| (-870)) ELT)) (-2152 (((-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 30 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 81 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 ((|#1| $) 96 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 35 (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3235 (((-1188) $) 23 (-2867 (|has| |#2| (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-4001 (((-665 |#1|) $) 64 T ELT)) (-4065 (((-112) |#1| $) 65 T ELT)) (-2786 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 40 T ELT)) (-4375 (($ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 41 T ELT)) (-2233 (((-665 |#1|) $) 94 T ELT)) (-3972 (((-112) |#1| $) 93 T ELT)) (-1470 (((-1150) $) 22 (-2867 (|has| |#2| (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT)) (-4397 ((|#2| $) 98 (|has| |#1| (-870)) ELT)) (-2550 (((-3 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) "failed") (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 52 T ELT)) (-2561 (($ $ |#2|) 99 (|has| $ (-6 -4500)) ELT)) (-3205 (((-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 42 T ELT)) (-3446 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 33 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))))) 27 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 26 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) 25 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 24 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-4059 (((-665 |#2|) $) 92 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT)) (-3470 (($) 50 T ELT) (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 49 T ELT)) (-1481 (((-792) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) |#2| $) 82 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 60 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ELT)) (-3722 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 51 T ELT)) (-3709 (((-885) $) 18 (-2867 (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885)))) ELT)) (-2643 (((-112) $ $) 21 (-2867 (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ELT)) (-3886 (($ (-665 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) 43 T ELT)) (-1474 (((-112) (-1 (-112) (-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) $) 34 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (-2867 (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1223 |#1| |#2|) (-141) (-1130) (-1130)) (T -1223)) +((-1957 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1223 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-3223 (*1 *1) (-12 (-4 *1 (-1223 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -4376 *3) (|:| -2727 *4)))) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *1 (-1223 *3 *4)))) (-4417 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1223 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) +(-13 (-628 |t#1| |t#2|) (-617 |t#1| |t#2|) (-10 -8 (-15 -1957 (|t#2| $ |t#1| |t#2|)) (-15 -3223 ($)) (-15 -3223 ($ (-665 (-2 (|:| -4376 |t#1|) (|:| -2727 |t#2|))))) (-15 -4417 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4376 |#1|) (|:| -2727 |#2|))) . T) ((-102) -2867 (|has| |#2| (-1130)) (|has| |#2| (-102)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-102))) ((-631 (-885)) -2867 (|has| |#2| (-1130)) (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-631 (-885)))) ((-152 #0#) . T) ((-632 (-549)) |has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-632 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 #0#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-502 #0#) . T) ((-502 |#2|) . T) ((-617 |#1| |#2|) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-320 (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)))) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-628 |#1| |#2|) . T) ((-1130) -2867 (|has| |#2| (-1130)) (|has| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (-1130))) ((-1247) . T)) +((-3093 (((-112)) 29 T ELT)) (-3077 (((-1302) (-1188)) 31 T ELT)) (-1757 (((-112)) 41 T ELT)) (-2329 (((-1302)) 39 T ELT)) (-2631 (((-1302) (-1188) (-1188)) 30 T ELT)) (-4251 (((-112)) 42 T ELT)) (-4375 (((-1302) |#1| |#2|) 53 T ELT)) (-3839 (((-1302)) 26 T ELT)) (-2087 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3226 (((-1302)) 40 T ELT))) +(((-1224 |#1| |#2|) (-10 -7 (-15 -3839 ((-1302))) (-15 -2631 ((-1302) (-1188) (-1188))) (-15 -3077 ((-1302) (-1188))) (-15 -2329 ((-1302))) (-15 -3226 ((-1302))) (-15 -3093 ((-112))) (-15 -1757 ((-112))) (-15 -4251 ((-112))) (-15 -2087 ((-3 |#2| "failed") |#1|)) (-15 -4375 ((-1302) |#1| |#2|))) (-1130) (-1130)) (T -1224)) +((-4375 (*1 *2 *3 *4) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-2087 (*1 *2 *3) (|partial| -12 (-4 *2 (-1130)) (-5 *1 (-1224 *3 *2)) (-4 *3 (-1130)))) (-4251 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-1757 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-3093 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-3226 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-2329 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)))) (-2631 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)))) (-3839 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) +(-10 -7 (-15 -3839 ((-1302))) (-15 -2631 ((-1302) (-1188) (-1188))) (-15 -3077 ((-1302) (-1188))) (-15 -2329 ((-1302))) (-15 -3226 ((-1302))) (-15 -3093 ((-112))) (-15 -1757 ((-112))) (-15 -4251 ((-112))) (-15 -2087 ((-3 |#2| "failed") |#1|)) (-15 -4375 ((-1302) |#1| |#2|))) +((-2599 (((-1188) (-1188)) 22 T ELT)) (-2622 (((-52) (-1188)) 25 T ELT))) +(((-1225) (-10 -7 (-15 -2622 ((-52) (-1188))) (-15 -2599 ((-1188) (-1188))))) (T -1225)) +((-2599 (*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1225)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-1225))))) +(-10 -7 (-15 -2622 ((-52) (-1188))) (-15 -2599 ((-1188) (-1188)))) +((-3709 (((-1227) |#1|) 11 T ELT))) +(((-1226 |#1|) (-10 -7 (-15 -3709 ((-1227) |#1|))) (-1130)) (T -1226)) +((-3709 (*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1226 *3)) (-4 *3 (-1130))))) +(-10 -7 (-15 -3709 ((-1227) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4389 (((-665 (-1188)) $) 39 T ELT)) (-3523 (((-665 (-1188)) $ (-665 (-1188))) 42 T ELT)) (-1621 (((-665 (-1188)) $ (-665 (-1188))) 41 T ELT)) (-2141 (((-665 (-1188)) $ (-665 (-1188))) 43 T ELT)) (-3623 (((-665 (-1188)) $) 38 T ELT)) (-3236 (($) 28 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2542 (((-665 (-1188)) $) 40 T ELT)) (-2064 (((-1302) $ (-577)) 35 T ELT) (((-1302) $) 36 T ELT)) (-4463 (($ (-885) (-577)) 33 T ELT) (($ (-885) (-577) (-885)) NIL T ELT)) (-3709 (((-885) $) 49 T ELT) (($ (-885)) 32 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1227) (-13 (-1130) (-634 (-885)) (-10 -8 (-15 -4463 ($ (-885) (-577))) (-15 -4463 ($ (-885) (-577) (-885))) (-15 -2064 ((-1302) $ (-577))) (-15 -2064 ((-1302) $)) (-15 -2542 ((-665 (-1188)) $)) (-15 -4389 ((-665 (-1188)) $)) (-15 -3236 ($)) (-15 -3623 ((-665 (-1188)) $)) (-15 -2141 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -3523 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1621 ((-665 (-1188)) $ (-665 (-1188))))))) (T -1227)) +((-4463 (*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) (-4463 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1227)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1227)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-3236 (*1 *1) (-5 *1 (-1227))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-2141 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-3523 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-1621 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) +(-13 (-1130) (-634 (-885)) (-10 -8 (-15 -4463 ($ (-885) (-577))) (-15 -4463 ($ (-885) (-577) (-885))) (-15 -2064 ((-1302) $ (-577))) (-15 -2064 ((-1302) $)) (-15 -2542 ((-665 (-1188)) $)) (-15 -4389 ((-665 (-1188)) $)) (-15 -3236 ($)) (-15 -3623 ((-665 (-1188)) $)) (-15 -2141 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -3523 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1621 ((-665 (-1188)) $ (-665 (-1188)))))) +((-3586 (((-112) $ $) NIL T ELT)) (-3490 (((-1188) $ (-1188)) 17 T ELT) (((-1188) $) 16 T ELT)) (-2050 (((-1188) $ (-1188)) 15 T ELT)) (-3819 (($ $ (-1188)) NIL T ELT)) (-3247 (((-3 (-1188) "failed") $) 11 T ELT)) (-2592 (((-1188) $) 8 T ELT)) (-2039 (((-3 (-1188) "failed") $) 12 T ELT)) (-1494 (((-1188) $) 9 T ELT)) (-3548 (($ (-401)) NIL T ELT) (($ (-401) (-1188)) NIL T ELT)) (-2758 (((-401) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3581 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2085 (((-112) $) 21 T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2823 (($ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1228) (-13 (-376 (-401) (-1188)) (-10 -8 (-15 -3490 ((-1188) $ (-1188))) (-15 -3490 ((-1188) $)) (-15 -2592 ((-1188) $)) (-15 -3247 ((-3 (-1188) "failed") $)) (-15 -2039 ((-3 (-1188) "failed") $)) (-15 -2085 ((-112) $))))) (T -1228)) +((-3490 (*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-3247 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-2039 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228))))) +(-13 (-376 (-401) (-1188)) (-10 -8 (-15 -3490 ((-1188) $ (-1188))) (-15 -3490 ((-1188) $)) (-15 -2592 ((-1188) $)) (-15 -3247 ((-3 (-1188) "failed") $)) (-15 -2039 ((-3 (-1188) "failed") $)) (-15 -2085 ((-112) $)))) +((-2578 (((-3 (-577) "failed") |#1|) 19 T ELT)) (-3599 (((-3 (-577) "failed") |#1|) 14 T ELT)) (-2148 (((-577) (-1188)) 33 T ELT))) +(((-1229 |#1|) (-10 -7 (-15 -2578 ((-3 (-577) "failed") |#1|)) (-15 -3599 ((-3 (-577) "failed") |#1|)) (-15 -2148 ((-577) (-1188)))) (-1079)) (T -1229)) +((-2148 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-1229 *4)) (-4 *4 (-1079)))) (-3599 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079))))) +(-10 -7 (-15 -2578 ((-3 (-577) "failed") |#1|)) (-15 -3599 ((-3 (-577) "failed") |#1|)) (-15 -2148 ((-577) (-1188)))) +((-4279 (((-1163 (-228))) 9 T ELT))) +(((-1230) (-10 -7 (-15 -4279 ((-1163 (-228)))))) (T -1230)) +((-4279 (*1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1230))))) +(-10 -7 (-15 -4279 ((-1163 (-228))))) +((-2450 (($) 12 T ELT)) (-1727 (($ $) 36 T ELT)) (-1703 (($ $) 34 T ELT)) (-2834 (($ $) 26 T ELT)) (-1748 (($ $) 18 T ELT)) (-4468 (($ $) 16 T ELT)) (-1737 (($ $) 20 T ELT)) (-2874 (($ $) 31 T ELT)) (-1715 (($ $) 35 T ELT)) (-2847 (($ $) 30 T ELT))) +(((-1231 |#1|) (-10 -8 (-15 -2450 (|#1|)) (-15 -1727 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -4468 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2847 (|#1| |#1|))) (-1232)) (T -1231)) +NIL +(-10 -8 (-15 -2450 (|#1|)) (-15 -1727 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -4468 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2847 (|#1| |#1|))) +((-1660 (($ $) 26 T ELT)) (-2785 (($ $) 11 T ELT)) (-1638 (($ $) 27 T ELT)) (-2757 (($ $) 10 T ELT)) (-1682 (($ $) 28 T ELT)) (-2809 (($ $) 9 T ELT)) (-2450 (($) 16 T ELT)) (-3825 (($ $) 19 T ELT)) (-2355 (($ $) 18 T ELT)) (-1692 (($ $) 29 T ELT)) (-2821 (($ $) 8 T ELT)) (-1671 (($ $) 30 T ELT)) (-2797 (($ $) 7 T ELT)) (-1648 (($ $) 31 T ELT)) (-2772 (($ $) 6 T ELT)) (-1727 (($ $) 20 T ELT)) (-2861 (($ $) 32 T ELT)) (-1703 (($ $) 21 T ELT)) (-2834 (($ $) 33 T ELT)) (-1748 (($ $) 22 T ELT)) (-1616 (($ $) 34 T ELT)) (-4468 (($ $) 23 T ELT)) (-1626 (($ $) 35 T ELT)) (-1737 (($ $) 24 T ELT)) (-2874 (($ $) 36 T ELT)) (-1715 (($ $) 25 T ELT)) (-2847 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1232) (-141)) (T -1232)) +((-2450 (*1 *1) (-4 *1 (-1232)))) +(-13 (-1235) (-95) (-506) (-35) (-295) (-10 -8 (-15 -2450 ($)))) +(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-1235) . T)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 19 T ELT)) (-4117 (($ |#1| (-665 $)) 28 T ELT) (($ (-665 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-1777 (((-112) $ (-792)) 72 T ELT)) (-4450 ((|#1| $ |#1|) 14 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 13 (|has| $ (-6 -4500)) ELT)) (-2305 (($) NIL T CONST)) (-2118 (((-665 |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 64 T ELT)) (-3977 (((-112) $ $) 50 (|has| |#1| (-1130)) ELT)) (-3862 (((-112) $ (-792)) 62 T ELT)) (-2152 (((-665 |#1|) $) 78 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3438 (((-112) $ (-792)) 60 T ELT)) (-3196 (((-665 |#1|) $) 55 T ELT)) (-3188 (((-112) $) 53 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 107 T ELT)) (-2687 (((-112) $) 9 T ELT)) (-2833 (($) 10 T ELT)) (-2916 ((|#1| $ "value") NIL T ELT)) (-2409 (((-577) $ $) 48 T ELT)) (-1354 (((-665 $) $) 89 T ELT)) (-3104 (((-112) $ $) 110 T ELT)) (-1774 (((-665 $) $) 105 T ELT)) (-3385 (($ $) 106 T ELT)) (-2625 (((-112) $) 84 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 17 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1977 (($ $) 88 T ELT)) (-3709 (((-885) $) 91 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 12 T ELT)) (-2256 (((-112) $ $) 39 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 37 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 58 (|has| $ (-6 -4499)) ELT))) +(((-1233 |#1|) (-13 (-1040 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -4117 ($ |#1| (-665 $))) (-15 -4117 ($ (-665 |#1|))) (-15 -4117 ($ |#1|)) (-15 -2625 ((-112) $)) (-15 -3385 ($ $)) (-15 -1774 ((-665 $) $)) (-15 -3104 ((-112) $ $)) (-15 -1354 ((-665 $) $)))) (-1130)) (T -1233)) +((-2625 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130)))) (-4117 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-1233 *2))) (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1233 *3)))) (-4117 (*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) (-3385 (*1 *1 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130)))) (-3104 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) +(-13 (-1040 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -4117 ($ |#1| (-665 $))) (-15 -4117 ($ (-665 |#1|))) (-15 -4117 ($ |#1|)) (-15 -2625 ((-112) $)) (-15 -3385 ($ $)) (-15 -1774 ((-665 $) $)) (-15 -3104 ((-112) $ $)) (-15 -1354 ((-665 $) $)))) +((-2785 (($ $) 15 T ELT)) (-2809 (($ $) 12 T ELT)) (-2821 (($ $) 10 T ELT)) (-2797 (($ $) 17 T ELT))) +(((-1234 |#1|) (-10 -8 (-15 -2797 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2785 (|#1| |#1|))) (-1235)) (T -1234)) +NIL +(-10 -8 (-15 -2797 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2785 (|#1| |#1|))) +((-2785 (($ $) 11 T ELT)) (-2757 (($ $) 10 T ELT)) (-2809 (($ $) 9 T ELT)) (-2821 (($ $) 8 T ELT)) (-2797 (($ $) 7 T ELT)) (-2772 (($ $) 6 T ELT))) +(((-1235) (-141)) (T -1235)) +((-2785 (*1 *1 *1) (-4 *1 (-1235))) (-2757 (*1 *1 *1) (-4 *1 (-1235))) (-2809 (*1 *1 *1) (-4 *1 (-1235))) (-2821 (*1 *1 *1) (-4 *1 (-1235))) (-2797 (*1 *1 *1) (-4 *1 (-1235))) (-2772 (*1 *1 *1) (-4 *1 (-1235)))) +(-13 (-10 -8 (-15 -2772 ($ $)) (-15 -2797 ($ $)) (-15 -2821 ($ $)) (-15 -2809 ($ $)) (-15 -2757 ($ $)) (-15 -2785 ($ $)))) +((-4261 ((|#2| |#2|) 98 T ELT)) (-3122 (((-112) |#2|) 29 T ELT)) (-3782 ((|#2| |#2|) 33 T ELT)) (-3794 ((|#2| |#2|) 35 T ELT)) (-1350 ((|#2| |#2| (-1206)) 92 T ELT) ((|#2| |#2|) 93 T ELT)) (-3694 (((-171 |#2|) |#2|) 31 T ELT)) (-4268 ((|#2| |#2| (-1206)) 94 T ELT) ((|#2| |#2|) 95 T ELT))) +(((-1236 |#1| |#2|) (-10 -7 (-15 -1350 (|#2| |#2|)) (-15 -1350 (|#2| |#2| (-1206))) (-15 -4268 (|#2| |#2|)) (-15 -4268 (|#2| |#2| (-1206))) (-15 -4261 (|#2| |#2|)) (-15 -3782 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3122 ((-112) |#2|)) (-15 -3694 ((-171 |#2|) |#2|))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -1236)) +((-3694 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-171 *3)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3122 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-3782 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-4261 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-4268 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-4268 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-1350 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) +(-10 -7 (-15 -1350 (|#2| |#2|)) (-15 -1350 (|#2| |#2| (-1206))) (-15 -4268 (|#2| |#2|)) (-15 -4268 (|#2| |#2| (-1206))) (-15 -4261 (|#2| |#2|)) (-15 -3782 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -3122 ((-112) |#2|)) (-15 -3694 ((-171 |#2|) |#2|))) +((-3017 ((|#4| |#4| |#1|) 31 T ELT)) (-3616 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1237 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3017 (|#4| |#4| |#1|)) (-15 -3616 (|#4| |#4| |#1|))) (-569) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1237)) +((-3616 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3017 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) +(-10 -7 (-15 -3017 (|#4| |#4| |#1|)) (-15 -3616 (|#4| |#4| |#1|))) +((-2022 ((|#2| |#2|) 148 T ELT)) (-4443 ((|#2| |#2|) 145 T ELT)) (-2309 ((|#2| |#2|) 136 T ELT)) (-3671 ((|#2| |#2|) 133 T ELT)) (-2245 ((|#2| |#2|) 141 T ELT)) (-1382 ((|#2| |#2|) 129 T ELT)) (-4126 ((|#2| |#2|) 44 T ELT)) (-1840 ((|#2| |#2|) 105 T ELT)) (-1468 ((|#2| |#2|) 88 T ELT)) (-1899 ((|#2| |#2|) 143 T ELT)) (-3345 ((|#2| |#2|) 131 T ELT)) (-3239 ((|#2| |#2|) 153 T ELT)) (-3311 ((|#2| |#2|) 151 T ELT)) (-1434 ((|#2| |#2|) 152 T ELT)) (-2555 ((|#2| |#2|) 150 T ELT)) (-4024 ((|#2| |#2|) 163 T ELT)) (-2971 ((|#2| |#2|) 30 (-12 (|has| |#2| (-632 (-916 |#1|))) (|has| |#2| (-910 |#1|)) (|has| |#1| (-632 (-916 |#1|))) (|has| |#1| (-910 |#1|))) ELT)) (-1478 ((|#2| |#2|) 89 T ELT)) (-3471 ((|#2| |#2|) 154 T ELT)) (-3138 ((|#2| |#2|) 155 T ELT)) (-3598 ((|#2| |#2|) 142 T ELT)) (-2987 ((|#2| |#2|) 130 T ELT)) (-1359 ((|#2| |#2|) 149 T ELT)) (-4232 ((|#2| |#2|) 147 T ELT)) (-3804 ((|#2| |#2|) 137 T ELT)) (-3926 ((|#2| |#2|) 135 T ELT)) (-2595 ((|#2| |#2|) 139 T ELT)) (-3666 ((|#2| |#2|) 127 T ELT))) +(((-1238 |#1| |#2|) (-10 -7 (-15 -3138 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1840 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1478 (|#2| |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -1359 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -3345 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -2245 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -4443 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (IF (|has| |#1| (-910 |#1|)) (IF (|has| |#1| (-632 (-916 |#1|))) (IF (|has| |#2| (-632 (-916 |#1|))) (IF (|has| |#2| (-910 |#1|)) (-15 -2971 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-465) (-13 (-443 |#1|) (-1232))) (T -1238)) +((-2971 (*1 *2 *2) (-12 (-4 *3 (-632 (-916 *3))) (-4 *3 (-910 *3)) (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-632 (-916 *3))) (-4 *2 (-910 *3)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3239 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3311 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4232 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4443 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1899 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3345 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2987 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1359 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2595 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1478 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1840 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3138 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232)))))) +(-10 -7 (-15 -3138 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1840 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -1478 (|#2| |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -1359 (|#2| |#2|)) (-15 -2987 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -3345 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -2245 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -4443 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -4232 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -3239 (|#2| |#2|)) (IF (|has| |#1| (-910 |#1|)) (IF (|has| |#1| (-632 (-916 |#1|))) (IF (|has| |#2| (-632 (-916 |#1|))) (IF (|has| |#2| (-910 |#1|)) (-15 -2971 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2647 (((-112) |#5| $) 68 T ELT) (((-112) $) 110 T ELT)) (-3800 ((|#5| |#5| $) 83 T ELT)) (-1440 (($ (-1 (-112) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 127 T ELT)) (-1531 (((-665 |#5|) (-665 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81 T ELT)) (-4335 (((-3 $ "failed") (-665 |#5|)) 135 T ELT)) (-4410 (((-3 $ "failed") $) 120 T ELT)) (-3145 ((|#5| |#5| $) 102 T ELT)) (-3894 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36 T ELT)) (-3947 ((|#5| |#5| $) 106 T ELT)) (-2060 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77 T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#5|)) (|:| -3548 (-665 |#5|))) $) 63 T ELT)) (-1398 (((-112) |#5| $) 66 T ELT) (((-112) $) 111 T ELT)) (-1429 ((|#4| $) 116 T ELT)) (-4026 (((-3 |#5| "failed") $) 118 T ELT)) (-1602 (((-665 |#5|) $) 55 T ELT)) (-1768 (((-112) |#5| $) 75 T ELT) (((-112) $) 115 T ELT)) (-2477 ((|#5| |#5| $) 89 T ELT)) (-2852 (((-112) $ $) 29 T ELT)) (-2873 (((-112) |#5| $) 71 T ELT) (((-112) $) 113 T ELT)) (-3881 ((|#5| |#5| $) 86 T ELT)) (-4397 (((-3 |#5| "failed") $) 117 T ELT)) (-2568 (($ $ |#5|) 136 T ELT)) (-1597 (((-792) $) 60 T ELT)) (-3722 (($ (-665 |#5|)) 133 T ELT)) (-1336 (($ $ |#4|) 131 T ELT)) (-3076 (($ $ |#4|) 129 T ELT)) (-2138 (($ $) 128 T ELT)) (-3709 (((-885) $) NIL T ELT) (((-665 |#5|) $) 121 T ELT)) (-3534 (((-792) $) 140 T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51 T ELT)) (-2939 (((-112) $ (-1 (-112) |#5| (-665 |#5|))) 108 T ELT)) (-2494 (((-665 |#4|) $) 123 T ELT)) (-2066 (((-112) |#4| $) 126 T ELT)) (-3018 (((-112) $ $) 20 T ELT))) +(((-1239 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3534 ((-792) |#1|)) (-15 -2568 (|#1| |#1| |#5|)) (-15 -1440 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2066 ((-112) |#4| |#1|)) (-15 -2494 ((-665 |#4|) |#1|)) (-15 -4410 ((-3 |#1| "failed") |#1|)) (-15 -4026 ((-3 |#5| "failed") |#1|)) (-15 -4397 ((-3 |#5| "failed") |#1|)) (-15 -3947 (|#5| |#5| |#1|)) (-15 -2138 (|#1| |#1|)) (-15 -3145 (|#5| |#5| |#1|)) (-15 -2477 (|#5| |#5| |#1|)) (-15 -3881 (|#5| |#5| |#1|)) (-15 -3800 (|#5| |#5| |#1|)) (-15 -1531 ((-665 |#5|) (-665 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2060 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1768 ((-112) |#1|)) (-15 -2873 ((-112) |#1|)) (-15 -2647 ((-112) |#1|)) (-15 -2939 ((-112) |#1| (-1 (-112) |#5| (-665 |#5|)))) (-15 -1768 ((-112) |#5| |#1|)) (-15 -2873 ((-112) |#5| |#1|)) (-15 -2647 ((-112) |#5| |#1|)) (-15 -3894 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1398 ((-112) |#1|)) (-15 -1398 ((-112) |#5| |#1|)) (-15 -1360 ((-2 (|:| -2040 (-665 |#5|)) (|:| -3548 (-665 |#5|))) |#1|)) (-15 -1597 ((-792) |#1|)) (-15 -1602 ((-665 |#5|) |#1|)) (-15 -2935 ((-3 (-2 (|:| |bas| |#1|) (|:| -2841 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2935 ((-3 (-2 (|:| |bas| |#1|) (|:| -2841 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2852 ((-112) |#1| |#1|)) (-15 -1336 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -1429 (|#4| |#1|)) (-15 -4335 ((-3 |#1| "failed") (-665 |#5|))) (-15 -3709 ((-665 |#5|) |#1|)) (-15 -3722 (|#1| (-665 |#5|))) (-15 -2060 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2060 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1440 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2060 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) (-1240 |#2| |#3| |#4| |#5|) (-569) (-814) (-870) (-1095 |#2| |#3| |#4|)) (T -1239)) +NIL +(-10 -8 (-15 -3534 ((-792) |#1|)) (-15 -2568 (|#1| |#1| |#5|)) (-15 -1440 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2066 ((-112) |#4| |#1|)) (-15 -2494 ((-665 |#4|) |#1|)) (-15 -4410 ((-3 |#1| "failed") |#1|)) (-15 -4026 ((-3 |#5| "failed") |#1|)) (-15 -4397 ((-3 |#5| "failed") |#1|)) (-15 -3947 (|#5| |#5| |#1|)) (-15 -2138 (|#1| |#1|)) (-15 -3145 (|#5| |#5| |#1|)) (-15 -2477 (|#5| |#5| |#1|)) (-15 -3881 (|#5| |#5| |#1|)) (-15 -3800 (|#5| |#5| |#1|)) (-15 -1531 ((-665 |#5|) (-665 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2060 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1768 ((-112) |#1|)) (-15 -2873 ((-112) |#1|)) (-15 -2647 ((-112) |#1|)) (-15 -2939 ((-112) |#1| (-1 (-112) |#5| (-665 |#5|)))) (-15 -1768 ((-112) |#5| |#1|)) (-15 -2873 ((-112) |#5| |#1|)) (-15 -2647 ((-112) |#5| |#1|)) (-15 -3894 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1398 ((-112) |#1|)) (-15 -1398 ((-112) |#5| |#1|)) (-15 -1360 ((-2 (|:| -2040 (-665 |#5|)) (|:| -3548 (-665 |#5|))) |#1|)) (-15 -1597 ((-792) |#1|)) (-15 -1602 ((-665 |#5|) |#1|)) (-15 -2935 ((-3 (-2 (|:| |bas| |#1|) (|:| -2841 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2935 ((-3 (-2 (|:| |bas| |#1|) (|:| -2841 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2852 ((-112) |#1| |#1|)) (-15 -1336 (|#1| |#1| |#4|)) (-15 -3076 (|#1| |#1| |#4|)) (-15 -1429 (|#4| |#1|)) (-15 -4335 ((-3 |#1| "failed") (-665 |#5|))) (-15 -3709 ((-665 |#5|) |#1|)) (-15 -3722 (|#1| (-665 |#5|))) (-15 -2060 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2060 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1440 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2060 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3709 ((-885) |#1|)) (-15 -3018 ((-112) |#1| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-1795 (((-665 $) (-665 |#4|)) 87 T ELT)) (-3891 (((-665 |#3|) $) 34 T ELT)) (-1507 (((-112) $) 27 T ELT)) (-2221 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-3800 ((|#4| |#4| $) 93 T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1777 (((-112) $ (-792)) 45 T ELT)) (-1440 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2305 (($) 46 T CONST)) (-1603 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3783 (($ (-665 |#4|)) 36 T ELT)) (-4410 (((-3 $ "failed") $) 83 T ELT)) (-3145 ((|#4| |#4| $) 90 T ELT)) (-3589 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3947 ((|#4| |#4| $) 88 T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) 106 T ELT)) (-2118 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1429 ((|#3| $) 35 T ELT)) (-3862 (((-112) $ (-792)) 44 T ELT)) (-2152 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1683 (((-665 |#3|) $) 33 T ELT)) (-3692 (((-112) |#3| $) 32 T ELT)) (-3438 (((-112) $ (-792)) 43 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-4026 (((-3 |#4| "failed") $) 84 T ELT)) (-1602 (((-665 |#4|) $) 108 T ELT)) (-1768 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-2477 ((|#4| |#4| $) 91 T ELT)) (-2852 (((-112) $ $) 111 T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-3881 ((|#4| |#4| $) 92 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4397 (((-3 |#4| "failed") $) 85 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-4008 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2568 (($ $ |#4|) 78 T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) 39 T ELT)) (-2687 (((-112) $) 42 T ELT)) (-2833 (($) 41 T ELT)) (-1597 (((-792) $) 107 T ELT)) (-1481 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) 40 T ELT)) (-4463 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) 61 T ELT)) (-1336 (($ $ |#3|) 29 T ELT)) (-3076 (($ $ |#3|) 31 T ELT)) (-2138 (($ $) 89 T ELT)) (-2951 (($ $ |#3|) 30 T ELT)) (-3709 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3534 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) 82 T ELT)) (-2066 (((-112) |#3| $) 81 T ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3600 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) +(((-1240 |#1| |#2| |#3| |#4|) (-141) (-569) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1240)) +((-2852 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-2935 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2841 (-665 *8)))) (-5 *3 (-665 *8)) (-4 *1 (-1240 *5 *6 *7 *8)))) (-2935 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2841 (-665 *9)))) (-5 *3 (-665 *9)) (-4 *1 (-1240 *6 *7 *8 *9)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *6)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-792)))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-2 (|:| -2040 (-665 *6)) (|:| -3548 (-665 *6)))))) (-1398 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-3894 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1240 *5 *6 *7 *3)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)))) (-2647 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2873 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-1768 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2939 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-665 *7))) (-4 *1 (-1240 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-2060 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1240 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *2 (-1095 *5 *6 *7)))) (-1531 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1240 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)))) (-3800 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-3881 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-2477 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-3145 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-2138 (*1 *1 *1) (-12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) (-3947 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1240 *4 *5 *6 *7)))) (-4015 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| -2040 *1) (|:| -3548 (-665 *7))))) (-5 *3 (-665 *7)) (-4 *1 (-1240 *4 *5 *6 *7)))) (-4397 (*1 *2 *1) (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4026 (*1 *2 *1) (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4410 (*1 *1 *1) (|partial| -12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) (-2066 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112)))) (-1440 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1240 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *2 (-1095 *4 *5 *3)))) (-4008 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-2568 (*1 *1 *1 *2) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *5 (-380)) (-5 *2 (-792))))) +(-13 (-1006 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -2852 ((-112) $ $)) (-15 -2935 ((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |t#4|))) "failed") (-665 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2935 ((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |t#4|))) "failed") (-665 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1602 ((-665 |t#4|) $)) (-15 -1597 ((-792) $)) (-15 -1360 ((-2 (|:| -2040 (-665 |t#4|)) (|:| -3548 (-665 |t#4|))) $)) (-15 -1398 ((-112) |t#4| $)) (-15 -1398 ((-112) $)) (-15 -3894 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2647 ((-112) |t#4| $)) (-15 -2873 ((-112) |t#4| $)) (-15 -1768 ((-112) |t#4| $)) (-15 -2939 ((-112) $ (-1 (-112) |t#4| (-665 |t#4|)))) (-15 -2647 ((-112) $)) (-15 -2873 ((-112) $)) (-15 -1768 ((-112) $)) (-15 -2060 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1531 ((-665 |t#4|) (-665 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3800 (|t#4| |t#4| $)) (-15 -3881 (|t#4| |t#4| $)) (-15 -2477 (|t#4| |t#4| $)) (-15 -3145 (|t#4| |t#4| $)) (-15 -2138 ($ $)) (-15 -3947 (|t#4| |t#4| $)) (-15 -1795 ((-665 $) (-665 |t#4|))) (-15 -4015 ((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |t#4|)))) (-665 |t#4|))) (-15 -4397 ((-3 |t#4| "failed") $)) (-15 -4026 ((-3 |t#4| "failed") $)) (-15 -4410 ((-3 $ "failed") $)) (-15 -2494 ((-665 |t#3|) $)) (-15 -2066 ((-112) |t#3| $)) (-15 -1440 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4008 ((-3 $ "failed") $ |t#4|)) (-15 -2568 ($ $ |t#4|)) (IF (|has| |t#3| (-380)) (-15 -3534 ((-792) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1206)) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1660 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1638 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1682 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-2498 (((-980 |#1|) $ (-792)) 17 T ELT) (((-980 |#1|) $ (-792) (-792)) NIL T ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-792) $ (-1206)) NIL T ELT) (((-792) $ (-1206) (-792)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ $ (-665 (-1206)) (-665 (-544 (-1206)))) NIL T ELT) (($ $ (-1206) (-544 (-1206))) NIL T ELT) (($ |#1| (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3825 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1869 (($ $ (-1206)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3210 (($ (-1 $) (-1206) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2568 (($ $ (-792)) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2355 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (($ $ (-1206) $) NIL T ELT) (($ $ (-665 (-1206)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT)) (-3641 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-1597 (((-544 (-1206)) $) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-1206)) NIL T ELT) (($ (-980 |#1|)) NIL T ELT)) (-4171 ((|#1| $ (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (((-980 |#1|) $ (-792)) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4468 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-2389 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1241 |#1|) (-13 (-761 |#1| (-1206)) (-10 -8 (-15 -4171 ((-980 |#1|) $ (-792))) (-15 -3709 ($ (-1206))) (-15 -3709 ($ (-980 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $ (-1206) |#1|)) (-15 -3210 ($ (-1 $) (-1206) |#1|))) |%noBranch|))) (-1079)) (T -1241)) +((-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-980 *4)) (-5 *1 (-1241 *4)) (-4 *4 (-1079)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-1079)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-5 *1 (-1241 *3)))) (-1869 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)))) (-3210 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1241 *4))) (-5 *3 (-1206)) (-5 *1 (-1241 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079))))) +(-13 (-761 |#1| (-1206)) (-10 -8 (-15 -4171 ((-980 |#1|) $ (-792))) (-15 -3709 ($ (-1206))) (-15 -3709 ($ (-980 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $ (-1206) |#1|)) (-15 -3210 ($ (-1 $) (-1206) |#1|))) |%noBranch|))) +((-3129 (($ |#1| (-665 (-665 (-971 (-228)))) (-112)) 19 T ELT)) (-4299 (((-112) $ (-112)) 18 T ELT)) (-1653 (((-112) $) 17 T ELT)) (-4134 (((-665 (-665 (-971 (-228)))) $) 13 T ELT)) (-2218 ((|#1| $) 8 T ELT)) (-4367 (((-112) $) 15 T ELT))) +(((-1242 |#1|) (-10 -8 (-15 -2218 (|#1| $)) (-15 -4134 ((-665 (-665 (-971 (-228)))) $)) (-15 -4367 ((-112) $)) (-15 -1653 ((-112) $)) (-15 -4299 ((-112) $ (-112))) (-15 -3129 ($ |#1| (-665 (-665 (-971 (-228)))) (-112)))) (-1004)) (T -1242)) +((-3129 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-112)) (-5 *1 (-1242 *2)) (-4 *2 (-1004)))) (-4299 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-2218 (*1 *2 *1) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1004))))) +(-10 -8 (-15 -2218 (|#1| $)) (-15 -4134 ((-665 (-665 (-971 (-228)))) $)) (-15 -4367 ((-112) $)) (-15 -1653 ((-112) $)) (-15 -4299 ((-112) $ (-112))) (-15 -3129 ($ |#1| (-665 (-665 (-971 (-228)))) (-112)))) +((-1385 (((-971 (-228)) (-971 (-228))) 31 T ELT)) (-3159 (((-971 (-228)) (-228) (-228) (-228) (-228)) 10 T ELT)) (-4380 (((-665 (-971 (-228))) (-971 (-228)) (-971 (-228)) (-971 (-228)) (-228) (-665 (-665 (-228)))) 56 T ELT)) (-4047 (((-228) (-971 (-228)) (-971 (-228))) 27 T ELT)) (-2311 (((-971 (-228)) (-971 (-228)) (-971 (-228))) 28 T ELT)) (-3263 (((-665 (-665 (-228))) (-577)) 44 T ELT)) (-3128 (((-971 (-228)) (-971 (-228)) (-971 (-228))) 26 T ELT)) (-3114 (((-971 (-228)) (-971 (-228)) (-971 (-228))) 24 T ELT)) (* (((-971 (-228)) (-228) (-971 (-228))) 22 T ELT))) +(((-1243) (-10 -7 (-15 -3159 ((-971 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-971 (-228)) (-228) (-971 (-228)))) (-15 -3114 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -3128 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -4047 ((-228) (-971 (-228)) (-971 (-228)))) (-15 -2311 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -1385 ((-971 (-228)) (-971 (-228)))) (-15 -3263 ((-665 (-665 (-228))) (-577))) (-15 -4380 ((-665 (-971 (-228))) (-971 (-228)) (-971 (-228)) (-971 (-228)) (-228) (-665 (-665 (-228))))))) (T -1243)) +((-4380 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-665 (-665 (-228)))) (-5 *4 (-228)) (-5 *2 (-665 (-971 *4))) (-5 *1 (-1243)) (-5 *3 (-971 *4)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-1243)))) (-1385 (*1 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (-2311 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (-4047 (*1 *2 *3 *3) (-12 (-5 *3 (-971 (-228))) (-5 *2 (-228)) (-5 *1 (-1243)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (-3114 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-971 (-228))) (-5 *3 (-228)) (-5 *1 (-1243)))) (-3159 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)) (-5 *3 (-228))))) +(-10 -7 (-15 -3159 ((-971 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-971 (-228)) (-228) (-971 (-228)))) (-15 -3114 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -3128 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -4047 ((-228) (-971 (-228)) (-971 (-228)))) (-15 -2311 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -1385 ((-971 (-228)) (-971 (-228)))) (-15 -3263 ((-665 (-665 (-228))) (-577))) (-15 -4380 ((-665 (-971 (-228))) (-971 (-228)) (-971 (-228)) (-971 (-228)) (-228) (-665 (-665 (-228)))))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-1440 ((|#1| $ (-792)) 18 T ELT)) (-4166 (((-792) $) 13 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3709 (((-986 |#1|) $) 12 T ELT) (($ (-986 |#1|)) 11 T ELT) (((-885) $) 29 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3018 (((-112) $ $) 22 (|has| |#1| (-1130)) ELT))) +(((-1244 |#1|) (-13 (-503 (-986 |#1|)) (-10 -8 (-15 -1440 (|#1| $ (-792))) (-15 -4166 ((-792) $)) (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) (-1247)) (T -1244)) +((-1440 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-1244 *2)) (-4 *2 (-1247)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1244 *3)) (-4 *3 (-1247))))) +(-13 (-503 (-986 |#1|)) (-10 -8 (-15 -1440 (|#1| $ (-792))) (-15 -4166 ((-792) $)) (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) +((-2414 (((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)) (-577)) 94 T ELT)) (-4282 (((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|))) 86 T ELT)) (-2702 (((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|))) 70 T ELT))) +(((-1245 |#1|) (-10 -7 (-15 -4282 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -2702 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -2414 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)) (-577)))) (-361)) (T -1245)) +((-2414 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1202 (-1202 *5)))) (-5 *1 (-1245 *5)) (-5 *3 (-1202 (-1202 *5))))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4))))) (-4282 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4)))))) +(-10 -7 (-15 -4282 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -2702 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -2414 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)) (-577)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 9 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1246) (-1113)) (T -1246)) +NIL +(-1113) +NIL +(((-1247) (-141)) (T -1247)) +NIL +(-13 (-10 -7 (-6 -4185))) +((-2906 (((-112)) 18 T ELT)) (-3605 (((-1302) (-665 |#1|) (-665 |#1|)) 22 T ELT) (((-1302) (-665 |#1|)) 23 T ELT)) (-3862 (((-112) |#1| |#1|) 37 (|has| |#1| (-870)) ELT)) (-3438 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29 T ELT) (((-3 (-112) "failed") |#1| |#1|) 27 T ELT)) (-3450 ((|#1| (-665 |#1|)) 38 (|has| |#1| (-870)) ELT) ((|#1| (-665 |#1|) (-1 (-112) |#1| |#1|)) 32 T ELT)) (-3679 (((-2 (|:| -3518 (-665 |#1|)) (|:| -1349 (-665 |#1|)))) 20 T ELT))) +(((-1248 |#1|) (-10 -7 (-15 -3605 ((-1302) (-665 |#1|))) (-15 -3605 ((-1302) (-665 |#1|) (-665 |#1|))) (-15 -3679 ((-2 (|:| -3518 (-665 |#1|)) (|:| -1349 (-665 |#1|))))) (-15 -3438 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3438 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3450 (|#1| (-665 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2906 ((-112))) (IF (|has| |#1| (-870)) (PROGN (-15 -3450 (|#1| (-665 |#1|))) (-15 -3862 ((-112) |#1| |#1|))) |%noBranch|)) (-1130)) (T -1248)) +((-3862 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-870)) (-4 *3 (-1130)))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-870)) (-5 *1 (-1248 *2)))) (-2906 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1248 *2)) (-4 *2 (-1130)))) (-3438 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1130)) (-5 *2 (-112)) (-5 *1 (-1248 *3)))) (-3438 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) (-3679 (*1 *2) (-12 (-5 *2 (-2 (|:| -3518 (-665 *3)) (|:| -1349 (-665 *3)))) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) (-3605 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) (-5 *1 (-1248 *4)))) (-3605 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) (-5 *1 (-1248 *4))))) +(-10 -7 (-15 -3605 ((-1302) (-665 |#1|))) (-15 -3605 ((-1302) (-665 |#1|) (-665 |#1|))) (-15 -3679 ((-2 (|:| -3518 (-665 |#1|)) (|:| -1349 (-665 |#1|))))) (-15 -3438 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3438 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3450 (|#1| (-665 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2906 ((-112))) (IF (|has| |#1| (-870)) (PROGN (-15 -3450 (|#1| (-665 |#1|))) (-15 -3862 ((-112) |#1| |#1|))) |%noBranch|)) +((-3369 (((-1302) (-665 (-1206)) (-665 (-1206))) 14 T ELT) (((-1302) (-665 (-1206))) 12 T ELT)) (-3141 (((-1302)) 16 T ELT)) (-2026 (((-2 (|:| -1349 (-665 (-1206))) (|:| -3518 (-665 (-1206))))) 20 T ELT))) +(((-1249) (-10 -7 (-15 -3369 ((-1302) (-665 (-1206)))) (-15 -3369 ((-1302) (-665 (-1206)) (-665 (-1206)))) (-15 -2026 ((-2 (|:| -1349 (-665 (-1206))) (|:| -3518 (-665 (-1206)))))) (-15 -3141 ((-1302))))) (T -1249)) +((-3141 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1249)))) (-2026 (*1 *2) (-12 (-5 *2 (-2 (|:| -1349 (-665 (-1206))) (|:| -3518 (-665 (-1206))))) (-5 *1 (-1249)))) (-3369 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249))))) +(-10 -7 (-15 -3369 ((-1302) (-665 (-1206)))) (-15 -3369 ((-1302) (-665 (-1206)) (-665 (-1206)))) (-15 -2026 ((-2 (|:| -1349 (-665 (-1206))) (|:| -3518 (-665 (-1206)))))) (-15 -3141 ((-1302)))) +((-2612 (($ $) 17 T ELT)) (-3567 (((-112) $) 28 T ELT))) +(((-1250 |#1|) (-10 -8 (-15 -2612 (|#1| |#1|)) (-15 -3567 ((-112) |#1|))) (-1251)) (T -1250)) +NIL +(-10 -8 (-15 -2612 (|#1| |#1|)) (-15 -3567 ((-112) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 57 T ELT)) (-3206 (((-431 $) $) 58 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3567 (((-112) $) 59 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3759 (((-431 $) $) 56 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-1251) (-141)) (T -1251)) +((-3567 (*1 *2 *1) (-12 (-4 *1 (-1251)) (-5 *2 (-112)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251)))) (-2612 (*1 *1 *1) (-4 *1 (-1251))) (-3759 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251))))) +(-13 (-465) (-10 -8 (-15 -3567 ((-112) $)) (-15 -3206 ((-431 $) $)) (-15 -2612 ($ $)) (-15 -3759 ((-431 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2469 (($ $ $) NIL T ELT)) (-2458 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-1252) (-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212)))) (T -1252)) +((-2458 (*1 *1 *1 *1) (-5 *1 (-1252))) (-2469 (*1 *1 *1 *1) (-5 *1 (-1252))) (-2305 (*1 *1) (-5 *1 (-1252)))) +(-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2356 (($ $ $) NIL T ELT)) (-2348 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-1248) (-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609)))) (T -1248)) -((-2348 (*1 *1 *1 *1) (-5 *1 (-1248))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1248))) (-3790 (*1 *1) (-5 *1 (-1248)))) -(-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2469 (($ $ $) NIL T ELT)) (-2458 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-1253) (-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212)))) (T -1253)) +((-2458 (*1 *1 *1 *1) (-5 *1 (-1253))) (-2469 (*1 *1 *1 *1) (-5 *1 (-1253))) (-2305 (*1 *1) (-5 *1 (-1253)))) +(-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2356 (($ $ $) NIL T ELT)) (-2348 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-1249) (-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609)))) (T -1249)) -((-2348 (*1 *1 *1 *1) (-5 *1 (-1249))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1249))) (-3790 (*1 *1) (-5 *1 (-1249)))) -(-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2469 (($ $ $) NIL T ELT)) (-2458 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-1254) (-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212)))) (T -1254)) +((-2458 (*1 *1 *1 *1) (-5 *1 (-1254))) (-2469 (*1 *1 *1 *1) (-5 *1 (-1254))) (-2305 (*1 *1) (-5 *1 (-1254)))) +(-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-3489 (((-112) $ $) NIL T ELT)) (-3373 (((-787)) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2352 (($) NIL T ELT)) (-2900 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1457 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2144 (((-944) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3251 (($ (-944)) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT)) (-2356 (($ $ $) NIL T ELT)) (-2348 (($ $ $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3001 (((-112) $ $) NIL T ELT)) (-2978 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL T ELT)) (-2971 (((-112) $ $) NIL T ELT))) -(((-1250) (-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609)))) (T -1250)) -((-2348 (*1 *1 *1 *1) (-5 *1 (-1250))) (-2356 (*1 *1 *1 *1) (-5 *1 (-1250))) (-3790 (*1 *1) (-5 *1 (-1250)))) -(-13 (-860) (-10 -8 (-15 -2348 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -3790 ($) -2609))) +((-3586 (((-112) $ $) NIL T ELT)) (-3005 (((-792)) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1424 (($) NIL T ELT)) (-3237 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2686 (((-949) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3354 (($ (-949)) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT)) (-2469 (($ $ $) NIL T ELT)) (-2458 (($ $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3078 (((-112) $ $) NIL T ELT)) (-3054 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL T ELT)) (-3042 (((-112) $ $) NIL T ELT))) +(((-1255) (-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212)))) (T -1255)) +((-2458 (*1 *1 *1 *1) (-5 *1 (-1255))) (-2469 (*1 *1 *1 *1) (-5 *1 (-1255))) (-2305 (*1 *1) (-5 *1 (-1255)))) +(-13 (-865) (-10 -8 (-15 -2458 ($ $ $)) (-15 -2469 ($ $ $)) (-15 -2305 ($) -4212))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2124 (((-1256 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1256 |#1| |#3| |#5|)) 23 T ELT))) -(((-1251 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2124 ((-1256 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1256 |#1| |#3| |#5|)))) (-1074) (-1074) (-1201) (-1201) |#1| |#2|) (T -1251)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5 *7 *9)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1256 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1201))))) -(-10 -7 (-15 -2124 ((-1256 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1256 |#1| |#3| |#5|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 (-1107)) $) 86 T ELT)) (-3052 (((-1201) $) 118 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-577)) 113 T ELT) (($ $ (-577) (-577)) 112 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119 T ELT)) (-2642 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3070 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-2616 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188 T ELT)) (-2666 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) 18 T CONST)) (-3436 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3254 (((-420 (-975 |#1|)) $ (-577)) 186 (|has| |#1| (-569)) ELT) (((-420 (-975 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)) ELT)) (-3447 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 166 (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) 85 T ELT)) (-2824 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-577) $) 115 T ELT) (((-577) $ (-577)) 114 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) 116 T ELT)) (-2720 (($ (-1 |#1| (-577)) $) 187 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| (-577)) 73 T ELT) (($ $ (-1107) (-577)) 88 T ELT) (($ $ (-660 (-1107)) (-660 (-577))) 87 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3716 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-3508 (($ (-660 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 180 (|has| |#1| (-375)) ELT)) (-4129 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 183 (-2811 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-577)) 110 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)) ELT)) (-2079 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT)) (-4167 (((-787) $) 169 (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-577)) 120 T ELT) (($ $ $) 96 (|has| (-577) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-3616 (((-577) $) 76 T ELT)) (-2680 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 84 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-577)) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-4269 ((|#1| $) 117 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2722 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2694 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1252 |#1|) (-141) (-1074)) (T -1252)) -((-2857 (*1 *1 *2) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1074)) (-4 *1 (-1252 *3)))) (-2720 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1252 *3)) (-4 *3 (-1074)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) (-5 *2 (-420 (-975 *4))))) (-3254 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) (-5 *2 (-420 (-975 *4))))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) (-4129 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) (-12 (|has| *3 (-15 -3206 ((-660 *2) *3))) (|has| *3 (-15 -4129 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) -(-13 (-1270 |t#1| (-577)) (-10 -8 (-15 -2857 ($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |t#1|))))) (-15 -2720 ($ (-1 |t#1| (-577)) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -3254 ((-420 (-975 |t#1|)) $ (-577))) (-15 -3254 ((-420 (-975 |t#1|)) $ (-577) (-577)))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $)) (IF (|has| |t#1| (-15 -4129 (|t#1| |t#1| (-1201)))) (IF (|has| |t#1| (-15 -3206 ((-660 (-1201)) |t#1|))) (-15 -4129 ($ $ (-1201))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1227)) (IF (|has| |t#1| (-982)) (IF (|has| |t#1| (-29 (-577))) (-15 -4129 ($ $ (-1201))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1027)) (-6 (-1227))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-577) (-1137)) ((-301) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-733 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1270 |#1| #0#) . T)) -((-3801 (((-112) $) 12 T ELT)) (-2784 (((-3 |#3| "failed") $) 17 T ELT) (((-3 (-1201) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT)) (-2155 ((|#3| $) 14 T ELT) (((-1201) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT))) -(((-1253 |#1| |#2| |#3|) (-10 -8 (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-1201) "failed") |#1|)) (-15 -2155 ((-1201) |#1|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -3801 ((-112) |#1|))) (-1254 |#2| |#3|) (-1074) (-1283 |#2|)) (T -1253)) -NIL -(-10 -8 (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2784 ((-3 (-1201) "failed") |#1|)) (-15 -2155 ((-1201) |#1|)) (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -3801 ((-112) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2829 ((|#2| $) 251 (-2700 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-3206 (((-660 (-1107)) $) 86 T ELT)) (-3052 (((-1201) $) 118 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-577)) 113 T ELT) (($ $ (-577) (-577)) 112 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119 T ELT)) (-4110 ((|#2| $) 287 T ELT)) (-1790 (((-3 |#2| "failed") $) 283 T ELT)) (-3268 ((|#2| $) 284 T ELT)) (-2642 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 260 (-2700 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-2001 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3070 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 257 (-2700 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-2435 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-2616 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2917 (((-577) $) 269 (-2700 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188 T ELT)) (-2666 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#2| "failed") $) 290 T ELT) (((-3 (-577) "failed") $) 280 (-2700 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) 278 (-2700 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-1201) "failed") $) 262 (-2700 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))) ELT)) (-2155 ((|#2| $) 291 T ELT) (((-577) $) 279 (-2700 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) 277 (-2700 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-1201) $) 261 (-2700 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))) ELT)) (-1459 (($ $) 286 T ELT) (($ (-577) $) 285 T ELT)) (-3436 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3391 (($ $) 72 T ELT)) (-2850 (((-705 |#2|) (-705 $)) 239 (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 238 (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 237 (-2700 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-705 $)) 236 (-2700 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3254 (((-420 (-975 |#1|)) $ (-577)) 186 (|has| |#1| (-569)) ELT) (((-420 (-975 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)) ELT)) (-2352 (($) 253 (-2700 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-3447 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 166 (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-4302 (((-112) $) 267 (-2700 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-2307 (((-112) $) 85 T ELT)) (-2824 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 245 (-2700 (|has| |#2| (-905 (-391))) (|has| |#1| (-375))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 244 (-2700 (|has| |#2| (-905 (-577))) (|has| |#1| (-375))) ELT)) (-2536 (((-577) $) 115 T ELT) (((-577) $ (-577)) 114 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-3116 (($ $) 249 (|has| |#1| (-375)) ELT)) (-2781 ((|#2| $) 247 (|has| |#1| (-375)) ELT)) (-4286 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1454 (((-3 $ "failed") $) 281 (-2700 (|has| |#2| (-1177)) (|has| |#1| (-375))) ELT)) (-2178 (((-112) $) 268 (-2700 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-3681 (($ $ (-944)) 116 T ELT)) (-2720 (($ (-1 |#1| (-577)) $) 187 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| (-577)) 73 T ELT) (($ $ (-1107) (-577)) 88 T ELT) (($ $ (-660 (-1107)) (-660 (-577))) 87 T ELT)) (-2900 (($ $ $) 276 (-2700 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-1457 (($ $ $) 275 (-2700 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-375)) ELT)) (-3716 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1512 (((-705 |#2|) (-1292 $)) 241 (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) 240 (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 235 (-2700 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-1292 $)) 234 (-2700 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-3508 (($ (-660 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-3281 (($ (-577) |#2|) 288 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 180 (|has| |#1| (-375)) ELT)) (-4129 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 183 (-2811 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-3457 (($) 282 (-2700 (|has| |#2| (-1177)) (|has| |#1| (-375))) CONST)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-3053 (($ $) 252 (-2700 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-1374 ((|#2| $) 255 (-2700 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 258 (-2700 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 259 (-2700 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-3056 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-577)) 110 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)) ELT)) (-2079 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1201) |#2|) 228 (-2700 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1201)) (-660 |#2|)) 227 (-2700 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-660 (-305 |#2|))) 226 (-2700 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-305 |#2|)) 225 (-2700 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ |#2| |#2|) 224 (-2700 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 223 (-2700 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT)) (-4167 (((-787) $) 169 (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-577)) 120 T ELT) (($ $ $) 96 (|has| (-577) (-1137)) ELT) (($ $ |#2|) 222 (-2700 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1 |#2| |#2|) (-787)) 231 (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-375)) ELT) (($ $) 100 (-2811 (-2700 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) 98 (-2811 (-2700 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) 108 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-660 (-1201))) 106 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-1201) (-787)) 105 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT)) (-3069 (($ $) 250 (|has| |#1| (-375)) ELT)) (-2797 ((|#2| $) 248 (|has| |#1| (-375)) ELT)) (-3616 (((-577) $) 76 T ELT)) (-2680 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2176 (((-228) $) 266 (-2700 (|has| |#2| (-1047)) (|has| |#1| (-375))) ELT) (((-391) $) 265 (-2700 (|has| |#2| (-1047)) (|has| |#1| (-375))) ELT) (((-549) $) 264 (-2700 (|has| |#2| (-627 (-549))) (|has| |#1| (-375))) ELT) (((-911 (-391)) $) 243 (-2700 (|has| |#2| (-627 (-911 (-391)))) (|has| |#1| (-375))) ELT) (((-911 (-577)) $) 242 (-2700 (|has| |#2| (-627 (-911 (-577)))) (|has| |#1| (-375))) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 256 (-2700 (-2700 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#1| (-375))) ELT)) (-2544 (($ $) 84 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ |#2|) 289 T ELT) (($ (-1201)) 263 (-2700 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-577)) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (-2811 (-2700 (-2811 (|has| |#2| (-146)) (-2700 (|has| $ (-146)) (|has| |#2| (-932)))) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 32 T CONST)) (-4269 ((|#1| $) 117 T ELT)) (-2360 ((|#2| $) 254 (-2700 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2722 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2694 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4318 (($ $) 270 (-2700 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1 |#2| |#2|) (-787)) 233 (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-375)) ELT) (($ $) 99 (-2811 (-2700 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) 97 (-2811 (-2700 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) 107 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-660 (-1201))) 103 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-1201) (-787)) 102 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-2811 (-2700 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT)) (-3001 (((-112) $ $) 274 (-2700 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2978 (((-112) $ $) 272 (-2700 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-2988 (((-112) $ $) 273 (-2700 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2971 (((-112) $ $) 271 (-2700 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT) (($ |#2| |#2|) 246 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ $ |#2|) 221 (|has| |#1| (-375)) ELT) (($ |#2| $) 220 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1254 |#1| |#2|) (-141) (-1074) (-1283 |t#1|)) (T -1254)) -((-3616 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1283 *3)) (-5 *2 (-577)))) (-3281 (*1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *4 (-1074)) (-4 *1 (-1254 *4 *3)) (-4 *3 (-1283 *4)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3)))) (-1459 (*1 *1 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1283 *2)))) (-1459 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1283 *3)))) (-3268 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3)))) (-1790 (*1 *2 *1) (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3))))) -(-13 (-1252 |t#1|) (-1063 |t#2|) (-629 |t#2|) (-10 -8 (-15 -3281 ($ (-577) |t#2|)) (-15 -3616 ((-577) $)) (-15 -4110 (|t#2| $)) (-15 -1459 ($ $)) (-15 -1459 ($ (-577) $)) (-15 -3268 (|t#2| $)) (-15 -1790 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-375)) (-6 (-1017 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-375)) ((-38 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-375)) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-629 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 #2=(-1201)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) ((-629 |#1|) |has| |#1| (-174)) ((-629 |#2|) . T) ((-629 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-627 (-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) ((-627 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) ((-627 (-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-577))))) ((-235 $) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-233 |#2|) |has| |#1| (-375)) ((-239) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-238) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-273 |#2|) |has| |#1| (-375)) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 |#2| $) -12 (|has| |#1| (-375)) (|has| |#2| (-297 |#2| |#2|))) ((-297 $ $) |has| (-577) (-1137)) ((-301) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-375) |has| |#1| (-375)) ((-350 |#2|) |has| |#1| (-375)) ((-389 |#2|) |has| |#1| (-375)) ((-413 |#2|) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 (-1201) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1201) |#2|))) ((-527 |#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-569) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 |#2|) |has| |#1| (-375)) ((-662 $) . T) ((-664 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 #3=(-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) ((-664 |#1|) . T) ((-664 |#2|) |has| |#1| (-375)) ((-664 $) . T) ((-656 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 |#2|) |has| |#1| (-375)) ((-656 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-654 #3#) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) ((-654 |#2|) |has| |#1| (-375)) ((-733 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 |#2|) |has| |#1| (-375)) ((-733 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-807) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-808) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-810) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-811) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-836) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-864) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-865) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-865))) (-12 (|has| |#1| (-375)) (|has| |#2| (-836)))) ((-868) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-865))) (-12 (|has| |#1| (-375)) (|has| |#2| (-836)))) ((-915 $ #4=(-1201)) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ((-921 (-1201)) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ((-923 #4#) -2811 (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ((-905 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-577)))) ((-903 |#2|) |has| |#1| (-375)) ((-932) -12 (|has| |#1| (-375)) (|has| |#2| (-932))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1017 |#2|) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1047) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) ((-1063 (-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577)))) ((-1063 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577)))) ((-1063 #2#) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) ((-1063 |#2|) . T) ((-1076 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 |#2|) |has| |#1| (-375)) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 |#2|) |has| |#1| (-375)) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) -12 (|has| |#1| (-375)) (|has| |#2| (-1177))) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1252 |#1|) . T) ((-1270 |#1| #0#) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 81 T ELT)) (-2829 ((|#2| $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 100 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-577)) 109 T ELT) (($ $ (-577) (-577)) 111 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 51 T ELT)) (-4110 ((|#2| $) 11 T ELT)) (-1790 (((-3 |#2| "failed") $) 35 T ELT)) (-3268 ((|#2| $) 36 T ELT)) (-2642 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2917 (((-577) $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 59 T ELT)) (-2666 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) 157 T ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-1201) "failed") $) NIL (-12 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))) ELT)) (-2155 ((|#2| $) 156 T ELT) (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-1201) $) NIL (-12 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))) ELT)) (-1459 (($ $) 65 T ELT) (($ (-577) $) 28 T ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 |#2|) (-705 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT)) (-1625 (((-3 $ "failed") $) 88 T ELT)) (-3254 (((-420 (-975 |#1|)) $ (-577)) 124 (|has| |#1| (-569)) ELT) (((-420 (-975 |#1|)) $ (-577) (-577)) 126 (|has| |#1| (-569)) ELT)) (-2352 (($) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4302 (((-112) $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-2307 (((-112) $) 74 T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#2| (-905 (-391))) (|has| |#1| (-375))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#2| (-905 (-577))) (|has| |#1| (-375))) ELT)) (-2536 (((-577) $) 105 T ELT) (((-577) $ (-577)) 107 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2781 ((|#2| $) 165 (|has| |#1| (-375)) ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1454 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1177)) (|has| |#1| (-375))) ELT)) (-2178 (((-112) $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-3681 (($ $ (-944)) 148 T ELT)) (-2720 (($ (-1 |#1| (-577)) $) 144 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-577)) 20 T ELT) (($ $ (-1107) (-577)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-577))) NIL T ELT)) (-2900 (($ $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-1457 (($ $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 141 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-375)) ELT)) (-3716 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1512 (((-705 |#2|) (-1292 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3281 (($ (-577) |#2|) 10 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 159 (|has| |#1| (-375)) ELT)) (-4129 (($ $) 228 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 233 (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT)) (-3457 (($) NIL (-12 (|has| |#2| (-1177)) (|has| |#1| (-375))) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3053 (($ $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-1374 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-577)) 138 T ELT)) (-3478 (((-3 $ "failed") $ $) 128 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2079 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1201) |#2|) NIL (-12 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1201)) (-660 |#2|)) NIL (-12 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-577)) 103 T ELT) (($ $ $) 90 (|has| (-577) (-1137)) ELT) (($ $ |#2|) NIL (-12 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375)) ELT) (($ $) 149 (-2811 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) 153 (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT)) (-3069 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2797 ((|#2| $) 166 (|has| |#1| (-375)) ELT)) (-3616 (((-577) $) 12 T ELT)) (-2680 (($ $) 212 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2176 (((-228) $) NIL (-12 (|has| |#2| (-1047)) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| |#2| (-1047)) (|has| |#1| (-375))) ELT) (((-549) $) NIL (-12 (|has| |#2| (-627 (-549))) (|has| |#1| (-375))) ELT) (((-911 (-391)) $) NIL (-12 (|has| |#2| (-627 (-911 (-391)))) (|has| |#1| (-375))) ELT) (((-911 (-577)) $) NIL (-12 (|has| |#2| (-627 (-911 (-577)))) (|has| |#1| (-375))) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932)) (|has| |#1| (-375))) ELT)) (-2544 (($ $) 136 T ELT)) (-3603 (((-880) $) 266 T ELT) (($ (-577)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-174)) ELT) (($ |#2|) 21 T ELT) (($ (-1201)) NIL (-12 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))) ELT) (($ (-420 (-577))) 169 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-577)) 85 T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#2| (-932)) (|has| |#1| (-375))) (-12 (|has| |#2| (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 155 T CONST)) (-4269 ((|#1| $) 102 T ELT)) (-2360 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) 218 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) 214 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 222 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-577)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 224 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 220 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 216 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4318 (($ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))) ELT)) (-2754 (($) 13 T CONST)) (-2767 (($) 18 T CONST)) (-2136 (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375)) ELT) (($ $) NIL (-2811 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT)) (-3001 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2978 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2949 (((-112) $ $) 72 T ELT)) (-2988 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-2971 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))) ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT) (($ |#2| |#2|) 164 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 227 T ELT) (($ $ $) 78 T ELT)) (-3031 (($ $ $) 76 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 84 T ELT) (($ $ (-577)) 160 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 79 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 152 T ELT) (($ $ |#2|) 162 (|has| |#1| (-375)) ELT) (($ |#2| $) 161 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1255 |#1| |#2|) (-1254 |#1| |#2|) (-1074) (-1283 |#1|)) (T -1255)) -NIL -(-1254 |#1| |#2|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-2829 (((-1284 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 10 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-4122 (($ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3547 (((-112) $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3959 (($ $ (-577)) NIL T ELT) (($ $ (-577) (-577)) NIL T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL T ELT)) (-4110 (((-1284 |#1| |#2| |#3|) $) NIL T ELT)) (-1790 (((-3 (-1284 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3268 (((-1284 |#1| |#2| |#3|) $) NIL T ELT)) (-2642 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2917 (((-577) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL T ELT)) (-2666 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-1284 |#1| |#2| |#3|) "failed") $) NIL T ELT) (((-3 (-1201) "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT)) (-2155 (((-1284 |#1| |#2| |#3|) $) NIL T ELT) (((-1201) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT) (((-577) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) ELT)) (-1459 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-1284 |#1| |#2| |#3|)) (-705 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-1284 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1284 |#1| |#2| |#3|)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-705 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3254 (((-420 (-975 |#1|)) $ (-577)) NIL (|has| |#1| (-569)) ELT) (((-420 (-975 |#1|)) $ (-577) (-577)) NIL (|has| |#1| (-569)) ELT)) (-2352 (($) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4302 (((-112) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-905 (-391))) (|has| |#1| (-375))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-905 (-577))) (|has| |#1| (-375))) ELT)) (-2536 (((-577) $) NIL T ELT) (((-577) $ (-577)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3116 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2781 (((-1284 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1454 (((-3 $ "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))) ELT)) (-2178 (((-112) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-3681 (($ $ (-944)) NIL T ELT)) (-2720 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-577)) 18 T ELT) (($ $ (-1107) (-577)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-577))) NIL T ELT)) (-2900 (($ $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-1457 (($ $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)) ELT)) (-3716 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1512 (((-705 (-1284 |#1| |#2| |#3|)) (-1292 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-1284 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1284 |#1| |#2| |#3|)))) (-1292 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3281 (($ (-577) (-1284 |#1| |#2| |#3|)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4129 (($ $) 27 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT) (($ $ (-1288 |#2|)) 28 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3457 (($) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3053 (($ $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-1374 (((-1284 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-577)) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2079 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1201) (-1284 |#1| |#2| |#3|)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-527 (-1201) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1201)) (-660 (-1284 |#1| |#2| |#3|))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-527 (-1201) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-305 (-1284 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-305 (-1284 |#1| |#2| |#3|))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-660 (-1284 |#1| |#2| |#3|)) (-660 (-1284 |#1| |#2| |#3|))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-577)) NIL T ELT) (($ $ $) NIL (|has| (-577) (-1137)) ELT) (($ $ (-1284 |#1| |#2| |#3|)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-297 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1288 |#2|)) 26 T ELT) (($ $) 25 (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT)) (-3069 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2797 (((-1284 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT)) (-3616 (((-577) $) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2176 (((-549) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-627 (-549))) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375))) ELT) (((-228) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375))) ELT) (((-911 (-391)) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-627 (-911 (-391)))) (|has| |#1| (-375))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-627 (-911 (-577)))) (|has| |#1| (-375))) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1284 |#1| |#2| |#3|)) NIL T ELT) (($ (-1288 |#2|)) 24 T ELT) (($ (-1201)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375))) ELT) (($ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT) (($ (-420 (-577))) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-3421 ((|#1| $ (-577)) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) 11 T ELT)) (-2360 (((-1284 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2694 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4318 (($ $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) ELT)) (-2754 (($) 20 T CONST)) (-2767 (($) 15 T CONST)) (-2136 (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1288 |#2|)) NIL T ELT) (($ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-787)) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201))) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-1201) (-787)) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ELT)) (-3001 (((-112) $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2978 (((-112) $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-2988 (((-112) $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-2971 (((-112) $ $) NIL (-2811 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))) ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT) (($ (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 22 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1284 |#1| |#2| |#3|)) NIL (|has| |#1| (-375)) ELT) (($ (-1284 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1256 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1284 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1256)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(-13 (-1254 |#1| (-1284 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) -((-2169 (((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112)) 13 T ELT)) (-2503 (((-431 |#1|) |#1|) 26 T ELT)) (-3056 (((-431 |#1|) |#1|) 24 T ELT))) -(((-1257 |#1|) (-10 -7 (-15 -3056 ((-431 |#1|) |#1|)) (-15 -2503 ((-431 |#1|) |#1|)) (-15 -2169 ((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112)))) (-1268 (-577))) (T -1257)) -((-2169 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577))))) (-2503 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577))))) (-3056 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) -(-10 -7 (-15 -3056 ((-431 |#1|) |#1|)) (-15 -2503 ((-431 |#1|) |#1|)) (-15 -2169 ((-2 (|:| |contp| (-577)) (|:| -1704 (-660 (-2 (|:| |irr| |#1|) (|:| -2087 (-577)))))) |#1| (-112)))) -((-2124 (((-1182 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 23 (|has| |#1| (-864)) ELT) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 17 T ELT))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -2124 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (IF (|has| |#1| (-864)) (-15 -2124 ((-1182 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) |%noBranch|)) (-1242) (-1242)) (T -1258)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-864)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1182 *6)) (-5 *1 (-1258 *5 *6)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6))))) -(-10 -7 (-15 -2124 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (IF (|has| |#1| (-864)) (-15 -2124 ((-1182 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) |%noBranch|)) -((-3489 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-1601 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-2124 (((-1182 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-864)) ELT)) (-1880 ((|#1| $) 15 T ELT)) (-3175 ((|#1| $) 12 T ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-3531 (((-577) $) 19 T ELT)) (-2526 ((|#1| $) 18 T ELT)) (-3542 ((|#1| $) 13 T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1843 (((-112) $) 17 T ELT)) (-3694 (((-1182 |#1|) $) 41 (|has| |#1| (-864)) ELT) (((-1182 |#1|) (-660 $)) 40 (|has| |#1| (-864)) ELT)) (-2176 (($ |#1|) 26 T ELT)) (-3603 (($ (-1119 |#1|)) 25 T ELT) (((-880) $) 37 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-1125)) ELT)) (-1856 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-2707 (($ $ (-577)) 14 T ELT)) (-2949 (((-112) $ $) 30 (|has| |#1| (-1125)) ELT))) -(((-1259 |#1|) (-13 (-1118 |#1|) (-10 -8 (-15 -1856 ($ |#1|)) (-15 -1601 ($ |#1|)) (-15 -3603 ($ (-1119 |#1|))) (-15 -1843 ((-112) $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-1182 |#1|))) |%noBranch|))) (-1242)) (T -1259)) -((-1856 (*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242)))) (-1601 (*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1242)) (-5 *1 (-1259 *3)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1259 *3)) (-4 *3 (-1242))))) -(-13 (-1118 |#1|) (-10 -8 (-15 -1856 ($ |#1|)) (-15 -1601 ($ |#1|)) (-15 -3603 ($ (-1119 |#1|))) (-15 -1843 ((-112) $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-1182 |#1|))) |%noBranch|))) -((-2124 (((-1265 |#3| |#4|) (-1 |#4| |#2|) (-1265 |#1| |#2|)) 15 T ELT))) -(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 ((-1265 |#3| |#4|) (-1 |#4| |#2|) (-1265 |#1| |#2|)))) (-1201) (-1074) (-1201) (-1074)) (T -1260)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1265 *5 *6)) (-14 *5 (-1201)) (-4 *6 (-1074)) (-4 *8 (-1074)) (-5 *2 (-1265 *7 *8)) (-5 *1 (-1260 *5 *6 *7 *8)) (-14 *7 (-1201))))) -(-10 -7 (-15 -2124 ((-1265 |#3| |#4|) (-1 |#4| |#2|) (-1265 |#1| |#2|)))) -((-3773 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3034 ((|#1| |#3|) 13 T ELT)) (-2785 ((|#3| |#3|) 19 T ELT))) -(((-1261 |#1| |#2| |#3|) (-10 -7 (-15 -3034 (|#1| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -3773 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1017 |#1|) (-1268 |#2|)) (T -1261)) -((-3773 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1261 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-1261 *3 *4 *2)) (-4 *2 (-1268 *4)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-1261 *2 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -3034 (|#1| |#3|)) (-15 -2785 (|#3| |#3|)) (-15 -3773 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4195 (((-3 |#2| "failed") |#2| (-787) |#1|) 35 T ELT)) (-4295 (((-3 |#2| "failed") |#2| (-787)) 36 T ELT)) (-1730 (((-3 (-2 (|:| -3060 |#2|) (|:| -3076 |#2|)) "failed") |#2|) 50 T ELT)) (-3622 (((-660 |#2|) |#2|) 52 T ELT)) (-2934 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT))) -(((-1262 |#1| |#2|) (-10 -7 (-15 -4295 ((-3 |#2| "failed") |#2| (-787))) (-15 -4195 ((-3 |#2| "failed") |#2| (-787) |#1|)) (-15 -2934 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1730 ((-3 (-2 (|:| -3060 |#2|) (|:| -3076 |#2|)) "failed") |#2|)) (-15 -3622 ((-660 |#2|) |#2|))) (-13 (-569) (-148)) (-1268 |#1|)) (T -1262)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-660 *3)) (-5 *1 (-1262 *4 *3)) (-4 *3 (-1268 *4)))) (-1730 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| -3060 *3) (|:| -3076 *3))) (-5 *1 (-1262 *4 *3)) (-4 *3 (-1268 *4)))) (-2934 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1268 *3)))) (-4195 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4)))) (-4295 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4))))) -(-10 -7 (-15 -4295 ((-3 |#2| "failed") |#2| (-787))) (-15 -4195 ((-3 |#2| "failed") |#2| (-787) |#1|)) (-15 -2934 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1730 ((-3 (-2 (|:| -3060 |#2|) (|:| -3076 |#2|)) "failed") |#2|)) (-15 -3622 ((-660 |#2|) |#2|))) -((-2194 (((-3 (-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1263 |#1| |#2|) (-10 -7 (-15 -2194 ((-3 (-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) "failed") |#2| |#2|))) (-569) (-1268 |#1|)) (T -1263)) -((-2194 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-1263 *4 *3)) (-4 *3 (-1268 *4))))) -(-10 -7 (-15 -2194 ((-3 (-2 (|:| -2669 |#2|) (|:| -2689 |#2|)) "failed") |#2| |#2|))) -((-3976 ((|#2| |#2| |#2|) 22 T ELT)) (-2519 ((|#2| |#2| |#2|) 36 T ELT)) (-4372 ((|#2| |#2| |#2| (-787) (-787)) 44 T ELT))) -(((-1264 |#1| |#2|) (-10 -7 (-15 -3976 (|#2| |#2| |#2|)) (-15 -2519 (|#2| |#2| |#2|)) (-15 -4372 (|#2| |#2| |#2| (-787) (-787)))) (-1074) (-1268 |#1|)) (T -1264)) -((-4372 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-1264 *4 *2)) (-4 *2 (-1268 *4)))) (-2519 (*1 *2 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3)))) (-3976 (*1 *2 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3))))) -(-10 -7 (-15 -3976 (|#2| |#2| |#2|)) (-15 -2519 (|#2| |#2| |#2|)) (-15 -4372 (|#2| |#2| |#2| (-787) (-787)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1563 (((-1292 |#2|) $ (-787)) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3893 (($ (-1197 |#2|)) NIL T ELT)) (-3024 (((-1197 $) $ (-1107)) NIL T ELT) (((-1197 |#2|) $) NIL T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#2| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-1107))) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4072 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2001 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-2435 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-3890 (($ $ (-787)) NIL T ELT)) (-2167 (($ $ (-787)) NIL T ELT)) (-4221 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-465)) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-3 (-1107) "failed") $) NIL T ELT)) (-2155 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1063 (-577))) ELT) (((-1107) $) NIL T ELT)) (-2653 (($ $ $ (-1107)) NIL (|has| |#2| (-174)) ELT) ((|#2| $ $) NIL (|has| |#2| (-174)) ELT)) (-3436 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-2850 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL T ELT) (((-705 |#2|) (-705 $)) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3447 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-4123 (($ $ $) NIL T ELT)) (-2474 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-2737 (((-2 (|:| -2940 |#2|) (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#2| (-375)) ELT)) (-2308 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#2| (-465)) ELT)) (-3378 (((-660 $) $) NIL T ELT)) (-2182 (((-112) $) NIL (|has| |#2| (-932)) ELT)) (-3367 (($ $ |#2| (-787) $) NIL T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#2| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#2| (-905 (-577)))) ELT)) (-2536 (((-787) $ $) NIL (|has| |#2| (-569)) ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-1454 (((-3 $ "failed") $) NIL (|has| |#2| (-1177)) ELT)) (-3194 (($ (-1197 |#2|) (-1107)) NIL T ELT) (($ (-1197 $) (-1107)) NIL T ELT)) (-3681 (($ $ (-787)) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)) ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#2| (-787)) 18 T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-1107)) NIL T ELT) (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL T ELT)) (-2643 (((-787) $) NIL T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-4373 (($ (-1 (-787) (-787)) $) NIL T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2432 (((-1197 |#2|) $) NIL T ELT)) (-4038 (((-3 (-1107) "failed") $) NIL T ELT)) (-1512 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL T ELT) (((-705 |#2|) (-1292 $)) NIL T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#2| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2454 (((-2 (|:| -2669 $) (|:| -2689 $)) $ (-787)) NIL T ELT)) (-3484 (((-3 (-660 $) "failed") $) NIL T ELT)) (-3910 (((-3 (-660 $) "failed") $) NIL T ELT)) (-1966 (((-3 (-2 (|:| |var| (-1107)) (|:| -1527 (-787))) "failed") $) NIL T ELT)) (-4129 (($ $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT)) (-3457 (($) NIL (|has| |#2| (-1177)) CONST)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 ((|#2| $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-1391 (($ $ (-787) |#2| $) NIL T ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#2| (-932)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)) ELT)) (-3273 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1107) |#2|) NIL T ELT) (($ $ (-660 (-1107)) (-660 |#2|)) NIL T ELT) (($ $ (-1107) $) NIL T ELT) (($ $ (-660 (-1107)) (-660 $)) NIL T ELT)) (-4167 (((-787) $) NIL (|has| |#2| (-375)) ELT)) (-2837 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#2| (-569)) ELT) ((|#2| (-420 $) |#2|) NIL (|has| |#2| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#2| (-569)) ELT)) (-4036 (((-3 $ "failed") $ (-787)) NIL T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-4447 (($ $ (-1107)) NIL (|has| |#2| (-174)) ELT) ((|#2| $) NIL (|has| |#2| (-174)) ELT)) (-3362 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-3616 (((-787) $) NIL T ELT) (((-787) $ (-1107)) NIL T ELT) (((-660 (-787)) $ (-660 (-1107))) NIL T ELT)) (-2176 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#2| (-627 (-549)))) ELT)) (-2240 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-1107)) NIL (|has| |#2| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))) ELT)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#2| (-569)) ELT)) (-3603 (((-880) $) 13 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1107)) NIL T ELT) (($ (-1288 |#1|)) 20 T ELT) (($ (-420 (-577))) NIL (-2811 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-787)) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| |#2| (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) 14 T CONST)) (-2136 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1265 |#1| |#2|) (-13 (-1268 |#2|) (-629 (-1288 |#1|)) (-10 -8 (-15 -1391 ($ $ (-787) |#2| $)))) (-1201) (-1074)) (T -1265)) -((-1391 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1265 *4 *3)) (-14 *4 (-1201)) (-4 *3 (-1074))))) -(-13 (-1268 |#2|) (-629 (-1288 |#1|)) (-10 -8 (-15 -1391 ($ $ (-787) |#2| $)))) -((-2124 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|))) (-1074) (-1268 |#1|) (-1074) (-1268 |#3|)) (T -1266)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1268 *6)) (-5 *1 (-1266 *5 *4 *6 *2)) (-4 *4 (-1268 *5))))) -(-10 -7 (-15 -2124 (|#4| (-1 |#3| |#1|) |#2|))) -((-1563 (((-1292 |#2|) $ (-787)) 129 T ELT)) (-3206 (((-660 (-1107)) $) 16 T ELT)) (-3893 (($ (-1197 |#2|)) 80 T ELT)) (-3036 (((-787) $) NIL T ELT) (((-787) $ (-660 (-1107))) 21 T ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 204 T ELT)) (-2001 (($ $) 194 T ELT)) (-3836 (((-431 $) $) 192 T ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 95 T ELT)) (-3890 (($ $ (-787)) 84 T ELT)) (-2167 (($ $ (-787)) 86 T ELT)) (-4221 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145 T ELT)) (-2784 (((-3 |#2| "failed") $) 132 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1107) "failed") $) NIL T ELT)) (-2155 ((|#2| $) 130 T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) (((-1107) $) NIL T ELT)) (-2474 (($ $ $) 170 T ELT)) (-2737 (((-2 (|:| -2940 |#2|) (|:| -2669 $) (|:| -2689 $)) $ $) 172 T ELT)) (-2536 (((-787) $ $) 189 T ELT)) (-1454 (((-3 $ "failed") $) 138 T ELT)) (-3180 (($ |#2| (-787)) NIL T ELT) (($ $ (-1107) (-787)) 59 T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-2643 (((-787) $) NIL T ELT) (((-787) $ (-1107)) 54 T ELT) (((-660 (-787)) $ (-660 (-1107))) 55 T ELT)) (-2432 (((-1197 |#2|) $) 72 T ELT)) (-4038 (((-3 (-1107) "failed") $) 52 T ELT)) (-2454 (((-2 (|:| -2669 $) (|:| -2689 $)) $ (-787)) 83 T ELT)) (-4129 (($ $) 219 T ELT)) (-3457 (($) 134 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 201 T ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 101 T ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 99 T ELT)) (-3056 (((-431 $) $) 120 T ELT)) (-3273 (($ $ (-660 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1107) |#2|) 39 T ELT) (($ $ (-660 (-1107)) (-660 |#2|)) 36 T ELT) (($ $ (-1107) $) 32 T ELT) (($ $ (-660 (-1107)) (-660 $)) 30 T ELT)) (-4167 (((-787) $) 207 T ELT)) (-2837 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) 164 T ELT) ((|#2| (-420 $) |#2|) 206 T ELT) (((-420 $) $ (-420 $)) 188 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 212 T ELT)) (-3362 (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107))) NIL T ELT) (($ $ (-1107)) 157 T ELT) (($ $) 155 T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 154 T ELT) (($ $ (-1 |#2| |#2|) (-787)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 149 T ELT) (($ $ (-1201)) NIL T ELT) (($ $ (-660 (-1201))) NIL T ELT) (($ $ (-1201) (-787)) NIL T ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL T ELT)) (-3616 (((-787) $) NIL T ELT) (((-787) $ (-1107)) 17 T ELT) (((-660 (-787)) $ (-660 (-1107))) 23 T ELT)) (-2240 ((|#2| $) NIL T ELT) (($ $ (-1107)) 140 T ELT)) (-2232 (((-3 $ "failed") $ $) 180 T ELT) (((-3 (-420 $) "failed") (-420 $) $) 176 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1107)) 64 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT))) -(((-1267 |#1| |#2|) (-10 -8 (-15 -3603 (|#1| |#1|)) (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -2001 (|#1| |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -2837 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -4167 ((-787) |#1|)) (-15 -3039 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -2837 (|#2| (-420 |#1|) |#2|)) (-15 -4221 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2737 ((-2 (|:| -2940 |#2|) (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|)) (-15 -2232 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2536 ((-787) |#1| |#1|)) (-15 -2837 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 (|#1| |#1| (-787))) (-15 -3890 (|#1| |#1| (-787))) (-15 -2454 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| (-787))) (-15 -3893 (|#1| (-1197 |#2|))) (-15 -2432 ((-1197 |#2|) |#1|)) (-15 -1563 ((-1292 |#2|) |#1| (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2837 (|#2| |#1| |#2|)) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3569 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -1761 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2331 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2240 (|#1| |#1| (-1107))) (-15 -3206 ((-660 (-1107)) |#1|)) (-15 -3036 ((-787) |#1| (-660 (-1107)))) (-15 -3036 ((-787) |#1|)) (-15 -3180 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -3180 (|#1| |#1| (-1107) (-787))) (-15 -2643 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -2643 ((-787) |#1| (-1107))) (-15 -4038 ((-3 (-1107) "failed") |#1|)) (-15 -3616 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -3616 ((-787) |#1| (-1107))) (-15 -3603 (|#1| (-1107))) (-15 -2784 ((-3 (-1107) "failed") |#1|)) (-15 -2155 ((-1107) |#1|)) (-15 -3273 (|#1| |#1| (-660 (-1107)) (-660 |#1|))) (-15 -3273 (|#1| |#1| (-1107) |#1|)) (-15 -3273 (|#1| |#1| (-660 (-1107)) (-660 |#2|))) (-15 -3273 (|#1| |#1| (-1107) |#2|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3616 ((-787) |#1|)) (-15 -3180 (|#1| |#2| (-787))) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2643 ((-787) |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -3362 (|#1| |#1| (-1107))) (-15 -3362 (|#1| |#1| (-660 (-1107)))) (-15 -3362 (|#1| |#1| (-1107) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) (-1268 |#2|) (-1074)) (T -1267)) -NIL -(-10 -8 (-15 -3603 (|#1| |#1|)) (-15 -3502 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3362 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3362 (|#1| |#1| (-1201) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1201)))) (-15 -3362 (|#1| |#1| (-1201))) (-15 -3836 ((-431 |#1|) |#1|)) (-15 -2001 (|#1| |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3457 (|#1|)) (-15 -1454 ((-3 |#1| "failed") |#1|)) (-15 -2837 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -4167 ((-787) |#1|)) (-15 -3039 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -2837 (|#2| (-420 |#1|) |#2|)) (-15 -4221 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2737 ((-2 (|:| -2940 |#2|) (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| |#1|)) (-15 -2474 (|#1| |#1| |#1|)) (-15 -2232 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2536 ((-787) |#1| |#1|)) (-15 -2837 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 (|#1| |#1| (-787))) (-15 -3890 (|#1| |#1| (-787))) (-15 -2454 ((-2 (|:| -2669 |#1|) (|:| -2689 |#1|)) |#1| (-787))) (-15 -3893 (|#1| (-1197 |#2|))) (-15 -2432 ((-1197 |#2|) |#1|)) (-15 -1563 ((-1292 |#2|) |#1| (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -3362 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3362 (|#1| |#1| (-787))) (-15 -3362 (|#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2837 (|#2| |#1| |#2|)) (-15 -3056 ((-431 |#1|) |#1|)) (-15 -3569 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -1761 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2331 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -3578 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2240 (|#1| |#1| (-1107))) (-15 -3206 ((-660 (-1107)) |#1|)) (-15 -3036 ((-787) |#1| (-660 (-1107)))) (-15 -3036 ((-787) |#1|)) (-15 -3180 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -3180 (|#1| |#1| (-1107) (-787))) (-15 -2643 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -2643 ((-787) |#1| (-1107))) (-15 -4038 ((-3 (-1107) "failed") |#1|)) (-15 -3616 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -3616 ((-787) |#1| (-1107))) (-15 -3603 (|#1| (-1107))) (-15 -2784 ((-3 (-1107) "failed") |#1|)) (-15 -2155 ((-1107) |#1|)) (-15 -3273 (|#1| |#1| (-660 (-1107)) (-660 |#1|))) (-15 -3273 (|#1| |#1| (-1107) |#1|)) (-15 -3273 (|#1| |#1| (-660 (-1107)) (-660 |#2|))) (-15 -3273 (|#1| |#1| (-1107) |#2|)) (-15 -3273 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3273 (|#1| |#1| |#1| |#1|)) (-15 -3273 (|#1| |#1| (-305 |#1|))) (-15 -3273 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3616 ((-787) |#1|)) (-15 -3180 (|#1| |#2| (-787))) (-15 -2784 ((-3 (-577) "failed") |#1|)) (-15 -2155 ((-577) |#1|)) (-15 -2784 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2155 ((-420 (-577)) |#1|)) (-15 -2155 (|#2| |#1|)) (-15 -2784 ((-3 |#2| "failed") |#1|)) (-15 -3603 (|#1| |#2|)) (-15 -2643 ((-787) |#1|)) (-15 -2240 (|#2| |#1|)) (-15 -3362 (|#1| |#1| (-1107))) (-15 -3362 (|#1| |#1| (-660 (-1107)))) (-15 -3362 (|#1| |#1| (-1107) (-787))) (-15 -3362 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -3603 (|#1| (-577))) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1563 (((-1292 |#1|) $ (-787)) 256 T ELT)) (-3206 (((-660 (-1107)) $) 113 T ELT)) (-3893 (($ (-1197 |#1|)) 254 T ELT)) (-3024 (((-1197 $) $ (-1107)) 128 T ELT) (((-1197 |#1|) $) 127 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 91 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3036 (((-787) $) 115 T ELT) (((-787) $ (-660 (-1107))) 114 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-4072 (($ $ $) 241 (|has| |#1| (-569)) ELT)) (-3569 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)) ELT)) (-2001 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3836 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-3578 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)) ELT)) (-2435 (((-112) $ $) 226 (|has| |#1| (-375)) ELT)) (-3890 (($ $ (-787)) 249 T ELT)) (-2167 (($ $ (-787)) 248 T ELT)) (-4221 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-465)) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577))) ELT) (((-3 (-1107) "failed") $) 143 T ELT)) (-2155 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1063 (-577))) ELT) (((-1107) $) 144 T ELT)) (-2653 (($ $ $ (-1107)) 111 (|has| |#1| (-174)) ELT) ((|#1| $ $) 244 (|has| |#1| (-174)) ELT)) (-3436 (($ $ $) 230 (|has| |#1| (-375)) ELT)) (-3391 (($ $) 161 T ELT)) (-2850 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137 T ELT) (((-705 |#1|) (-705 $)) 136 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 229 (|has| |#1| (-375)) ELT)) (-4123 (($ $ $) 247 T ELT)) (-2474 (($ $ $) 238 (|has| |#1| (-569)) ELT)) (-2737 (((-2 (|:| -2940 |#1|) (|:| -2669 $) (|:| -2689 $)) $ $) 237 (|has| |#1| (-569)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 224 (|has| |#1| (-375)) ELT)) (-2308 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ (-1107)) 108 (|has| |#1| (-465)) ELT)) (-3378 (((-660 $) $) 112 T ELT)) (-2182 (((-112) $) 99 (|has| |#1| (-932)) ELT)) (-3367 (($ $ |#1| (-787) $) 179 T ELT)) (-4359 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391)))) ELT) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))) ELT)) (-2536 (((-787) $ $) 242 (|has| |#1| (-569)) ELT)) (-3306 (((-112) $) 35 T ELT)) (-2011 (((-787) $) 176 T ELT)) (-1454 (((-3 $ "failed") $) 222 (|has| |#1| (-1177)) ELT)) (-3194 (($ (-1197 |#1|) (-1107)) 120 T ELT) (($ (-1197 $) (-1107)) 119 T ELT)) (-3681 (($ $ (-787)) 253 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 233 (|has| |#1| (-375)) ELT)) (-4242 (((-660 $) $) 129 T ELT)) (-2148 (((-112) $) 159 T ELT)) (-3180 (($ |#1| (-787)) 160 T ELT) (($ $ (-1107) (-787)) 122 T ELT) (($ $ (-660 (-1107)) (-660 (-787))) 121 T ELT)) (-4279 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $ (-1107)) 123 T ELT) (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 251 T ELT)) (-2643 (((-787) $) 177 T ELT) (((-787) $ (-1107)) 125 T ELT) (((-660 (-787)) $ (-660 (-1107))) 124 T ELT)) (-4373 (($ (-1 (-787) (-787)) $) 178 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-2432 (((-1197 |#1|) $) 255 T ELT)) (-4038 (((-3 (-1107) "failed") $) 126 T ELT)) (-1512 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577))) ELT) (((-2 (|:| -1631 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135 T ELT) (((-705 |#1|) (-1292 $)) 134 T ELT)) (-3354 (($ $) 156 T ELT)) (-3365 ((|#1| $) 155 T ELT)) (-3508 (($ (-660 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-2454 (((-2 (|:| -2669 $) (|:| -2689 $)) $ (-787)) 250 T ELT)) (-3484 (((-3 (-660 $) "failed") $) 117 T ELT)) (-3910 (((-3 (-660 $) "failed") $) 118 T ELT)) (-1966 (((-3 (-2 (|:| |var| (-1107)) (|:| -1527 (-787))) "failed") $) 116 T ELT)) (-4129 (($ $) 234 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3457 (($) 221 (|has| |#1| (-1177)) CONST)) (-1440 (((-1145) $) 11 T ELT)) (-3327 (((-112) $) 173 T ELT)) (-3340 ((|#1| $) 174 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)) ELT)) (-3543 (($ (-660 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2331 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)) ELT)) (-1761 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)) ELT)) (-3056 (((-431 $) $) 102 (|has| |#1| (-932)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 231 (|has| |#1| (-375)) ELT)) (-3478 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 225 (|has| |#1| (-375)) ELT)) (-3273 (($ $ (-660 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-660 $) (-660 $)) 149 T ELT) (($ $ (-1107) |#1|) 148 T ELT) (($ $ (-660 (-1107)) (-660 |#1|)) 147 T ELT) (($ $ (-1107) $) 146 T ELT) (($ $ (-660 (-1107)) (-660 $)) 145 T ELT)) (-4167 (((-787) $) 227 (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ |#1|) 266 T ELT) (($ $ $) 265 T ELT) (((-420 $) (-420 $) (-420 $)) 243 (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) 235 (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) 223 (|has| |#1| (-569)) ELT)) (-4036 (((-3 $ "failed") $ (-787)) 252 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 228 (|has| |#1| (-375)) ELT)) (-4447 (($ $ (-1107)) 110 (|has| |#1| (-174)) ELT) ((|#1| $) 245 (|has| |#1| (-174)) ELT)) (-3362 (($ $ (-660 (-1107)) (-660 (-787))) 44 T ELT) (($ $ (-1107) (-787)) 43 T ELT) (($ $ (-660 (-1107))) 42 T ELT) (($ $ (-1107)) 40 T ELT) (($ $) 264 T ELT) (($ $ (-787)) 262 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 259 T ELT) (($ $ (-1 |#1| |#1|) $) 246 T ELT) (($ $ (-1201)) 220 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 218 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 217 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 216 (|has| |#1| (-923 (-1201))) ELT)) (-3616 (((-787) $) 157 T ELT) (((-787) $ (-1107)) 133 T ELT) (((-660 (-787)) $ (-660 (-1107))) 132 T ELT)) (-2176 (((-911 (-391)) $) 85 (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ELT) (((-911 (-577)) $) 84 (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ELT) (((-549) $) 83 (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))) ELT)) (-2240 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ (-1107)) 109 (|has| |#1| (-465)) ELT)) (-2349 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) ELT)) (-2232 (((-3 $ "failed") $ $) 240 (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) 239 (|has| |#1| (-569)) ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ (-1107)) 142 T ELT) (($ (-420 (-577))) 81 (-2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-4198 (((-660 |#1|) $) 175 T ELT)) (-3421 ((|#1| $ (-787)) 162 T ELT) (($ $ (-1107) (-787)) 131 T ELT) (($ $ (-660 (-1107)) (-660 (-787))) 130 T ELT)) (-3907 (((-3 $ "failed") $) 82 (-2811 (-2700 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))) ELT)) (-1920 (((-787)) 32 T CONST)) (-3528 (($ $ $ (-787)) 180 (|has| |#1| (-174)) ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-660 (-1107)) (-660 (-787))) 47 T ELT) (($ $ (-1107) (-787)) 46 T ELT) (($ $ (-660 (-1107))) 45 T ELT) (($ $ (-1107)) 41 T ELT) (($ $) 263 T ELT) (($ $ (-787)) 261 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-787)) 257 T ELT) (($ $ (-1201)) 219 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201))) 215 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-1201) (-787)) 214 (|has| |#1| (-923 (-1201))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 213 (|has| |#1| (-923 (-1201))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-1268 |#1|) (-141) (-1074)) (T -1268)) -((-1563 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-1268 *4)) (-4 *4 (-1074)) (-5 *2 (-1292 *4)))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-5 *2 (-1197 *3)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-1074)) (-4 *1 (-1268 *3)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-4036 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-4279 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1268 *3)))) (-2454 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1268 *4)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-4123 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)))) (-3362 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-4447 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174)))) (-2653 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174)))) (-2837 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)))) (-2536 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)) (-5 *2 (-787)))) (-4072 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-2232 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-2232 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)))) (-2474 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-2737 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -2940 *3) (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1268 *3)))) (-4221 (*1 *2 *1 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1268 *3)))) (-2837 (*1 *2 *3 *2) (-12 (-5 *3 (-420 *1)) (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577))))))) -(-13 (-972 |t#1| (-787) (-1107)) (-297 |t#1| |t#1|) (-297 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -1563 ((-1292 |t#1|) $ (-787))) (-15 -2432 ((-1197 |t#1|) $)) (-15 -3893 ($ (-1197 |t#1|))) (-15 -3681 ($ $ (-787))) (-15 -4036 ((-3 $ "failed") $ (-787))) (-15 -4279 ((-2 (|:| -2669 $) (|:| -2689 $)) $ $)) (-15 -2454 ((-2 (|:| -2669 $) (|:| -2689 $)) $ (-787))) (-15 -3890 ($ $ (-787))) (-15 -2167 ($ $ (-787))) (-15 -4123 ($ $ $)) (-15 -3362 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1177)) (-6 (-1177)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4447 (|t#1| $)) (-15 -2653 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-297 (-420 $) (-420 $))) (-15 -2837 ((-420 $) (-420 $) (-420 $))) (-15 -2536 ((-787) $ $)) (-15 -4072 ($ $ $)) (-15 -2232 ((-3 $ "failed") $ $)) (-15 -2232 ((-3 (-420 $) "failed") (-420 $) $)) (-15 -2474 ($ $ $)) (-15 -2737 ((-2 (|:| -2940 |t#1|) (|:| -2669 $) (|:| -2689 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-15 -4221 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-318)) (-6 -4466) (-15 -2837 (|t#1| (-420 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-15 -4129 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-787)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2811 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 #2=(-1107)) . T) ((-629 |#1|) . T) ((-629 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-273 |#1|) . T) ((-297 (-420 $) (-420 $)) |has| |#1| (-569)) ((-297 |#1| |#1|) . T) ((-297 $ $) . T) ((-301) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 $) . T) ((-337 |#1| #0#) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2811 (|has| |#1| (-932)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-527 #2# |#1|) . T) ((-527 #2# $) . T) ((-527 $ $) . T) ((-569) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-662 #1#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) |has| |#1| (-38 (-420 (-577)))) ((-664 #3=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-654 #3#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #1#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2#) . T) ((-915 $ #4=(-1201)) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) . T) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #2#) . T) ((-923 #4#) -2811 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-905 (-391)) -12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391)))) ((-905 (-577)) -12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))) ((-972 |#1| #0# #2#) . T) ((-932) |has| |#1| (-932)) ((-943) |has| |#1| (-375)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #2#) . T) ((-1063 |#1|) . T) ((-1076 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-1177)) ((-1242) . T) ((-1246) |has| |#1| (-932))) -((-3206 (((-660 (-1107)) $) 34 T ELT)) (-3391 (($ $) 31 T ELT)) (-3180 (($ |#2| |#3|) NIL T ELT) (($ $ (-1107) |#3|) 28 T ELT) (($ $ (-660 (-1107)) (-660 |#3|)) 27 T ELT)) (-3354 (($ $) 14 T ELT)) (-3365 ((|#2| $) 12 T ELT)) (-3616 ((|#3| $) 10 T ELT))) -(((-1269 |#1| |#2| |#3|) (-10 -8 (-15 -3206 ((-660 (-1107)) |#1|)) (-15 -3180 (|#1| |#1| (-660 (-1107)) (-660 |#3|))) (-15 -3180 (|#1| |#1| (-1107) |#3|)) (-15 -3391 (|#1| |#1|)) (-15 -3180 (|#1| |#2| |#3|)) (-15 -3616 (|#3| |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -3365 (|#2| |#1|))) (-1270 |#2| |#3|) (-1074) (-808)) (T -1269)) -NIL -(-10 -8 (-15 -3206 ((-660 (-1107)) |#1|)) (-15 -3180 (|#1| |#1| (-660 (-1107)) (-660 |#3|))) (-15 -3180 (|#1| |#1| (-1107) |#3|)) (-15 -3391 (|#1| |#1|)) (-15 -3180 (|#1| |#2| |#3|)) (-15 -3616 (|#3| |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -3365 (|#2| |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 (-1107)) $) 86 T ELT)) (-3052 (((-1201) $) 118 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3959 (($ $ |#2|) 113 T ELT) (($ $ |#2| |#2|) 112 T ELT)) (-3229 (((-1182 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2307 (((-112) $) 85 T ELT)) (-2536 ((|#2| $) 115 T ELT) ((|#2| $ |#2|) 114 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-3681 (($ $ (-944)) 116 T ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| |#2|) 73 T ELT) (($ $ (-1107) |#2|) 88 T ELT) (($ $ (-660 (-1107)) (-660 |#2|)) 87 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1987 (($ $ |#2|) 110 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-2837 ((|#1| $ |#2|) 120 T ELT) (($ $ $) 96 (|has| |#2| (-1137)) ELT)) (-3362 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3616 ((|#2| $) 76 T ELT)) (-2544 (($ $) 84 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-3421 ((|#1| $ |#2|) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-4269 ((|#1| $) 117 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-4142 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1270 |#1| |#2|) (-141) (-1074) (-808)) (T -1270)) -((-3229 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-1182 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-1201)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-2536 (*1 *2 *1 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-3959 (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-3959 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-4142 (*1 *2 *1 *3) (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3603 (*2 (-1201)))) (-4 *2 (-1074)))) (-1987 (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-3273 (*1 *2 *1 *3) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1182 *3))))) -(-13 (-998 |t#1| |t#2| (-1107)) (-297 |t#2| |t#1|) (-10 -8 (-15 -3229 ((-1182 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3052 ((-1201) $)) (-15 -4269 (|t#1| $)) (-15 -3681 ($ $ (-944))) (-15 -2536 (|t#2| $)) (-15 -2536 (|t#2| $ |t#2|)) (-15 -3959 ($ $ |t#2|)) (-15 -3959 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3603 (|t#1| (-1201)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4142 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1987 ($ $ |t#2|)) (IF (|has| |t#2| (-1137)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3273 ((-1182 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-297 |#2| |#1|) . T) ((-297 $ $) |has| |#2| (-1137)) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-915 $ #1=(-1201)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| |#2| (-1107)) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-2001 ((|#2| |#2|) 12 T ELT)) (-3836 (((-431 |#2|) |#2|) 14 T ELT)) (-3809 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))) 30 T ELT))) -(((-1271 |#1| |#2|) (-10 -7 (-15 -3836 ((-431 |#2|) |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -3809 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) (-569) (-13 (-1268 |#1|) (-569) (-10 -8 (-15 -3543 ($ $ $))))) (T -1271)) -((-3809 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-577)))) (-4 *4 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3543 ($ $ $))))) (-4 *3 (-569)) (-5 *1 (-1271 *3 *4)))) (-2001 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3543 ($ $ $))))))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1271 *4 *3)) (-4 *3 (-13 (-1268 *4) (-569) (-10 -8 (-15 -3543 ($ $ $)))))))) -(-10 -7 (-15 -3836 ((-431 |#2|) |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -3809 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) -((-2124 (((-1277 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1277 |#1| |#3| |#5|)) 24 T ELT))) -(((-1272 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2124 ((-1277 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1277 |#1| |#3| |#5|)))) (-1074) (-1074) (-1201) (-1201) |#1| |#2|) (T -1272)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1277 *5 *7 *9)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1277 *6 *8 *10)) (-5 *1 (-1272 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1201))))) -(-10 -7 (-15 -2124 ((-1277 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1277 |#1| |#3| |#5|)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 (-1107)) $) 86 T ELT)) (-3052 (((-1201) $) 118 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-420 (-577))) 113 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 112 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119 T ELT)) (-2642 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3070 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-2616 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186 T ELT)) (-2666 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) 18 T CONST)) (-3436 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 166 (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) 85 T ELT)) (-2824 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-420 (-577)) $) 115 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) 116 T ELT) (($ $ (-420 (-577))) 185 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| (-420 (-577))) 73 T ELT) (($ $ (-1107) (-420 (-577))) 88 T ELT) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) 87 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3716 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-3508 (($ (-660 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 180 (|has| |#1| (-375)) ELT)) (-4129 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 183 (-2811 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-420 (-577))) 110 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)) ELT)) (-2079 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4167 (((-787) $) 169 (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-420 (-577))) 120 T ELT) (($ $ $) 96 (|has| (-420 (-577)) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3616 (((-420 (-577)) $) 76 T ELT)) (-2680 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 84 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-420 (-577))) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-4269 ((|#1| $) 117 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2722 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2694 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1273 |#1|) (-141) (-1074)) (T -1273)) -((-2857 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) (-4 *4 (-1074)) (-4 *1 (-1273 *4)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1273 *3)) (-4 *3 (-1074)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) (-4129 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) (-12 (|has| *3 (-15 -3206 ((-660 *2) *3))) (|has| *3 (-15 -4129 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) -(-13 (-1270 |t#1| (-420 (-577))) (-10 -8 (-15 -2857 ($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |t#1|))))) (-15 -3681 ($ $ (-420 (-577)))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $)) (IF (|has| |t#1| (-15 -4129 (|t#1| |t#1| (-1201)))) (IF (|has| |t#1| (-15 -3206 ((-660 (-1201)) |t#1|))) (-15 -4129 ($ $ (-1201))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1227)) (IF (|has| |t#1| (-982)) (IF (|has| |t#1| (-29 (-577))) (-15 -4129 ($ $ (-1201))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1027)) (-6 (-1227))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1137)) ((-301) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-733 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1270 |#1| #0#) . T)) -((-3801 (((-112) $) 12 T ELT)) (-2784 (((-3 |#3| "failed") $) 17 T ELT)) (-2155 ((|#3| $) 14 T ELT))) -(((-1274 |#1| |#2| |#3|) (-10 -8 (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -3801 ((-112) |#1|))) (-1275 |#2| |#3|) (-1074) (-1252 |#2|)) (T -1274)) -NIL -(-10 -8 (-15 -2784 ((-3 |#3| "failed") |#1|)) (-15 -2155 (|#3| |#1|)) (-15 -3801 ((-112) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 (-1107)) $) 86 T ELT)) (-3052 (((-1201) $) 118 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-420 (-577))) 113 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 112 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119 T ELT)) (-2642 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3070 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-2616 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186 T ELT)) (-2666 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#2| "failed") $) 197 T ELT)) (-2155 ((|#2| $) 198 T ELT)) (-3436 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2703 (((-420 (-577)) $) 194 T ELT)) (-3447 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3293 (($ (-420 (-577)) |#2|) 195 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 166 (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) 85 T ELT)) (-2824 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-420 (-577)) $) 115 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) 116 T ELT) (($ $ (-420 (-577))) 185 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| (-420 (-577))) 73 T ELT) (($ $ (-1107) (-420 (-577))) 88 T ELT) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) 87 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3716 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-3508 (($ (-660 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-4029 ((|#2| $) 193 T ELT)) (-2246 (((-3 |#2| "failed") $) 191 T ELT)) (-3281 ((|#2| $) 192 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 180 (|has| |#1| (-375)) ELT)) (-4129 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 183 (-2811 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-420 (-577))) 110 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)) ELT)) (-2079 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4167 (((-787) $) 169 (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-420 (-577))) 120 T ELT) (($ $ $) 96 (|has| (-420 (-577)) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3616 (((-420 (-577)) $) 76 T ELT)) (-2680 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 84 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ |#2|) 196 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-420 (-577))) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-4269 ((|#1| $) 117 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2722 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2694 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1275 |#1| |#2|) (-141) (-1074) (-1252 |t#1|)) (T -1275)) -((-3616 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) (-5 *2 (-420 (-577))))) (-3293 (*1 *1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1074)) (-4 *1 (-1275 *4 *3)) (-4 *3 (-1252 *4)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) (-5 *2 (-420 (-577))))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3)))) (-2246 (*1 *2 *1) (|partial| -12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3))))) -(-13 (-1273 |t#1|) (-1063 |t#2|) (-629 |t#2|) (-10 -8 (-15 -3293 ($ (-420 (-577)) |t#2|)) (-15 -2703 ((-420 (-577)) $)) (-15 -4029 (|t#2| $)) (-15 -3616 ((-420 (-577)) $)) (-15 -3281 (|t#2| $)) (-15 -2246 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 |#2|) . T) ((-629 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1137)) ((-301) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-733 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1063 |#2|) . T) ((-1076 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2811 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1270 |#1| #0#) . T) ((-1273 |#1|) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 104 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-420 (-577))) 116 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 118 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 54 T ELT)) (-2642 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 65 T ELT)) (-2666 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL T ELT)) (-2155 ((|#2| $) NIL T ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 85 T ELT)) (-2703 (((-420 (-577)) $) 13 T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3293 (($ (-420 (-577)) |#2|) 11 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) 74 T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-420 (-577)) $) 113 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) 130 T ELT) (($ $ (-420 (-577))) 128 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-420 (-577))) 33 T ELT) (($ $ (-1107) (-420 (-577))) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3716 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4029 ((|#2| $) 12 T ELT)) (-2246 (((-3 |#2| "failed") $) 44 T ELT)) (-3281 ((|#2| $) 45 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) 101 (|has| |#1| (-375)) ELT)) (-4129 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 151 (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-420 (-577))) 122 T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2079 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-420 (-577))) 108 T ELT) (($ $ $) 94 (|has| (-420 (-577)) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) 138 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3616 (((-420 (-577)) $) 16 T ELT)) (-2680 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 120 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-174)) ELT) (($ |#2|) 34 T ELT) (($ (-420 (-577))) 139 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-420 (-577))) 107 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 127 T CONST)) (-4269 ((|#1| $) 106 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 21 T CONST)) (-2767 (($) 17 T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2949 (((-112) $ $) 72 T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 100 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3031 (($ $ $) 76 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 82 T ELT) (($ $ (-577)) 157 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1276 |#1| |#2|) (-1275 |#1| |#2|) (-1074) (-1252 |#1|)) (T -1276)) -NIL -(-1275 |#1| |#2|) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 11 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-2642 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-2001 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3836 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2435 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-2666 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) 19 T ELT) (((-3 (-1284 |#1| |#2| |#3|) "failed") $) 22 T ELT)) (-2155 (((-1256 |#1| |#2| |#3|) $) NIL T ELT) (((-1284 |#1| |#2| |#3|) $) NIL T ELT)) (-3436 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2703 (((-420 (-577)) $) 69 T ELT)) (-3447 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3293 (($ (-420 (-577)) (-1256 |#1| |#2| |#3|)) NIL T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) NIL (|has| |#1| (-375)) ELT)) (-2182 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-420 (-577))) 30 T ELT) (($ $ (-1107) (-420 (-577))) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3716 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-3508 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4029 (((-1256 |#1| |#2| |#3|) $) 72 T ELT)) (-2246 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3281 (((-1256 |#1| |#2| |#3|) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3318 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4129 (($ $) 39 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) NIL (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT) (($ $ (-1288 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)) ELT)) (-3543 (($ (-660 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3056 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1373 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1987 (($ $ (-420 (-577))) NIL T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)) ELT)) (-2079 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4167 (((-787) $) NIL (|has| |#1| (-375)) ELT)) (-2837 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1137)) ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1288 |#2|)) 38 T ELT)) (-3616 (((-420 (-577)) $) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) NIL T ELT)) (-3603 (((-880) $) 107 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1256 |#1| |#2| |#3|)) 16 T ELT) (($ (-1284 |#1| |#2| |#3|)) 17 T ELT) (($ (-1288 |#2|)) 36 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-3421 ((|#1| $ (-420 (-577))) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) 12 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-420 (-577))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 32 T CONST)) (-2767 (($) 26 T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1288 |#2|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 34 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1277 |#1| |#2| |#3|) (-13 (-1275 |#1| (-1256 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1284 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1277)) -((-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(-13 (-1275 |#1| (-1256 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1284 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 37 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-3547 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 (-577) "failed") $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-420 (-577)))) ELT) (((-3 (-1277 |#2| |#3| |#4|) "failed") $) 22 T ELT)) (-2155 (((-577) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-420 (-577)))) ELT) (((-1277 |#2| |#3| |#4|) $) NIL T ELT)) (-3391 (($ $) 41 T ELT)) (-1625 (((-3 $ "failed") $) 27 T ELT)) (-2308 (($ $) NIL (|has| (-1277 |#2| |#3| |#4|) (-465)) ELT)) (-3367 (($ $ (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|) $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) 11 T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) 25 T ELT)) (-2643 (((-330 |#2| |#3| |#4|) $) NIL T ELT)) (-4373 (($ (-1 (-330 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) $) NIL T ELT)) (-2124 (($ (-1 (-1277 |#2| |#3| |#4|) (-1277 |#2| |#3| |#4|)) $) NIL T ELT)) (-3345 (((-3 (-859 |#2|) "failed") $) 90 T ELT)) (-3354 (($ $) NIL T ELT)) (-3365 (((-1277 |#2| |#3| |#4|) $) 20 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3327 (((-112) $) NIL T ELT)) (-3340 (((-1277 |#2| |#3| |#4|) $) NIL T ELT)) (-3478 (((-3 $ "failed") $ (-1277 |#2| |#3| |#4|)) NIL (|has| (-1277 |#2| |#3| |#4|) (-569)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-1514 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1183))) "failed") $) 74 T ELT)) (-3616 (((-330 |#2| |#3| |#4|) $) 17 T ELT)) (-2240 (((-1277 |#2| |#3| |#4|) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-465)) ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1277 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL (-2811 (|has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577)))) (|has| (-1277 |#2| |#3| |#4|) (-1063 (-420 (-577))))) ELT)) (-4198 (((-660 (-1277 |#2| |#3| |#4|)) $) NIL T ELT)) (-3421 (((-1277 |#2| |#3| |#4|) $ (-330 |#2| |#3| |#4|)) NIL T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| (-1277 |#2| |#3| |#4|) (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-3528 (($ $ $ (-787)) NIL (|has| (-1277 |#2| |#3| |#4|) (-174)) ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2174 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ (-1277 |#2| |#3| |#4|)) NIL (|has| (-1277 |#2| |#3| |#4|) (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1277 |#2| |#3| |#4|)) NIL T ELT) (($ (-1277 |#2| |#3| |#4|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577)))) ELT))) -(((-1278 |#1| |#2| |#3| |#4|) (-13 (-337 (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -3345 ((-3 (-859 |#2|) "failed") $)) (-15 -1514 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1183))) "failed") $)))) (-13 (-1063 (-577)) (-654 (-577)) (-465)) (-13 (-27) (-1227) (-443 |#1|)) (-1201) |#2|) (T -1278)) -((-3345 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *2 (-859 *4)) (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 *4 *5 *6)) (|:| |%expon| (-330 *4 *5 *6)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) (|:| |%type| (-1183)))) (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4)))) -(-13 (-337 (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -3345 ((-3 (-859 |#2|) "failed") $)) (-15 -1514 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1183))) "failed") $)))) -((-3145 ((|#2| $) 34 T ELT)) (-4148 ((|#2| $) 18 T ELT)) (-3063 (($ $) 53 T ELT)) (-2034 (($ $ (-577)) 85 T ELT)) (-4403 (((-112) $ (-787)) 46 T ELT)) (-3211 ((|#2| $ |#2|) 82 T ELT)) (-2946 ((|#2| $ |#2|) 78 T ELT)) (-1895 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 71 T ELT) (($ $ "rest" $) 75 T ELT) ((|#2| $ "last" |#2|) 73 T ELT)) (-2966 (($ $ (-660 $)) 81 T ELT)) (-4135 ((|#2| $) 17 T ELT)) (-1663 (($ $) NIL T ELT) (($ $ (-787)) 59 T ELT)) (-1830 (((-660 $) $) 31 T ELT)) (-2725 (((-112) $ $) 69 T ELT)) (-1821 (((-112) $ (-787)) 45 T ELT)) (-3272 (((-112) $ (-787)) 43 T ELT)) (-2284 (((-112) $) 33 T ELT)) (-3942 ((|#2| $) 25 T ELT) (($ $ (-787)) 64 T ELT)) (-2837 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-3834 (((-112) $) 23 T ELT)) (-4243 (($ $) 56 T ELT)) (-1839 (($ $) 86 T ELT)) (-4282 (((-787) $) 58 T ELT)) (-3855 (($ $) 57 T ELT)) (-1685 (($ $ $) 77 T ELT) (($ |#2| $) NIL T ELT)) (-2333 (((-660 $) $) 32 T ELT)) (-2949 (((-112) $ $) 67 T ELT)) (-3501 (((-787) $) 52 T ELT))) -(((-1279 |#1| |#2|) (-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2034 (|#1| |#1| (-577))) (-15 -1895 (|#2| |#1| "last" |#2|)) (-15 -2946 (|#2| |#1| |#2|)) (-15 -1895 (|#1| |#1| "rest" |#1|)) (-15 -1895 (|#2| |#1| "first" |#2|)) (-15 -1839 (|#1| |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -4282 ((-787) |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -4148 (|#2| |#1|)) (-15 -4135 (|#2| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3942 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "last")) (-15 -3942 (|#2| |#1|)) (-15 -1663 (|#1| |#1| (-787))) (-15 -2837 (|#1| |#1| "rest")) (-15 -1663 (|#1| |#1|)) (-15 -2837 (|#2| |#1| "first")) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -3211 (|#2| |#1| |#2|)) (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -2966 (|#1| |#1| (-660 |#1|))) (-15 -2725 ((-112) |#1| |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -2837 (|#2| |#1| "value")) (-15 -3145 (|#2| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1830 ((-660 |#1|) |#1|)) (-15 -2333 ((-660 |#1|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787)))) (-1280 |#2|) (-1242)) (T -1279)) -NIL -(-10 -8 (-15 -2949 ((-112) |#1| |#1|)) (-15 -2034 (|#1| |#1| (-577))) (-15 -1895 (|#2| |#1| "last" |#2|)) (-15 -2946 (|#2| |#1| |#2|)) (-15 -1895 (|#1| |#1| "rest" |#1|)) (-15 -1895 (|#2| |#1| "first" |#2|)) (-15 -1839 (|#1| |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -4282 ((-787) |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -4148 (|#2| |#1|)) (-15 -4135 (|#2| |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -3942 (|#1| |#1| (-787))) (-15 -2837 (|#2| |#1| "last")) (-15 -3942 (|#2| |#1|)) (-15 -1663 (|#1| |#1| (-787))) (-15 -2837 (|#1| |#1| "rest")) (-15 -1663 (|#1| |#1|)) (-15 -2837 (|#2| |#1| "first")) (-15 -1685 (|#1| |#2| |#1|)) (-15 -1685 (|#1| |#1| |#1|)) (-15 -3211 (|#2| |#1| |#2|)) (-15 -1895 (|#2| |#1| "value" |#2|)) (-15 -2966 (|#1| |#1| (-660 |#1|))) (-15 -2725 ((-112) |#1| |#1|)) (-15 -3834 ((-112) |#1|)) (-15 -2837 (|#2| |#1| "value")) (-15 -3145 (|#2| |#1|)) (-15 -2284 ((-112) |#1|)) (-15 -1830 ((-660 |#1|) |#1|)) (-15 -2333 ((-660 |#1|) |#1|)) (-15 -3501 ((-787) |#1|)) (-15 -4403 ((-112) |#1| (-787))) (-15 -1821 ((-112) |#1| (-787))) (-15 -3272 ((-112) |#1| (-787)))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3145 ((|#1| $) 49 T ELT)) (-4148 ((|#1| $) 66 T ELT)) (-3063 (($ $) 68 T ELT)) (-2034 (($ $ (-577)) 53 (|has| $ (-6 -4471)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-3211 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)) ELT)) (-1687 (($ $ $) 57 (|has| $ (-6 -4471)) ELT)) (-2946 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)) ELT)) (-3455 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)) ELT)) (-1895 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4471)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471)) ELT)) (-2966 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)) ELT)) (-4135 ((|#1| $) 67 T ELT)) (-3790 (($) 7 T CONST)) (-1663 (($ $) 74 T ELT) (($ $ (-787)) 72 T ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-1830 (((-660 $) $) 51 T ELT)) (-2725 (((-112) $ $) 43 (|has| |#1| (-1125)) ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-2935 (((-660 |#1|) $) 46 T ELT)) (-2284 (((-112) $) 50 T ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-3942 ((|#1| $) 71 T ELT) (($ $ (-787)) 69 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 77 T ELT) (($ $ (-787)) 75 T ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT)) (-3190 (((-577) $ $) 45 T ELT)) (-3834 (((-112) $) 47 T ELT)) (-4243 (($ $) 63 T ELT)) (-1839 (($ $) 60 (|has| $ (-6 -4471)) ELT)) (-4282 (((-787) $) 64 T ELT)) (-3855 (($ $) 65 T ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-1914 (($ $) 13 T ELT)) (-1584 (($ $ $) 62 (|has| $ (-6 -4471)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4471)) ELT)) (-1685 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2333 (((-660 $) $) 52 T ELT)) (-1444 (((-112) $ $) 44 (|has| |#1| (-1125)) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1280 |#1|) (-141) (-1242)) (T -1280)) -((-1685 (*1 *1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1685 (*1 *1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1652 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-1663 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-1663 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3855 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-4282 (*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-4243 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1584 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1584 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1839 (*1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3455 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1895 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1687 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1895 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-2946 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1895 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2034 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) (-4 *3 (-1242))))) -(-13 (-1035 |t#1|) (-10 -8 (-15 -1685 ($ $ $)) (-15 -1685 ($ |t#1| $)) (-15 -1652 (|t#1| $)) (-15 -2837 (|t#1| $ "first")) (-15 -1652 ($ $ (-787))) (-15 -1663 ($ $)) (-15 -2837 ($ $ "rest")) (-15 -1663 ($ $ (-787))) (-15 -3942 (|t#1| $)) (-15 -2837 (|t#1| $ "last")) (-15 -3942 ($ $ (-787))) (-15 -3063 ($ $)) (-15 -4135 (|t#1| $)) (-15 -4148 (|t#1| $)) (-15 -3855 ($ $)) (-15 -4282 ((-787) $)) (-15 -4243 ($ $)) (IF (|has| $ (-6 -4471)) (PROGN (-15 -1584 ($ $ $)) (-15 -1584 ($ $ |t#1|)) (-15 -1839 ($ $)) (-15 -3455 (|t#1| $ |t#1|)) (-15 -1895 (|t#1| $ "first" |t#1|)) (-15 -1687 ($ $ $)) (-15 -1895 ($ $ "rest" $)) (-15 -2946 (|t#1| $ |t#1|)) (-15 -1895 (|t#1| $ "last" |t#1|)) (-15 -2034 ($ $ (-577)))) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) -((-2124 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1281 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2124 (|#4| (-1 |#2| |#1|) |#3|))) (-1074) (-1074) (-1283 |#1|) (-1283 |#2|)) (T -1281)) -((-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1283 *6)) (-5 *1 (-1281 *5 *6 *4 *2)) (-4 *4 (-1283 *5))))) -(-10 -7 (-15 -2124 (|#4| (-1 |#2| |#1|) |#3|))) -((-3801 (((-112) $) 17 T ELT)) (-2642 (($ $) 105 T ELT)) (-2501 (($ $) 81 T ELT)) (-2616 (($ $) 101 T ELT)) (-2471 (($ $) 77 T ELT)) (-2666 (($ $) 109 T ELT)) (-2523 (($ $) 85 T ELT)) (-3716 (($ $) 75 T ELT)) (-2079 (($ $) 73 T ELT)) (-2680 (($ $) 111 T ELT)) (-2535 (($ $) 87 T ELT)) (-2655 (($ $) 107 T ELT)) (-2512 (($ $) 83 T ELT)) (-2631 (($ $) 103 T ELT)) (-2486 (($ $) 79 T ELT)) (-3603 (((-880) $) 61 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2722 (($ $) 117 T ELT)) (-2570 (($ $) 93 T ELT)) (-2694 (($ $) 113 T ELT)) (-2546 (($ $) 89 T ELT)) (-2748 (($ $) 121 T ELT)) (-2592 (($ $) 97 T ELT)) (-2897 (($ $) 123 T ELT)) (-2604 (($ $) 99 T ELT)) (-2734 (($ $) 119 T ELT)) (-2581 (($ $) 95 T ELT)) (-2708 (($ $) 115 T ELT)) (-2558 (($ $) 91 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-420 (-577))) 71 T ELT))) -(((-1282 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2501 (|#1| |#1|)) (-15 -2471 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2512 (|#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2722 (|#1| |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3801 ((-112) |#1|)) (-15 -3603 ((-880) |#1|))) (-1283 |#2|) (-1074)) (T -1282)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2501 (|#1| |#1|)) (-15 -2471 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2512 (|#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2592 (|#1| |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -2631 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -2680 (|#1| |#1|)) (-15 -2666 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -2708 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2897 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2722 (|#1| |#1|)) (-15 -3716 (|#1| |#1|)) (-15 -2079 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3603 (|#1| |#2|)) (-15 -3603 (|#1| |#1|)) (-15 -3603 (|#1| (-420 (-577)))) (-15 -3603 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3801 ((-112) |#1|)) (-15 -3603 ((-880) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-3206 (((-660 (-1107)) $) 86 T ELT)) (-3052 (((-1201) $) 118 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-4122 (($ $) 64 (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-787)) 113 T ELT) (($ $ (-787) (-787)) 112 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|))) $) 119 T ELT)) (-2642 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3070 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2616 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|)))) 170 T ELT) (($ (-1182 |#1|)) 168 T ELT)) (-2666 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) 18 T CONST)) (-3391 (($ $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2353 (($ $) 167 T ELT)) (-2817 (((-975 |#1|) $ (-787)) 165 T ELT) (((-975 |#1|) $ (-787) (-787)) 164 T ELT)) (-2307 (((-112) $) 85 T ELT)) (-2824 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-787) $) 115 T ELT) (((-787) $ (-787)) 114 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-4286 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3681 (($ $ (-944)) 116 T ELT)) (-2720 (($ (-1 |#1| (-577)) $) 166 T ELT)) (-2148 (((-112) $) 74 T ELT)) (-3180 (($ |#1| (-787)) 73 T ELT) (($ $ (-1107) (-787)) 88 T ELT) (($ $ (-660 (-1107)) (-660 (-787))) 87 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3716 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) 77 T ELT)) (-3365 ((|#1| $) 78 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-4129 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 161 (-2811 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1987 (($ $ (-787)) 110 T ELT)) (-3478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2079 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3273 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) ELT)) (-2837 ((|#1| $ (-787)) 120 T ELT) (($ $ $) 96 (|has| (-787) (-1137)) ELT)) (-3362 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT)) (-3616 (((-787) $) 76 T ELT)) (-2680 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 84 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-4198 (((-1182 |#1|) $) 169 T ELT)) (-3421 ((|#1| $ (-787)) 71 T ELT)) (-3907 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-1920 (((-787)) 32 T CONST)) (-4269 ((|#1| $) 117 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2722 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2694 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-787)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2136 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ |#1|) 163 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1283 |#1|) (-141) (-1074)) (T -1283)) -((-2857 (*1 *1 *2) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-787)) (|:| |c| *3)))) (-4 *3 (-1074)) (-4 *1 (-1283 *3)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-5 *2 (-1182 *3)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-4 *1 (-1283 *3)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)))) (-2720 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1283 *3)) (-4 *3 (-1074)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) (-5 *2 (-975 *4)))) (-2817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) (-5 *2 (-975 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) (-4129 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-12 (|has| *3 (-15 -3206 ((-660 *2) *3))) (|has| *3 (-15 -4129 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) -(-13 (-1270 |t#1| (-787)) (-10 -8 (-15 -2857 ($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |t#1|))))) (-15 -4198 ((-1182 |t#1|) $)) (-15 -2857 ($ (-1182 |t#1|))) (-15 -2353 ($ $)) (-15 -2720 ($ (-1 |t#1| (-577)) $)) (-15 -2817 ((-975 |t#1|) $ (-787))) (-15 -2817 ((-975 |t#1|) $ (-787) (-787))) (IF (|has| |t#1| (-375)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4129 ($ $)) (IF (|has| |t#1| (-15 -4129 (|t#1| |t#1| (-1201)))) (IF (|has| |t#1| (-15 -3206 ((-660 (-1201)) |t#1|))) (-15 -4129 ($ $ (-1201))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1227)) (IF (|has| |t#1| (-982)) (IF (|has| |t#1| (-29 (-577))) (-15 -4129 ($ $ (-1201))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1027)) (-6 (-1227))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-787)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-787) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-787) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-787) |#1|))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-787) (-1137)) ((-301) |has| |#1| (-569)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) |has| |#1| (-569)) ((-662 #1#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #1#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2811 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1270 |#1| #0#) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-3206 (((-660 (-1107)) $) NIL T ELT)) (-3052 (((-1201) $) 90 T ELT)) (-3198 (((-1265 |#2| |#1|) $ (-787)) 73 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3547 (((-112) $) 142 (|has| |#1| (-569)) ELT)) (-3959 (($ $ (-787)) 127 T ELT) (($ $ (-787) (-787)) 130 T ELT)) (-3229 (((-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|))) $) 43 T ELT)) (-2642 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3070 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2471 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2857 (($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1182 |#1|)) NIL T ELT)) (-2666 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2523 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3790 (($) NIL T CONST)) (-1701 (($ $) 134 T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2353 (($ $) 140 T ELT)) (-2817 (((-975 |#1|) $ (-787)) 63 T ELT) (((-975 |#1|) $ (-787) (-787)) 65 T ELT)) (-2307 (((-112) $) NIL T ELT)) (-2824 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2536 (((-787) $) NIL T ELT) (((-787) $ (-787)) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-3283 (($ $) 117 T ELT)) (-4286 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2103 (($ (-577) (-577) $) 136 T ELT)) (-3681 (($ $ (-944)) 139 T ELT)) (-2720 (($ (-1 |#1| (-577)) $) 111 T ELT)) (-2148 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-787)) 16 T ELT) (($ $ (-1107) (-787)) NIL T ELT) (($ $ (-660 (-1107)) (-660 (-787))) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) 98 T ELT)) (-3716 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3354 (($ $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-2624 (($ $) 115 T ELT)) (-4433 (($ $) 113 T ELT)) (-2334 (($ (-577) (-577) $) 138 T ELT)) (-4129 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1201)) 156 (-2811 (-12 (|has| |#1| (-15 -4129 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -3206 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))) ELT) (($ $ (-1288 |#2|)) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3346 (($ $ (-577) (-577)) 121 T ELT)) (-1987 (($ $ (-787)) 123 T ELT)) (-3478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2079 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3245 (($ $) 119 T ELT)) (-3273 (((-1182 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) ELT)) (-2837 ((|#1| $ (-787)) 95 T ELT) (($ $ $) 132 (|has| (-787) (-1137)) ELT)) (-3362 (($ $ (-1201)) 108 (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) 102 (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-1288 |#2|)) 103 T ELT)) (-3616 (((-787) $) NIL T ELT)) (-2680 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2535 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2655 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2512 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2631 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2486 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2544 (($ $) 125 T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) 26 T ELT) (($ (-420 (-577))) 148 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 25 (|has| |#1| (-174)) ELT) (($ (-1265 |#2| |#1|)) 81 T ELT) (($ (-1288 |#2|)) 22 T ELT)) (-4198 (((-1182 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ (-787)) 94 T ELT)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-1920 (((-787)) NIL T CONST)) (-4269 ((|#1| $) 91 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2722 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2570 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2174 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2694 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2546 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2592 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4142 ((|#1| $ (-787)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) (|has| |#1| (-15 -3603 (|#1| (-1201))))) ELT)) (-2897 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2604 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2734 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2581 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2708 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2558 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2754 (($) 18 T CONST)) (-2767 (($) 13 T CONST)) (-2136 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|))) ELT) (($ $ (-1288 |#2|)) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3051 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-3031 (($ $ $) 20 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT) (($ $ |#1|) 145 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 106 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1284 |#1| |#2| |#3|) (-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1265 |#2| |#1|))) (-15 -3198 ((-1265 |#2| |#1|) $ (-787))) (-15 -3603 ($ (-1288 |#2|))) (-15 -4433 ($ $)) (-15 -2624 ($ $)) (-15 -3283 ($ $)) (-15 -3245 ($ $)) (-15 -3346 ($ $ (-577) (-577))) (-15 -1701 ($ $)) (-15 -2103 ($ (-577) (-577) $)) (-15 -2334 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1284)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-1284 *3 *4 *5)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1284 *4 *5 *6)) (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4433 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-2624 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-3283 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-3245 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-3346 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-2103 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3))) (-2334 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3603 ($ (-1265 |#2| |#1|))) (-15 -3198 ((-1265 |#2| |#1|) $ (-787))) (-15 -3603 ($ (-1288 |#2|))) (-15 -4433 ($ $)) (-15 -2624 ($ $)) (-15 -3283 ($ $)) (-15 -3245 ($ $)) (-15 -3346 ($ $ (-577) (-577))) (-15 -1701 ($ $)) (-15 -2103 ($ (-577) (-577) $)) (-15 -2334 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4129 ($ $ (-1288 |#2|))) |%noBranch|))) -((-3144 (((-1 (-1182 |#1|) (-660 (-1182 |#1|))) (-1 |#2| (-660 |#2|))) 24 T ELT)) (-1423 (((-1 (-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-2919 (((-1 (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3601 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-1711 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-4346 ((|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|)) 60 T ELT)) (-4050 (((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))) 66 T ELT)) (-1802 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1285 |#1| |#2|) (-10 -7 (-15 -2919 ((-1 (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2|))) (-15 -1423 ((-1 (-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3144 ((-1 (-1182 |#1|) (-660 (-1182 |#1|))) (-1 |#2| (-660 |#2|)))) (-15 -1802 (|#2| |#2| |#2|)) (-15 -1711 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3601 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4346 (|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|))) (-15 -4050 ((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))))) (-38 (-420 (-577))) (-1283 |#1|)) (T -1285)) -((-4050 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 (-1 *6 (-660 *6)))) (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1283 *5)) (-5 *2 (-660 *6)) (-5 *1 (-1285 *5 *6)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-660 *2))) (-5 *4 (-660 *5)) (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1283 *5)) (-5 *1 (-1285 *5 *2)))) (-3601 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-1711 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-1802 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1285 *3 *2)) (-4 *2 (-1283 *3)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-660 *5))) (-4 *5 (-1283 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-660 (-1182 *4)))) (-5 *1 (-1285 *4 *5)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1283 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-1182 *4) (-1182 *4))) (-5 *1 (-1285 *4 *5)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1283 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-1182 *4))) (-5 *1 (-1285 *4 *5))))) -(-10 -7 (-15 -2919 ((-1 (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2|))) (-15 -1423 ((-1 (-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3144 ((-1 (-1182 |#1|) (-660 (-1182 |#1|))) (-1 |#2| (-660 |#2|)))) (-15 -1802 (|#2| |#2| |#2|)) (-15 -1711 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3601 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4346 (|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|))) (-15 -4050 ((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))))) -((-1332 ((|#2| |#4| (-787)) 31 T ELT)) (-2612 ((|#4| |#2|) 26 T ELT)) (-4210 ((|#4| (-420 |#2|)) 49 (|has| |#1| (-569)) ELT)) (-3049 (((-1 |#4| (-660 |#4|)) |#3|) 43 T ELT))) -(((-1286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2612 (|#4| |#2|)) (-15 -1332 (|#2| |#4| (-787))) (-15 -3049 ((-1 |#4| (-660 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4210 (|#4| (-420 |#2|))) |%noBranch|)) (-1074) (-1268 |#1|) (-672 |#2|) (-1283 |#1|)) (T -1286)) -((-4210 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-569)) (-4 *4 (-1074)) (-4 *2 (-1283 *4)) (-5 *1 (-1286 *4 *5 *6 *2)) (-4 *6 (-672 *5)))) (-3049 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-1268 *4)) (-5 *2 (-1 *6 (-660 *6))) (-5 *1 (-1286 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-1283 *4)))) (-1332 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-1286 *5 *2 *6 *3)) (-4 *6 (-672 *2)) (-4 *3 (-1283 *5)))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *3 (-1268 *4)) (-4 *2 (-1283 *4)) (-5 *1 (-1286 *4 *3 *5 *2)) (-4 *5 (-672 *3))))) -(-10 -7 (-15 -2612 (|#4| |#2|)) (-15 -1332 (|#2| |#4| (-787))) (-15 -3049 ((-1 |#4| (-660 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4210 (|#4| (-420 |#2|))) |%noBranch|)) -NIL -(((-1287) (-141)) (T -1287)) -NIL -(-13 (-10 -7 (-6 -4106))) -((-3489 (((-112) $ $) NIL T ELT)) (-3052 (((-1201)) 12 T ELT)) (-2045 (((-1183) $) 18 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 11 T ELT) (((-1201) $) 8 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 15 T ELT))) -(((-1288 |#1|) (-13 (-1125) (-626 (-1201)) (-10 -8 (-15 -3603 ((-1201) $)) (-15 -3052 ((-1201))))) (-1201)) (T -1288)) -((-3603 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2))) (-3052 (*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2)))) -(-13 (-1125) (-626 (-1201)) (-10 -8 (-15 -3603 ((-1201) $)) (-15 -3052 ((-1201))))) -((-3832 (($ (-787)) 19 T ELT)) (-3588 (((-705 |#2|) $ $) 41 T ELT)) (-2967 ((|#2| $) 51 T ELT)) (-3762 ((|#2| $) 50 T ELT)) (-3366 ((|#2| $ $) 36 T ELT)) (-1598 (($ $ $) 47 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-577) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1289 |#1| |#2|) (-10 -8 (-15 -2967 (|#2| |#1|)) (-15 -3762 (|#2| |#1|)) (-15 -1598 (|#1| |#1| |#1|)) (-15 -3588 ((-705 |#2|) |#1| |#1|)) (-15 -3366 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 -3832 (|#1| (-787))) (-15 -3031 (|#1| |#1| |#1|))) (-1290 |#2|) (-1242)) (T -1289)) -NIL -(-10 -8 (-15 -2967 (|#2| |#1|)) (-15 -3762 (|#2| |#1|)) (-15 -1598 (|#1| |#1| |#1|)) (-15 -3588 ((-705 |#2|) |#1| |#1|)) (-15 -3366 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3042 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1|)) (-15 -3832 (|#1| (-787))) (-15 -3031 (|#1| |#1| |#1|))) -((-3489 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3832 (($ (-787)) 115 (|has| |#1| (-23)) ELT)) (-2790 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471)) ELT) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) 8 T ELT)) (-1895 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)) ELT)) (-3790 (($) 7 T CONST)) (-1932 (($ $) 93 (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) 103 T ELT)) (-3289 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-3920 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) 52 T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)) ELT)) (-3588 (((-705 |#1|) $ $) 108 (|has| |#1| (-1074)) ELT)) (-4223 (($ (-787) |#1|) 70 T ELT)) (-1821 (((-112) $ (-787)) 9 T ELT)) (-4239 (((-577) $) 44 (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) 85 (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2984 (((-577) $) 45 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) 86 (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-2967 ((|#1| $) 105 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))) ELT)) (-3272 (((-112) $ (-787)) 10 T ELT)) (-3762 ((|#1| $) 106 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))) ELT)) (-2045 (((-1183) $) 23 (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3445 (((-660 (-577)) $) 47 T ELT)) (-2187 (((-112) (-577) $) 48 T ELT)) (-1440 (((-1145) $) 22 (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) 43 (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2529 (($ $ |#1|) 42 (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) 14 T ELT)) (-1696 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) 49 T ELT)) (-2856 (((-112) $) 11 T ELT)) (-2693 (($) 12 T ELT)) (-2837 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1259 (-577))) 71 T ELT)) (-3366 ((|#1| $ $) 109 (|has| |#1| (-1074)) ELT)) (-3490 (($ $ (-577)) 64 T ELT) (($ $ (-1259 (-577))) 63 T ELT)) (-1598 (($ $ $) 107 (|has| |#1| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))) ELT)) (-2875 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) 13 T ELT)) (-2176 (((-549) $) 81 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 72 T ELT)) (-1685 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-660 $)) 66 T ELT)) (-3603 (((-880) $) 18 (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) 87 (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) 89 (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) 88 (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) 90 (|has| |#1| (-865)) ELT)) (-3042 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-577) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-742)) ELT) (($ $ |#1|) 110 (|has| |#1| (-742)) ELT)) (-3501 (((-787) $) 6 (|has| $ (-6 -4470)) ELT))) -(((-1290 |#1|) (-141) (-1242)) (T -1290)) -((-3031 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-25)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1290 *3)) (-4 *3 (-23)) (-4 *3 (-1242)))) (-3042 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21)))) (-3042 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) (-3366 (*1 *2 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074)))) (-3588 (*1 *2 *1 *1) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-1074)) (-5 *2 (-705 *3)))) (-1598 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) (-4 *2 (-1074)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) (-4 *2 (-1074))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3031 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3832 ($ (-787))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3042 ($ $)) (-15 -3042 ($ $ $)) (-15 * ($ (-577) $))) |%noBranch|) (IF (|has| |t#1| (-742)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3366 (|t#1| $ $)) (-15 -3588 ((-705 |t#1|) $ $)) (-15 -1598 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1027)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3762 (|t#1| $)) (-15 -2967 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-19 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2811 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T)) -((-1979 (((-1292 |#2|) (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|) 13 T ELT)) (-2498 ((|#2| (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|) 15 T ELT)) (-2124 (((-3 (-1292 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1292 |#1|)) 30 T ELT) (((-1292 |#2|) (-1 |#2| |#1|) (-1292 |#1|)) 18 T ELT))) -(((-1291 |#1| |#2|) (-10 -7 (-15 -1979 ((-1292 |#2|) (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -2124 ((-1292 |#2|) (-1 |#2| |#1|) (-1292 |#1|))) (-15 -2124 ((-3 (-1292 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1292 |#1|)))) (-1242) (-1242)) (T -1291)) -((-2124 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1292 *6)) (-5 *1 (-1291 *5 *6)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1292 *6)) (-5 *1 (-1291 *5 *6)))) (-2498 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-1291 *5 *2)))) (-1979 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1292 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-1292 *5)) (-5 *1 (-1291 *6 *5))))) -(-10 -7 (-15 -1979 ((-1292 |#2|) (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -2498 (|#2| (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -2124 ((-1292 |#2|) (-1 |#2| |#1|) (-1292 |#1|))) (-15 -2124 ((-3 (-1292 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1292 |#1|)))) -((-3489 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3832 (($ (-787)) NIL (|has| |#1| (-23)) ELT)) (-3350 (($ (-660 |#1|)) 11 T ELT)) (-2790 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-4438 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-865)) ELT)) (-3246 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))) ELT)) (-2312 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-865)) ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-1895 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-3730 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3790 (($) NIL T CONST)) (-1932 (($ $) NIL (|has| $ (-6 -4471)) ELT)) (-2433 (($ $) NIL T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3920 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2498 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2840 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2759 ((|#1| $ (-577)) NIL T ELT)) (-3728 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1125)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)) ELT)) (-3692 (((-660 |#1|) $) 16 (|has| $ (-6 -4470)) ELT)) (-3588 (((-705 |#1|) $ $) NIL (|has| |#1| (-1074)) ELT)) (-4223 (($ (-787) |#1|) NIL T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-4239 (((-577) $) NIL (|has| (-577) (-865)) ELT)) (-2900 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-1334 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2434 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2984 (((-577) $) 12 (|has| (-577) (-865)) ELT)) (-1457 (($ $ $) NIL (|has| |#1| (-865)) ELT)) (-2826 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2967 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))) ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-3762 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))) ELT)) (-2045 (((-1183) $) NIL (|has| |#1| (-1125)) ELT)) (-2218 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3445 (((-660 (-577)) $) NIL T ELT)) (-2187 (((-112) (-577) $) NIL T ELT)) (-1440 (((-1145) $) NIL (|has| |#1| (-1125)) ELT)) (-1652 ((|#1| $) NIL (|has| (-577) (-865)) ELT)) (-2153 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2529 (($ $ |#1|) NIL (|has| $ (-6 -4471)) ELT)) (-2659 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-1696 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-3908 (((-660 |#1|) $) NIL T ELT)) (-2856 (((-112) $) NIL T ELT)) (-2693 (($) NIL T ELT)) (-2837 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-3366 ((|#1| $ $) NIL (|has| |#1| (-1074)) ELT)) (-3490 (($ $ (-577)) NIL T ELT) (($ $ (-1259 (-577))) NIL T ELT)) (-1598 (($ $ $) NIL (|has| |#1| (-1074)) ELT)) (-1452 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))) ELT)) (-2875 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) 20 (|has| |#1| (-627 (-549))) ELT)) (-3614 (($ (-660 |#1|)) 10 T ELT)) (-1685 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3603 (((-880) $) NIL (|has| |#1| (-626 (-880))) ELT)) (-2726 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2285 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3001 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2978 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2949 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2988 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-2971 (((-112) $ $) NIL (|has| |#1| (-865)) ELT)) (-3042 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3031 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-742)) ELT) (($ $ |#1|) NIL (|has| |#1| (-742)) ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1292 |#1|) (-13 (-1290 |#1|) (-10 -8 (-15 -3350 ($ (-660 |#1|))))) (-1242)) (T -1292)) -((-3350 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1292 *3))))) -(-13 (-1290 |#1|) (-10 -8 (-15 -3350 ($ (-660 |#1|))))) -((-3489 (((-112) $ $) NIL T ELT)) (-2477 (((-1183) $ (-1183)) 107 T ELT) (((-1183) $ (-1183) (-1183)) 105 T ELT) (((-1183) $ (-1183) (-660 (-1183))) 104 T ELT)) (-1599 (($) 69 T ELT)) (-3671 (((-1297) $ (-481) (-944)) 54 T ELT)) (-4385 (((-1297) $ (-944) (-1183)) 89 T ELT) (((-1297) $ (-944) (-892)) 90 T ELT)) (-3757 (((-1297) $ (-944) (-391) (-391)) 57 T ELT)) (-1382 (((-1297) $ (-1183)) 84 T ELT)) (-2200 (((-1297) $ (-944) (-1183)) 94 T ELT)) (-1368 (((-1297) $ (-944) (-391) (-391)) 58 T ELT)) (-3897 (((-1297) $ (-944) (-944)) 55 T ELT)) (-2455 (((-1297) $) 85 T ELT)) (-2771 (((-1297) $ (-944) (-1183)) 93 T ELT)) (-4083 (((-1297) $ (-481) (-944)) 41 T ELT)) (-4446 (((-1297) $ (-944) (-1183)) 92 T ELT)) (-4448 (((-660 (-271)) $) 29 T ELT) (($ $ (-660 (-271))) 30 T ELT)) (-1612 (((-1297) $ (-787) (-787)) 52 T ELT)) (-2995 (($ $) 70 T ELT) (($ (-481) (-660 (-271))) 71 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4323 (((-577) $) 48 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2654 (((-1292 (-3 (-481) "undefined")) $) 47 T ELT)) (-2313 (((-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -4446 (-577)) (|:| -3002 (-577)) (|:| |spline| (-577)) (|:| -2899 (-577)) (|:| |axesColor| (-892)) (|:| -4385 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577)))) $) 46 T ELT)) (-4247 (((-1297) $ (-944) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-892) (-577) (-892) (-577)) 83 T ELT)) (-3330 (((-660 (-966 (-228))) $) NIL T ELT)) (-2320 (((-481) $ (-944)) 43 T ELT)) (-2082 (((-1297) $ (-787) (-787) (-944) (-944)) 50 T ELT)) (-1532 (((-1297) $ (-1183)) 95 T ELT)) (-3002 (((-1297) $ (-944) (-1183)) 91 T ELT)) (-3603 (((-880) $) 102 T ELT)) (-1970 (((-1297) $) 96 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2899 (((-1297) $ (-944) (-1183)) 87 T ELT) (((-1297) $ (-944) (-892)) 88 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1293) (-13 (-1125) (-10 -8 (-15 -3330 ((-660 (-966 (-228))) $)) (-15 -1599 ($)) (-15 -2995 ($ $)) (-15 -4448 ((-660 (-271)) $)) (-15 -4448 ($ $ (-660 (-271)))) (-15 -2995 ($ (-481) (-660 (-271)))) (-15 -4247 ((-1297) $ (-944) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-892) (-577) (-892) (-577))) (-15 -2313 ((-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -4446 (-577)) (|:| -3002 (-577)) (|:| |spline| (-577)) (|:| -2899 (-577)) (|:| |axesColor| (-892)) (|:| -4385 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577)))) $)) (-15 -2654 ((-1292 (-3 (-481) "undefined")) $)) (-15 -1382 ((-1297) $ (-1183))) (-15 -4083 ((-1297) $ (-481) (-944))) (-15 -2320 ((-481) $ (-944))) (-15 -2899 ((-1297) $ (-944) (-1183))) (-15 -2899 ((-1297) $ (-944) (-892))) (-15 -4385 ((-1297) $ (-944) (-1183))) (-15 -4385 ((-1297) $ (-944) (-892))) (-15 -4446 ((-1297) $ (-944) (-1183))) (-15 -2771 ((-1297) $ (-944) (-1183))) (-15 -3002 ((-1297) $ (-944) (-1183))) (-15 -1532 ((-1297) $ (-1183))) (-15 -1970 ((-1297) $)) (-15 -2082 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -1368 ((-1297) $ (-944) (-391) (-391))) (-15 -3757 ((-1297) $ (-944) (-391) (-391))) (-15 -2200 ((-1297) $ (-944) (-1183))) (-15 -1612 ((-1297) $ (-787) (-787))) (-15 -3671 ((-1297) $ (-481) (-944))) (-15 -3897 ((-1297) $ (-944) (-944))) (-15 -2477 ((-1183) $ (-1183))) (-15 -2477 ((-1183) $ (-1183) (-1183))) (-15 -2477 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -2455 ((-1297) $)) (-15 -4323 ((-577) $)) (-15 -3603 ((-880) $))))) (T -1293)) -((-3603 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1293)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-660 (-966 (-228)))) (-5 *1 (-1293)))) (-1599 (*1 *1) (-5 *1 (-1293))) (-2995 (*1 *1 *1) (-5 *1 (-1293))) (-4448 (*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) (-4448 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) (-2995 (*1 *1 *2 *3) (-12 (-5 *2 (-481)) (-5 *3 (-660 (-271))) (-5 *1 (-1293)))) (-4247 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-944)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -4446 (-577)) (|:| -3002 (-577)) (|:| |spline| (-577)) (|:| -2899 (-577)) (|:| |axesColor| (-892)) (|:| -4385 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577))))) (-5 *1 (-1293)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-1292 (-3 (-481) "undefined"))) (-5 *1 (-1293)))) (-1382 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-4083 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2320 (*1 *2 *1 *3) (-12 (-5 *3 (-944)) (-5 *2 (-481)) (-5 *1 (-1293)))) (-2899 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2899 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-4385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-4385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-4446 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2771 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3002 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2082 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-1368 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3757 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2200 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-1612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3671 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3897 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2477 (*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) (-2477 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) (-2477 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1293)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1293))))) -(-13 (-1125) (-10 -8 (-15 -3330 ((-660 (-966 (-228))) $)) (-15 -1599 ($)) (-15 -2995 ($ $)) (-15 -4448 ((-660 (-271)) $)) (-15 -4448 ($ $ (-660 (-271)))) (-15 -2995 ($ (-481) (-660 (-271)))) (-15 -4247 ((-1297) $ (-944) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-892) (-577) (-892) (-577))) (-15 -2313 ((-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -4446 (-577)) (|:| -3002 (-577)) (|:| |spline| (-577)) (|:| -2899 (-577)) (|:| |axesColor| (-892)) (|:| -4385 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577)))) $)) (-15 -2654 ((-1292 (-3 (-481) "undefined")) $)) (-15 -1382 ((-1297) $ (-1183))) (-15 -4083 ((-1297) $ (-481) (-944))) (-15 -2320 ((-481) $ (-944))) (-15 -2899 ((-1297) $ (-944) (-1183))) (-15 -2899 ((-1297) $ (-944) (-892))) (-15 -4385 ((-1297) $ (-944) (-1183))) (-15 -4385 ((-1297) $ (-944) (-892))) (-15 -4446 ((-1297) $ (-944) (-1183))) (-15 -2771 ((-1297) $ (-944) (-1183))) (-15 -3002 ((-1297) $ (-944) (-1183))) (-15 -1532 ((-1297) $ (-1183))) (-15 -1970 ((-1297) $)) (-15 -2082 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -1368 ((-1297) $ (-944) (-391) (-391))) (-15 -3757 ((-1297) $ (-944) (-391) (-391))) (-15 -2200 ((-1297) $ (-944) (-1183))) (-15 -1612 ((-1297) $ (-787) (-787))) (-15 -3671 ((-1297) $ (-481) (-944))) (-15 -3897 ((-1297) $ (-944) (-944))) (-15 -2477 ((-1183) $ (-1183))) (-15 -2477 ((-1183) $ (-1183) (-1183))) (-15 -2477 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -2455 ((-1297) $)) (-15 -4323 ((-577) $)) (-15 -3603 ((-880) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-1796 (((-1297) $ (-391)) 169 T ELT) (((-1297) $ (-391) (-391) (-391)) 170 T ELT)) (-2477 (((-1183) $ (-1183)) 179 T ELT) (((-1183) $ (-1183) (-1183)) 177 T ELT) (((-1183) $ (-1183) (-660 (-1183))) 176 T ELT)) (-2035 (($) 67 T ELT)) (-3409 (((-1297) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $) 139 T ELT) (((-1297) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 140 T ELT) (((-1297) $ (-577) (-577) (-391) (-391) (-391)) 144 T ELT) (((-1297) $ (-391) (-391)) 145 T ELT) (((-1297) $ (-391) (-391) (-391)) 152 T ELT)) (-2012 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-4283 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-1712 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-3756 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-3513 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-3757 (((-1297) $ (-391) (-391)) 171 T ELT)) (-1382 (((-1297) $ (-1183)) 153 T ELT)) (-2760 (((-1158 (-228)) $) 68 T ELT) (($ $ (-1158 (-228))) 69 T ELT)) (-1828 (((-1297) $ (-1183)) 187 T ELT)) (-3179 (((-1297) $ (-1183)) 188 T ELT)) (-1667 (((-1297) $ (-391) (-391)) 151 T ELT) (((-1297) $ (-577) (-577)) 168 T ELT)) (-3897 (((-1297) $ (-944) (-944)) 160 T ELT)) (-2455 (((-1297) $) 137 T ELT)) (-3212 (((-1297) $ (-1183)) 186 T ELT)) (-2041 (((-1297) $ (-1183)) 134 T ELT)) (-4448 (((-660 (-271)) $) 70 T ELT) (($ $ (-660 (-271))) 71 T ELT)) (-1612 (((-1297) $ (-787) (-787)) 159 T ELT)) (-3456 (((-1297) $ (-787) (-966 (-228))) 193 T ELT)) (-2254 (($ $) 73 T ELT) (($ (-1158 (-228)) (-1183)) 74 T ELT) (($ (-1158 (-228)) (-660 (-271))) 75 T ELT)) (-2608 (((-1297) $ (-391) (-391) (-391)) 131 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-4323 (((-577) $) 128 T ELT)) (-3799 (((-1297) $ (-391)) 174 T ELT)) (-3737 (((-1297) $ (-391)) 191 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3529 (((-1297) $ (-391)) 190 T ELT)) (-3557 (((-1297) $ (-1183)) 136 T ELT)) (-2082 (((-1297) $ (-787) (-787) (-944) (-944)) 158 T ELT)) (-3739 (((-1297) $ (-1183)) 133 T ELT)) (-1532 (((-1297) $ (-1183)) 135 T ELT)) (-1980 (((-1297) $ (-158) (-158)) 157 T ELT)) (-3603 (((-880) $) 166 T ELT)) (-1970 (((-1297) $) 138 T ELT)) (-1543 (((-1297) $ (-1183)) 189 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2899 (((-1297) $ (-1183)) 132 T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1294) (-13 (-1125) (-10 -8 (-15 -4283 ((-391))) (-15 -4283 ((-391) (-391))) (-15 -1712 ((-391))) (-15 -1712 ((-391) (-391))) (-15 -2012 ((-391))) (-15 -2012 ((-391) (-391))) (-15 -3513 ((-391))) (-15 -3513 ((-391) (-391))) (-15 -3756 ((-391))) (-15 -3756 ((-391) (-391))) (-15 -2035 ($)) (-15 -2254 ($ $)) (-15 -2254 ($ (-1158 (-228)) (-1183))) (-15 -2254 ($ (-1158 (-228)) (-660 (-271)))) (-15 -2760 ((-1158 (-228)) $)) (-15 -2760 ($ $ (-1158 (-228)))) (-15 -3456 ((-1297) $ (-787) (-966 (-228)))) (-15 -4448 ((-660 (-271)) $)) (-15 -4448 ($ $ (-660 (-271)))) (-15 -1612 ((-1297) $ (-787) (-787))) (-15 -3897 ((-1297) $ (-944) (-944))) (-15 -1382 ((-1297) $ (-1183))) (-15 -2082 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -3409 ((-1297) $ (-391) (-391) (-391) (-391) (-391))) (-15 -3409 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -3409 ((-1297) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3409 ((-1297) $ (-577) (-577) (-391) (-391) (-391))) (-15 -3409 ((-1297) $ (-391) (-391))) (-15 -3409 ((-1297) $ (-391) (-391) (-391))) (-15 -1532 ((-1297) $ (-1183))) (-15 -2899 ((-1297) $ (-1183))) (-15 -3739 ((-1297) $ (-1183))) (-15 -2041 ((-1297) $ (-1183))) (-15 -3557 ((-1297) $ (-1183))) (-15 -1667 ((-1297) $ (-391) (-391))) (-15 -1667 ((-1297) $ (-577) (-577))) (-15 -1796 ((-1297) $ (-391))) (-15 -1796 ((-1297) $ (-391) (-391) (-391))) (-15 -3757 ((-1297) $ (-391) (-391))) (-15 -3212 ((-1297) $ (-1183))) (-15 -3529 ((-1297) $ (-391))) (-15 -3737 ((-1297) $ (-391))) (-15 -1828 ((-1297) $ (-1183))) (-15 -3179 ((-1297) $ (-1183))) (-15 -1543 ((-1297) $ (-1183))) (-15 -2608 ((-1297) $ (-391) (-391) (-391))) (-15 -3799 ((-1297) $ (-391))) (-15 -2455 ((-1297) $)) (-15 -1980 ((-1297) $ (-158) (-158))) (-15 -2477 ((-1183) $ (-1183))) (-15 -2477 ((-1183) $ (-1183) (-1183))) (-15 -2477 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -1970 ((-1297) $)) (-15 -4323 ((-577) $))))) (T -1294)) -((-4283 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-1712 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-2012 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3513 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3756 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-2035 (*1 *1) (-5 *1 (-1294))) (-2254 (*1 *1 *1) (-5 *1 (-1294))) (-2254 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1183)) (-5 *1 (-1294)))) (-2254 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-660 (-271))) (-5 *1 (-1294)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294)))) (-3456 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-4448 (*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294)))) (-4448 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294)))) (-1612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3897 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1382 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-2082 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3409 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-1294)))) (-3409 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3409 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3409 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3409 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-2899 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3739 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3557 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1667 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1667 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1796 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1796 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3757 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3212 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3737 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1828 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3179 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1543 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-2608 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1980 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-2477 (*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294)))) (-2477 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294)))) (-2477 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1294)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1294))))) -(-13 (-1125) (-10 -8 (-15 -4283 ((-391))) (-15 -4283 ((-391) (-391))) (-15 -1712 ((-391))) (-15 -1712 ((-391) (-391))) (-15 -2012 ((-391))) (-15 -2012 ((-391) (-391))) (-15 -3513 ((-391))) (-15 -3513 ((-391) (-391))) (-15 -3756 ((-391))) (-15 -3756 ((-391) (-391))) (-15 -2035 ($)) (-15 -2254 ($ $)) (-15 -2254 ($ (-1158 (-228)) (-1183))) (-15 -2254 ($ (-1158 (-228)) (-660 (-271)))) (-15 -2760 ((-1158 (-228)) $)) (-15 -2760 ($ $ (-1158 (-228)))) (-15 -3456 ((-1297) $ (-787) (-966 (-228)))) (-15 -4448 ((-660 (-271)) $)) (-15 -4448 ($ $ (-660 (-271)))) (-15 -1612 ((-1297) $ (-787) (-787))) (-15 -3897 ((-1297) $ (-944) (-944))) (-15 -1382 ((-1297) $ (-1183))) (-15 -2082 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -3409 ((-1297) $ (-391) (-391) (-391) (-391) (-391))) (-15 -3409 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -3409 ((-1297) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3409 ((-1297) $ (-577) (-577) (-391) (-391) (-391))) (-15 -3409 ((-1297) $ (-391) (-391))) (-15 -3409 ((-1297) $ (-391) (-391) (-391))) (-15 -1532 ((-1297) $ (-1183))) (-15 -2899 ((-1297) $ (-1183))) (-15 -3739 ((-1297) $ (-1183))) (-15 -2041 ((-1297) $ (-1183))) (-15 -3557 ((-1297) $ (-1183))) (-15 -1667 ((-1297) $ (-391) (-391))) (-15 -1667 ((-1297) $ (-577) (-577))) (-15 -1796 ((-1297) $ (-391))) (-15 -1796 ((-1297) $ (-391) (-391) (-391))) (-15 -3757 ((-1297) $ (-391) (-391))) (-15 -3212 ((-1297) $ (-1183))) (-15 -3529 ((-1297) $ (-391))) (-15 -3737 ((-1297) $ (-391))) (-15 -1828 ((-1297) $ (-1183))) (-15 -3179 ((-1297) $ (-1183))) (-15 -1543 ((-1297) $ (-1183))) (-15 -2608 ((-1297) $ (-391) (-391) (-391))) (-15 -3799 ((-1297) $ (-391))) (-15 -2455 ((-1297) $)) (-15 -1980 ((-1297) $ (-158) (-158))) (-15 -2477 ((-1183) $ (-1183))) (-15 -2477 ((-1183) $ (-1183) (-1183))) (-15 -2477 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -1970 ((-1297) $)) (-15 -4323 ((-577) $)))) -((-2827 (((-660 (-1183)) (-660 (-1183))) 104 T ELT) (((-660 (-1183))) 96 T ELT)) (-1372 (((-660 (-1183))) 94 T ELT)) (-3537 (((-660 (-944)) (-660 (-944))) 69 T ELT) (((-660 (-944))) 64 T ELT)) (-3481 (((-660 (-787)) (-660 (-787))) 61 T ELT) (((-660 (-787))) 55 T ELT)) (-1717 (((-1297)) 71 T ELT)) (-2749 (((-944) (-944)) 87 T ELT) (((-944)) 86 T ELT)) (-3026 (((-944) (-944)) 85 T ELT) (((-944)) 84 T ELT)) (-2143 (((-892) (-892)) 81 T ELT) (((-892)) 80 T ELT)) (-2217 (((-228)) 91 T ELT) (((-228) (-391)) 93 T ELT)) (-3586 (((-944)) 88 T ELT) (((-944) (-944)) 89 T ELT)) (-3738 (((-944) (-944)) 83 T ELT) (((-944)) 82 T ELT)) (-4235 (((-892) (-892)) 75 T ELT) (((-892)) 73 T ELT)) (-3901 (((-892) (-892)) 77 T ELT) (((-892)) 76 T ELT)) (-2372 (((-892) (-892)) 79 T ELT) (((-892)) 78 T ELT))) -(((-1295) (-10 -7 (-15 -4235 ((-892))) (-15 -4235 ((-892) (-892))) (-15 -3901 ((-892))) (-15 -3901 ((-892) (-892))) (-15 -2372 ((-892))) (-15 -2372 ((-892) (-892))) (-15 -2143 ((-892))) (-15 -2143 ((-892) (-892))) (-15 -3738 ((-944))) (-15 -3738 ((-944) (-944))) (-15 -3481 ((-660 (-787)))) (-15 -3481 ((-660 (-787)) (-660 (-787)))) (-15 -3537 ((-660 (-944)))) (-15 -3537 ((-660 (-944)) (-660 (-944)))) (-15 -1717 ((-1297))) (-15 -2827 ((-660 (-1183)))) (-15 -2827 ((-660 (-1183)) (-660 (-1183)))) (-15 -1372 ((-660 (-1183)))) (-15 -3026 ((-944))) (-15 -2749 ((-944))) (-15 -3026 ((-944) (-944))) (-15 -2749 ((-944) (-944))) (-15 -3586 ((-944) (-944))) (-15 -3586 ((-944))) (-15 -2217 ((-228) (-391))) (-15 -2217 ((-228))))) (T -1295)) -((-2217 (*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1295)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1295)))) (-3586 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-2749 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3026 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-1372 (*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) (-2827 (*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) (-1717 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1295)))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295)))) (-3537 (*1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295)))) (-3481 (*1 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3738 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-2143 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-2372 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3901 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-4235 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) -(-10 -7 (-15 -4235 ((-892))) (-15 -4235 ((-892) (-892))) (-15 -3901 ((-892))) (-15 -3901 ((-892) (-892))) (-15 -2372 ((-892))) (-15 -2372 ((-892) (-892))) (-15 -2143 ((-892))) (-15 -2143 ((-892) (-892))) (-15 -3738 ((-944))) (-15 -3738 ((-944) (-944))) (-15 -3481 ((-660 (-787)))) (-15 -3481 ((-660 (-787)) (-660 (-787)))) (-15 -3537 ((-660 (-944)))) (-15 -3537 ((-660 (-944)) (-660 (-944)))) (-15 -1717 ((-1297))) (-15 -2827 ((-660 (-1183)))) (-15 -2827 ((-660 (-1183)) (-660 (-1183)))) (-15 -1372 ((-660 (-1183)))) (-15 -3026 ((-944))) (-15 -2749 ((-944))) (-15 -3026 ((-944) (-944))) (-15 -2749 ((-944) (-944))) (-15 -3586 ((-944) (-944))) (-15 -3586 ((-944))) (-15 -2217 ((-228) (-391))) (-15 -2217 ((-228)))) -((-1756 (((-481) (-660 (-660 (-966 (-228)))) (-660 (-271))) 22 T ELT) (((-481) (-660 (-660 (-966 (-228))))) 21 T ELT) (((-481) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271))) 20 T ELT)) (-2832 (((-1293) (-660 (-660 (-966 (-228)))) (-660 (-271))) 30 T ELT) (((-1293) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271))) 29 T ELT)) (-3603 (((-1293) (-481)) 46 T ELT))) -(((-1296) (-10 -7 (-15 -1756 ((-481) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -1756 ((-481) (-660 (-660 (-966 (-228)))))) (-15 -1756 ((-481) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -2832 ((-1293) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -2832 ((-1293) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -3603 ((-1293) (-481))))) (T -1296)) -((-3603 (*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1293)) (-5 *1 (-1296)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-1296)))) (-2832 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-1296)))) (-1756 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) (-5 *2 (-481)) (-5 *1 (-1296)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-481)) (-5 *1 (-1296)))) (-1756 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-481)) (-5 *1 (-1296))))) -(-10 -7 (-15 -1756 ((-481) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -1756 ((-481) (-660 (-660 (-966 (-228)))))) (-15 -1756 ((-481) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -2832 ((-1293) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -2832 ((-1293) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -3603 ((-1293) (-481)))) -((-4154 (($) 6 T ELT)) (-3603 (((-880) $) 9 T ELT))) -(((-1297) (-13 (-626 (-880)) (-10 -8 (-15 -4154 ($))))) (T -1297)) -((-4154 (*1 *1) (-5 *1 (-1297)))) -(-13 (-626 (-880)) (-10 -8 (-15 -4154 ($)))) -((-3051 (($ $ |#2|) 10 T ELT))) -(((-1298 |#1| |#2|) (-10 -8 (-15 -3051 (|#1| |#1| |#2|))) (-1299 |#2|) (-375)) (T -1298)) -NIL -(-10 -8 (-15 -3051 (|#1| |#1| |#2|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3941 (((-135)) 33 T ELT)) (-3603 (((-880) $) 12 T ELT)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ |#1|) 34 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-1299 |#1|) (-141) (-375)) (T -1299)) -((-3051 (*1 *1 *1 *2) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-375)))) (-3941 (*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) -(-13 (-733 |t#1|) (-10 -8 (-15 -3051 ($ $ |t#1|)) (-15 -3941 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) -((-4341 (((-660 (-1236 |#1|)) (-1201) (-1236 |#1|)) 83 T ELT)) (-3904 (((-1182 (-1182 (-975 |#1|))) (-1201) (-1182 (-975 |#1|))) 63 T ELT)) (-4076 (((-1 (-1182 (-1236 |#1|)) (-1182 (-1236 |#1|))) (-787) (-1236 |#1|) (-1182 (-1236 |#1|))) 74 T ELT)) (-2528 (((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787)) 65 T ELT)) (-2480 (((-1 (-1197 (-975 |#1|)) (-975 |#1|)) (-1201)) 32 T ELT)) (-2255 (((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787)) 64 T ELT))) -(((-1300 |#1|) (-10 -7 (-15 -2528 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -2255 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -3904 ((-1182 (-1182 (-975 |#1|))) (-1201) (-1182 (-975 |#1|)))) (-15 -2480 ((-1 (-1197 (-975 |#1|)) (-975 |#1|)) (-1201))) (-15 -4341 ((-660 (-1236 |#1|)) (-1201) (-1236 |#1|))) (-15 -4076 ((-1 (-1182 (-1236 |#1|)) (-1182 (-1236 |#1|))) (-787) (-1236 |#1|) (-1182 (-1236 |#1|))))) (-375)) (T -1300)) -((-4076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787)) (-4 *6 (-375)) (-5 *4 (-1236 *6)) (-5 *2 (-1 (-1182 *4) (-1182 *4))) (-5 *1 (-1300 *6)) (-5 *5 (-1182 *4)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-660 (-1236 *5))) (-5 *1 (-1300 *5)) (-5 *4 (-1236 *5)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1 (-1197 (-975 *4)) (-975 *4))) (-5 *1 (-1300 *4)) (-4 *4 (-375)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-1182 (-1182 (-975 *5)))) (-5 *1 (-1300 *5)) (-5 *4 (-1182 (-975 *5))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) (-5 *1 (-1300 *4)) (-4 *4 (-375)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) (-5 *1 (-1300 *4)) (-4 *4 (-375))))) -(-10 -7 (-15 -2528 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -2255 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -3904 ((-1182 (-1182 (-975 |#1|))) (-1201) (-1182 (-975 |#1|)))) (-15 -2480 ((-1 (-1197 (-975 |#1|)) (-975 |#1|)) (-1201))) (-15 -4341 ((-660 (-1236 |#1|)) (-1201) (-1236 |#1|))) (-15 -4076 ((-1 (-1182 (-1236 |#1|)) (-1182 (-1236 |#1|))) (-787) (-1236 |#1|) (-1182 (-1236 |#1|))))) -((-2139 (((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|) 80 T ELT)) (-2461 (((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) 79 T ELT))) -(((-1301 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2461 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2139 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|))) (-361) (-1268 |#1|) (-1268 |#2|) (-422 |#2| |#3|)) (T -1301)) -((-2139 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) (-5 *2 (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-1301 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-2461 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -2559 (-705 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-705 *4)))) (-5 *1 (-1301 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) -(-10 -7 (-15 -2461 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2139 ((-2 (|:| -2559 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3734 (((-1160) $) 11 T ELT)) (-1588 (((-1160) $) 9 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 17 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1302) (-13 (-1108) (-10 -8 (-15 -1588 ((-1160) $)) (-15 -3734 ((-1160) $))))) (T -1302)) -((-1588 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302))))) -(-13 (-1108) (-10 -8 (-15 -1588 ((-1160) $)) (-15 -3734 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3219 (((-1160) $) 9 T ELT)) (-3603 (((-880) $) 15 T ELT) (($ (-1206)) NIL T ELT) (((-1206) $) NIL T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT))) -(((-1303) (-13 (-1108) (-10 -8 (-15 -3219 ((-1160) $))))) (T -1303)) -((-3219 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1303))))) -(-13 (-1108) (-10 -8 (-15 -3219 ((-1160) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 58 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 81 T ELT) (($ (-577)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT)) (-1920 (((-787)) NIL T CONST)) (-3230 (((-1297) (-787)) 16 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 37 T CONST)) (-2767 (($) 84 T CONST)) (-2949 (((-112) $ $) 87 T ELT)) (-3051 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3042 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 63 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-1304 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1074) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3051 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3230 ((-1297) (-787))))) (-1074) (-865) (-809) (-972 |#1| |#3| |#2|) (-660 |#2|) (-660 (-787)) (-787)) (T -1304)) -((-3051 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1074)) (-4 *3 (-865)) (-4 *4 (-809)) (-14 *6 (-660 *3)) (-5 *1 (-1304 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-972 *2 *4 *3)) (-14 *7 (-660 (-787))) (-14 *8 (-787)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) (-14 *8 (-660 *5)) (-5 *2 (-1297)) (-5 *1 (-1304 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-972 *4 *6 *5)) (-14 *9 (-660 *3)) (-14 *10 *3)))) -(-13 (-1074) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3051 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3230 ((-1297) (-787))))) -((-3489 (((-112) $ $) NIL T ELT)) (-1546 (((-660 (-2 (|:| -1970 $) (|:| -3263 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-1568 (((-660 $) (-660 |#4|)) 96 T ELT)) (-3206 (((-660 |#3|) $) NIL T ELT)) (-1905 (((-112) $) NIL T ELT)) (-1421 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3924 ((|#4| |#4| $) NIL T ELT)) (-2312 (((-2 (|:| |under| $) (|:| -1374 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4403 (((-112) $ (-787)) NIL T ELT)) (-3730 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-3790 (($) NIL T CONST)) (-4046 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2569 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2573 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1574 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2483 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31 T ELT)) (-1399 (((-660 |#4|) (-660 |#4|) $) 28 (|has| |#1| (-569)) ELT)) (-4193 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2784 (((-3 $ "failed") (-660 |#4|)) NIL T ELT)) (-2155 (($ (-660 |#4|)) NIL T ELT)) (-1663 (((-3 $ "failed") $) 78 T ELT)) (-2801 ((|#4| |#4| $) 83 T ELT)) (-3289 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-3920 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2689 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-3165 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3270 ((|#4| |#4| $) NIL T ELT)) (-2498 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3630 (((-2 (|:| -1970 (-660 |#4|)) (|:| -3263 (-660 |#4|))) $) NIL T ELT)) (-3692 (((-660 |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1819 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1940 ((|#3| $) 84 T ELT)) (-1821 (((-112) $ (-787)) NIL T ELT)) (-2434 (((-660 |#4|) $) 32 (|has| $ (-6 -4470)) ELT)) (-1645 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT)) (-3089 (((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-660 |#4|)) 38 T ELT)) (-2826 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4471)) ELT)) (-2124 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-1365 (((-660 |#3|) $) NIL T ELT)) (-2639 (((-112) |#3| $) NIL T ELT)) (-3272 (((-112) $ (-787)) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3942 (((-3 |#4| "failed") $) NIL T ELT)) (-3425 (((-660 |#4|) $) 54 T ELT)) (-4233 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1458 ((|#4| |#4| $) 82 T ELT)) (-2928 (((-112) $ $) 93 T ELT)) (-4383 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2870 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2108 ((|#4| |#4| $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1652 (((-3 |#4| "failed") $) 77 T ELT)) (-2153 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3062 (((-3 $ "failed") $ |#4|) NIL T ELT)) (-1987 (($ $ |#4|) NIL T ELT)) (-2659 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-3273 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ELT)) (-3007 (((-112) $ $) NIL T ELT)) (-2856 (((-112) $) 75 T ELT)) (-2693 (($) 46 T ELT)) (-3616 (((-787) $) NIL T ELT)) (-1452 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))) ELT) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-1914 (($ $) NIL T ELT)) (-2176 (((-549) $) NIL (|has| |#4| (-627 (-549))) ELT)) (-3614 (($ (-660 |#4|)) NIL T ELT)) (-3620 (($ $ |#3|) NIL T ELT)) (-2003 (($ $ |#3|) NIL T ELT)) (-3307 (($ $) NIL T ELT)) (-3344 (($ $ |#3|) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (((-660 |#4|) $) 63 T ELT)) (-2272 (((-787) $) NIL (|has| |#3| (-380)) ELT)) (-1554 (((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-660 |#4|)) 45 T ELT)) (-2974 (((-660 $) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-660 $) (-660 |#4|)) 74 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-3200 (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2554 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-4353 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL T ELT)) (-2285 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)) ELT)) (-2939 (((-660 |#3|) $) NIL T ELT)) (-1401 (((-112) |#3| $) NIL T ELT)) (-2949 (((-112) $ $) NIL T ELT)) (-3501 (((-787) $) NIL (|has| $ (-6 -4470)) ELT))) -(((-1305 |#1| |#2| |#3| |#4|) (-13 (-1235 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3089 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3089 ((-3 $ "failed") (-660 |#4|))) (-15 -1554 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1554 ((-3 $ "failed") (-660 |#4|))) (-15 -2974 ((-660 $) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2974 ((-660 $) (-660 |#4|))))) (-569) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1305)) -((-3089 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8)))) (-3089 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1305 *3 *4 *5 *6)))) (-1554 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8)))) (-1554 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1305 *3 *4 *5 *6)))) (-2974 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-660 (-1305 *6 *7 *8 *9))) (-5 *1 (-1305 *6 *7 *8 *9)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-1305 *4 *5 *6 *7))) (-5 *1 (-1305 *4 *5 *6 *7))))) -(-13 (-1235 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3089 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3089 ((-3 $ "failed") (-660 |#4|))) (-15 -1554 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1554 ((-3 $ "failed") (-660 |#4|))) (-15 -2974 ((-660 $) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2974 ((-660 $) (-660 |#4|))))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-3790 (($) 18 T CONST)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 45 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 47 T ELT) (($ |#1| $) 46 T ELT))) -(((-1306 |#1|) (-141) (-1074)) (T -1306)) -NIL -(-13 (-1074) (-111 |t#1| |t#1|) (-629 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) -((-3489 (((-112) $ $) 67 T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1530 (((-660 |#1|) $) 52 T ELT)) (-2014 (($ $ (-787)) 46 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4158 (($ $ (-787)) 24 (|has| |#2| (-174)) ELT) (($ $ $) 25 (|has| |#2| (-174)) ELT)) (-3790 (($) NIL T CONST)) (-1743 (($ $ $) 70 T ELT) (($ $ (-835 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-2784 (((-3 (-835 |#1|) "failed") $) NIL T ELT)) (-2155 (((-835 |#1|) $) NIL T ELT)) (-3391 (($ $) 39 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2923 (((-112) $) NIL T ELT)) (-3166 (($ $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-1740 (($ (-835 |#1|) |#2|) 38 T ELT)) (-2504 (($ $) 40 T ELT)) (-1929 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-3565 (((-835 |#1|) $) NIL T ELT)) (-1945 (((-835 |#1|) $) 41 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3411 (($ $ $) 69 T ELT) (($ $ (-835 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3662 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3354 (((-835 |#1|) $) 35 T ELT)) (-3365 ((|#2| $) 37 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3616 (((-787) $) 43 T ELT)) (-1460 (((-112) $) 47 T ELT)) (-2609 ((|#2| $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-835 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-577)) NIL T ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-835 |#1|)) NIL T ELT)) (-2940 ((|#2| $ $) 76 T ELT) ((|#2| $ (-835 |#1|)) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 13 T CONST)) (-2767 (($) 19 T CONST)) (-2994 (((-660 (-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2949 (((-112) $ $) 44 T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 28 T ELT)) (** (($ $ (-787)) NIL T ELT) (($ $ (-944)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-835 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) -(((-1307 |#1| |#2|) (-13 (-394 |#2| (-835 |#1|)) (-1313 |#1| |#2|)) (-865) (-1074)) (T -1307)) -NIL -(-13 (-394 |#2| (-835 |#1|)) (-1313 |#1| |#2|)) -((-3716 ((|#3| |#3| (-787)) 28 T ELT)) (-2079 ((|#3| |#3| (-787)) 34 T ELT)) (-2852 ((|#3| |#3| |#3| (-787)) 35 T ELT))) -(((-1308 |#1| |#2| |#3|) (-10 -7 (-15 -2079 (|#3| |#3| (-787))) (-15 -3716 (|#3| |#3| (-787))) (-15 -2852 (|#3| |#3| |#3| (-787)))) (-13 (-1074) (-733 (-420 (-577)))) (-865) (-1313 |#2| |#1|)) (T -1308)) -((-2852 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) (-3716 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) (-2079 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4))))) -(-10 -7 (-15 -2079 (|#3| |#3| (-787))) (-15 -3716 (|#3| |#3| (-787))) (-15 -2852 (|#3| |#3| |#3| (-787)))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1530 (((-660 |#1|) $) 47 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-4158 (($ $ $) 50 (|has| |#2| (-174)) ELT) (($ $ (-787)) 49 (|has| |#2| (-174)) ELT)) (-3790 (($) 18 T CONST)) (-1743 (($ $ |#1|) 61 T ELT) (($ $ (-835 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2784 (((-3 (-835 |#1|) "failed") $) 71 T ELT)) (-2155 (((-835 |#1|) $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2923 (((-112) $) 52 T ELT)) (-3166 (($ $) 51 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2148 (((-112) $) 57 T ELT)) (-1740 (($ (-835 |#1|) |#2|) 58 T ELT)) (-2504 (($ $) 56 T ELT)) (-1929 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-3565 (((-835 |#1|) $) 68 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3411 (($ $ |#1|) 64 T ELT) (($ $ (-835 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-1460 (((-112) $) 54 T ELT)) (-2609 ((|#2| $) 53 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-835 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2940 ((|#2| $ (-835 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) -(((-1309 |#1| |#2|) (-141) (-865) (-1074)) (T -1309)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-835 *3)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| |k| (-835 *3)) (|:| |c| *4))))) (-2940 (*1 *2 *1 *3) (-12 (-5 *3 (-835 *4)) (-4 *1 (-1309 *4 *2)) (-4 *4 (-865)) (-4 *2 (-1074)))) (-2940 (*1 *2 *1 *1) (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-3411 (*1 *1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-3411 (*1 *1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-1743 (*1 *1 *1 *2) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-1743 (*1 *1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-1740 (*1 *1 *2 *3) (-12 (-5 *2 (-835 *4)) (-4 *4 (-865)) (-4 *1 (-1309 *4 *3)) (-4 *3 (-1074)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2504 (*1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-3603 (*1 *1 *2) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-4158 (*1 *1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)) (-4 *3 (-174)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-4 *4 (-174)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-660 *3))))) -(-13 (-1074) (-1306 |t#2|) (-1063 (-835 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3565 ((-835 |t#1|) $)) (-15 -1929 ((-2 (|:| |k| (-835 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2940 (|t#2| $ (-835 |t#1|))) (-15 -2940 (|t#2| $ $)) (-15 -3411 ($ $ |t#1|)) (-15 -3411 ($ $ (-835 |t#1|))) (-15 -3411 ($ $ $)) (-15 -1743 ($ $ |t#1|)) (-15 -1743 ($ $ (-835 |t#1|))) (-15 -1743 ($ $ $)) (-15 -1740 ($ (-835 |t#1|) |t#2|)) (-15 -2148 ((-112) $)) (-15 -2504 ($ $)) (-15 -3603 ($ |t#1|)) (-15 -1460 ((-112) $)) (-15 -2609 (|t#2| $)) (-15 -2923 ((-112) $)) (-15 -3166 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -4158 ($ $ $)) (-15 -4158 ($ $ (-787)))) |%noBranch|) (-15 -2124 ($ (-1 |t#2| |t#2|) $)) (-15 -1530 ((-660 |t#1|) $)) (IF (|has| |t#2| (-6 -4463)) (-6 -4463) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 #0=(-835 |#1|)) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-662 $) . T) ((-664 |#2|) . T) ((-664 $) . T) ((-656 |#2|) |has| |#2| (-174)) ((-733 |#2|) |has| |#2| (-174)) ((-742) . T) ((-1063 #0#) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1306 |#2|) . T)) -((-3591 (((-112) $) 15 T ELT)) (-1401 (((-112) $) 14 T ELT)) (-1427 (($ $) 19 T ELT) (($ $ (-787)) 21 T ELT))) -(((-1310 |#1| |#2|) (-10 -8 (-15 -1427 (|#1| |#1| (-787))) (-15 -1427 (|#1| |#1|)) (-15 -3591 ((-112) |#1|)) (-15 -1401 ((-112) |#1|))) (-1311 |#2|) (-375)) (T -1310)) -NIL -(-10 -8 (-15 -1427 (|#1| |#1| (-787))) (-15 -1427 (|#1| |#1|)) (-15 -3591 ((-112) |#1|)) (-15 -1401 ((-112) |#1|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-2958 (((-2 (|:| -3426 $) (|:| -4457 $) (|:| |associate| $)) $) 47 T ELT)) (-4122 (($ $) 46 T ELT)) (-3547 (((-112) $) 44 T ELT)) (-3591 (((-112) $) 104 T ELT)) (-3678 (((-787)) 100 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-2001 (($ $) 81 T ELT)) (-3836 (((-431 $) $) 80 T ELT)) (-2435 (((-112) $ $) 65 T ELT)) (-3790 (($) 18 T CONST)) (-2784 (((-3 |#1| "failed") $) 111 T ELT)) (-2155 ((|#1| $) 112 T ELT)) (-3436 (($ $ $) 61 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-3447 (($ $ $) 62 T ELT)) (-3885 (((-2 (|:| -2940 (-660 $)) (|:| -3428 $)) (-660 $)) 57 T ELT)) (-1865 (($ $ (-787)) 97 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) 96 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2182 (((-112) $) 79 T ELT)) (-2536 (((-849 (-944)) $) 94 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3306 (((-112) $) 35 T ELT)) (-1736 (((-3 (-660 $) "failed") (-660 $) $) 58 T ELT)) (-3508 (($ $ $) 52 T ELT) (($ (-660 $)) 51 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-3318 (($ $) 78 T ELT)) (-1792 (((-112) $) 103 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3502 (((-1197 $) (-1197 $) (-1197 $)) 50 T ELT)) (-3543 (($ $ $) 54 T ELT) (($ (-660 $)) 53 T ELT)) (-3056 (((-431 $) $) 82 T ELT)) (-2884 (((-849 (-944))) 101 T ELT)) (-1373 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3428 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3478 (((-3 $ "failed") $ $) 48 T ELT)) (-2071 (((-3 (-660 $) "failed") (-660 $) $) 56 T ELT)) (-4167 (((-787) $) 64 T ELT)) (-3039 (((-2 (|:| -2669 $) (|:| -2689 $)) $ $) 63 T ELT)) (-3816 (((-3 (-787) "failed") $ $) 95 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3941 (((-135)) 109 T ELT)) (-3616 (((-849 (-944)) $) 102 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 110 T ELT)) (-3907 (((-3 $ "failed") $) 93 (-2811 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2174 (((-112) $ $) 45 T ELT)) (-1401 (((-112) $) 105 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-1427 (($ $) 99 (|has| |#1| (-380)) ELT) (($ $ (-787)) 98 (|has| |#1| (-380)) ELT)) (-2949 (((-112) $ $) 8 T ELT)) (-3051 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) -(((-1311 |#1|) (-141) (-375)) (T -1311)) -((-1401 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944))))) (-2884 (*1 *2) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944))))) (-3678 (*1 *2) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-787)))) (-1427 (*1 *1 *1) (-12 (-4 *1 (-1311 *2)) (-4 *2 (-375)) (-4 *2 (-380)))) (-1427 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-4 *3 (-380))))) -(-13 (-375) (-1063 |t#1|) (-1299 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-415)) |%noBranch|) (-15 -1401 ((-112) $)) (-15 -3591 ((-112) $)) (-15 -1792 ((-112) $)) (-15 -3616 ((-849 (-944)) $)) (-15 -2884 ((-849 (-944)))) (-15 -3678 ((-787))) (IF (|has| |t#1| (-380)) (PROGN (-6 (-415)) (-15 -1427 ($ $)) (-15 -1427 ($ $ (-787)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2811 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) -2811 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 |#1|) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T) ((-1299 |#1|) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1530 (((-660 |#1|) $) 98 T ELT)) (-2014 (($ $ (-787)) 102 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4158 (($ $ $) NIL (|has| |#2| (-174)) ELT) (($ $ (-787)) NIL (|has| |#2| (-174)) ELT)) (-3790 (($) NIL T CONST)) (-1743 (($ $ |#1|) NIL T ELT) (($ $ (-835 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-2784 (((-3 (-835 |#1|) "failed") $) NIL T ELT) (((-3 (-912 |#1|) "failed") $) NIL T ELT)) (-2155 (((-835 |#1|) $) NIL T ELT) (((-912 |#1|) $) NIL T ELT)) (-3391 (($ $) 101 T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2923 (((-112) $) 90 T ELT)) (-3166 (($ $) 93 T ELT)) (-1439 (($ $ $ (-787)) 103 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-1740 (($ (-835 |#1|) |#2|) NIL T ELT) (($ (-912 |#1|) |#2|) 29 T ELT)) (-2504 (($ $) 119 T ELT)) (-1929 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3565 (((-835 |#1|) $) NIL T ELT)) (-1945 (((-835 |#1|) $) NIL T ELT)) (-2124 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3411 (($ $ |#1|) NIL T ELT) (($ $ (-835 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3716 (($ $ (-787)) 112 (|has| |#2| (-733 (-420 (-577)))) ELT)) (-3662 (((-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3354 (((-912 |#1|) $) 83 T ELT)) (-3365 ((|#2| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2079 (($ $ (-787)) 109 (|has| |#2| (-733 (-420 (-577)))) ELT)) (-3616 (((-787) $) 99 T ELT)) (-1460 (((-112) $) 84 T ELT)) (-2609 ((|#2| $) 88 T ELT)) (-3603 (((-880) $) 69 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 60 T ELT) (($ (-835 |#1|)) NIL T ELT) (($ |#1|) 71 T ELT) (($ (-912 |#1|)) NIL T ELT) (($ (-680 |#1| |#2|)) 48 T ELT) (((-1307 |#1| |#2|) $) 76 T ELT) (((-1316 |#1| |#2|) $) 81 T ELT)) (-4198 (((-660 |#2|) $) NIL T ELT)) (-3421 ((|#2| $ (-912 |#1|)) NIL T ELT)) (-2940 ((|#2| $ (-835 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 21 T CONST)) (-2767 (($) 28 T CONST)) (-2994 (((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2357 (((-3 (-680 |#1| |#2|) "failed") $) 118 T ELT)) (-2949 (((-112) $ $) 77 T ELT)) (-3042 (($ $) 111 T ELT) (($ $ $) 110 T ELT)) (-3031 (($ $ $) 20 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 49 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-912 |#1|)) NIL T ELT))) -(((-1312 |#1| |#2|) (-13 (-1313 |#1| |#2|) (-394 |#2| (-912 |#1|)) (-10 -8 (-15 -3603 ($ (-680 |#1| |#2|))) (-15 -3603 ((-1307 |#1| |#2|) $)) (-15 -3603 ((-1316 |#1| |#2|) $)) (-15 -2357 ((-3 (-680 |#1| |#2|) "failed") $)) (-15 -1439 ($ $ $ (-787))) (IF (|has| |#2| (-733 (-420 (-577)))) (PROGN (-15 -2079 ($ $ (-787))) (-15 -3716 ($ $ (-787)))) |%noBranch|))) (-865) (-174)) (T -1312)) -((-3603 (*1 *1 *2) (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *1 (-1312 *3 *4)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1316 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-2357 (*1 *2 *1) (|partial| -12 (-5 *2 (-680 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-1439 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-2079 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174)))) (-3716 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174))))) -(-13 (-1313 |#1| |#2|) (-394 |#2| (-912 |#1|)) (-10 -8 (-15 -3603 ($ (-680 |#1| |#2|))) (-15 -3603 ((-1307 |#1| |#2|) $)) (-15 -3603 ((-1316 |#1| |#2|) $)) (-15 -2357 ((-3 (-680 |#1| |#2|) "failed") $)) (-15 -1439 ($ $ $ (-787))) (IF (|has| |#2| (-733 (-420 (-577)))) (PROGN (-15 -2079 ($ $ (-787))) (-15 -3716 ($ $ (-787)))) |%noBranch|))) -((-3489 (((-112) $ $) 7 T ELT)) (-3801 (((-112) $) 17 T ELT)) (-1530 (((-660 |#1|) $) 47 T ELT)) (-2014 (($ $ (-787)) 80 T ELT)) (-1771 (((-3 $ "failed") $ $) 20 T ELT)) (-4158 (($ $ $) 50 (|has| |#2| (-174)) ELT) (($ $ (-787)) 49 (|has| |#2| (-174)) ELT)) (-3790 (($) 18 T CONST)) (-1743 (($ $ |#1|) 61 T ELT) (($ $ (-835 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2784 (((-3 (-835 |#1|) "failed") $) 71 T ELT)) (-2155 (((-835 |#1|) $) 72 T ELT)) (-1625 (((-3 $ "failed") $) 37 T ELT)) (-2923 (((-112) $) 52 T ELT)) (-3166 (($ $) 51 T ELT)) (-3306 (((-112) $) 35 T ELT)) (-2148 (((-112) $) 57 T ELT)) (-1740 (($ (-835 |#1|) |#2|) 58 T ELT)) (-2504 (($ $) 56 T ELT)) (-1929 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-3565 (((-835 |#1|) $) 68 T ELT)) (-1945 (((-835 |#1|) $) 82 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3411 (($ $ |#1|) 64 T ELT) (($ $ (-835 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-2045 (((-1183) $) 10 T ELT)) (-1440 (((-1145) $) 11 T ELT)) (-3616 (((-787) $) 81 T ELT)) (-1460 (((-112) $) 54 T ELT)) (-2609 ((|#2| $) 53 T ELT)) (-3603 (((-880) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-835 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2940 ((|#2| $ (-835 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-1920 (((-787)) 32 T CONST)) (-2726 (((-112) $ $) 6 T ELT)) (-2754 (($) 19 T CONST)) (-2767 (($) 34 T CONST)) (-2949 (((-112) $ $) 8 T ELT)) (-3042 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3031 (($ $ $) 15 T ELT)) (** (($ $ (-944)) 28 T ELT) (($ $ (-787)) 36 T ELT)) (* (($ (-944) $) 14 T ELT) (($ (-787) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) -(((-1313 |#1| |#2|) (-141) (-865) (-1074)) (T -1313)) -((-1945 (*1 *2 *1) (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-835 *3)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-787)))) (-2014 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074))))) -(-13 (-1309 |t#1| |t#2|) (-10 -8 (-15 -1945 ((-835 |t#1|) $)) (-15 -3616 ((-787) $)) (-15 -2014 ($ $ (-787))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 #0=(-835 |#1|)) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-662 $) . T) ((-664 |#2|) . T) ((-664 $) . T) ((-656 |#2|) |has| |#2| (-174)) ((-733 |#2|) |has| |#2| (-174)) ((-742) . T) ((-1063 #0#) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1306 |#2|) . T) ((-1309 |#1| |#2|) . T)) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1530 (((-660 (-1201)) $) NIL T ELT)) (-3161 (($ (-1307 (-1201) |#1|)) NIL T ELT)) (-2014 (($ $ (-787)) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4158 (($ $ $) NIL (|has| |#1| (-174)) ELT) (($ $ (-787)) NIL (|has| |#1| (-174)) ELT)) (-3790 (($) NIL T CONST)) (-1743 (($ $ (-1201)) NIL T ELT) (($ $ (-835 (-1201))) NIL T ELT) (($ $ $) NIL T ELT)) (-2784 (((-3 (-835 (-1201)) "failed") $) NIL T ELT)) (-2155 (((-835 (-1201)) $) NIL T ELT)) (-1625 (((-3 $ "failed") $) NIL T ELT)) (-2923 (((-112) $) NIL T ELT)) (-3166 (($ $) NIL T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-1740 (($ (-835 (-1201)) |#1|) NIL T ELT)) (-2504 (($ $) NIL T ELT)) (-1929 (((-2 (|:| |k| (-835 (-1201))) (|:| |c| |#1|)) $) NIL T ELT)) (-3565 (((-835 (-1201)) $) NIL T ELT)) (-1945 (((-835 (-1201)) $) NIL T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3411 (($ $ (-1201)) NIL T ELT) (($ $ (-835 (-1201))) NIL T ELT) (($ $ $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3694 (((-1307 (-1201) |#1|) $) NIL T ELT)) (-3616 (((-787) $) NIL T ELT)) (-1460 (((-112) $) NIL T ELT)) (-2609 ((|#1| $) NIL T ELT)) (-3603 (((-880) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-835 (-1201))) NIL T ELT) (($ (-1201)) NIL T ELT)) (-2940 ((|#1| $ (-835 (-1201))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-1920 (((-787)) NIL T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) NIL T CONST)) (-1637 (((-660 (-2 (|:| |k| (-1201)) (|:| |c| $))) $) NIL T ELT)) (-2767 (($) NIL T CONST)) (-2949 (((-112) $ $) NIL T ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) NIL T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) NIL T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1201) $) NIL T ELT))) -(((-1314 |#1|) (-13 (-1313 (-1201) |#1|) (-10 -8 (-15 -3694 ((-1307 (-1201) |#1|) $)) (-15 -3161 ($ (-1307 (-1201) |#1|))) (-15 -1637 ((-660 (-2 (|:| |k| (-1201)) (|:| |c| $))) $)))) (-1074)) (T -1314)) -((-3694 (*1 *2 *1) (-12 (-5 *2 (-1307 (-1201) *3)) (-5 *1 (-1314 *3)) (-4 *3 (-1074)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-1307 (-1201) *3)) (-4 *3 (-1074)) (-5 *1 (-1314 *3)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-1201)) (|:| |c| (-1314 *3))))) (-5 *1 (-1314 *3)) (-4 *3 (-1074))))) -(-13 (-1313 (-1201) |#1|) (-10 -8 (-15 -3694 ((-1307 (-1201) |#1|) $)) (-15 -3161 ($ (-1307 (-1201) |#1|))) (-15 -1637 ((-660 (-2 (|:| |k| (-1201)) (|:| |c| $))) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3790 (($) NIL T CONST)) (-2784 (((-3 |#2| "failed") $) NIL T ELT)) (-2155 ((|#2| $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 42 T ELT)) (-2923 (((-112) $) 35 T ELT)) (-3166 (($ $) 37 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2011 (((-787) $) NIL T ELT)) (-4242 (((-660 $) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-1740 (($ |#2| |#1|) NIL T ELT)) (-3565 ((|#2| $) 24 T ELT)) (-1945 ((|#2| $) 22 T ELT)) (-2124 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3662 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3354 ((|#2| $) NIL T ELT)) (-3365 ((|#1| $) NIL T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-1460 (((-112) $) 32 T ELT)) (-2609 ((|#1| $) 33 T ELT)) (-3603 (((-880) $) 65 T ELT) (($ (-577)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-4198 (((-660 |#1|) $) NIL T ELT)) (-3421 ((|#1| $ |#2|) NIL T ELT)) (-2940 ((|#1| $ |#2|) 28 T ELT)) (-1920 (((-787)) 14 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 29 T CONST)) (-2767 (($) 11 T CONST)) (-2994 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-2949 (((-112) $ $) 30 T ELT)) (-3051 (($ $ |#1|) 67 (|has| |#1| (-375)) ELT)) (-3042 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3031 (($ $ $) 50 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 52 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3501 (((-787) $) 16 T ELT))) -(((-1315 |#1| |#2|) (-13 (-1074) (-1306 |#1|) (-394 |#1| |#2|) (-629 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3501 ((-787) $)) (-15 -1945 (|#2| $)) (-15 -3565 (|#2| $)) (-15 -3391 ($ $)) (-15 -2940 (|#1| $ |#2|)) (-15 -1460 ((-112) $)) (-15 -2609 (|#1| $)) (-15 -2923 ((-112) $)) (-15 -3166 ($ $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -3051 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4467)) (-6 -4467) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) (-1074) (-862)) (T -1315)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862)))) (-3391 (*1 *1 *1) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-1315 *3 *4)) (-4 *4 (-862)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-862)))) (-1945 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074)))) (-3565 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074)))) (-2940 (*1 *2 *1 *3) (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-862)))) (-2609 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-862)))) (-3166 (*1 *1 *1) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1074)) (-4 *3 (-862))))) -(-13 (-1074) (-1306 |#1|) (-394 |#1| |#2|) (-629 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3501 ((-787) $)) (-15 -1945 (|#2| $)) (-15 -3565 (|#2| $)) (-15 -3391 ($ $)) (-15 -2940 (|#1| $ |#2|)) (-15 -1460 ((-112) $)) (-15 -2609 (|#1| $)) (-15 -2923 ((-112) $)) (-15 -3166 ($ $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -3051 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4467)) (-6 -4467) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) -((-3489 (((-112) $ $) 27 T ELT)) (-3801 (((-112) $) NIL T ELT)) (-1530 (((-660 |#1|) $) 132 T ELT)) (-3161 (($ (-1307 |#1| |#2|)) 50 T ELT)) (-2014 (($ $ (-787)) 38 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-4158 (($ $ $) 54 (|has| |#2| (-174)) ELT) (($ $ (-787)) 52 (|has| |#2| (-174)) ELT)) (-3790 (($) NIL T CONST)) (-1743 (($ $ |#1|) 114 T ELT) (($ $ (-835 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-2784 (((-3 (-835 |#1|) "failed") $) NIL T ELT)) (-2155 (((-835 |#1|) $) NIL T ELT)) (-1625 (((-3 $ "failed") $) 122 T ELT)) (-2923 (((-112) $) 117 T ELT)) (-3166 (($ $) 118 T ELT)) (-3306 (((-112) $) NIL T ELT)) (-2148 (((-112) $) NIL T ELT)) (-1740 (($ (-835 |#1|) |#2|) 20 T ELT)) (-2504 (($ $) NIL T ELT)) (-1929 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3565 (((-835 |#1|) $) 123 T ELT)) (-1945 (((-835 |#1|) $) 126 T ELT)) (-2124 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3411 (($ $ |#1|) 112 T ELT) (($ $ (-835 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3694 (((-1307 |#1| |#2|) $) 94 T ELT)) (-3616 (((-787) $) 129 T ELT)) (-1460 (((-112) $) 81 T ELT)) (-2609 ((|#2| $) 32 T ELT)) (-3603 (((-880) $) 73 T ELT) (($ (-577)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-835 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-2940 ((|#2| $ (-835 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-1920 (((-787)) 120 T CONST)) (-2726 (((-112) $ $) NIL T ELT)) (-2754 (($) 15 T CONST)) (-1637 (((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2767 (($) 33 T CONST)) (-2949 (((-112) $ $) 14 T ELT)) (-3042 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3031 (($ $ $) 61 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 55 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) 53 T ELT) (($ (-577) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1316 |#1| |#2|) (-13 (-1313 |#1| |#2|) (-10 -8 (-15 -3694 ((-1307 |#1| |#2|) $)) (-15 -3161 ($ (-1307 |#1| |#2|))) (-15 -1637 ((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-865) (-1074)) (T -1316)) -((-3694 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *1 (-1316 *3 *4)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| *3) (|:| |c| (-1316 *3 *4))))) (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074))))) -(-13 (-1313 |#1| |#2|) (-10 -8 (-15 -3694 ((-1307 |#1| |#2|) $)) (-15 -3161 ($ (-1307 |#1| |#2|))) (-15 -1637 ((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3489 (((-112) $ $) NIL T ELT)) (-2679 (($ (-660 (-944))) 10 T ELT)) (-4217 (((-996) $) 12 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-3603 (((-880) $) 25 T ELT) (($ (-996)) 14 T ELT) (((-996) $) 13 T ELT)) (-2726 (((-112) $ $) NIL T ELT)) (-2949 (((-112) $ $) 17 T ELT))) -(((-1317) (-13 (-1125) (-503 (-996)) (-10 -8 (-15 -2679 ($ (-660 (-944)))) (-15 -4217 ((-996) $))))) (T -1317)) -((-2679 (*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1317)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-1317))))) -(-13 (-1125) (-503 (-996)) (-10 -8 (-15 -2679 ($ (-660 (-944)))) (-15 -4217 ((-996) $)))) -((-2464 (((-660 (-1182 |#1|)) (-1 (-660 (-1182 |#1|)) (-660 (-1182 |#1|))) (-577)) 16 T ELT) (((-1182 |#1|) (-1 (-1182 |#1|) (-1182 |#1|))) 13 T ELT))) -(((-1318 |#1|) (-10 -7 (-15 -2464 ((-1182 |#1|) (-1 (-1182 |#1|) (-1182 |#1|)))) (-15 -2464 ((-660 (-1182 |#1|)) (-1 (-660 (-1182 |#1|)) (-660 (-1182 |#1|))) (-577)))) (-1242)) (T -1318)) -((-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-660 (-1182 *5)) (-660 (-1182 *5)))) (-5 *4 (-577)) (-5 *2 (-660 (-1182 *5))) (-5 *1 (-1318 *5)) (-4 *5 (-1242)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1 (-1182 *4) (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1318 *4)) (-4 *4 (-1242))))) -(-10 -7 (-15 -2464 ((-1182 |#1|) (-1 (-1182 |#1|) (-1182 |#1|)))) (-15 -2464 ((-660 (-1182 |#1|)) (-1 (-660 (-1182 |#1|)) (-660 (-1182 |#1|))) (-577)))) -((-1997 (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|))) 174 T ELT) (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112)) 173 T ELT) (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)) 172 T ELT) (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112) (-112)) 171 T ELT) (((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-1071 |#1| |#2|)) 156 T ELT)) (-2235 (((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|))) 85 T ELT) (((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112)) 84 T ELT) (((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112) (-112)) 83 T ELT)) (-3836 (((-660 (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) (-1071 |#1| |#2|)) 73 T ELT)) (-3723 (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|))) 140 T ELT) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112)) 139 T ELT) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112)) 138 T ELT) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112) (-112)) 137 T ELT) (((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|)) 132 T ELT)) (-3438 (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|))) 145 T ELT) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112)) 144 T ELT) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112)) 143 T ELT) (((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|)) 142 T ELT)) (-2176 (((-660 (-796 |#1| (-882 |#3|))) (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) 111 T ELT) (((-1197 (-1049 (-420 |#1|))) (-1197 |#1|)) 102 T ELT) (((-975 (-1049 (-420 |#1|))) (-796 |#1| (-882 |#3|))) 109 T ELT) (((-975 (-1049 (-420 |#1|))) (-975 |#1|)) 107 T ELT) (((-796 |#1| (-882 |#3|)) (-796 |#1| (-882 |#2|))) 33 T ELT))) -(((-1319 |#1| |#2| |#3|) (-10 -7 (-15 -2235 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112) (-112))) (-15 -2235 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112))) (-15 -2235 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-1071 |#1| |#2|))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3836 ((-660 (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) (-1071 |#1| |#2|))) (-15 -2176 ((-796 |#1| (-882 |#3|)) (-796 |#1| (-882 |#2|)))) (-15 -2176 ((-975 (-1049 (-420 |#1|))) (-975 |#1|))) (-15 -2176 ((-975 (-1049 (-420 |#1|))) (-796 |#1| (-882 |#3|)))) (-15 -2176 ((-1197 (-1049 (-420 |#1|))) (-1197 |#1|))) (-15 -2176 ((-660 (-796 |#1| (-882 |#3|))) (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))))) (-13 (-864) (-318) (-148) (-1047)) (-660 (-1201)) (-660 (-1201))) (T -1319)) -((-2176 (*1 *2 *3) (-12 (-5 *3 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6)))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-796 *4 (-882 *6)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-1197 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-796 *4 (-882 *6))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-796 *4 (-882 *5))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-796 *4 (-882 *6))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3723 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3723 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-1997 (*1 *2 *3) (-12 (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *4)) (|:| -2729 (-660 (-975 *4)))))) (-5 *1 (-1319 *4 *5 *6)) (-5 *3 (-660 (-975 *4))) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-1997 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-2 (|:| -3128 (-1197 *4)) (|:| -2729 (-660 (-975 *4)))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-1071 *4 *5))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-2235 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-2235 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201)))))) -(-10 -7 (-15 -2235 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112) (-112))) (-15 -2235 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112))) (-15 -2235 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-1071 |#1| |#2|))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -1997 ((-660 (-2 (|:| -3128 (-1197 |#1|)) (|:| -2729 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3723 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3438 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3836 ((-660 (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) (-1071 |#1| |#2|))) (-15 -2176 ((-796 |#1| (-882 |#3|)) (-796 |#1| (-882 |#2|)))) (-15 -2176 ((-975 (-1049 (-420 |#1|))) (-975 |#1|))) (-15 -2176 ((-975 (-1049 (-420 |#1|))) (-796 |#1| (-882 |#3|)))) (-15 -2176 ((-1197 (-1049 (-420 |#1|))) (-1197 |#1|))) (-15 -2176 ((-660 (-796 |#1| (-882 |#3|))) (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))))) -((-3820 (((-3 (-1292 (-420 (-577))) "failed") (-1292 |#1|) |#1|) 21 T ELT)) (-3577 (((-112) (-1292 |#1|)) 12 T ELT)) (-2105 (((-3 (-1292 (-577)) "failed") (-1292 |#1|)) 16 T ELT))) -(((-1320 |#1|) (-10 -7 (-15 -3577 ((-112) (-1292 |#1|))) (-15 -2105 ((-3 (-1292 (-577)) "failed") (-1292 |#1|))) (-15 -3820 ((-3 (-1292 (-420 (-577))) "failed") (-1292 |#1|) |#1|))) (-13 (-1074) (-654 (-577)))) (T -1320)) -((-3820 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) (-5 *2 (-1292 (-420 (-577)))) (-5 *1 (-1320 *4)))) (-2105 (*1 *2 *3) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) (-5 *2 (-1292 (-577))) (-5 *1 (-1320 *4)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) (-5 *2 (-112)) (-5 *1 (-1320 *4))))) -(-10 -7 (-15 -3577 ((-112) (-1292 |#1|))) (-15 -2105 ((-3 (-1292 (-577)) "failed") (-1292 |#1|))) (-15 -3820 ((-3 (-1292 (-420 (-577))) "failed") (-1292 |#1|) |#1|))) -((-3489 (((-112) $ $) NIL T ELT)) (-3801 (((-112) $) 11 T ELT)) (-1771 (((-3 $ "failed") $ $) NIL T ELT)) (-3373 (((-787)) 8 T ELT)) (-3790 (($) NIL T CONST)) (-1625 (((-3 $ "failed") $) 58 T ELT)) (-2352 (($) 49 T ELT)) (-3306 (((-112) $) 57 T ELT)) (-1454 (((-3 $ "failed") $) 40 T ELT)) (-2144 (((-944) $) 15 T ELT)) (-2045 (((-1183) $) NIL T ELT)) (-3457 (($) 32 T CONST)) (-3251 (($ (-944)) 50 T ELT)) (-1440 (((-1145) $) NIL T ELT)) (-2176 (((-577) $) 13 T ELT)) (-3603 (((-880) $) 27 T ELT) (($ (-577)) 24 T ELT)) (-1920 (((-787)) 9 T CONST)) (-2726 (((-112) $ $) 60 T ELT)) (-2754 (($) 29 T CONST)) (-2767 (($) 31 T CONST)) (-2949 (((-112) $ $) 38 T ELT)) (-3042 (($ $) 52 T ELT) (($ $ $) 47 T ELT)) (-3031 (($ $ $) 35 T ELT)) (** (($ $ (-944)) NIL T ELT) (($ $ (-787)) 54 T ELT)) (* (($ (-944) $) NIL T ELT) (($ (-787) $) NIL T ELT) (($ (-577) $) 44 T ELT) (($ $ $) 43 T ELT))) -(((-1321 |#1|) (-13 (-174) (-380) (-627 (-577)) (-1177)) (-944)) (T -1321)) -NIL -(-13 (-174) (-380) (-627 (-577)) (-1177)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3465692 3465697 3465702 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3465677 3465682 3465687 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3465662 3465667 3465672 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3465647 3465652 3465657 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1321 3464634 3465522 3465599 "ZMOD" 3465604 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1320 3463670 3463852 3464075 "ZLINDEP" 3464466 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1319 3452832 3454738 3456710 "ZDSOLVE" 3461800 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1318 3452066 3452219 3452408 "YSTREAM" 3452678 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1317 3451434 3451740 3451853 "YDIAGRAM" 3451975 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1316 3448882 3450735 3450939 "XRPOLY" 3451277 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1315 3445149 3446753 3447328 "XPR" 3448354 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1314 3442544 3444480 3444684 "XPOLY" 3444980 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1313 3439875 3441551 3441606 "XPOLYC" 3441894 NIL XPOLYC (NIL T T) -9 NIL 3442007 NIL) (-1312 3435821 3438392 3438780 "XPBWPOLY" 3439533 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3431090 3433797 3433839 "XF" 3434460 NIL XF (NIL T) -9 NIL 3434860 NIL) (-1310 3430687 3430799 3430968 "XF-" 3430973 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1309 3425579 3427158 3427213 "XFALG" 3429385 NIL XFALG (NIL T T) -9 NIL 3430174 NIL) (-1308 3424694 3424816 3425021 "XEXPPKG" 3425471 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1307 3422435 3424544 3424640 "XDPOLY" 3424645 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3421090 3421828 3421871 "XALG" 3421876 NIL XALG (NIL T) -9 NIL 3421987 NIL) (-1305 3414000 3419067 3419561 "WUTSET" 3420682 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1304 3412102 3413052 3413375 "WP" 3413811 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1303 3411650 3411924 3411994 "WHILEAST" 3412054 T WHILEAST (NIL) -8 NIL NIL NIL) (-1302 3411062 3411367 3411461 "WHEREAST" 3411578 T WHEREAST (NIL) -8 NIL NIL NIL) (-1301 3409936 3410146 3410441 "WFFINTBS" 3410859 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1300 3407804 3408267 3408729 "WEIER" 3409508 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1299 3406728 3407286 3407328 "VSPACE" 3407464 NIL VSPACE (NIL T) -9 NIL 3407538 NIL) (-1298 3406560 3406593 3406684 "VSPACE-" 3406689 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1297 3406357 3406411 3406479 "VOID" 3406514 T VOID (NIL) -8 NIL NIL NIL) (-1296 3404457 3404852 3405258 "VIEW" 3405973 T VIEW (NIL) -7 NIL NIL NIL) (-1295 3400725 3401520 3402257 "VIEWDEF" 3403742 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1294 3389669 3392273 3394446 "VIEW3D" 3398574 T VIEW3D (NIL) -8 NIL NIL NIL) (-1293 3381686 3383580 3385159 "VIEW2D" 3388112 T VIEW2D (NIL) -8 NIL NIL NIL) (-1292 3376592 3381456 3381548 "VECTOR" 3381629 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1291 3375145 3375428 3375746 "VECTOR2" 3376322 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1290 3368099 3372849 3372892 "VECTCAT" 3373887 NIL VECTCAT (NIL T) -9 NIL 3374474 NIL) (-1289 3367041 3367367 3367757 "VECTCAT-" 3367762 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1288 3366447 3366692 3366812 "VARIABLE" 3366956 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1287 3366380 3366385 3366415 "UTYPE" 3366420 T UTYPE (NIL) -9 NIL NIL NIL) (-1286 3365188 3365364 3365626 "UTSODETL" 3366206 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1285 3362580 3363088 3363612 "UTSODE" 3364729 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1284 3353890 3360341 3360821 "UTS" 3362158 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1283 3343898 3349824 3349867 "UTSCAT" 3350979 NIL UTSCAT (NIL T) -9 NIL 3351737 NIL) (-1282 3341024 3341968 3342957 "UTSCAT-" 3342962 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1281 3340645 3340694 3340827 "UTS2" 3340975 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1280 3334512 3337455 3337498 "URAGG" 3339568 NIL URAGG (NIL T) -9 NIL 3340291 NIL) (-1279 3331235 3332314 3333437 "URAGG-" 3333442 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1278 3326604 3329870 3330335 "UPXSSING" 3330899 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1277 3318082 3325986 3326250 "UPXS" 3326398 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1276 3310497 3317986 3318058 "UPXSCONS" 3318063 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1275 3299246 3306700 3306762 "UPXSCCA" 3307336 NIL UPXSCCA (NIL T T) -9 NIL 3307569 NIL) (-1274 3298866 3298969 3299143 "UPXSCCA-" 3299148 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1273 3287515 3294694 3294737 "UPXSCAT" 3295385 NIL UPXSCAT (NIL T) -9 NIL 3295994 NIL) (-1272 3286939 3287024 3287203 "UPXS2" 3287430 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1271 3285575 3285846 3286197 "UPSQFREE" 3286682 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1270 3278405 3281843 3281898 "UPSCAT" 3282978 NIL UPSCAT (NIL T T) -9 NIL 3283743 NIL) (-1269 3277561 3277816 3278143 "UPSCAT-" 3278148 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1268 3261695 3270688 3270731 "UPOLYC" 3272832 NIL UPOLYC (NIL T) -9 NIL 3274053 NIL) (-1267 3252543 3255449 3258596 "UPOLYC-" 3258601 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1266 3252164 3252213 3252346 "UPOLYC2" 3252494 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1265 3242739 3251847 3251976 "UP" 3252083 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1264 3242060 3242185 3242349 "UPMP" 3242628 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1263 3241607 3241694 3241833 "UPDIVP" 3241973 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1262 3240145 3240424 3240740 "UPDECOMP" 3241356 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1261 3239358 3239488 3239674 "UPCDEN" 3240029 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1260 3238871 3238946 3239095 "UP2" 3239283 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1259 3237224 3238075 3238352 "UNISEG" 3238629 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1258 3236429 3236566 3236771 "UNISEG2" 3237067 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1257 3235471 3235669 3235895 "UNIFACT" 3236245 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1256 3217281 3234783 3235025 "ULS" 3235287 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1255 3203991 3217185 3217257 "ULSCONS" 3217262 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1254 3183792 3197072 3197134 "ULSCCAT" 3197772 NIL ULSCCAT (NIL T T) -9 NIL 3198061 NIL) (-1253 3182788 3183087 3183475 "ULSCCAT-" 3183480 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1252 3171234 3178335 3178378 "ULSCAT" 3179241 NIL ULSCAT (NIL T) -9 NIL 3179972 NIL) (-1251 3170658 3170743 3170922 "ULS2" 3171149 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1250 3169669 3170287 3170394 "UINT8" 3170505 T UINT8 (NIL) -8 NIL NIL 3170590) (-1249 3168679 3169297 3169404 "UINT64" 3169515 T UINT64 (NIL) -8 NIL NIL 3169600) (-1248 3167689 3168307 3168414 "UINT32" 3168525 T UINT32 (NIL) -8 NIL NIL 3168610) (-1247 3166699 3167317 3167424 "UINT16" 3167535 T UINT16 (NIL) -8 NIL NIL 3167620) (-1246 3164778 3165945 3165975 "UFD" 3166187 T UFD (NIL) -9 NIL 3166301 NIL) (-1245 3164560 3164618 3164713 "UFD-" 3164718 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1244 3163618 3163825 3164041 "UDVO" 3164366 T UDVO (NIL) -7 NIL NIL NIL) (-1243 3161384 3161843 3162314 "UDPO" 3163182 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1242 3161317 3161322 3161352 "TYPE" 3161357 T TYPE (NIL) -9 NIL NIL NIL) (-1241 3161029 3161272 3161303 "TYPEAST" 3161308 T TYPEAST (NIL) -8 NIL NIL NIL) (-1240 3159982 3160202 3160442 "TWOFACT" 3160823 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1239 3158957 3159391 3159626 "TUPLE" 3159782 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1238 3156594 3157167 3157706 "TUBETOOL" 3158440 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1237 3155407 3155648 3155889 "TUBE" 3156387 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1236 3149586 3154379 3154662 "TS" 3155159 NIL TS (NIL T) -8 NIL NIL NIL) (-1235 3137728 3142343 3142440 "TSETCAT" 3147709 NIL TSETCAT (NIL T T T T) -9 NIL 3149241 NIL) (-1234 3132196 3134060 3135951 "TSETCAT-" 3135956 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1233 3126669 3127682 3128611 "TRMANIP" 3131332 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1232 3126098 3126173 3126336 "TRIMAT" 3126601 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1231 3123910 3124201 3124558 "TRIGMNIP" 3125847 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1230 3123394 3123543 3123573 "TRIGCAT" 3123786 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1229 3123039 3123142 3123283 "TRIGCAT-" 3123288 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1228 3119653 3121897 3122178 "TREE" 3122793 NIL TREE (NIL T) -8 NIL NIL NIL) (-1227 3118759 3119455 3119485 "TRANFUN" 3119520 T TRANFUN (NIL) -9 NIL 3119586 NIL) (-1226 3117978 3118229 3118509 "TRANFUN-" 3118514 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1225 3117776 3117814 3117875 "TOPSP" 3117939 T TOPSP (NIL) -7 NIL NIL NIL) (-1224 3117106 3117239 3117393 "TOOLSIGN" 3117657 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1223 3115620 3116283 3116522 "TEXTFILE" 3116889 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1222 3113424 3114073 3114502 "TEX" 3115213 T TEX (NIL) -8 NIL NIL NIL) (-1221 3113199 3113236 3113308 "TEX1" 3113387 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1220 3112835 3112910 3113000 "TEMUTL" 3113131 T TEMUTL (NIL) -7 NIL NIL NIL) (-1219 3110929 3111269 3111594 "TBCMPPK" 3112558 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1218 3102256 3109015 3109071 "TBAGG" 3109471 NIL TBAGG (NIL T T) -9 NIL 3109682 NIL) (-1217 3097140 3098814 3100568 "TBAGG-" 3100573 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1216 3096506 3096631 3096776 "TANEXP" 3097029 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1215 3095957 3096281 3096371 "TALGOP" 3096451 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1214 3088971 3095814 3095907 "TABLE" 3095912 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1213 3088365 3088482 3088620 "TABLEAU" 3088868 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1212 3082895 3084193 3085441 "TABLBUMP" 3087151 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1211 3082105 3082264 3082445 "SYSTEM" 3082736 T SYSTEM (NIL) -8 NIL NIL NIL) (-1210 3078510 3079263 3080046 "SYSSOLP" 3081356 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1209 3078272 3078465 3078496 "SYSPTR" 3078501 T SYSPTR (NIL) -8 NIL NIL NIL) (-1208 3077200 3077813 3077932 "SYSNNI" 3078118 NIL SYSNNI (NIL NIL) -8 NIL NIL 3078203) (-1207 3076403 3076958 3077037 "SYSINT" 3077097 NIL SYSINT (NIL NIL) -8 NIL NIL 3077142) (-1206 3072501 3073681 3074391 "SYNTAX" 3075715 T SYNTAX (NIL) -8 NIL NIL NIL) (-1205 3069581 3070261 3070893 "SYMTAB" 3071891 T SYMTAB (NIL) -8 NIL NIL NIL) (-1204 3064680 3065732 3066715 "SYMS" 3068620 T SYMS (NIL) -8 NIL NIL NIL) (-1203 3061595 3064138 3064368 "SYMPOLY" 3064485 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1202 3061100 3061187 3061310 "SYMFUNC" 3061507 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1201 3056898 3058412 3059225 "SYMBOL" 3060309 T SYMBOL (NIL) -8 NIL NIL NIL) (-1200 3050371 3052126 3053846 "SWITCH" 3055200 T SWITCH (NIL) -8 NIL NIL NIL) (-1199 3043125 3049327 3049621 "SUTS" 3050135 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1198 3034603 3042507 3042771 "SUPXS" 3042919 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1197 3025126 3034221 3034347 "SUP" 3034512 NIL SUP (NIL T) -8 NIL NIL NIL) (-1196 3024273 3024412 3024629 "SUPFRACF" 3024994 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1195 3023888 3023953 3024066 "SUP2" 3024208 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1194 3022312 3022610 3022966 "SUMRF" 3023587 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1193 3021635 3021713 3021905 "SUMFS" 3022233 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1192 3003480 3020947 3021189 "SULS" 3021451 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1191 3003028 3003302 3003372 "SUCHTAST" 3003432 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1190 3002269 3002553 3002693 "SUCH" 3002936 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1189 2995908 2997175 2998134 "SUBSPACE" 3001357 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1188 2995328 2995428 2995592 "SUBRESP" 2995796 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1187 2988522 2989993 2991304 "STTF" 2994064 NIL STTF (NIL T) -7 NIL NIL NIL) (-1186 2982533 2983815 2984962 "STTFNC" 2987422 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1185 2973650 2975715 2977509 "STTAYLOR" 2980774 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1184 2966404 2973514 2973597 "STRTBL" 2973602 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1183 2960801 2966113 2966212 "STRING" 2966327 T STRING (NIL) -8 NIL NIL NIL) (-1182 2952911 2958420 2959031 "STREAM" 2960225 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1181 2952415 2952498 2952642 "STREAM3" 2952828 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1180 2951379 2951580 2951815 "STREAM2" 2952228 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1179 2951061 2951119 2951212 "STREAM1" 2951321 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1178 2950053 2950258 2950489 "STINPROD" 2950877 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1177 2949549 2949801 2949831 "STEP" 2949911 T STEP (NIL) -9 NIL 2949989 NIL) (-1176 2948664 2949038 2949186 "STEPAST" 2949423 T STEPAST (NIL) -8 NIL NIL NIL) (-1175 2941720 2948563 2948640 "STBL" 2948645 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1174 2936278 2940883 2940926 "STAGG" 2941079 NIL STAGG (NIL T) -9 NIL 2941168 NIL) (-1173 2933830 2934582 2935454 "STAGG-" 2935459 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1172 2931802 2933600 2933692 "STACK" 2933773 NIL STACK (NIL T) -8 NIL NIL NIL) (-1171 2923809 2929943 2930399 "SREGSET" 2931432 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1170 2916156 2917603 2919116 "SRDCMPK" 2922415 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1169 2908465 2913515 2913545 "SRAGG" 2914848 T SRAGG (NIL) -9 NIL 2915456 NIL) (-1168 2907416 2907737 2908116 "SRAGG-" 2908121 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1167 2901000 2906363 2906784 "SQMATRIX" 2907042 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1166 2894412 2897718 2898445 "SPLTREE" 2900345 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1165 2890237 2891068 2891714 "SPLNODE" 2893838 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1164 2889212 2889517 2889547 "SPFCAT" 2889991 T SPFCAT (NIL) -9 NIL NIL NIL) (-1163 2887907 2888159 2888423 "SPECOUT" 2888970 T SPECOUT (NIL) -7 NIL NIL NIL) (-1162 2878559 2880875 2880905 "SPADXPT" 2885581 T SPADXPT (NIL) -9 NIL 2887745 NIL) (-1161 2878314 2878360 2878429 "SPADPRSR" 2878512 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1160 2875919 2878269 2878300 "SPADAST" 2878305 T SPADAST (NIL) -8 NIL NIL NIL) (-1159 2867520 2869623 2869666 "SPACEC" 2874039 NIL SPACEC (NIL T) -9 NIL 2875855 NIL) (-1158 2865320 2867452 2867501 "SPACE3" 2867506 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1157 2864052 2864243 2864534 "SORTPAK" 2865125 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1156 2862114 2862447 2862859 "SOLVETRA" 2863716 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1155 2861152 2861386 2861647 "SOLVESER" 2861887 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1154 2856384 2857344 2858339 "SOLVERAD" 2860204 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1153 2852109 2852808 2853537 "SOLVEFOR" 2855751 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1152 2845720 2851457 2851554 "SNTSCAT" 2851559 NIL SNTSCAT (NIL T T T T) -9 NIL 2851629 NIL) (-1151 2839264 2844043 2844434 "SMTS" 2845410 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1150 2832979 2839152 2839229 "SMP" 2839234 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1149 2831108 2831439 2831837 "SMITH" 2832676 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1148 2822640 2827687 2827790 "SMATCAT" 2829141 NIL SMATCAT (NIL NIL T T T) -9 NIL 2829691 NIL) (-1147 2819412 2820403 2821581 "SMATCAT-" 2821586 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1146 2816881 2818620 2818663 "SKAGG" 2818924 NIL SKAGG (NIL T) -9 NIL 2819059 NIL) (-1145 2812375 2816354 2816538 "SINT" 2816690 T SINT (NIL) -8 NIL NIL 2816852) (-1144 2812141 2812185 2812251 "SIMPAN" 2812331 T SIMPAN (NIL) -7 NIL NIL NIL) (-1143 2811366 2811676 2811816 "SIG" 2812023 T SIG (NIL) -8 NIL NIL NIL) (-1142 2810186 2810425 2810700 "SIGNRF" 2811125 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1141 2809001 2809170 2809454 "SIGNEF" 2810015 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1140 2808241 2808584 2808708 "SIGAST" 2808899 T SIGAST (NIL) -8 NIL NIL NIL) (-1139 2805893 2806385 2806891 "SHP" 2807782 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1138 2799266 2805794 2805870 "SHDP" 2805875 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1137 2798777 2799017 2799047 "SGROUP" 2799140 T SGROUP (NIL) -9 NIL 2799202 NIL) (-1136 2798629 2798661 2798734 "SGROUP-" 2798739 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1135 2795348 2796118 2796841 "SGCF" 2797928 T SGCF (NIL) -7 NIL NIL NIL) (-1134 2789057 2794794 2794891 "SFRTCAT" 2794896 NIL SFRTCAT (NIL T T T T) -9 NIL 2794935 NIL) (-1133 2782376 2783496 2784632 "SFRGCD" 2788040 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1132 2775394 2776575 2777761 "SFQCMPK" 2781309 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1131 2774996 2775103 2775214 "SFORT" 2775335 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1130 2773922 2774836 2774957 "SEXOF" 2774962 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1129 2772837 2773803 2773871 "SEX" 2773876 T SEX (NIL) -8 NIL NIL NIL) (-1128 2768426 2769333 2769428 "SEXCAT" 2772050 NIL SEXCAT (NIL T T T T T) -9 NIL 2772610 NIL) (-1127 2765235 2768360 2768408 "SET" 2768413 NIL SET (NIL T) -8 NIL NIL NIL) (-1126 2763357 2763948 2764253 "SETMN" 2764976 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1125 2762887 2763075 2763105 "SETCAT" 2763222 T SETCAT (NIL) -9 NIL 2763307 NIL) (-1124 2762655 2762719 2762818 "SETCAT-" 2762823 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1123 2758758 2761116 2761159 "SETAGG" 2762029 NIL SETAGG (NIL T) -9 NIL 2762369 NIL) (-1122 2758180 2758332 2758569 "SETAGG-" 2758574 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1121 2757563 2757876 2757977 "SEQAST" 2758101 T SEQAST (NIL) -8 NIL NIL NIL) (-1120 2756690 2757056 2757117 "SEGXCAT" 2757403 NIL SEGXCAT (NIL T T) -9 NIL 2757523 NIL) (-1119 2755606 2756356 2756538 "SEG" 2756543 NIL SEG (NIL T) -8 NIL NIL NIL) (-1118 2754531 2754799 2754842 "SEGCAT" 2755364 NIL SEGCAT (NIL T) -9 NIL 2755585 NIL) (-1117 2753421 2753894 2754102 "SEGBIND" 2754358 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1116 2753036 2753101 2753214 "SEGBIND2" 2753356 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1115 2752555 2752837 2752914 "SEGAST" 2752981 T SEGAST (NIL) -8 NIL NIL NIL) (-1114 2751764 2751900 2752104 "SEG2" 2752399 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1113 2750997 2751699 2751746 "SDVAR" 2751751 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1112 2742348 2750767 2750897 "SDPOL" 2750902 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1111 2740917 2741207 2741526 "SCPKG" 2742063 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1110 2740039 2740253 2740445 "SCOPE" 2740747 T SCOPE (NIL) -8 NIL NIL NIL) (-1109 2739235 2739393 2739572 "SCACHE" 2739894 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1108 2738819 2739053 2739083 "SASTCAT" 2739088 T SASTCAT (NIL) -9 NIL 2739101 NIL) (-1107 2738222 2738654 2738730 "SAOS" 2738765 T SAOS (NIL) -8 NIL NIL NIL) (-1106 2737781 2737822 2737995 "SAERFFC" 2738181 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1105 2730808 2737678 2737758 "SAE" 2737763 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1104 2730395 2730436 2730595 "SAEFACT" 2730767 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1103 2728698 2729030 2729431 "RURPK" 2730061 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1102 2727275 2727641 2727946 "RULESET" 2728532 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1101 2724390 2725028 2725486 "RULE" 2726956 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1100 2723960 2724184 2724267 "RULECOLD" 2724342 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1099 2723744 2723778 2723849 "RTVALUE" 2723911 T RTVALUE (NIL) -8 NIL NIL NIL) (-1098 2723155 2723461 2723555 "RSTRCAST" 2723672 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1097 2717925 2718798 2719718 "RSETGCD" 2722354 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1096 2706496 2712233 2712330 "RSETCAT" 2716449 NIL RSETCAT (NIL T T T T) -9 NIL 2717546 NIL) (-1095 2704315 2704962 2705786 "RSETCAT-" 2705791 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1094 2696623 2698077 2699597 "RSDCMPK" 2702914 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1093 2694492 2695055 2695129 "RRCC" 2696215 NIL RRCC (NIL T T) -9 NIL 2696559 NIL) (-1092 2693813 2694017 2694296 "RRCC-" 2694301 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1091 2693196 2693509 2693610 "RPTAST" 2693734 T RPTAST (NIL) -8 NIL NIL NIL) (-1090 2665582 2676308 2676375 "RPOLCAT" 2687041 NIL RPOLCAT (NIL T T T) -9 NIL 2690201 NIL) (-1089 2656552 2659420 2662542 "RPOLCAT-" 2662547 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1088 2647005 2654763 2655245 "ROUTINE" 2656092 T ROUTINE (NIL) -8 NIL NIL NIL) (-1087 2643054 2646631 2646771 "ROMAN" 2646887 T ROMAN (NIL) -8 NIL NIL NIL) (-1086 2641166 2641914 2642174 "ROIRC" 2642859 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1085 2636884 2639655 2639685 "RNS" 2639989 T RNS (NIL) -9 NIL 2640263 NIL) (-1084 2635291 2635776 2636310 "RNS-" 2636385 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1083 2634584 2635088 2635118 "RNG" 2635123 T RNG (NIL) -9 NIL 2635144 NIL) (-1082 2633545 2633949 2634151 "RNGBIND" 2634435 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1081 2632840 2633318 2633361 "RMODULE" 2633366 NIL RMODULE (NIL T) -9 NIL 2633393 NIL) (-1080 2631664 2631770 2632106 "RMCAT2" 2632741 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1079 2628166 2631010 2631307 "RMATRIX" 2631426 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1078 2620665 2623253 2623368 "RMATCAT" 2626727 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2627709 NIL) (-1077 2620004 2620187 2620494 "RMATCAT-" 2620499 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1076 2619577 2619791 2619834 "RLINSET" 2619896 NIL RLINSET (NIL T) -9 NIL 2619940 NIL) (-1075 2619138 2619219 2619347 "RINTERP" 2619496 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1074 2618062 2618736 2618766 "RING" 2618822 T RING (NIL) -9 NIL 2618914 NIL) (-1073 2617842 2617898 2617995 "RING-" 2618000 NIL RING- (NIL T) -8 NIL NIL NIL) (-1072 2616653 2616920 2617178 "RIDIST" 2617606 T RIDIST (NIL) -7 NIL NIL NIL) (-1071 2607278 2616121 2616327 "RGCHAIN" 2616501 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1070 2606536 2607020 2607061 "RGBCSPC" 2607119 NIL RGBCSPC (NIL T) -9 NIL 2607171 NIL) (-1069 2605602 2606061 2606102 "RGBCMDL" 2606334 NIL RGBCMDL (NIL T) -9 NIL 2606448 NIL) (-1068 2602542 2603210 2603880 "RF" 2604966 NIL RF (NIL T) -7 NIL NIL NIL) (-1067 2602182 2602251 2602354 "RFFACTOR" 2602473 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1066 2601901 2601942 2602039 "RFFACT" 2602141 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1065 2599952 2600382 2600764 "RFDIST" 2601541 T RFDIST (NIL) -7 NIL NIL NIL) (-1064 2599399 2599497 2599660 "RETSOL" 2599854 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1063 2599017 2599115 2599158 "RETRACT" 2599291 NIL RETRACT (NIL T) -9 NIL 2599378 NIL) (-1062 2598860 2598891 2598978 "RETRACT-" 2598983 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1061 2598408 2598682 2598752 "RETAST" 2598812 T RETAST (NIL) -8 NIL NIL NIL) (-1060 2590758 2598061 2598188 "RESULT" 2598303 T RESULT (NIL) -8 NIL NIL NIL) (-1059 2589193 2590027 2590226 "RESRING" 2590661 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1058 2588817 2588878 2588976 "RESLATC" 2589130 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1057 2588516 2588557 2588664 "REPSQ" 2588776 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1056 2585896 2586518 2587120 "REP" 2587936 T REP (NIL) -7 NIL NIL NIL) (-1055 2585587 2585628 2585739 "REPDB" 2585855 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1054 2579419 2580876 2582099 "REP2" 2584399 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1053 2575722 2576477 2577285 "REP1" 2578646 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1052 2567730 2573863 2574319 "REGSET" 2575352 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1051 2566439 2566878 2567128 "REF" 2567515 NIL REF (NIL T) -8 NIL NIL NIL) (-1050 2565804 2565919 2566086 "REDORDER" 2566323 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1049 2561168 2565017 2565244 "RECLOS" 2565632 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1048 2560202 2560401 2560616 "REALSOLV" 2560975 T REALSOLV (NIL) -7 NIL NIL NIL) (-1047 2560036 2560089 2560119 "REAL" 2560124 T REAL (NIL) -9 NIL 2560159 NIL) (-1046 2556483 2557321 2558205 "REAL0Q" 2559201 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1045 2552036 2553072 2554133 "REAL0" 2555464 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1044 2551447 2551753 2551847 "RDUCEAST" 2551964 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1043 2550846 2550924 2551131 "RDIV" 2551369 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1042 2549896 2550088 2550301 "RDIST" 2550668 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1041 2548481 2548780 2549152 "RDETRS" 2549604 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1040 2546275 2546747 2547285 "RDETR" 2548023 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1039 2544894 2545178 2545575 "RDEEFS" 2545991 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1038 2543397 2543709 2544134 "RDEEF" 2544582 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1037 2536874 2540351 2540381 "RCFIELD" 2541676 T RCFIELD (NIL) -9 NIL 2542407 NIL) (-1036 2534830 2535442 2536138 "RCFIELD-" 2536213 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1035 2530882 2532903 2532946 "RCAGG" 2534030 NIL RCAGG (NIL T) -9 NIL 2534495 NIL) (-1034 2530492 2530604 2530767 "RCAGG-" 2530772 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1033 2529809 2529939 2530104 "RATRET" 2530376 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1032 2529350 2529429 2529550 "RATFACT" 2529737 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1031 2528628 2528778 2528930 "RANDSRC" 2529220 T RANDSRC (NIL) -7 NIL NIL NIL) (-1030 2528356 2528406 2528479 "RADUTIL" 2528577 T RADUTIL (NIL) -7 NIL NIL NIL) (-1029 2520480 2527187 2527498 "RADIX" 2528079 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1028 2510074 2520322 2520452 "RADFF" 2520457 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1027 2509703 2509796 2509826 "RADCAT" 2509986 T RADCAT (NIL) -9 NIL NIL NIL) (-1026 2509473 2509533 2509633 "RADCAT-" 2509638 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1025 2507384 2509243 2509335 "QUEUE" 2509416 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1024 2503223 2507317 2507365 "QUAT" 2507370 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1023 2502848 2502897 2503028 "QUATCT2" 2503174 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1022 2495224 2499271 2499313 "QUATCAT" 2500104 NIL QUATCAT (NIL T) -9 NIL 2500870 NIL) (-1021 2491105 2492400 2493790 "QUATCAT-" 2493886 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1020 2488361 2490153 2490196 "QUAGG" 2490577 NIL QUAGG (NIL T) -9 NIL 2490752 NIL) (-1019 2487909 2488183 2488253 "QQUTAST" 2488313 T QQUTAST (NIL) -8 NIL NIL NIL) (-1018 2486820 2487422 2487587 "QFORM" 2487790 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1017 2476496 2482667 2482709 "QFCAT" 2483377 NIL QFCAT (NIL T) -9 NIL 2484378 NIL) (-1016 2471811 2473264 2474858 "QFCAT-" 2474954 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1015 2471436 2471485 2471616 "QFCAT2" 2471762 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1014 2470867 2471001 2471133 "QEQUAT" 2471326 T QEQUAT (NIL) -8 NIL NIL NIL) (-1013 2463885 2465066 2466252 "QCMPACK" 2469800 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1012 2461335 2461871 2462301 "QALGSET" 2463540 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1011 2460564 2460746 2460982 "QALGSET2" 2461153 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1010 2459231 2459473 2459792 "PWFFINTB" 2460337 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1009 2457376 2457574 2457930 "PUSHVAR" 2459045 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1008 2453103 2454319 2454362 "PTRANFN" 2456273 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1007 2451440 2451785 2452109 "PTPACK" 2452814 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1006 2451063 2451126 2451237 "PTFUNC2" 2451377 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1005 2444988 2449852 2449895 "PTCAT" 2450195 NIL PTCAT (NIL T) -9 NIL 2450348 NIL) (-1004 2444637 2444678 2444804 "PSQFR" 2444947 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1003 2443209 2443525 2443861 "PSEUDLIN" 2444335 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1002 2429729 2432304 2434630 "PSETPK" 2440969 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1001 2422437 2425465 2425563 "PSETCAT" 2428604 NIL PSETCAT (NIL T T T T) -9 NIL 2429418 NIL) (-1000 2420162 2420904 2421728 "PSETCAT-" 2421733 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-999 2419481 2419676 2419704 "PSCURVE" 2419972 T PSCURVE (NIL) -9 NIL 2420139 NIL) (-998 2415207 2416981 2417046 "PSCAT" 2417890 NIL PSCAT (NIL T T T) -9 NIL 2418130 NIL) (-997 2414204 2414486 2414886 "PSCAT-" 2414891 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-996 2412413 2413273 2413536 "PRTITION" 2413961 T PRTITION (NIL) -8 NIL NIL NIL) (-995 2411828 2412134 2412226 "PRTDAST" 2412341 T PRTDAST (NIL) -8 NIL NIL NIL) (-994 2400710 2403132 2405320 "PRS" 2409690 NIL PRS (NIL T T) -7 NIL NIL NIL) (-993 2398330 2400032 2400072 "PRQAGG" 2400255 NIL PRQAGG (NIL T) -9 NIL 2400357 NIL) (-992 2397600 2397971 2397999 "PROPLOG" 2398138 T PROPLOG (NIL) -9 NIL 2398253 NIL) (-991 2397198 2397261 2397384 "PROPFUN2" 2397523 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-990 2396495 2396634 2396806 "PROPFUN1" 2397059 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-989 2394556 2395242 2395539 "PROPFRML" 2396231 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-988 2394001 2394132 2394260 "PROPERTY" 2394448 T PROPERTY (NIL) -8 NIL NIL NIL) (-987 2387889 2392167 2392987 "PRODUCT" 2393227 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-986 2384847 2387347 2387581 "PR" 2387700 NIL PR (NIL T T) -8 NIL NIL NIL) (-985 2384637 2384675 2384734 "PRINT" 2384808 T PRINT (NIL) -7 NIL NIL NIL) (-984 2383953 2384094 2384246 "PRIMES" 2384517 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-983 2382000 2382419 2382885 "PRIMELT" 2383532 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-982 2381717 2381778 2381806 "PRIMCAT" 2381930 T PRIMCAT (NIL) -9 NIL NIL NIL) (-981 2377439 2381655 2381700 "PRIMARR" 2381705 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-980 2376428 2376624 2376852 "PRIMARR2" 2377257 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-979 2376065 2376127 2376238 "PREASSOC" 2376366 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-978 2375516 2375673 2375701 "PPCURVE" 2375906 T PPCURVE (NIL) -9 NIL 2376042 NIL) (-977 2375063 2375311 2375394 "PORTNUM" 2375453 T PORTNUM (NIL) -8 NIL NIL NIL) (-976 2372400 2372821 2373413 "POLYROOT" 2374644 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-975 2365608 2372004 2372164 "POLY" 2372273 NIL POLY (NIL T) -8 NIL NIL NIL) (-974 2364985 2365049 2365283 "POLYLIFT" 2365544 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-973 2361206 2361709 2362338 "POLYCATQ" 2364530 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-972 2346854 2352953 2353018 "POLYCAT" 2356532 NIL POLYCAT (NIL T T T) -9 NIL 2358410 NIL) (-971 2339973 2342165 2344549 "POLYCAT-" 2344554 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-970 2339554 2339628 2339748 "POLY2UP" 2339899 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-969 2339180 2339243 2339352 "POLY2" 2339491 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-968 2337841 2338104 2338380 "POLUTIL" 2338954 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-967 2336160 2336473 2336804 "POLTOPOL" 2337563 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-966 2331156 2336094 2336141 "POINT" 2336146 NIL POINT (NIL T) -8 NIL NIL NIL) (-965 2329289 2329700 2330075 "PNTHEORY" 2330801 T PNTHEORY (NIL) -7 NIL NIL NIL) (-964 2327735 2328044 2328443 "PMTOOLS" 2328987 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-963 2327322 2327406 2327523 "PMSYM" 2327651 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-962 2326824 2326899 2327074 "PMQFCAT" 2327247 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-961 2326167 2326289 2326445 "PMPRED" 2326701 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-960 2325548 2325646 2325808 "PMPREDFS" 2326068 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-959 2324202 2324420 2324798 "PMPLCAT" 2325310 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-958 2323728 2323813 2323965 "PMLSAGG" 2324117 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-957 2323195 2323277 2323459 "PMKERNEL" 2323646 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-956 2322806 2322887 2323000 "PMINS" 2323114 NIL PMINS (NIL T) -7 NIL NIL NIL) (-955 2322242 2322317 2322526 "PMFS" 2322731 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-954 2321458 2321588 2321793 "PMDOWN" 2322119 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-953 2320601 2320783 2320964 "PMASS" 2321297 T PMASS (NIL) -7 NIL NIL NIL) (-952 2319850 2319984 2320147 "PMASSFS" 2320488 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-951 2319499 2319573 2319667 "PLOTTOOL" 2319776 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-950 2313920 2315310 2316458 "PLOT" 2318371 T PLOT (NIL) -8 NIL NIL NIL) (-949 2309574 2310768 2311689 "PLOT3D" 2313019 T PLOT3D (NIL) -8 NIL NIL NIL) (-948 2308462 2308663 2308898 "PLOT1" 2309378 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-947 2283637 2288528 2293379 "PLEQN" 2303728 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-946 2282943 2283077 2283257 "PINTERP" 2283502 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-945 2282630 2282683 2282786 "PINTERPA" 2282890 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-944 2281726 2282394 2282481 "PI" 2282521 T PI (NIL) -8 NIL NIL 2282588) (-943 2279811 2280984 2281012 "PID" 2281194 T PID (NIL) -9 NIL 2281328 NIL) (-942 2279556 2279599 2279674 "PICOERCE" 2279768 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-941 2278864 2279015 2279191 "PGROEB" 2279412 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-940 2274307 2275265 2276170 "PGE" 2277979 T PGE (NIL) -7 NIL NIL NIL) (-939 2272388 2272677 2273043 "PGCD" 2274024 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-938 2271714 2271829 2271990 "PFRPAC" 2272272 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-937 2267964 2270262 2270615 "PFR" 2271393 NIL PFR (NIL T) -8 NIL NIL NIL) (-936 2266317 2266597 2266922 "PFOTOOLS" 2267711 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-935 2264832 2265089 2265440 "PFOQ" 2266074 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-934 2263315 2263545 2263901 "PFO" 2264616 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-933 2259240 2263204 2263273 "PF" 2263278 NIL PF (NIL NIL) -8 NIL NIL NIL) (-932 2256318 2257831 2257859 "PFECAT" 2258444 T PFECAT (NIL) -9 NIL 2258828 NIL) (-931 2255745 2255917 2256131 "PFECAT-" 2256136 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-930 2254318 2254600 2254901 "PFBRU" 2255494 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-929 2252148 2252536 2252968 "PFBR" 2253969 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-928 2247954 2249660 2250307 "PERM" 2251534 NIL PERM (NIL T) -8 NIL NIL NIL) (-927 2243008 2244161 2245031 "PERMGRP" 2247117 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-926 2240920 2242032 2242073 "PERMCAT" 2242473 NIL PERMCAT (NIL T) -9 NIL 2242771 NIL) (-925 2240567 2240614 2240738 "PERMAN" 2240873 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-924 2237808 2240232 2240354 "PENDTREE" 2240478 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-923 2236689 2236952 2236993 "PDSPC" 2237526 NIL PDSPC (NIL T) -9 NIL 2237771 NIL) (-922 2235744 2236010 2236372 "PDSPC-" 2236377 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-921 2234458 2235394 2235435 "PDRING" 2235440 NIL PDRING (NIL T) -9 NIL 2235468 NIL) (-920 2233201 2233963 2234017 "PDMOD" 2234022 NIL PDMOD (NIL T T) -9 NIL 2234126 NIL) (-919 2230368 2231194 2231862 "PDEPROB" 2232553 T PDEPROB (NIL) -8 NIL NIL NIL) (-918 2227877 2228417 2228972 "PDEPACK" 2229833 T PDEPACK (NIL) -7 NIL NIL NIL) (-917 2226765 2226979 2227230 "PDECOMP" 2227676 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-916 2224282 2225173 2225201 "PDECAT" 2225988 T PDECAT (NIL) -9 NIL 2226701 NIL) (-915 2223899 2223966 2224020 "PDDOM" 2224185 NIL PDDOM (NIL T T) -9 NIL 2224265 NIL) (-914 2223712 2223748 2223855 "PDDOM-" 2223860 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-913 2223457 2223496 2223586 "PCOMP" 2223673 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-912 2221497 2222258 2222555 "PBWLB" 2223186 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-911 2213676 2215570 2216908 "PATTERN" 2220180 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-910 2213302 2213365 2213474 "PATTERN2" 2213613 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-909 2211011 2211447 2211904 "PATTERN1" 2212891 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-908 2208277 2208960 2209441 "PATRES" 2210576 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-907 2207835 2207908 2208040 "PATRES2" 2208204 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-906 2205688 2206123 2206530 "PATMATCH" 2207502 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-905 2205142 2205393 2205434 "PATMAB" 2205541 NIL PATMAB (NIL T) -9 NIL 2205624 NIL) (-904 2203588 2203996 2204254 "PATLRES" 2204947 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-903 2203126 2203257 2203298 "PATAB" 2203303 NIL PATAB (NIL T) -9 NIL 2203475 NIL) (-902 2201266 2201703 2202126 "PARTPERM" 2202723 T PARTPERM (NIL) -7 NIL NIL NIL) (-901 2200875 2200950 2201052 "PARSURF" 2201197 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-900 2200501 2200564 2200673 "PARSU2" 2200812 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-899 2200259 2200305 2200372 "PARSER" 2200454 T PARSER (NIL) -7 NIL NIL NIL) (-898 2199868 2199943 2200045 "PARSCURV" 2200190 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-897 2199494 2199557 2199666 "PARSC2" 2199805 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-896 2199121 2199191 2199288 "PARPCURV" 2199430 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-895 2198747 2198810 2198919 "PARPC2" 2199058 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-894 2197736 2198120 2198302 "PARAMAST" 2198585 T PARAMAST (NIL) -8 NIL NIL NIL) (-893 2197244 2197342 2197461 "PAN2EXPR" 2197637 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-892 2195937 2196365 2196593 "PALETTE" 2197036 T PALETTE (NIL) -8 NIL NIL NIL) (-891 2194282 2194942 2195302 "PAIR" 2195623 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-890 2187194 2193539 2193734 "PADICRC" 2194136 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-889 2179430 2186538 2186723 "PADICRAT" 2187041 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-888 2177439 2179367 2179412 "PADIC" 2179417 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-887 2174229 2176099 2176139 "PADICCT" 2176720 NIL PADICCT (NIL NIL) -9 NIL 2177002 NIL) (-886 2173174 2173386 2173654 "PADEPAC" 2174016 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-885 2172374 2172519 2172725 "PADE" 2173036 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-884 2170607 2171582 2171862 "OWP" 2172178 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-883 2170052 2170313 2170410 "OVERSET" 2170530 T OVERSET (NIL) -8 NIL NIL NIL) (-882 2168972 2169657 2169829 "OVAR" 2169920 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-881 2168212 2168357 2168518 "OUT" 2168831 T OUT (NIL) -7 NIL NIL NIL) (-880 2156448 2159321 2161521 "OUTFORM" 2166032 T OUTFORM (NIL) -8 NIL NIL NIL) (-879 2155730 2156045 2156172 "OUTBFILE" 2156341 T OUTBFILE (NIL) -8 NIL NIL NIL) (-878 2155007 2155202 2155230 "OUTBCON" 2155548 T OUTBCON (NIL) -9 NIL 2155714 NIL) (-877 2154590 2154720 2154877 "OUTBCON-" 2154882 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-876 2153886 2154319 2154408 "OSI" 2154521 T OSI (NIL) -8 NIL NIL NIL) (-875 2153305 2153727 2153755 "OSGROUP" 2153760 T OSGROUP (NIL) -9 NIL 2153782 NIL) (-874 2152016 2152277 2152562 "ORTHPOL" 2153052 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-873 2149267 2151851 2151972 "OREUP" 2151977 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-872 2146370 2148958 2149085 "ORESUP" 2149209 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-871 2143870 2144398 2144959 "OREPCTO" 2145859 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-870 2137248 2139743 2139784 "OREPCAT" 2142132 NIL OREPCAT (NIL T) -9 NIL 2143236 NIL) (-869 2134221 2135177 2136235 "OREPCAT-" 2136240 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-868 2133414 2133691 2133719 "ORDTYPE" 2134028 T ORDTYPE (NIL) -9 NIL 2134191 NIL) (-867 2132715 2132931 2133186 "ORDTYPE-" 2133191 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-866 2132071 2132454 2132612 "ORDSTRCT" 2132617 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-865 2131569 2131939 2131967 "ORDSET" 2131972 T ORDSET (NIL) -9 NIL 2131994 NIL) (-864 2129927 2130898 2130926 "ORDRING" 2131128 T ORDRING (NIL) -9 NIL 2131253 NIL) (-863 2129548 2129666 2129810 "ORDRING-" 2129815 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-862 2128799 2129364 2129392 "ORDMON" 2129397 T ORDMON (NIL) -9 NIL 2129418 NIL) (-861 2127943 2128108 2128303 "ORDFUNS" 2128648 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-860 2127158 2127673 2127701 "ORDFIN" 2127766 T ORDFIN (NIL) -9 NIL 2127840 NIL) (-859 2123505 2125744 2126153 "ORDCOMP" 2126782 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-858 2122759 2122898 2123084 "ORDCOMP2" 2123365 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-857 2119280 2120250 2121064 "OPTPROB" 2121965 T OPTPROB (NIL) -8 NIL NIL NIL) (-856 2116022 2116721 2117425 "OPTPACK" 2118596 T OPTPACK (NIL) -7 NIL NIL NIL) (-855 2113635 2114461 2114489 "OPTCAT" 2115308 T OPTCAT (NIL) -9 NIL 2115958 NIL) (-854 2112953 2113312 2113417 "OPSIG" 2113550 T OPSIG (NIL) -8 NIL NIL NIL) (-853 2112715 2112760 2112826 "OPQUERY" 2112907 T OPQUERY (NIL) -7 NIL NIL NIL) (-852 2109624 2111026 2111530 "OP" 2112244 NIL OP (NIL T) -8 NIL NIL NIL) (-851 2108930 2109210 2109251 "OPERCAT" 2109463 NIL OPERCAT (NIL T) -9 NIL 2109560 NIL) (-850 2108673 2108741 2108858 "OPERCAT-" 2108863 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-849 2105286 2107470 2107839 "ONECOMP" 2108337 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-848 2104579 2104706 2104880 "ONECOMP2" 2105158 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-847 2103980 2104104 2104234 "OMSERVER" 2104469 T OMSERVER (NIL) -7 NIL NIL NIL) (-846 2100494 2103420 2103460 "OMSAGG" 2103521 NIL OMSAGG (NIL T) -9 NIL 2103585 NIL) (-845 2099069 2099380 2099662 "OMPKG" 2100232 T OMPKG (NIL) -7 NIL NIL NIL) (-844 2098475 2098602 2098630 "OM" 2098929 T OM (NIL) -9 NIL NIL NIL) (-843 2096822 2098024 2098193 "OMLO" 2098356 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-842 2095758 2095929 2096149 "OMEXPR" 2096648 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-841 2094995 2095304 2095440 "OMERR" 2095642 T OMERR (NIL) -8 NIL NIL NIL) (-840 2094080 2094416 2094576 "OMERRK" 2094855 T OMERRK (NIL) -8 NIL NIL NIL) (-839 2093471 2093757 2093865 "OMENC" 2093992 T OMENC (NIL) -8 NIL NIL NIL) (-838 2087108 2088551 2089722 "OMDEV" 2092320 T OMDEV (NIL) -8 NIL NIL NIL) (-837 2086141 2086348 2086542 "OMCONN" 2086934 T OMCONN (NIL) -8 NIL NIL NIL) (-836 2084419 2085611 2085639 "OINTDOM" 2085644 T OINTDOM (NIL) -9 NIL 2085665 NIL) (-835 2081493 2083107 2083444 "OFMONOID" 2084114 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-834 2080727 2081430 2081475 "ODVAR" 2081480 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-833 2077864 2080472 2080627 "ODR" 2080632 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-832 2069269 2077640 2077766 "ODPOL" 2077771 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-831 2062612 2069141 2069246 "ODP" 2069251 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-830 2061354 2061593 2061868 "ODETOOLS" 2062386 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-829 2058297 2058979 2059695 "ODESYS" 2060687 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-828 2053127 2054087 2055112 "ODERTRIC" 2057372 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-827 2052547 2052635 2052829 "ODERED" 2053039 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-826 2049399 2049983 2050660 "ODERAT" 2051970 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-825 2046316 2046823 2047420 "ODEPRRIC" 2048928 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-824 2044211 2044855 2045341 "ODEPROB" 2045850 T ODEPROB (NIL) -8 NIL NIL NIL) (-823 2040677 2041216 2041863 "ODEPRIM" 2043690 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-822 2039920 2040028 2040288 "ODEPAL" 2040569 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-821 2036022 2036873 2037737 "ODEPACK" 2039076 T ODEPACK (NIL) -7 NIL NIL NIL) (-820 2035065 2035190 2035412 "ODEINT" 2035911 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-819 2029130 2030591 2032038 "ODEIFTBL" 2033638 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-818 2024480 2025314 2026266 "ODEEF" 2028289 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-817 2023823 2023918 2024141 "ODECONST" 2024385 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-816 2021886 2022595 2022623 "ODECAT" 2023228 T ODECAT (NIL) -9 NIL 2023759 NIL) (-815 2018379 2021591 2021713 "OCT" 2021796 NIL OCT (NIL T) -8 NIL NIL NIL) (-814 2018011 2018060 2018187 "OCTCT2" 2018330 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-813 2012280 2015054 2015094 "OC" 2016191 NIL OC (NIL T) -9 NIL 2017049 NIL) (-812 2009315 2010255 2011245 "OC-" 2011339 NIL OC- (NIL T T) -8 NIL NIL NIL) (-811 2008538 2009108 2009136 "OCAMON" 2009141 T OCAMON (NIL) -9 NIL 2009162 NIL) (-810 2007958 2008383 2008411 "OASGP" 2008416 T OASGP (NIL) -9 NIL 2008436 NIL) (-809 2007084 2007681 2007709 "OAMONS" 2007749 T OAMONS (NIL) -9 NIL 2007792 NIL) (-808 2006375 2006904 2006932 "OAMON" 2006937 T OAMON (NIL) -9 NIL 2006957 NIL) (-807 2005486 2006124 2006152 "OAGROUP" 2006157 T OAGROUP (NIL) -9 NIL 2006177 NIL) (-806 2005170 2005226 2005314 "NUMTUBE" 2005430 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-805 1998689 2000261 2001797 "NUMQUAD" 2003654 T NUMQUAD (NIL) -7 NIL NIL NIL) (-804 1994409 1995433 1996458 "NUMODE" 1997684 T NUMODE (NIL) -7 NIL NIL NIL) (-803 1991690 1992630 1992658 "NUMINT" 1993581 T NUMINT (NIL) -9 NIL 1994345 NIL) (-802 1990602 1990835 1991053 "NUMFMT" 1991492 T NUMFMT (NIL) -7 NIL NIL NIL) (-801 1976785 1979906 1982438 "NUMERIC" 1988109 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-800 1970496 1976233 1976328 "NTSCAT" 1976333 NIL NTSCAT (NIL T T T T) -9 NIL 1976372 NIL) (-799 1969676 1969855 1970048 "NTPOLFN" 1970335 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-798 1956437 1966501 1967313 "NSUP" 1968897 NIL NSUP (NIL T) -8 NIL NIL NIL) (-797 1956063 1956126 1956235 "NSUP2" 1956374 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-796 1944899 1955837 1955970 "NSMP" 1955975 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-795 1943307 1943632 1943989 "NREP" 1944587 NIL NREP (NIL T) -7 NIL NIL NIL) (-794 1941886 1942150 1942508 "NPCOEF" 1943050 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-793 1940934 1941067 1941283 "NORMRETR" 1941767 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-792 1938945 1939265 1939674 "NORMPK" 1940642 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-791 1938624 1938658 1938782 "NORMMA" 1938911 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-790 1938388 1938581 1938610 "NONE" 1938615 T NONE (NIL) -8 NIL NIL NIL) (-789 1938171 1938206 1938275 "NONE1" 1938352 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-788 1937662 1937730 1937909 "NODE1" 1938103 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-787 1935763 1936794 1937049 "NNI" 1937396 T NNI (NIL) -8 NIL NIL 1937631) (-786 1934159 1934496 1934860 "NLINSOL" 1935431 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-785 1930340 1931395 1932294 "NIPROB" 1933280 T NIPROB (NIL) -8 NIL NIL NIL) (-784 1929079 1929331 1929633 "NFINTBAS" 1930102 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-783 1928163 1928729 1928770 "NETCLT" 1928942 NIL NETCLT (NIL T) -9 NIL 1929024 NIL) (-782 1926835 1927102 1927383 "NCODIV" 1927931 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-781 1926591 1926634 1926709 "NCNTFRAC" 1926792 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-780 1924747 1925135 1925555 "NCEP" 1926216 NIL NCEP (NIL T) -7 NIL NIL NIL) (-779 1923410 1924357 1924385 "NASRING" 1924495 T NASRING (NIL) -9 NIL 1924575 NIL) (-778 1923193 1923249 1923343 "NASRING-" 1923348 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-777 1922160 1922811 1922839 "NARNG" 1922956 T NARNG (NIL) -9 NIL 1923047 NIL) (-776 1921834 1921919 1922053 "NARNG-" 1922058 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-775 1920671 1920920 1921155 "NAGSP" 1921619 T NAGSP (NIL) -7 NIL NIL NIL) (-774 1911715 1913627 1915300 "NAGS" 1919018 T NAGS (NIL) -7 NIL NIL NIL) (-773 1910239 1910571 1910902 "NAGF07" 1911404 T NAGF07 (NIL) -7 NIL NIL NIL) (-772 1904711 1906068 1907375 "NAGF04" 1908952 T NAGF04 (NIL) -7 NIL NIL NIL) (-771 1897583 1899293 1900926 "NAGF02" 1903098 T NAGF02 (NIL) -7 NIL NIL NIL) (-770 1892747 1893907 1895024 "NAGF01" 1896486 T NAGF01 (NIL) -7 NIL NIL NIL) (-769 1886327 1887941 1889526 "NAGE04" 1891182 T NAGE04 (NIL) -7 NIL NIL NIL) (-768 1877388 1879617 1881747 "NAGE02" 1884217 T NAGE02 (NIL) -7 NIL NIL NIL) (-767 1873281 1874288 1875252 "NAGE01" 1876444 T NAGE01 (NIL) -7 NIL NIL NIL) (-766 1871058 1871610 1872168 "NAGD03" 1872743 T NAGD03 (NIL) -7 NIL NIL NIL) (-765 1862754 1864736 1866690 "NAGD02" 1869124 T NAGD02 (NIL) -7 NIL NIL NIL) (-764 1856493 1857990 1859430 "NAGD01" 1861334 T NAGD01 (NIL) -7 NIL NIL NIL) (-763 1852630 1853524 1854361 "NAGC06" 1855676 T NAGC06 (NIL) -7 NIL NIL NIL) (-762 1851077 1851427 1851783 "NAGC05" 1852294 T NAGC05 (NIL) -7 NIL NIL NIL) (-761 1850441 1850572 1850716 "NAGC02" 1850953 T NAGC02 (NIL) -7 NIL NIL NIL) (-760 1849242 1849969 1850009 "NAALG" 1850088 NIL NAALG (NIL T) -9 NIL 1850149 NIL) (-759 1849071 1849106 1849196 "NAALG-" 1849201 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-758 1842943 1844129 1845316 "MULTSQFR" 1847967 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-757 1842250 1842337 1842521 "MULTFACT" 1842855 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-756 1834397 1838835 1838888 "MTSCAT" 1839958 NIL MTSCAT (NIL T T) -9 NIL 1840473 NIL) (-755 1834103 1834163 1834255 "MTHING" 1834337 NIL MTHING (NIL T) -7 NIL NIL NIL) (-754 1833889 1833928 1833988 "MSYSCMD" 1834063 T MSYSCMD (NIL) -7 NIL NIL NIL) (-753 1829603 1832644 1832964 "MSET" 1833602 NIL MSET (NIL T) -8 NIL NIL NIL) (-752 1826348 1829164 1829205 "MSETAGG" 1829210 NIL MSETAGG (NIL T) -9 NIL 1829244 NIL) (-751 1821940 1823727 1824472 "MRING" 1825648 NIL MRING (NIL T T) -8 NIL NIL NIL) (-750 1821500 1821573 1821704 "MRF2" 1821867 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-749 1821112 1821153 1821297 "MRATFAC" 1821459 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-748 1818682 1819019 1819450 "MPRFF" 1820817 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-747 1812009 1818536 1818633 "MPOLY" 1818638 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-746 1811493 1811534 1811742 "MPCPF" 1811968 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-745 1811001 1811050 1811234 "MPC3" 1811444 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-744 1810184 1810277 1810498 "MPC2" 1810916 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-743 1808461 1808822 1809212 "MONOTOOL" 1809844 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-742 1807606 1807989 1808017 "MONOID" 1808236 T MONOID (NIL) -9 NIL 1808383 NIL) (-741 1807122 1807271 1807452 "MONOID-" 1807457 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-740 1796076 1802942 1803001 "MONOGEN" 1803675 NIL MONOGEN (NIL T T) -9 NIL 1804131 NIL) (-739 1793126 1794029 1795029 "MONOGEN-" 1795148 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-738 1791843 1792391 1792419 "MONADWU" 1792811 T MONADWU (NIL) -9 NIL 1793049 NIL) (-737 1791173 1791374 1791622 "MONADWU-" 1791627 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-736 1790458 1790762 1790790 "MONAD" 1790997 T MONAD (NIL) -9 NIL 1791109 NIL) (-735 1790125 1790221 1790353 "MONAD-" 1790358 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-734 1788264 1789038 1789317 "MOEBIUS" 1789878 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-733 1787432 1787932 1787972 "MODULE" 1787977 NIL MODULE (NIL T) -9 NIL 1788016 NIL) (-732 1786970 1787096 1787286 "MODULE-" 1787291 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-731 1784500 1785334 1785661 "MODRING" 1786794 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-730 1781222 1782605 1783126 "MODOP" 1784029 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-729 1779708 1780289 1780566 "MODMONOM" 1781085 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-728 1768448 1777999 1778413 "MODMON" 1779345 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-727 1765274 1767292 1767568 "MODFIELD" 1768323 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1764185 1764555 1764745 "MMLFORM" 1765104 T MMLFORM (NIL) -8 NIL NIL NIL) (-725 1763705 1763754 1763933 "MMAP" 1764136 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-724 1761598 1762537 1762578 "MLO" 1763001 NIL MLO (NIL T) -9 NIL 1763243 NIL) (-723 1758946 1759480 1760082 "MLIFT" 1761079 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-722 1758325 1758421 1758575 "MKUCFUNC" 1758857 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-721 1757918 1757994 1758117 "MKRECORD" 1758248 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-720 1756941 1757127 1757355 "MKFUNC" 1757729 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-719 1756317 1756433 1756589 "MKFLCFN" 1756824 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-718 1755582 1755696 1755881 "MKBCFUNC" 1756210 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-717 1751565 1755136 1755272 "MINT" 1755466 T MINT (NIL) -8 NIL NIL NIL) (-716 1750347 1750620 1750897 "MHROWRED" 1751320 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-715 1745091 1748882 1749287 "MFLOAT" 1749962 T MFLOAT (NIL) -8 NIL NIL NIL) (-714 1744436 1744524 1744695 "MFINFACT" 1745003 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-713 1740715 1741599 1742483 "MESH" 1743572 T MESH (NIL) -7 NIL NIL NIL) (-712 1739069 1739417 1739770 "MDDFACT" 1740402 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-711 1735605 1738200 1738241 "MDAGG" 1738496 NIL MDAGG (NIL T) -9 NIL 1738639 NIL) (-710 1723307 1734898 1735105 "MCMPLX" 1735418 T MCMPLX (NIL) -8 NIL NIL NIL) (-709 1722426 1722590 1722791 "MCDEN" 1723156 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-708 1720274 1720586 1720966 "MCALCFN" 1722156 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-707 1719151 1719439 1719672 "MAYBE" 1720080 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-706 1716709 1717286 1717848 "MATSTOR" 1718622 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-705 1712131 1716081 1716329 "MATRIX" 1716494 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-704 1707831 1708604 1709340 "MATLIN" 1711488 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-703 1697177 1700888 1700965 "MATCAT" 1705997 NIL MATCAT (NIL T T T) -9 NIL 1707469 NIL) (-702 1693130 1694440 1695853 "MATCAT-" 1695858 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-701 1691706 1691877 1692210 "MATCAT2" 1692965 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-700 1689782 1690142 1690526 "MAPPKG3" 1691381 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-699 1688739 1688936 1689158 "MAPPKG2" 1689606 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-698 1687196 1687522 1687849 "MAPPKG1" 1688445 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-697 1686197 1686602 1686779 "MAPPAST" 1687039 T MAPPAST (NIL) -8 NIL NIL NIL) (-696 1685802 1685866 1685989 "MAPHACK3" 1686133 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-695 1685382 1685455 1685569 "MAPHACK2" 1685734 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-694 1684808 1684923 1685065 "MAPHACK1" 1685273 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-693 1682731 1683508 1683812 "MAGMA" 1684536 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-692 1682150 1682455 1682546 "MACROAST" 1682660 T MACROAST (NIL) -8 NIL NIL NIL) (-691 1678393 1680389 1680850 "M3D" 1681722 NIL M3D (NIL T) -8 NIL NIL NIL) (-690 1671873 1676704 1676745 "LZSTAGG" 1677527 NIL LZSTAGG (NIL T) -9 NIL 1677822 NIL) (-689 1667555 1669004 1670461 "LZSTAGG-" 1670466 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-688 1664468 1665446 1665933 "LWORD" 1667100 NIL LWORD (NIL T) -8 NIL NIL NIL) (-687 1663990 1664272 1664347 "LSTAST" 1664413 T LSTAST (NIL) -8 NIL NIL NIL) (-686 1655918 1663761 1663895 "LSQM" 1663900 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-685 1655136 1655281 1655509 "LSPP" 1655773 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-684 1652918 1653249 1653705 "LSMP" 1654825 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-683 1649655 1650371 1651101 "LSMP1" 1652220 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-682 1642791 1648745 1648786 "LSAGG" 1648848 NIL LSAGG (NIL T) -9 NIL 1648926 NIL) (-681 1639300 1640410 1641623 "LSAGG-" 1641628 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-680 1636595 1638444 1638693 "LPOLY" 1639095 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-679 1636171 1636262 1636385 "LPEFRAC" 1636504 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-678 1634348 1635265 1635518 "LO" 1636003 NIL LO (NIL T T T) -8 NIL NIL NIL) (-677 1633924 1634098 1634126 "LOGIC" 1634237 T LOGIC (NIL) -9 NIL 1634318 NIL) (-676 1633780 1633809 1633880 "LOGIC-" 1633885 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-675 1632955 1633113 1633306 "LODOOPS" 1633636 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-674 1630050 1632871 1632937 "LODO" 1632942 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-673 1628574 1628823 1629176 "LODOF" 1629797 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-672 1624450 1627209 1627250 "LODOCAT" 1627688 NIL LODOCAT (NIL T) -9 NIL 1627899 NIL) (-671 1624165 1624241 1624368 "LODOCAT-" 1624373 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-670 1621151 1624006 1624124 "LODO2" 1624129 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-669 1618258 1621088 1621133 "LODO1" 1621138 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-668 1617127 1617304 1617609 "LODEEF" 1618081 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-667 1612099 1615293 1615334 "LNAGG" 1616196 NIL LNAGG (NIL T) -9 NIL 1616631 NIL) (-666 1611192 1611460 1611802 "LNAGG-" 1611807 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-665 1607172 1608117 1608756 "LMOPS" 1610607 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-664 1606471 1606949 1606990 "LMODULE" 1606995 NIL LMODULE (NIL T) -9 NIL 1607021 NIL) (-663 1603426 1606116 1606239 "LMDICT" 1606381 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-662 1603002 1603216 1603257 "LLINSET" 1603318 NIL LLINSET (NIL T) -9 NIL 1603362 NIL) (-661 1602647 1602910 1602970 "LITERAL" 1602975 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-660 1595101 1601581 1601885 "LIST" 1602376 NIL LIST (NIL T) -8 NIL NIL NIL) (-659 1594620 1594700 1594839 "LIST3" 1595021 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-658 1593609 1593805 1594033 "LIST2" 1594438 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-657 1591707 1592055 1592454 "LIST2MAP" 1593256 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-656 1591290 1591526 1591567 "LINSET" 1591572 NIL LINSET (NIL T) -9 NIL 1591606 NIL) (-655 1590104 1590798 1590965 "LINFORM" 1591175 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-654 1588403 1589131 1589172 "LINEXP" 1589662 NIL LINEXP (NIL T) -9 NIL 1589935 NIL) (-653 1586979 1587883 1588064 "LINELT" 1588274 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-652 1585536 1585816 1586127 "LINDEP" 1586731 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-651 1584672 1585268 1585378 "LINBASIS" 1585466 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-650 1581409 1582158 1582935 "LIMITRF" 1583927 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-649 1579694 1580008 1580417 "LIMITPS" 1581104 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-648 1573714 1579205 1579433 "LIE" 1579515 NIL LIE (NIL T T) -8 NIL NIL NIL) (-647 1572542 1573117 1573157 "LIECAT" 1573297 NIL LIECAT (NIL T) -9 NIL 1573448 NIL) (-646 1572377 1572410 1572498 "LIECAT-" 1572503 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-645 1564564 1571917 1572073 "LIB" 1572241 T LIB (NIL) -8 NIL NIL NIL) (-644 1560133 1561082 1562017 "LGROBP" 1563681 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-643 1558071 1558405 1558755 "LF" 1559854 NIL LF (NIL T T) -7 NIL NIL NIL) (-642 1556695 1557603 1557631 "LFCAT" 1557838 T LFCAT (NIL) -9 NIL 1557977 NIL) (-641 1553555 1554227 1554915 "LEXTRIPK" 1556059 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-640 1550143 1551125 1551628 "LEXP" 1553135 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-639 1549559 1549864 1549956 "LETAST" 1550071 T LETAST (NIL) -8 NIL NIL NIL) (-638 1547945 1548270 1548671 "LEADCDET" 1549241 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-637 1547123 1547209 1547438 "LAZM3PK" 1547866 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-636 1541634 1545200 1545738 "LAUPOL" 1546635 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-635 1541207 1541257 1541418 "LAPLACE" 1541584 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-634 1538944 1540308 1540559 "LA" 1541040 NIL LA (NIL T T T) -8 NIL NIL NIL) (-633 1537792 1538508 1538549 "LALG" 1538611 NIL LALG (NIL T) -9 NIL 1538670 NIL) (-632 1537488 1537565 1537701 "LALG-" 1537706 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-631 1537317 1537347 1537388 "KVTFROM" 1537450 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-630 1536156 1536684 1536869 "KTVLOGIC" 1537152 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-629 1535985 1536015 1536056 "KRCFROM" 1536118 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-628 1534877 1535076 1535375 "KOVACIC" 1535785 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-627 1534706 1534736 1534777 "KONVERT" 1534839 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-626 1534535 1534565 1534606 "KOERCE" 1534668 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-625 1532222 1533128 1533505 "KERNEL" 1534191 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-624 1531706 1531799 1531931 "KERNEL2" 1532136 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-623 1525177 1530183 1530237 "KDAGG" 1530614 NIL KDAGG (NIL T T) -9 NIL 1530820 NIL) (-622 1524688 1524830 1525035 "KDAGG-" 1525040 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-621 1517388 1524349 1524504 "KAFILE" 1524566 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-620 1511408 1516899 1517127 "JORDAN" 1517209 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-619 1510721 1511057 1511178 "JOINAST" 1511307 T JOINAST (NIL) -8 NIL NIL NIL) (-618 1510549 1510626 1510681 "JAVACODE" 1510686 T JAVACODE (NIL) -8 NIL NIL NIL) (-617 1506584 1508726 1508780 "IXAGG" 1509709 NIL IXAGG (NIL T T) -9 NIL 1510168 NIL) (-616 1505437 1505809 1506228 "IXAGG-" 1506233 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-615 1500526 1505359 1505418 "IVECTOR" 1505423 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-614 1499250 1499529 1499795 "ITUPLE" 1500293 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-613 1497722 1497929 1498224 "ITRIGMNP" 1499072 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-612 1496449 1496671 1496954 "ITFUN3" 1497498 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-611 1496075 1496138 1496247 "ITFUN2" 1496386 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-610 1495180 1495555 1495729 "ITFORM" 1495921 T ITFORM (NIL) -8 NIL NIL NIL) (-609 1492949 1494200 1494478 "ITAYLOR" 1494935 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-608 1481346 1487086 1488249 "ISUPS" 1491819 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-607 1480438 1480590 1480826 "ISUMP" 1481193 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-606 1475288 1480383 1480424 "ISTRING" 1480429 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-605 1474704 1475009 1475101 "ISAST" 1475216 T ISAST (NIL) -8 NIL NIL NIL) (-604 1473901 1473995 1474211 "IRURPK" 1474618 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-603 1472813 1473038 1473278 "IRSN" 1473681 T IRSN (NIL) -7 NIL NIL NIL) (-602 1470858 1471239 1471668 "IRRF2F" 1472451 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-601 1470599 1470643 1470719 "IRREDFFX" 1470814 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-600 1469172 1469473 1469772 "IROOT" 1470332 NIL IROOT (NIL T) -7 NIL NIL NIL) (-599 1465612 1466856 1467548 "IR" 1468512 NIL IR (NIL T) -8 NIL NIL NIL) (-598 1464751 1465105 1465256 "IRFORM" 1465481 T IRFORM (NIL) -8 NIL NIL NIL) (-597 1462340 1462859 1463425 "IR2" 1464229 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-596 1461422 1461553 1461767 "IR2F" 1462223 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-595 1461207 1461247 1461307 "IPRNTPK" 1461382 T IPRNTPK (NIL) -7 NIL NIL NIL) (-594 1457160 1461096 1461165 "IPF" 1461170 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-593 1455181 1457085 1457142 "IPADIC" 1457147 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-592 1454439 1454741 1454871 "IP4ADDR" 1455071 T IP4ADDR (NIL) -8 NIL NIL NIL) (-591 1453777 1454068 1454200 "IOMODE" 1454327 T IOMODE (NIL) -8 NIL NIL NIL) (-590 1452748 1453374 1453501 "IOBFILE" 1453670 T IOBFILE (NIL) -8 NIL NIL NIL) (-589 1452158 1452652 1452680 "IOBCON" 1452685 T IOBCON (NIL) -9 NIL 1452706 NIL) (-588 1451663 1451727 1451910 "INVLAPLA" 1452094 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-587 1441233 1443665 1446051 "INTTR" 1449327 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-586 1437526 1438310 1439175 "INTTOOLS" 1440418 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-585 1437106 1437203 1437320 "INTSLPE" 1437429 T INTSLPE (NIL) -7 NIL NIL NIL) (-584 1434573 1437029 1437088 "INTRVL" 1437093 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-583 1432151 1432687 1433262 "INTRF" 1434058 NIL INTRF (NIL T) -7 NIL NIL NIL) (-582 1431544 1431659 1431801 "INTRET" 1432049 NIL INTRET (NIL T) -7 NIL NIL NIL) (-581 1429517 1429930 1430400 "INTRAT" 1431152 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-580 1426762 1427363 1427982 "INTPM" 1429002 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-579 1423479 1424106 1424844 "INTPAF" 1426148 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-578 1418580 1419620 1420671 "INTPACK" 1422448 T INTPACK (NIL) -7 NIL NIL NIL) (-577 1414768 1418377 1418486 "INT" 1418491 T INT (NIL) -8 NIL NIL NIL) (-576 1414014 1414172 1414380 "INTHERTR" 1414610 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-575 1413447 1413533 1413721 "INTHERAL" 1413928 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-574 1411215 1411736 1412193 "INTHEORY" 1413010 T INTHEORY (NIL) -7 NIL NIL NIL) (-573 1402547 1404242 1406014 "INTG0" 1409567 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-572 1383072 1387910 1392720 "INTFTBL" 1397757 T INTFTBL (NIL) -8 NIL NIL NIL) (-571 1382297 1382459 1382632 "INTFACT" 1382931 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-570 1379694 1380170 1380727 "INTEF" 1381851 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-569 1377891 1378786 1378814 "INTDOM" 1379115 T INTDOM (NIL) -9 NIL 1379322 NIL) (-568 1377230 1377434 1377676 "INTDOM-" 1377681 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-567 1373104 1375519 1375573 "INTCAT" 1376372 NIL INTCAT (NIL T) -9 NIL 1376693 NIL) (-566 1372558 1372679 1372807 "INTBIT" 1372996 T INTBIT (NIL) -7 NIL NIL NIL) (-565 1371239 1371411 1371718 "INTALG" 1372403 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-564 1370716 1370812 1370969 "INTAF" 1371143 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-563 1363683 1370526 1370666 "INTABL" 1370671 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-562 1362920 1363482 1363547 "INT8" 1363581 T INT8 (NIL) -8 NIL NIL 1363626) (-561 1362156 1362718 1362783 "INT64" 1362817 T INT64 (NIL) -8 NIL NIL 1362862) (-560 1361392 1361954 1362019 "INT32" 1362053 T INT32 (NIL) -8 NIL NIL 1362098) (-559 1360628 1361190 1361255 "INT16" 1361289 T INT16 (NIL) -8 NIL NIL 1361334) (-558 1354729 1358176 1358204 "INS" 1359138 T INS (NIL) -9 NIL 1359803 NIL) (-557 1351783 1352740 1353714 "INS-" 1353787 NIL INS- (NIL T) -8 NIL NIL NIL) (-556 1350540 1350785 1351083 "INPSIGN" 1351536 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-555 1349634 1349775 1349972 "INPRODPF" 1350420 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-554 1348504 1348645 1348882 "INPRODFF" 1349514 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-553 1347492 1347656 1347916 "INNMFACT" 1348340 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-552 1346671 1346786 1346974 "INMODGCD" 1347391 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-551 1345155 1345424 1345748 "INFSP" 1346416 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-550 1344315 1344456 1344639 "INFPROD0" 1345035 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-549 1340882 1342380 1342895 "INFORM" 1343808 T INFORM (NIL) -8 NIL NIL NIL) (-548 1340480 1340552 1340650 "INFORM1" 1340817 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-547 1339985 1340092 1340206 "INFINITY" 1340386 T INFINITY (NIL) -7 NIL NIL NIL) (-546 1339059 1339705 1339806 "INETCLTS" 1339904 T INETCLTS (NIL) -8 NIL NIL NIL) (-545 1337657 1337925 1338246 "INEP" 1338807 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-544 1336718 1337554 1337619 "INDE" 1337624 NIL INDE (NIL T) -8 NIL NIL NIL) (-543 1336270 1336350 1336467 "INCRMAPS" 1336645 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-542 1334992 1335539 1335745 "INBFILE" 1336084 T INBFILE (NIL) -8 NIL NIL NIL) (-541 1330171 1331228 1332172 "INBFF" 1334080 NIL INBFF (NIL T) -7 NIL NIL NIL) (-540 1329025 1329348 1329376 "INBCON" 1329889 T INBCON (NIL) -9 NIL 1330155 NIL) (-539 1328235 1328500 1328776 "INBCON-" 1328781 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-538 1327654 1327959 1328050 "INAST" 1328164 T INAST (NIL) -8 NIL NIL NIL) (-537 1327021 1327333 1327439 "IMPTAST" 1327568 T IMPTAST (NIL) -8 NIL NIL NIL) (-536 1322942 1326865 1326969 "IMATRIX" 1326974 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-535 1321634 1321773 1322089 "IMATQF" 1322798 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-534 1319814 1320081 1320418 "IMATLIN" 1321390 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-533 1313729 1319738 1319796 "ILIST" 1319801 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-532 1311395 1313589 1313702 "IIARRAY2" 1313707 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-531 1306195 1311306 1311370 "IFF" 1311375 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-530 1305476 1305812 1305928 "IFAST" 1306099 T IFAST (NIL) -8 NIL NIL NIL) (-529 1299988 1304768 1304956 "IFARRAY" 1305333 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-528 1299026 1299892 1299965 "IFAMON" 1299970 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-527 1298598 1298675 1298729 "IEVALAB" 1298936 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-526 1298261 1298341 1298501 "IEVALAB-" 1298506 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-525 1297642 1298176 1298238 "IDPO" 1298243 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-524 1296706 1297531 1297606 "IDPOAMS" 1297611 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1295839 1296595 1296670 "IDPOAM" 1296675 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1294319 1294846 1294898 "IDPC" 1295410 NIL IDPC (NIL T T) -9 NIL 1295691 NIL) (-521 1293651 1294211 1294284 "IDPAM" 1294289 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-520 1292866 1293543 1293616 "IDPAG" 1293621 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-519 1292410 1292672 1292762 "IDENT" 1292796 T IDENT (NIL) -8 NIL NIL NIL) (-518 1288629 1289513 1290408 "IDECOMP" 1291567 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-517 1281264 1282552 1283599 "IDEAL" 1287665 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-516 1280406 1280536 1280736 "ICDEN" 1281148 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-515 1279381 1279886 1280033 "ICARD" 1280279 T ICARD (NIL) -8 NIL NIL NIL) (-514 1277411 1277754 1278159 "IBPTOOLS" 1279058 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-513 1272526 1277031 1277144 "IBITS" 1277330 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-512 1269201 1269825 1270520 "IBATOOL" 1271943 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-511 1266962 1267442 1267975 "IBACHIN" 1268736 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-510 1264552 1266808 1266911 "IARRAY2" 1266916 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-509 1260265 1264478 1264535 "IARRAY1" 1264540 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-508 1253275 1258677 1259158 "IAN" 1259804 T IAN (NIL) -8 NIL NIL NIL) (-507 1252780 1252843 1253016 "IALGFACT" 1253212 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-506 1252272 1252421 1252449 "HYPCAT" 1252656 T HYPCAT (NIL) -9 NIL NIL NIL) (-505 1251774 1251927 1252113 "HYPCAT-" 1252118 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-504 1251321 1251569 1251652 "HOSTNAME" 1251711 T HOSTNAME (NIL) -8 NIL NIL NIL) (-503 1251154 1251203 1251244 "HOMOTOP" 1251249 NIL HOMOTOP (NIL T) -9 NIL 1251282 NIL) (-502 1247587 1249086 1249127 "HOAGG" 1250108 NIL HOAGG (NIL T) -9 NIL 1250837 NIL) (-501 1246103 1246580 1247106 "HOAGG-" 1247111 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-500 1239139 1245696 1245846 "HEXADEC" 1245973 T HEXADEC (NIL) -8 NIL NIL NIL) (-499 1237851 1238109 1238372 "HEUGCD" 1238916 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-498 1236783 1237688 1237818 "HELLFDIV" 1237823 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-497 1234793 1236560 1236648 "HEAP" 1236727 NIL HEAP (NIL T) -8 NIL NIL NIL) (-496 1233990 1234345 1234479 "HEADAST" 1234679 T HEADAST (NIL) -8 NIL NIL NIL) (-495 1227377 1233905 1233967 "HDP" 1233972 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-494 1220389 1227012 1227164 "HDMP" 1227278 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-493 1219695 1219853 1220017 "HB" 1220245 T HB (NIL) -7 NIL NIL NIL) (-492 1212705 1219541 1219645 "HASHTBL" 1219650 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-491 1212121 1212426 1212518 "HASAST" 1212633 T HASAST (NIL) -8 NIL NIL NIL) (-490 1209527 1211743 1211925 "HACKPI" 1211959 T HACKPI (NIL) -8 NIL NIL NIL) (-489 1204699 1209380 1209493 "GTSET" 1209498 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-488 1197738 1204577 1204675 "GSTBL" 1204680 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-487 1189487 1196903 1197159 "GSERIES" 1197538 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-486 1188518 1189031 1189059 "GROUP" 1189262 T GROUP (NIL) -9 NIL 1189396 NIL) (-485 1187842 1188043 1188294 "GROUP-" 1188299 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-484 1186191 1186530 1186917 "GROEBSOL" 1187519 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-483 1185019 1185379 1185430 "GRMOD" 1185959 NIL GRMOD (NIL T T) -9 NIL 1186127 NIL) (-482 1184775 1184823 1184951 "GRMOD-" 1184956 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-481 1179915 1181129 1182129 "GRIMAGE" 1183795 T GRIMAGE (NIL) -8 NIL NIL NIL) (-480 1178309 1178642 1178966 "GRDEF" 1179611 T GRDEF (NIL) -7 NIL NIL NIL) (-479 1177741 1177869 1178010 "GRAY" 1178188 T GRAY (NIL) -7 NIL NIL NIL) (-478 1176818 1177320 1177371 "GRALG" 1177524 NIL GRALG (NIL T T) -9 NIL 1177617 NIL) (-477 1176455 1176552 1176715 "GRALG-" 1176720 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-476 1172936 1176038 1176217 "GPOLSET" 1176361 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-475 1172284 1172347 1172605 "GOSPER" 1172873 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-474 1167854 1168722 1169248 "GMODPOL" 1171983 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-473 1166841 1167043 1167281 "GHENSEL" 1167666 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-472 1160913 1161840 1162860 "GENUPS" 1165925 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-471 1160604 1160661 1160750 "GENUFACT" 1160856 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-470 1160004 1160093 1160258 "GENPGCD" 1160522 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-469 1159472 1159513 1159726 "GENMFACT" 1159963 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-468 1158008 1158295 1158602 "GENEEZ" 1159215 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-467 1151180 1157619 1157781 "GDMP" 1157931 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-466 1139919 1144951 1146057 "GCNAALG" 1150163 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-465 1138046 1139094 1139122 "GCDDOM" 1139377 T GCDDOM (NIL) -9 NIL 1139534 NIL) (-464 1137486 1137643 1137858 "GCDDOM-" 1137863 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-463 1136136 1136343 1136647 "GB" 1137265 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-462 1124608 1127082 1129474 "GBINTERN" 1133827 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1122409 1122737 1123158 "GBF" 1124283 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1121166 1121355 1121622 "GBEUCLID" 1122225 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1120497 1120640 1120789 "GAUSSFAC" 1121037 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-458 1118818 1119166 1119480 "GALUTIL" 1120216 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-457 1117078 1117400 1117724 "GALPOLYU" 1118545 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-456 1114377 1114733 1115140 "GALFACTU" 1116775 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-455 1105991 1107682 1109290 "GALFACT" 1112809 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-454 1103277 1104037 1104065 "FVFUN" 1105221 T FVFUN (NIL) -9 NIL 1105941 NIL) (-453 1102507 1102725 1102753 "FVC" 1103044 T FVC (NIL) -9 NIL 1103227 NIL) (-452 1102108 1102332 1102400 "FUNDESC" 1102459 T FUNDESC (NIL) -8 NIL NIL NIL) (-451 1101681 1101905 1101986 "FUNCTION" 1102060 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-450 1099311 1100003 1100469 "FT" 1101235 T FT (NIL) -8 NIL NIL NIL) (-449 1097988 1098612 1098815 "FTEM" 1099128 T FTEM (NIL) -8 NIL NIL NIL) (-448 1096257 1096568 1096965 "FSUPFACT" 1097679 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-447 1094576 1094943 1095275 "FST" 1095945 T FST (NIL) -8 NIL NIL NIL) (-446 1093757 1093881 1094069 "FSRED" 1094458 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-445 1092446 1092712 1093059 "FSPRMELT" 1093472 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-444 1089656 1090190 1090676 "FSPECF" 1092009 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-443 1069883 1079430 1079471 "FS" 1083355 NIL FS (NIL T) -9 NIL 1085644 NIL) (-442 1057944 1061519 1065576 "FS-" 1065876 NIL FS- (NIL T T) -8 NIL NIL NIL) (-441 1057466 1057526 1057696 "FSINT" 1057885 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-440 1055602 1056459 1056762 "FSERIES" 1057245 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-439 1054626 1054760 1054984 "FSCINT" 1055482 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-438 1050490 1053570 1053611 "FSAGG" 1053981 NIL FSAGG (NIL T) -9 NIL 1054240 NIL) (-437 1048090 1048853 1049649 "FSAGG-" 1049744 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-436 1047114 1047275 1047502 "FSAGG2" 1047943 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-435 1044774 1045072 1045620 "FS2UPS" 1046832 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-434 1044402 1044451 1044580 "FS2" 1044725 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 1043268 1043451 1043753 "FS2EXPXP" 1044227 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-432 1042682 1042809 1042961 "FRUTIL" 1043148 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-431 1033599 1038177 1039535 "FR" 1041356 NIL FR (NIL T) -8 NIL NIL NIL) (-430 1028117 1031288 1031328 "FRNAALG" 1032648 NIL FRNAALG (NIL T) -9 NIL 1033246 NIL) (-429 1023598 1024866 1026141 "FRNAALG-" 1026891 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-428 1023230 1023279 1023406 "FRNAAF2" 1023549 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 1021517 1022079 1022375 "FRMOD" 1023042 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 1019122 1019892 1020210 "FRIDEAL" 1021308 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-425 1018307 1018400 1018691 "FRIDEAL2" 1019029 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-424 1017398 1017854 1017895 "FRETRCT" 1017900 NIL FRETRCT (NIL T) -9 NIL 1018076 NIL) (-423 1016456 1016741 1017092 "FRETRCT-" 1017097 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-422 1013270 1014740 1014799 "FRAMALG" 1015681 NIL FRAMALG (NIL T T) -9 NIL 1015973 NIL) (-421 1011308 1011859 1012489 "FRAMALG-" 1012712 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-420 1004279 1010781 1011058 "FRAC" 1011063 NIL FRAC (NIL T) -8 NIL NIL NIL) (-419 1003909 1003972 1004079 "FRAC2" 1004216 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-418 1003539 1003602 1003709 "FR2" 1003846 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 997456 1000918 1000946 "FPS" 1002065 T FPS (NIL) -9 NIL 1002622 NIL) (-416 996881 997014 997178 "FPS-" 997324 NIL FPS- (NIL T) -8 NIL NIL NIL) (-415 993833 995838 995866 "FPC" 996091 T FPC (NIL) -9 NIL 996233 NIL) (-414 993614 993666 993763 "FPC-" 993768 NIL FPC- (NIL T) -8 NIL NIL NIL) (-413 992372 993102 993143 "FPATMAB" 993148 NIL FPATMAB (NIL T) -9 NIL 993300 NIL) (-412 990515 991114 991461 "FPARFRAC" 992088 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-411 985807 986407 987089 "FORTRAN" 989947 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-410 983493 984023 984562 "FORT" 985288 T FORT (NIL) -7 NIL NIL NIL) (-409 981067 981731 981759 "FORTFN" 982819 T FORTFN (NIL) -9 NIL 983443 NIL) (-408 980819 980881 980909 "FORTCAT" 980968 T FORTCAT (NIL) -9 NIL 981030 NIL) (-407 978823 979435 979825 "FORMULA" 980449 T FORMULA (NIL) -8 NIL NIL NIL) (-406 978605 978641 978710 "FORMULA1" 978787 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-405 978122 978180 978353 "FORDER" 978547 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-404 977182 977382 977575 "FOP" 977949 T FOP (NIL) -7 NIL NIL NIL) (-403 975595 976462 976636 "FNLA" 977064 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-402 974214 974725 974753 "FNCAT" 975213 T FNCAT (NIL) -9 NIL 975473 NIL) (-401 973657 974173 974201 "FNAME" 974206 T FNAME (NIL) -8 NIL NIL NIL) (-400 971983 973156 973184 "FMTC" 973189 T FMTC (NIL) -9 NIL 973225 NIL) (-399 970531 971919 971965 "FMONOID" 971970 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-398 967120 968486 968527 "FMONCAT" 969744 NIL FMONCAT (NIL T) -9 NIL 970349 NIL) (-397 966138 966862 967011 "FM" 967016 NIL FM (NIL T T) -8 NIL NIL NIL) (-396 963460 964208 964236 "FMFUN" 965380 T FMFUN (NIL) -9 NIL 966088 NIL) (-395 962693 962910 962938 "FMC" 963228 T FMC (NIL) -9 NIL 963410 NIL) (-394 959566 960618 960672 "FMCAT" 961867 NIL FMCAT (NIL T T) -9 NIL 962362 NIL) (-393 958234 959332 959432 "FM1" 959511 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-392 955972 956424 956918 "FLOATRP" 957785 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-391 948628 953701 954322 "FLOAT" 955371 T FLOAT (NIL) -8 NIL NIL NIL) (-390 946030 946566 947144 "FLOATCP" 948095 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-389 944548 945622 945663 "FLINEXP" 945668 NIL FLINEXP (NIL T) -9 NIL 945761 NIL) (-388 943678 943937 944265 "FLINEXP-" 944270 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-387 942736 942898 943122 "FLASORT" 943530 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-386 939654 940706 940758 "FLALG" 941985 NIL FLALG (NIL T T) -9 NIL 942452 NIL) (-385 932918 937063 937104 "FLAGG" 938366 NIL FLAGG (NIL T) -9 NIL 939018 NIL) (-384 931572 931983 932473 "FLAGG-" 932478 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 930596 930757 930984 "FLAGG2" 931425 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-382 927227 928441 928500 "FINRALG" 929628 NIL FINRALG (NIL T T) -9 NIL 930136 NIL) (-381 926351 926616 926955 "FINRALG-" 926960 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-380 925657 925956 925984 "FINITE" 926180 T FINITE (NIL) -9 NIL 926287 NIL) (-379 917608 920187 920227 "FINAALG" 923894 NIL FINAALG (NIL T) -9 NIL 925347 NIL) (-378 912724 913990 915134 "FINAALG-" 916513 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-377 912002 912479 912582 "FILE" 912654 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 910562 910984 911038 "FILECAT" 911722 NIL FILECAT (NIL T T) -9 NIL 911938 NIL) (-375 907958 909792 909820 "FIELD" 909860 T FIELD (NIL) -9 NIL 909940 NIL) (-374 906500 906963 907474 "FIELD-" 907479 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-373 904182 905135 905482 "FGROUP" 906186 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-372 903254 903436 903656 "FGLMICPK" 904014 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-371 898488 903179 903236 "FFX" 903241 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-370 898083 898150 898285 "FFSLPE" 898421 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-369 893959 894855 895651 "FFPOLY" 897319 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 893457 893499 893708 "FFPOLY2" 893917 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-367 888705 893376 893439 "FFP" 893444 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-366 883505 888616 888680 "FF" 888685 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-365 878015 882848 883038 "FFNBX" 883359 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-364 872327 877150 877408 "FFNBP" 877869 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-363 866344 871611 871822 "FFNB" 872160 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-362 865164 865374 865689 "FFINTBAS" 866141 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-361 860740 863411 863439 "FFIELDC" 864059 T FFIELDC (NIL) -9 NIL 864435 NIL) (-360 859318 859773 860270 "FFIELDC-" 860275 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-359 858875 858933 859057 "FFHOM" 859260 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-358 856534 857057 857574 "FFF" 858390 NIL FFF (NIL T) -7 NIL NIL NIL) (-357 851548 856276 856377 "FFCGX" 856477 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-356 846566 851280 851387 "FFCGP" 851491 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-355 841145 846293 846401 "FFCG" 846502 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-354 819808 830877 830963 "FFCAT" 836128 NIL FFCAT (NIL T T T) -9 NIL 837579 NIL) (-353 814819 816053 817367 "FFCAT-" 818597 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-352 814224 814273 814508 "FFCAT2" 814770 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-351 802877 807196 808416 "FEXPR" 813076 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-350 801805 802274 802315 "FEVALAB" 802399 NIL FEVALAB (NIL T) -9 NIL 802660 NIL) (-349 800922 801174 801512 "FEVALAB-" 801517 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-348 799332 800305 800508 "FDIV" 800821 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-347 796194 797079 797194 "FDIVCAT" 798762 NIL FDIVCAT (NIL T T T T) -9 NIL 799199 NIL) (-346 795950 795983 796153 "FDIVCAT-" 796158 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-345 795164 795257 795534 "FDIV2" 795857 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 794072 794459 794661 "FCTRDATA" 794982 T FCTRDATA (NIL) -8 NIL NIL NIL) (-343 792728 793017 793306 "FCPAK1" 793803 T FCPAK1 (NIL) -7 NIL NIL NIL) (-342 791731 792228 792369 "FCOMP" 792619 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-341 775046 778881 782419 "FC" 788213 T FC (NIL) -8 NIL NIL NIL) (-340 766741 771367 771407 "FAXF" 773209 NIL FAXF (NIL T) -9 NIL 773901 NIL) (-339 763862 764675 765500 "FAXF-" 765965 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-338 758431 763238 763414 "FARRAY" 763719 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-337 752995 755378 755431 "FAMR" 756454 NIL FAMR (NIL T T) -9 NIL 756914 NIL) (-336 751819 752187 752622 "FAMR-" 752627 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-335 750846 751741 751794 "FAMONOID" 751799 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-334 748476 749328 749381 "FAMONC" 750322 NIL FAMONC (NIL T T) -9 NIL 750708 NIL) (-333 746950 748230 748367 "FAGROUP" 748372 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-332 744703 745064 745467 "FACUTIL" 746631 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-331 743790 743987 744209 "FACTFUNC" 744513 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-330 735548 743093 743292 "EXPUPXS" 743646 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-329 733001 733571 734157 "EXPRTUBE" 734982 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-328 729212 729864 730594 "EXPRODE" 732340 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-327 713506 727861 728290 "EXPR" 728816 NIL EXPR (NIL T) -8 NIL NIL NIL) (-326 707940 708647 709453 "EXPR2UPS" 712804 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-325 707566 707629 707738 "EXPR2" 707877 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-324 697883 706717 707008 "EXPEXPAN" 707402 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-323 697647 697840 697869 "EXIT" 697874 T EXIT (NIL) -8 NIL NIL NIL) (-322 697067 697371 697462 "EXITAST" 697576 T EXITAST (NIL) -8 NIL NIL NIL) (-321 696688 696756 696869 "EVALCYC" 696999 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-320 696205 696347 696388 "EVALAB" 696558 NIL EVALAB (NIL T) -9 NIL 696662 NIL) (-319 695662 695808 696029 "EVALAB-" 696034 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-318 692770 694318 694346 "EUCDOM" 694901 T EUCDOM (NIL) -9 NIL 695251 NIL) (-317 691109 691617 692207 "EUCDOM-" 692212 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-316 678426 681407 684157 "ESTOOLS" 688379 T ESTOOLS (NIL) -7 NIL NIL NIL) (-315 678052 678115 678224 "ESTOOLS2" 678363 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-314 677797 677845 677925 "ESTOOLS1" 678004 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-313 671498 673428 673456 "ES" 676224 T ES (NIL) -9 NIL 677634 NIL) (-312 666175 667732 669549 "ES-" 669713 NIL ES- (NIL T) -8 NIL NIL NIL) (-311 662483 663310 664090 "ESCONT" 665415 T ESCONT (NIL) -7 NIL NIL NIL) (-310 662222 662260 662342 "ESCONT1" 662445 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-309 661891 661947 662047 "ES2" 662166 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-308 661515 661579 661688 "ES1" 661827 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-307 660707 660860 661036 "ERROR" 661359 T ERROR (NIL) -7 NIL NIL NIL) (-306 653723 660566 660657 "EQTBL" 660662 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-305 645982 649037 650486 "EQ" 652307 NIL -2068 (NIL T) -8 NIL NIL NIL) (-304 645608 645671 645780 "EQ2" 645919 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-303 640851 641946 643039 "EP" 644547 NIL EP (NIL T) -7 NIL NIL NIL) (-302 639391 639742 640048 "ENV" 640565 T ENV (NIL) -8 NIL NIL NIL) (-301 638351 639025 639053 "ENTIRER" 639058 T ENTIRER (NIL) -9 NIL 639104 NIL) (-300 634763 636533 636894 "EMR" 638159 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-299 633867 634078 634132 "ELTAGG" 634512 NIL ELTAGG (NIL T T) -9 NIL 634723 NIL) (-298 633574 633648 633789 "ELTAGG-" 633794 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-297 633332 633367 633421 "ELTAB" 633505 NIL ELTAB (NIL T T) -9 NIL 633557 NIL) (-296 632434 632604 632803 "ELFUTS" 633183 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-295 632158 632232 632260 "ELEMFUN" 632365 T ELEMFUN (NIL) -9 NIL NIL NIL) (-294 632022 632049 632117 "ELEMFUN-" 632122 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-293 626439 630064 630105 "ELAGG" 631045 NIL ELAGG (NIL T) -9 NIL 631508 NIL) (-292 624616 625158 625821 "ELAGG-" 625826 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-291 623898 624065 624221 "ELABOR" 624480 T ELABOR (NIL) -8 NIL NIL NIL) (-290 622505 622838 623132 "ELABEXPR" 623624 T ELABEXPR (NIL) -8 NIL NIL NIL) (-289 615017 617142 617971 "EFUPXS" 621780 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-288 608143 610266 611077 "EFULS" 614292 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-287 605580 605986 606458 "EFSTRUC" 607775 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-286 595017 596937 598485 "EF" 604095 NIL EF (NIL T T) -7 NIL NIL NIL) (-285 593995 594502 594651 "EAB" 594888 T EAB (NIL) -8 NIL NIL NIL) (-284 593117 593954 593982 "E04UCFA" 593987 T E04UCFA (NIL) -8 NIL NIL NIL) (-283 592239 593076 593104 "E04NAFA" 593109 T E04NAFA (NIL) -8 NIL NIL NIL) (-282 591361 592198 592226 "E04MBFA" 592231 T E04MBFA (NIL) -8 NIL NIL NIL) (-281 590483 591320 591348 "E04JAFA" 591353 T E04JAFA (NIL) -8 NIL NIL NIL) (-280 589607 590442 590470 "E04GCFA" 590475 T E04GCFA (NIL) -8 NIL NIL NIL) (-279 588731 589566 589594 "E04FDFA" 589599 T E04FDFA (NIL) -8 NIL NIL NIL) (-278 587853 588690 588718 "E04DGFA" 588723 T E04DGFA (NIL) -8 NIL NIL NIL) (-277 581930 583378 584742 "E04AGNT" 586509 T E04AGNT (NIL) -7 NIL NIL NIL) (-276 580550 581231 581271 "DVARCAT" 581612 NIL DVARCAT (NIL T) -9 NIL 581775 NIL) (-275 579700 579966 580280 "DVARCAT-" 580285 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-274 571661 579499 579628 "DSMP" 579633 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-273 570012 570803 570844 "DSEXT" 571207 NIL DSEXT (NIL T) -9 NIL 571501 NIL) (-272 568201 568725 569391 "DSEXT-" 569396 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-271 562784 564146 565214 "DROPT" 567153 T DROPT (NIL) -8 NIL NIL NIL) (-270 562443 562508 562606 "DROPT1" 562719 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-269 557462 558684 559821 "DROPT0" 561326 T DROPT0 (NIL) -7 NIL NIL NIL) (-268 555771 556132 556518 "DRAWPT" 557096 T DRAWPT (NIL) -7 NIL NIL NIL) (-267 550262 551281 552360 "DRAW" 554745 NIL DRAW (NIL T) -7 NIL NIL NIL) (-266 549889 549948 550066 "DRAWHACK" 550203 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-265 548590 548889 549180 "DRAWCX" 549618 T DRAWCX (NIL) -7 NIL NIL NIL) (-264 548099 548174 548325 "DRAWCURV" 548516 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-263 538417 540529 542644 "DRAWCFUN" 546004 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-262 534888 537082 537123 "DQAGG" 537752 NIL DQAGG (NIL T) -9 NIL 538026 NIL) (-261 521471 529099 529182 "DPOLCAT" 531034 NIL DPOLCAT (NIL T T T T) -9 NIL 531579 NIL) (-260 515990 517656 519614 "DPOLCAT-" 519619 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-259 508847 515851 515949 "DPMO" 515954 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-258 501601 508627 508794 "DPMM" 508799 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-257 501123 501385 501474 "DOMTMPLT" 501532 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-256 500472 500925 501005 "DOMCTOR" 501063 T DOMCTOR (NIL) -8 NIL NIL NIL) (-255 499624 499952 500103 "DOMAIN" 500341 T DOMAIN (NIL) -8 NIL NIL NIL) (-254 492636 499259 499411 "DMP" 499525 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-253 490413 491703 491744 "DMEXT" 491749 NIL DMEXT (NIL T) -9 NIL 491925 NIL) (-252 490007 490069 490213 "DLP" 490351 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 483130 489334 489524 "DLIST" 489849 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 479668 481955 481996 "DLAGG" 482546 NIL DLAGG (NIL T) -9 NIL 482776 NIL) (-249 478180 478994 479022 "DIVRING" 479114 T DIVRING (NIL) -9 NIL 479197 NIL) (-248 477363 477607 477907 "DIVRING-" 477912 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 475405 475822 476228 "DISPLAY" 476977 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 468812 475319 475382 "DIRPROD" 475387 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 467642 467863 468128 "DIRPROD2" 468605 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 455861 462353 462406 "DIRPCAT" 462664 NIL DIRPCAT (NIL NIL T) -9 NIL 463539 NIL) (-243 453061 453829 454710 "DIRPCAT-" 455047 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 452342 452508 452694 "DIOSP" 452895 T DIOSP (NIL) -7 NIL NIL NIL) (-241 448756 451226 451267 "DIOPS" 451701 NIL DIOPS (NIL T) -9 NIL 451930 NIL) (-240 448275 448419 448610 "DIOPS-" 448615 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 447182 447954 447982 "DIFRING" 447987 T DIFRING (NIL) -9 NIL 448009 NIL) (-238 446830 446928 446956 "DIFFSPC" 447075 T DIFFSPC (NIL) -9 NIL 447150 NIL) (-237 446451 446553 446705 "DIFFSPC-" 446710 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 445387 445985 446026 "DIFFMOD" 446031 NIL DIFFMOD (NIL T) -9 NIL 446129 NIL) (-235 445083 445140 445181 "DIFFDOM" 445302 NIL DIFFDOM (NIL T) -9 NIL 445370 NIL) (-234 444930 444960 445044 "DIFFDOM-" 445049 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 442670 444134 444175 "DIFEXT" 444180 NIL DIFEXT (NIL T) -9 NIL 444333 NIL) (-232 439704 442174 442215 "DIAGG" 442220 NIL DIAGG (NIL T) -9 NIL 442240 NIL) (-231 439052 439245 439497 "DIAGG-" 439502 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-230 433902 438011 438288 "DHMATRIX" 438821 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-229 429370 430423 431433 "DFSFUN" 432912 T DFSFUN (NIL) -7 NIL NIL NIL) (-228 423604 428301 428613 "DFLOAT" 429078 T DFLOAT (NIL) -8 NIL NIL NIL) (-227 421843 422148 422537 "DFINTTLS" 423312 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-226 418662 419864 420264 "DERHAM" 421509 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-225 416198 418437 418526 "DEQUEUE" 418606 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-224 415440 415585 415768 "DEGRED" 416060 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-223 411846 412615 413461 "DEFINTRF" 414668 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-222 409383 409870 410462 "DEFINTEF" 411365 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-221 408667 409003 409118 "DEFAST" 409288 T DEFAST (NIL) -8 NIL NIL NIL) (-220 401703 408260 408410 "DECIMAL" 408537 T DECIMAL (NIL) -8 NIL NIL NIL) (-219 399161 399673 400179 "DDFACT" 401247 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-218 398751 398800 398951 "DBLRESP" 399112 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-217 397952 398521 398612 "DBASIS" 398700 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-216 395736 396182 396543 "DBASE" 397718 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 394924 395216 395362 "DATAARY" 395635 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 393982 394883 394911 "D03FAFA" 394916 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 393041 393941 393969 "D03EEFA" 393974 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 390967 391457 391946 "D03AGNT" 392572 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 390208 390926 390954 "D02EJFA" 390959 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 389449 390167 390195 "D02CJFA" 390200 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 388690 389408 389436 "D02BHFA" 389441 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 387931 388649 388677 "D02BBFA" 388682 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 381062 382717 384323 "D02AGNT" 386345 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 378812 379353 379899 "D01WGTS" 380536 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 377819 378771 378799 "D01TRNS" 378804 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 376827 377778 377806 "D01GBFA" 377811 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 375835 376786 376814 "D01FCFA" 376819 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 374843 375794 375822 "D01ASFA" 375827 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 373851 374802 374830 "D01AQFA" 374835 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 372859 373810 373838 "D01APFA" 373843 T D01APFA (NIL) -8 NIL NIL NIL) (-199 371867 372818 372846 "D01ANFA" 372851 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 370875 371826 371854 "D01AMFA" 371859 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 369883 370834 370862 "D01ALFA" 370867 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 368891 369842 369870 "D01AKFA" 369875 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 367899 368850 368878 "D01AJFA" 368883 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 361122 362747 364308 "D01AGNT" 366358 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 360441 360587 360739 "CYCLOTOM" 360990 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 357096 357889 358616 "CYCLES" 359734 T CYCLES (NIL) -7 NIL NIL NIL) (-191 356396 356542 356713 "CVMP" 356957 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 354183 354495 354864 "CTRIGMNP" 356124 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 353541 353977 354050 "CTOR" 354130 T CTOR (NIL) -8 NIL NIL NIL) (-188 353014 353272 353373 "CTORKIND" 353460 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 352219 352607 352635 "CTORCAT" 352817 T CTORCAT (NIL) -9 NIL 352930 NIL) (-186 351793 351928 352087 "CTORCAT-" 352092 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 351207 351467 351575 "CTORCALL" 351717 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 350563 350680 350833 "CSTTOOLS" 351104 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 346260 347019 347777 "CRFP" 349875 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 345675 345981 346073 "CRCEAST" 346188 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 344698 344907 345135 "CRAPACK" 345479 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 344078 344183 344387 "CPMATCH" 344574 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 343797 343831 343937 "CPIMA" 344044 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 340055 340817 341536 "COORDSYS" 343132 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 339443 339588 339730 "CONTOUR" 339933 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 334908 337446 337938 "CONTFRAC" 338983 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 334782 334809 334837 "CONDUIT" 334874 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 333736 334410 334438 "COMRING" 334443 T COMRING (NIL) -9 NIL 334495 NIL) (-173 332718 333094 333278 "COMPPROP" 333572 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 332373 332414 332542 "COMPLPAT" 332677 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 320756 332182 332291 "COMPLEX" 332296 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 320386 320449 320556 "COMPLEX2" 320693 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 319707 319846 320006 "COMPILER" 320246 T COMPILER (NIL) -8 NIL NIL NIL) (-168 319419 319460 319558 "COMPFACT" 319666 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 300794 313123 313163 "COMPCAT" 314167 NIL COMPCAT (NIL T) -9 NIL 315515 NIL) (-166 289682 293233 296860 "COMPCAT-" 297216 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 289405 289439 289542 "COMMUPC" 289648 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 289193 289233 289292 "COMMONOP" 289366 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 288701 288944 289031 "COMM" 289126 T COMM (NIL) -8 NIL NIL NIL) (-162 288223 288505 288580 "COMMAAST" 288646 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 287418 287666 287694 "COMBOPC" 288032 T COMBOPC (NIL) -9 NIL 288207 NIL) (-160 286272 286524 286766 "COMBINAT" 287208 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 282615 283303 283930 "COMBF" 285694 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 281277 281731 281966 "COLOR" 282400 T COLOR (NIL) -8 NIL NIL NIL) (-157 280693 280998 281090 "COLONAST" 281205 T COLONAST (NIL) -8 NIL NIL NIL) (-156 280327 280380 280505 "CMPLXRT" 280640 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 279715 280027 280126 "CLLCTAST" 280248 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 275175 276245 277325 "CLIP" 278655 T CLIP (NIL) -7 NIL NIL NIL) (-153 273348 274276 274516 "CLIF" 275002 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 269330 271466 271507 "CLAGG" 272436 NIL CLAGG (NIL T) -9 NIL 272972 NIL) (-151 267674 268209 268792 "CLAGG-" 268797 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 267212 267303 267443 "CINTSLPE" 267583 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 264677 265184 265732 "CHVAR" 266740 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 263717 264391 264419 "CHARZ" 264424 T CHARZ (NIL) -9 NIL 264439 NIL) (-147 263465 263511 263589 "CHARPOL" 263671 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 262383 263096 263124 "CHARNZ" 263171 T CHARNZ (NIL) -9 NIL 263227 NIL) (-145 260127 261037 261390 "CHAR" 262050 T CHAR (NIL) -8 NIL NIL NIL) (-144 259835 259914 259942 "CFCAT" 260053 T CFCAT (NIL) -9 NIL NIL NIL) (-143 259058 259187 259370 "CDEN" 259719 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 254655 258211 258491 "CCLASS" 258798 T CCLASS (NIL) -8 NIL NIL NIL) (-141 253876 254063 254240 "CATEGORY" 254498 T -10 (NIL) -8 NIL NIL NIL) (-140 253371 253795 253843 "CATCTOR" 253848 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 252762 253074 253172 "CATAST" 253293 T CATAST (NIL) -8 NIL NIL NIL) (-138 252178 252483 252575 "CASEAST" 252690 T CASEAST (NIL) -8 NIL NIL NIL) (-137 247076 248335 249079 "CARTEN" 251490 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 246172 246332 246553 "CARTEN2" 246923 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 244302 245322 245579 "CARD" 245935 T CARD (NIL) -8 NIL NIL NIL) (-134 243824 244106 244181 "CAPSLAST" 244247 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 243266 243522 243550 "CACHSET" 243682 T CACHSET (NIL) -9 NIL 243760 NIL) (-132 242656 243044 243072 "CABMON" 243122 T CABMON (NIL) -9 NIL 243178 NIL) (-131 242093 242360 242470 "BYTEORD" 242566 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 240944 241622 241764 "BYTE" 241927 T BYTE (NIL) -8 NIL NIL 242049) (-129 235871 240449 240621 "BYTEBUF" 240792 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 233133 235563 235670 "BTREE" 235797 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 230335 232781 232903 "BTOURN" 233043 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 227442 229777 229818 "BTCAT" 229886 NIL BTCAT (NIL T) -9 NIL 229963 NIL) (-125 227091 227189 227338 "BTCAT-" 227343 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 221982 226337 226365 "BTAGG" 226479 T BTAGG (NIL) -9 NIL 226589 NIL) (-123 221436 221597 221803 "BTAGG-" 221808 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 218172 220714 220929 "BSTREE" 221253 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 217280 217436 217620 "BRILL" 218028 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 213675 215978 216019 "BRAGG" 216668 NIL BRAGG (NIL T) -9 NIL 216926 NIL) (-119 212108 212610 213165 "BRAGG-" 213170 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 204344 211452 211637 "BPADICRT" 211955 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 202353 204281 204326 "BPADIC" 204331 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 202045 202081 202195 "BOUNDZRO" 202317 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 197027 198471 199383 "BOP" 201153 T BOP (NIL) -8 NIL NIL NIL) (-114 194754 195212 195687 "BOP1" 196585 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 194437 194516 194544 "BOOLE" 194655 T BOOLE (NIL) -9 NIL 194737 NIL) (-112 193088 194011 194160 "BOOLEAN" 194308 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 192257 192757 192811 "BMODULE" 192816 NIL BMODULE (NIL T T) -9 NIL 192881 NIL) (-110 187578 192055 192128 "BITS" 192204 T BITS (NIL) -8 NIL NIL NIL) (-109 186975 187118 187258 "BINDING" 187458 T BINDING (NIL) -8 NIL NIL NIL) (-108 180014 186570 186719 "BINARY" 186846 T BINARY (NIL) -8 NIL NIL NIL) (-107 177621 179241 179282 "BGAGG" 179542 NIL BGAGG (NIL T) -9 NIL 179679 NIL) (-106 177446 177484 177575 "BGAGG-" 177580 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 176469 176830 177035 "BFUNCT" 177261 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 175139 175337 175625 "BEZOUT" 176293 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 171337 173991 174321 "BBTREE" 174842 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 170920 171016 171044 "BASTYPE" 171221 T BASTYPE (NIL) -9 NIL 171320 NIL) (-101 170578 170677 170812 "BASTYPE-" 170817 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 170000 170088 170240 "BALFACT" 170489 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 168736 169415 169601 "AUTOMOR" 169845 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 168462 168467 168493 "ATTREG" 168498 T ATTREG (NIL) -9 NIL NIL NIL) (-97 166624 167159 167511 "ATTRBUT" 168128 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 166178 166452 166518 "ATTRAST" 166576 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 165678 165827 165853 "ATRIG" 166054 T ATRIG (NIL) -9 NIL NIL NIL) (-94 165475 165528 165615 "ATRIG-" 165620 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 165058 165292 165318 "ASTCAT" 165323 T ASTCAT (NIL) -9 NIL 165353 NIL) (-92 164767 164844 164963 "ASTCAT-" 164968 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 162741 164543 164631 "ASTACK" 164710 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 161230 161543 161908 "ASSOCEQ" 162423 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 160154 160889 161013 "ASP9" 161137 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 159881 160102 160141 "ASP8" 160146 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 158641 159486 159628 "ASP80" 159770 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 157431 158276 158408 "ASP7" 158540 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 156277 157108 157226 "ASP78" 157344 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 155138 155957 156074 "ASP77" 156191 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 153942 154776 154907 "ASP74" 155038 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 152734 153577 153709 "ASP73" 153841 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 151730 152560 152660 "ASP6" 152665 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 150569 151407 151525 "ASP55" 151643 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 149410 150243 150362 "ASP50" 150481 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 148390 149111 149221 "ASP4" 149331 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 147370 148091 148201 "ASP49" 148311 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 146046 146909 147077 "ASP42" 147259 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 144715 145579 145749 "ASP41" 145933 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 143557 144392 144510 "ASP35" 144628 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 143286 143505 143544 "ASP34" 143549 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 143005 143090 143166 "ASP33" 143241 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 141791 142640 142772 "ASP31" 142904 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 141520 141739 141778 "ASP30" 141783 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 141237 141324 141400 "ASP29" 141475 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 140966 141185 141224 "ASP28" 141229 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 140695 140914 140953 "ASP27" 140958 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 139671 140393 140504 "ASP24" 140615 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 138640 139473 139585 "ASP20" 139590 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 137620 138341 138451 "ASP1" 138561 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 136455 137294 137413 "ASP19" 137532 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 136174 136259 136335 "ASP12" 136410 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 134918 135773 135917 "ASP10" 136061 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 132530 134762 134853 "ARRAY2" 134858 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 127890 132178 132292 "ARRAY1" 132447 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 126904 127095 127316 "ARRAY12" 127713 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 120949 123106 123181 "ARR2CAT" 125811 NIL ARR2CAT (NIL T T T) -9 NIL 126569 NIL) (-56 118239 119127 120081 "ARR2CAT-" 120086 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 117490 117866 117991 "ARITY" 118132 T ARITY (NIL) -8 NIL NIL NIL) (-54 116248 116418 116717 "APPRULE" 117326 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 115893 115947 116066 "APPLYORE" 116194 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 115193 115486 115606 "ANY" 115791 T ANY (NIL) -8 NIL NIL NIL) (-51 114447 114594 114751 "ANY1" 115067 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 111773 112884 113211 "ANTISYM" 114171 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 111217 111480 111576 "ANON" 111695 T ANON (NIL) -8 NIL NIL NIL) (-48 104373 109756 110210 "AN" 110781 T AN (NIL) -8 NIL NIL NIL) (-47 100029 101645 101696 "AMR" 102444 NIL AMR (NIL T T) -9 NIL 103044 NIL) (-46 99081 99362 99725 "AMR-" 99730 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 82550 98998 99059 "ALIST" 99064 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 78847 82144 82313 "ALGSC" 82468 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 75297 75957 76564 "ALGPKG" 78287 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 74562 74675 74859 "ALGMFACT" 75183 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 70545 71176 71770 "ALGMANIP" 74146 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 59884 70171 70321 "ALGFF" 70478 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 59056 59211 59390 "ALGFACT" 59742 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 57845 58583 58621 "ALGEBRA" 58626 NIL ALGEBRA (NIL T) -9 NIL 58667 NIL) (-37 57545 57622 57754 "ALGEBRA-" 57759 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 38506 55382 55434 "ALAGG" 55570 NIL ALAGG (NIL T T) -9 NIL 55731 NIL) (-35 38006 38155 38181 "AHYP" 38382 T AHYP (NIL) -9 NIL NIL NIL) (-34 36891 37185 37211 "AGG" 37710 T AGG (NIL) -9 NIL 37989 NIL) (-33 36289 36487 36701 "AGG-" 36706 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 34049 34518 34923 "AF" 35931 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33469 33774 33864 "ADDAST" 33977 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32701 32996 33152 "ACPLOT" 33331 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20258 29633 29671 "ACFS" 30278 NIL ACFS (NIL T) -9 NIL 30517 NIL) (-28 18165 18775 19537 "ACFS-" 19542 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13873 16198 16224 "ACF" 17103 T ACF (NIL) -9 NIL 17516 NIL) (-26 12505 12911 13404 "ACF-" 13409 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 12015 12258 12284 "ABELSG" 12376 T ABELSG (NIL) -9 NIL 12441 NIL) (-24 11876 11907 11973 "ABELSG-" 11978 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11145 11492 11518 "ABELMON" 11688 T ABELMON (NIL) -9 NIL 11800 NIL) (-22 10785 10893 11031 "ABELMON-" 11036 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 10035 10491 10517 "ABELGRP" 10589 T ABELGRP (NIL) -9 NIL 10664 NIL) (-20 9462 9627 9843 "ABELGRP-" 9848 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8724 8763 "A1AGG" 8768 NIL A1AGG (NIL T) -9 NIL 8808 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-4417 (((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)) 23 T ELT))) +(((-1256 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4417 ((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)))) (-1079) (-1079) (-1206) (-1206) |#1| |#2|) (T -1256)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1261 *5 *7 *9)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1261 *6 *8 *10)) (-5 *1 (-1256 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1206))))) +(-10 -7 (-15 -4417 ((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 (-1112)) $) 86 T ELT)) (-3341 (((-1206) $) 118 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-577)) 113 T ELT) (($ $ (-577) (-577)) 112 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119 T ELT)) (-1660 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3770 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1638 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188 T ELT)) (-1682 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) 18 T CONST)) (-3531 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3752 (((-420 (-980 |#1|)) $ (-577)) 186 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)) ELT)) (-3541 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) 85 T ELT)) (-2450 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-577) $) 115 T ELT) (((-577) $ (-577)) 114 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) 116 T ELT)) (-3956 (($ (-1 |#1| (-577)) $) 187 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| (-577)) 73 T ELT) (($ $ (-1112) (-577)) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-577))) 87 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3825 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3606 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 180 (|has| |#1| (-375)) ELT)) (-1869 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2867 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-577)) 110 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-2355 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT)) (-4081 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-577)) 120 T ELT) (($ $ $) 96 (|has| (-577) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-1597 (((-577) $) 76 T ELT)) (-1692 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 84 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-577)) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-1343 ((|#1| $) 117 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1727 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1703 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1257 |#1|) (-141) (-1079)) (T -1257)) +((-3190 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1079)) (-4 *1 (-1257 *3)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1257 *3)) (-4 *3 (-1079)))) (-3752 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) (-5 *2 (-420 (-980 *4))))) (-3752 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) (-5 *2 (-420 (-980 *4))))) (-1869 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) (-1869 (*1 *1 *1 *2) (-2867 (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -3891 ((-665 *2) *3))) (|has| *3 (-15 -1869 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) +(-13 (-1275 |t#1| (-577)) (-10 -8 (-15 -3190 ($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |t#1|))))) (-15 -3956 ($ (-1 |t#1| (-577)) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -3752 ((-420 (-980 |t#1|)) $ (-577))) (-15 -3752 ((-420 (-980 |t#1|)) $ (-577) (-577)))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $)) (IF (|has| |t#1| (-15 -1869 (|t#1| |t#1| (-1206)))) (IF (|has| |t#1| (-15 -3891 ((-665 (-1206)) |t#1|))) (-15 -1869 ($ $ (-1206))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1232)) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-29 (-577))) (-15 -1869 ($ $ (-1206))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1232))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-577) (-1142)) ((-301) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-738 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1275 |#1| #0#) . T)) +((-4113 (((-112) $) 12 T ELT)) (-4335 (((-3 |#3| "failed") $) 17 T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT)) (-3783 ((|#3| $) 14 T ELT) (((-1206) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT))) +(((-1258 |#1| |#2| |#3|) (-10 -8 (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-1206) "failed") |#1|)) (-15 -3783 ((-1206) |#1|)) (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3783 (|#3| |#1|)) (-15 -4113 ((-112) |#1|))) (-1259 |#2| |#3|) (-1079) (-1288 |#2|)) (T -1258)) +NIL +(-10 -8 (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -4335 ((-3 (-1206) "failed") |#1|)) (-15 -3783 ((-1206) |#1|)) (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3783 (|#3| |#1|)) (-15 -4113 ((-112) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1363 ((|#2| $) 251 (-2790 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-3891 (((-665 (-1112)) $) 86 T ELT)) (-3341 (((-1206) $) 118 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-577)) 113 T ELT) (($ $ (-577) (-577)) 112 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119 T ELT)) (-2349 ((|#2| $) 287 T ELT)) (-1532 (((-3 |#2| "failed") $) 283 T ELT)) (-3938 ((|#2| $) 284 T ELT)) (-1660 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 260 (-2790 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2612 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3770 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 257 (-2790 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2495 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1638 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2578 (((-577) $) 269 (-2790 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188 T ELT)) (-1682 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#2| "failed") $) 290 T ELT) (((-3 (-577) "failed") $) 280 (-2790 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) 278 (-2790 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-1206) "failed") $) 262 (-2790 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3783 ((|#2| $) 291 T ELT) (((-577) $) 279 (-2790 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) 277 (-2790 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-1206) $) 261 (-2790 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3258 (($ $) 286 T ELT) (($ (-577) $) 285 T ELT)) (-3531 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-4048 (($ $) 72 T ELT)) (-3187 (((-710 |#2|) (-710 $)) 239 (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 238 (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 237 (-2790 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) 236 (-2790 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3752 (((-420 (-980 |#1|)) $ (-577)) 186 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)) ELT)) (-1424 (($) 253 (-2790 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-3541 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-4339 (((-112) $) 267 (-2790 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-1655 (((-112) $) 85 T ELT)) (-2450 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 245 (-2790 (|has| |#2| (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 244 (-2790 (|has| |#2| (-910 (-577))) (|has| |#1| (-375))) ELT)) (-4030 (((-577) $) 115 T ELT) (((-577) $ (-577)) 114 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3608 (($ $) 249 (|has| |#1| (-375)) ELT)) (-2417 ((|#2| $) 247 (|has| |#1| (-375)) ELT)) (-3368 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2004 (((-3 $ "failed") $) 281 (-2790 (|has| |#2| (-1182)) (|has| |#1| (-375))) ELT)) (-2649 (((-112) $) 268 (-2790 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-3720 (($ $ (-949)) 116 T ELT)) (-3956 (($ (-1 |#1| (-577)) $) 187 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| (-577)) 73 T ELT) (($ $ (-1112) (-577)) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-577))) 87 T ELT)) (-3237 (($ $ $) 276 (-2790 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2930 (($ $ $) 275 (-2790 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-375)) ELT)) (-3825 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3163 (((-710 |#2|) (-1297 $)) 241 (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 240 (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 235 (-2790 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) 234 (-2790 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3606 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-3949 (($ (-577) |#2|) 288 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 180 (|has| |#1| (-375)) ELT)) (-1869 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2867 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-2443 (($) 282 (-2790 (|has| |#2| (-1182)) (|has| |#1| (-375))) CONST)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-4378 (($ $) 252 (-2790 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-3941 ((|#2| $) 255 (-2790 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 258 (-2790 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 259 (-2790 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-3759 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-577)) 110 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-2355 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) |#2|) 228 (-2790 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 |#2|)) 227 (-2790 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 |#2|))) 226 (-2790 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-305 |#2|)) 225 (-2790 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ |#2| |#2|) 224 (-2790 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 223 (-2790 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT)) (-4081 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-577)) 120 T ELT) (($ $ $) 96 (|has| (-577) (-1142)) ELT) (($ $ |#2|) 222 (-2790 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1 |#2| |#2|) (-792)) 231 (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-375)) ELT) (($ $) 100 (-2867 (-2790 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) 98 (-2867 (-2790 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) 108 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206))) 106 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-1206) (-792)) 105 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT)) (-1674 (($ $) 250 (|has| |#1| (-375)) ELT)) (-2429 ((|#2| $) 248 (|has| |#1| (-375)) ELT)) (-1597 (((-577) $) 76 T ELT)) (-1692 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4463 (((-228) $) 266 (-2790 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-391) $) 265 (-2790 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-549) $) 264 (-2790 (|has| |#2| (-632 (-549))) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) 243 (-2790 (|has| |#2| (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) 242 (-2790 (|has| |#2| (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 256 (-2790 (-2790 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#1| (-375))) ELT)) (-4165 (($ $) 84 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ |#2|) 289 T ELT) (($ (-1206)) 263 (-2790 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-577)) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (-2867 (-2790 (-2867 (|has| |#2| (-146)) (-2790 (|has| $ (-146)) (|has| |#2| (-937)))) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 32 T CONST)) (-1343 ((|#1| $) 117 T ELT)) (-2431 ((|#2| $) 254 (-2790 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1727 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1703 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2215 (($ $) 270 (-2790 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1 |#2| |#2|) (-792)) 233 (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-375)) ELT) (($ $) 99 (-2867 (-2790 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) 97 (-2867 (-2790 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) 107 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206))) 103 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-1206) (-792)) 102 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-2867 (-2790 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT)) (-3078 (((-112) $ $) 274 (-2790 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3054 (((-112) $ $) 272 (-2790 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3067 (((-112) $ $) 273 (-2790 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3042 (((-112) $ $) 271 (-2790 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT) (($ |#2| |#2|) 246 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ $ |#2|) 221 (|has| |#1| (-375)) ELT) (($ |#2| $) 220 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1259 |#1| |#2|) (-141) (-1079) (-1288 |t#1|)) (T -1259)) +((-1597 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1288 *3)) (-5 *2 (-577)))) (-3949 (*1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *4 (-1079)) (-4 *1 (-1259 *4 *3)) (-4 *3 (-1288 *4)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3)))) (-3258 (*1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1288 *2)))) (-3258 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1288 *3)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3)))) (-1532 (*1 *2 *1) (|partial| -12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3))))) +(-13 (-1257 |t#1|) (-1068 |t#2|) (-634 |t#2|) (-10 -8 (-15 -3949 ($ (-577) |t#2|)) (-15 -1597 ((-577) $)) (-15 -2349 (|t#2| $)) (-15 -3258 ($ $)) (-15 -3258 ($ (-577) $)) (-15 -3938 (|t#2| $)) (-15 -1532 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-375)) (-6 (-1022 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-375)) ((-38 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-375)) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-634 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 #2=(-1206)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) ((-634 |#1|) |has| |#1| (-174)) ((-634 |#2|) . T) ((-634 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-632 (-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) ((-632 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) ((-632 (-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-577))))) ((-235 $) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-233 |#2|) |has| |#1| (-375)) ((-239) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-238) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-273 |#2|) |has| |#1| (-375)) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 |#2| $) -12 (|has| |#1| (-375)) (|has| |#2| (-297 |#2| |#2|))) ((-297 $ $) |has| (-577) (-1142)) ((-301) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-375) |has| |#1| (-375)) ((-350 |#2|) |has| |#1| (-375)) ((-389 |#2|) |has| |#1| (-375)) ((-413 |#2|) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 (-1206) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1206) |#2|))) ((-527 |#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-569) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 |#2|) |has| |#1| (-375)) ((-667 $) . T) ((-669 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 #3=(-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) ((-669 |#1|) . T) ((-669 |#2|) |has| |#1| (-375)) ((-669 $) . T) ((-661 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 |#2|) |has| |#1| (-375)) ((-661 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-659 #3#) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) ((-659 |#2|) |has| |#1| (-375)) ((-738 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 |#2|) |has| |#1| (-375)) ((-738 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-812) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-813) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-815) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-816) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-841) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-869) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-870) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-870))) (-12 (|has| |#1| (-375)) (|has| |#2| (-841)))) ((-873) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-870))) (-12 (|has| |#1| (-375)) (|has| |#2| (-841)))) ((-920 $ #4=(-1206)) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ((-926 (-1206)) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ((-928 #4#) -2867 (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ((-910 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-577)))) ((-908 |#2|) |has| |#1| (-375)) ((-937) -12 (|has| |#1| (-375)) (|has| |#2| (-937))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1022 |#2|) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1052) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) ((-1068 (-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577)))) ((-1068 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577)))) ((-1068 #2#) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) ((-1068 |#2|) . T) ((-1081 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 |#2|) |has| |#1| (-375)) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 |#2|) |has| |#1| (-375)) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) -12 (|has| |#1| (-375)) (|has| |#2| (-1182))) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1257 |#1|) . T) ((-1275 |#1| #0#) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 81 T ELT)) (-1363 ((|#2| $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 100 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-577)) 109 T ELT) (($ $ (-577) (-577)) 111 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 51 T ELT)) (-2349 ((|#2| $) 11 T ELT)) (-1532 (((-3 |#2| "failed") $) 35 T ELT)) (-3938 ((|#2| $) 36 T ELT)) (-1660 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2578 (((-577) $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 59 T ELT)) (-1682 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) 157 T ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-1206) "failed") $) NIL (-12 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3783 ((|#2| $) 156 T ELT) (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-1206) $) NIL (-12 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3258 (($ $) 65 T ELT) (($ (-577) $) 28 T ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 |#2|) (-710 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3167 (((-3 $ "failed") $) 88 T ELT)) (-3752 (((-420 (-980 |#1|)) $ (-577)) 124 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 126 (|has| |#1| (-569)) ELT)) (-1424 (($) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4339 (((-112) $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-1655 (((-112) $) 74 T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#2| (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#2| (-910 (-577))) (|has| |#1| (-375))) ELT)) (-4030 (((-577) $) 105 T ELT) (((-577) $ (-577)) 107 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2417 ((|#2| $) 165 (|has| |#1| (-375)) ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2004 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-375))) ELT)) (-2649 (((-112) $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-3720 (($ $ (-949)) 148 T ELT)) (-3956 (($ (-1 |#1| (-577)) $) 144 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-577)) 20 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-3237 (($ $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2930 (($ $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 141 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-375)) ELT)) (-3825 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3163 (((-710 |#2|) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3949 (($ (-577) |#2|) 10 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 159 (|has| |#1| (-375)) ELT)) (-1869 (($ $) 228 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 233 (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT)) (-2443 (($) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-375))) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4378 (($ $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-3941 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-577)) 138 T ELT)) (-3574 (((-3 $ "failed") $ $) 128 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2355 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) |#2|) NIL (-12 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 |#2|)) NIL (-12 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-577)) 103 T ELT) (($ $ $) 90 (|has| (-577) (-1142)) ELT) (($ $ |#2|) NIL (-12 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375)) ELT) (($ $) 149 (-2867 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) 153 (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-1674 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2429 ((|#2| $) 166 (|has| |#1| (-375)) ELT)) (-1597 (((-577) $) 12 T ELT)) (-1692 (($ $) 212 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4463 (((-228) $) NIL (-12 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-549) $) NIL (-12 (|has| |#2| (-632 (-549))) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) NIL (-12 (|has| |#2| (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#2| (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-4165 (($ $) 136 T ELT)) (-3709 (((-885) $) 266 T ELT) (($ (-577)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-174)) ELT) (($ |#2|) 21 T ELT) (($ (-1206)) NIL (-12 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ (-420 (-577))) 169 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-577)) 85 T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#2| (-937)) (|has| |#1| (-375))) (-12 (|has| |#2| (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 155 T CONST)) (-1343 ((|#1| $) 102 T ELT)) (-2431 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) 218 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) 214 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 222 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-577)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 224 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 220 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 216 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2215 (($ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2839 (($) 13 T CONST)) (-2853 (($) 18 T CONST)) (-2389 (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375)) ELT) (($ $) NIL (-2867 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-3078 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3054 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3018 (((-112) $ $) 72 T ELT)) (-3067 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3042 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT) (($ |#2| |#2|) 164 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 227 T ELT) (($ $ $) 78 T ELT)) (-3114 (($ $ $) 76 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 84 T ELT) (($ $ (-577)) 160 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 79 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 152 T ELT) (($ $ |#2|) 162 (|has| |#1| (-375)) ELT) (($ |#2| $) 161 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1260 |#1| |#2|) (-1259 |#1| |#2|) (-1079) (-1288 |#1|)) (T -1260)) +NIL +(-1259 |#1| |#2|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1363 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 10 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2261 (($ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2538 (((-112) $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3610 (($ $ (-577)) NIL T ELT) (($ $ (-577) (-577)) NIL T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL T ELT)) (-2349 (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-1532 (((-3 (-1289 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3938 (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-1660 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2578 (((-577) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL T ELT)) (-1682 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-1289 |#1| |#2| |#3|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3783 (((-1289 |#1| |#2| |#3|) $) NIL T ELT) (((-1206) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-577) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3258 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-1289 |#1| |#2| |#3|)) (-710 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-1289 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1289 |#1| |#2| |#3|)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3752 (((-420 (-980 |#1|)) $ (-577)) NIL (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) NIL (|has| |#1| (-569)) ELT)) (-1424 (($) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-4339 (((-112) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-910 (-577))) (|has| |#1| (-375))) ELT)) (-4030 (((-577) $) NIL T ELT) (((-577) $ (-577)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3608 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2417 (((-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2004 (((-3 $ "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) ELT)) (-2649 (((-112) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-3720 (($ $ (-949)) NIL T ELT)) (-3956 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-577)) 18 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-3237 (($ $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2930 (($ $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)) ELT)) (-3825 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3163 (((-710 (-1289 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-1289 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1289 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3949 (($ (-577) (-1289 |#1| |#2| |#3|)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-1869 (($ $) 27 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 28 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2443 (($) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4378 (($ $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-3941 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-577)) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2355 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-527 (-1206) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-527 (-1206) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 (-1289 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-305 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1289 |#1| |#2| |#3|)) (-665 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-577)) NIL T ELT) (($ $ $) NIL (|has| (-577) (-1142)) ELT) (($ $ (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-297 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) 26 T ELT) (($ $) 25 (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-1674 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2429 (((-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT)) (-1597 (((-577) $) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4463 (((-549) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-632 (-549))) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-228) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1289 |#1| |#2| |#3|)) NIL T ELT) (($ (-1293 |#2|)) 24 T ELT) (($ (-1206)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT) (($ (-420 (-577))) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-4171 ((|#1| $ (-577)) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) 11 T ELT)) (-2431 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-1703 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2215 (($ $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2839 (($) 20 T CONST)) (-2853 (($) 15 T CONST)) (-2389 (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) NIL T ELT) (($ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-3078 (((-112) $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3054 (((-112) $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3067 (((-112) $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3042 (((-112) $ $) NIL (-2867 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT) (($ (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 22 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1289 |#1| |#2| |#3|)) NIL (|has| |#1| (-375)) ELT) (($ (-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1261 |#1| |#2| |#3|) (-13 (-1259 |#1| (-1289 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1261)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1259 |#1| (-1289 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) +((-3414 (((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112)) 13 T ELT)) (-3332 (((-431 |#1|) |#1|) 26 T ELT)) (-3759 (((-431 |#1|) |#1|) 24 T ELT))) +(((-1262 |#1|) (-10 -7 (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3332 ((-431 |#1|) |#1|)) (-15 -3414 ((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112)))) (-1273 (-577))) (T -1262)) +((-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577))))) (-3332 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577))))) (-3759 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) +(-10 -7 (-15 -3759 ((-431 |#1|) |#1|)) (-15 -3332 ((-431 |#1|) |#1|)) (-15 -3414 ((-2 (|:| |contp| (-577)) (|:| -2127 (-665 (-2 (|:| |irr| |#1|) (|:| -2243 (-577)))))) |#1| (-112)))) +((-4417 (((-1187 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 23 (|has| |#1| (-869)) ELT) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 17 T ELT))) +(((-1263 |#1| |#2|) (-10 -7 (-15 -4417 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-869)) (-15 -4417 ((-1187 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1263)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1187 *6)) (-5 *1 (-1263 *5 *6)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6))))) +(-10 -7 (-15 -4417 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-869)) (-15 -4417 ((-1187 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) +((-3586 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3096 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4417 (((-1187 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-869)) ELT)) (-3518 ((|#1| $) 15 T ELT)) (-3423 ((|#1| $) 12 T ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4449 (((-577) $) 19 T ELT)) (-1349 ((|#1| $) 18 T ELT)) (-4457 ((|#1| $) 13 T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-1696 (((-112) $) 17 T ELT)) (-3138 (((-1187 |#1|) $) 41 (|has| |#1| (-869)) ELT) (((-1187 |#1|) (-665 $)) 40 (|has| |#1| (-869)) ELT)) (-4463 (($ |#1|) 26 T ELT)) (-3709 (($ (-1124 |#1|)) 25 T ELT) (((-885) $) 37 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-1915 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-2770 (($ $ (-577)) 14 T ELT)) (-3018 (((-112) $ $) 30 (|has| |#1| (-1130)) ELT))) +(((-1264 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -1915 ($ |#1|)) (-15 -3096 ($ |#1|)) (-15 -3709 ($ (-1124 |#1|))) (-15 -1696 ((-112) $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-1187 |#1|))) |%noBranch|))) (-1247)) (T -1264)) +((-1915 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-3096 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3)) (-4 *3 (-1247))))) +(-13 (-1123 |#1|) (-10 -8 (-15 -1915 ($ |#1|)) (-15 -3096 ($ |#1|)) (-15 -3709 ($ (-1124 |#1|))) (-15 -1696 ((-112) $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-1187 |#1|))) |%noBranch|))) +((-4417 (((-1270 |#3| |#4|) (-1 |#4| |#2|) (-1270 |#1| |#2|)) 15 T ELT))) +(((-1265 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 ((-1270 |#3| |#4|) (-1 |#4| |#2|) (-1270 |#1| |#2|)))) (-1206) (-1079) (-1206) (-1079)) (T -1265)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1270 *5 *6)) (-14 *5 (-1206)) (-4 *6 (-1079)) (-4 *8 (-1079)) (-5 *2 (-1270 *7 *8)) (-5 *1 (-1265 *5 *6 *7 *8)) (-14 *7 (-1206))))) +(-10 -7 (-15 -4417 ((-1270 |#3| |#4|) (-1 |#4| |#2|) (-1270 |#1| |#2|)))) +((-1411 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3632 ((|#1| |#3|) 13 T ELT)) (-2668 ((|#3| |#3|) 19 T ELT))) +(((-1266 |#1| |#2| |#3|) (-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -2668 (|#3| |#3|)) (-15 -1411 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1022 |#1|) (-1273 |#2|)) (T -1266)) +((-1411 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1266 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-1266 *3 *4 *2)) (-4 *2 (-1273 *4)))) (-3632 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-1266 *2 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3632 (|#1| |#3|)) (-15 -2668 (|#3| |#3|)) (-15 -1411 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2319 (((-3 |#2| "failed") |#2| (-792) |#1|) 35 T ELT)) (-2556 (((-3 |#2| "failed") |#2| (-792)) 36 T ELT)) (-2406 (((-3 (-2 (|:| -3337 |#2|) (|:| -3352 |#2|)) "failed") |#2|) 50 T ELT)) (-2074 (((-665 |#2|) |#2|) 52 T ELT)) (-3150 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT))) +(((-1267 |#1| |#2|) (-10 -7 (-15 -2556 ((-3 |#2| "failed") |#2| (-792))) (-15 -2319 ((-3 |#2| "failed") |#2| (-792) |#1|)) (-15 -3150 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2406 ((-3 (-2 (|:| -3337 |#2|) (|:| -3352 |#2|)) "failed") |#2|)) (-15 -2074 ((-665 |#2|) |#2|))) (-13 (-569) (-148)) (-1273 |#1|)) (T -1267)) +((-2074 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-665 *3)) (-5 *1 (-1267 *4 *3)) (-4 *3 (-1273 *4)))) (-2406 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *3))) (-5 *1 (-1267 *4 *3)) (-4 *3 (-1273 *4)))) (-3150 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1267 *3 *2)) (-4 *2 (-1273 *3)))) (-2319 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4)))) (-2556 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4))))) +(-10 -7 (-15 -2556 ((-3 |#2| "failed") |#2| (-792))) (-15 -2319 ((-3 |#2| "failed") |#2| (-792) |#1|)) (-15 -3150 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2406 ((-3 (-2 (|:| -3337 |#2|) (|:| -3352 |#2|)) "failed") |#2|)) (-15 -2074 ((-665 |#2|) |#2|))) +((-3244 (((-3 (-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1268 |#1| |#2|) (-10 -7 (-15 -3244 ((-3 (-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) "failed") |#2| |#2|))) (-569) (-1273 |#1|)) (T -1268)) +((-3244 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-1268 *4 *3)) (-4 *3 (-1273 *4))))) +(-10 -7 (-15 -3244 ((-3 (-2 (|:| -2203 |#2|) (|:| -2519 |#2|)) "failed") |#2| |#2|))) +((-1909 ((|#2| |#2| |#2|) 22 T ELT)) (-1706 ((|#2| |#2| |#2|) 36 T ELT)) (-4055 ((|#2| |#2| |#2| (-792) (-792)) 44 T ELT))) +(((-1269 |#1| |#2|) (-10 -7 (-15 -1909 (|#2| |#2| |#2|)) (-15 -1706 (|#2| |#2| |#2|)) (-15 -4055 (|#2| |#2| |#2| (-792) (-792)))) (-1079) (-1273 |#1|)) (T -1269)) +((-4055 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))) (-1706 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3)))) (-1909 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3))))) +(-10 -7 (-15 -1909 (|#2| |#2| |#2|)) (-15 -1706 (|#2| |#2| |#2|)) (-15 -4055 (|#2| |#2| |#2| (-792) (-792)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-1400 (((-1297 |#2|) $ (-792)) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3527 (($ (-1202 |#2|)) NIL T ELT)) (-3732 (((-1202 $) $ (-1112)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3473 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2612 (($ $) NIL (|has| |#2| (-465)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2495 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-3796 (($ $ (-792)) NIL T ELT)) (-1370 (($ $ (-792)) NIL T ELT)) (-2723 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-465)) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3783 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT)) (-3868 (($ $ $ (-1112)) NIL (|has| |#2| (-174)) ELT) ((|#2| $ $) NIL (|has| |#2| (-174)) ELT)) (-3531 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3187 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3541 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1668 (($ $ $) NIL T ELT)) (-2347 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-1771 (((-2 (|:| -4473 |#2|) (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#2| (-375)) ELT)) (-2796 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#2| (-465)) ELT)) (-4037 (((-665 $) $) NIL T ELT)) (-3567 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4365 (($ $ |#2| (-792) $) NIL T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-4030 (((-792) $ $) NIL (|has| |#2| (-569)) ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2004 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-3882 (($ (-1202 |#2|) (-1112)) NIL T ELT) (($ (-1202 $) (-1112)) NIL T ELT)) (-3720 (($ $ (-792)) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#2| (-792)) 18 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL T ELT)) (-4340 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4329 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4120 (((-1202 |#2|) $) NIL T ELT)) (-3946 (((-3 (-1112) "failed") $) NIL T ELT)) (-3163 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4462 (((-2 (|:| -2203 $) (|:| -2519 $)) $ (-792)) NIL T ELT)) (-1426 (((-3 (-665 $) "failed") $) NIL T ELT)) (-1796 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2547 (((-3 (-2 (|:| |var| (-1112)) (|:| -2328 (-792))) "failed") $) NIL T ELT)) (-1869 (($ $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT)) (-2443 (($) NIL (|has| |#2| (-1182)) CONST)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 ((|#2| $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-1818 (($ $ (-792) |#2| $) NIL T ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3574 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-3373 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#2|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#2|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-4081 (((-792) $) NIL (|has| |#2| (-375)) ELT)) (-2916 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#2| (-569)) ELT) ((|#2| (-420 $) |#2|) NIL (|has| |#2| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#2| (-569)) ELT)) (-3626 (((-3 $ "failed") $ (-792)) NIL T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3846 (($ $ (-1112)) NIL (|has| |#2| (-174)) ELT) ((|#2| $) NIL (|has| |#2| (-174)) ELT)) (-3641 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-1597 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4463 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2407 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#2| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-2162 (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#2| (-569)) ELT)) (-3709 (((-885) $) 13 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1112)) NIL T ELT) (($ (-1293 |#1|)) 20 T ELT) (($ (-420 (-577))) NIL (-2867 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (-2867 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) 14 T CONST)) (-2389 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1270 |#1| |#2|) (-13 (-1273 |#2|) (-634 (-1293 |#1|)) (-10 -8 (-15 -1818 ($ $ (-792) |#2| $)))) (-1206) (-1079)) (T -1270)) +((-1818 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1270 *4 *3)) (-14 *4 (-1206)) (-4 *3 (-1079))))) +(-13 (-1273 |#2|) (-634 (-1293 |#1|)) (-10 -8 (-15 -1818 ($ $ (-792) |#2| $)))) +((-4417 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|))) (-1079) (-1273 |#1|) (-1079) (-1273 |#3|)) (T -1271)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1273 *6)) (-5 *1 (-1271 *5 *4 *6 *2)) (-4 *4 (-1273 *5))))) +(-10 -7 (-15 -4417 (|#4| (-1 |#3| |#1|) |#2|))) +((-1400 (((-1297 |#2|) $ (-792)) 129 T ELT)) (-3891 (((-665 (-1112)) $) 16 T ELT)) (-3527 (($ (-1202 |#2|)) 80 T ELT)) (-4176 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) 21 T ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 204 T ELT)) (-2612 (($ $) 194 T ELT)) (-3206 (((-431 $) $) 192 T ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 95 T ELT)) (-3796 (($ $ (-792)) 84 T ELT)) (-1370 (($ $ (-792)) 86 T ELT)) (-2723 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145 T ELT)) (-4335 (((-3 |#2| "failed") $) 132 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3783 ((|#2| $) 130 T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) (((-1112) $) NIL T ELT)) (-2347 (($ $ $) 170 T ELT)) (-1771 (((-2 (|:| -4473 |#2|) (|:| -2203 $) (|:| -2519 $)) $ $) 172 T ELT)) (-4030 (((-792) $ $) 189 T ELT)) (-2004 (((-3 $ "failed") $) 138 T ELT)) (-3872 (($ |#2| (-792)) NIL T ELT) (($ $ (-1112) (-792)) 59 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-4340 (((-792) $) NIL T ELT) (((-792) $ (-1112)) 54 T ELT) (((-665 (-792)) $ (-665 (-1112))) 55 T ELT)) (-4120 (((-1202 |#2|) $) 72 T ELT)) (-3946 (((-3 (-1112) "failed") $) 52 T ELT)) (-4462 (((-2 (|:| -2203 $) (|:| -2519 $)) $ (-792)) 83 T ELT)) (-1869 (($ $) 219 T ELT)) (-2443 (($) 134 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 201 T ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 101 T ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 99 T ELT)) (-3759 (((-431 $) $) 120 T ELT)) (-3373 (($ $ (-665 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#2|) 39 T ELT) (($ $ (-665 (-1112)) (-665 |#2|)) 36 T ELT) (($ $ (-1112) $) 32 T ELT) (($ $ (-665 (-1112)) (-665 $)) 30 T ELT)) (-4081 (((-792) $) 207 T ELT)) (-2916 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) 164 T ELT) ((|#2| (-420 $) |#2|) 206 T ELT) (((-420 $) $ (-420 $)) 188 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 212 T ELT)) (-3641 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) 157 T ELT) (($ $) 155 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 154 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 149 T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-1597 (((-792) $) NIL T ELT) (((-792) $ (-1112)) 17 T ELT) (((-665 (-792)) $ (-665 (-1112))) 23 T ELT)) (-2407 ((|#2| $) NIL T ELT) (($ $ (-1112)) 140 T ELT)) (-2162 (((-3 $ "failed") $ $) 180 T ELT) (((-3 (-420 $) "failed") (-420 $) $) 176 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1112)) 64 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT))) +(((-1272 |#1| |#2|) (-10 -8 (-15 -3709 (|#1| |#1|)) (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -2612 (|#1| |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -2916 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -4081 ((-792) |#1|)) (-15 -3372 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -1869 (|#1| |#1|)) (-15 -2916 (|#2| (-420 |#1|) |#2|)) (-15 -2723 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1771 ((-2 (|:| -4473 |#2|) (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2162 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -2162 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4030 ((-792) |#1| |#1|)) (-15 -2916 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1370 (|#1| |#1| (-792))) (-15 -3796 (|#1| |#1| (-792))) (-15 -4462 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| (-792))) (-15 -3527 (|#1| (-1202 |#2|))) (-15 -4120 ((-1202 |#2|) |#1|)) (-15 -1400 ((-1297 |#2|) |#1| (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2916 (|#2| |#1| |#2|)) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -2969 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2083 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4058 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -2407 (|#1| |#1| (-1112))) (-15 -3891 ((-665 (-1112)) |#1|)) (-15 -4176 ((-792) |#1| (-665 (-1112)))) (-15 -4176 ((-792) |#1|)) (-15 -3872 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -3872 (|#1| |#1| (-1112) (-792))) (-15 -4340 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -4340 ((-792) |#1| (-1112))) (-15 -3946 ((-3 (-1112) "failed") |#1|)) (-15 -1597 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -1597 ((-792) |#1| (-1112))) (-15 -3709 (|#1| (-1112))) (-15 -4335 ((-3 (-1112) "failed") |#1|)) (-15 -3783 ((-1112) |#1|)) (-15 -3373 (|#1| |#1| (-665 (-1112)) (-665 |#1|))) (-15 -3373 (|#1| |#1| (-1112) |#1|)) (-15 -3373 (|#1| |#1| (-665 (-1112)) (-665 |#2|))) (-15 -3373 (|#1| |#1| (-1112) |#2|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -1597 ((-792) |#1|)) (-15 -3872 (|#1| |#2| (-792))) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4340 ((-792) |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -3641 (|#1| |#1| (-1112))) (-15 -3641 (|#1| |#1| (-665 (-1112)))) (-15 -3641 (|#1| |#1| (-1112) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) (-1273 |#2|) (-1079)) (T -1272)) +NIL +(-10 -8 (-15 -3709 (|#1| |#1|)) (-15 -3945 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -3641 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -3641 (|#1| |#1| (-1206) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1206)))) (-15 -3641 (|#1| |#1| (-1206))) (-15 -3206 ((-431 |#1|) |#1|)) (-15 -2612 (|#1| |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -2443 (|#1|)) (-15 -2004 ((-3 |#1| "failed") |#1|)) (-15 -2916 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -4081 ((-792) |#1|)) (-15 -3372 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -1869 (|#1| |#1|)) (-15 -2916 (|#2| (-420 |#1|) |#2|)) (-15 -2723 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1771 ((-2 (|:| -4473 |#2|) (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2162 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -2162 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4030 ((-792) |#1| |#1|)) (-15 -2916 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1370 (|#1| |#1| (-792))) (-15 -3796 (|#1| |#1| (-792))) (-15 -4462 ((-2 (|:| -2203 |#1|) (|:| -2519 |#1|)) |#1| (-792))) (-15 -3527 (|#1| (-1202 |#2|))) (-15 -4120 ((-1202 |#2|) |#1|)) (-15 -1400 ((-1297 |#2|) |#1| (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -3641 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3641 (|#1| |#1| (-792))) (-15 -3641 (|#1| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2916 (|#2| |#1| |#2|)) (-15 -3759 ((-431 |#1|) |#1|)) (-15 -2969 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2083 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4058 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2008 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -2407 (|#1| |#1| (-1112))) (-15 -3891 ((-665 (-1112)) |#1|)) (-15 -4176 ((-792) |#1| (-665 (-1112)))) (-15 -4176 ((-792) |#1|)) (-15 -3872 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -3872 (|#1| |#1| (-1112) (-792))) (-15 -4340 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -4340 ((-792) |#1| (-1112))) (-15 -3946 ((-3 (-1112) "failed") |#1|)) (-15 -1597 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -1597 ((-792) |#1| (-1112))) (-15 -3709 (|#1| (-1112))) (-15 -4335 ((-3 (-1112) "failed") |#1|)) (-15 -3783 ((-1112) |#1|)) (-15 -3373 (|#1| |#1| (-665 (-1112)) (-665 |#1|))) (-15 -3373 (|#1| |#1| (-1112) |#1|)) (-15 -3373 (|#1| |#1| (-665 (-1112)) (-665 |#2|))) (-15 -3373 (|#1| |#1| (-1112) |#2|)) (-15 -3373 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3373 (|#1| |#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| (-305 |#1|))) (-15 -3373 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -1597 ((-792) |#1|)) (-15 -3872 (|#1| |#2| (-792))) (-15 -4335 ((-3 (-577) "failed") |#1|)) (-15 -3783 ((-577) |#1|)) (-15 -4335 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3783 ((-420 (-577)) |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -4335 ((-3 |#2| "failed") |#1|)) (-15 -3709 (|#1| |#2|)) (-15 -4340 ((-792) |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -3641 (|#1| |#1| (-1112))) (-15 -3641 (|#1| |#1| (-665 (-1112)))) (-15 -3641 (|#1| |#1| (-1112) (-792))) (-15 -3641 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -3709 (|#1| (-577))) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1400 (((-1297 |#1|) $ (-792)) 256 T ELT)) (-3891 (((-665 (-1112)) $) 113 T ELT)) (-3527 (($ (-1202 |#1|)) 254 T ELT)) (-3732 (((-1202 $) $ (-1112)) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 91 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-4176 (((-792) $) 115 T ELT) (((-792) $ (-665 (-1112))) 114 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3473 (($ $ $) 241 (|has| |#1| (-569)) ELT)) (-2969 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-2612 (($ $) 101 (|has| |#1| (-465)) ELT)) (-3206 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-2008 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-2495 (((-112) $ $) 226 (|has| |#1| (-375)) ELT)) (-3796 (($ $ (-792)) 249 T ELT)) (-1370 (($ $ (-792)) 248 T ELT)) (-2723 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-465)) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) 143 T ELT)) (-3783 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) 144 T ELT)) (-3868 (($ $ $ (-1112)) 111 (|has| |#1| (-174)) ELT) ((|#1| $ $) 244 (|has| |#1| (-174)) ELT)) (-3531 (($ $ $) 230 (|has| |#1| (-375)) ELT)) (-4048 (($ $) 161 T ELT)) (-3187 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 229 (|has| |#1| (-375)) ELT)) (-1668 (($ $ $) 247 T ELT)) (-2347 (($ $ $) 238 (|has| |#1| (-569)) ELT)) (-1771 (((-2 (|:| -4473 |#1|) (|:| -2203 $) (|:| -2519 $)) $ $) 237 (|has| |#1| (-569)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 224 (|has| |#1| (-375)) ELT)) (-2796 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ (-1112)) 108 (|has| |#1| (-465)) ELT)) (-4037 (((-665 $) $) 112 T ELT)) (-3567 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-4365 (($ $ |#1| (-792) $) 179 T ELT)) (-2425 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-4030 (((-792) $ $) 242 (|has| |#1| (-569)) ELT)) (-3357 (((-112) $) 35 T ELT)) (-2662 (((-792) $) 176 T ELT)) (-2004 (((-3 $ "failed") $) 222 (|has| |#1| (-1182)) ELT)) (-3882 (($ (-1202 |#1|) (-1112)) 120 T ELT) (($ (-1202 $) (-1112)) 119 T ELT)) (-3720 (($ $ (-792)) 253 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 233 (|has| |#1| (-375)) ELT)) (-2102 (((-665 $) $) 129 T ELT)) (-2696 (((-112) $) 159 T ELT)) (-3872 (($ |#1| (-792)) 160 T ELT) (($ $ (-1112) (-792)) 122 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) 121 T ELT)) (-1615 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $ (-1112)) 123 T ELT) (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 251 T ELT)) (-4340 (((-792) $) 177 T ELT) (((-792) $ (-1112)) 125 T ELT) (((-665 (-792)) $ (-665 (-1112))) 124 T ELT)) (-4329 (($ (-1 (-792) (-792)) $) 178 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-4120 (((-1202 |#1|) $) 255 T ELT)) (-3946 (((-3 (-1112) "failed") $) 126 T ELT)) (-3163 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -3684 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-4014 (($ $) 156 T ELT)) (-4025 ((|#1| $) 155 T ELT)) (-3606 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-4462 (((-2 (|:| -2203 $) (|:| -2519 $)) $ (-792)) 250 T ELT)) (-1426 (((-3 (-665 $) "failed") $) 117 T ELT)) (-1796 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2547 (((-3 (-2 (|:| |var| (-1112)) (|:| -2328 (-792))) "failed") $) 116 T ELT)) (-1869 (($ $) 234 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2443 (($) 221 (|has| |#1| (-1182)) CONST)) (-1470 (((-1150) $) 11 T ELT)) (-3988 (((-112) $) 173 T ELT)) (-3999 ((|#1| $) 174 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-3642 (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-4058 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-2083 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-3759 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 231 (|has| |#1| (-375)) ELT)) (-3574 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 225 (|has| |#1| (-375)) ELT)) (-3373 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ (-1112) |#1|) 148 T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) 147 T ELT) (($ $ (-1112) $) 146 T ELT) (($ $ (-665 (-1112)) (-665 $)) 145 T ELT)) (-4081 (((-792) $) 227 (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ |#1|) 266 T ELT) (($ $ $) 265 T ELT) (((-420 $) (-420 $) (-420 $)) 243 (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) 235 (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) 223 (|has| |#1| (-569)) ELT)) (-3626 (((-3 $ "failed") $ (-792)) 252 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 228 (|has| |#1| (-375)) ELT)) (-3846 (($ $ (-1112)) 110 (|has| |#1| (-174)) ELT) ((|#1| $) 245 (|has| |#1| (-174)) ELT)) (-3641 (($ $ (-665 (-1112)) (-665 (-792))) 44 T ELT) (($ $ (-1112) (-792)) 43 T ELT) (($ $ (-665 (-1112))) 42 T ELT) (($ $ (-1112)) 40 T ELT) (($ $) 264 T ELT) (($ $ (-792)) 262 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 259 T ELT) (($ $ (-1 |#1| |#1|) $) 246 T ELT) (($ $ (-1206)) 220 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 218 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 217 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 216 (|has| |#1| (-928 (-1206))) ELT)) (-1597 (((-792) $) 157 T ELT) (((-792) $ (-1112)) 133 T ELT) (((-665 (-792)) $ (-665 (-1112))) 132 T ELT)) (-4463 (((-916 (-391)) $) 85 (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2407 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ (-1112)) 109 (|has| |#1| (-465)) ELT)) (-1676 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2162 (((-3 $ "failed") $ $) 240 (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) 239 (|has| |#1| (-569)) ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ (-1112)) 142 T ELT) (($ (-420 (-577))) 81 (-2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-4343 (((-665 |#1|) $) 175 T ELT)) (-4171 ((|#1| $ (-792)) 162 T ELT) (($ $ (-1112) (-792)) 131 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) 130 T ELT)) (-2708 (((-3 $ "failed") $) 82 (-2867 (-2790 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3331 (((-792)) 32 T CONST)) (-2576 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-665 (-1112)) (-665 (-792))) 47 T ELT) (($ $ (-1112) (-792)) 46 T ELT) (($ $ (-665 (-1112))) 45 T ELT) (($ $ (-1112)) 41 T ELT) (($ $) 263 T ELT) (($ $ (-792)) 261 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 257 T ELT) (($ $ (-1206)) 219 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 215 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 214 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 213 (|has| |#1| (-928 (-1206))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-1273 |#1|) (-141) (-1079)) (T -1273)) +((-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-1273 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-5 *2 (-1202 *3)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-1079)) (-4 *1 (-1273 *3)))) (-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-3626 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-1615 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1273 *3)))) (-4462 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1273 *4)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-1370 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-1668 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)))) (-3641 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174)))) (-3868 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174)))) (-2916 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) (-4030 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)) (-5 *2 (-792)))) (-3473 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-2162 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-2162 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) (-2347 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-1771 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -4473 *3) (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1273 *3)))) (-2723 (*1 *2 *1 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1273 *3)))) (-2916 (*1 *2 *3 *2) (-12 (-5 *3 (-420 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-1869 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577))))))) +(-13 (-977 |t#1| (-792) (-1112)) (-297 |t#1| |t#1|) (-297 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -1400 ((-1297 |t#1|) $ (-792))) (-15 -4120 ((-1202 |t#1|) $)) (-15 -3527 ($ (-1202 |t#1|))) (-15 -3720 ($ $ (-792))) (-15 -3626 ((-3 $ "failed") $ (-792))) (-15 -1615 ((-2 (|:| -2203 $) (|:| -2519 $)) $ $)) (-15 -4462 ((-2 (|:| -2203 $) (|:| -2519 $)) $ (-792))) (-15 -3796 ($ $ (-792))) (-15 -1370 ($ $ (-792))) (-15 -1668 ($ $ $)) (-15 -3641 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3846 (|t#1| $)) (-15 -3868 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-297 (-420 $) (-420 $))) (-15 -2916 ((-420 $) (-420 $) (-420 $))) (-15 -4030 ((-792) $ $)) (-15 -3473 ($ $ $)) (-15 -2162 ((-3 $ "failed") $ $)) (-15 -2162 ((-3 (-420 $) "failed") (-420 $) $)) (-15 -2347 ($ $ $)) (-15 -1771 ((-2 (|:| -4473 |t#1|) (|:| -2203 $) (|:| -2519 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-15 -2723 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-318)) (-6 -4495) (-15 -2916 (|t#1| (-420 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-15 -1869 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-792)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2867 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 #2=(-1112)) . T) ((-634 |#1|) . T) ((-634 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-273 |#1|) . T) ((-297 (-420 $) (-420 $)) |has| |#1| (-569)) ((-297 |#1| |#1|) . T) ((-297 $ $) . T) ((-301) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 $) . T) ((-337 |#1| #0#) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2867 (|has| |#1| (-937)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-527 #2# |#1|) . T) ((-527 #2# $) . T) ((-527 $ $) . T) ((-569) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-667 #1#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) |has| |#1| (-38 (-420 (-577)))) ((-669 #3=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-659 #3#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #1#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2#) . T) ((-920 $ #4=(-1206)) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) . T) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #2#) . T) ((-928 #4#) -2867 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-910 (-391)) -12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ((-910 (-577)) -12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ((-977 |#1| #0# #2#) . T) ((-937) |has| |#1| (-937)) ((-948) |has| |#1| (-375)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #2#) . T) ((-1068 |#1|) . T) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1251) |has| |#1| (-937))) +((-3891 (((-665 (-1112)) $) 34 T ELT)) (-4048 (($ $) 31 T ELT)) (-3872 (($ |#2| |#3|) NIL T ELT) (($ $ (-1112) |#3|) 28 T ELT) (($ $ (-665 (-1112)) (-665 |#3|)) 27 T ELT)) (-4014 (($ $) 14 T ELT)) (-4025 ((|#2| $) 12 T ELT)) (-1597 ((|#3| $) 10 T ELT))) +(((-1274 |#1| |#2| |#3|) (-10 -8 (-15 -3891 ((-665 (-1112)) |#1|)) (-15 -3872 (|#1| |#1| (-665 (-1112)) (-665 |#3|))) (-15 -3872 (|#1| |#1| (-1112) |#3|)) (-15 -4048 (|#1| |#1|)) (-15 -3872 (|#1| |#2| |#3|)) (-15 -1597 (|#3| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -4025 (|#2| |#1|))) (-1275 |#2| |#3|) (-1079) (-813)) (T -1274)) +NIL +(-10 -8 (-15 -3891 ((-665 (-1112)) |#1|)) (-15 -3872 (|#1| |#1| (-665 (-1112)) (-665 |#3|))) (-15 -3872 (|#1| |#1| (-1112) |#3|)) (-15 -4048 (|#1| |#1|)) (-15 -3872 (|#1| |#2| |#3|)) (-15 -1597 (|#3| |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -4025 (|#2| |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 (-1112)) $) 86 T ELT)) (-3341 (((-1206) $) 118 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3610 (($ $ |#2|) 113 T ELT) (($ $ |#2| |#2|) 112 T ELT)) (-2072 (((-1187 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1655 (((-112) $) 85 T ELT)) (-4030 ((|#2| $) 115 T ELT) ((|#2| $ |#2|) 114 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3720 (($ $ (-949)) 116 T ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| |#2|) 73 T ELT) (($ $ (-1112) |#2|) 88 T ELT) (($ $ (-665 (-1112)) (-665 |#2|)) 87 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2568 (($ $ |#2|) 110 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-2916 ((|#1| $ |#2|) 120 T ELT) (($ $ $) 96 (|has| |#2| (-1142)) ELT)) (-3641 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-1597 ((|#2| $) 76 T ELT)) (-4165 (($ $) 84 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-4171 ((|#1| $ |#2|) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-1343 ((|#1| $) 117 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-4215 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1275 |#1| |#2|) (-141) (-1079) (-813)) (T -1275)) +((-2072 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-1187 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-1206)))) (-1343 (*1 *2 *1) (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-4030 (*1 *2 *1 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-3610 (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-3610 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-4215 (*1 *2 *1 *3) (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3709 (*2 (-1206)))) (-4 *2 (-1079)))) (-2568 (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-3373 (*1 *2 *1 *3) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1187 *3))))) +(-13 (-1003 |t#1| |t#2| (-1112)) (-297 |t#2| |t#1|) (-10 -8 (-15 -2072 ((-1187 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3341 ((-1206) $)) (-15 -1343 (|t#1| $)) (-15 -3720 ($ $ (-949))) (-15 -4030 (|t#2| $)) (-15 -4030 (|t#2| $ |t#2|)) (-15 -3610 ($ $ |t#2|)) (-15 -3610 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3709 (|t#1| (-1206)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4215 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2568 ($ $ |t#2|)) (IF (|has| |t#2| (-1142)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3373 ((-1187 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-297 |#2| |#1|) . T) ((-297 $ $) |has| |#2| (-1142)) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-920 $ #1=(-1206)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| |#2| (-1112)) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-2612 ((|#2| |#2|) 12 T ELT)) (-3206 (((-431 |#2|) |#2|) 14 T ELT)) (-3407 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))) 30 T ELT))) +(((-1276 |#1| |#2|) (-10 -7 (-15 -3206 ((-431 |#2|) |#2|)) (-15 -2612 (|#2| |#2|)) (-15 -3407 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) (-569) (-13 (-1273 |#1|) (-569) (-10 -8 (-15 -3642 ($ $ $))))) (T -1276)) +((-3407 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-577)))) (-4 *4 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3642 ($ $ $))))) (-4 *3 (-569)) (-5 *1 (-1276 *3 *4)))) (-2612 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-1276 *3 *2)) (-4 *2 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3642 ($ $ $))))))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1276 *4 *3)) (-4 *3 (-13 (-1273 *4) (-569) (-10 -8 (-15 -3642 ($ $ $)))))))) +(-10 -7 (-15 -3206 ((-431 |#2|) |#2|)) (-15 -2612 (|#2| |#2|)) (-15 -3407 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) +((-4417 (((-1282 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1282 |#1| |#3| |#5|)) 24 T ELT))) +(((-1277 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4417 ((-1282 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1282 |#1| |#3| |#5|)))) (-1079) (-1079) (-1206) (-1206) |#1| |#2|) (T -1277)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1282 *5 *7 *9)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1282 *6 *8 *10)) (-5 *1 (-1277 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1206))))) +(-10 -7 (-15 -4417 ((-1282 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1282 |#1| |#3| |#5|)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 (-1112)) $) 86 T ELT)) (-3341 (((-1206) $) 118 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-420 (-577))) 113 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 112 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119 T ELT)) (-1660 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3770 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1638 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186 T ELT)) (-1682 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) 18 T CONST)) (-3531 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) 85 T ELT)) (-2450 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-420 (-577)) $) 115 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) 116 T ELT) (($ $ (-420 (-577))) 185 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| (-420 (-577))) 73 T ELT) (($ $ (-1112) (-420 (-577))) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) 87 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3825 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3606 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 180 (|has| |#1| (-375)) ELT)) (-1869 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2867 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-420 (-577))) 110 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-2355 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4081 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-420 (-577))) 120 T ELT) (($ $ $) 96 (|has| (-420 (-577)) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-1597 (((-420 (-577)) $) 76 T ELT)) (-1692 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 84 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-420 (-577))) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-1343 ((|#1| $) 117 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1727 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1703 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1278 |#1|) (-141) (-1079)) (T -1278)) +((-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) (-4 *4 (-1079)) (-4 *1 (-1278 *4)))) (-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1278 *3)) (-4 *3 (-1079)))) (-1869 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) (-1869 (*1 *1 *1 *2) (-2867 (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -3891 ((-665 *2) *3))) (|has| *3 (-15 -1869 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) +(-13 (-1275 |t#1| (-420 (-577))) (-10 -8 (-15 -3190 ($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |t#1|))))) (-15 -3720 ($ $ (-420 (-577)))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $)) (IF (|has| |t#1| (-15 -1869 (|t#1| |t#1| (-1206)))) (IF (|has| |t#1| (-15 -3891 ((-665 (-1206)) |t#1|))) (-15 -1869 ($ $ (-1206))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1232)) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-29 (-577))) (-15 -1869 ($ $ (-1206))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1232))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1142)) ((-301) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-738 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1275 |#1| #0#) . T)) +((-4113 (((-112) $) 12 T ELT)) (-4335 (((-3 |#3| "failed") $) 17 T ELT)) (-3783 ((|#3| $) 14 T ELT))) +(((-1279 |#1| |#2| |#3|) (-10 -8 (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3783 (|#3| |#1|)) (-15 -4113 ((-112) |#1|))) (-1280 |#2| |#3|) (-1079) (-1257 |#2|)) (T -1279)) +NIL +(-10 -8 (-15 -4335 ((-3 |#3| "failed") |#1|)) (-15 -3783 (|#3| |#1|)) (-15 -4113 ((-112) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 (-1112)) $) 86 T ELT)) (-3341 (((-1206) $) 118 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-420 (-577))) 113 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 112 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119 T ELT)) (-1660 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 177 (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-3770 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1638 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186 T ELT)) (-1682 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#2| "failed") $) 197 T ELT)) (-3783 ((|#2| $) 198 T ELT)) (-3531 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3069 (((-420 (-577)) $) 194 T ELT)) (-3541 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3960 (($ (-420 (-577)) |#2|) 195 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) 85 T ELT)) (-2450 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-420 (-577)) $) 115 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) 116 T ELT) (($ $ (-420 (-577))) 185 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| (-420 (-577))) 73 T ELT) (($ $ (-1112) (-420 (-577))) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) 87 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3825 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3606 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-4132 ((|#2| $) 193 T ELT)) (-4036 (((-3 |#2| "failed") $) 191 T ELT)) (-3949 ((|#2| $) 192 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 180 (|has| |#1| (-375)) ELT)) (-1869 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2867 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-420 (-577))) 110 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-2355 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4081 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-420 (-577))) 120 T ELT) (($ $ $) 96 (|has| (-420 (-577)) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-1597 (((-420 (-577)) $) 76 T ELT)) (-1692 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 84 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ |#2|) 196 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-420 (-577))) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-1343 ((|#1| $) 117 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1727 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1703 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1280 |#1| |#2|) (-141) (-1079) (-1257 |t#1|)) (T -1280)) +((-1597 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) (-5 *2 (-420 (-577))))) (-3960 (*1 *1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1079)) (-4 *1 (-1280 *4 *3)) (-4 *3 (-1257 *4)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) (-5 *2 (-420 (-577))))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3)))) (-4036 (*1 *2 *1) (|partial| -12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3))))) +(-13 (-1278 |t#1|) (-1068 |t#2|) (-634 |t#2|) (-10 -8 (-15 -3960 ($ (-420 (-577)) |t#2|)) (-15 -3069 ((-420 (-577)) $)) (-15 -4132 (|t#2| $)) (-15 -1597 ((-420 (-577)) $)) (-15 -3949 (|t#2| $)) (-15 -4036 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 |#2|) . T) ((-634 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1142)) ((-301) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-738 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1068 |#2|) . T) ((-1081 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2867 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1275 |#1| #0#) . T) ((-1278 |#1|) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 104 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-420 (-577))) 116 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 118 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 54 T ELT)) (-1660 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 65 T ELT)) (-1682 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) NIL T ELT)) (-3783 ((|#2| $) NIL T ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 85 T ELT)) (-3069 (((-420 (-577)) $) 13 T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3960 (($ (-420 (-577)) |#2|) 11 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) 74 T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-420 (-577)) $) 113 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) 130 T ELT) (($ $ (-420 (-577))) 128 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-420 (-577))) 33 T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3825 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4132 ((|#2| $) 12 T ELT)) (-4036 (((-3 |#2| "failed") $) 44 T ELT)) (-3949 ((|#2| $) 45 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) 101 (|has| |#1| (-375)) ELT)) (-1869 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 151 (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-420 (-577))) 122 T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2355 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-420 (-577))) 108 T ELT) (($ $ $) 94 (|has| (-420 (-577)) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) 138 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-1597 (((-420 (-577)) $) 16 T ELT)) (-1692 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 120 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-174)) ELT) (($ |#2|) 34 T ELT) (($ (-420 (-577))) 139 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-420 (-577))) 107 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 127 T CONST)) (-1343 ((|#1| $) 106 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 21 T CONST)) (-2853 (($) 17 T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-3018 (((-112) $ $) 72 T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 100 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3114 (($ $ $) 76 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 82 T ELT) (($ $ (-577)) 157 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1281 |#1| |#2|) (-1280 |#1| |#2|) (-1079) (-1257 |#1|)) (T -1281)) +NIL +(-1280 |#1| |#2|) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 11 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-1660 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2612 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3206 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2495 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1638 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1682 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) 19 T ELT) (((-3 (-1289 |#1| |#2| |#3|) "failed") $) 22 T ELT)) (-3783 (((-1261 |#1| |#2| |#3|) $) NIL T ELT) (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-3531 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3069 (((-420 (-577)) $) 69 T ELT)) (-3541 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3960 (($ (-420 (-577)) (-1261 |#1| |#2| |#3|)) NIL T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3567 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-420 (-577))) 30 T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3825 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3606 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4132 (((-1261 |#1| |#2| |#3|) $) 72 T ELT)) (-4036 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3949 (((-1261 |#1| |#2| |#3|) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-3981 (($ $) NIL (|has| |#1| (-375)) ELT)) (-1869 (($ $) 39 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-3642 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3759 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1934 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2568 (($ $ (-420 (-577))) NIL T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2355 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-4081 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2916 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3641 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) 38 T ELT)) (-1597 (((-420 (-577)) $) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) NIL T ELT)) (-3709 (((-885) $) 107 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1261 |#1| |#2| |#3|)) 16 T ELT) (($ (-1289 |#1| |#2| |#3|)) 17 T ELT) (($ (-1293 |#2|)) 36 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4171 ((|#1| $ (-420 (-577))) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) 12 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-420 (-577))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 32 T CONST)) (-2853 (($) 26 T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 34 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1282 |#1| |#2| |#3|) (-13 (-1280 |#1| (-1261 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1289 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1282)) +((-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1282 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1280 |#1| (-1261 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1289 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 37 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-2261 (($ $) NIL T ELT)) (-2538 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 (-577) "failed") $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-420 (-577)))) ELT) (((-3 (-1282 |#2| |#3| |#4|) "failed") $) 22 T ELT)) (-3783 (((-577) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-420 (-577)))) ELT) (((-1282 |#2| |#3| |#4|) $) NIL T ELT)) (-4048 (($ $) 41 T ELT)) (-3167 (((-3 $ "failed") $) 27 T ELT)) (-2796 (($ $) NIL (|has| (-1282 |#2| |#3| |#4|) (-465)) ELT)) (-4365 (($ $ (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|) $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) 11 T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) 25 T ELT)) (-4340 (((-330 |#2| |#3| |#4|) $) NIL T ELT)) (-4329 (($ (-1 (-330 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) $) NIL T ELT)) (-4417 (($ (-1 (-1282 |#2| |#3| |#4|) (-1282 |#2| |#3| |#4|)) $) NIL T ELT)) (-3309 (((-3 (-864 |#2|) "failed") $) 90 T ELT)) (-4014 (($ $) NIL T ELT)) (-4025 (((-1282 |#2| |#3| |#4|) $) 20 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3988 (((-112) $) NIL T ELT)) (-3999 (((-1282 |#2| |#3| |#4|) $) NIL T ELT)) (-3574 (((-3 $ "failed") $ (-1282 |#2| |#3| |#4|)) NIL (|has| (-1282 |#2| |#3| |#4|) (-569)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-4352 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1188))) "failed") $) 74 T ELT)) (-1597 (((-330 |#2| |#3| |#4|) $) 17 T ELT)) (-2407 (((-1282 |#2| |#3| |#4|) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-465)) ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1282 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL (-2867 (|has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) (|has| (-1282 |#2| |#3| |#4|) (-1068 (-420 (-577))))) ELT)) (-4343 (((-665 (-1282 |#2| |#3| |#4|)) $) NIL T ELT)) (-4171 (((-1282 |#2| |#3| |#4|) $ (-330 |#2| |#3| |#4|)) NIL T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| (-1282 |#2| |#3| |#4|) (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-2576 (($ $ $ (-792)) NIL (|has| (-1282 |#2| |#3| |#4|) (-174)) ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-4124 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ (-1282 |#2| |#3| |#4|)) NIL (|has| (-1282 |#2| |#3| |#4|) (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1282 |#2| |#3| |#4|)) NIL T ELT) (($ (-1282 |#2| |#3| |#4|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) ELT))) +(((-1283 |#1| |#2| |#3| |#4|) (-13 (-337 (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -3309 ((-3 (-864 |#2|) "failed") $)) (-15 -4352 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1188))) "failed") $)))) (-13 (-1068 (-577)) (-659 (-577)) (-465)) (-13 (-27) (-1232) (-443 |#1|)) (-1206) |#2|) (T -1283)) +((-3309 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *2 (-864 *4)) (-5 *1 (-1283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4))) (-4352 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 *4 *5 *6)) (|:| |%expon| (-330 *4 *5 *6)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) (|:| |%type| (-1188)))) (-5 *1 (-1283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4)))) +(-13 (-337 (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -3309 ((-3 (-864 |#2|) "failed") $)) (-15 -4352 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1188))) "failed") $)))) +((-3254 ((|#2| $) 34 T ELT)) (-1893 ((|#2| $) 18 T ELT)) (-2688 (($ $) 53 T ELT)) (-2815 (($ $ (-577)) 85 T ELT)) (-1777 (((-112) $ (-792)) 46 T ELT)) (-4450 ((|#2| $ |#2|) 82 T ELT)) (-1968 ((|#2| $ |#2|) 78 T ELT)) (-1957 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 71 T ELT) (($ $ "rest" $) 75 T ELT) ((|#2| $ "last" |#2|) 73 T ELT)) (-1907 (($ $ (-665 $)) 81 T ELT)) (-1883 ((|#2| $) 17 T ELT)) (-4410 (($ $) NIL T ELT) (($ $ (-792)) 59 T ELT)) (-2680 (((-665 $) $) 31 T ELT)) (-3977 (((-112) $ $) 69 T ELT)) (-3862 (((-112) $ (-792)) 45 T ELT)) (-3438 (((-112) $ (-792)) 43 T ELT)) (-3188 (((-112) $) 33 T ELT)) (-4026 ((|#2| $) 25 T ELT) (($ $ (-792)) 64 T ELT)) (-2916 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-2625 (((-112) $) 23 T ELT)) (-1659 (($ $) 56 T ELT)) (-1697 (($ $) 86 T ELT)) (-2737 (((-792) $) 58 T ELT)) (-2554 (($ $) 57 T ELT)) (-1702 (($ $ $) 77 T ELT) (($ |#2| $) NIL T ELT)) (-3217 (((-665 $) $) 32 T ELT)) (-3018 (((-112) $ $) 67 T ELT)) (-3600 (((-792) $) 52 T ELT))) +(((-1284 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -2815 (|#1| |#1| (-577))) (-15 -1957 (|#2| |#1| "last" |#2|)) (-15 -1968 (|#2| |#1| |#2|)) (-15 -1957 (|#1| |#1| "rest" |#1|)) (-15 -1957 (|#2| |#1| "first" |#2|)) (-15 -1697 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -2737 ((-792) |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -1893 (|#2| |#1|)) (-15 -1883 (|#2| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -4026 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "last")) (-15 -4026 (|#2| |#1|)) (-15 -4410 (|#1| |#1| (-792))) (-15 -2916 (|#1| |#1| "rest")) (-15 -4410 (|#1| |#1|)) (-15 -2916 (|#2| |#1| "first")) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#1|)) (-15 -4450 (|#2| |#1| |#2|)) (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -1907 (|#1| |#1| (-665 |#1|))) (-15 -3977 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2916 (|#2| |#1| "value")) (-15 -3254 (|#2| |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -2680 ((-665 |#1|) |#1|)) (-15 -3217 ((-665 |#1|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792)))) (-1285 |#2|) (-1247)) (T -1284)) +NIL +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -2815 (|#1| |#1| (-577))) (-15 -1957 (|#2| |#1| "last" |#2|)) (-15 -1968 (|#2| |#1| |#2|)) (-15 -1957 (|#1| |#1| "rest" |#1|)) (-15 -1957 (|#2| |#1| "first" |#2|)) (-15 -1697 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -2737 ((-792) |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -1893 (|#2| |#1|)) (-15 -1883 (|#2| |#1|)) (-15 -2688 (|#1| |#1|)) (-15 -4026 (|#1| |#1| (-792))) (-15 -2916 (|#2| |#1| "last")) (-15 -4026 (|#2| |#1|)) (-15 -4410 (|#1| |#1| (-792))) (-15 -2916 (|#1| |#1| "rest")) (-15 -4410 (|#1| |#1|)) (-15 -2916 (|#2| |#1| "first")) (-15 -1702 (|#1| |#2| |#1|)) (-15 -1702 (|#1| |#1| |#1|)) (-15 -4450 (|#2| |#1| |#2|)) (-15 -1957 (|#2| |#1| "value" |#2|)) (-15 -1907 (|#1| |#1| (-665 |#1|))) (-15 -3977 ((-112) |#1| |#1|)) (-15 -2625 ((-112) |#1|)) (-15 -2916 (|#2| |#1| "value")) (-15 -3254 (|#2| |#1|)) (-15 -3188 ((-112) |#1|)) (-15 -2680 ((-665 |#1|) |#1|)) (-15 -3217 ((-665 |#1|) |#1|)) (-15 -3600 ((-792) |#1|)) (-15 -1777 ((-112) |#1| (-792))) (-15 -3862 ((-112) |#1| (-792))) (-15 -3438 ((-112) |#1| (-792)))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3254 ((|#1| $) 49 T ELT)) (-1893 ((|#1| $) 66 T ELT)) (-2688 (($ $) 68 T ELT)) (-2815 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-4450 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-2704 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-1968 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-2283 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-1957 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-1907 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-1883 ((|#1| $) 67 T ELT)) (-2305 (($) 7 T CONST)) (-4410 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2680 (((-665 $) $) 51 T ELT)) (-3977 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-3196 (((-665 |#1|) $) 46 T ELT)) (-3188 (((-112) $) 50 T ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4026 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT)) (-2409 (((-577) $ $) 45 T ELT)) (-2625 (((-112) $) 47 T ELT)) (-1659 (($ $) 63 T ELT)) (-1697 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2737 (((-792) $) 64 T ELT)) (-2554 (($ $) 65 T ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1977 (($ $) 13 T ELT)) (-2562 (($ $ $) 62 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4500)) ELT)) (-1702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3217 (((-665 $) $) 52 T ELT)) (-2256 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1285 |#1|) (-141) (-1247)) (T -1285)) +((-1702 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1702 (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-4397 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2916 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-4397 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-4410 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-4410 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2916 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-2688 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2554 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-1659 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2562 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2562 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1697 (*1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2283 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1957 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2704 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1957 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-1968 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1957 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2815 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) (-4 *3 (-1247))))) +(-13 (-1040 |t#1|) (-10 -8 (-15 -1702 ($ $ $)) (-15 -1702 ($ |t#1| $)) (-15 -4397 (|t#1| $)) (-15 -2916 (|t#1| $ "first")) (-15 -4397 ($ $ (-792))) (-15 -4410 ($ $)) (-15 -2916 ($ $ "rest")) (-15 -4410 ($ $ (-792))) (-15 -4026 (|t#1| $)) (-15 -2916 (|t#1| $ "last")) (-15 -4026 ($ $ (-792))) (-15 -2688 ($ $)) (-15 -1883 (|t#1| $)) (-15 -1893 (|t#1| $)) (-15 -2554 ($ $)) (-15 -2737 ((-792) $)) (-15 -1659 ($ $)) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2562 ($ $ $)) (-15 -2562 ($ $ |t#1|)) (-15 -1697 ($ $)) (-15 -2283 (|t#1| $ |t#1|)) (-15 -1957 (|t#1| $ "first" |t#1|)) (-15 -2704 ($ $ $)) (-15 -1957 ($ $ "rest" $)) (-15 -1968 (|t#1| $ |t#1|)) (-15 -1957 (|t#1| $ "last" |t#1|)) (-15 -2815 ($ $ (-577)))) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-4417 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4417 (|#4| (-1 |#2| |#1|) |#3|))) (-1079) (-1079) (-1288 |#1|) (-1288 |#2|)) (T -1286)) +((-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1288 *6)) (-5 *1 (-1286 *5 *6 *4 *2)) (-4 *4 (-1288 *5))))) +(-10 -7 (-15 -4417 (|#4| (-1 |#2| |#1|) |#3|))) +((-4113 (((-112) $) 17 T ELT)) (-1660 (($ $) 105 T ELT)) (-2785 (($ $) 81 T ELT)) (-1638 (($ $) 101 T ELT)) (-2757 (($ $) 77 T ELT)) (-1682 (($ $) 109 T ELT)) (-2809 (($ $) 85 T ELT)) (-3825 (($ $) 75 T ELT)) (-2355 (($ $) 73 T ELT)) (-1692 (($ $) 111 T ELT)) (-2821 (($ $) 87 T ELT)) (-1671 (($ $) 107 T ELT)) (-2797 (($ $) 83 T ELT)) (-1648 (($ $) 103 T ELT)) (-2772 (($ $) 79 T ELT)) (-3709 (((-885) $) 61 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-1727 (($ $) 117 T ELT)) (-2861 (($ $) 93 T ELT)) (-1703 (($ $) 113 T ELT)) (-2834 (($ $) 89 T ELT)) (-1748 (($ $) 121 T ELT)) (-1616 (($ $) 97 T ELT)) (-4468 (($ $) 123 T ELT)) (-1626 (($ $) 99 T ELT)) (-1737 (($ $) 119 T ELT)) (-2874 (($ $) 95 T ELT)) (-1715 (($ $) 115 T ELT)) (-2847 (($ $) 91 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-420 (-577))) 71 T ELT))) +(((-1287 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2785 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -2847 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1671 (|#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -4468 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -2355 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -4113 ((-112) |#1|)) (-15 -3709 ((-885) |#1|))) (-1288 |#2|) (-1079)) (T -1287)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2785 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2809 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -2847 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -1648 (|#1| |#1|)) (-15 -1671 (|#1| |#1|)) (-15 -1692 (|#1| |#1|)) (-15 -1682 (|#1| |#1|)) (-15 -1638 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1715 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -4468 (|#1| |#1|)) (-15 -1748 (|#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -3825 (|#1| |#1|)) (-15 -2355 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3709 (|#1| |#2|)) (-15 -3709 (|#1| |#1|)) (-15 -3709 (|#1| (-420 (-577)))) (-15 -3709 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -4113 ((-112) |#1|)) (-15 -3709 ((-885) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-3891 (((-665 (-1112)) $) 86 T ELT)) (-3341 (((-1206) $) 118 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-2261 (($ $) 64 (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-792)) 113 T ELT) (($ $ (-792) (-792)) 112 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|))) $) 119 T ELT)) (-1660 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3770 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1638 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|)))) 170 T ELT) (($ (-1187 |#1|)) 168 T ELT)) (-1682 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) 18 T CONST)) (-4048 (($ $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3575 (($ $) 167 T ELT)) (-2498 (((-980 |#1|) $ (-792)) 165 T ELT) (((-980 |#1|) $ (-792) (-792)) 164 T ELT)) (-1655 (((-112) $) 85 T ELT)) (-2450 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-792) $) 115 T ELT) (((-792) $ (-792)) 114 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3368 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3720 (($ $ (-949)) 116 T ELT)) (-3956 (($ (-1 |#1| (-577)) $) 166 T ELT)) (-2696 (((-112) $) 74 T ELT)) (-3872 (($ |#1| (-792)) 73 T ELT) (($ $ (-1112) (-792)) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) 87 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3825 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) 77 T ELT)) (-4025 ((|#1| $) 78 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1869 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 161 (-2867 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2568 (($ $ (-792)) 110 T ELT)) (-3574 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2355 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3373 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) ELT)) (-2916 ((|#1| $ (-792)) 120 T ELT) (($ $ $) 96 (|has| (-792) (-1142)) ELT)) (-3641 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT)) (-1597 (((-792) $) 76 T ELT)) (-1692 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 84 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-4343 (((-1187 |#1|) $) 169 T ELT)) (-4171 ((|#1| $ (-792)) 71 T ELT)) (-2708 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3331 (((-792)) 32 T CONST)) (-1343 ((|#1| $) 117 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-1727 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1703 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-792)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-2389 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ |#1|) 163 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1288 |#1|) (-141) (-1079)) (T -1288)) +((-3190 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-792)) (|:| |c| *3)))) (-4 *3 (-1079)) (-4 *1 (-1288 *3)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-5 *2 (-1187 *3)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-4 *1 (-1288 *3)))) (-3575 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)))) (-3956 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1288 *3)) (-4 *3 (-1079)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) (-5 *2 (-980 *4)))) (-2498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) (-5 *2 (-980 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-1869 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) (-1869 (*1 *1 *1 *2) (-2867 (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -3891 ((-665 *2) *3))) (|has| *3 (-15 -1869 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) +(-13 (-1275 |t#1| (-792)) (-10 -8 (-15 -3190 ($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |t#1|))))) (-15 -4343 ((-1187 |t#1|) $)) (-15 -3190 ($ (-1187 |t#1|))) (-15 -3575 ($ $)) (-15 -3956 ($ (-1 |t#1| (-577)) $)) (-15 -2498 ((-980 |t#1|) $ (-792))) (-15 -2498 ((-980 |t#1|) $ (-792) (-792))) (IF (|has| |t#1| (-375)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -1869 ($ $)) (IF (|has| |t#1| (-15 -1869 (|t#1| |t#1| (-1206)))) (IF (|has| |t#1| (-15 -3891 ((-665 (-1206)) |t#1|))) (-15 -1869 ($ $ (-1206))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1232)) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-29 (-577))) (-15 -1869 ($ $ (-1206))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1232))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-792)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-792) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-792) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-792) |#1|))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-792) (-1142)) ((-301) |has| |#1| (-569)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) |has| |#1| (-569)) ((-667 #1#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #1#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2867 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1275 |#1| #0#) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-3891 (((-665 (-1112)) $) NIL T ELT)) (-3341 (((-1206) $) 90 T ELT)) (-3554 (((-1270 |#2| |#1|) $ (-792)) 73 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2261 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2538 (((-112) $) 142 (|has| |#1| (-569)) ELT)) (-3610 (($ $ (-792)) 127 T ELT) (($ $ (-792) (-792)) 130 T ELT)) (-2072 (((-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|))) $) 43 T ELT)) (-1660 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2785 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3770 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1638 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2757 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3190 (($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1187 |#1|)) NIL T ELT)) (-1682 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2305 (($) NIL T CONST)) (-2363 (($ $) 134 T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3575 (($ $) 140 T ELT)) (-2498 (((-980 |#1|) $ (-792)) 63 T ELT) (((-980 |#1|) $ (-792) (-792)) 65 T ELT)) (-1655 (((-112) $) NIL T ELT)) (-2450 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4030 (((-792) $) NIL T ELT) (((-792) $ (-792)) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3515 (($ $) 117 T ELT)) (-3368 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2193 (($ (-577) (-577) $) 136 T ELT)) (-3720 (($ $ (-949)) 139 T ELT)) (-3956 (($ (-1 |#1| (-577)) $) 111 T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3872 (($ |#1| (-792)) 16 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) 98 T ELT)) (-3825 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2418 (($ $) 115 T ELT)) (-2783 (($ $) 113 T ELT)) (-2488 (($ (-577) (-577) $) 138 T ELT)) (-1869 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 156 (-2867 (-12 (|has| |#1| (-15 -1869 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -3891 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2886 (($ $ (-577) (-577)) 121 T ELT)) (-2568 (($ $ (-792)) 123 T ELT)) (-3574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2355 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2897 (($ $) 119 T ELT)) (-3373 (((-1187 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) ELT)) (-2916 ((|#1| $ (-792)) 95 T ELT) (($ $ $) 132 (|has| (-792) (-1142)) ELT)) (-3641 (($ $ (-1206)) 108 (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 102 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) 103 T ELT)) (-1597 (((-792) $) NIL T ELT)) (-1692 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2821 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1671 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2797 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1648 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2772 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4165 (($ $) 125 T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) 26 T ELT) (($ (-420 (-577))) 148 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 25 (|has| |#1| (-174)) ELT) (($ (-1270 |#2| |#1|)) 81 T ELT) (($ (-1293 |#2|)) 22 T ELT)) (-4343 (((-1187 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ (-792)) 94 T ELT)) (-2708 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3331 (((-792)) NIL T CONST)) (-1343 ((|#1| $) 91 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-1727 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2861 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4124 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1703 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2834 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1748 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1616 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4215 ((|#1| $ (-792)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) (|has| |#1| (-15 -3709 (|#1| (-1206))))) ELT)) (-4468 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1626 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1737 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2847 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2839 (($) 18 T CONST)) (-2853 (($) 13 T CONST)) (-2389 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3139 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-3114 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ |#1|) 145 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 106 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) +(((-1289 |#1| |#2| |#3|) (-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1270 |#2| |#1|))) (-15 -3554 ((-1270 |#2| |#1|) $ (-792))) (-15 -3709 ($ (-1293 |#2|))) (-15 -2783 ($ $)) (-15 -2418 ($ $)) (-15 -3515 ($ $)) (-15 -2897 ($ $)) (-15 -2886 ($ $ (-577) (-577))) (-15 -2363 ($ $)) (-15 -2193 ($ (-577) (-577) $)) (-15 -2488 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1289)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-1289 *3 *4 *5)))) (-3554 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1289 *4 *5 *6)) (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-2783 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-2418 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-2897 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-2886 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3))) (-2363 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-2193 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3))) (-2488 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -3709 ($ (-1270 |#2| |#1|))) (-15 -3554 ((-1270 |#2| |#1|) $ (-792))) (-15 -3709 ($ (-1293 |#2|))) (-15 -2783 ($ $)) (-15 -2418 ($ $)) (-15 -3515 ($ $)) (-15 -2897 ($ $)) (-15 -2886 ($ $ (-577) (-577))) (-15 -2363 ($ $)) (-15 -2193 ($ (-577) (-577) $)) (-15 -2488 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -1869 ($ $ (-1293 |#2|))) |%noBranch|))) +((-4347 (((-1 (-1187 |#1|) (-665 (-1187 |#1|))) (-1 |#2| (-665 |#2|))) 24 T ELT)) (-4156 (((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-2846 (((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-4328 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3097 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-4388 ((|#2| (-1 |#2| (-665 |#2|)) (-665 |#1|)) 60 T ELT)) (-2320 (((-665 |#2|) (-665 |#1|) (-665 (-1 |#2| (-665 |#2|)))) 66 T ELT)) (-3545 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1290 |#1| |#2|) (-10 -7 (-15 -2846 ((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|))) (-15 -4156 ((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4347 ((-1 (-1187 |#1|) (-665 (-1187 |#1|))) (-1 |#2| (-665 |#2|)))) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3097 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4328 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4388 (|#2| (-1 |#2| (-665 |#2|)) (-665 |#1|))) (-15 -2320 ((-665 |#2|) (-665 |#1|) (-665 (-1 |#2| (-665 |#2|)))))) (-38 (-420 (-577))) (-1288 |#1|)) (T -1290)) +((-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 (-1 *6 (-665 *6)))) (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1288 *5)) (-5 *2 (-665 *6)) (-5 *1 (-1290 *5 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-665 *2))) (-5 *4 (-665 *5)) (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1288 *5)) (-5 *1 (-1290 *5 *2)))) (-4328 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-3545 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1290 *3 *2)) (-4 *2 (-1288 *3)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-665 *5))) (-4 *5 (-1288 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-665 (-1187 *4)))) (-5 *1 (-1290 *4 *5)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1288 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-1187 *4) (-1187 *4))) (-5 *1 (-1290 *4 *5)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1288 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1290 *4 *5))))) +(-10 -7 (-15 -2846 ((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|))) (-15 -4156 ((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4347 ((-1 (-1187 |#1|) (-665 (-1187 |#1|))) (-1 |#2| (-665 |#2|)))) (-15 -3545 (|#2| |#2| |#2|)) (-15 -3097 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4328 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4388 (|#2| (-1 |#2| (-665 |#2|)) (-665 |#1|))) (-15 -2320 ((-665 |#2|) (-665 |#1|) (-665 (-1 |#2| (-665 |#2|)))))) +((-2145 ((|#2| |#4| (-792)) 31 T ELT)) (-2651 ((|#4| |#2|) 26 T ELT)) (-3677 ((|#4| (-420 |#2|)) 49 (|has| |#1| (-569)) ELT)) (-3696 (((-1 |#4| (-665 |#4|)) |#3|) 43 T ELT))) +(((-1291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2651 (|#4| |#2|)) (-15 -2145 (|#2| |#4| (-792))) (-15 -3696 ((-1 |#4| (-665 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -3677 (|#4| (-420 |#2|))) |%noBranch|)) (-1079) (-1273 |#1|) (-677 |#2|) (-1288 |#1|)) (T -1291)) +((-3677 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-569)) (-4 *4 (-1079)) (-4 *2 (-1288 *4)) (-5 *1 (-1291 *4 *5 *6 *2)) (-4 *6 (-677 *5)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-665 *6))) (-5 *1 (-1291 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-1288 *4)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-1291 *5 *2 *6 *3)) (-4 *6 (-677 *2)) (-4 *3 (-1288 *5)))) (-2651 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *3 (-1273 *4)) (-4 *2 (-1288 *4)) (-5 *1 (-1291 *4 *3 *5 *2)) (-4 *5 (-677 *3))))) +(-10 -7 (-15 -2651 (|#4| |#2|)) (-15 -2145 (|#2| |#4| (-792))) (-15 -3696 ((-1 |#4| (-665 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -3677 (|#4| (-420 |#2|))) |%noBranch|)) +NIL +(((-1292) (-141)) (T -1292)) +NIL +(-13 (-10 -7 (-6 -4185))) +((-3586 (((-112) $ $) NIL T ELT)) (-3341 (((-1206)) 12 T ELT)) (-3235 (((-1188) $) 18 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 11 T ELT) (((-1206) $) 8 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 15 T ELT))) +(((-1293 |#1|) (-13 (-1130) (-631 (-1206)) (-10 -8 (-15 -3709 ((-1206) $)) (-15 -3341 ((-1206))))) (-1206)) (T -1293)) +((-3709 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2))) (-3341 (*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2)))) +(-13 (-1130) (-631 (-1206)) (-10 -8 (-15 -3709 ((-1206) $)) (-15 -3341 ((-1206))))) +((-4084 (($ (-792)) 19 T ELT)) (-3231 (((-710 |#2|) $ $) 41 T ELT)) (-3931 ((|#2| $) 51 T ELT)) (-4166 ((|#2| $) 50 T ELT)) (-4047 ((|#2| $ $) 36 T ELT)) (-2311 (($ $ $) 47 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-577) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1294 |#1| |#2|) (-10 -8 (-15 -3931 (|#2| |#1|)) (-15 -4166 (|#2| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -3231 ((-710 |#2|) |#1| |#1|)) (-15 -4047 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -4084 (|#1| (-792))) (-15 -3114 (|#1| |#1| |#1|))) (-1295 |#2|) (-1247)) (T -1294)) +NIL +(-10 -8 (-15 -3931 (|#2| |#1|)) (-15 -4166 (|#2| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -3231 ((-710 |#2|) |#1| |#1|)) (-15 -4047 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -4084 (|#1| (-792))) (-15 -3114 (|#1| |#1| |#1|))) +((-3586 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4084 (($ (-792)) 115 (|has| |#1| (-23)) ELT)) (-1935 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) 8 T ELT)) (-1957 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2305 (($) 7 T CONST)) (-2609 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) 103 T ELT)) (-3589 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4004 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) 52 T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3231 (((-710 |#1|) $ $) 108 (|has| |#1| (-1079)) ELT)) (-3236 (($ (-792) |#1|) 70 T ELT)) (-3862 (((-112) $ (-792)) 9 T ELT)) (-2975 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1425 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3931 ((|#1| $) 105 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3438 (((-112) $ (-792)) 10 T ELT)) (-4166 ((|#1| $) 106 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3235 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-2233 (((-665 (-577)) $) 47 T ELT)) (-3972 (((-112) (-577) $) 48 T ELT)) (-1470 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-2561 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) 14 T ELT)) (-3893 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) 49 T ELT)) (-2687 (((-112) $) 11 T ELT)) (-2833 (($) 12 T ELT)) (-2916 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-4047 ((|#1| $ $) 109 (|has| |#1| (-1079)) ELT)) (-3587 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-2311 (($ $ $) 107 (|has| |#1| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2338 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) 13 T ELT)) (-4463 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 72 T ELT)) (-1702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-3709 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-3128 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-577) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-747)) ELT) (($ $ |#1|) 110 (|has| |#1| (-747)) ELT)) (-3600 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) +(((-1295 |#1|) (-141) (-1247)) (T -1295)) +((-3114 (*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-25)))) (-4084 (*1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1295 *3)) (-4 *3 (-23)) (-4 *3 (-1247)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (-3128 (*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) (-4047 (*1 *2 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) (-3231 (*1 *2 *1 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-1079)) (-5 *2 (-710 *3)))) (-2311 (*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) (-4166 (*1 *2 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3114 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4084 ($ (-792))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3128 ($ $)) (-15 -3128 ($ $ $)) (-15 * ($ (-577) $))) |%noBranch|) (IF (|has| |t#1| (-747)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1079)) (PROGN (-15 -4047 (|t#1| $ $)) (-15 -3231 ((-710 |t#1|) $ $)) (-15 -2311 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1032)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -4166 (|t#1| $)) (-15 -3931 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-19 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2867 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T)) +((-4256 (((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 13 T ELT)) (-2060 ((|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 15 T ELT)) (-4417 (((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)) 30 T ELT) (((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|)) 18 T ELT))) +(((-1296 |#1| |#2|) (-10 -7 (-15 -4256 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4417 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -4417 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) (-1247) (-1247)) (T -1296)) +((-4417 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1296 *5 *6)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1296 *5 *6)))) (-2060 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1296 *5 *2)))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1296 *6 *5))))) +(-10 -7 (-15 -4256 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -2060 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4417 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -4417 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) +((-3586 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4084 (($ (-792)) NIL (|has| |#1| (-23)) ELT)) (-3629 (($ (-665 |#1|)) 11 T ELT)) (-1935 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3279 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-2629 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-1381 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1957 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1440 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2305 (($) NIL T CONST)) (-2609 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2100 (($ $) NIL T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4004 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2060 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4420 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4353 ((|#1| $ (-577)) NIL T ELT)) (-3948 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2118 (((-665 |#1|) $) 16 (|has| $ (-6 -4499)) ELT)) (-3231 (((-710 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-3236 (($ (-792) |#1|) NIL T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2975 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3237 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3771 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2152 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1425 (((-577) $) 12 (|has| (-577) (-870)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4409 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3931 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-4166 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3235 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2317 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-2233 (((-665 (-577)) $) NIL T ELT)) (-3972 (((-112) (-577) $) NIL T ELT)) (-1470 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4397 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-2550 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-2561 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3446 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-3893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4059 (((-665 |#1|) $) NIL T ELT)) (-2687 (((-112) $) NIL T ELT)) (-2833 (($) NIL T ELT)) (-2916 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4047 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-3587 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-1079)) ELT)) (-1481 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2338 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) 20 (|has| |#1| (-632 (-549))) ELT)) (-3722 (($ (-665 |#1|)) 10 T ELT)) (-1702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3709 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2643 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1474 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3078 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3054 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3018 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3067 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3042 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3128 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3114 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-747)) ELT) (($ $ |#1|) NIL (|has| |#1| (-747)) ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1297 |#1|) (-13 (-1295 |#1|) (-10 -8 (-15 -3629 ($ (-665 |#1|))))) (-1247)) (T -1297)) +((-3629 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3))))) +(-13 (-1295 |#1|) (-10 -8 (-15 -3629 ($ (-665 |#1|))))) +((-3586 (((-112) $ $) NIL T ELT)) (-1530 (((-1188) $ (-1188)) 107 T ELT) (((-1188) $ (-1188) (-1188)) 105 T ELT) (((-1188) $ (-1188) (-665 (-1188))) 104 T ELT)) (-2635 (($) 69 T ELT)) (-3901 (((-1302) $ (-481) (-949)) 54 T ELT)) (-1445 (((-1302) $ (-949) (-1188)) 89 T ELT) (((-1302) $ (-949) (-897)) 90 T ELT)) (-2751 (((-1302) $ (-949) (-391) (-391)) 57 T ELT)) (-1407 (((-1302) $ (-1188)) 84 T ELT)) (-2299 (((-1302) $ (-949) (-1188)) 94 T ELT)) (-2641 (((-1302) $ (-949) (-391) (-391)) 58 T ELT)) (-2669 (((-1302) $ (-949) (-949)) 55 T ELT)) (-1509 (((-1302) $) 85 T ELT)) (-3152 (((-1302) $ (-949) (-1188)) 93 T ELT)) (-1342 (((-1302) $ (-481) (-949)) 41 T ELT)) (-2524 (((-1302) $ (-949) (-1188)) 92 T ELT)) (-1346 (((-665 (-271)) $) 29 T ELT) (($ $ (-665 (-271))) 30 T ELT)) (-3984 (((-1302) $ (-792) (-792)) 52 T ELT)) (-4240 (($ $) 70 T ELT) (($ (-481) (-665 (-271))) 71 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4376 (((-577) $) 48 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4419 (((-1297 (-3 (-481) "undefined")) $) 47 T ELT)) (-4325 (((-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2524 (-577)) (|:| -1852 (-577)) (|:| |spline| (-577)) (|:| -3277 (-577)) (|:| |axesColor| (-897)) (|:| -1445 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577)))) $) 46 T ELT)) (-2411 (((-1302) $ (-949) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-897) (-577) (-897) (-577)) 83 T ELT)) (-4109 (((-665 (-971 (-228))) $) NIL T ELT)) (-1369 (((-481) $ (-949)) 43 T ELT)) (-1814 (((-1302) $ (-792) (-792) (-949) (-949)) 50 T ELT)) (-3578 (((-1302) $ (-1188)) 95 T ELT)) (-1852 (((-1302) $ (-949) (-1188)) 91 T ELT)) (-3709 (((-885) $) 102 T ELT)) (-2040 (((-1302) $) 96 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3277 (((-1302) $ (-949) (-1188)) 87 T ELT) (((-1302) $ (-949) (-897)) 88 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1298) (-13 (-1130) (-10 -8 (-15 -4109 ((-665 (-971 (-228))) $)) (-15 -2635 ($)) (-15 -4240 ($ $)) (-15 -1346 ((-665 (-271)) $)) (-15 -1346 ($ $ (-665 (-271)))) (-15 -4240 ($ (-481) (-665 (-271)))) (-15 -2411 ((-1302) $ (-949) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-897) (-577) (-897) (-577))) (-15 -4325 ((-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2524 (-577)) (|:| -1852 (-577)) (|:| |spline| (-577)) (|:| -3277 (-577)) (|:| |axesColor| (-897)) (|:| -1445 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577)))) $)) (-15 -4419 ((-1297 (-3 (-481) "undefined")) $)) (-15 -1407 ((-1302) $ (-1188))) (-15 -1342 ((-1302) $ (-481) (-949))) (-15 -1369 ((-481) $ (-949))) (-15 -3277 ((-1302) $ (-949) (-1188))) (-15 -3277 ((-1302) $ (-949) (-897))) (-15 -1445 ((-1302) $ (-949) (-1188))) (-15 -1445 ((-1302) $ (-949) (-897))) (-15 -2524 ((-1302) $ (-949) (-1188))) (-15 -3152 ((-1302) $ (-949) (-1188))) (-15 -1852 ((-1302) $ (-949) (-1188))) (-15 -3578 ((-1302) $ (-1188))) (-15 -2040 ((-1302) $)) (-15 -1814 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -2641 ((-1302) $ (-949) (-391) (-391))) (-15 -2751 ((-1302) $ (-949) (-391) (-391))) (-15 -2299 ((-1302) $ (-949) (-1188))) (-15 -3984 ((-1302) $ (-792) (-792))) (-15 -3901 ((-1302) $ (-481) (-949))) (-15 -2669 ((-1302) $ (-949) (-949))) (-15 -1530 ((-1188) $ (-1188))) (-15 -1530 ((-1188) $ (-1188) (-1188))) (-15 -1530 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -1509 ((-1302) $)) (-15 -4376 ((-577) $)) (-15 -3709 ((-885) $))))) (T -1298)) +((-3709 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1298)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-665 (-971 (-228)))) (-5 *1 (-1298)))) (-2635 (*1 *1) (-5 *1 (-1298))) (-4240 (*1 *1 *1) (-5 *1 (-1298))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) (-1346 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) (-4240 (*1 *1 *2 *3) (-12 (-5 *2 (-481)) (-5 *3 (-665 (-271))) (-5 *1 (-1298)))) (-2411 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-949)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2524 (-577)) (|:| -1852 (-577)) (|:| |spline| (-577)) (|:| -3277 (-577)) (|:| |axesColor| (-897)) (|:| -1445 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577))))) (-5 *1 (-1298)))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-1297 (-3 (-481) "undefined"))) (-5 *1 (-1298)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1342 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-5 *2 (-481)) (-5 *1 (-1298)))) (-3277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1445 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1445 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2524 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3152 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1814 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2641 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2751 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2299 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3984 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3901 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2669 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1530 (*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) (-1530 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) (-1530 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1298)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1298))))) +(-13 (-1130) (-10 -8 (-15 -4109 ((-665 (-971 (-228))) $)) (-15 -2635 ($)) (-15 -4240 ($ $)) (-15 -1346 ((-665 (-271)) $)) (-15 -1346 ($ $ (-665 (-271)))) (-15 -4240 ($ (-481) (-665 (-271)))) (-15 -2411 ((-1302) $ (-949) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-897) (-577) (-897) (-577))) (-15 -4325 ((-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2524 (-577)) (|:| -1852 (-577)) (|:| |spline| (-577)) (|:| -3277 (-577)) (|:| |axesColor| (-897)) (|:| -1445 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577)))) $)) (-15 -4419 ((-1297 (-3 (-481) "undefined")) $)) (-15 -1407 ((-1302) $ (-1188))) (-15 -1342 ((-1302) $ (-481) (-949))) (-15 -1369 ((-481) $ (-949))) (-15 -3277 ((-1302) $ (-949) (-1188))) (-15 -3277 ((-1302) $ (-949) (-897))) (-15 -1445 ((-1302) $ (-949) (-1188))) (-15 -1445 ((-1302) $ (-949) (-897))) (-15 -2524 ((-1302) $ (-949) (-1188))) (-15 -3152 ((-1302) $ (-949) (-1188))) (-15 -1852 ((-1302) $ (-949) (-1188))) (-15 -3578 ((-1302) $ (-1188))) (-15 -2040 ((-1302) $)) (-15 -1814 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -2641 ((-1302) $ (-949) (-391) (-391))) (-15 -2751 ((-1302) $ (-949) (-391) (-391))) (-15 -2299 ((-1302) $ (-949) (-1188))) (-15 -3984 ((-1302) $ (-792) (-792))) (-15 -3901 ((-1302) $ (-481) (-949))) (-15 -2669 ((-1302) $ (-949) (-949))) (-15 -1530 ((-1188) $ (-1188))) (-15 -1530 ((-1188) $ (-1188) (-1188))) (-15 -1530 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -1509 ((-1302) $)) (-15 -4376 ((-577) $)) (-15 -3709 ((-885) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3062 (((-1302) $ (-391)) 169 T ELT) (((-1302) $ (-391) (-391) (-391)) 170 T ELT)) (-1530 (((-1188) $ (-1188)) 179 T ELT) (((-1188) $ (-1188) (-1188)) 177 T ELT) (((-1188) $ (-1188) (-665 (-1188))) 176 T ELT)) (-4060 (($) 67 T ELT)) (-1331 (((-1302) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $) 139 T ELT) (((-1302) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 140 T ELT) (((-1302) $ (-577) (-577) (-391) (-391) (-391)) 144 T ELT) (((-1302) $ (-391) (-391)) 145 T ELT) (((-1302) $ (-391) (-391) (-391)) 152 T ELT)) (-3186 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-2216 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-1383 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-4053 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-3904 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-2751 (((-1302) $ (-391) (-391)) 171 T ELT)) (-1407 (((-1302) $ (-1188)) 153 T ELT)) (-1368 (((-1163 (-228)) $) 68 T ELT) (($ $ (-1163 (-228))) 69 T ELT)) (-3900 (((-1302) $ (-1188)) 187 T ELT)) (-3119 (((-1302) $ (-1188)) 188 T ELT)) (-1574 (((-1302) $ (-391) (-391)) 151 T ELT) (((-1302) $ (-577) (-577)) 168 T ELT)) (-2669 (((-1302) $ (-949) (-949)) 160 T ELT)) (-1509 (((-1302) $) 137 T ELT)) (-2689 (((-1302) $ (-1188)) 186 T ELT)) (-3365 (((-1302) $ (-1188)) 134 T ELT)) (-1346 (((-665 (-271)) $) 70 T ELT) (($ $ (-665 (-271))) 71 T ELT)) (-3984 (((-1302) $ (-792) (-792)) 159 T ELT)) (-4162 (((-1302) $ (-792) (-971 (-228))) 193 T ELT)) (-3902 (($ $) 73 T ELT) (($ (-1163 (-228)) (-1188)) 74 T ELT) (($ (-1163 (-228)) (-665 (-271))) 75 T ELT)) (-4145 (((-1302) $ (-391) (-391) (-391)) 131 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4376 (((-577) $) 128 T ELT)) (-4128 (((-1302) $ (-391)) 174 T ELT)) (-1949 (((-1302) $ (-391)) 191 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2865 (((-1302) $ (-391)) 190 T ELT)) (-2371 (((-1302) $ (-1188)) 136 T ELT)) (-1814 (((-1302) $ (-792) (-792) (-949) (-949)) 158 T ELT)) (-2870 (((-1302) $ (-1188)) 133 T ELT)) (-3578 (((-1302) $ (-1188)) 135 T ELT)) (-2412 (((-1302) $ (-158) (-158)) 157 T ELT)) (-3709 (((-885) $) 166 T ELT)) (-2040 (((-1302) $) 138 T ELT)) (-3906 (((-1302) $ (-1188)) 189 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3277 (((-1302) $ (-1188)) 132 T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1299) (-13 (-1130) (-10 -8 (-15 -2216 ((-391))) (-15 -2216 ((-391) (-391))) (-15 -1383 ((-391))) (-15 -1383 ((-391) (-391))) (-15 -3186 ((-391))) (-15 -3186 ((-391) (-391))) (-15 -3904 ((-391))) (-15 -3904 ((-391) (-391))) (-15 -4053 ((-391))) (-15 -4053 ((-391) (-391))) (-15 -4060 ($)) (-15 -3902 ($ $)) (-15 -3902 ($ (-1163 (-228)) (-1188))) (-15 -3902 ($ (-1163 (-228)) (-665 (-271)))) (-15 -1368 ((-1163 (-228)) $)) (-15 -1368 ($ $ (-1163 (-228)))) (-15 -4162 ((-1302) $ (-792) (-971 (-228)))) (-15 -1346 ((-665 (-271)) $)) (-15 -1346 ($ $ (-665 (-271)))) (-15 -3984 ((-1302) $ (-792) (-792))) (-15 -2669 ((-1302) $ (-949) (-949))) (-15 -1407 ((-1302) $ (-1188))) (-15 -1814 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -1331 ((-1302) $ (-391) (-391) (-391) (-391) (-391))) (-15 -1331 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -1331 ((-1302) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1331 ((-1302) $ (-577) (-577) (-391) (-391) (-391))) (-15 -1331 ((-1302) $ (-391) (-391))) (-15 -1331 ((-1302) $ (-391) (-391) (-391))) (-15 -3578 ((-1302) $ (-1188))) (-15 -3277 ((-1302) $ (-1188))) (-15 -2870 ((-1302) $ (-1188))) (-15 -3365 ((-1302) $ (-1188))) (-15 -2371 ((-1302) $ (-1188))) (-15 -1574 ((-1302) $ (-391) (-391))) (-15 -1574 ((-1302) $ (-577) (-577))) (-15 -3062 ((-1302) $ (-391))) (-15 -3062 ((-1302) $ (-391) (-391) (-391))) (-15 -2751 ((-1302) $ (-391) (-391))) (-15 -2689 ((-1302) $ (-1188))) (-15 -2865 ((-1302) $ (-391))) (-15 -1949 ((-1302) $ (-391))) (-15 -3900 ((-1302) $ (-1188))) (-15 -3119 ((-1302) $ (-1188))) (-15 -3906 ((-1302) $ (-1188))) (-15 -4145 ((-1302) $ (-391) (-391) (-391))) (-15 -4128 ((-1302) $ (-391))) (-15 -1509 ((-1302) $)) (-15 -2412 ((-1302) $ (-158) (-158))) (-15 -1530 ((-1188) $ (-1188))) (-15 -1530 ((-1188) $ (-1188) (-1188))) (-15 -1530 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -2040 ((-1302) $)) (-15 -4376 ((-577) $))))) (T -1299)) +((-2216 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-1383 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3186 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3904 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-4053 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-4060 (*1 *1) (-5 *1 (-1299))) (-3902 (*1 *1 *1) (-5 *1 (-1299))) (-3902 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1188)) (-5 *1 (-1299)))) (-3902 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-665 (-271))) (-5 *1 (-1299)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299)))) (-1368 (*1 *1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299)))) (-4162 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299)))) (-1346 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299)))) (-3984 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2669 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1814 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1331 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-1299)))) (-1331 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1331 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1331 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1331 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3578 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3277 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2870 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3365 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2371 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1574 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1574 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3062 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3062 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2689 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2865 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1949 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3900 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3119 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3906 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4145 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4128 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2412 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1530 (*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299)))) (-1530 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299)))) (-1530 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1299)))) (-2040 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1299))))) +(-13 (-1130) (-10 -8 (-15 -2216 ((-391))) (-15 -2216 ((-391) (-391))) (-15 -1383 ((-391))) (-15 -1383 ((-391) (-391))) (-15 -3186 ((-391))) (-15 -3186 ((-391) (-391))) (-15 -3904 ((-391))) (-15 -3904 ((-391) (-391))) (-15 -4053 ((-391))) (-15 -4053 ((-391) (-391))) (-15 -4060 ($)) (-15 -3902 ($ $)) (-15 -3902 ($ (-1163 (-228)) (-1188))) (-15 -3902 ($ (-1163 (-228)) (-665 (-271)))) (-15 -1368 ((-1163 (-228)) $)) (-15 -1368 ($ $ (-1163 (-228)))) (-15 -4162 ((-1302) $ (-792) (-971 (-228)))) (-15 -1346 ((-665 (-271)) $)) (-15 -1346 ($ $ (-665 (-271)))) (-15 -3984 ((-1302) $ (-792) (-792))) (-15 -2669 ((-1302) $ (-949) (-949))) (-15 -1407 ((-1302) $ (-1188))) (-15 -1814 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -1331 ((-1302) $ (-391) (-391) (-391) (-391) (-391))) (-15 -1331 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -1331 ((-1302) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1331 ((-1302) $ (-577) (-577) (-391) (-391) (-391))) (-15 -1331 ((-1302) $ (-391) (-391))) (-15 -1331 ((-1302) $ (-391) (-391) (-391))) (-15 -3578 ((-1302) $ (-1188))) (-15 -3277 ((-1302) $ (-1188))) (-15 -2870 ((-1302) $ (-1188))) (-15 -3365 ((-1302) $ (-1188))) (-15 -2371 ((-1302) $ (-1188))) (-15 -1574 ((-1302) $ (-391) (-391))) (-15 -1574 ((-1302) $ (-577) (-577))) (-15 -3062 ((-1302) $ (-391))) (-15 -3062 ((-1302) $ (-391) (-391) (-391))) (-15 -2751 ((-1302) $ (-391) (-391))) (-15 -2689 ((-1302) $ (-1188))) (-15 -2865 ((-1302) $ (-391))) (-15 -1949 ((-1302) $ (-391))) (-15 -3900 ((-1302) $ (-1188))) (-15 -3119 ((-1302) $ (-1188))) (-15 -3906 ((-1302) $ (-1188))) (-15 -4145 ((-1302) $ (-391) (-391) (-391))) (-15 -4128 ((-1302) $ (-391))) (-15 -1509 ((-1302) $)) (-15 -2412 ((-1302) $ (-158) (-158))) (-15 -1530 ((-1188) $ (-1188))) (-15 -1530 ((-1188) $ (-1188) (-1188))) (-15 -1530 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -2040 ((-1302) $)) (-15 -4376 ((-577) $)))) +((-2755 (((-665 (-1188)) (-665 (-1188))) 104 T ELT) (((-665 (-1188))) 96 T ELT)) (-4209 (((-665 (-1188))) 94 T ELT)) (-3027 (((-665 (-949)) (-665 (-949))) 69 T ELT) (((-665 (-949))) 64 T ELT)) (-3857 (((-665 (-792)) (-665 (-792))) 61 T ELT) (((-665 (-792))) 55 T ELT)) (-2803 (((-1302)) 71 T ELT)) (-1792 (((-949) (-949)) 87 T ELT) (((-949)) 86 T ELT)) (-3130 (((-949) (-949)) 85 T ELT) (((-949)) 84 T ELT)) (-3394 (((-897) (-897)) 81 T ELT) (((-897)) 80 T ELT)) (-1828 (((-228)) 91 T ELT) (((-228) (-391)) 93 T ELT)) (-2159 (((-949)) 88 T ELT) (((-949) (-949)) 89 T ELT)) (-4076 (((-949) (-949)) 83 T ELT) (((-949)) 82 T ELT)) (-3657 (((-897) (-897)) 75 T ELT) (((-897)) 73 T ELT)) (-3075 (((-897) (-897)) 77 T ELT) (((-897)) 76 T ELT)) (-3729 (((-897) (-897)) 79 T ELT) (((-897)) 78 T ELT))) +(((-1300) (-10 -7 (-15 -3657 ((-897))) (-15 -3657 ((-897) (-897))) (-15 -3075 ((-897))) (-15 -3075 ((-897) (-897))) (-15 -3729 ((-897))) (-15 -3729 ((-897) (-897))) (-15 -3394 ((-897))) (-15 -3394 ((-897) (-897))) (-15 -4076 ((-949))) (-15 -4076 ((-949) (-949))) (-15 -3857 ((-665 (-792)))) (-15 -3857 ((-665 (-792)) (-665 (-792)))) (-15 -3027 ((-665 (-949)))) (-15 -3027 ((-665 (-949)) (-665 (-949)))) (-15 -2803 ((-1302))) (-15 -2755 ((-665 (-1188)))) (-15 -2755 ((-665 (-1188)) (-665 (-1188)))) (-15 -4209 ((-665 (-1188)))) (-15 -3130 ((-949))) (-15 -1792 ((-949))) (-15 -3130 ((-949) (-949))) (-15 -1792 ((-949) (-949))) (-15 -2159 ((-949) (-949))) (-15 -2159 ((-949))) (-15 -1828 ((-228) (-391))) (-15 -1828 ((-228))))) (T -1300)) +((-1828 (*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1300)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1300)))) (-2159 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-1792 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-3130 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-4209 (*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) (-2755 (*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) (-2803 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1300)))) (-3027 (*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300)))) (-3027 (*1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300)))) (-3857 (*1 *2 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300)))) (-3857 (*1 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-4076 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3394 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3729 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3729 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3075 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3075 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3657 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3657 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) +(-10 -7 (-15 -3657 ((-897))) (-15 -3657 ((-897) (-897))) (-15 -3075 ((-897))) (-15 -3075 ((-897) (-897))) (-15 -3729 ((-897))) (-15 -3729 ((-897) (-897))) (-15 -3394 ((-897))) (-15 -3394 ((-897) (-897))) (-15 -4076 ((-949))) (-15 -4076 ((-949) (-949))) (-15 -3857 ((-665 (-792)))) (-15 -3857 ((-665 (-792)) (-665 (-792)))) (-15 -3027 ((-665 (-949)))) (-15 -3027 ((-665 (-949)) (-665 (-949)))) (-15 -2803 ((-1302))) (-15 -2755 ((-665 (-1188)))) (-15 -2755 ((-665 (-1188)) (-665 (-1188)))) (-15 -4209 ((-665 (-1188)))) (-15 -3130 ((-949))) (-15 -1792 ((-949))) (-15 -3130 ((-949) (-949))) (-15 -1792 ((-949) (-949))) (-15 -2159 ((-949) (-949))) (-15 -2159 ((-949))) (-15 -1828 ((-228) (-391))) (-15 -1828 ((-228)))) +((-3905 (((-481) (-665 (-665 (-971 (-228)))) (-665 (-271))) 22 T ELT) (((-481) (-665 (-665 (-971 (-228))))) 21 T ELT) (((-481) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271))) 20 T ELT)) (-1548 (((-1298) (-665 (-665 (-971 (-228)))) (-665 (-271))) 30 T ELT) (((-1298) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271))) 29 T ELT)) (-3709 (((-1298) (-481)) 46 T ELT))) +(((-1301) (-10 -7 (-15 -3905 ((-481) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -3905 ((-481) (-665 (-665 (-971 (-228)))))) (-15 -3905 ((-481) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -1548 ((-1298) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -1548 ((-1298) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -3709 ((-1298) (-481))))) (T -1301)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1298)) (-5 *1 (-1301)))) (-1548 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-1301)))) (-1548 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-1301)))) (-3905 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) (-5 *2 (-481)) (-5 *1 (-1301)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-481)) (-5 *1 (-1301)))) (-3905 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-481)) (-5 *1 (-1301))))) +(-10 -7 (-15 -3905 ((-481) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -3905 ((-481) (-665 (-665 (-971 (-228)))))) (-15 -3905 ((-481) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -1548 ((-1298) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -1548 ((-1298) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -3709 ((-1298) (-481)))) +((-1900 (($) 6 T ELT)) (-3709 (((-885) $) 9 T ELT))) +(((-1302) (-13 (-631 (-885)) (-10 -8 (-15 -1900 ($))))) (T -1302)) +((-1900 (*1 *1) (-5 *1 (-1302)))) +(-13 (-631 (-885)) (-10 -8 (-15 -1900 ($)))) +((-3139 (($ $ |#2|) 10 T ELT))) +(((-1303 |#1| |#2|) (-10 -8 (-15 -3139 (|#1| |#1| |#2|))) (-1304 |#2|) (-375)) (T -1303)) +NIL +(-10 -8 (-15 -3139 (|#1| |#1| |#2|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-4366 (((-135)) 33 T ELT)) (-3709 (((-885) $) 12 T ELT)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ |#1|) 34 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-1304 |#1|) (-141) (-375)) (T -1304)) +((-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-375)))) (-4366 (*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) +(-13 (-738 |t#1|) (-10 -8 (-15 -3139 ($ $ |t#1|)) (-15 -4366 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) +((-1513 (((-665 (-1241 |#1|)) (-1206) (-1241 |#1|)) 83 T ELT)) (-2107 (((-1187 (-1187 (-980 |#1|))) (-1206) (-1187 (-980 |#1|))) 63 T ELT)) (-2813 (((-1 (-1187 (-1241 |#1|)) (-1187 (-1241 |#1|))) (-792) (-1241 |#1|) (-1187 (-1241 |#1|))) 74 T ELT)) (-3664 (((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792)) 65 T ELT)) (-2466 (((-1 (-1202 (-980 |#1|)) (-980 |#1|)) (-1206)) 32 T ELT)) (-3386 (((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792)) 64 T ELT))) +(((-1305 |#1|) (-10 -7 (-15 -3664 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -3386 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -2107 ((-1187 (-1187 (-980 |#1|))) (-1206) (-1187 (-980 |#1|)))) (-15 -2466 ((-1 (-1202 (-980 |#1|)) (-980 |#1|)) (-1206))) (-15 -1513 ((-665 (-1241 |#1|)) (-1206) (-1241 |#1|))) (-15 -2813 ((-1 (-1187 (-1241 |#1|)) (-1187 (-1241 |#1|))) (-792) (-1241 |#1|) (-1187 (-1241 |#1|))))) (-375)) (T -1305)) +((-2813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-792)) (-4 *6 (-375)) (-5 *4 (-1241 *6)) (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1305 *6)) (-5 *5 (-1187 *4)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-665 (-1241 *5))) (-5 *1 (-1305 *5)) (-5 *4 (-1241 *5)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1 (-1202 (-980 *4)) (-980 *4))) (-5 *1 (-1305 *4)) (-4 *4 (-375)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-1187 (-1187 (-980 *5)))) (-5 *1 (-1305 *5)) (-5 *4 (-1187 (-980 *5))))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) (-5 *1 (-1305 *4)) (-4 *4 (-375)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) (-5 *1 (-1305 *4)) (-4 *4 (-375))))) +(-10 -7 (-15 -3664 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -3386 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -2107 ((-1187 (-1187 (-980 |#1|))) (-1206) (-1187 (-980 |#1|)))) (-15 -2466 ((-1 (-1202 (-980 |#1|)) (-980 |#1|)) (-1206))) (-15 -1513 ((-665 (-1241 |#1|)) (-1206) (-1241 |#1|))) (-15 -2813 ((-1 (-1187 (-1241 |#1|)) (-1187 (-1241 |#1|))) (-792) (-1241 |#1|) (-1187 (-1241 |#1|))))) +((-2387 (((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|) 80 T ELT)) (-2787 (((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) 79 T ELT))) +(((-1306 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2787 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -2387 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|))) (-361) (-1273 |#1|) (-1273 |#2|) (-422 |#2| |#3|)) (T -1306)) +((-2387 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-1306 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-2787 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2104 (-710 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-710 *4)))) (-5 *1 (-1306 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) +(-10 -7 (-15 -2787 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -2387 ((-2 (|:| -2104 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|))) +((-3586 (((-112) $ $) NIL T ELT)) (-2922 (((-1165) $) 11 T ELT)) (-4090 (((-1165) $) 9 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1307) (-13 (-1113) (-10 -8 (-15 -4090 ((-1165) $)) (-15 -2922 ((-1165) $))))) (T -1307)) +((-4090 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307))))) +(-13 (-1113) (-10 -8 (-15 -4090 ((-1165) $)) (-15 -2922 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2236 (((-1165) $) 9 T ELT)) (-3709 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT))) +(((-1308) (-13 (-1113) (-10 -8 (-15 -2236 ((-1165) $))))) (T -1308)) +((-2236 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308))))) +(-13 (-1113) (-10 -8 (-15 -2236 ((-1165) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 58 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 81 T ELT) (($ (-577)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT)) (-3331 (((-792)) NIL T CONST)) (-4308 (((-1302) (-792)) 16 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 37 T CONST)) (-2853 (($) 84 T CONST)) (-3018 (((-112) $ $) 87 T ELT)) (-3139 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-3128 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 63 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) +(((-1309 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1079) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3139 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4308 ((-1302) (-792))))) (-1079) (-870) (-814) (-977 |#1| |#3| |#2|) (-665 |#2|) (-665 (-792)) (-792)) (T -1309)) +((-3139 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-814)) (-14 *6 (-665 *3)) (-5 *1 (-1309 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-977 *2 *4 *3)) (-14 *7 (-665 (-792))) (-14 *8 (-792)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) (-14 *8 (-665 *5)) (-5 *2 (-1302)) (-5 *1 (-1309 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-977 *4 *6 *5)) (-14 *9 (-665 *3)) (-14 *10 *3)))) +(-13 (-1079) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3139 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4308 ((-1302) (-792))))) +((-3586 (((-112) $ $) NIL T ELT)) (-4015 (((-665 (-2 (|:| -2040 $) (|:| -3548 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-1795 (((-665 $) (-665 |#4|)) 96 T ELT)) (-3891 (((-665 |#3|) $) NIL T ELT)) (-1507 (((-112) $) NIL T ELT)) (-2221 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2647 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3800 ((|#4| |#4| $) NIL T ELT)) (-1381 (((-2 (|:| |under| $) (|:| -3941 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1777 (((-112) $ (-792)) NIL T ELT)) (-1440 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-2305 (($) NIL T CONST)) (-1603 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2266 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2289 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-3723 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1531 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31 T ELT)) (-2379 (((-665 |#4|) (-665 |#4|) $) 28 (|has| |#1| (-569)) ELT)) (-3080 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4335 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3783 (($ (-665 |#4|)) NIL T ELT)) (-4410 (((-3 $ "failed") $) 78 T ELT)) (-3145 ((|#4| |#4| $) 83 T ELT)) (-3589 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-4004 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2519 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-3894 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3947 ((|#4| |#4| $) NIL T ELT)) (-2060 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1360 (((-2 (|:| -2040 (-665 |#4|)) (|:| -3548 (-665 |#4|))) $) NIL T ELT)) (-2118 (((-665 |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1398 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1429 ((|#3| $) 84 T ELT)) (-3862 (((-112) $ (-792)) NIL T ELT)) (-2152 (((-665 |#4|) $) 32 (|has| $ (-6 -4499)) ELT)) (-3519 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3363 (((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-665 |#4|)) 38 T ELT)) (-4409 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4417 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-1683 (((-665 |#3|) $) NIL T ELT)) (-3692 (((-112) |#3| $) NIL T ELT)) (-3438 (((-112) $ (-792)) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-4026 (((-3 |#4| "failed") $) NIL T ELT)) (-1602 (((-665 |#4|) $) 54 T ELT)) (-1768 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2477 ((|#4| |#4| $) 82 T ELT)) (-2852 (((-112) $ $) 93 T ELT)) (-2842 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2873 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3881 ((|#4| |#4| $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4397 (((-3 |#4| "failed") $) 77 T ELT)) (-2550 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-4008 (((-3 $ "failed") $ |#4|) NIL T ELT)) (-2568 (($ $ |#4|) NIL T ELT)) (-3446 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3373 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3701 (((-112) $ $) NIL T ELT)) (-2687 (((-112) $) 75 T ELT)) (-2833 (($) 46 T ELT)) (-1597 (((-792) $) NIL T ELT)) (-1481 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1977 (($ $) NIL T ELT)) (-4463 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-3722 (($ (-665 |#4|)) NIL T ELT)) (-1336 (($ $ |#3|) NIL T ELT)) (-3076 (($ $ |#3|) NIL T ELT)) (-2138 (($ $) NIL T ELT)) (-2951 (($ $ |#3|) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (((-665 |#4|) $) 63 T ELT)) (-3534 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-4188 (((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-665 |#4|)) 45 T ELT)) (-3184 (((-665 $) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-665 $) (-665 |#4|)) 74 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-2935 (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2841 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2939 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-1474 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2494 (((-665 |#3|) $) NIL T ELT)) (-2066 (((-112) |#3| $) NIL T ELT)) (-3018 (((-112) $ $) NIL T ELT)) (-3600 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) +(((-1310 |#1| |#2| |#3| |#4|) (-13 (-1240 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3363 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3363 ((-3 $ "failed") (-665 |#4|))) (-15 -4188 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4188 ((-3 $ "failed") (-665 |#4|))) (-15 -3184 ((-665 $) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3184 ((-665 $) (-665 |#4|))))) (-569) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1310)) +((-3363 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8)))) (-3363 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1310 *3 *4 *5 *6)))) (-4188 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8)))) (-4188 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1310 *3 *4 *5 *6)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-665 (-1310 *6 *7 *8 *9))) (-5 *1 (-1310 *6 *7 *8 *9)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-1310 *4 *5 *6 *7))) (-5 *1 (-1310 *4 *5 *6 *7))))) +(-13 (-1240 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3363 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3363 ((-3 $ "failed") (-665 |#4|))) (-15 -4188 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4188 ((-3 $ "failed") (-665 |#4|))) (-15 -3184 ((-665 $) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3184 ((-665 $) (-665 |#4|))))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2305 (($) 18 T CONST)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 45 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 47 T ELT) (($ |#1| $) 46 T ELT))) +(((-1311 |#1|) (-141) (-1079)) (T -1311)) +NIL +(-13 (-1079) (-111 |t#1| |t#1|) (-634 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) +((-3586 (((-112) $ $) 67 T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4294 (((-665 |#1|) $) 52 T ELT)) (-4249 (($ $ (-792)) 46 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3961 (($ $ (-792)) 24 (|has| |#2| (-174)) ELT) (($ $ $) 25 (|has| |#2| (-174)) ELT)) (-2305 (($) NIL T CONST)) (-1471 (($ $ $) 70 T ELT) (($ $ (-840 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-4335 (((-3 (-840 |#1|) "failed") $) NIL T ELT)) (-3783 (((-840 |#1|) $) NIL T ELT)) (-4048 (($ $) 39 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1348 (((-112) $) NIL T ELT)) (-1519 (($ $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3305 (($ (-840 |#1|) |#2|) 38 T ELT)) (-2714 (($ $) 40 T ELT)) (-1965 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4461 (((-840 |#1|) $) NIL T ELT)) (-1595 (((-840 |#1|) $) 41 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2511 (($ $ $) 69 T ELT) (($ $ (-840 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3649 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4014 (((-840 |#1|) $) 35 T ELT)) (-4025 ((|#2| $) 37 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-1597 (((-792) $) 43 T ELT)) (-2456 (((-112) $) 47 T ELT)) (-4212 ((|#2| $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-840 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-577)) NIL T ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-840 |#1|)) NIL T ELT)) (-4473 ((|#2| $ $) 76 T ELT) ((|#2| $ (-840 |#1|)) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 13 T CONST)) (-2853 (($) 19 T CONST)) (-2535 (((-665 (-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3018 (((-112) $ $) 44 T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 28 T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-840 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) +(((-1312 |#1| |#2|) (-13 (-394 |#2| (-840 |#1|)) (-1318 |#1| |#2|)) (-870) (-1079)) (T -1312)) +NIL +(-13 (-394 |#2| (-840 |#1|)) (-1318 |#1| |#2|)) +((-3825 ((|#3| |#3| (-792)) 28 T ELT)) (-2355 ((|#3| |#3| (-792)) 34 T ELT)) (-3914 ((|#3| |#3| |#3| (-792)) 35 T ELT))) +(((-1313 |#1| |#2| |#3|) (-10 -7 (-15 -2355 (|#3| |#3| (-792))) (-15 -3825 (|#3| |#3| (-792))) (-15 -3914 (|#3| |#3| |#3| (-792)))) (-13 (-1079) (-738 (-420 (-577)))) (-870) (-1318 |#2| |#1|)) (T -1313)) +((-3914 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) (-3825 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) (-2355 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4))))) +(-10 -7 (-15 -2355 (|#3| |#3| (-792))) (-15 -3825 (|#3| |#3| (-792))) (-15 -3914 (|#3| |#3| |#3| (-792)))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-4294 (((-665 |#1|) $) 47 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3961 (($ $ $) 50 (|has| |#2| (-174)) ELT) (($ $ (-792)) 49 (|has| |#2| (-174)) ELT)) (-2305 (($) 18 T CONST)) (-1471 (($ $ |#1|) 61 T ELT) (($ $ (-840 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-4335 (((-3 (-840 |#1|) "failed") $) 71 T ELT)) (-3783 (((-840 |#1|) $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1348 (((-112) $) 52 T ELT)) (-1519 (($ $) 51 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2696 (((-112) $) 57 T ELT)) (-3305 (($ (-840 |#1|) |#2|) 58 T ELT)) (-2714 (($ $) 56 T ELT)) (-1965 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-4461 (((-840 |#1|) $) 68 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-2511 (($ $ |#1|) 64 T ELT) (($ $ (-840 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-2456 (((-112) $) 54 T ELT)) (-4212 ((|#2| $) 53 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-840 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-4473 ((|#2| $ (-840 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) +(((-1314 |#1| |#2|) (-141) (-870) (-1079)) (T -1314)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-4461 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-840 *3)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| |k| (-840 *3)) (|:| |c| *4))))) (-4473 (*1 *2 *1 *3) (-12 (-5 *3 (-840 *4)) (-4 *1 (-1314 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1079)))) (-4473 (*1 *2 *1 *1) (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (-2511 (*1 *1 *1 *2) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-2511 (*1 *1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-2511 (*1 *1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-1471 (*1 *1 *1 *2) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-1471 (*1 *1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-1471 (*1 *1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-3305 (*1 *1 *2 *3) (-12 (-5 *2 (-840 *4)) (-4 *4 (-870)) (-4 *1 (-1314 *4 *3)) (-4 *3 (-1079)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-112)))) (-2714 (*1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-3709 (*1 *1 *2) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-112)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-112)))) (-1519 (*1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-3961 (*1 *1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)) (-4 *3 (-174)))) (-3961 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-4 *4 (-174)))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-665 *3))))) +(-13 (-1079) (-1311 |t#2|) (-1068 (-840 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4461 ((-840 |t#1|) $)) (-15 -1965 ((-2 (|:| |k| (-840 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4473 (|t#2| $ (-840 |t#1|))) (-15 -4473 (|t#2| $ $)) (-15 -2511 ($ $ |t#1|)) (-15 -2511 ($ $ (-840 |t#1|))) (-15 -2511 ($ $ $)) (-15 -1471 ($ $ |t#1|)) (-15 -1471 ($ $ (-840 |t#1|))) (-15 -1471 ($ $ $)) (-15 -3305 ($ (-840 |t#1|) |t#2|)) (-15 -2696 ((-112) $)) (-15 -2714 ($ $)) (-15 -3709 ($ |t#1|)) (-15 -2456 ((-112) $)) (-15 -4212 (|t#2| $)) (-15 -1348 ((-112) $)) (-15 -1519 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3961 ($ $ $)) (-15 -3961 ($ $ (-792)))) |%noBranch|) (-15 -4417 ($ (-1 |t#2| |t#2|) $)) (-15 -4294 ((-665 |t#1|) $)) (IF (|has| |t#2| (-6 -4492)) (-6 -4492) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 #0=(-840 |#1|)) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-669 |#2|) . T) ((-669 $) . T) ((-661 |#2|) |has| |#2| (-174)) ((-738 |#2|) |has| |#2| (-174)) ((-747) . T) ((-1068 #0#) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1311 |#2|) . T)) +((-3028 (((-112) $) 15 T ELT)) (-2066 (((-112) $) 14 T ELT)) (-4173 (($ $) 19 T ELT) (($ $ (-792)) 21 T ELT))) +(((-1315 |#1| |#2|) (-10 -8 (-15 -4173 (|#1| |#1| (-792))) (-15 -4173 (|#1| |#1|)) (-15 -3028 ((-112) |#1|)) (-15 -2066 ((-112) |#1|))) (-1316 |#2|) (-375)) (T -1315)) +NIL +(-10 -8 (-15 -4173 (|#1| |#1| (-792))) (-15 -4173 (|#1| |#1|)) (-15 -3028 ((-112) |#1|)) (-15 -2066 ((-112) |#1|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-1758 (((-2 (|:| -3273 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-2261 (($ $) 46 T ELT)) (-2538 (((-112) $) 44 T ELT)) (-3028 (((-112) $) 104 T ELT)) (-3073 (((-792)) 100 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-2612 (($ $) 81 T ELT)) (-3206 (((-431 $) $) 80 T ELT)) (-2495 (((-112) $ $) 65 T ELT)) (-2305 (($) 18 T CONST)) (-4335 (((-3 |#1| "failed") $) 111 T ELT)) (-3783 ((|#1| $) 112 T ELT)) (-3531 (($ $ $) 61 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-3541 (($ $ $) 62 T ELT)) (-3089 (((-2 (|:| -4473 (-665 $)) (|:| -2343 $)) (-665 $)) 57 T ELT)) (-3987 (($ $ (-792)) 97 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) 96 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3567 (((-112) $) 79 T ELT)) (-4030 (((-854 (-949)) $) 94 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3357 (((-112) $) 35 T ELT)) (-1695 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-3606 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-3981 (($ $) 78 T ELT)) (-2789 (((-112) $) 103 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-3945 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-3642 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3759 (((-431 $) $) 82 T ELT)) (-3417 (((-854 (-949))) 101 T ELT)) (-1934 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2343 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3574 (((-3 $ "failed") $ $) 48 T ELT)) (-3002 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-4081 (((-792) $) 64 T ELT)) (-3372 (((-2 (|:| -2203 $) (|:| -2519 $)) $ $) 63 T ELT)) (-3038 (((-3 (-792) "failed") $ $) 95 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-4366 (((-135)) 109 T ELT)) (-1597 (((-854 (-949)) $) 102 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 110 T ELT)) (-2708 (((-3 $ "failed") $) 93 (-2867 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-4124 (((-112) $ $) 45 T ELT)) (-2066 (((-112) $) 105 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-4173 (($ $) 99 (|has| |#1| (-380)) ELT) (($ $ (-792)) 98 (|has| |#1| (-380)) ELT)) (-3018 (((-112) $ $) 8 T ELT)) (-3139 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) +(((-1316 |#1|) (-141) (-375)) (T -1316)) +((-2066 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949))))) (-3417 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949))))) (-3073 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-792)))) (-4173 (*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-375)) (-4 *2 (-380)))) (-4173 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-4 *3 (-380))))) +(-13 (-375) (-1068 |t#1|) (-1304 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-415)) |%noBranch|) (-15 -2066 ((-112) $)) (-15 -3028 ((-112) $)) (-15 -2789 ((-112) $)) (-15 -1597 ((-854 (-949)) $)) (-15 -3417 ((-854 (-949)))) (-15 -3073 ((-792))) (IF (|has| |t#1| (-380)) (PROGN (-6 (-415)) (-15 -4173 ($ $)) (-15 -4173 ($ $ (-792)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2867 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) -2867 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 |#1|) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T) ((-1304 |#1|) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4294 (((-665 |#1|) $) 98 T ELT)) (-4249 (($ $ (-792)) 102 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3961 (($ $ $) NIL (|has| |#2| (-174)) ELT) (($ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2305 (($) NIL T CONST)) (-1471 (($ $ |#1|) NIL T ELT) (($ $ (-840 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4335 (((-3 (-840 |#1|) "failed") $) NIL T ELT) (((-3 (-917 |#1|) "failed") $) NIL T ELT)) (-3783 (((-840 |#1|) $) NIL T ELT) (((-917 |#1|) $) NIL T ELT)) (-4048 (($ $) 101 T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1348 (((-112) $) 90 T ELT)) (-1519 (($ $) 93 T ELT)) (-2801 (($ $ $ (-792)) 103 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3305 (($ (-840 |#1|) |#2|) NIL T ELT) (($ (-917 |#1|) |#2|) 29 T ELT)) (-2714 (($ $) 119 T ELT)) (-1965 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4461 (((-840 |#1|) $) NIL T ELT)) (-1595 (((-840 |#1|) $) NIL T ELT)) (-4417 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2511 (($ $ |#1|) NIL T ELT) (($ $ (-840 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3825 (($ $ (-792)) 112 (|has| |#2| (-738 (-420 (-577)))) ELT)) (-3649 (((-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4014 (((-917 |#1|) $) 83 T ELT)) (-4025 ((|#2| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2355 (($ $ (-792)) 109 (|has| |#2| (-738 (-420 (-577)))) ELT)) (-1597 (((-792) $) 99 T ELT)) (-2456 (((-112) $) 84 T ELT)) (-4212 ((|#2| $) 88 T ELT)) (-3709 (((-885) $) 69 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 60 T ELT) (($ (-840 |#1|)) NIL T ELT) (($ |#1|) 71 T ELT) (($ (-917 |#1|)) NIL T ELT) (($ (-685 |#1| |#2|)) 48 T ELT) (((-1312 |#1| |#2|) $) 76 T ELT) (((-1321 |#1| |#2|) $) 81 T ELT)) (-4343 (((-665 |#2|) $) NIL T ELT)) (-4171 ((|#2| $ (-917 |#1|)) NIL T ELT)) (-4473 ((|#2| $ (-840 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 21 T CONST)) (-2853 (($) 28 T CONST)) (-2535 (((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3112 (((-3 (-685 |#1| |#2|) "failed") $) 118 T ELT)) (-3018 (((-112) $ $) 77 T ELT)) (-3128 (($ $) 111 T ELT) (($ $ $) 110 T ELT)) (-3114 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 49 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-917 |#1|)) NIL T ELT))) +(((-1317 |#1| |#2|) (-13 (-1318 |#1| |#2|) (-394 |#2| (-917 |#1|)) (-10 -8 (-15 -3709 ($ (-685 |#1| |#2|))) (-15 -3709 ((-1312 |#1| |#2|) $)) (-15 -3709 ((-1321 |#1| |#2|) $)) (-15 -3112 ((-3 (-685 |#1| |#2|) "failed") $)) (-15 -2801 ($ $ $ (-792))) (IF (|has| |#2| (-738 (-420 (-577)))) (PROGN (-15 -2355 ($ $ (-792))) (-15 -3825 ($ $ (-792)))) |%noBranch|))) (-870) (-174)) (T -1317)) +((-3709 (*1 *1 *2) (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *1 (-1317 *3 *4)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1321 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-3112 (*1 *2 *1) (|partial| -12 (-5 *2 (-685 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-2801 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-2355 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174)))) (-3825 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174))))) +(-13 (-1318 |#1| |#2|) (-394 |#2| (-917 |#1|)) (-10 -8 (-15 -3709 ($ (-685 |#1| |#2|))) (-15 -3709 ((-1312 |#1| |#2|) $)) (-15 -3709 ((-1321 |#1| |#2|) $)) (-15 -3112 ((-3 (-685 |#1| |#2|) "failed") $)) (-15 -2801 ($ $ $ (-792))) (IF (|has| |#2| (-738 (-420 (-577)))) (PROGN (-15 -2355 ($ $ (-792))) (-15 -3825 ($ $ (-792)))) |%noBranch|))) +((-3586 (((-112) $ $) 7 T ELT)) (-4113 (((-112) $) 17 T ELT)) (-4294 (((-665 |#1|) $) 47 T ELT)) (-4249 (($ $ (-792)) 80 T ELT)) (-2478 (((-3 $ "failed") $ $) 20 T ELT)) (-3961 (($ $ $) 50 (|has| |#2| (-174)) ELT) (($ $ (-792)) 49 (|has| |#2| (-174)) ELT)) (-2305 (($) 18 T CONST)) (-1471 (($ $ |#1|) 61 T ELT) (($ $ (-840 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-4335 (((-3 (-840 |#1|) "failed") $) 71 T ELT)) (-3783 (((-840 |#1|) $) 72 T ELT)) (-3167 (((-3 $ "failed") $) 37 T ELT)) (-1348 (((-112) $) 52 T ELT)) (-1519 (($ $) 51 T ELT)) (-3357 (((-112) $) 35 T ELT)) (-2696 (((-112) $) 57 T ELT)) (-3305 (($ (-840 |#1|) |#2|) 58 T ELT)) (-2714 (($ $) 56 T ELT)) (-1965 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-4461 (((-840 |#1|) $) 68 T ELT)) (-1595 (((-840 |#1|) $) 82 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-2511 (($ $ |#1|) 64 T ELT) (($ $ (-840 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-3235 (((-1188) $) 10 T ELT)) (-1470 (((-1150) $) 11 T ELT)) (-1597 (((-792) $) 81 T ELT)) (-2456 (((-112) $) 54 T ELT)) (-4212 ((|#2| $) 53 T ELT)) (-3709 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-840 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-4473 ((|#2| $ (-840 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-3331 (((-792)) 32 T CONST)) (-2643 (((-112) $ $) 6 T ELT)) (-2839 (($) 19 T CONST)) (-2853 (($) 34 T CONST)) (-3018 (((-112) $ $) 8 T ELT)) (-3128 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-3114 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) +(((-1318 |#1| |#2|) (-141) (-870) (-1079)) (T -1318)) +((-1595 (*1 *2 *1) (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-840 *3)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-792)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) +(-13 (-1314 |t#1| |t#2|) (-10 -8 (-15 -1595 ((-840 |t#1|) $)) (-15 -1597 ((-792) $)) (-15 -4249 ($ $ (-792))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 #0=(-840 |#1|)) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-669 |#2|) . T) ((-669 $) . T) ((-661 |#2|) |has| |#2| (-174)) ((-738 |#2|) |has| |#2| (-174)) ((-747) . T) ((-1068 #0#) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1311 |#2|) . T) ((-1314 |#1| |#2|) . T)) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4294 (((-665 (-1206)) $) NIL T ELT)) (-2354 (($ (-1312 (-1206) |#1|)) NIL T ELT)) (-4249 (($ $ (-792)) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3961 (($ $ $) NIL (|has| |#1| (-174)) ELT) (($ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2305 (($) NIL T CONST)) (-1471 (($ $ (-1206)) NIL T ELT) (($ $ (-840 (-1206))) NIL T ELT) (($ $ $) NIL T ELT)) (-4335 (((-3 (-840 (-1206)) "failed") $) NIL T ELT)) (-3783 (((-840 (-1206)) $) NIL T ELT)) (-3167 (((-3 $ "failed") $) NIL T ELT)) (-1348 (((-112) $) NIL T ELT)) (-1519 (($ $) NIL T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3305 (($ (-840 (-1206)) |#1|) NIL T ELT)) (-2714 (($ $) NIL T ELT)) (-1965 (((-2 (|:| |k| (-840 (-1206))) (|:| |c| |#1|)) $) NIL T ELT)) (-4461 (((-840 (-1206)) $) NIL T ELT)) (-1595 (((-840 (-1206)) $) NIL T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2511 (($ $ (-1206)) NIL T ELT) (($ $ (-840 (-1206))) NIL T ELT) (($ $ $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3138 (((-1312 (-1206) |#1|) $) NIL T ELT)) (-1597 (((-792) $) NIL T ELT)) (-2456 (((-112) $) NIL T ELT)) (-4212 ((|#1| $) NIL T ELT)) (-3709 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1206))) NIL T ELT) (($ (-1206)) NIL T ELT)) (-4473 ((|#1| $ (-840 (-1206))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3331 (((-792)) NIL T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) NIL T CONST)) (-2953 (((-665 (-2 (|:| |k| (-1206)) (|:| |c| $))) $) NIL T ELT)) (-2853 (($) NIL T CONST)) (-3018 (((-112) $ $) NIL T ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1206) $) NIL T ELT))) +(((-1319 |#1|) (-13 (-1318 (-1206) |#1|) (-10 -8 (-15 -3138 ((-1312 (-1206) |#1|) $)) (-15 -2354 ($ (-1312 (-1206) |#1|))) (-15 -2953 ((-665 (-2 (|:| |k| (-1206)) (|:| |c| $))) $)))) (-1079)) (T -1319)) +((-3138 (*1 *2 *1) (-12 (-5 *2 (-1312 (-1206) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1312 (-1206) *3)) (-4 *3 (-1079)) (-5 *1 (-1319 *3)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| (-1206)) (|:| |c| (-1319 *3))))) (-5 *1 (-1319 *3)) (-4 *3 (-1079))))) +(-13 (-1318 (-1206) |#1|) (-10 -8 (-15 -3138 ((-1312 (-1206) |#1|) $)) (-15 -2354 ($ (-1312 (-1206) |#1|))) (-15 -2953 ((-665 (-2 (|:| |k| (-1206)) (|:| |c| $))) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) NIL T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-2305 (($) NIL T CONST)) (-4335 (((-3 |#2| "failed") $) NIL T ELT)) (-3783 ((|#2| $) NIL T ELT)) (-4048 (($ $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 42 T ELT)) (-1348 (((-112) $) 35 T ELT)) (-1519 (($ $) 37 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2662 (((-792) $) NIL T ELT)) (-2102 (((-665 $) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3305 (($ |#2| |#1|) NIL T ELT)) (-4461 ((|#2| $) 24 T ELT)) (-1595 ((|#2| $) 22 T ELT)) (-4417 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3649 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-4014 ((|#2| $) NIL T ELT)) (-4025 ((|#1| $) NIL T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-2456 (((-112) $) 32 T ELT)) (-4212 ((|#1| $) 33 T ELT)) (-3709 (((-885) $) 65 T ELT) (($ (-577)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-4343 (((-665 |#1|) $) NIL T ELT)) (-4171 ((|#1| $ |#2|) NIL T ELT)) (-4473 ((|#1| $ |#2|) 28 T ELT)) (-3331 (((-792)) 14 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 29 T CONST)) (-2853 (($) 11 T CONST)) (-2535 (((-665 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3018 (((-112) $ $) 30 T ELT)) (-3139 (($ $ |#1|) 67 (|has| |#1| (-375)) ELT)) (-3128 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3114 (($ $ $) 50 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 52 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3600 (((-792) $) 16 T ELT))) +(((-1320 |#1| |#2|) (-13 (-1079) (-1311 |#1|) (-394 |#1| |#2|) (-634 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3600 ((-792) $)) (-15 -1595 (|#2| $)) (-15 -4461 (|#2| $)) (-15 -4048 ($ $)) (-15 -4473 (|#1| $ |#2|)) (-15 -2456 ((-112) $)) (-15 -4212 (|#1| $)) (-15 -1348 ((-112) $)) (-15 -1519 ($ $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -3139 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4492)) (-6 -4492) |%noBranch|) (IF (|has| |#1| (-6 -4496)) (-6 -4496) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) (-1079) (-867)) (T -1320)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867)))) (-4048 (*1 *1 *1) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867)))) (-4417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-1320 *3 *4)) (-4 *4 (-867)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-867)))) (-1595 (*1 *2 *1) (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079)))) (-4461 (*1 *2 *1) (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079)))) (-4473 (*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867)))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-867)))) (-4212 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-867)))) (-1519 (*1 *1 *1) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1079)) (-4 *3 (-867))))) +(-13 (-1079) (-1311 |#1|) (-394 |#1| |#2|) (-634 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3600 ((-792) $)) (-15 -1595 (|#2| $)) (-15 -4461 (|#2| $)) (-15 -4048 ($ $)) (-15 -4473 (|#1| $ |#2|)) (-15 -2456 ((-112) $)) (-15 -4212 (|#1| $)) (-15 -1348 ((-112) $)) (-15 -1519 ($ $)) (-15 -4417 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -3139 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4492)) (-6 -4492) |%noBranch|) (IF (|has| |#1| (-6 -4496)) (-6 -4496) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) +((-3586 (((-112) $ $) 27 T ELT)) (-4113 (((-112) $) NIL T ELT)) (-4294 (((-665 |#1|) $) 132 T ELT)) (-2354 (($ (-1312 |#1| |#2|)) 50 T ELT)) (-4249 (($ $ (-792)) 38 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3961 (($ $ $) 54 (|has| |#2| (-174)) ELT) (($ $ (-792)) 52 (|has| |#2| (-174)) ELT)) (-2305 (($) NIL T CONST)) (-1471 (($ $ |#1|) 114 T ELT) (($ $ (-840 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-4335 (((-3 (-840 |#1|) "failed") $) NIL T ELT)) (-3783 (((-840 |#1|) $) NIL T ELT)) (-3167 (((-3 $ "failed") $) 122 T ELT)) (-1348 (((-112) $) 117 T ELT)) (-1519 (($ $) 118 T ELT)) (-3357 (((-112) $) NIL T ELT)) (-2696 (((-112) $) NIL T ELT)) (-3305 (($ (-840 |#1|) |#2|) 20 T ELT)) (-2714 (($ $) NIL T ELT)) (-1965 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4461 (((-840 |#1|) $) 123 T ELT)) (-1595 (((-840 |#1|) $) 126 T ELT)) (-4417 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-2511 (($ $ |#1|) 112 T ELT) (($ $ (-840 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3138 (((-1312 |#1| |#2|) $) 94 T ELT)) (-1597 (((-792) $) 129 T ELT)) (-2456 (((-112) $) 81 T ELT)) (-4212 ((|#2| $) 32 T ELT)) (-3709 (((-885) $) 73 T ELT) (($ (-577)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-840 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4473 ((|#2| $ (-840 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3331 (((-792)) 120 T CONST)) (-2643 (((-112) $ $) NIL T ELT)) (-2839 (($) 15 T CONST)) (-2953 (((-665 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2853 (($) 33 T CONST)) (-3018 (((-112) $ $) 14 T ELT)) (-3128 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3114 (($ $ $) 61 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 55 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 53 T ELT) (($ (-577) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1321 |#1| |#2|) (-13 (-1318 |#1| |#2|) (-10 -8 (-15 -3138 ((-1312 |#1| |#2|) $)) (-15 -2354 ($ (-1312 |#1| |#2|))) (-15 -2953 ((-665 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-870) (-1079)) (T -1321)) +((-3138 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *1 (-1321 *3 *4)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| *3) (|:| |c| (-1321 *3 *4))))) (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) +(-13 (-1318 |#1| |#2|) (-10 -8 (-15 -3138 ((-1312 |#1| |#2|) $)) (-15 -2354 ($ (-1312 |#1| |#2|))) (-15 -2953 ((-665 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3586 (((-112) $ $) NIL T ELT)) (-4087 (($ (-665 (-949))) 10 T ELT)) (-3801 (((-1001) $) 12 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-3709 (((-885) $) 25 T ELT) (($ (-1001)) 14 T ELT) (((-1001) $) 13 T ELT)) (-2643 (((-112) $ $) NIL T ELT)) (-3018 (((-112) $ $) 17 T ELT))) +(((-1322) (-13 (-1130) (-503 (-1001)) (-10 -8 (-15 -4087 ($ (-665 (-949)))) (-15 -3801 ((-1001) $))))) (T -1322)) +((-4087 (*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1322)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-1322))))) +(-13 (-1130) (-503 (-1001)) (-10 -8 (-15 -4087 ($ (-665 (-949)))) (-15 -3801 ((-1001) $)))) +((-2573 (((-665 (-1187 |#1|)) (-1 (-665 (-1187 |#1|)) (-665 (-1187 |#1|))) (-577)) 16 T ELT) (((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|))) 13 T ELT))) +(((-1323 |#1|) (-10 -7 (-15 -2573 ((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|)))) (-15 -2573 ((-665 (-1187 |#1|)) (-1 (-665 (-1187 |#1|)) (-665 (-1187 |#1|))) (-577)))) (-1247)) (T -1323)) +((-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-665 (-1187 *5)) (-665 (-1187 *5)))) (-5 *4 (-577)) (-5 *2 (-665 (-1187 *5))) (-5 *1 (-1323 *5)) (-4 *5 (-1247)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-1 (-1187 *4) (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1323 *4)) (-4 *4 (-1247))))) +(-10 -7 (-15 -2573 ((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|)))) (-15 -2573 ((-665 (-1187 |#1|)) (-1 (-665 (-1187 |#1|)) (-665 (-1187 |#1|))) (-577)))) +((-3875 (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|))) 174 T ELT) (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112)) 173 T ELT) (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)) 172 T ELT) (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112) (-112)) 171 T ELT) (((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-1076 |#1| |#2|)) 156 T ELT)) (-1386 (((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|))) 85 T ELT) (((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112)) 84 T ELT) (((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112) (-112)) 83 T ELT)) (-3206 (((-665 (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) (-1076 |#1| |#2|)) 73 T ELT)) (-4190 (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|))) 140 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112)) 139 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112)) 138 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112) (-112)) 137 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|)) 132 T ELT)) (-3241 (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|))) 145 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112)) 144 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112)) 143 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|)) 142 T ELT)) (-4463 (((-665 (-801 |#1| (-887 |#3|))) (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) 111 T ELT) (((-1202 (-1054 (-420 |#1|))) (-1202 |#1|)) 102 T ELT) (((-980 (-1054 (-420 |#1|))) (-801 |#1| (-887 |#3|))) 109 T ELT) (((-980 (-1054 (-420 |#1|))) (-980 |#1|)) 107 T ELT) (((-801 |#1| (-887 |#3|)) (-801 |#1| (-887 |#2|))) 33 T ELT))) +(((-1324 |#1| |#2| |#3|) (-10 -7 (-15 -1386 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112) (-112))) (-15 -1386 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112))) (-15 -1386 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-1076 |#1| |#2|))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -3206 ((-665 (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) (-1076 |#1| |#2|))) (-15 -4463 ((-801 |#1| (-887 |#3|)) (-801 |#1| (-887 |#2|)))) (-15 -4463 ((-980 (-1054 (-420 |#1|))) (-980 |#1|))) (-15 -4463 ((-980 (-1054 (-420 |#1|))) (-801 |#1| (-887 |#3|)))) (-15 -4463 ((-1202 (-1054 (-420 |#1|))) (-1202 |#1|))) (-15 -4463 ((-665 (-801 |#1| (-887 |#3|))) (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))))) (-13 (-869) (-318) (-148) (-1052)) (-665 (-1206)) (-665 (-1206))) (T -1324)) +((-4463 (*1 *2 *3) (-12 (-5 *3 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6)))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-801 *4 (-887 *6)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))))) (-4463 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-1202 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-4463 (*1 *2 *3) (-12 (-5 *3 (-801 *4 (-887 *6))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))))) (-4463 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-4463 (*1 *2 *3) (-12 (-5 *3 (-801 *4 (-887 *5))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-801 *4 (-887 *6))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-3241 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-4190 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-4190 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-3875 (*1 *2 *3) (-12 (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *4)) (|:| -3762 (-665 (-980 *4)))))) (-5 *1 (-1324 *4 *5 *6)) (-5 *3 (-665 (-980 *4))) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-3875 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-3875 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-3875 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-2 (|:| -2634 (-1202 *4)) (|:| -3762 (-665 (-980 *4)))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-1076 *4 *5))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-1386 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206)))))) +(-10 -7 (-15 -1386 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112) (-112))) (-15 -1386 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112))) (-15 -1386 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-1076 |#1| |#2|))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -3875 ((-665 (-2 (|:| -2634 (-1202 |#1|)) (|:| -3762 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -4190 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -3241 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -3206 ((-665 (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) (-1076 |#1| |#2|))) (-15 -4463 ((-801 |#1| (-887 |#3|)) (-801 |#1| (-887 |#2|)))) (-15 -4463 ((-980 (-1054 (-420 |#1|))) (-980 |#1|))) (-15 -4463 ((-980 (-1054 (-420 |#1|))) (-801 |#1| (-887 |#3|)))) (-15 -4463 ((-1202 (-1054 (-420 |#1|))) (-1202 |#1|))) (-15 -4463 ((-665 (-801 |#1| (-887 |#3|))) (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))))) +((-1521 (((-3 (-1297 (-420 (-577))) "failed") (-1297 |#1|) |#1|) 21 T ELT)) (-3966 (((-112) (-1297 |#1|)) 12 T ELT)) (-2921 (((-3 (-1297 (-577)) "failed") (-1297 |#1|)) 16 T ELT))) +(((-1325 |#1|) (-10 -7 (-15 -3966 ((-112) (-1297 |#1|))) (-15 -2921 ((-3 (-1297 (-577)) "failed") (-1297 |#1|))) (-15 -1521 ((-3 (-1297 (-420 (-577))) "failed") (-1297 |#1|) |#1|))) (-13 (-1079) (-659 (-577)))) (T -1325)) +((-1521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) (-5 *2 (-1297 (-420 (-577)))) (-5 *1 (-1325 *4)))) (-2921 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) (-5 *2 (-1297 (-577))) (-5 *1 (-1325 *4)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) (-5 *2 (-112)) (-5 *1 (-1325 *4))))) +(-10 -7 (-15 -3966 ((-112) (-1297 |#1|))) (-15 -2921 ((-3 (-1297 (-577)) "failed") (-1297 |#1|))) (-15 -1521 ((-3 (-1297 (-420 (-577))) "failed") (-1297 |#1|) |#1|))) +((-3586 (((-112) $ $) NIL T ELT)) (-4113 (((-112) $) 11 T ELT)) (-2478 (((-3 $ "failed") $ $) NIL T ELT)) (-3005 (((-792)) 8 T ELT)) (-2305 (($) NIL T CONST)) (-3167 (((-3 $ "failed") $) 58 T ELT)) (-1424 (($) 49 T ELT)) (-3357 (((-112) $) 57 T ELT)) (-2004 (((-3 $ "failed") $) 40 T ELT)) (-2686 (((-949) $) 15 T ELT)) (-3235 (((-1188) $) NIL T ELT)) (-2443 (($) 32 T CONST)) (-3354 (($ (-949)) 50 T ELT)) (-1470 (((-1150) $) NIL T ELT)) (-4463 (((-577) $) 13 T ELT)) (-3709 (((-885) $) 27 T ELT) (($ (-577)) 24 T ELT)) (-3331 (((-792)) 9 T CONST)) (-2643 (((-112) $ $) 60 T ELT)) (-2839 (($) 29 T CONST)) (-2853 (($) 31 T CONST)) (-3018 (((-112) $ $) 38 T ELT)) (-3128 (($ $) 52 T ELT) (($ $ $) 47 T ELT)) (-3114 (($ $ $) 35 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 54 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 44 T ELT) (($ $ $) 43 T ELT))) +(((-1326 |#1|) (-13 (-174) (-380) (-632 (-577)) (-1182)) (-949)) (T -1326)) +NIL +(-13 (-174) (-380) (-632 (-577)) (-1182)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3471128 3471133 3471138 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3471113 3471118 3471123 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3471098 3471103 3471108 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3471083 3471088 3471093 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1326 3470070 3470958 3471035 "ZMOD" 3471040 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1325 3469106 3469288 3469511 "ZLINDEP" 3469902 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1324 3458268 3460174 3462146 "ZDSOLVE" 3467236 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1323 3457502 3457655 3457844 "YSTREAM" 3458114 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1322 3456862 3457171 3457286 "YDIAGRAM" 3457409 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1321 3454310 3456163 3456367 "XRPOLY" 3456705 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1320 3450577 3452181 3452756 "XPR" 3453782 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1319 3447972 3449908 3450112 "XPOLY" 3450408 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1318 3445303 3446979 3447034 "XPOLYC" 3447322 NIL XPOLYC (NIL T T) -9 NIL 3447435 NIL) (-1317 3441249 3443820 3444208 "XPBWPOLY" 3444961 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1316 3436518 3439225 3439267 "XF" 3439888 NIL XF (NIL T) -9 NIL 3440288 NIL) (-1315 3436115 3436227 3436396 "XF-" 3436401 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1314 3431007 3432586 3432641 "XFALG" 3434813 NIL XFALG (NIL T T) -9 NIL 3435602 NIL) (-1313 3430122 3430244 3430449 "XEXPPKG" 3430899 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1312 3427863 3429972 3430068 "XDPOLY" 3430073 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3426518 3427256 3427299 "XALG" 3427304 NIL XALG (NIL T) -9 NIL 3427415 NIL) (-1310 3419428 3424495 3424989 "WUTSET" 3426110 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1309 3417530 3418480 3418803 "WP" 3419239 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1308 3417078 3417352 3417422 "WHILEAST" 3417482 T WHILEAST (NIL) -8 NIL NIL NIL) (-1307 3416490 3416795 3416889 "WHEREAST" 3417006 T WHEREAST (NIL) -8 NIL NIL NIL) (-1306 3415364 3415574 3415869 "WFFINTBS" 3416287 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1305 3413232 3413695 3414157 "WEIER" 3414936 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1304 3412156 3412714 3412756 "VSPACE" 3412892 NIL VSPACE (NIL T) -9 NIL 3412966 NIL) (-1303 3411988 3412021 3412112 "VSPACE-" 3412117 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1302 3411785 3411839 3411907 "VOID" 3411942 T VOID (NIL) -8 NIL NIL NIL) (-1301 3409885 3410280 3410686 "VIEW" 3411401 T VIEW (NIL) -7 NIL NIL NIL) (-1300 3406153 3406948 3407685 "VIEWDEF" 3409170 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1299 3395097 3397701 3399874 "VIEW3D" 3404002 T VIEW3D (NIL) -8 NIL NIL NIL) (-1298 3387114 3389008 3390587 "VIEW2D" 3393540 T VIEW2D (NIL) -8 NIL NIL NIL) (-1297 3382020 3386884 3386976 "VECTOR" 3387057 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1296 3380573 3380856 3381174 "VECTOR2" 3381750 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1295 3373527 3378277 3378320 "VECTCAT" 3379315 NIL VECTCAT (NIL T) -9 NIL 3379902 NIL) (-1294 3372469 3372795 3373185 "VECTCAT-" 3373190 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1293 3371875 3372120 3372240 "VARIABLE" 3372384 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1292 3371808 3371813 3371843 "UTYPE" 3371848 T UTYPE (NIL) -9 NIL NIL NIL) (-1291 3370616 3370792 3371054 "UTSODETL" 3371634 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1290 3368008 3368516 3369040 "UTSODE" 3370157 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1289 3359318 3365769 3366249 "UTS" 3367586 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1288 3349325 3355251 3355294 "UTSCAT" 3356406 NIL UTSCAT (NIL T) -9 NIL 3357164 NIL) (-1287 3346451 3347395 3348384 "UTSCAT-" 3348389 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1286 3346072 3346121 3346254 "UTS2" 3346402 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1285 3339939 3342882 3342925 "URAGG" 3344995 NIL URAGG (NIL T) -9 NIL 3345718 NIL) (-1284 3336662 3337741 3338864 "URAGG-" 3338869 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1283 3332031 3335297 3335762 "UPXSSING" 3336326 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1282 3323509 3331413 3331677 "UPXS" 3331825 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1281 3315924 3323413 3323485 "UPXSCONS" 3323490 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1280 3304672 3312126 3312188 "UPXSCCA" 3312762 NIL UPXSCCA (NIL T T) -9 NIL 3312995 NIL) (-1279 3304292 3304395 3304569 "UPXSCCA-" 3304574 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1278 3292940 3300119 3300162 "UPXSCAT" 3300810 NIL UPXSCAT (NIL T) -9 NIL 3301419 NIL) (-1277 3292364 3292449 3292628 "UPXS2" 3292855 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1276 3291000 3291271 3291622 "UPSQFREE" 3292107 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1275 3283828 3287266 3287321 "UPSCAT" 3288401 NIL UPSCAT (NIL T T) -9 NIL 3289167 NIL) (-1274 3282984 3283239 3283566 "UPSCAT-" 3283571 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1273 3267118 3276111 3276154 "UPOLYC" 3278255 NIL UPOLYC (NIL T) -9 NIL 3279476 NIL) (-1272 3257966 3260872 3264019 "UPOLYC-" 3264024 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1271 3257587 3257636 3257769 "UPOLYC2" 3257917 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1270 3248162 3257270 3257399 "UP" 3257506 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1269 3247483 3247608 3247772 "UPMP" 3248051 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1268 3247030 3247117 3247256 "UPDIVP" 3247396 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1267 3245568 3245847 3246163 "UPDECOMP" 3246779 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1266 3244781 3244911 3245097 "UPCDEN" 3245452 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1265 3244294 3244369 3244518 "UP2" 3244706 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1264 3242647 3243498 3243775 "UNISEG" 3244052 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1263 3241852 3241989 3242194 "UNISEG2" 3242490 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1262 3240894 3241092 3241318 "UNIFACT" 3241668 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1261 3222704 3240206 3240448 "ULS" 3240710 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1260 3209414 3222608 3222680 "ULSCONS" 3222685 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1259 3189214 3202494 3202556 "ULSCCAT" 3203194 NIL ULSCCAT (NIL T T) -9 NIL 3203483 NIL) (-1258 3188210 3188509 3188897 "ULSCCAT-" 3188902 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1257 3176655 3183756 3183799 "ULSCAT" 3184662 NIL ULSCAT (NIL T) -9 NIL 3185393 NIL) (-1256 3176079 3176164 3176343 "ULS2" 3176570 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1255 3175090 3175708 3175815 "UINT8" 3175926 T UINT8 (NIL) -8 NIL NIL 3176011) (-1254 3174100 3174718 3174825 "UINT64" 3174936 T UINT64 (NIL) -8 NIL NIL 3175021) (-1253 3173110 3173728 3173835 "UINT32" 3173946 T UINT32 (NIL) -8 NIL NIL 3174031) (-1252 3172120 3172738 3172845 "UINT16" 3172956 T UINT16 (NIL) -8 NIL NIL 3173041) (-1251 3170199 3171366 3171396 "UFD" 3171608 T UFD (NIL) -9 NIL 3171722 NIL) (-1250 3169981 3170039 3170134 "UFD-" 3170139 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1249 3169039 3169246 3169462 "UDVO" 3169787 T UDVO (NIL) -7 NIL NIL NIL) (-1248 3166805 3167264 3167735 "UDPO" 3168603 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1247 3166738 3166743 3166773 "TYPE" 3166778 T TYPE (NIL) -9 NIL NIL NIL) (-1246 3166450 3166693 3166724 "TYPEAST" 3166729 T TYPEAST (NIL) -8 NIL NIL NIL) (-1245 3165403 3165623 3165863 "TWOFACT" 3166244 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1244 3164378 3164812 3165047 "TUPLE" 3165203 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1243 3162015 3162588 3163127 "TUBETOOL" 3163861 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1242 3160821 3161062 3161304 "TUBE" 3161808 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1241 3155000 3159793 3160076 "TS" 3160573 NIL TS (NIL T) -8 NIL NIL NIL) (-1240 3143142 3147757 3147854 "TSETCAT" 3153123 NIL TSETCAT (NIL T T T T) -9 NIL 3154655 NIL) (-1239 3137610 3139474 3141365 "TSETCAT-" 3141370 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1238 3132083 3133096 3134025 "TRMANIP" 3136746 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1237 3131512 3131587 3131750 "TRIMAT" 3132015 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1236 3129324 3129615 3129972 "TRIGMNIP" 3131261 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1235 3128808 3128957 3128987 "TRIGCAT" 3129200 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1234 3128453 3128556 3128697 "TRIGCAT-" 3128702 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1233 3125067 3127311 3127592 "TREE" 3128207 NIL TREE (NIL T) -8 NIL NIL NIL) (-1232 3124173 3124869 3124899 "TRANFUN" 3124934 T TRANFUN (NIL) -9 NIL 3125000 NIL) (-1231 3123392 3123643 3123923 "TRANFUN-" 3123928 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1230 3123190 3123228 3123289 "TOPSP" 3123353 T TOPSP (NIL) -7 NIL NIL NIL) (-1229 3122520 3122653 3122807 "TOOLSIGN" 3123071 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1228 3121034 3121697 3121936 "TEXTFILE" 3122303 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1227 3118838 3119487 3119916 "TEX" 3120627 T TEX (NIL) -8 NIL NIL NIL) (-1226 3118613 3118650 3118722 "TEX1" 3118801 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1225 3118249 3118324 3118414 "TEMUTL" 3118545 T TEMUTL (NIL) -7 NIL NIL NIL) (-1224 3116343 3116683 3117008 "TBCMPPK" 3117972 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1223 3107670 3114429 3114485 "TBAGG" 3114885 NIL TBAGG (NIL T T) -9 NIL 3115096 NIL) (-1222 3102554 3104228 3105982 "TBAGG-" 3105987 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1221 3101920 3102045 3102190 "TANEXP" 3102443 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1220 3101371 3101695 3101785 "TALGOP" 3101865 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1219 3094385 3101228 3101321 "TABLE" 3101326 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1218 3093779 3093896 3094034 "TABLEAU" 3094282 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1217 3088309 3089607 3090855 "TABLBUMP" 3092565 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1216 3087519 3087678 3087859 "SYSTEM" 3088150 T SYSTEM (NIL) -8 NIL NIL NIL) (-1215 3083924 3084677 3085460 "SYSSOLP" 3086770 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1214 3083686 3083879 3083910 "SYSPTR" 3083915 T SYSPTR (NIL) -8 NIL NIL NIL) (-1213 3082521 3083213 3083339 "SYSNNI" 3083525 NIL SYSNNI (NIL NIL) -8 NIL NIL 3083617) (-1212 3081724 3082279 3082358 "SYSINT" 3082418 NIL SYSINT (NIL NIL) -8 NIL NIL 3082463) (-1211 3077822 3079002 3079712 "SYNTAX" 3081036 T SYNTAX (NIL) -8 NIL NIL NIL) (-1210 3074902 3075582 3076214 "SYMTAB" 3077212 T SYMTAB (NIL) -8 NIL NIL NIL) (-1209 3070001 3071053 3072036 "SYMS" 3073941 T SYMS (NIL) -8 NIL NIL NIL) (-1208 3066900 3069452 3069685 "SYMPOLY" 3069803 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1207 3066405 3066492 3066615 "SYMFUNC" 3066812 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1206 3062203 3063717 3064530 "SYMBOL" 3065614 T SYMBOL (NIL) -8 NIL NIL NIL) (-1205 3055676 3057431 3059151 "SWITCH" 3060505 T SWITCH (NIL) -8 NIL NIL NIL) (-1204 3048430 3054632 3054926 "SUTS" 3055440 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1203 3039908 3047812 3048076 "SUPXS" 3048224 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1202 3030431 3039526 3039652 "SUP" 3039817 NIL SUP (NIL T) -8 NIL NIL NIL) (-1201 3029578 3029717 3029934 "SUPFRACF" 3030299 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1200 3029193 3029258 3029371 "SUP2" 3029513 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1199 3027617 3027915 3028271 "SUMRF" 3028892 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1198 3026940 3027018 3027210 "SUMFS" 3027538 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1197 3008785 3026252 3026494 "SULS" 3026756 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1196 3008333 3008607 3008677 "SUCHTAST" 3008737 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1195 3007574 3007858 3007998 "SUCH" 3008241 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1194 3001213 3002480 3003439 "SUBSPACE" 3006662 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1193 3000633 3000733 3000897 "SUBRESP" 3001101 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1192 2993827 2995298 2996609 "STTF" 2999369 NIL STTF (NIL T) -7 NIL NIL NIL) (-1191 2987838 2989120 2990267 "STTFNC" 2992727 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1190 2978955 2981020 2982814 "STTAYLOR" 2986079 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1189 2971709 2978819 2978902 "STRTBL" 2978907 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1188 2966106 2971418 2971517 "STRING" 2971632 T STRING (NIL) -8 NIL NIL NIL) (-1187 2958216 2963725 2964336 "STREAM" 2965530 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1186 2957720 2957803 2957947 "STREAM3" 2958133 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1185 2956684 2956885 2957120 "STREAM2" 2957533 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1184 2956366 2956424 2956517 "STREAM1" 2956626 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1183 2955358 2955563 2955794 "STINPROD" 2956182 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1182 2954854 2955106 2955136 "STEP" 2955216 T STEP (NIL) -9 NIL 2955294 NIL) (-1181 2953969 2954343 2954491 "STEPAST" 2954728 T STEPAST (NIL) -8 NIL NIL NIL) (-1180 2947025 2953868 2953945 "STBL" 2953950 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1179 2941583 2946188 2946231 "STAGG" 2946384 NIL STAGG (NIL T) -9 NIL 2946473 NIL) (-1178 2939135 2939887 2940759 "STAGG-" 2940764 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1177 2937107 2938905 2938997 "STACK" 2939078 NIL STACK (NIL T) -8 NIL NIL NIL) (-1176 2929114 2935248 2935704 "SREGSET" 2936737 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1175 2921461 2922908 2924421 "SRDCMPK" 2927720 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1174 2913770 2918820 2918850 "SRAGG" 2920153 T SRAGG (NIL) -9 NIL 2920761 NIL) (-1173 2912721 2913042 2913421 "SRAGG-" 2913426 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1172 2906305 2911668 2912089 "SQMATRIX" 2912347 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1171 2899717 2903023 2903750 "SPLTREE" 2905650 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1170 2895542 2896373 2897019 "SPLNODE" 2899143 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1169 2894517 2894822 2894852 "SPFCAT" 2895296 T SPFCAT (NIL) -9 NIL NIL NIL) (-1168 2893212 2893464 2893728 "SPECOUT" 2894275 T SPECOUT (NIL) -7 NIL NIL NIL) (-1167 2883858 2886176 2886206 "SPADXPT" 2890884 T SPADXPT (NIL) -9 NIL 2893050 NIL) (-1166 2883613 2883659 2883728 "SPADPRSR" 2883811 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1165 2881216 2883568 2883599 "SPADAST" 2883604 T SPADAST (NIL) -8 NIL NIL NIL) (-1164 2872817 2874920 2874963 "SPACEC" 2879336 NIL SPACEC (NIL T) -9 NIL 2881152 NIL) (-1163 2870617 2872749 2872798 "SPACE3" 2872803 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1162 2869349 2869540 2869831 "SORTPAK" 2870422 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1161 2867411 2867744 2868156 "SOLVETRA" 2869013 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1160 2866449 2866683 2866944 "SOLVESER" 2867184 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1159 2861681 2862641 2863636 "SOLVERAD" 2865501 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1158 2857406 2858105 2858834 "SOLVEFOR" 2861048 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1157 2851017 2856754 2856851 "SNTSCAT" 2856856 NIL SNTSCAT (NIL T T T T) -9 NIL 2856926 NIL) (-1156 2844561 2849340 2849731 "SMTS" 2850707 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1155 2838276 2844449 2844526 "SMP" 2844531 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1154 2836405 2836736 2837134 "SMITH" 2837973 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1153 2827937 2832984 2833087 "SMATCAT" 2834438 NIL SMATCAT (NIL NIL T T T) -9 NIL 2834988 NIL) (-1152 2824709 2825700 2826878 "SMATCAT-" 2826883 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1151 2822178 2823917 2823960 "SKAGG" 2824221 NIL SKAGG (NIL T) -9 NIL 2824356 NIL) (-1150 2817672 2821651 2821835 "SINT" 2821987 T SINT (NIL) -8 NIL NIL 2822149) (-1149 2817438 2817482 2817548 "SIMPAN" 2817628 T SIMPAN (NIL) -7 NIL NIL NIL) (-1148 2816663 2816973 2817113 "SIG" 2817320 T SIG (NIL) -8 NIL NIL NIL) (-1147 2815483 2815722 2815997 "SIGNRF" 2816422 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1146 2814298 2814467 2814751 "SIGNEF" 2815312 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1145 2813538 2813881 2814005 "SIGAST" 2814196 T SIGAST (NIL) -8 NIL NIL NIL) (-1144 2811190 2811682 2812188 "SHP" 2813079 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1143 2804563 2811091 2811167 "SHDP" 2811172 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1142 2804074 2804314 2804344 "SGROUP" 2804437 T SGROUP (NIL) -9 NIL 2804499 NIL) (-1141 2803926 2803958 2804031 "SGROUP-" 2804036 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1140 2800645 2801415 2802138 "SGCF" 2803225 T SGCF (NIL) -7 NIL NIL NIL) (-1139 2794354 2800091 2800188 "SFRTCAT" 2800193 NIL SFRTCAT (NIL T T T T) -9 NIL 2800232 NIL) (-1138 2787673 2788793 2789929 "SFRGCD" 2793337 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1137 2780691 2781872 2783058 "SFQCMPK" 2786606 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1136 2780293 2780400 2780511 "SFORT" 2780632 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1135 2779219 2780133 2780254 "SEXOF" 2780259 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1134 2778134 2779100 2779168 "SEX" 2779173 T SEX (NIL) -8 NIL NIL NIL) (-1133 2773723 2774630 2774725 "SEXCAT" 2777347 NIL SEXCAT (NIL T T T T T) -9 NIL 2777907 NIL) (-1132 2770532 2773657 2773705 "SET" 2773710 NIL SET (NIL T) -8 NIL NIL NIL) (-1131 2768654 2769245 2769550 "SETMN" 2770273 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1130 2768184 2768372 2768402 "SETCAT" 2768519 T SETCAT (NIL) -9 NIL 2768604 NIL) (-1129 2767952 2768016 2768115 "SETCAT-" 2768120 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1128 2764055 2766413 2766456 "SETAGG" 2767326 NIL SETAGG (NIL T) -9 NIL 2767666 NIL) (-1127 2763477 2763629 2763866 "SETAGG-" 2763871 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1126 2762860 2763173 2763274 "SEQAST" 2763398 T SEQAST (NIL) -8 NIL NIL NIL) (-1125 2761987 2762353 2762414 "SEGXCAT" 2762700 NIL SEGXCAT (NIL T T) -9 NIL 2762820 NIL) (-1124 2760903 2761653 2761835 "SEG" 2761840 NIL SEG (NIL T) -8 NIL NIL NIL) (-1123 2759828 2760096 2760139 "SEGCAT" 2760661 NIL SEGCAT (NIL T) -9 NIL 2760882 NIL) (-1122 2758718 2759191 2759399 "SEGBIND" 2759655 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1121 2758333 2758398 2758511 "SEGBIND2" 2758653 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1120 2757852 2758134 2758211 "SEGAST" 2758278 T SEGAST (NIL) -8 NIL NIL NIL) (-1119 2757061 2757197 2757401 "SEG2" 2757696 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1118 2756294 2756996 2757043 "SDVAR" 2757048 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1117 2747645 2756064 2756194 "SDPOL" 2756199 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1116 2746214 2746504 2746823 "SCPKG" 2747360 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1115 2745336 2745550 2745742 "SCOPE" 2746044 T SCOPE (NIL) -8 NIL NIL NIL) (-1114 2744532 2744690 2744869 "SCACHE" 2745191 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1113 2744116 2744350 2744380 "SASTCAT" 2744385 T SASTCAT (NIL) -9 NIL 2744398 NIL) (-1112 2743519 2743951 2744027 "SAOS" 2744062 T SAOS (NIL) -8 NIL NIL NIL) (-1111 2743078 2743119 2743292 "SAERFFC" 2743478 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1110 2736105 2742975 2743055 "SAE" 2743060 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1109 2735692 2735733 2735892 "SAEFACT" 2736064 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1108 2733995 2734327 2734728 "RURPK" 2735358 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1107 2732572 2732938 2733243 "RULESET" 2733829 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1106 2729687 2730325 2730783 "RULE" 2732253 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1105 2729257 2729481 2729564 "RULECOLD" 2729639 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1104 2729041 2729075 2729146 "RTVALUE" 2729208 T RTVALUE (NIL) -8 NIL NIL NIL) (-1103 2728452 2728758 2728852 "RSTRCAST" 2728969 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1102 2723222 2724095 2725015 "RSETGCD" 2727651 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2711793 2717530 2717627 "RSETCAT" 2721746 NIL RSETCAT (NIL T T T T) -9 NIL 2722843 NIL) (-1100 2709612 2710259 2711083 "RSETCAT-" 2711088 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1099 2701920 2703374 2704894 "RSDCMPK" 2708211 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1098 2699789 2700352 2700426 "RRCC" 2701512 NIL RRCC (NIL T T) -9 NIL 2701856 NIL) (-1097 2699110 2699314 2699593 "RRCC-" 2699598 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1096 2698493 2698806 2698907 "RPTAST" 2699031 T RPTAST (NIL) -8 NIL NIL NIL) (-1095 2670879 2681605 2681672 "RPOLCAT" 2692338 NIL RPOLCAT (NIL T T T) -9 NIL 2695498 NIL) (-1094 2661849 2664717 2667839 "RPOLCAT-" 2667844 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1093 2652302 2660060 2660542 "ROUTINE" 2661389 T ROUTINE (NIL) -8 NIL NIL NIL) (-1092 2648351 2651928 2652068 "ROMAN" 2652184 T ROMAN (NIL) -8 NIL NIL NIL) (-1091 2646463 2647211 2647471 "ROIRC" 2648156 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1090 2642181 2644952 2644982 "RNS" 2645286 T RNS (NIL) -9 NIL 2645560 NIL) (-1089 2640588 2641073 2641607 "RNS-" 2641682 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1088 2639881 2640385 2640415 "RNG" 2640420 T RNG (NIL) -9 NIL 2640441 NIL) (-1087 2638842 2639246 2639448 "RNGBIND" 2639732 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1086 2638137 2638615 2638658 "RMODULE" 2638663 NIL RMODULE (NIL T) -9 NIL 2638690 NIL) (-1085 2636961 2637067 2637403 "RMCAT2" 2638038 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1084 2633463 2636307 2636604 "RMATRIX" 2636723 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1083 2625962 2628550 2628665 "RMATCAT" 2632024 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2633006 NIL) (-1082 2625301 2625484 2625791 "RMATCAT-" 2625796 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1081 2624874 2625088 2625131 "RLINSET" 2625193 NIL RLINSET (NIL T) -9 NIL 2625237 NIL) (-1080 2624435 2624516 2624644 "RINTERP" 2624793 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1079 2623359 2624033 2624063 "RING" 2624119 T RING (NIL) -9 NIL 2624211 NIL) (-1078 2623139 2623195 2623292 "RING-" 2623297 NIL RING- (NIL T) -8 NIL NIL NIL) (-1077 2621950 2622217 2622475 "RIDIST" 2622903 T RIDIST (NIL) -7 NIL NIL NIL) (-1076 2612575 2621418 2621624 "RGCHAIN" 2621798 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1075 2611833 2612317 2612358 "RGBCSPC" 2612416 NIL RGBCSPC (NIL T) -9 NIL 2612468 NIL) (-1074 2610899 2611358 2611399 "RGBCMDL" 2611631 NIL RGBCMDL (NIL T) -9 NIL 2611745 NIL) (-1073 2607839 2608507 2609177 "RF" 2610263 NIL RF (NIL T) -7 NIL NIL NIL) (-1072 2607479 2607548 2607651 "RFFACTOR" 2607770 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1071 2607198 2607239 2607336 "RFFACT" 2607438 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1070 2605249 2605679 2606061 "RFDIST" 2606838 T RFDIST (NIL) -7 NIL NIL NIL) (-1069 2604696 2604794 2604957 "RETSOL" 2605151 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1068 2604314 2604412 2604455 "RETRACT" 2604588 NIL RETRACT (NIL T) -9 NIL 2604675 NIL) (-1067 2604157 2604188 2604275 "RETRACT-" 2604280 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1066 2603705 2603979 2604049 "RETAST" 2604109 T RETAST (NIL) -8 NIL NIL NIL) (-1065 2596055 2603358 2603485 "RESULT" 2603600 T RESULT (NIL) -8 NIL NIL NIL) (-1064 2594490 2595324 2595523 "RESRING" 2595958 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1063 2594114 2594175 2594273 "RESLATC" 2594427 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1062 2593813 2593854 2593961 "REPSQ" 2594073 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1061 2591193 2591815 2592417 "REP" 2593233 T REP (NIL) -7 NIL NIL NIL) (-1060 2590884 2590925 2591036 "REPDB" 2591152 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1059 2584716 2586173 2587396 "REP2" 2589696 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1058 2581019 2581774 2582582 "REP1" 2583943 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1057 2573027 2579160 2579616 "REGSET" 2580649 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1056 2571736 2572175 2572425 "REF" 2572812 NIL REF (NIL T) -8 NIL NIL NIL) (-1055 2571101 2571216 2571383 "REDORDER" 2571620 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1054 2566465 2570314 2570541 "RECLOS" 2570929 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1053 2565499 2565698 2565913 "REALSOLV" 2566272 T REALSOLV (NIL) -7 NIL NIL NIL) (-1052 2565333 2565386 2565416 "REAL" 2565421 T REAL (NIL) -9 NIL 2565456 NIL) (-1051 2561780 2562618 2563502 "REAL0Q" 2564498 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1050 2557333 2558369 2559430 "REAL0" 2560761 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1049 2556744 2557050 2557144 "RDUCEAST" 2557261 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1048 2556143 2556221 2556428 "RDIV" 2556666 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1047 2555193 2555385 2555598 "RDIST" 2555965 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1046 2553778 2554077 2554449 "RDETRS" 2554901 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1045 2551572 2552044 2552582 "RDETR" 2553320 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1044 2550191 2550475 2550872 "RDEEFS" 2551288 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1043 2548694 2549006 2549431 "RDEEF" 2549879 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1042 2542171 2545648 2545678 "RCFIELD" 2546973 T RCFIELD (NIL) -9 NIL 2547704 NIL) (-1041 2540127 2540739 2541435 "RCFIELD-" 2541510 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1040 2536179 2538200 2538243 "RCAGG" 2539327 NIL RCAGG (NIL T) -9 NIL 2539792 NIL) (-1039 2535789 2535901 2536064 "RCAGG-" 2536069 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1038 2535106 2535236 2535401 "RATRET" 2535673 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1037 2534647 2534726 2534847 "RATFACT" 2535034 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1036 2533925 2534075 2534227 "RANDSRC" 2534517 T RANDSRC (NIL) -7 NIL NIL NIL) (-1035 2533653 2533703 2533776 "RADUTIL" 2533874 T RADUTIL (NIL) -7 NIL NIL NIL) (-1034 2525777 2532484 2532795 "RADIX" 2533376 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1033 2515371 2525619 2525749 "RADFF" 2525754 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1032 2515000 2515093 2515123 "RADCAT" 2515283 T RADCAT (NIL) -9 NIL NIL NIL) (-1031 2514770 2514830 2514930 "RADCAT-" 2514935 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1030 2512681 2514540 2514632 "QUEUE" 2514713 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1029 2508520 2512614 2512662 "QUAT" 2512667 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1028 2508145 2508194 2508325 "QUATCT2" 2508471 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1027 2500521 2504568 2504610 "QUATCAT" 2505401 NIL QUATCAT (NIL T) -9 NIL 2506167 NIL) (-1026 2496402 2497697 2499087 "QUATCAT-" 2499183 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1025 2493658 2495450 2495493 "QUAGG" 2495874 NIL QUAGG (NIL T) -9 NIL 2496049 NIL) (-1024 2493206 2493480 2493550 "QQUTAST" 2493610 T QQUTAST (NIL) -8 NIL NIL NIL) (-1023 2492117 2492719 2492884 "QFORM" 2493087 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1022 2481793 2487964 2488006 "QFCAT" 2488674 NIL QFCAT (NIL T) -9 NIL 2489675 NIL) (-1021 2477108 2478561 2480155 "QFCAT-" 2480251 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1020 2476733 2476782 2476913 "QFCAT2" 2477059 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1019 2476164 2476298 2476430 "QEQUAT" 2476623 T QEQUAT (NIL) -8 NIL NIL NIL) (-1018 2469182 2470363 2471549 "QCMPACK" 2475097 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2466632 2467168 2467598 "QALGSET" 2468837 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1016 2465861 2466043 2466279 "QALGSET2" 2466450 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1015 2464528 2464770 2465089 "PWFFINTB" 2465634 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1014 2462673 2462871 2463227 "PUSHVAR" 2464342 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1013 2458400 2459616 2459659 "PTRANFN" 2461570 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1012 2456737 2457082 2457406 "PTPACK" 2458111 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1011 2456360 2456423 2456534 "PTFUNC2" 2456674 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1010 2450285 2455149 2455192 "PTCAT" 2455492 NIL PTCAT (NIL T) -9 NIL 2455645 NIL) (-1009 2449934 2449975 2450101 "PSQFR" 2450244 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1008 2448506 2448822 2449158 "PSEUDLIN" 2449632 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1007 2435026 2437601 2439927 "PSETPK" 2446266 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1006 2427734 2430762 2430860 "PSETCAT" 2433901 NIL PSETCAT (NIL T T T T) -9 NIL 2434715 NIL) (-1005 2425459 2426201 2427025 "PSETCAT-" 2427030 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1004 2424772 2424967 2424997 "PSCURVE" 2425269 T PSCURVE (NIL) -9 NIL 2425436 NIL) (-1003 2420488 2422262 2422329 "PSCAT" 2423181 NIL PSCAT (NIL T T T) -9 NIL 2423421 NIL) (-1002 2419482 2419764 2420167 "PSCAT-" 2420172 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-1001 2417681 2418541 2418806 "PRTITION" 2419239 T PRTITION (NIL) -8 NIL NIL NIL) (-1000 2417092 2417398 2417492 "PRTDAST" 2417609 T PRTDAST (NIL) -8 NIL NIL NIL) (-999 2405974 2408396 2410584 "PRS" 2414954 NIL PRS (NIL T T) -7 NIL NIL NIL) (-998 2403594 2405296 2405336 "PRQAGG" 2405519 NIL PRQAGG (NIL T) -9 NIL 2405621 NIL) (-997 2402864 2403235 2403263 "PROPLOG" 2403402 T PROPLOG (NIL) -9 NIL 2403517 NIL) (-996 2402462 2402525 2402648 "PROPFUN2" 2402787 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-995 2401759 2401898 2402070 "PROPFUN1" 2402323 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-994 2399820 2400506 2400803 "PROPFRML" 2401495 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-993 2399265 2399396 2399524 "PROPERTY" 2399712 T PROPERTY (NIL) -8 NIL NIL NIL) (-992 2393153 2397431 2398251 "PRODUCT" 2398491 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-991 2390111 2392611 2392845 "PR" 2392964 NIL PR (NIL T T) -8 NIL NIL NIL) (-990 2389901 2389939 2389998 "PRINT" 2390072 T PRINT (NIL) -7 NIL NIL NIL) (-989 2389217 2389358 2389510 "PRIMES" 2389781 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-988 2387264 2387683 2388149 "PRIMELT" 2388796 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-987 2386981 2387042 2387070 "PRIMCAT" 2387194 T PRIMCAT (NIL) -9 NIL NIL NIL) (-986 2382703 2386919 2386964 "PRIMARR" 2386969 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-985 2381692 2381888 2382116 "PRIMARR2" 2382521 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-984 2381329 2381391 2381502 "PREASSOC" 2381630 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-983 2380780 2380937 2380965 "PPCURVE" 2381170 T PPCURVE (NIL) -9 NIL 2381306 NIL) (-982 2380327 2380575 2380658 "PORTNUM" 2380717 T PORTNUM (NIL) -8 NIL NIL NIL) (-981 2377664 2378085 2378677 "POLYROOT" 2379908 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-980 2370872 2377268 2377428 "POLY" 2377537 NIL POLY (NIL T) -8 NIL NIL NIL) (-979 2370249 2370313 2370547 "POLYLIFT" 2370808 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-978 2366470 2366973 2367602 "POLYCATQ" 2369794 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-977 2352118 2358217 2358282 "POLYCAT" 2361796 NIL POLYCAT (NIL T T T) -9 NIL 2363674 NIL) (-976 2345237 2347429 2349813 "POLYCAT-" 2349818 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-975 2344818 2344892 2345012 "POLY2UP" 2345163 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-974 2344444 2344507 2344616 "POLY2" 2344755 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-973 2343105 2343368 2343644 "POLUTIL" 2344218 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-972 2341424 2341737 2342068 "POLTOPOL" 2342827 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-971 2336420 2341358 2341405 "POINT" 2341410 NIL POINT (NIL T) -8 NIL NIL NIL) (-970 2334553 2334964 2335339 "PNTHEORY" 2336065 T PNTHEORY (NIL) -7 NIL NIL NIL) (-969 2332999 2333308 2333707 "PMTOOLS" 2334251 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-968 2332586 2332670 2332787 "PMSYM" 2332915 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-967 2332088 2332163 2332338 "PMQFCAT" 2332511 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-966 2331431 2331553 2331709 "PMPRED" 2331965 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-965 2330812 2330910 2331072 "PMPREDFS" 2331332 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-964 2329466 2329684 2330062 "PMPLCAT" 2330574 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-963 2328992 2329077 2329229 "PMLSAGG" 2329381 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-962 2328459 2328541 2328723 "PMKERNEL" 2328910 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-961 2328070 2328151 2328264 "PMINS" 2328378 NIL PMINS (NIL T) -7 NIL NIL NIL) (-960 2327506 2327581 2327790 "PMFS" 2327995 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-959 2326722 2326852 2327057 "PMDOWN" 2327383 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-958 2325865 2326047 2326228 "PMASS" 2326561 T PMASS (NIL) -7 NIL NIL NIL) (-957 2325114 2325248 2325411 "PMASSFS" 2325752 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-956 2324763 2324837 2324931 "PLOTTOOL" 2325040 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-955 2319184 2320574 2321722 "PLOT" 2323635 T PLOT (NIL) -8 NIL NIL NIL) (-954 2314836 2316030 2316952 "PLOT3D" 2318282 T PLOT3D (NIL) -8 NIL NIL NIL) (-953 2313724 2313925 2314160 "PLOT1" 2314640 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-952 2288899 2293790 2298641 "PLEQN" 2308990 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-951 2288205 2288339 2288519 "PINTERP" 2288764 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-950 2287892 2287945 2288048 "PINTERPA" 2288152 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-949 2286988 2287656 2287743 "PI" 2287783 T PI (NIL) -8 NIL NIL 2287850) (-948 2285073 2286246 2286274 "PID" 2286456 T PID (NIL) -9 NIL 2286590 NIL) (-947 2284818 2284861 2284936 "PICOERCE" 2285030 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-946 2284126 2284277 2284453 "PGROEB" 2284674 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-945 2279565 2280524 2281430 "PGE" 2283240 T PGE (NIL) -7 NIL NIL NIL) (-944 2277646 2277935 2278301 "PGCD" 2279282 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-943 2276972 2277087 2277248 "PFRPAC" 2277530 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-942 2273222 2275520 2275873 "PFR" 2276651 NIL PFR (NIL T) -8 NIL NIL NIL) (-941 2271575 2271855 2272180 "PFOTOOLS" 2272969 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-940 2270090 2270347 2270698 "PFOQ" 2271332 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-939 2268573 2268803 2269159 "PFO" 2269874 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-938 2264498 2268462 2268531 "PF" 2268536 NIL PF (NIL NIL) -8 NIL NIL NIL) (-937 2261576 2263089 2263117 "PFECAT" 2263702 T PFECAT (NIL) -9 NIL 2264086 NIL) (-936 2261003 2261175 2261389 "PFECAT-" 2261394 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-935 2259576 2259858 2260159 "PFBRU" 2260752 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-934 2257406 2257794 2258226 "PFBR" 2259227 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-933 2253208 2254915 2255563 "PERM" 2256791 NIL PERM (NIL T) -8 NIL NIL NIL) (-932 2248262 2249415 2250285 "PERMGRP" 2252371 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-931 2246174 2247286 2247327 "PERMCAT" 2247727 NIL PERMCAT (NIL T) -9 NIL 2248025 NIL) (-930 2245821 2245868 2245992 "PERMAN" 2246127 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-929 2243062 2245486 2245608 "PENDTREE" 2245732 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-928 2241943 2242206 2242247 "PDSPC" 2242780 NIL PDSPC (NIL T) -9 NIL 2243025 NIL) (-927 2240998 2241264 2241626 "PDSPC-" 2241631 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-926 2239712 2240648 2240689 "PDRING" 2240694 NIL PDRING (NIL T) -9 NIL 2240722 NIL) (-925 2238455 2239217 2239271 "PDMOD" 2239276 NIL PDMOD (NIL T T) -9 NIL 2239380 NIL) (-924 2235622 2236448 2237116 "PDEPROB" 2237807 T PDEPROB (NIL) -8 NIL NIL NIL) (-923 2233131 2233671 2234226 "PDEPACK" 2235087 T PDEPACK (NIL) -7 NIL NIL NIL) (-922 2232019 2232233 2232484 "PDECOMP" 2232930 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-921 2229536 2230427 2230455 "PDECAT" 2231242 T PDECAT (NIL) -9 NIL 2231955 NIL) (-920 2229153 2229220 2229274 "PDDOM" 2229439 NIL PDDOM (NIL T T) -9 NIL 2229519 NIL) (-919 2228966 2229002 2229109 "PDDOM-" 2229114 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-918 2228711 2228750 2228840 "PCOMP" 2228927 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-917 2226751 2227512 2227809 "PBWLB" 2228440 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-916 2218930 2220824 2222162 "PATTERN" 2225434 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-915 2218556 2218619 2218728 "PATTERN2" 2218867 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-914 2216265 2216701 2217158 "PATTERN1" 2218145 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-913 2213531 2214214 2214695 "PATRES" 2215830 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-912 2213089 2213162 2213294 "PATRES2" 2213458 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-911 2210942 2211377 2211784 "PATMATCH" 2212756 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-910 2210396 2210647 2210688 "PATMAB" 2210795 NIL PATMAB (NIL T) -9 NIL 2210878 NIL) (-909 2208842 2209250 2209508 "PATLRES" 2210201 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-908 2208380 2208511 2208552 "PATAB" 2208557 NIL PATAB (NIL T) -9 NIL 2208729 NIL) (-907 2206520 2206957 2207380 "PARTPERM" 2207977 T PARTPERM (NIL) -7 NIL NIL NIL) (-906 2206129 2206204 2206306 "PARSURF" 2206451 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-905 2205755 2205818 2205927 "PARSU2" 2206066 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-904 2205513 2205559 2205626 "PARSER" 2205708 T PARSER (NIL) -7 NIL NIL NIL) (-903 2205122 2205197 2205299 "PARSCURV" 2205444 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-902 2204748 2204811 2204920 "PARSC2" 2205059 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-901 2204375 2204445 2204542 "PARPCURV" 2204684 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-900 2204001 2204064 2204173 "PARPC2" 2204312 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-899 2202990 2203374 2203556 "PARAMAST" 2203839 T PARAMAST (NIL) -8 NIL NIL NIL) (-898 2202498 2202596 2202715 "PAN2EXPR" 2202891 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-897 2201191 2201619 2201847 "PALETTE" 2202290 T PALETTE (NIL) -8 NIL NIL NIL) (-896 2199536 2200196 2200556 "PAIR" 2200877 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-895 2192448 2198793 2198988 "PADICRC" 2199390 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-894 2184684 2191792 2191977 "PADICRAT" 2192295 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-893 2182693 2184621 2184666 "PADIC" 2184671 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-892 2179483 2181353 2181393 "PADICCT" 2181974 NIL PADICCT (NIL NIL) -9 NIL 2182256 NIL) (-891 2178428 2178640 2178908 "PADEPAC" 2179270 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-890 2177628 2177773 2177979 "PADE" 2178290 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-889 2175861 2176836 2177116 "OWP" 2177432 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-888 2175306 2175567 2175664 "OVERSET" 2175784 T OVERSET (NIL) -8 NIL NIL NIL) (-887 2174226 2174911 2175083 "OVAR" 2175174 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-886 2173466 2173611 2173772 "OUT" 2174085 T OUT (NIL) -7 NIL NIL NIL) (-885 2161702 2164575 2166775 "OUTFORM" 2171286 T OUTFORM (NIL) -8 NIL NIL NIL) (-884 2160984 2161299 2161426 "OUTBFILE" 2161595 T OUTBFILE (NIL) -8 NIL NIL NIL) (-883 2160261 2160456 2160484 "OUTBCON" 2160802 T OUTBCON (NIL) -9 NIL 2160968 NIL) (-882 2159844 2159974 2160131 "OUTBCON-" 2160136 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-881 2159140 2159573 2159662 "OSI" 2159775 T OSI (NIL) -8 NIL NIL NIL) (-880 2158559 2158981 2159009 "OSGROUP" 2159014 T OSGROUP (NIL) -9 NIL 2159036 NIL) (-879 2157270 2157531 2157816 "ORTHPOL" 2158306 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-878 2154521 2157105 2157226 "OREUP" 2157231 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-877 2151624 2154212 2154339 "ORESUP" 2154463 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-876 2149124 2149652 2150213 "OREPCTO" 2151113 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-875 2142502 2144997 2145038 "OREPCAT" 2147386 NIL OREPCAT (NIL T) -9 NIL 2148490 NIL) (-874 2139475 2140431 2141489 "OREPCAT-" 2141494 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-873 2138668 2138945 2138973 "ORDTYPE" 2139282 T ORDTYPE (NIL) -9 NIL 2139445 NIL) (-872 2137969 2138185 2138440 "ORDTYPE-" 2138445 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-871 2137325 2137708 2137866 "ORDSTRCT" 2137871 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-870 2136823 2137193 2137221 "ORDSET" 2137226 T ORDSET (NIL) -9 NIL 2137248 NIL) (-869 2135181 2136152 2136180 "ORDRING" 2136382 T ORDRING (NIL) -9 NIL 2136507 NIL) (-868 2134802 2134920 2135064 "ORDRING-" 2135069 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-867 2134053 2134618 2134646 "ORDMON" 2134651 T ORDMON (NIL) -9 NIL 2134672 NIL) (-866 2133197 2133362 2133557 "ORDFUNS" 2133902 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-865 2132412 2132927 2132955 "ORDFIN" 2133020 T ORDFIN (NIL) -9 NIL 2133094 NIL) (-864 2128759 2130998 2131407 "ORDCOMP" 2132036 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-863 2128013 2128152 2128338 "ORDCOMP2" 2128619 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-862 2124534 2125504 2126318 "OPTPROB" 2127219 T OPTPROB (NIL) -8 NIL NIL NIL) (-861 2121276 2121975 2122679 "OPTPACK" 2123850 T OPTPACK (NIL) -7 NIL NIL NIL) (-860 2118889 2119715 2119743 "OPTCAT" 2120562 T OPTCAT (NIL) -9 NIL 2121212 NIL) (-859 2118207 2118566 2118671 "OPSIG" 2118804 T OPSIG (NIL) -8 NIL NIL NIL) (-858 2117969 2118014 2118080 "OPQUERY" 2118161 T OPQUERY (NIL) -7 NIL NIL NIL) (-857 2114878 2116280 2116784 "OP" 2117498 NIL OP (NIL T) -8 NIL NIL NIL) (-856 2114184 2114464 2114505 "OPERCAT" 2114717 NIL OPERCAT (NIL T) -9 NIL 2114814 NIL) (-855 2113927 2113995 2114112 "OPERCAT-" 2114117 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-854 2110540 2112724 2113093 "ONECOMP" 2113591 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-853 2109833 2109960 2110134 "ONECOMP2" 2110412 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-852 2109234 2109358 2109488 "OMSERVER" 2109723 T OMSERVER (NIL) -7 NIL NIL NIL) (-851 2105748 2108674 2108714 "OMSAGG" 2108775 NIL OMSAGG (NIL T) -9 NIL 2108839 NIL) (-850 2104323 2104634 2104916 "OMPKG" 2105486 T OMPKG (NIL) -7 NIL NIL NIL) (-849 2103729 2103856 2103884 "OM" 2104183 T OM (NIL) -9 NIL NIL NIL) (-848 2102076 2103278 2103447 "OMLO" 2103610 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-847 2101012 2101183 2101403 "OMEXPR" 2101902 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-846 2100249 2100558 2100694 "OMERR" 2100896 T OMERR (NIL) -8 NIL NIL NIL) (-845 2099334 2099670 2099830 "OMERRK" 2100109 T OMERRK (NIL) -8 NIL NIL NIL) (-844 2098725 2099011 2099119 "OMENC" 2099246 T OMENC (NIL) -8 NIL NIL NIL) (-843 2092362 2093805 2094976 "OMDEV" 2097574 T OMDEV (NIL) -8 NIL NIL NIL) (-842 2091395 2091602 2091796 "OMCONN" 2092188 T OMCONN (NIL) -8 NIL NIL NIL) (-841 2089673 2090865 2090893 "OINTDOM" 2090898 T OINTDOM (NIL) -9 NIL 2090919 NIL) (-840 2086747 2088361 2088698 "OFMONOID" 2089368 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-839 2085981 2086684 2086729 "ODVAR" 2086734 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-838 2083118 2085726 2085881 "ODR" 2085886 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-837 2074523 2082894 2083020 "ODPOL" 2083025 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-836 2067866 2074395 2074500 "ODP" 2074505 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-835 2066608 2066847 2067122 "ODETOOLS" 2067640 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-834 2063551 2064233 2064949 "ODESYS" 2065941 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-833 2058381 2059341 2060366 "ODERTRIC" 2062626 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-832 2057801 2057889 2058083 "ODERED" 2058293 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-831 2054653 2055237 2055914 "ODERAT" 2057224 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-830 2051570 2052077 2052674 "ODEPRRIC" 2054182 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-829 2049465 2050109 2050595 "ODEPROB" 2051104 T ODEPROB (NIL) -8 NIL NIL NIL) (-828 2045931 2046470 2047117 "ODEPRIM" 2048944 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-827 2045174 2045282 2045542 "ODEPAL" 2045823 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-826 2041276 2042127 2042991 "ODEPACK" 2044330 T ODEPACK (NIL) -7 NIL NIL NIL) (-825 2040319 2040444 2040666 "ODEINT" 2041165 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-824 2034384 2035845 2037292 "ODEIFTBL" 2038892 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-823 2029734 2030568 2031520 "ODEEF" 2033543 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-822 2029077 2029172 2029395 "ODECONST" 2029639 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-821 2027140 2027849 2027877 "ODECAT" 2028482 T ODECAT (NIL) -9 NIL 2029013 NIL) (-820 2023633 2026845 2026967 "OCT" 2027050 NIL OCT (NIL T) -8 NIL NIL NIL) (-819 2023265 2023314 2023441 "OCTCT2" 2023584 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-818 2017534 2020308 2020348 "OC" 2021445 NIL OC (NIL T) -9 NIL 2022303 NIL) (-817 2014569 2015509 2016499 "OC-" 2016593 NIL OC- (NIL T T) -8 NIL NIL NIL) (-816 2013792 2014362 2014390 "OCAMON" 2014395 T OCAMON (NIL) -9 NIL 2014416 NIL) (-815 2013212 2013637 2013665 "OASGP" 2013670 T OASGP (NIL) -9 NIL 2013690 NIL) (-814 2012338 2012935 2012963 "OAMONS" 2013003 T OAMONS (NIL) -9 NIL 2013046 NIL) (-813 2011629 2012158 2012186 "OAMON" 2012191 T OAMON (NIL) -9 NIL 2012211 NIL) (-812 2010740 2011378 2011406 "OAGROUP" 2011411 T OAGROUP (NIL) -9 NIL 2011431 NIL) (-811 2010422 2010478 2010567 "NUMTUBE" 2010684 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-810 2003941 2005513 2007049 "NUMQUAD" 2008906 T NUMQUAD (NIL) -7 NIL NIL NIL) (-809 1999661 2000685 2001710 "NUMODE" 2002936 T NUMODE (NIL) -7 NIL NIL NIL) (-808 1996942 1997882 1997910 "NUMINT" 1998833 T NUMINT (NIL) -9 NIL 1999597 NIL) (-807 1995854 1996087 1996305 "NUMFMT" 1996744 T NUMFMT (NIL) -7 NIL NIL NIL) (-806 1982037 1985158 1987690 "NUMERIC" 1993361 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-805 1975748 1981485 1981580 "NTSCAT" 1981585 NIL NTSCAT (NIL T T T T) -9 NIL 1981624 NIL) (-804 1974928 1975107 1975300 "NTPOLFN" 1975587 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-803 1961689 1971753 1972565 "NSUP" 1974149 NIL NSUP (NIL T) -8 NIL NIL NIL) (-802 1961315 1961378 1961487 "NSUP2" 1961626 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-801 1950151 1961089 1961222 "NSMP" 1961227 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-800 1948559 1948884 1949241 "NREP" 1949839 NIL NREP (NIL T) -7 NIL NIL NIL) (-799 1947138 1947402 1947760 "NPCOEF" 1948302 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-798 1946186 1946319 1946535 "NORMRETR" 1947019 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-797 1944197 1944517 1944926 "NORMPK" 1945894 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-796 1943876 1943910 1944034 "NORMMA" 1944163 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-795 1943640 1943833 1943862 "NONE" 1943867 T NONE (NIL) -8 NIL NIL NIL) (-794 1943423 1943458 1943527 "NONE1" 1943604 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-793 1942914 1942982 1943161 "NODE1" 1943355 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-792 1941015 1942046 1942301 "NNI" 1942648 T NNI (NIL) -8 NIL NIL 1942883) (-791 1939411 1939748 1940112 "NLINSOL" 1940683 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-790 1935592 1936647 1937546 "NIPROB" 1938532 T NIPROB (NIL) -8 NIL NIL NIL) (-789 1934331 1934583 1934885 "NFINTBAS" 1935354 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-788 1933415 1933981 1934022 "NETCLT" 1934194 NIL NETCLT (NIL T) -9 NIL 1934276 NIL) (-787 1932087 1932354 1932635 "NCODIV" 1933183 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-786 1931843 1931886 1931961 "NCNTFRAC" 1932044 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-785 1929999 1930387 1930807 "NCEP" 1931468 NIL NCEP (NIL T) -7 NIL NIL NIL) (-784 1928662 1929609 1929637 "NASRING" 1929747 T NASRING (NIL) -9 NIL 1929827 NIL) (-783 1928445 1928501 1928595 "NASRING-" 1928600 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-782 1927412 1928063 1928091 "NARNG" 1928208 T NARNG (NIL) -9 NIL 1928299 NIL) (-781 1927086 1927171 1927305 "NARNG-" 1927310 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-780 1925923 1926172 1926407 "NAGSP" 1926871 T NAGSP (NIL) -7 NIL NIL NIL) (-779 1916967 1918879 1920552 "NAGS" 1924270 T NAGS (NIL) -7 NIL NIL NIL) (-778 1915491 1915823 1916154 "NAGF07" 1916656 T NAGF07 (NIL) -7 NIL NIL NIL) (-777 1909963 1911320 1912627 "NAGF04" 1914204 T NAGF04 (NIL) -7 NIL NIL NIL) (-776 1902835 1904545 1906178 "NAGF02" 1908350 T NAGF02 (NIL) -7 NIL NIL NIL) (-775 1897999 1899159 1900276 "NAGF01" 1901738 T NAGF01 (NIL) -7 NIL NIL NIL) (-774 1891579 1893193 1894778 "NAGE04" 1896434 T NAGE04 (NIL) -7 NIL NIL NIL) (-773 1882640 1884869 1886999 "NAGE02" 1889469 T NAGE02 (NIL) -7 NIL NIL NIL) (-772 1878533 1879540 1880504 "NAGE01" 1881696 T NAGE01 (NIL) -7 NIL NIL NIL) (-771 1876310 1876862 1877420 "NAGD03" 1877995 T NAGD03 (NIL) -7 NIL NIL NIL) (-770 1868006 1869988 1871942 "NAGD02" 1874376 T NAGD02 (NIL) -7 NIL NIL NIL) (-769 1861745 1863242 1864682 "NAGD01" 1866586 T NAGD01 (NIL) -7 NIL NIL NIL) (-768 1857882 1858776 1859613 "NAGC06" 1860928 T NAGC06 (NIL) -7 NIL NIL NIL) (-767 1856329 1856679 1857035 "NAGC05" 1857546 T NAGC05 (NIL) -7 NIL NIL NIL) (-766 1855693 1855824 1855968 "NAGC02" 1856205 T NAGC02 (NIL) -7 NIL NIL NIL) (-765 1854494 1855221 1855261 "NAALG" 1855340 NIL NAALG (NIL T) -9 NIL 1855401 NIL) (-764 1854323 1854358 1854448 "NAALG-" 1854453 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-763 1848195 1849381 1850568 "MULTSQFR" 1853219 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-762 1847502 1847589 1847773 "MULTFACT" 1848107 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-761 1839647 1844085 1844138 "MTSCAT" 1845208 NIL MTSCAT (NIL T T) -9 NIL 1845724 NIL) (-760 1839353 1839413 1839505 "MTHING" 1839587 NIL MTHING (NIL T) -7 NIL NIL NIL) (-759 1839139 1839178 1839238 "MSYSCMD" 1839313 T MSYSCMD (NIL) -7 NIL NIL NIL) (-758 1834853 1837894 1838214 "MSET" 1838852 NIL MSET (NIL T) -8 NIL NIL NIL) (-757 1831598 1834414 1834455 "MSETAGG" 1834460 NIL MSETAGG (NIL T) -9 NIL 1834494 NIL) (-756 1827190 1828977 1829722 "MRING" 1830898 NIL MRING (NIL T T) -8 NIL NIL NIL) (-755 1826750 1826823 1826954 "MRF2" 1827117 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-754 1826362 1826403 1826547 "MRATFAC" 1826709 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-753 1823932 1824269 1824700 "MPRFF" 1826067 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-752 1817259 1823786 1823883 "MPOLY" 1823888 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-751 1816743 1816784 1816992 "MPCPF" 1817218 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-750 1816251 1816300 1816484 "MPC3" 1816694 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-749 1815434 1815527 1815748 "MPC2" 1816166 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-748 1813711 1814072 1814462 "MONOTOOL" 1815094 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-747 1812856 1813239 1813267 "MONOID" 1813486 T MONOID (NIL) -9 NIL 1813633 NIL) (-746 1812372 1812521 1812702 "MONOID-" 1812707 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-745 1801326 1808192 1808251 "MONOGEN" 1808925 NIL MONOGEN (NIL T T) -9 NIL 1809381 NIL) (-744 1798376 1799279 1800279 "MONOGEN-" 1800398 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-743 1797093 1797641 1797669 "MONADWU" 1798061 T MONADWU (NIL) -9 NIL 1798299 NIL) (-742 1796423 1796624 1796872 "MONADWU-" 1796877 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-741 1795708 1796012 1796040 "MONAD" 1796247 T MONAD (NIL) -9 NIL 1796359 NIL) (-740 1795375 1795471 1795603 "MONAD-" 1795608 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-739 1793514 1794288 1794567 "MOEBIUS" 1795128 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-738 1792682 1793182 1793222 "MODULE" 1793227 NIL MODULE (NIL T) -9 NIL 1793266 NIL) (-737 1792220 1792346 1792536 "MODULE-" 1792541 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-736 1789750 1790584 1790911 "MODRING" 1792044 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-735 1786472 1787855 1788376 "MODOP" 1789279 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-734 1784958 1785539 1785816 "MODMONOM" 1786335 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-733 1773698 1783249 1783663 "MODMON" 1784595 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-732 1770524 1772542 1772818 "MODFIELD" 1773573 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-731 1769435 1769805 1769995 "MMLFORM" 1770354 T MMLFORM (NIL) -8 NIL NIL NIL) (-730 1768955 1769004 1769183 "MMAP" 1769386 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-729 1766848 1767787 1767828 "MLO" 1768251 NIL MLO (NIL T) -9 NIL 1768493 NIL) (-728 1764196 1764730 1765332 "MLIFT" 1766329 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-727 1763575 1763671 1763825 "MKUCFUNC" 1764107 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-726 1763168 1763244 1763367 "MKRECORD" 1763498 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-725 1762191 1762377 1762605 "MKFUNC" 1762979 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-724 1761567 1761683 1761839 "MKFLCFN" 1762074 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-723 1760832 1760946 1761131 "MKBCFUNC" 1761460 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-722 1756815 1760386 1760522 "MINT" 1760716 T MINT (NIL) -8 NIL NIL NIL) (-721 1755597 1755870 1756147 "MHROWRED" 1756570 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-720 1750341 1754132 1754537 "MFLOAT" 1755212 T MFLOAT (NIL) -8 NIL NIL NIL) (-719 1749686 1749774 1749945 "MFINFACT" 1750253 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-718 1745965 1746849 1747733 "MESH" 1748822 T MESH (NIL) -7 NIL NIL NIL) (-717 1744319 1744667 1745020 "MDDFACT" 1745652 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-716 1740855 1743450 1743491 "MDAGG" 1743746 NIL MDAGG (NIL T) -9 NIL 1743889 NIL) (-715 1728557 1740148 1740355 "MCMPLX" 1740668 T MCMPLX (NIL) -8 NIL NIL NIL) (-714 1727676 1727840 1728041 "MCDEN" 1728406 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-713 1725524 1725836 1726216 "MCALCFN" 1727406 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-712 1724401 1724689 1724922 "MAYBE" 1725330 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-711 1721959 1722536 1723098 "MATSTOR" 1723872 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-710 1717381 1721331 1721579 "MATRIX" 1721744 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-709 1713081 1713854 1714590 "MATLIN" 1716738 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-708 1702427 1706138 1706215 "MATCAT" 1711247 NIL MATCAT (NIL T T T) -9 NIL 1712719 NIL) (-707 1698380 1699690 1701103 "MATCAT-" 1701108 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-706 1696956 1697127 1697460 "MATCAT2" 1698215 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-705 1695032 1695392 1695776 "MAPPKG3" 1696631 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-704 1693989 1694186 1694408 "MAPPKG2" 1694856 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-703 1692446 1692772 1693099 "MAPPKG1" 1693695 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-702 1691447 1691852 1692029 "MAPPAST" 1692289 T MAPPAST (NIL) -8 NIL NIL NIL) (-701 1691052 1691116 1691239 "MAPHACK3" 1691383 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-700 1690632 1690705 1690819 "MAPHACK2" 1690984 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-699 1690058 1690173 1690315 "MAPHACK1" 1690523 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-698 1687981 1688758 1689062 "MAGMA" 1689786 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-697 1687400 1687705 1687796 "MACROAST" 1687910 T MACROAST (NIL) -8 NIL NIL NIL) (-696 1683643 1685639 1686100 "M3D" 1686972 NIL M3D (NIL T) -8 NIL NIL NIL) (-695 1677123 1681954 1681995 "LZSTAGG" 1682777 NIL LZSTAGG (NIL T) -9 NIL 1683072 NIL) (-694 1672805 1674254 1675711 "LZSTAGG-" 1675716 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-693 1669718 1670696 1671183 "LWORD" 1672350 NIL LWORD (NIL T) -8 NIL NIL NIL) (-692 1669240 1669522 1669597 "LSTAST" 1669663 T LSTAST (NIL) -8 NIL NIL NIL) (-691 1661168 1669011 1669145 "LSQM" 1669150 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-690 1660386 1660531 1660759 "LSPP" 1661023 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-689 1658168 1658499 1658955 "LSMP" 1660075 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-688 1654905 1655621 1656351 "LSMP1" 1657470 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-687 1648041 1653995 1654036 "LSAGG" 1654098 NIL LSAGG (NIL T) -9 NIL 1654176 NIL) (-686 1644550 1645660 1646873 "LSAGG-" 1646878 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-685 1641845 1643694 1643943 "LPOLY" 1644345 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-684 1641421 1641512 1641635 "LPEFRAC" 1641754 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-683 1639598 1640515 1640768 "LO" 1641253 NIL LO (NIL T T T) -8 NIL NIL NIL) (-682 1639174 1639348 1639376 "LOGIC" 1639487 T LOGIC (NIL) -9 NIL 1639568 NIL) (-681 1639030 1639059 1639130 "LOGIC-" 1639135 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-680 1638205 1638363 1638556 "LODOOPS" 1638886 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-679 1635300 1638121 1638187 "LODO" 1638192 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-678 1633824 1634073 1634426 "LODOF" 1635047 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-677 1629700 1632459 1632500 "LODOCAT" 1632938 NIL LODOCAT (NIL T) -9 NIL 1633149 NIL) (-676 1629415 1629491 1629618 "LODOCAT-" 1629623 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-675 1626401 1629256 1629374 "LODO2" 1629379 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-674 1623508 1626338 1626383 "LODO1" 1626388 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-673 1622377 1622554 1622859 "LODEEF" 1623331 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-672 1617349 1620543 1620584 "LNAGG" 1621446 NIL LNAGG (NIL T) -9 NIL 1621881 NIL) (-671 1616442 1616710 1617052 "LNAGG-" 1617057 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-670 1612422 1613367 1614006 "LMOPS" 1615857 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-669 1611721 1612199 1612240 "LMODULE" 1612245 NIL LMODULE (NIL T) -9 NIL 1612271 NIL) (-668 1608676 1611366 1611489 "LMDICT" 1611631 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-667 1608252 1608466 1608507 "LLINSET" 1608568 NIL LLINSET (NIL T) -9 NIL 1608612 NIL) (-666 1607897 1608160 1608220 "LITERAL" 1608225 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-665 1600351 1606831 1607135 "LIST" 1607626 NIL LIST (NIL T) -8 NIL NIL NIL) (-664 1599870 1599950 1600089 "LIST3" 1600271 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-663 1598859 1599055 1599283 "LIST2" 1599688 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-662 1596957 1597305 1597704 "LIST2MAP" 1598506 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-661 1596540 1596776 1596817 "LINSET" 1596822 NIL LINSET (NIL T) -9 NIL 1596856 NIL) (-660 1595354 1596048 1596215 "LINFORM" 1596425 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-659 1593653 1594381 1594422 "LINEXP" 1594912 NIL LINEXP (NIL T) -9 NIL 1595185 NIL) (-658 1592229 1593133 1593314 "LINELT" 1593524 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-657 1590786 1591066 1591377 "LINDEP" 1591981 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-656 1589922 1590518 1590628 "LINBASIS" 1590716 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-655 1586659 1587408 1588185 "LIMITRF" 1589177 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-654 1584944 1585258 1585667 "LIMITPS" 1586354 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-653 1578964 1584455 1584683 "LIE" 1584765 NIL LIE (NIL T T) -8 NIL NIL NIL) (-652 1577792 1578367 1578407 "LIECAT" 1578547 NIL LIECAT (NIL T) -9 NIL 1578698 NIL) (-651 1577627 1577660 1577748 "LIECAT-" 1577753 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-650 1569814 1577167 1577323 "LIB" 1577491 T LIB (NIL) -8 NIL NIL NIL) (-649 1565383 1566332 1567267 "LGROBP" 1568931 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-648 1563321 1563655 1564005 "LF" 1565104 NIL LF (NIL T T) -7 NIL NIL NIL) (-647 1561945 1562853 1562881 "LFCAT" 1563088 T LFCAT (NIL) -9 NIL 1563227 NIL) (-646 1558805 1559477 1560165 "LEXTRIPK" 1561309 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-645 1555393 1556375 1556878 "LEXP" 1558385 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-644 1554809 1555114 1555206 "LETAST" 1555321 T LETAST (NIL) -8 NIL NIL NIL) (-643 1553195 1553520 1553921 "LEADCDET" 1554491 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-642 1552373 1552459 1552688 "LAZM3PK" 1553116 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-641 1546884 1550450 1550988 "LAUPOL" 1551885 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-640 1546457 1546507 1546668 "LAPLACE" 1546834 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-639 1544194 1545558 1545809 "LA" 1546290 NIL LA (NIL T T T) -8 NIL NIL NIL) (-638 1543042 1543758 1543799 "LALG" 1543861 NIL LALG (NIL T) -9 NIL 1543920 NIL) (-637 1542738 1542815 1542951 "LALG-" 1542956 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-636 1542567 1542597 1542638 "KVTFROM" 1542700 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-635 1541406 1541934 1542119 "KTVLOGIC" 1542402 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-634 1541235 1541265 1541306 "KRCFROM" 1541368 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-633 1540127 1540326 1540625 "KOVACIC" 1541035 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-632 1539956 1539986 1540027 "KONVERT" 1540089 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-631 1539785 1539815 1539856 "KOERCE" 1539918 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-630 1537472 1538378 1538755 "KERNEL" 1539441 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-629 1536956 1537049 1537181 "KERNEL2" 1537386 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-628 1530427 1535433 1535487 "KDAGG" 1535864 NIL KDAGG (NIL T T) -9 NIL 1536070 NIL) (-627 1529938 1530080 1530285 "KDAGG-" 1530290 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-626 1522638 1529599 1529754 "KAFILE" 1529816 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-625 1522242 1522527 1522590 "JVMOP" 1522595 T JVMOP (NIL) -8 NIL NIL NIL) (-624 1520978 1521482 1521731 "JVMMDACC" 1522013 T JVMMDACC (NIL) -8 NIL NIL NIL) (-623 1519914 1520368 1520573 "JVMFDACC" 1520793 T JVMFDACC (NIL) -8 NIL NIL NIL) (-622 1518495 1518990 1519290 "JVMCSTTG" 1519634 T JVMCSTTG (NIL) -8 NIL NIL NIL) (-621 1517631 1518035 1518196 "JVMCFACC" 1518354 T JVMCFACC (NIL) -8 NIL NIL NIL) (-620 1517309 1517548 1517597 "JVMBCODE" 1517602 T JVMBCODE (NIL) -8 NIL NIL NIL) (-619 1511329 1516820 1517048 "JORDAN" 1517130 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1510642 1510978 1511099 "JOINAST" 1511228 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1506677 1508819 1508873 "IXAGG" 1509802 NIL IXAGG (NIL T T) -9 NIL 1510261 NIL) (-616 1505530 1505902 1506321 "IXAGG-" 1506326 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-615 1500619 1505452 1505511 "IVECTOR" 1505516 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-614 1499343 1499622 1499888 "ITUPLE" 1500386 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-613 1497815 1498022 1498317 "ITRIGMNP" 1499165 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-612 1496542 1496764 1497047 "ITFUN3" 1497591 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-611 1496168 1496231 1496340 "ITFUN2" 1496479 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-610 1495273 1495648 1495822 "ITFORM" 1496014 T ITFORM (NIL) -8 NIL NIL NIL) (-609 1493042 1494293 1494571 "ITAYLOR" 1495028 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-608 1481439 1487179 1488342 "ISUPS" 1491912 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-607 1480531 1480683 1480919 "ISUMP" 1481286 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-606 1475381 1480476 1480517 "ISTRING" 1480522 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-605 1474797 1475102 1475194 "ISAST" 1475309 T ISAST (NIL) -8 NIL NIL NIL) (-604 1473994 1474088 1474304 "IRURPK" 1474711 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-603 1472906 1473131 1473371 "IRSN" 1473774 T IRSN (NIL) -7 NIL NIL NIL) (-602 1470951 1471332 1471761 "IRRF2F" 1472544 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-601 1470692 1470736 1470812 "IRREDFFX" 1470907 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-600 1469265 1469566 1469865 "IROOT" 1470425 NIL IROOT (NIL T) -7 NIL NIL NIL) (-599 1465705 1466949 1467641 "IR" 1468605 NIL IR (NIL T) -8 NIL NIL NIL) (-598 1464844 1465198 1465349 "IRFORM" 1465574 T IRFORM (NIL) -8 NIL NIL NIL) (-597 1462433 1462952 1463518 "IR2" 1464322 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-596 1461515 1461646 1461860 "IR2F" 1462316 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-595 1461300 1461340 1461400 "IPRNTPK" 1461475 T IPRNTPK (NIL) -7 NIL NIL NIL) (-594 1457253 1461189 1461258 "IPF" 1461263 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-593 1455274 1457178 1457235 "IPADIC" 1457240 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-592 1454532 1454834 1454964 "IP4ADDR" 1455164 T IP4ADDR (NIL) -8 NIL NIL NIL) (-591 1453870 1454161 1454293 "IOMODE" 1454420 T IOMODE (NIL) -8 NIL NIL NIL) (-590 1452841 1453467 1453594 "IOBFILE" 1453763 T IOBFILE (NIL) -8 NIL NIL NIL) (-589 1452251 1452745 1452773 "IOBCON" 1452778 T IOBCON (NIL) -9 NIL 1452799 NIL) (-588 1451756 1451820 1452003 "INVLAPLA" 1452187 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-587 1441326 1443758 1446144 "INTTR" 1449420 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-586 1437619 1438403 1439268 "INTTOOLS" 1440511 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-585 1437199 1437296 1437413 "INTSLPE" 1437522 T INTSLPE (NIL) -7 NIL NIL NIL) (-584 1434666 1437122 1437181 "INTRVL" 1437186 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-583 1432244 1432780 1433355 "INTRF" 1434151 NIL INTRF (NIL T) -7 NIL NIL NIL) (-582 1431637 1431752 1431894 "INTRET" 1432142 NIL INTRET (NIL T) -7 NIL NIL NIL) (-581 1429610 1430023 1430493 "INTRAT" 1431245 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-580 1426855 1427456 1428075 "INTPM" 1429095 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-579 1423572 1424199 1424937 "INTPAF" 1426241 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-578 1418673 1419713 1420764 "INTPACK" 1422541 T INTPACK (NIL) -7 NIL NIL NIL) (-577 1414861 1418470 1418579 "INT" 1418584 T INT (NIL) -8 NIL NIL NIL) (-576 1414107 1414265 1414473 "INTHERTR" 1414703 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-575 1413540 1413626 1413814 "INTHERAL" 1414021 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-574 1411308 1411829 1412286 "INTHEORY" 1413103 T INTHEORY (NIL) -7 NIL NIL NIL) (-573 1402640 1404335 1406107 "INTG0" 1409660 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-572 1383165 1388003 1392813 "INTFTBL" 1397850 T INTFTBL (NIL) -8 NIL NIL NIL) (-571 1382390 1382552 1382725 "INTFACT" 1383024 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-570 1379787 1380263 1380820 "INTEF" 1381944 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-569 1377984 1378879 1378907 "INTDOM" 1379208 T INTDOM (NIL) -9 NIL 1379415 NIL) (-568 1377323 1377527 1377769 "INTDOM-" 1377774 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-567 1373197 1375612 1375666 "INTCAT" 1376465 NIL INTCAT (NIL T) -9 NIL 1376786 NIL) (-566 1372651 1372772 1372900 "INTBIT" 1373089 T INTBIT (NIL) -7 NIL NIL NIL) (-565 1371332 1371504 1371811 "INTALG" 1372496 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-564 1370809 1370905 1371062 "INTAF" 1371236 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-563 1363776 1370619 1370759 "INTABL" 1370764 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-562 1363013 1363575 1363640 "INT8" 1363674 T INT8 (NIL) -8 NIL NIL 1363719) (-561 1362249 1362811 1362876 "INT64" 1362910 T INT64 (NIL) -8 NIL NIL 1362955) (-560 1361485 1362047 1362112 "INT32" 1362146 T INT32 (NIL) -8 NIL NIL 1362191) (-559 1360721 1361283 1361348 "INT16" 1361382 T INT16 (NIL) -8 NIL NIL 1361427) (-558 1354822 1358269 1358297 "INS" 1359231 T INS (NIL) -9 NIL 1359896 NIL) (-557 1351876 1352833 1353807 "INS-" 1353880 NIL INS- (NIL T) -8 NIL NIL NIL) (-556 1350633 1350878 1351176 "INPSIGN" 1351629 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-555 1349727 1349868 1350065 "INPRODPF" 1350513 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-554 1348597 1348738 1348975 "INPRODFF" 1349607 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-553 1347585 1347749 1348009 "INNMFACT" 1348433 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-552 1346764 1346879 1347067 "INMODGCD" 1347484 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-551 1345248 1345517 1345841 "INFSP" 1346509 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-550 1344408 1344549 1344732 "INFPROD0" 1345128 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-549 1340975 1342473 1342988 "INFORM" 1343901 T INFORM (NIL) -8 NIL NIL NIL) (-548 1340573 1340645 1340743 "INFORM1" 1340910 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-547 1340078 1340185 1340299 "INFINITY" 1340479 T INFINITY (NIL) -7 NIL NIL NIL) (-546 1339152 1339798 1339899 "INETCLTS" 1339997 T INETCLTS (NIL) -8 NIL NIL NIL) (-545 1337750 1338018 1338339 "INEP" 1338900 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-544 1336811 1337647 1337712 "INDE" 1337717 NIL INDE (NIL T) -8 NIL NIL NIL) (-543 1336363 1336443 1336560 "INCRMAPS" 1336738 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-542 1335085 1335632 1335838 "INBFILE" 1336177 T INBFILE (NIL) -8 NIL NIL NIL) (-541 1330264 1331321 1332265 "INBFF" 1334173 NIL INBFF (NIL T) -7 NIL NIL NIL) (-540 1329118 1329441 1329469 "INBCON" 1329982 T INBCON (NIL) -9 NIL 1330248 NIL) (-539 1328328 1328593 1328869 "INBCON-" 1328874 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-538 1327747 1328052 1328143 "INAST" 1328257 T INAST (NIL) -8 NIL NIL NIL) (-537 1327114 1327426 1327532 "IMPTAST" 1327661 T IMPTAST (NIL) -8 NIL NIL NIL) (-536 1323035 1326958 1327062 "IMATRIX" 1327067 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-535 1321727 1321866 1322182 "IMATQF" 1322891 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-534 1319907 1320174 1320511 "IMATLIN" 1321483 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-533 1313822 1319831 1319889 "ILIST" 1319894 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-532 1311488 1313682 1313795 "IIARRAY2" 1313800 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-531 1306288 1311399 1311463 "IFF" 1311468 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-530 1305569 1305905 1306021 "IFAST" 1306192 T IFAST (NIL) -8 NIL NIL NIL) (-529 1300081 1304861 1305049 "IFARRAY" 1305426 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-528 1299119 1299985 1300058 "IFAMON" 1300063 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-527 1298691 1298768 1298822 "IEVALAB" 1299029 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-526 1298354 1298434 1298594 "IEVALAB-" 1298599 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-525 1297735 1298269 1298331 "IDPO" 1298336 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-524 1296799 1297624 1297699 "IDPOAMS" 1297704 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1295932 1296688 1296763 "IDPOAM" 1296768 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1294412 1294939 1294991 "IDPC" 1295503 NIL IDPC (NIL T T) -9 NIL 1295784 NIL) (-521 1293744 1294304 1294377 "IDPAM" 1294382 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-520 1292959 1293636 1293709 "IDPAG" 1293714 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-519 1292503 1292765 1292855 "IDENT" 1292889 T IDENT (NIL) -8 NIL NIL NIL) (-518 1288722 1289606 1290501 "IDECOMP" 1291660 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-517 1281357 1282645 1283692 "IDEAL" 1287758 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-516 1280499 1280629 1280829 "ICDEN" 1281241 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-515 1279474 1279979 1280126 "ICARD" 1280372 T ICARD (NIL) -8 NIL NIL NIL) (-514 1277504 1277847 1278252 "IBPTOOLS" 1279151 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-513 1272619 1277124 1277237 "IBITS" 1277423 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-512 1269294 1269918 1270613 "IBATOOL" 1272036 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-511 1267055 1267535 1268068 "IBACHIN" 1268829 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-510 1264645 1266901 1267004 "IARRAY2" 1267009 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-509 1260358 1264571 1264628 "IARRAY1" 1264633 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-508 1253368 1258770 1259251 "IAN" 1259897 T IAN (NIL) -8 NIL NIL NIL) (-507 1252873 1252936 1253109 "IALGFACT" 1253305 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-506 1252365 1252514 1252542 "HYPCAT" 1252749 T HYPCAT (NIL) -9 NIL NIL NIL) (-505 1251867 1252020 1252206 "HYPCAT-" 1252211 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-504 1251414 1251662 1251745 "HOSTNAME" 1251804 T HOSTNAME (NIL) -8 NIL NIL NIL) (-503 1251247 1251296 1251337 "HOMOTOP" 1251342 NIL HOMOTOP (NIL T) -9 NIL 1251375 NIL) (-502 1247680 1249179 1249220 "HOAGG" 1250201 NIL HOAGG (NIL T) -9 NIL 1250930 NIL) (-501 1246196 1246673 1247199 "HOAGG-" 1247204 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-500 1239232 1245789 1245939 "HEXADEC" 1246066 T HEXADEC (NIL) -8 NIL NIL NIL) (-499 1237944 1238202 1238465 "HEUGCD" 1239009 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-498 1236876 1237781 1237911 "HELLFDIV" 1237916 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-497 1234886 1236653 1236741 "HEAP" 1236820 NIL HEAP (NIL T) -8 NIL NIL NIL) (-496 1234083 1234438 1234572 "HEADAST" 1234772 T HEADAST (NIL) -8 NIL NIL NIL) (-495 1227470 1233998 1234060 "HDP" 1234065 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-494 1220482 1227105 1227257 "HDMP" 1227371 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-493 1219788 1219946 1220110 "HB" 1220338 T HB (NIL) -7 NIL NIL NIL) (-492 1212798 1219634 1219738 "HASHTBL" 1219743 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-491 1212214 1212519 1212611 "HASAST" 1212726 T HASAST (NIL) -8 NIL NIL NIL) (-490 1209620 1211836 1212018 "HACKPI" 1212052 T HACKPI (NIL) -8 NIL NIL NIL) (-489 1204792 1209473 1209586 "GTSET" 1209591 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-488 1197831 1204670 1204768 "GSTBL" 1204773 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-487 1189580 1196996 1197252 "GSERIES" 1197631 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-486 1188611 1189124 1189152 "GROUP" 1189355 T GROUP (NIL) -9 NIL 1189489 NIL) (-485 1187935 1188136 1188387 "GROUP-" 1188392 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-484 1186284 1186623 1187010 "GROEBSOL" 1187612 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-483 1185112 1185472 1185523 "GRMOD" 1186052 NIL GRMOD (NIL T T) -9 NIL 1186220 NIL) (-482 1184868 1184916 1185044 "GRMOD-" 1185049 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-481 1180008 1181222 1182222 "GRIMAGE" 1183888 T GRIMAGE (NIL) -8 NIL NIL NIL) (-480 1178402 1178735 1179059 "GRDEF" 1179704 T GRDEF (NIL) -7 NIL NIL NIL) (-479 1177834 1177962 1178103 "GRAY" 1178281 T GRAY (NIL) -7 NIL NIL NIL) (-478 1176911 1177413 1177464 "GRALG" 1177617 NIL GRALG (NIL T T) -9 NIL 1177710 NIL) (-477 1176548 1176645 1176808 "GRALG-" 1176813 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-476 1173029 1176131 1176310 "GPOLSET" 1176454 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-475 1172377 1172440 1172698 "GOSPER" 1172966 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-474 1167947 1168815 1169341 "GMODPOL" 1172076 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-473 1166934 1167136 1167374 "GHENSEL" 1167759 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-472 1161006 1161933 1162953 "GENUPS" 1166018 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-471 1160697 1160754 1160843 "GENUFACT" 1160949 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-470 1160097 1160186 1160351 "GENPGCD" 1160615 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-469 1159565 1159606 1159819 "GENMFACT" 1160056 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-468 1158101 1158388 1158695 "GENEEZ" 1159308 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-467 1151273 1157712 1157874 "GDMP" 1158024 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-466 1140012 1145044 1146150 "GCNAALG" 1150256 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-465 1138139 1139187 1139215 "GCDDOM" 1139470 T GCDDOM (NIL) -9 NIL 1139627 NIL) (-464 1137579 1137736 1137951 "GCDDOM-" 1137956 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-463 1136229 1136436 1136740 "GB" 1137358 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-462 1124701 1127175 1129567 "GBINTERN" 1133920 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1122502 1122830 1123251 "GBF" 1124376 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1121259 1121448 1121715 "GBEUCLID" 1122318 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1120590 1120733 1120882 "GAUSSFAC" 1121130 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-458 1118911 1119259 1119573 "GALUTIL" 1120309 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-457 1117171 1117493 1117817 "GALPOLYU" 1118638 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-456 1114470 1114826 1115233 "GALFACTU" 1116868 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-455 1106084 1107775 1109383 "GALFACT" 1112902 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-454 1103370 1104130 1104158 "FVFUN" 1105314 T FVFUN (NIL) -9 NIL 1106034 NIL) (-453 1102600 1102818 1102846 "FVC" 1103137 T FVC (NIL) -9 NIL 1103320 NIL) (-452 1102201 1102425 1102493 "FUNDESC" 1102552 T FUNDESC (NIL) -8 NIL NIL NIL) (-451 1101774 1101998 1102079 "FUNCTION" 1102153 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-450 1099404 1100096 1100562 "FT" 1101328 T FT (NIL) -8 NIL NIL NIL) (-449 1098081 1098705 1098908 "FTEM" 1099221 T FTEM (NIL) -8 NIL NIL NIL) (-448 1096350 1096661 1097058 "FSUPFACT" 1097772 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-447 1094669 1095036 1095368 "FST" 1096038 T FST (NIL) -8 NIL NIL NIL) (-446 1093850 1093974 1094162 "FSRED" 1094551 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-445 1092539 1092805 1093152 "FSPRMELT" 1093565 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-444 1089749 1090283 1090769 "FSPECF" 1092102 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-443 1069976 1079523 1079564 "FS" 1083448 NIL FS (NIL T) -9 NIL 1085737 NIL) (-442 1058037 1061612 1065669 "FS-" 1065969 NIL FS- (NIL T T) -8 NIL NIL NIL) (-441 1057559 1057619 1057789 "FSINT" 1057978 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-440 1055695 1056552 1056855 "FSERIES" 1057338 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-439 1054719 1054853 1055077 "FSCINT" 1055575 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-438 1050583 1053663 1053704 "FSAGG" 1054074 NIL FSAGG (NIL T) -9 NIL 1054333 NIL) (-437 1048183 1048946 1049742 "FSAGG-" 1049837 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-436 1047207 1047368 1047595 "FSAGG2" 1048036 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-435 1044867 1045165 1045713 "FS2UPS" 1046925 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-434 1044495 1044544 1044673 "FS2" 1044818 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 1043361 1043544 1043846 "FS2EXPXP" 1044320 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-432 1042775 1042902 1043054 "FRUTIL" 1043241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-431 1033692 1038270 1039628 "FR" 1041449 NIL FR (NIL T) -8 NIL NIL NIL) (-430 1028210 1031381 1031421 "FRNAALG" 1032741 NIL FRNAALG (NIL T) -9 NIL 1033339 NIL) (-429 1023691 1024959 1026234 "FRNAALG-" 1026984 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-428 1023323 1023372 1023499 "FRNAAF2" 1023642 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 1021610 1022172 1022468 "FRMOD" 1023135 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 1019215 1019985 1020303 "FRIDEAL" 1021401 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-425 1018400 1018493 1018784 "FRIDEAL2" 1019122 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-424 1017491 1017947 1017988 "FRETRCT" 1017993 NIL FRETRCT (NIL T) -9 NIL 1018169 NIL) (-423 1016549 1016834 1017185 "FRETRCT-" 1017190 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-422 1013363 1014833 1014892 "FRAMALG" 1015774 NIL FRAMALG (NIL T T) -9 NIL 1016066 NIL) (-421 1011401 1011952 1012582 "FRAMALG-" 1012805 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-420 1004372 1010874 1011151 "FRAC" 1011156 NIL FRAC (NIL T) -8 NIL NIL NIL) (-419 1004002 1004065 1004172 "FRAC2" 1004309 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-418 1003632 1003695 1003802 "FR2" 1003939 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 997549 1001011 1001039 "FPS" 1002158 T FPS (NIL) -9 NIL 1002715 NIL) (-416 996974 997107 997271 "FPS-" 997417 NIL FPS- (NIL T) -8 NIL NIL NIL) (-415 993926 995931 995959 "FPC" 996184 T FPC (NIL) -9 NIL 996326 NIL) (-414 993707 993759 993856 "FPC-" 993861 NIL FPC- (NIL T) -8 NIL NIL NIL) (-413 992465 993195 993236 "FPATMAB" 993241 NIL FPATMAB (NIL T) -9 NIL 993393 NIL) (-412 990608 991207 991554 "FPARFRAC" 992181 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-411 985900 986500 987182 "FORTRAN" 990040 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-410 983586 984116 984655 "FORT" 985381 T FORT (NIL) -7 NIL NIL NIL) (-409 981160 981824 981852 "FORTFN" 982912 T FORTFN (NIL) -9 NIL 983536 NIL) (-408 980912 980974 981002 "FORTCAT" 981061 T FORTCAT (NIL) -9 NIL 981123 NIL) (-407 978916 979528 979918 "FORMULA" 980542 T FORMULA (NIL) -8 NIL NIL NIL) (-406 978698 978734 978803 "FORMULA1" 978880 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-405 978215 978273 978446 "FORDER" 978640 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-404 977275 977475 977668 "FOP" 978042 T FOP (NIL) -7 NIL NIL NIL) (-403 975688 976555 976729 "FNLA" 977157 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-402 974307 974818 974846 "FNCAT" 975306 T FNCAT (NIL) -9 NIL 975566 NIL) (-401 973750 974266 974294 "FNAME" 974299 T FNAME (NIL) -8 NIL NIL NIL) (-400 972076 973249 973277 "FMTC" 973282 T FMTC (NIL) -9 NIL 973318 NIL) (-399 970624 972012 972058 "FMONOID" 972063 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-398 967213 968579 968620 "FMONCAT" 969837 NIL FMONCAT (NIL T) -9 NIL 970442 NIL) (-397 966231 966955 967104 "FM" 967109 NIL FM (NIL T T) -8 NIL NIL NIL) (-396 963553 964301 964329 "FMFUN" 965473 T FMFUN (NIL) -9 NIL 966181 NIL) (-395 962786 963003 963031 "FMC" 963321 T FMC (NIL) -9 NIL 963503 NIL) (-394 959659 960711 960765 "FMCAT" 961960 NIL FMCAT (NIL T T) -9 NIL 962455 NIL) (-393 958327 959425 959525 "FM1" 959604 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-392 956065 956517 957011 "FLOATRP" 957878 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-391 948721 953794 954415 "FLOAT" 955464 T FLOAT (NIL) -8 NIL NIL NIL) (-390 946123 946659 947237 "FLOATCP" 948188 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-389 944641 945715 945756 "FLINEXP" 945761 NIL FLINEXP (NIL T) -9 NIL 945854 NIL) (-388 943771 944030 944358 "FLINEXP-" 944363 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-387 942829 942991 943215 "FLASORT" 943623 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-386 939747 940799 940851 "FLALG" 942078 NIL FLALG (NIL T T) -9 NIL 942545 NIL) (-385 933011 937156 937197 "FLAGG" 938459 NIL FLAGG (NIL T) -9 NIL 939111 NIL) (-384 931665 932076 932566 "FLAGG-" 932571 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 930689 930850 931077 "FLAGG2" 931518 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-382 927320 928534 928593 "FINRALG" 929721 NIL FINRALG (NIL T T) -9 NIL 930229 NIL) (-381 926444 926709 927048 "FINRALG-" 927053 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-380 925750 926049 926077 "FINITE" 926273 T FINITE (NIL) -9 NIL 926380 NIL) (-379 917701 920280 920320 "FINAALG" 923987 NIL FINAALG (NIL T) -9 NIL 925440 NIL) (-378 912817 914083 915227 "FINAALG-" 916606 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-377 912095 912572 912675 "FILE" 912747 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 910655 911077 911131 "FILECAT" 911815 NIL FILECAT (NIL T T) -9 NIL 912031 NIL) (-375 908051 909885 909913 "FIELD" 909953 T FIELD (NIL) -9 NIL 910033 NIL) (-374 906593 907056 907567 "FIELD-" 907572 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-373 904275 905228 905575 "FGROUP" 906279 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-372 903347 903529 903749 "FGLMICPK" 904107 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-371 898581 903272 903329 "FFX" 903334 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-370 898176 898243 898378 "FFSLPE" 898514 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-369 894052 894948 895744 "FFPOLY" 897412 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 893550 893592 893801 "FFPOLY2" 894010 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-367 888798 893469 893532 "FFP" 893537 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-366 883598 888709 888773 "FF" 888778 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-365 878108 882941 883131 "FFNBX" 883452 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-364 872420 877243 877501 "FFNBP" 877962 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-363 866437 871704 871915 "FFNB" 872253 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-362 865257 865467 865782 "FFINTBAS" 866234 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-361 860833 863504 863532 "FFIELDC" 864152 T FFIELDC (NIL) -9 NIL 864528 NIL) (-360 859411 859866 860363 "FFIELDC-" 860368 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-359 858968 859026 859150 "FFHOM" 859353 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-358 856627 857150 857667 "FFF" 858483 NIL FFF (NIL T) -7 NIL NIL NIL) (-357 851641 856369 856470 "FFCGX" 856570 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-356 846659 851373 851480 "FFCGP" 851584 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-355 841238 846386 846494 "FFCG" 846595 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-354 819901 830970 831056 "FFCAT" 836221 NIL FFCAT (NIL T T T) -9 NIL 837672 NIL) (-353 814912 816146 817460 "FFCAT-" 818690 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-352 814317 814366 814601 "FFCAT2" 814863 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-351 802970 807289 808509 "FEXPR" 813169 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-350 801898 802367 802408 "FEVALAB" 802492 NIL FEVALAB (NIL T) -9 NIL 802753 NIL) (-349 801015 801267 801605 "FEVALAB-" 801610 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-348 799425 800398 800601 "FDIV" 800914 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-347 796287 797172 797287 "FDIVCAT" 798855 NIL FDIVCAT (NIL T T T T) -9 NIL 799292 NIL) (-346 796043 796076 796246 "FDIVCAT-" 796251 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-345 795257 795350 795627 "FDIV2" 795950 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 794165 794552 794754 "FCTRDATA" 795075 T FCTRDATA (NIL) -8 NIL NIL NIL) (-343 792821 793110 793399 "FCPAK1" 793896 T FCPAK1 (NIL) -7 NIL NIL NIL) (-342 791824 792321 792462 "FCOMP" 792712 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-341 775139 778974 782512 "FC" 788306 T FC (NIL) -8 NIL NIL NIL) (-340 766834 771460 771500 "FAXF" 773302 NIL FAXF (NIL T) -9 NIL 773994 NIL) (-339 763955 764768 765593 "FAXF-" 766058 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-338 758524 763331 763507 "FARRAY" 763812 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-337 753088 755471 755524 "FAMR" 756547 NIL FAMR (NIL T T) -9 NIL 757007 NIL) (-336 751912 752280 752715 "FAMR-" 752720 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-335 750939 751834 751887 "FAMONOID" 751892 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-334 748569 749421 749474 "FAMONC" 750415 NIL FAMONC (NIL T T) -9 NIL 750801 NIL) (-333 747043 748323 748460 "FAGROUP" 748465 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-332 744796 745157 745560 "FACUTIL" 746724 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-331 743883 744080 744302 "FACTFUNC" 744606 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-330 735641 743186 743385 "EXPUPXS" 743739 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-329 733094 733664 734250 "EXPRTUBE" 735075 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-328 729305 729957 730687 "EXPRODE" 732433 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-327 713599 727954 728383 "EXPR" 728909 NIL EXPR (NIL T) -8 NIL NIL NIL) (-326 708033 708740 709546 "EXPR2UPS" 712897 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-325 707659 707722 707831 "EXPR2" 707970 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-324 697976 706810 707101 "EXPEXPAN" 707495 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-323 697740 697933 697962 "EXIT" 697967 T EXIT (NIL) -8 NIL NIL NIL) (-322 697160 697464 697555 "EXITAST" 697669 T EXITAST (NIL) -8 NIL NIL NIL) (-321 696781 696849 696962 "EVALCYC" 697092 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-320 696298 696440 696481 "EVALAB" 696651 NIL EVALAB (NIL T) -9 NIL 696755 NIL) (-319 695755 695901 696122 "EVALAB-" 696127 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-318 692863 694411 694439 "EUCDOM" 694994 T EUCDOM (NIL) -9 NIL 695344 NIL) (-317 691202 691710 692300 "EUCDOM-" 692305 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-316 678519 681500 684250 "ESTOOLS" 688472 T ESTOOLS (NIL) -7 NIL NIL NIL) (-315 678145 678208 678317 "ESTOOLS2" 678456 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-314 677890 677938 678018 "ESTOOLS1" 678097 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-313 671591 673521 673549 "ES" 676317 T ES (NIL) -9 NIL 677727 NIL) (-312 666268 667825 669642 "ES-" 669806 NIL ES- (NIL T) -8 NIL NIL NIL) (-311 662576 663403 664183 "ESCONT" 665508 T ESCONT (NIL) -7 NIL NIL NIL) (-310 662315 662353 662435 "ESCONT1" 662538 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-309 661984 662040 662140 "ES2" 662259 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-308 661608 661672 661781 "ES1" 661920 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-307 660800 660953 661129 "ERROR" 661452 T ERROR (NIL) -7 NIL NIL NIL) (-306 653816 660659 660750 "EQTBL" 660755 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-305 646075 649130 650579 "EQ" 652400 NIL -2130 (NIL T) -8 NIL NIL NIL) (-304 645701 645764 645873 "EQ2" 646012 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-303 640944 642039 643132 "EP" 644640 NIL EP (NIL T) -7 NIL NIL NIL) (-302 639484 639835 640141 "ENV" 640658 T ENV (NIL) -8 NIL NIL NIL) (-301 638444 639118 639146 "ENTIRER" 639151 T ENTIRER (NIL) -9 NIL 639197 NIL) (-300 634856 636626 636987 "EMR" 638252 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-299 633960 634171 634225 "ELTAGG" 634605 NIL ELTAGG (NIL T T) -9 NIL 634816 NIL) (-298 633667 633741 633882 "ELTAGG-" 633887 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-297 633425 633460 633514 "ELTAB" 633598 NIL ELTAB (NIL T T) -9 NIL 633650 NIL) (-296 632527 632697 632896 "ELFUTS" 633276 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-295 632251 632325 632353 "ELEMFUN" 632458 T ELEMFUN (NIL) -9 NIL NIL NIL) (-294 632115 632142 632210 "ELEMFUN-" 632215 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-293 626532 630157 630198 "ELAGG" 631138 NIL ELAGG (NIL T) -9 NIL 631601 NIL) (-292 624709 625251 625914 "ELAGG-" 625919 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-291 623991 624158 624314 "ELABOR" 624573 T ELABOR (NIL) -8 NIL NIL NIL) (-290 622598 622931 623225 "ELABEXPR" 623717 T ELABEXPR (NIL) -8 NIL NIL NIL) (-289 615110 617235 618064 "EFUPXS" 621873 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-288 608236 610359 611170 "EFULS" 614385 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-287 605673 606079 606551 "EFSTRUC" 607868 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-286 595110 597030 598578 "EF" 604188 NIL EF (NIL T T) -7 NIL NIL NIL) (-285 594088 594595 594744 "EAB" 594981 T EAB (NIL) -8 NIL NIL NIL) (-284 593210 594047 594075 "E04UCFA" 594080 T E04UCFA (NIL) -8 NIL NIL NIL) (-283 592332 593169 593197 "E04NAFA" 593202 T E04NAFA (NIL) -8 NIL NIL NIL) (-282 591454 592291 592319 "E04MBFA" 592324 T E04MBFA (NIL) -8 NIL NIL NIL) (-281 590576 591413 591441 "E04JAFA" 591446 T E04JAFA (NIL) -8 NIL NIL NIL) (-280 589700 590535 590563 "E04GCFA" 590568 T E04GCFA (NIL) -8 NIL NIL NIL) (-279 588824 589659 589687 "E04FDFA" 589692 T E04FDFA (NIL) -8 NIL NIL NIL) (-278 587946 588783 588811 "E04DGFA" 588816 T E04DGFA (NIL) -8 NIL NIL NIL) (-277 582023 583471 584835 "E04AGNT" 586602 T E04AGNT (NIL) -7 NIL NIL NIL) (-276 580643 581324 581364 "DVARCAT" 581705 NIL DVARCAT (NIL T) -9 NIL 581868 NIL) (-275 579793 580059 580373 "DVARCAT-" 580378 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-274 571754 579592 579721 "DSMP" 579726 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-273 570105 570896 570937 "DSEXT" 571300 NIL DSEXT (NIL T) -9 NIL 571594 NIL) (-272 568294 568818 569484 "DSEXT-" 569489 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-271 562877 564239 565307 "DROPT" 567246 T DROPT (NIL) -8 NIL NIL NIL) (-270 562536 562601 562699 "DROPT1" 562812 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-269 557555 558777 559914 "DROPT0" 561419 T DROPT0 (NIL) -7 NIL NIL NIL) (-268 555864 556225 556611 "DRAWPT" 557189 T DRAWPT (NIL) -7 NIL NIL NIL) (-267 550355 551374 552453 "DRAW" 554838 NIL DRAW (NIL T) -7 NIL NIL NIL) (-266 549982 550041 550159 "DRAWHACK" 550296 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-265 548683 548982 549273 "DRAWCX" 549711 T DRAWCX (NIL) -7 NIL NIL NIL) (-264 548192 548267 548418 "DRAWCURV" 548609 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-263 538510 540622 542737 "DRAWCFUN" 546097 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-262 534981 537175 537216 "DQAGG" 537845 NIL DQAGG (NIL T) -9 NIL 538119 NIL) (-261 521564 529192 529275 "DPOLCAT" 531127 NIL DPOLCAT (NIL T T T T) -9 NIL 531672 NIL) (-260 516083 517749 519707 "DPOLCAT-" 519712 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-259 508940 515944 516042 "DPMO" 516047 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-258 501694 508720 508887 "DPMM" 508892 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-257 501216 501478 501567 "DOMTMPLT" 501625 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-256 500565 501018 501098 "DOMCTOR" 501156 T DOMCTOR (NIL) -8 NIL NIL NIL) (-255 499717 500045 500196 "DOMAIN" 500434 T DOMAIN (NIL) -8 NIL NIL NIL) (-254 492729 499352 499504 "DMP" 499618 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-253 490506 491796 491837 "DMEXT" 491842 NIL DMEXT (NIL T) -9 NIL 492018 NIL) (-252 490100 490162 490306 "DLP" 490444 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 483223 489427 489617 "DLIST" 489942 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 479761 482048 482089 "DLAGG" 482639 NIL DLAGG (NIL T) -9 NIL 482869 NIL) (-249 478273 479087 479115 "DIVRING" 479207 T DIVRING (NIL) -9 NIL 479290 NIL) (-248 477456 477700 478000 "DIVRING-" 478005 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 475498 475915 476321 "DISPLAY" 477070 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 468905 475412 475475 "DIRPROD" 475480 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 467735 467956 468221 "DIRPROD2" 468698 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 455954 462446 462499 "DIRPCAT" 462757 NIL DIRPCAT (NIL NIL T) -9 NIL 463632 NIL) (-243 453154 453922 454803 "DIRPCAT-" 455140 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 452435 452601 452787 "DIOSP" 452988 T DIOSP (NIL) -7 NIL NIL NIL) (-241 448849 451319 451360 "DIOPS" 451794 NIL DIOPS (NIL T) -9 NIL 452023 NIL) (-240 448368 448512 448703 "DIOPS-" 448708 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 447275 448047 448075 "DIFRING" 448080 T DIFRING (NIL) -9 NIL 448102 NIL) (-238 446923 447021 447049 "DIFFSPC" 447168 T DIFFSPC (NIL) -9 NIL 447243 NIL) (-237 446544 446646 446798 "DIFFSPC-" 446803 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 445480 446078 446119 "DIFFMOD" 446124 NIL DIFFMOD (NIL T) -9 NIL 446222 NIL) (-235 445176 445233 445274 "DIFFDOM" 445395 NIL DIFFDOM (NIL T) -9 NIL 445463 NIL) (-234 445023 445053 445137 "DIFFDOM-" 445142 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 442763 444227 444268 "DIFEXT" 444273 NIL DIFEXT (NIL T) -9 NIL 444426 NIL) (-232 439797 442267 442308 "DIAGG" 442313 NIL DIAGG (NIL T) -9 NIL 442333 NIL) (-231 439145 439338 439590 "DIAGG-" 439595 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-230 433995 438104 438381 "DHMATRIX" 438914 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-229 429463 430516 431526 "DFSFUN" 433005 T DFSFUN (NIL) -7 NIL NIL NIL) (-228 423697 428394 428706 "DFLOAT" 429171 T DFLOAT (NIL) -8 NIL NIL NIL) (-227 421936 422241 422630 "DFINTTLS" 423405 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-226 418755 419957 420357 "DERHAM" 421602 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-225 416291 418530 418619 "DEQUEUE" 418699 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-224 415533 415678 415861 "DEGRED" 416153 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-223 411939 412708 413554 "DEFINTRF" 414761 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-222 409476 409963 410555 "DEFINTEF" 411458 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-221 408760 409096 409211 "DEFAST" 409381 T DEFAST (NIL) -8 NIL NIL NIL) (-220 401796 408353 408503 "DECIMAL" 408630 T DECIMAL (NIL) -8 NIL NIL NIL) (-219 399254 399766 400272 "DDFACT" 401340 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-218 398844 398893 399044 "DBLRESP" 399205 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-217 398045 398614 398705 "DBASIS" 398793 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-216 395829 396275 396636 "DBASE" 397811 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 395017 395309 395455 "DATAARY" 395728 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 394075 394976 395004 "D03FAFA" 395009 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 393134 394034 394062 "D03EEFA" 394067 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 391060 391550 392039 "D03AGNT" 392665 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 390301 391019 391047 "D02EJFA" 391052 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 389542 390260 390288 "D02CJFA" 390293 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 388783 389501 389529 "D02BHFA" 389534 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 388024 388742 388770 "D02BBFA" 388775 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 381155 382810 384416 "D02AGNT" 386438 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 378905 379446 379992 "D01WGTS" 380629 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 377912 378864 378892 "D01TRNS" 378897 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 376920 377871 377899 "D01GBFA" 377904 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 375928 376879 376907 "D01FCFA" 376912 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 374936 375887 375915 "D01ASFA" 375920 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 373944 374895 374923 "D01AQFA" 374928 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 372952 373903 373931 "D01APFA" 373936 T D01APFA (NIL) -8 NIL NIL NIL) (-199 371960 372911 372939 "D01ANFA" 372944 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 370968 371919 371947 "D01AMFA" 371952 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 369976 370927 370955 "D01ALFA" 370960 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 368984 369935 369963 "D01AKFA" 369968 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 367992 368943 368971 "D01AJFA" 368976 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 361215 362840 364401 "D01AGNT" 366451 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 360534 360680 360832 "CYCLOTOM" 361083 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 357189 357982 358709 "CYCLES" 359827 T CYCLES (NIL) -7 NIL NIL NIL) (-191 356489 356635 356806 "CVMP" 357050 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 354276 354588 354957 "CTRIGMNP" 356217 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 353634 354070 354143 "CTOR" 354223 T CTOR (NIL) -8 NIL NIL NIL) (-188 353107 353365 353466 "CTORKIND" 353553 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 352312 352700 352728 "CTORCAT" 352910 T CTORCAT (NIL) -9 NIL 353023 NIL) (-186 351886 352021 352180 "CTORCAT-" 352185 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 351300 351560 351668 "CTORCALL" 351810 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 350656 350773 350926 "CSTTOOLS" 351197 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 346353 347112 347870 "CRFP" 349968 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 345768 346074 346166 "CRCEAST" 346281 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 344791 345000 345228 "CRAPACK" 345572 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 344171 344276 344480 "CPMATCH" 344667 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 343890 343924 344030 "CPIMA" 344137 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 340148 340910 341629 "COORDSYS" 343225 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 339536 339681 339823 "CONTOUR" 340026 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 335001 337539 338031 "CONTFRAC" 339076 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 334875 334902 334930 "CONDUIT" 334967 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 333829 334503 334531 "COMRING" 334536 T COMRING (NIL) -9 NIL 334588 NIL) (-173 332811 333187 333371 "COMPPROP" 333665 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 332466 332507 332635 "COMPLPAT" 332770 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 320849 332275 332384 "COMPLEX" 332389 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 320479 320542 320649 "COMPLEX2" 320786 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 319800 319939 320099 "COMPILER" 320339 T COMPILER (NIL) -8 NIL NIL NIL) (-168 319512 319553 319651 "COMPFACT" 319759 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 300887 313216 313256 "COMPCAT" 314260 NIL COMPCAT (NIL T) -9 NIL 315608 NIL) (-166 289775 293326 296953 "COMPCAT-" 297309 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 289498 289532 289635 "COMMUPC" 289741 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 289286 289326 289385 "COMMONOP" 289459 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 288794 289037 289124 "COMM" 289219 T COMM (NIL) -8 NIL NIL NIL) (-162 288316 288598 288673 "COMMAAST" 288739 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 287511 287759 287787 "COMBOPC" 288125 T COMBOPC (NIL) -9 NIL 288300 NIL) (-160 286365 286617 286859 "COMBINAT" 287301 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 282708 283396 284023 "COMBF" 285787 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 281370 281824 282059 "COLOR" 282493 T COLOR (NIL) -8 NIL NIL NIL) (-157 280786 281091 281183 "COLONAST" 281298 T COLONAST (NIL) -8 NIL NIL NIL) (-156 280420 280473 280598 "CMPLXRT" 280733 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 279808 280120 280219 "CLLCTAST" 280341 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 275268 276338 277418 "CLIP" 278748 T CLIP (NIL) -7 NIL NIL NIL) (-153 273441 274369 274609 "CLIF" 275095 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 269423 271559 271600 "CLAGG" 272529 NIL CLAGG (NIL T) -9 NIL 273065 NIL) (-151 267767 268302 268885 "CLAGG-" 268890 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 267305 267396 267536 "CINTSLPE" 267676 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 264770 265277 265825 "CHVAR" 266833 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 263810 264484 264512 "CHARZ" 264517 T CHARZ (NIL) -9 NIL 264532 NIL) (-147 263558 263604 263682 "CHARPOL" 263764 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 262476 263189 263217 "CHARNZ" 263264 T CHARNZ (NIL) -9 NIL 263320 NIL) (-145 260220 261130 261483 "CHAR" 262143 T CHAR (NIL) -8 NIL NIL NIL) (-144 259928 260007 260035 "CFCAT" 260146 T CFCAT (NIL) -9 NIL NIL NIL) (-143 259151 259280 259463 "CDEN" 259812 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 254748 258304 258584 "CCLASS" 258891 T CCLASS (NIL) -8 NIL NIL NIL) (-141 253969 254156 254333 "CATEGORY" 254591 T -10 (NIL) -8 NIL NIL NIL) (-140 253464 253888 253936 "CATCTOR" 253941 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 252855 253167 253265 "CATAST" 253386 T CATAST (NIL) -8 NIL NIL NIL) (-138 252271 252576 252668 "CASEAST" 252783 T CASEAST (NIL) -8 NIL NIL NIL) (-137 247169 248428 249172 "CARTEN" 251583 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 246265 246425 246646 "CARTEN2" 247016 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 244395 245415 245672 "CARD" 246028 T CARD (NIL) -8 NIL NIL NIL) (-134 243917 244199 244274 "CAPSLAST" 244340 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 243359 243615 243643 "CACHSET" 243775 T CACHSET (NIL) -9 NIL 243853 NIL) (-132 242749 243137 243165 "CABMON" 243215 T CABMON (NIL) -9 NIL 243271 NIL) (-131 242186 242453 242563 "BYTEORD" 242659 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 240944 241701 241850 "BYTE" 242013 T BYTE (NIL) -8 NIL NIL 242142) (-129 235871 240449 240621 "BYTEBUF" 240792 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 233133 235563 235670 "BTREE" 235797 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 230335 232781 232903 "BTOURN" 233043 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 227442 229777 229818 "BTCAT" 229886 NIL BTCAT (NIL T) -9 NIL 229963 NIL) (-125 227091 227189 227338 "BTCAT-" 227343 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 221982 226337 226365 "BTAGG" 226479 T BTAGG (NIL) -9 NIL 226589 NIL) (-123 221436 221597 221803 "BTAGG-" 221808 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 218172 220714 220929 "BSTREE" 221253 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 217280 217436 217620 "BRILL" 218028 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 213675 215978 216019 "BRAGG" 216668 NIL BRAGG (NIL T) -9 NIL 216926 NIL) (-119 212108 212610 213165 "BRAGG-" 213170 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 204344 211452 211637 "BPADICRT" 211955 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 202353 204281 204326 "BPADIC" 204331 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 202045 202081 202195 "BOUNDZRO" 202317 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 197027 198471 199383 "BOP" 201153 T BOP (NIL) -8 NIL NIL NIL) (-114 194754 195212 195687 "BOP1" 196585 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 194437 194516 194544 "BOOLE" 194655 T BOOLE (NIL) -9 NIL 194737 NIL) (-112 193088 194011 194160 "BOOLEAN" 194308 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 192257 192757 192811 "BMODULE" 192816 NIL BMODULE (NIL T T) -9 NIL 192881 NIL) (-110 187578 192055 192128 "BITS" 192204 T BITS (NIL) -8 NIL NIL NIL) (-109 186975 187118 187258 "BINDING" 187458 T BINDING (NIL) -8 NIL NIL NIL) (-108 180014 186570 186719 "BINARY" 186846 T BINARY (NIL) -8 NIL NIL NIL) (-107 177621 179241 179282 "BGAGG" 179542 NIL BGAGG (NIL T) -9 NIL 179679 NIL) (-106 177446 177484 177575 "BGAGG-" 177580 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 176469 176830 177035 "BFUNCT" 177261 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 175139 175337 175625 "BEZOUT" 176293 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 171337 173991 174321 "BBTREE" 174842 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 170920 171016 171044 "BASTYPE" 171221 T BASTYPE (NIL) -9 NIL 171320 NIL) (-101 170578 170677 170812 "BASTYPE-" 170817 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 170000 170088 170240 "BALFACT" 170489 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 168736 169415 169601 "AUTOMOR" 169845 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 168462 168467 168493 "ATTREG" 168498 T ATTREG (NIL) -9 NIL NIL NIL) (-97 166624 167159 167511 "ATTRBUT" 168128 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 166178 166452 166518 "ATTRAST" 166576 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 165678 165827 165853 "ATRIG" 166054 T ATRIG (NIL) -9 NIL NIL NIL) (-94 165475 165528 165615 "ATRIG-" 165620 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 165058 165292 165318 "ASTCAT" 165323 T ASTCAT (NIL) -9 NIL 165353 NIL) (-92 164767 164844 164963 "ASTCAT-" 164968 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 162741 164543 164631 "ASTACK" 164710 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 161230 161543 161908 "ASSOCEQ" 162423 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 160154 160889 161013 "ASP9" 161137 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 159881 160102 160141 "ASP8" 160146 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 158641 159486 159628 "ASP80" 159770 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 157431 158276 158408 "ASP7" 158540 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 156277 157108 157226 "ASP78" 157344 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 155138 155957 156074 "ASP77" 156191 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 153942 154776 154907 "ASP74" 155038 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 152734 153577 153709 "ASP73" 153841 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 151730 152560 152660 "ASP6" 152665 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 150569 151407 151525 "ASP55" 151643 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 149410 150243 150362 "ASP50" 150481 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 148390 149111 149221 "ASP4" 149331 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 147370 148091 148201 "ASP49" 148311 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 146046 146909 147077 "ASP42" 147259 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 144715 145579 145749 "ASP41" 145933 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 143557 144392 144510 "ASP35" 144628 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 143286 143505 143544 "ASP34" 143549 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 143005 143090 143166 "ASP33" 143241 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 141791 142640 142772 "ASP31" 142904 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 141520 141739 141778 "ASP30" 141783 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 141237 141324 141400 "ASP29" 141475 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 140966 141185 141224 "ASP28" 141229 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 140695 140914 140953 "ASP27" 140958 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 139671 140393 140504 "ASP24" 140615 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 138640 139473 139585 "ASP20" 139590 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 137620 138341 138451 "ASP1" 138561 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 136455 137294 137413 "ASP19" 137532 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 136174 136259 136335 "ASP12" 136410 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 134918 135773 135917 "ASP10" 136061 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 132530 134762 134853 "ARRAY2" 134858 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 127890 132178 132292 "ARRAY1" 132447 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 126904 127095 127316 "ARRAY12" 127713 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 120949 123106 123181 "ARR2CAT" 125811 NIL ARR2CAT (NIL T T T) -9 NIL 126569 NIL) (-56 118239 119127 120081 "ARR2CAT-" 120086 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 117490 117866 117991 "ARITY" 118132 T ARITY (NIL) -8 NIL NIL NIL) (-54 116248 116418 116717 "APPRULE" 117326 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 115893 115947 116066 "APPLYORE" 116194 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 115193 115486 115606 "ANY" 115791 T ANY (NIL) -8 NIL NIL NIL) (-51 114447 114594 114751 "ANY1" 115067 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 111773 112884 113211 "ANTISYM" 114171 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 111217 111480 111576 "ANON" 111695 T ANON (NIL) -8 NIL NIL NIL) (-48 104373 109756 110210 "AN" 110781 T AN (NIL) -8 NIL NIL NIL) (-47 100029 101645 101696 "AMR" 102444 NIL AMR (NIL T T) -9 NIL 103044 NIL) (-46 99081 99362 99725 "AMR-" 99730 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 82550 98998 99059 "ALIST" 99064 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 78847 82144 82313 "ALGSC" 82468 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 75297 75957 76564 "ALGPKG" 78287 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 74562 74675 74859 "ALGMFACT" 75183 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 70545 71176 71770 "ALGMANIP" 74146 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 59884 70171 70321 "ALGFF" 70478 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 59056 59211 59390 "ALGFACT" 59742 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 57845 58583 58621 "ALGEBRA" 58626 NIL ALGEBRA (NIL T) -9 NIL 58667 NIL) (-37 57545 57622 57754 "ALGEBRA-" 57759 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 38506 55382 55434 "ALAGG" 55570 NIL ALAGG (NIL T T) -9 NIL 55731 NIL) (-35 38006 38155 38181 "AHYP" 38382 T AHYP (NIL) -9 NIL NIL NIL) (-34 36891 37185 37211 "AGG" 37710 T AGG (NIL) -9 NIL 37989 NIL) (-33 36289 36487 36701 "AGG-" 36706 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 34049 34518 34923 "AF" 35931 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33469 33774 33864 "ADDAST" 33977 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32701 32996 33152 "ACPLOT" 33331 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20258 29633 29671 "ACFS" 30278 NIL ACFS (NIL T) -9 NIL 30517 NIL) (-28 18165 18775 19537 "ACFS-" 19542 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13873 16198 16224 "ACF" 17103 T ACF (NIL) -9 NIL 17516 NIL) (-26 12505 12911 13404 "ACF-" 13409 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 12015 12258 12284 "ABELSG" 12376 T ABELSG (NIL) -9 NIL 12441 NIL) (-24 11876 11907 11973 "ABELSG-" 11978 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11145 11492 11518 "ABELMON" 11688 T ABELMON (NIL) -9 NIL 11800 NIL) (-22 10785 10893 11031 "ABELMON-" 11036 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 10035 10491 10517 "ABELGRP" 10589 T ABELGRP (NIL) -9 NIL 10664 NIL) (-20 9462 9627 9843 "ABELGRP-" 9848 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8724 8763 "A1AGG" 8768 NIL A1AGG (NIL T) -9 NIL 8808 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index e0904cf7..4641585d 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,596 +1,1123 @@ -(732177 . 3487991535) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838))))) +(733090 . 3488491118) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1079)) + (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1273 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) + (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) + (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1868 (-115)) (|:| |arg| (-665 (-916 *3))))) + (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-916 *4))) + (-5 *1 (-916 *4)) (-4 *4 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) - (-4 *7 (-1268 (-420 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3788 *3))) - (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |answer| (-420 *6)) (|:| -3788 (-420 *6)) - (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) - (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1268 *2)) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) + (-5 *2 (-2 (|:| -3031 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1321 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-870)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1268 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) - (-4 *3 (-422 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1268 *2)) (-5 *2 (-577)) (-5 *1 (-784 *3 *4)) - (-4 *4 (-422 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1115))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1216 *2)) (-4 *2 (-375))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1268 (-171 *3)))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-5 *6 (-1197 *3)) - (-4 *3 (-13 (-443 *7) (-27) (-1227))) - (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) - (-5 *6 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1227))) - (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837))))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-840 *4)) (-4 *1 (-1314 *4 *2)) (-4 *4 (-870)) + (-4 *2 (-1079)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5))))) + (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) + (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-792)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) + (-4 *2 (-1273 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) + (-5 *2 + (-2 (|:| |dpolys| (-665 (-254 *5 *6))) + (|:| |coords| (-665 (-577))))) + (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *2 (-660 *3)) (-5 *1 (-947 *4 *5 *6 *3)) - (-4 *3 (-972 *4 *6 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-865)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-869)) (-4 *4 (-375)) (-5 *2 (-792)) + (-5 *1 (-973 *4 *5)) (-4 *5 (-1273 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-375)) (-5 *2 (-665 (-1187 *4))) (-5 *1 (-296 *4 *5)) + (-5 *3 (-1187 *4)) (-4 *5 (-1288 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850))))) (((*1 *2 *3) - (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) - (-4 *3 (-1268 *4)) - (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) + (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-112)) + (-5 *1 (-693 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)) - (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) - (-5 *2 (-705 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074))))) + (-12 (-4 *5 (-13 (-632 *2) (-174))) (-5 *2 (-916 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1130)) (-4 *3 (-167 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-1124 (-864 (-391))))) + (-5 *2 (-665 (-1124 (-864 (-228))))) (-5 *1 (-316)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-407)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1273 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) + (-5 *2 (-1297 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) + (-4 *3 (-1130)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-476 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549)))) + ((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2) + (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) + (-4 *5 (-632 (-1206))) (-4 *4 (-814)) (-4 *5 (-870)))) + ((*1 *1 *2) + (-2867 + (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) + (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) + (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) + ((*1 *1 *2) + (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) + (-5 *1 (-1099 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1139 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) + (-5 *1 (-1175 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) + ((*1 *2 *3) + (-12 (-5 *3 (-801 *4 (-887 *5))) + (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) + (-5 *2 (-801 *4 (-887 *6))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *6 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-5 *3 (-801 *4 (-887 *6))) + (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) + (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *5 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1202 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-1202 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6)))) + (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) + (-5 *2 (-665 (-801 *4 (-887 *6)))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *5 (-665 (-1206)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-1079)) + (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1273 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-840 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) + (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) + (-5 *1 (-267 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) + (-5 *1 (-267 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) + (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-632 (-549)) (-1130))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-632 (-549)) (-1130))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) + (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) + (-5 *1 (-267 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) + (-5 *1 (-267 *5))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) + (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1201)) - (|:| |arrayIndex| (-660 (-975 (-577)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1200)) (|:| |thenClause| (-341)) - (|:| |elseClause| (-341)))) - (|:| |returnBranch| - (-2 (|:| -2856 (-112)) - (|:| -3145 - (-2 (|:| |ints2Floats?| (-112)) (|:| -3010 (-880)))))) - (|:| |blockBranch| (-660 (-341))) - (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) - (|:| |forBranch| - (-2 (|:| -2097 (-1117 (-975 (-577)))) - (|:| |span| (-975 (-577))) (|:| -2682 (-341)))) - (|:| |labelBranch| (-1145)) - (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2682 (-341)))) - (|:| |commonBranch| - (-2 (|:| -2668 (-1201)) (|:| |contents| (-660 (-1201))))) - (|:| |printBranch| (-660 (-880))))) - (-5 *1 (-341))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) - (-4 *3 (-1242))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) - (-4 *4 (-569)) (-5 *2 (-1292 *4)) (-5 *1 (-652 *4 *5))))) + (-665 + (-665 + (-3 (|:| -2758 (-1206)) + (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))))) + (-5 *1 (-1210))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341))))) +(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-285))))) +(((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-870)))) + ((*1 *2 *2) + (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1232))) + (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-596 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-599 (-420 (-980 *3)))) + (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-602 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -4437 *3) (|:| |special| *3))) (-5 *1 (-748 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) + (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) + (-5 *3 (-665 (-710 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-375)) (-4 *5 (-1079)) + (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) + (-5 *3 (-665 (-710 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-665 *1)) (-4 *1 (-1174)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-665 *1)) (-4 *1 (-1174))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1247)) (-5 *2 (-577))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) + (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *2 *7)) (-4 *6 (-1079)) + (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-665 (-171 *4))) + (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-665 (-420 *6))) (-5 *3 (-420 *6)) + (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-581 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-637 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *2 (-1134 *3 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1227))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125))))) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-981 *3)) (-5 *1 (-1188 *4 *3)) - (-4 *3 (-1268 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) - (-5 *1 (-178 *3))))) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -2002 *7)))) - (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -2002 *7)))) - (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1132 *3 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3) - (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) - (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) - (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) - (-5 *1 (-782 *3 *4)) (-4 *3 (-724 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) - (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) - (-4 *3 (-870 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) -(((*1 *2 *1) - (-12 (-4 *3 (-239)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) - (-4 *6 (-809)) (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *3 *4 *5 *6)))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) + (-5 *1 (-343))))) +(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) ((*1 *2 *3) - (-12 (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) - (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-276 *2)) (-4 *2 (-865))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) - (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) - (-4 *6 (-465)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) - (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) - (-4 *6 (-465))))) -(((*1 *1) (-5 *1 (-839)))) -(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-837))))) -(((*1 *1 *1) (-4 *1 (-642))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) -(((*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) + (-4 *3 (-669 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) + (-4 *3 (-669 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) + ((*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-665 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) + (-5 *2 (-665 (-2 (|:| -4212 *5) (|:| -2281 *3)))) + (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) + (-4 *7 (-677 (-420 *6)))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) - (-5 *3 (-660 (-577)))))) -(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391))))) +(((*1 *2 *2 *2) (-12 - (-5 *3 - (-660 - (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *2)) - (|:| |logand| (-1197 *2))))) - (-5 *4 (-660 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-375)) (-5 *1 (-599 *2))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) - (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) - (-4 *3 (-354 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) - (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) + (-5 *2 + (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-710 *3)))) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-665 *8)) + (|:| |towers| (-665 (-1057 *5 *6 *7 *8))))) + (-5 *1 (-1057 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-665 *8)) + (|:| |towers| (-665 (-1176 *5 *6 *7 *8))))) + (-5 *1 (-1176 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-145))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) - (-5 *1 (-369 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-660 (-625 *5))) (-5 *3 (-1201)) (-4 *5 (-443 *4)) - (-4 *4 (-1125)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-465))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) + (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) + (-4 *2 (-13 (-870) (-21)))))) +(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-158))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1206)) + (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) + (-5 *2 + (-2 (|:| -3398 (-420 (-980 *5))) (|:| |coeff| (-420 (-980 *5))))) + (-5 *1 (-583 *5)) (-5 *3 (-420 (-980 *5)))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3398 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 - (-2 (|:| A (-705 *5)) - (|:| |eqs| - (-660 - (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5)) (|:| -2007 *6) - (|:| |rh| *5)))))) - (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) - (-4 *6 (-672 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-672 *5)) - (-5 *2 (-2 (|:| -1631 (-705 *6)) (|:| |vec| (-1292 *5)))) - (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) - (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-864))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-305 (-420 (-975 (-171 (-577))))))) - (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-864))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 (-171 (-577))))) - (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-864))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-975 (-171 (-577)))))) - (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-864)))))) + (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) + (-2 (|:| -3398 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-549))))) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *2 (-420 (-980 *4))) (-5 *1 (-952 *4 *5 *6 *3)) + (-4 *3 (-977 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *2 (-710 (-420 (-980 *4)))) + (-5 *1 (-952 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *2 (-665 (-420 (-980 *4)))) + (-5 *1 (-952 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-785)) + (-12 (-5 *3 (-790)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *1 (-578)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-785)) (-5 *4 (-1088)) + (-12 (-5 *3 (-790)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *1 (-578)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-803)) (-5 *3 (-1088)) + (-12 (-4 *1 (-808)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) - (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) + (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) - (|:| |extra| (-1060)))))) + (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) + (|:| |extra| (-1065)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-803)) (-5 *3 (-1088)) + (-12 (-4 *1 (-808)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)) - (|:| |extra| (-1060)))))) + (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)) + (|:| |extra| (-1065)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-816)) (-5 *3 (-1088)) + (-12 (-4 *1 (-821)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) + (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) ((*1 *2 *3) - (-12 (-5 *3 (-824)) + (-12 (-5 *3 (-829)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))))) - (-5 *1 (-821)))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))))) + (-5 *1 (-826)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-824)) (-5 *4 (-1088)) + (-12 (-5 *3 (-829)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))))) - (-5 *1 (-821)))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))))) + (-5 *1 (-826)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-855)) (-5 *3 (-1088)) + (-12 (-4 *1 (-860)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) - (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) + (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) + (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-855)) (-5 *3 (-1088)) + (-12 (-4 *1 (-860)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) - (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) - (|:| |ub| (-660 (-859 (-228)))))) - (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) + (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) + (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) + (|:| |ub| (-665 (-864 (-228)))))) + (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) ((*1 *2 *3) - (-12 (-5 *3 (-857)) + (-12 (-5 *3 (-862)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))))) - (-5 *1 (-856)))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))))) + (-5 *1 (-861)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1088)) + (-12 (-5 *3 (-862)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))))) - (-5 *1 (-856)))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))))) + (-5 *1 (-861)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-916)) (-5 *3 (-1088)) + (-12 (-4 *1 (-921)) (-5 *3 (-1093)) (-5 *4 - (-2 (|:| |pde| (-660 (-327 (-228)))) + (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| - (-660 + (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-787)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) - (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) + (|:| |grid| (-792)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) + (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) - (-5 *2 (-2 (|:| -4391 (-391)) (|:| |explanations| (-1183)))))) + (-5 *2 (-2 (|:| -4423 (-391)) (|:| |explanations| (-1188)))))) ((*1 *2 *3) - (-12 (-5 *3 (-919)) + (-12 (-5 *3 (-924)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))))) - (-5 *1 (-918)))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))))) + (-5 *1 (-923)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1088)) + (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))))) - (-5 *1 (-918))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) - (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-773))))) + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))))) + (-5 *1 (-923))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1298)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1298)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) + (-5 *2 (-1299)) (-5 *1 (-263)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-1206)) (-5 *5 (-665 (-271))) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-870) (-1068 (-577)))) + (-5 *2 (-1298)) (-5 *1 (-264 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) + (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1298)) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-632 (-549)) (-1130))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-901 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) + (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) + (-5 *1 (-267 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-901 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) + (-5 *1 (-267 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) + (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) + (-5 *1 (-267 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) + (-5 *1 (-267 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) + (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1299)) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-632 (-549)) (-1130))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) + (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) + (-5 *1 (-267 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) + (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) + (-5 *1 (-267 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1298)) (-5 *1 (-268)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) + (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *2 (-1298)) (-5 *1 (-268)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-665 (-271))) + (-5 *2 (-1298)) (-5 *1 (-268)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1299)) (-5 *1 (-268)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1299)) + (-5 *1 (-268))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) + (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) + (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1297 (-3 (-481) "undefined"))) (-5 *1 (-1298))))) (((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) + (-14 *4 (-792)) (-4 *5 (-174))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-813)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-665 (-1206))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) + (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) + (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1079) (-870))) + (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) + (-5 *1 (-245 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1188)) (-5 *5 (-630 *6)) + (-4 *6 (-313)) (-4 *2 (-1247)) (-5 *1 (-308 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-313)) + (-4 *2 (-313)) (-5 *1 (-309 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-313)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-5 *2 (-710 *6)) (-5 *1 (-315 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) + (-4 *9 (-375)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-420 *10))) + (-5 *2 (-348 *9 *10 *11 *12)) + (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-354 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1130)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1251)) (-4 *8 (-1251)) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *9 (-1273 *8)) + (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1273 (-420 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-1130)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) + (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) + (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) + (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6)) + (-4 *8 (-13 (-422 *6 *7) (-1068 *6))) (-4 *9 (-318)) + (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10)) + (-5 *2 (-426 *9 *10 *11 *12)) + (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-422 *10 *11) (-1068 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) + (-4 *4 (-873)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) + (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -3398 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-375)) (-4 *6 (-375)) + (-5 *2 (-2 (|:| -3398 *6) (|:| |coeff| *6))) + (-5 *1 (-597 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-375)) (-4 *6 (-375)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-597 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-614 *8)) + (-5 *1 (-612 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-614 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) + (-5 *1 (-612 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1187 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) + (-5 *1 (-612 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-665 *6)) (-5 *1 (-663 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-665 *6)) (-5 *5 (-665 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-665 *8)) + (-5 *1 (-664 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) + (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) + (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) + (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1079)) + (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) + (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) + (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-420 *8))) + (-5 *1 (-730 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-420 *6))) + (-4 *8 (-1273 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1079)) (-4 *9 (-1079)) + (-4 *5 (-870)) (-4 *6 (-814)) (-4 *2 (-977 *9 *7 *5)) + (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) + (-4 *4 (-977 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-870)) (-4 *6 (-870)) (-4 *7 (-814)) + (-4 *9 (-1079)) (-4 *2 (-977 *9 *8 *6)) + (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-814)) + (-4 *4 (-977 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5 *7)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-4 *7 (-747)) (-5 *2 (-756 *6 *7)) + (-5 *1 (-755 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-756 *3 *4)) + (-4 *4 (-747)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-818 *6)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *4 (-818 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-853 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-863 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-913 *5 *7)) + (-5 *1 (-912 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-916 *6)) (-5 *1 (-915 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-5 *2 (-980 *6)) (-5 *1 (-974 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-870)) + (-4 *8 (-1079)) (-4 *6 (-814)) + (-4 *2 + (-13 (-1130) + (-10 -8 (-15 -3114 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792)))))) + (-5 *1 (-979 *6 *7 *8 *5 *2)) (-4 *5 (-977 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-986 *6)) (-5 *1 (-985 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-994 *6)) (-5 *1 (-996 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-5 *2 (-971 *6)) (-5 *1 (-1011 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-980 *4))) (-4 *4 (-1079)) + (-4 *2 (-977 (-980 *4) *5 *6)) (-4 *5 (-814)) + (-4 *6 + (-13 (-870) + (-10 -8 (-15 -4463 ((-1206) $)) + (-15 -3341 ((-3 $ "failed") (-1206)))))) + (-5 *1 (-1014 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) + (-4 *2 (-1022 *6)) (-5 *1 (-1020 *5 *6 *4 *2)) (-4 *4 (-1022 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-1027 *6)) (-5 *1 (-1028 *4 *5 *2 *6)) (-4 *4 (-1027 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) + (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) + (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1079)) (-4 *10 (-1079)) + (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) + (-4 *9 (-244 *5 *7)) (-4 *2 (-1083 *5 *6 *10 *11 *12)) + (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) + (-4 *12 (-244 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-1124 *6)) (-5 *1 (-1119 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-869)) + (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-665 *6)) + (-5 *1 (-1119 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) + (-4 *2 (-1179 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-1187 *6)) (-5 *1 (-1185 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-1187 *7)) + (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) + (-5 *1 (-1186 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-5 *2 (-1202 *6)) (-5 *1 (-1200 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1223 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1261 *5 *7 *9)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1261 *6 *8 *10)) (-5 *1 (-1256 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1206)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-869)) + (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1187 *6)) + (-5 *1 (-1263 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1270 *5 *6)) (-14 *5 (-1206)) + (-4 *6 (-1079)) (-4 *8 (-1079)) (-5 *2 (-1270 *7 *8)) + (-5 *1 (-1265 *5 *6 *7 *8)) (-14 *7 (-1206)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-4 *2 (-1273 *6)) (-5 *1 (-1271 *5 *4 *6 *2)) (-4 *4 (-1273 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1282 *5 *7 *9)) (-4 *5 (-1079)) + (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1282 *6 *8 *10)) (-5 *1 (-1277 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1206)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) + (-4 *2 (-1288 *6)) (-5 *1 (-1286 *5 *6 *4 *2)) (-4 *4 (-1288 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) + (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1296 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) + (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) + (-5 *1 (-1296 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-1320 *3 *4)) + (-4 *4 (-867))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1206))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) - (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-787)) (-4 *4 (-361)) - (-5 *1 (-541 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-660 (-391))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) - (-4 *4 (-13 (-569) (-1063 (-577)) (-148))) (-5 *1 (-583 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-379 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1248)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) - (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-361)) + (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) - (-5 *1 (-219 *5 *3)) (-4 *3 (-1268 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *3 (-129)) (-5 *2 (-787))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) + (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-808))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-1264 *4 *2)) - (-4 *2 (-1268 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1223))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) - (-4 *5 (-13 (-443 *4) (-1027) (-1227))) - (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227)))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-660 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1125)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-660 *4))) (-4 *4 (-1125)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) - (-5 *1 (-114 *4)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4500)) (-4 *1 (-502 *3)) + (-4 *3 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1130)) (-5 *2 (-792))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-759))))) +(((*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-712 (-592))) (-5 *1 (-592))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-519)) (-5 *2 (-712 (-1134))) (-5 *1 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) + (-4 *6 (-1079)) (-5 *2 (-665 (-665 (-710 *6)))) (-5 *1 (-1059 *6)) + (-5 *3 (-665 (-710 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-660 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1125)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) - (-5 *1 (-730 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-680 *4 *5))) - (-5 *1 (-640 *4 *5 *6)) (-4 *5 (-13 (-174) (-733 (-420 (-577))))) - (-14 *6 (-944))))) + (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1079)) + (-5 *2 (-665 (-665 (-710 *4)))) (-5 *1 (-1059 *4)) + (-5 *3 (-665 (-710 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) + (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) + (-5 *3 (-665 (-710 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) + (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) + (-5 *3 (-665 (-710 *5)))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-1130)) + (-5 *1 (-630 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) + ((*1 *1 *1) (-5 *1 (-885)))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-1161))))) -(((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) - ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-660 (-171 *4))) - (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864)))))) -(((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) (-5 *1 (-645)))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-241 *3)))) - ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 *5 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) - (-4 *3 (-167 *6)) (-4 (-975 *6) (-905 *5)) - (-4 *6 (-13 (-905 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-908 *4 *1)) (-5 *3 (-911 *4)) (-4 *1 (-905 *4)) - (-4 *4 (-1125)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 *5 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) - (-4 *6 (-13 (-1125) (-1063 *3))) (-4 *3 (-905 *5)) - (-5 *1 (-954 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) - (-4 *3 (-13 (-443 *6) (-627 *4) (-905 *5) (-1063 (-625 $)))) - (-5 *4 (-911 *5)) (-4 *6 (-13 (-569) (-905 *5))) - (-5 *1 (-955 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 (-577) *3)) (-5 *4 (-911 (-577))) (-4 *3 (-558)) - (-5 *1 (-956 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 *5 *6)) (-5 *3 (-625 *6)) (-4 *5 (-1125)) - (-4 *6 (-13 (-1125) (-1063 (-625 $)) (-627 *4) (-905 *5))) - (-5 *4 (-911 *5)) (-5 *1 (-957 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-904 *5 *6 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) - (-4 *6 (-905 *5)) (-4 *3 (-682 *6)) (-5 *1 (-958 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-908 *6 *3) *8 (-911 *6) (-908 *6 *3))) - (-4 *8 (-865)) (-5 *2 (-908 *6 *3)) (-5 *4 (-911 *6)) - (-4 *6 (-1125)) (-4 *3 (-13 (-972 *9 *7 *8) (-627 *4))) - (-4 *7 (-809)) (-4 *9 (-13 (-1074) (-905 *6))) - (-5 *1 (-959 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) - (-4 *3 (-13 (-972 *8 *6 *7) (-627 *4))) (-5 *4 (-911 *5)) - (-4 *7 (-905 *5)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *8 (-13 (-1074) (-905 *5))) (-5 *1 (-959 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-1017 *6)) - (-4 *6 (-13 (-569) (-905 *5) (-627 *4))) (-5 *4 (-911 *5)) - (-5 *1 (-962 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-908 *5 (-1201))) (-5 *3 (-1201)) (-5 *4 (-911 *5)) - (-4 *5 (-1125)) (-5 *1 (-963 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-660 (-911 *7))) (-5 *5 (-1 *9 (-660 *9))) - (-5 *6 (-1 (-908 *7 *9) *9 (-911 *7) (-908 *7 *9))) (-4 *7 (-1125)) - (-4 *9 (-13 (-1074) (-627 (-911 *7)) (-1063 *8))) - (-5 *2 (-908 *7 *9)) (-5 *3 (-660 *9)) (-4 *8 (-1074)) - (-5 *1 (-964 *7 *8 *9))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) + (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) (-4 *3 (-870)) + (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1247)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) + (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) + (-5 *1 (-410)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) + (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) + (-5 *1 (-410)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-665 (-1206))) (-5 *5 (-1209)) (-5 *3 (-1206)) + (-5 *2 (-1134)) (-5 *1 (-410))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) - (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) - (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-767))))) + (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148))) + (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) + (-5 *1 (-1159 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148))) + (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) + (-5 *1 (-1159 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-885)))) + ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-990))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402))))) +(((*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) - (-5 *2 - (-3 (-1197 *4) - (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145))))))) - (-5 *1 (-358 *4)) (-4 *4 (-361))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-290))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-660 *7))) (-4 *1 (-1235 *4 *5 *6 *7)) - (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) - (-4 *6 (-13 (-569) (-1063 *5))) (-4 *5 (-569)) - (-5 *2 (-660 (-660 (-305 (-420 (-975 *6)))))) (-5 *1 (-1064 *5 *6))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569))))) -(((*1 *1 *1) (-5 *1 (-1088)))) + (-12 (-5 *3 (-1 *2 (-665 *2))) (-5 *4 (-665 *5)) + (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1288 *5)) + (-5 *1 (-1290 *5 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) + ((*1 *1 *1 *1) (-4 *1 (-558))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) + ((*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-792))))) +(((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-869)) (-5 *1 (-314 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-660 *2))) (-5 *4 (-660 *5)) - (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1283 *5)) - (-5 *1 (-1285 *5 *2))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-865)))) + (-12 (-5 *2 (-665 (-665 (-792)))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228))))) + ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-669 *5)) (-4 *5 (-1079)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-875 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-710 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1079)) + (-5 *1 (-876 *2 *3)) (-4 *3 (-875 *2))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-980 *6)) (-5 *4 (-1206)) + (-5 *5 (-864 *7)) + (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-4 *7 (-13 (-1232) (-29 *6))) (-5 *1 (-227 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1202 *6)) (-5 *4 (-864 *6)) + (-4 *6 (-13 (-1232) (-29 *5))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-227 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-665 (-665 (-228)))) (-5 *4 (-228)) + (-5 *2 (-665 (-971 *4))) (-5 *1 (-1243)) (-5 *3 (-971 *4))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) + ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) + ((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) + ((*1 *1 *1) (-4 *1 (-1090)))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1298)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1299))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-870)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) + (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1242)))) + (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1247)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4323 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| -4376 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (|:| -2438 + (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -603,10 +1130,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1182 (-228))) + (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2097 + (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -616,2285 +1143,1536 @@ (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-572)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-711 *2)) (-4 *2 (-1125)))) + (-12 (-5 *3 (-792)) (-4 *1 (-716 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4323 + (|:| -4376 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (|:| -2438 + (|:| -2727 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) - (-5 *1 (-819)))) + (-5 *1 (-824)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -4269 *5) (|:| -3602 *5)))) - (-5 *1 (-823 *4 *5 *3 *6)) (-4 *3 (-672 *5)) - (-4 *6 (-672 (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -4269 *4) (|:| -3602 *4)))) - (-5 *1 (-823 *5 *4 *3 *6)) (-4 *3 (-672 *4)) - (-4 *6 (-672 (-420 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -4269 *5) (|:| -3602 *5)))) - (-5 *1 (-823 *4 *5 *6 *3)) (-4 *6 (-672 *5)) - (-4 *3 (-672 (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -4269 *4) (|:| -3602 *4)))) - (-5 *1 (-823 *5 *4 *6 *3)) (-4 *6 (-672 *4)) - (-4 *3 (-672 (-420 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-660 (-1236 *5))) - (-5 *1 (-1300 *5)) (-5 *4 (-1236 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-865)) (-4 *5 (-932)) (-4 *6 (-809)) - (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-431 (-1197 *8))) - (-5 *1 (-929 *5 *6 *7 *8)) (-5 *4 (-1197 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) - (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5))))) + (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228))))) + ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-660 (-1201))) - (-5 *2 - (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) - (-5 *1 (-641 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3163 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -4209 (-420 *6)) - (|:| |special| (-420 *6)))) - (-5 *1 (-743 *5 *6)) (-5 *3 (-420 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-917 *3 *4)) - (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-787)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -3060 *3) (|:| -3076 *3))) (-5 *1 (-917 *3 *5)) - (-4 *3 (-1268 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) - (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) - (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) - (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) - (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-391)) (-5 *1 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) + (|:| -2899 *6))) + (-5 *1 (-1045 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) + (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004))))) (((*1 *2) - (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-355 *3 *4)) (-14 *3 (-944)) - (-14 *4 (-944)))) + (-12 (-14 *4 (-792)) (-4 *5 (-1247)) (-5 *2 (-135)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-1197 *3)))) + (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) ((*1 *2) - (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-944))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-5 *1 (-450))))) -(((*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) + (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) + (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1079)) (-5 *2 (-949)))) + ((*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-792)) (-5 *1 (-215 *4 *2)) (-14 *4 (-949)) + (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1060)) - (-5 *1 (-762))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-132))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-787)) (|:| -2364 *4))) (-5 *5 (-787)) - (-4 *4 (-972 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-462 *6 *7 *8 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-705 *4)) (-4 *4 (-375)) (-5 *2 (-1197 *4)) - (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-864)))))) -(((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) -(((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) - (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) (((*1 *2 *3) + (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) + (-5 *2 (-254 *4 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-792)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-792)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) (-12 - (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-5 *2 + (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) - (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) + (-5 *3 (-665 (-887 *4))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *1 (-518 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-1197 *6)) - (-5 *1 (-332 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1293)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1294))))) -(((*1 *2 *3) +(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) +(((*1 *1 *1 *2) (-12 - (-5 *3 - (-660 - (-2 (|:| -3503 (-787)) - (|:| |eqns| - (-660 - (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) - (|:| |cols| (-660 (-577)))))) - (|:| |fgb| (-660 *7))))) - (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) - (-5 *1 (-947 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *8)) (-5 *4 (-787)) (-4 *8 (-972 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) - (-4 *7 (-809)) (-5 *2 - (-660 - (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) - (|:| |cols| (-660 (-577)))))) - (-5 *1 (-947 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-767))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) - ((*1 *1 *1) (-4 *1 (-864))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) - ((*1 *1 *1) (-4 *1 (-1085))) ((*1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) - (-5 *2 (-944))))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-715)) (-5 *1 (-316))))) + (-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) + (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) + (|:| |args| (-665 (-885))))) + (-5 *1 (-1206)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-1206))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) ((*1 *1) (-4 *1 (-558))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1206))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) + (-4 *5 (-385 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-4 *2 (-1130)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-949)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) - (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1282 *4 *5 *6)) + (|:| |%expon| (-330 *4 *5 *6)) + (|:| |%expTerms| + (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) + (|:| |%type| (-1188)))) + (-5 *1 (-1283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) + (-14 *5 (-1206)) (-14 *6 *4)))) +(((*1 *1) (-5 *1 (-145))) ((*1 *2 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) - (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) - (-5 *1 (-1094 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) - (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) - (-5 *1 (-1170 *5 *6 *7 *8 *9))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-787)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1074)) - (-4 *1 (-703 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-880)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1018 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-375)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 *5))) (-4 *5 (-1074)) - (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) - (-4 *7 (-244 *3 *5))))) + (-12 (-5 *3 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-271))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1182 (-996))) (-5 *1 (-996))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1125)) (-4 *2 (-921 *4)) (-5 *1 (-708 *4 *2 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4470))))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-1201)) - (-4 *2 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-287 *5 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) - (-4 *3 (-1268 *4)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) - ((*1 *1 *1) (-4 *1 (-313))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) - ((*1 *1 *1) (-5 *1 (-880)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-845))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242))))) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) + (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1032) (-1232)))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) - (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-592))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-5 *2 (-1197 *3)) (-5 *1 (-1216 *3)) - (-4 *3 (-375))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) + (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) + (-5 *2 (-2 (|:| |num| (-710 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) - (-4 *7 (-1268 (-420 *6))) (-5 *2 (-660 (-975 *5))) - (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) - (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *4 (-375)) - (-5 *2 (-660 (-975 *4)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1164)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) - (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-12 (-5 *3 (-1 *5 (-665 *5))) (-4 *5 (-1288 *4)) + (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-1 (-1187 *4) (-665 (-1187 *4)))) (-5 *1 (-1290 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 - (-2 (|:| |solns| (-660 *5)) - (|:| |maps| (-660 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1153 *3 *5)) (-4 *3 (-1268 *5))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-625 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) - (-4 *2 (-13 (-443 *5) (-27) (-1227))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 *6)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) - (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-787)) (-4 *7 (-1268 *3))))) + (-2 (|:| -2524 (-792)) (|:| |curves| (-792)) + (|:| |polygons| (-792)) (|:| |constructs| (-792))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-5 *2 (-665 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) + (-5 *2 (-665 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1187 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 *3)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-747)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-665 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-5 *2 (-1187 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) - (-5 *2 - (-2 (|:| -1527 (-787)) (|:| -2940 *5) (|:| |radicand| (-660 *5)))) - (-5 *1 (-331 *5)) (-5 *4 (-787)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-577))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *2 (-420 (-975 *4))) (-5 *1 (-947 *4 *5 *6 *3)) - (-4 *3 (-972 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *2 (-705 (-420 (-975 *4)))) - (-5 *1 (-947 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *2 (-660 (-420 (-975 *4)))) - (-5 *1 (-947 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-859 *4)) (-5 *3 (-625 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1227) (-29 *6))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-227 *6 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) -(((*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-327 *5))) + (-5 *1 (-1159 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-327 *5)))) + (-5 *1 (-1159 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) + ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) + (-4 *3 (-870)) (-5 *2 (-792))))) +(((*1 *2 *1) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) + (-4 *3 (-1273 *4)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)) + (-5 *3 (-665 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) - (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) + (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) - (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-972 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1074)) (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) - (-4 *1 (-1268 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-705 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-809)) - (-4 *5 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *6 (-569)) - (-5 *2 (-2 (|:| -2510 (-975 *6)) (|:| -1341 (-975 *6)))) - (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-972 (-420 (-975 *6)) *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1182 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1074)) - (-5 *1 (-1185 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) - (-4 *2 (-703 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-660 (-705 *6))) (-5 *4 (-112)) (-5 *5 (-577)) - (-5 *2 (-705 *6)) (-5 *1 (-1054 *6)) (-4 *6 (-375)) (-4 *6 (-1074)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-5 *1 (-1054 *4)) - (-4 *4 (-375)) (-4 *4 (-1074)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-5 *2 (-705 *5)) - (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-1074))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-660 (-1183))) (-5 *3 (-577)) (-5 *4 (-1183)) - (-5 *1 (-247)))) - ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-892)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) + (-14 *3 (-665 *2)) (-14 *4 (-665 *2)) (-4 *5 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) + (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) ((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1167 *3 *4)) (-14 *3 (-944)) (-4 *4 (-375)) - (-5 *1 (-1018 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-519)) (-5 *3 (-660 (-1206))) (-5 *1 (-1206))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) - (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4)))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 (-420 (-975 *6)))) - (-5 *3 (-420 (-975 *6))) - (-4 *6 (-13 (-569) (-1063 (-577)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-583 *6))))) -(((*1 *2) - (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *2) - (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) - (-5 *2 (-705 (-327 (-228)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-4 *6 (-921 *5)) (-5 *2 (-705 *6)) - (-5 *1 (-708 *5 *6 *3 *4)) (-4 *3 (-385 *6)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-338 *3)))) + (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) + (-5 *2 (-1202 (-1202 *4))) (-5 *1 (-798 *4 *5 *6 *3 *7)) + (-4 *3 (-1273 *6)) (-14 *7 (-949)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-529 *3 *4)) - (-14 *4 (-577))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) - (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-1224 *4)) - (-4 *4 (-1074))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-760 *3)) (-4 *3 (-174))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-660 *2) *2 *2 *2)) (-4 *2 (-1125)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (-5 *1 (-103 *2))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-944)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-892)) - (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) - (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1292 *5)) - (-5 *1 (-652 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) - (-2686 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1292 (-420 *5))) - (-5 *1 (-652 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 *1)) - (-4 *1 (-394 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-751 *3 *4))) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-742)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-972 *3 *4 *5))))) + (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *1 (-1006 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (|partial| -2867 + (-12 (-5 *2 (-980 *3)) + (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) + (-2779 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870))) + (-12 (-5 *2 (-980 *3)) + (-12 (-2779 (-4 *3 (-558))) (-2779 (-4 *3 (-38 (-420 (-577))))) + (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870))) + (-12 (-5 *2 (-980 *3)) + (-12 (-2779 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) + (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870))))) + ((*1 *1 *2) + (|partial| -2867 + (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) + (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) + (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-705 (-171 (-420 (-577))))) - (-5 *2 - (-660 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) - (|:| |outvect| (-660 (-705 (-171 *4))))))) - (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864)))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *3 (-577)) - (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) - (-4 *2 (-865))))) -(((*1 *2) - (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) - (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) - (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) - (-4 *3 (-870 *5))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) + (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) + (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) + (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-773))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) -(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1060)) (-5 *1 (-764))))) + (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) + (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1202 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1202 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-665 *1)) + (-4 *1 (-1098 *4 *3))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-813))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) + (-4 *4 (-38 (-420 (-577))))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-981 (-1145))) - (-5 *1 (-358 *4))))) + (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) + (-5 *2 (-949))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1297 + (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2524 (-577)) + (|:| -1852 (-577)) (|:| |spline| (-577)) (|:| -3277 (-577)) + (|:| |axesColor| (-897)) (|:| -1445 (-577)) + (|:| |unitsColor| (-897)) (|:| |showing| (-577))))) + (-5 *1 (-1298))))) +(((*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-133))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) + (-12 (-5 *2 (-665 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1273 (-171 (-577)))) (-4 *4 (-13 (-375) (-869))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(((*1 *1) (-5 *1 (-1115)))) +(((*1 *2 *3) + (-12 (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-1149 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-787)) (-4 *3 (-1242)) (-4 *1 (-57 *3 *4 *5)) + (-2 (|:| |glbase| (-665 (-254 *4 *5))) (|:| |glval| (-665 (-577))))) + (-5 *1 (-649 *4 *5)) (-5 *3 (-665 (-254 *4 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -1545 *4))) (-5 *1 (-999 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-1297 *4)) + (-5 *1 (-835 *4 *3)) (-4 *3 (-677 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1125)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402)))) - ((*1 *1) (-5 *1 (-407))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) - ((*1 *1) - (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) - (-4 *4 (-682 *3)))) - ((*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) ((*1 *1 *2) - (-12 (-5 *1 (-1167 *3 *2)) (-14 *3 (-787)) (-4 *2 (-1074)))) - ((*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) - ((*1 *1 *1) (-5 *1 (-1201))) ((*1 *1) (-5 *1 (-1201))) - ((*1 *1) (-5 *1 (-1222)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1268 *4)) - (-5 *2 (-2 (|:| -3487 (-636 *4 *5)) (|:| -1744 (-420 *5)))) - (-5 *1 (-636 *4 *5)) (-5 *3 (-420 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) - (-14 *3 (-944)) (-4 *4 (-1074)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-465)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1268 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-868))))) -(((*1 *1 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-1317))))) -(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-103 *3)) (-4 *3 (-1125))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-2 (|:| -4323 *3) (|:| -2438 *4)))) - (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *1 (-1218 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-420 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-569)) - (-4 *4 (-1074)) (-4 *2 (-1283 *4)) (-5 *1 (-1286 *4 *5 *6 *2)) - (-4 *6 (-672 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391))))) + (-12 (-4 *2 (-1079)) (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-665 *6)) + (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-52))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-630 *1))) (-5 *3 (-665 *1)) (-4 *1 (-313)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *1))) (-4 *1 (-313)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-1292 *2)) (-4 *5 (-318)) - (-4 *6 (-1017 *5)) (-4 *2 (-13 (-422 *6 *7) (-1063 *6))) - (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1268 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-949)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-949)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) - (-5 *2 (-1060)) (-5 *1 (-764))))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-950)) + (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 - (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) - (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) - (-5 *2 - (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) - (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) - (-5 *1 (-154))))) + (-665 + (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) + (|:| |wcond| (-665 (-980 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *4)))))))))) + (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-889 *4 *5 *6 *7)) + (-4 *4 (-1079)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) + (-14 *8 (-665 *5)) (-5 *2 (-1302)) + (-5 *1 (-1309 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-977 *4 *6 *5)) + (-14 *9 (-665 *3)) (-14 *10 *3)))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *1) (-5 *1 (-1088)))) + (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) + (-4 *2 (-13 (-870) (-21)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) + (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-792) *2)) (-5 *4 (-792)) (-4 *2 (-1130)) + (-5 *1 (-699 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-792) *3)) (-4 *3 (-1130)) (-5 *1 (-703 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1093)) (-5 *3 (-1188))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-5 *2 (-660 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) - (-5 *2 (-660 *3)))) + (-12 (-5 *2 (-1056 (-864 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1079))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-792)) (-5 *2 (-665 (-1206))) (-5 *1 (-212)) + (-5 *3 (-1206)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-792)) (-5 *2 (-665 (-1206))) + (-5 *1 (-277)))) ((*1 *2 *1) - (-12 (-5 *2 (-1182 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) + (-5 *2 (-665 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-660 *3)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-742)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-660 *3)))) + (-12 (-5 *2 (-665 *3)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) ((*1 *2 *1) - (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-5 *2 (-1182 *3))))) -(((*1 *1) - (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) - (-4 *4 (-682 *3)))) - ((*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-660 (-1201))) - (-4 *2 (-13 (-443 (-171 *5)) (-1027) (-1227))) (-4 *5 (-569)) - (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1027) (-1227)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) - (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4))))) -(((*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) - (-4 *3 (-569))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715))))) -(((*1 *2) + (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-665 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) + (-4 *2 (-244 *3 *4))))) +(((*1 *2 *3) (-12 - (-5 *2 (-2 (|:| -2526 (-660 (-1201))) (|:| -1880 (-660 (-1201))))) - (-5 *1 (-1244))))) -(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-341))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) - (-15 -2797 ((-1150 *3 (-625 $)) $)) - (-15 -3603 ($ (-1150 *3 (-625 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) - (-15 -2797 ((-1150 *3 (-625 $)) $)) - (-15 -3603 ($ (-1150 *3 (-625 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *2)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *4 (-625 $)) $)) - (-15 -2797 ((-1150 *4 (-625 $)) $)) - (-15 -3603 ($ (-1150 *4 (-625 $))))))) - (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-660 (-625 *2))) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *4 (-625 $)) $)) - (-15 -2797 ((-1150 *4 (-625 $)) $)) - (-15 -3603 ($ (-1150 *4 (-625 $))))))) - (-4 *4 (-569)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-787)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) - (-4 *2 (-1268 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-787)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1074)) - (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) -(((*1 *2 *3) - (-12 (-4 *1 (-855)) - (-5 *3 - (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) - (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) - (|:| |ub| (-660 (-859 (-228)))))) - (-5 *2 (-1060)))) - ((*1 *2 *3) - (-12 (-4 *1 (-855)) (-5 *3 - (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) - (-5 *2 (-1060))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) - (-5 *2 (-1060)) (-5 *1 (-774))))) + (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) + (|:| |expense| (-391)) (|:| |accuracy| (-391)) + (|:| |intermediateResults| (-391)))) + (-5 *2 (-1065)) (-5 *1 (-316))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-705 *7)) (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-754))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880))))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-975 *6)) (-5 *4 (-1201)) - (-5 *5 (-859 *7)) - (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-4 *7 (-13 (-1227) (-29 *6))) (-5 *1 (-227 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1197 *6)) (-5 *4 (-859 *6)) - (-4 *6 (-13 (-1227) (-29 *5))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-227 *5 *6))))) -(((*1 *2 *3) - (-12 (-14 *4 (-660 (-1201))) (-14 *5 (-787)) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-660 - (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) - (-254 *4 (-420 (-577)))))) - (-5 *1 (-518 *4 *5)) - (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) - (-254 *4 (-420 (-577)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) - (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) - (-5 *1 (-804))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-787))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-97))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) - (-5 *1 (-608 *3)) (-4 *3 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-465))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *4 (-1201)) - (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-927 *4)) - (-4 *4 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290))))) (((*1 *2 *3) - (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-4 *4 (-465)) - (-5 *2 (-660 (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4))))) - (-5 *1 (-303 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-1074)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)) - (-4 *3 (-174))))) + (-12 (-4 *2 (-375)) (-4 *2 (-869)) (-5 *1 (-973 *2 *3)) + (-4 *3 (-1273 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-826 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-420 *6))) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 (-2 (|:| -2559 (-660 (-420 *6))) (|:| -1631 (-705 *5)))) - (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-826 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-670 *6 (-420 *6))) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 (-2 (|:| -2559 (-660 (-420 *6))) (|:| -1631 (-705 *5)))) - (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-1297)))) + (-12 (-5 *3 (-949)) (-5 *4 (-431 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-1079)) (-5 *2 (-665 *6)) (-5 *1 (-457 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) - (-4 *4 (-361)) (-5 *2 (-787)) (-5 *1 (-358 *4)))) - ((*1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) - (-14 *4 (-944)))) - ((*1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) - (-14 *4 - (-3 (-1197 *3) - (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145))))))))) - ((*1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-944))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-896 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-898 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-901 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) - (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) - (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-859 (-228)))) (-5 *4 (-228)) (-5 *2 (-660 *4)) - (-5 *1 (-277))))) -(((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205))))) + (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) + (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3543 (-798 *3)) (|:| |coef1| (-798 *3)) - (|:| |coef2| (-798 *3)))) - (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-2 (|:| -3543 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1241))) (-5 *3 (-1241)) (-5 *1 (-697))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-577)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-889 *4)) (-14 *4 *3) - (-5 *3 (-577)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-890 *4 *5)) - (-5 *3 (-577)) (-4 *5 (-887 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-420 (-577))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) - (-4 *3 (-1268 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3603 (*2 (-1201)))) - (-4 *2 (-1074))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-341))))) + (|partial| -12 (-5 *3 (-710 (-420 (-980 (-577))))) + (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3868 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1230))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *8 (-1090 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-660 *8)) - (|:| |towers| (-660 (-1052 *5 *6 *7 *8))))) - (-5 *1 (-1052 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *8 (-1090 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-660 *8)) - (|:| |towers| (-660 (-1171 *5 *6 *7 *8))))) - (-5 *1 (-1171 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-838))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) - (-5 *2 (-1060)) (-5 *1 (-762))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-660 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) - (-5 *1 (-462 *3 *4 *5 *6))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) (((*1 *2 *1) - (-12 (-4 *2 (-1242)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1242)))) - ((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1065)) (-5 *1 (-774))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1029 *3)) (-4 *3 (-174)) (-5 *1 (-820 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1) - (-12 (-4 *2 (-361)) (-4 *2 (-1074)) (-5 *1 (-728 *2 *3)) - (-4 *3 (-1268 *2))))) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1079) (-870))) + (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) (((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) - (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) - (-4 *6 (-354 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1117 (-859 *3))) (-4 *3 (-13 (-1227) (-982) (-29 *5))) - (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 - (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117 (-859 *3))) (-5 *5 (-1183)) - (-4 *3 (-13 (-1227) (-982) (-29 *6))) - (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6 *3)))) + (-2 (|:| -3410 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1117 (-859 (-327 *5)))) - (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 - (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *5)))) + (-2 (|:| |poly| *6) (|:| -4437 (-420 *6)) + (|:| |special| (-420 *6)))) + (-5 *1 (-748 *5 *6)) (-5 *3 (-420 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-922 *3 *4)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-792)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *3))) (-5 *1 (-922 *3 *5)) + (-4 *3 (-1273 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1068 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-443 *3)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1202 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1079)) (-4 *1 (-313)))) + ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) + ((*1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) + (-4 *2 (-1273 *3))))) +(((*1 *1) + (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) + (-4 *4 (-687 *3)))) + ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1247)) + (-4 *5 (-1247)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1117 (-859 (-327 *6)))) - (-5 *5 (-1183)) - (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117 (-859 (-420 (-975 *5))))) (-5 *3 (-420 (-975 *5))) - (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-792)) + (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) + (-5 *1 (-245 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117 (-859 (-420 (-975 *6))))) (-5 *5 (-1183)) - (-5 *3 (-420 (-975 *6))) - (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-3 *3 (-660 *3))) (-5 *1 (-441 *5 *3)) - (-4 *3 (-13 (-1227) (-982) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) - (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578)))) - ((*1 *2 *3) (-12 (-5 *3 (-785)) (-5 *2 (-1060)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) - (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) + (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) - (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) - (-5 *2 (-1060)) (-5 *1 (-578)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) - (-5 *2 (-1060)) (-5 *1 (-578)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) - (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-665 *6)) (-4 *6 (-1247)) + (-4 *5 (-1247)) (-5 *2 (-665 *5)) (-5 *1 (-663 *6 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) - (-5 *5 (-1183)) (-5 *2 (-1060)) (-5 *1 (-578)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-986 *6)) (-4 *6 (-1247)) + (-4 *5 (-1247)) (-5 *2 (-986 *5)) (-5 *1 (-985 *6 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) - (-5 *5 (-1201)) (-5 *2 (-1060)) (-5 *1 (-578)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) - (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-3 (-327 *5) (-660 (-327 *5)))) (-5 *1 (-602 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-756 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865)) - (-4 *3 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1201)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-420 (-577)))) - (-4 *3 (-1074)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-4 *2 (-865)) - (-5 *1 (-1151 *3 *2 *4)) (-4 *4 (-972 *3 (-544 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) - (-5 *1 (-1185 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1198 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-38 (-420 (-577)))) - (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-2811 - (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) - (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) - (-4 *3 (-38 (-420 (-577)))))) - (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) - (-12 (|has| *3 (-15 -3206 ((-660 *2) *3))) - (|has| *3 (-15 -4129 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-2811 - (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) - (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) - (-4 *3 (-38 (-420 (-577)))))) - (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) - (-12 (|has| *3 (-15 -3206 ((-660 *2) *3))) - (|has| *3 (-15 -4129 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1277 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2811 - (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) - (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) - (-4 *3 (-38 (-420 (-577)))))) - (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) - (-12 (|has| *3 (-15 -3206 ((-660 *2) *3))) - (|has| *3 (-15 -4129 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) -(((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) - (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) - (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-911 *3)) (|:| |den| (-911 *3)))) - (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-660 *3)) (-5 *5 (-944)) (-4 *3 (-1268 *4)) - (-4 *4 (-318)) (-5 *1 (-473 *4 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074))))) -(((*1 *1 *1) (-4 *1 (-569)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) - (|:| |polypart| *6))) - (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-305 (-975 (-577)))) - (-5 *2 - (-2 (|:| |varOrder| (-660 (-1201))) - (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) - (|:| |hom| (-660 (-1292 (-787)))))) - (-5 *1 (-242))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-660 (-577))) (-5 *3 (-660 (-944))) (-5 *4 (-112)) - (-5 *1 (-1135))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-625 *5))) (-4 *4 (-1125)) (-5 *2 (-625 *5)) - (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-880) (-880) (-880))) (-5 *4 (-577)) (-5 *2 (-880)) - (-5 *1 (-665 *5 *6 *7)) (-4 *5 (-1125)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-880)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1074)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-880)))) - ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-880)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-880)) (-5 *1 (-1197 *3)) (-4 *3 (-1074))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) - (-5 *2 (-944))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-878)) (-5 *2 (-707 (-1250))) (-5 *3 (-1250))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-660 (-1101 *4 *5 *2))) (-4 *4 (-1125)) - (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) - (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-660 (-1101 *5 *6 *2))) (-5 *4 (-944)) (-4 *5 (-1125)) - (-4 *6 (-13 (-1074) (-905 *5) (-627 (-911 *5)))) - (-4 *2 (-13 (-443 *6) (-905 *5) (-627 (-911 *5)))) - (-5 *1 (-54 *5 *6 *2))))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1187 *6)) (-4 *6 (-1247)) + (-4 *3 (-1247)) (-5 *2 (-1187 *3)) (-5 *1 (-1185 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) + (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1296 *6 *5))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3))))) -(((*1 *1 *1) (-5 *1 (-1088)))) -(((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1197 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) -(((*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-660 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-133))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) - (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1227)))) - ((*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1125))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 (-420 (-975 (-577))))) (-5 *4 (-660 (-1201))) - (-5 *2 (-660 (-660 *5))) (-5 *1 (-392 *5)) - (-4 *5 (-13 (-864) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-864) (-375)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) - (-4 *2 (-1283 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) - (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) - (-4 *2 (-1283 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) - (-5 *1 (-1178 *3))))) + (-12 (-5 *2 (-792)) (-4 *1 (-677 *3)) (-4 *3 (-1079)) (-4 *3 (-375)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-792)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) + (-5 *1 (-680 *5 *2)) (-4 *2 (-677 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-665 (-52))) (-5 *2 (-1302)) (-5 *1 (-886))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-4 *5 (-375)) - (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-1054 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) (-4 *4 (-1074)) - (-5 *2 (-112)) (-5 *1 (-1054 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) - (-14 *4 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-52))))) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) + (-4 *3 (-13 (-1232) (-29 *5)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1206)) (-5 *3 (-447)) (-4 *5 (-1130)) + (-5 *1 (-1136 *5 *4)) (-4 *4 (-443 *5))))) (((*1 *2) - (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (-4 *4 (-1074)) - (-5 *1 (-1053 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) (-4 *4 (-1074)) - (-5 *1 (-1053 *4))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-625 *3)) - (-4 *3 (-13 (-443 *5) (-27) (-1227))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) - (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-660 (-1 *4 (-660 *4)))) (-4 *4 (-1125)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-1 *4 (-660 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1125))))) -(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-809)) - (-4 *3 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *5 (-569)) - (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-809)) - (-4 *3 - (-13 (-865) - (-10 -8 (-15 -2176 ((-1201) $)) - (-15 -3052 ((-3 $ "failed") (-1201)))))) - (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *6)) - (-4 *6 - (-13 (-865) - (-10 -8 (-15 -2176 ((-1201) $)) - (-15 -3052 ((-3 $ "failed") (-1201)))))) - (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) - (-4 *2 (-972 (-975 *4) *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-1197 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *4 (-625 $)) $)) - (-15 -2797 ((-1150 *4 (-625 $)) $)) - (-15 -3603 ($ (-1150 *4 (-625 $)))))))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-773))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-625 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-5 *5 (-1197 *2)) - (-4 *2 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-625 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) - (-5 *5 (-420 (-1197 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) - (-5 *1 (-1154 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-13 (-318) (-148))) - (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) - (-5 *1 (-1154 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) - (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) - (-5 *1 (-1154 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) - (-5 *2 (-660 (-660 (-305 (-327 *4))))) (-5 *1 (-1154 *4)))) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) + (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792)))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-486))) + ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-907)))) + ((*1 *1 *1) (-5 *1 (-1001))) + ((*1 *1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) + (-4 *2 (-1273 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1206)) (-5 *2 (-112)) (-5 *1 (-630 *4)) + (-4 *4 (-1130)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-630 *4)) (-4 *4 (-1130)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-305 (-420 (-975 *5))))) (-5 *4 (-660 (-1201))) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) - (-5 *1 (-1154 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) - (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *4))))) - (-5 *1 (-1154 *4))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) - (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) + (-12 (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-911 *5 *3 *4)) + (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) - (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) - (-5 *4 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) + (-12 (-5 *3 (-665 *6)) (-4 *6 (-910 *5)) (-4 *5 (-1130)) + (-5 *2 (-112)) (-5 *1 (-911 *5 *6 *4)) (-4 *4 (-632 (-916 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-481)) (-5 *3 (-665 (-271))) (-5 *1 (-1298)))) + ((*1 *1 *1) (-5 *1 (-1298)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) + (-4 *2 (-1273 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) + ((*1 *1 *1) (-5 *1 (-391))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) - (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-420 (-577))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-420 (-577))) - (-5 *2 (-660 (-2 (|:| -3060 *5) (|:| -3076 *5)))) (-5 *1 (-1045 *3)) - (-4 *3 (-1268 (-577))) (-5 *4 (-2 (|:| -3060 *5) (|:| -3076 *5))))) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) +(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) ((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) + (-4 *4 (-361))))) +(((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *2 *1) (-12 (-5 *2 - (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) - (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) - (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))) - (-5 *4 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-420 (-577))) - (-5 *2 (-660 (-2 (|:| -3060 *4) (|:| -3076 *4)))) (-5 *1 (-1046 *3)) - (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-420 (-577))) - (-5 *2 (-660 (-2 (|:| -3060 *5) (|:| -3076 *5)))) (-5 *1 (-1046 *3)) - (-4 *3 (-1268 *5)) (-5 *4 (-2 (|:| -3060 *5) (|:| -3076 *5)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-787)) (-4 *6 (-375)) (-5 *4 (-1236 *6)) - (-5 *2 (-1 (-1182 *4) (-1182 *4))) (-5 *1 (-1300 *6)) - (-5 *5 (-1182 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) - (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) - (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 *2)) (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) - (-5 *1 (-748 *5 *4 *6 *2)) (-4 *5 (-809)) - (-4 *4 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) - (-4 *6 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) - (-4 *3 (-664 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074))))) -(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1201)) (-5 *6 (-112)) - (-4 *7 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-4 *3 (-13 (-1227) (-982) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *7 *3)) (-5 *5 (-859 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) - (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) - (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-705 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2559 (-660 *6))) - *7 *6)) - (-4 *6 (-375)) (-4 *7 (-672 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1292 *6) "failed")) - (|:| -2559 (-660 (-1292 *6))))) - (-5 *1 (-829 *6 *7)) (-5 *4 (-1292 *6))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) - (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *9 (-1090 *6 *7 *8)) - (-5 *2 - (-660 - (-2 (|:| -2007 (-660 *9)) (|:| -2002 *10) (|:| |ineq| (-660 *9))))) - (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) - (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *9 (-1090 *6 *7 *8)) - (-5 *2 - (-660 - (-2 (|:| -2007 (-660 *9)) (|:| -2002 *10) (|:| |ineq| (-660 *9))))) - (-5 *1 (-1132 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-787)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-787)) (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-577)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) - (-5 *1 (-462 *5 *6 *7 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-595))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-705 *3)) - (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) + (-665 + (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *3)) + (|:| |logand| (-1202 *3))))) + (-5 *1 (-599 *3)) (-4 *3 (-375))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) - (-15 -2797 ((-1150 *3 (-625 $)) $)) - (-15 -3603 ($ (-1150 *3 (-625 $)))))))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-660 *3)) (-5 *1 (-984 *3)) (-4 *3 (-558))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) - (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-1063 (-420 *2)))) (-5 *2 (-577)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-341))))) + (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-2 (|:| -2471 (-1182 *4)) (|:| -2486 (-1182 *4)))) - (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4))))) + (-12 (-5 *3 (-674 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2)) + (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 *2 (-420 *2))) (-4 *2 (-1273 *4)) + (-5 *1 (-831 *4 *2)) + (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *4 (-1130))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) + (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1194 3 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + ((*1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1227) (-29 *4))))) + (-12 (-4 *3 (-375)) (-5 *1 (-1055 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *5)) - (-5 *1 (-602 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 (-1 *6 (-660 *6)))) - (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1283 *5)) (-5 *2 (-660 *6)) - (-5 *1 (-1285 *5 *6))))) + (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -2281 *3) (|:| -1868 (-665 *5)))) + (-5 *1 (-1055 *5 *3)) (-5 *4 (-665 *5)) (-4 *3 (-677 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) + (-12 (-5 *2 (-665 (-665 *6))) (-4 *6 (-977 *3 *5 *4)) + (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) + (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *6))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-1019)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-4 *4 (-1247)) (-5 *1 (-1087 *3 *4)) + (-4 *3 (-1123 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1124 *4)) (-4 *4 (-1247)) + (-5 *1 (-1122 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1227) (-443 *3))) - (-14 *4 (-1201)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-4 *2 (-13 (-27) (-1227) (-443 *3) (-10 -8 (-15 -3603 ($ *4))))) - (-4 *4 (-864)) - (-4 *5 - (-13 (-1270 *2 *4) (-375) (-1227) - (-10 -8 (-15 -3362 ($ $)) (-15 -4129 ($ $))))) - (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1008 *5)) - (-14 *7 (-1201))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-59 *3)) (-4 *3 (-1242)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3543 *3))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-2 (|:| |deg| (-787)) (|:| -2100 *5)))) - (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *2 (-660 *5)) - (-5 *1 (-219 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-2 (|:| -3056 *5) (|:| -3616 (-577))))) - (-5 *4 (-577)) (-4 *5 (-1268 *4)) (-5 *2 (-660 *5)) - (-5 *1 (-712 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1189 3 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) - ((*1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *3 (-660 (-577))) - (-5 *1 (-902))))) + (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1079)) (-5 *2 (-710 *4)) + (-5 *1 (-1059 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-792)) + (-4 *3 (-13 (-747) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) + (-5 *1 (-252 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-577)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-894 *4)) (-14 *4 *3) + (-5 *3 (-577)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-895 *4 *5)) + (-5 *3 (-577)) (-4 *5 (-892 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-420 (-577))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) + (-4 *3 (-1273 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3709 (*2 (-1206)))) + (-4 *2 (-1079))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-809)) (-4 *5 (-1074)) (-4 *6 (-972 *5 *4 *2)) - (-4 *2 (-865)) (-5 *1 (-973 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *6)) (-15 -2781 (*6 $)) - (-15 -2797 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) - (-5 *2 (-1201)) (-5 *1 (-1068 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *3)) (-4 *3 (-1134 *5 *6 *7 *8)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-604 *5 *6 *7 *8 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) - (-5 *1 (-771))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-787)) - (-4 *5 (-13 (-465) (-1063 (-577)))) (-4 *5 (-569)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *5 (-625 $)) $)) - (-15 -2797 ((-1150 *5 (-625 $)) $)) - (-15 -3603 ($ (-1150 *5 (-625 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) - (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471)))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-704 *4 *5)) (-4 *4 (-1130)))) ((*1 *2 *2) - (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) - (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-966 *4)) (-4 *4 (-1074)) (-5 *1 (-1189 *3 *4)) - (-14 *3 (-944))))) -(((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) - (-5 *2 (-660 (-787))) (-5 *1 (-794 *3 *4 *5 *6 *7)) - (-4 *3 (-1268 *6)) (-4 *7 (-972 *6 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-538))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1074)) - (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-4 *5 (-1074)) - (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) - (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-660 (-625 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-625 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1268 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) + (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) ((*1 *2 *1) - (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) (-5 *1 (-426 *3 *2 *4 *5)) - (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1063 *2))))) + (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) ((*1 *2 *1) - (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) - (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) - (-14 *6 (-1292 *5)))) + (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *4 *5 *6)) + (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) + (-5 *2 (-494 *4 *5)) (-5 *1 (-649 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) + ((*1 *1 *1 *1) (-4 *1 (-814)))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) + (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1297 *5)) + (-5 *1 (-657 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-4 *5 (-1074)) - (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) - (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-508)))) (-5 *1 (-508)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-508))) (-5 *1 (-508)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-660 (-625 (-508)))) - (-5 *1 (-508)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-625 (-508))) (-5 *1 (-508)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) - (-5 *1 (-541 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-740 *4 *2)) (-4 *2 (-1268 *4)) - (-5 *1 (-791 *4 *2 *5 *3)) (-4 *3 (-1268 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1085)))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *2 (-1060)) (-5 *1 (-767))))) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) + (-2779 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1297 (-420 *5))) + (-5 *1 (-657 *5 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-660 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1268 (-171 (-577)))) (-4 *4 (-13 (-375) (-864))))) + (-12 (-5 *4 (-665 *3)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) + (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-462 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4500)) (-4 *4 (-375)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-534 *4 *5 *6 *3)) + (-4 *3 (-708 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4500)) (-4 *4 (-569)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7)) + (-4 *9 (-385 *7)) (-5 *2 (-665 *6)) + (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) + (-4 *10 (-708 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-665 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) - (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) - (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) - (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) - (-5 *2 (-880)) (-5 *1 (-32 *4 *5))))) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-709 *4 *5 *6 *3)) + (-4 *3 (-708 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) + (-5 *2 (-665 *7))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-901 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-903 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-906 *2)) (-4 *2 (-1247))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-97))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1074)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1268 *3)))) + (-12 (-4 *3 (-1079)) (-5 *1 (-918 *2 *3)) (-4 *2 (-1273 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074))))) -(((*1 *1) (-5 *1 (-610)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) + (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *4 *5 *6 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) + (-4 *3 (-1130))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) - (-5 *2 - (-660 - (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) - (|:| |geneigvec| (-660 (-705 (-420 (-975 *4)))))))) - (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1135))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-949)) (-5 *1 (-455 *2)) + (-4 *2 (-1273 (-577))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-949)) (-5 *4 (-792)) (-5 *1 (-455 *2)) + (-4 *2 (-1273 (-577))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *1 (-455 *2)) + (-4 *2 (-1273 (-577))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) + (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) + (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-431 *2)) (-4 *2 (-1273 *5)) + (-5 *1 (-457 *5 *2)) (-4 *5 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-660 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) - (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -2007 *3)))) - (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) - (-4 *7 (-672 (-420 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-660 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *6 (-1268 *5)) - (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -2007 (-670 *6 (-420 *6)))))) - (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) + (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-800 *4)) + (-4 *4 (-13 (-375) (-869)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-665 (-1206))) + (-5 *2 (-665 (-665 (-391)))) (-5 *1 (-1053)) (-5 *5 (-391)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) + (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-980 *4))) + (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065))))) (((*1 *1 *2) - (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-4 *1 (-386 *3 *4)) - (-4 *4 (-174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3) - (-12 (-5 *3 (-859 (-391))) (-5 *2 (-859 (-228))) (-5 *1 (-316))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) - (-5 *2 (-660 (-660 (-660 (-966 *3)))))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) - (-5 *1 (-764))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-769))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1246)) - (-4 *6 (-1268 (-420 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-354 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291))))) + (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1310 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-665 (-1206))) (-4 *2 (-174)) + (-4 *3 (-244 (-3600 *4) (-792))) + (-14 *6 + (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *3)) + (-2 (|:| -3354 *5) (|:| -2328 *3)))) + (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-870)) + (-4 *7 (-977 *2 *3 (-887 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1206))) (-4 *6 (-375)) + (-5 *2 (-665 (-305 (-980 *6)))) (-5 *1 (-551 *5 *6 *7)) + (-4 *5 (-465)) (-4 *7 (-13 (-375) (-869)))))) +(((*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2261 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) + (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-897)))) + ((*1 *2 *3) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) + (-5 *1 (-541 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061))))) +(((*1 *1) (-5 *1 (-145)))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) - (-5 *2 (-1197 *3)))) + (-12 (-5 *2 (-2 (|:| -3642 (-803 *3)) (|:| |coef2| (-803 *3)))) + (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -3642 *1) (|:| |coef2| *1))) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) ((*1 *2 *1) - (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) - (-5 *2 (-1197 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-772))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1197 *7)) - (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *2 (-1268 *5)) - (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1268 *2))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-864)) (-4 *4 (-375)) (-5 *2 (-787)) - (-5 *1 (-968 *4 *5)) (-4 *5 (-1268 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) - (-5 *2 (-660 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)) - (-4 *7 (-972 *4 *6 *5))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-660 - (-2 (|:| -3503 (-787)) - (|:| |eqns| - (-660 - (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) - (|:| |cols| (-660 (-577)))))) - (|:| |fgb| (-660 *7))))) - (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) - (-5 *1 (-947 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) - (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-660 *3)) - (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) - (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) - (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) - (-14 *6 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *4)) (|:| -2729 (-660 (-975 *4)))))) - (-5 *1 (-1103 *4 *5)) (-5 *3 (-660 (-975 *4))) - (-14 *5 (-660 (-1201))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) - (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) - (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) - (-14 *6 (-660 (-1201)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227))) - (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) - (-5 *1 (-613 *4 *5 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1087)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1087))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407))))) + (-2 (|:| -2126 (-665 (-885))) (|:| -4208 (-665 (-885))) + (|:| |presup| (-665 (-885))) (|:| -2254 (-665 (-885))) + (|:| |args| (-665 (-885))))) + (-5 *1 (-1206))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-792))))) (((*1 *2 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) + (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) + (-5 *1 (-939 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) - (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1074)) (-5 *1 (-730 *2 *4)) - (-4 *4 (-664 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-373 (-115))) (-5 *1 (-852 *2)) (-4 *2 (-1074))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-790)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-790)) (-5 *1 (-115))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) + (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) + (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-940 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-660 (-494 *3 *4))) (-14 *3 (-660 (-1201))) - (-4 *4 (-465)) (-5 *1 (-644 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *3 (-1090 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *3 (-1090 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-763))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-880))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) + (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1273 *4)) + (-5 *1 (-798 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-949)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) + ((*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-375)) (-4 *2 (-380))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-792)) (-5 *1 (-229)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-228))) (-5 *3 (-792)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) + (-12 (-5 *3 (-665 (-949))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-949)) (-14 *5 (-1023 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) + (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) + (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) + (-4 *4 (-1273 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-747)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) + (-4 *4 (-1079)) (-4 *5 (-870)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) + (-4 *2 (-870)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) + (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *2 (-870)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-4 *2 (-977 *4 (-544 *5) *5)) + (-5 *1 (-1156 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-870)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-980 *4)) (-5 *1 (-1241 *4)) + (-4 *4 (-1079))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) + (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *1) (-5 *1 (-1204)))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *6 (-627 (-1201))) - (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *2 (-1190 (-660 (-975 *4)) (-660 (-305 (-975 *4))))) - (-5 *1 (-517 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-767))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) -(((*1 *1 *1) (-4 *1 (-1085))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2845 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-375)) (-4 *7 (-1268 *6)) - (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) + (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-665 *1)))) + (-4 *1 (-379 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-466 *3 *4 *5 *6)) + (|:| -2104 (-665 (-466 *3 *4 *5 *6))))) + (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-710 *4)) (-4 *4 (-375)) + (-5 *1 (-688 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-375)) + (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4500)))) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))) + (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-665 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) + (-5 *1 (-835 *2 *3)) (-4 *3 (-677 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) - (-5 *2 (-391)) (-5 *1 (-277)))) + (-12 (-4 *4 (-1079)) + (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) + ((*1 *1 *1) (-4 *1 (-558))) + ((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1244 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) + (-4 *2 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) ((*1 *2 *3) - (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) (-4 *1 (-892 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) + (-4 *4 (-870))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-772))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) + (-5 *1 (-343))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-5 *2 (-2 (|:| -4323 *3) (|:| -2438 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-1220))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-4 *6 (-465)) - (-5 *2 (-660 (-660 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) - (-4 *5 (-13 (-375) (-864)))))) -(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + (-12 (-5 *2 (-792)) (-5 *3 (-971 *4)) (-4 *1 (-1164 *4)) + (-4 *4 (-1079)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-792)) (-5 *4 (-971 (-228))) (-5 *2 (-1302)) + (-5 *1 (-1299))))) +(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-247)))) ((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-625 *4)) (-5 *6 (-1201)) - (-4 *4 (-13 (-443 *7) (-27) (-1227))) - (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125))))) + (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-577)) (-5 *1 (-247))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) +(((*1 *1 *1) + (-12 (-4 *2 (-318)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) + (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3)))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-375)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) + (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1273 *2)) + (-4 *5 (-1273 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) + (-4 *6 (-354 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-375)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))) + (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) + (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) + (-4 *1 (-347 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-601 *4)) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1288 *4)) + (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-1 (-1187 *4) (-1187 *4) (-1187 *4))) (-5 *1 (-1290 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1545 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065))))) +(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) - (-4 *2 (-1283 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) - (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) - (-4 *2 (-1283 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) - (-5 *1 (-1178 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1259 (-577)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-449))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) -(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1121)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) - ((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216))))) +(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) + (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-14 *4 (-787)) (-4 *5 (-1242)) (-5 *2 (-135)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) - (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1074)) (-5 *2 (-944)))) - ((*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3398 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) + (-5 *3 (-420 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-587 *7 *8))))) (((*1 *1 *2) - (-12 (-5 *2 (-660 *1)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-705 *3)))) + (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1068 *4)) (-4 *3 (-318)) + (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-422 *4 *5)) + (-14 *7 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 *4)) (-4 *4 (-1074)) (-4 *1 (-1148 *3 *4 *5 *6)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) + (-12 (-5 *2 (-1297 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1022 *3)) + (-4 *5 (-1273 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) (((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1172 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-591)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *7 (-926 *6)) + (-5 *2 (-710 *7)) (-5 *1 (-713 *6 *7 *3 *4)) (-4 *3 (-385 *7)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-849) (-1079))) (-5 *2 (-1188)) + (-5 *1 (-847 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-1079))) + (-5 *2 (-1188)) (-5 *1 (-847 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-843)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-849) (-1079))) + (-5 *2 (-1302)) (-5 *1 (-847 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-843)) (-5 *4 (-327 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-849) (-1079))) (-5 *2 (-1302)) (-5 *1 (-847 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-1188)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-849)) (-5 *3 (-112)) (-5 *2 (-1188)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *2 (-1302)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *4 (-112)) (-5 *2 (-1302))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-542))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-1242 *3)) + (-4 *3 (-1004))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1206)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-665 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3398 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1232) (-27) (-443 *8))) + (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) + (-5 *2 (-665 *4)) (-5 *1 (-1044 *8 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) + (-5 *2 (-1065)) (-5 *1 (-767))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) + ((*1 *1 *1) (-5 *1 (-1150)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) + (-14 *4 (-1206)) (-14 *5 *3)))) +(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-623))) + ((*1 *1) (-5 *1 (-624)))) (((*1 *2 *3) - (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 (-660 *4)))) - (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 *4)))))) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *6 (-632 (-1206))) + (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *2 (-1195 (-665 (-980 *4)) (-665 (-305 (-980 *4))))) + (-5 *1 (-517 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-5 *2 (-1202 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) + (-4 *3 (-1095 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1233 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-665 (-1233 *2))) (-5 *1 (-1233 *2)) (-4 *2 (-1130))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-1145))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) + ((*1 *1 *1 *1) (-5 *1 (-1150)))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) + (-4 *3 (-1273 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-665 *3)) (-5 *1 (-989 *3)) (-4 *3 (-558))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-290))) (-5 *1 (-290)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211))))) +(((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-971 (-228)))) (-5 *1 (-1298))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1182 (-228))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2097 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1060)) (-5 *1 (-316))))) + (-665 + (-2 (|:| -1641 (-792)) + (|:| |eqns| + (-665 + (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) + (|:| |cols| (-665 (-577)))))) + (|:| |fgb| (-665 *7))))) + (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) + (-5 *1 (-952 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148))) - (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) - (-5 *1 (-1154 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148))) - (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) - (-5 *1 (-1154 *5))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1072))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-5 *3 (-420 *6)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) + (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-792)) (-4 *7 (-1273 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1) + (-12 (-5 *2 (-885)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) + (-4 *3 (-1247))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) + ((*1 *1 *1 *1) (-5 *1 (-1150)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-465))))) +(((*1 *2 *1) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-986 (-792))) (-5 *1 (-344))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) + (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2281 (-665 *9)) (|:| -3613 *4) (|:| |ineq| (-665 *9)))) + (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) + (-4 *4 (-1101 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) + (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) + (-5 *2 + (-2 (|:| -2281 (-665 *9)) (|:| -3613 *4) (|:| |ineq| (-665 *9)))) + (-5 *1 (-1137 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) + (-4 *4 (-1101 *6 *7 *8 *9))))) +(((*1 *2) + (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *2) + (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *1) (-5 *1 (-844)))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) + (-4 *6 (-13 (-375) (-148) (-1068 *4))) (-5 *4 (-577)) (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) -(((*1 *2 *3) (-12 (-5 *3 (-975 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) - (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) - ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) - (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) - (-4 *3 (-870 *5))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) - (-5 *2 (-1060)) (-5 *1 (-772))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -2281 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1045 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *3) - (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) - (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5))))) + (-12 (-4 *4 (-1247)) (-5 *2 (-792)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-695 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1322))))) +(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) + (-4 *2 (-174))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1295 *3)) (-4 *3 (-23)) (-4 *3 (-1247))))) (((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-1292 *4)) - (-5 *1 (-830 *4 *3)) (-4 *3 (-672 *4))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) - (-4 *2 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) - (-4 *3 (-1242)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) - (-5 *1 (-753 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) + (-12 (-5 *2 (-665 (-971 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807))))) +(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-792))))) +(((*1 *1) (-5 *1 (-623))) ((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1054 *3)) + (-4 *3 (-13 (-869) (-375) (-1052))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) + (-4 *3 (-1273 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) + (-4 *3 (-1273 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-142))))) +(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) + (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) + (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) + (-5 *1 (-718))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-792))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188)) (-5 *2 (-216 (-515))) (-5 *1 (-858))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) + (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-660 *3)) (|:| |image| (-660 *3)))) - (-5 *1 (-928 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *4)) (-4 *4 (-354 *5 *6 *7)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-822 *5 *6 *7 *4))))) + (-12 (-4 *2 (-729 *3)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1079))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1182 *7))) (-4 *6 (-865)) - (-4 *7 (-972 *5 (-544 *6) *6)) (-4 *5 (-1074)) - (-5 *2 (-1 (-1182 *7) *7)) (-5 *1 (-1151 *5 *6 *7))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) - (-4 *3 (-1125)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) + (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) + (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) + (-4 *7 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8))))) +(((*1 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) - (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) - (-5 *1 (-973 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) + (-5 *2 (-1299)) (-5 *1 (-265))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-916 *6))) + (-5 *5 (-1 (-913 *6 *8) *8 (-916 *6) (-913 *6 *8))) (-4 *6 (-1130)) + (-4 *8 (-13 (-1079) (-632 (-916 *6)) (-1068 *7))) + (-5 *2 (-913 *6 *8)) (-4 *7 (-1079)) (-5 *1 (-969 *6 *7 *8))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) + (-4 *3 (-569))))) +(((*1 *1) (-5 *1 (-1299)))) (((*1 *2 *1) (-12 (-5 *2 - (-660 + (-665 (-2 - (|:| -4323 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| -4376 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (|:| -2438 + (|:| -2727 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -2907,10 +2685,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1182 (-228))) + (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2097 + (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -2920,1601 +2698,2297 @@ (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) ((*1 *2 *1) - (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) - (-5 *2 (-660 *4))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-361))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-932))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-1182 (-1182 (-975 *5)))) - (-5 *1 (-1300 *5)) (-5 *4 (-1182 (-975 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-660 (-787))) (-5 *1 (-994 *4 *3)) - (-4 *3 (-1268 *4))))) + (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) + (-5 *2 (-665 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) - (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) - (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) - (-5 *1 (-934 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) - (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) - (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-935 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) -(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1268 *4)))) + (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-1269 *4 *2)) + (-4 *2 (-1273 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) + (-5 *2 (-665 (-1206))) (-5 *1 (-1106 *3 *4 *5)) + (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) +(((*1 *1 *1) (-4 *1 (-647))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-504)) (-5 *4 (-982)) (-5 *2 (-712 (-546))) + (-5 *1 (-546)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-13 (-465) (-148))) - (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-773))))) + (-12 (-5 *4 (-982)) (-4 *3 (-1130)) (-5 *2 (-712 *1)) + (-4 *1 (-788 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-772))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) + ((*1 *1 *1) + (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) + (-14 *3 (-665 (-1206))))) + ((*1 *1 *1) + (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130)))) + ((*1 *1 *1) + (-12 (-14 *2 (-665 (-1206))) (-4 *3 (-174)) + (-4 *5 (-244 (-3600 *2) (-792))) + (-14 *6 + (-1 (-112) (-2 (|:| -3354 *4) (|:| -2328 *5)) + (-2 (|:| -3354 *4) (|:| -2328 *5)))) + (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-870)) + (-4 *7 (-977 *3 *5 (-887 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) + ((*1 *1 *1) + (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) + ((*1 *1 *1) + (-12 (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) (-4 *2 (-1079)) + (-4 *3 (-747)))) + ((*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-971 (-228))) (-5 *2 (-228)) (-5 *1 (-1243)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-569)) (-4 *2 (-1079)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *1)))) + (-4 *1 (-1101 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) + (-5 *1 (-769))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1197 *3)) (-4 *3 (-1074)) (-4 *1 (-1268 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-768))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) + (-12 (-5 *2 (-710 *3)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-710 *3)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4)))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1065)) (-5 *1 (-769))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) + (-4 *1 (-745 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1273 *5)) + (-5 *2 (-710 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-5 *2 (-2 (|:| -4376 *3) (|:| -2727 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-660 - (-2 - (|:| -4323 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (|:| -2438 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1182 (-228))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2097 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-572))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-977 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) + (-4 *2 (-1257 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) + (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) + (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) + (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-943)) (-5 *2 (-2 (|:| -2940 (-660 *1)) (|:| -3428 *1))) - (-5 *3 (-660 *1))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125))))) + (-12 (-4 *3 (-1273 (-420 (-577)))) + (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) + (-5 *1 (-941 *3 *4)) (-4 *4 (-1273 (-420 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1273 (-420 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1268 (-420 *2))) - (-4 *2 (-1268 *5)) (-5 *1 (-218 *5 *2 *6 *3)) - (-4 *3 (-354 *5 *2 *6))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) - (-4 *7 (-972 *5 *6 *4)) (-4 *5 (-932)) (-4 *6 (-809)) - (-4 *4 (-865)) (-5 *1 (-929 *5 *6 *4 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-5 *2 (-577)) + (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1273 *5)) + (-4 *6 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) + (-4 *3 (-1273 *4)) + (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) +(((*1 *1) (-5 *1 (-623))) ((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-949)))) + ((*1 *2 *3) + (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) + (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) + (-5 *2 (-792)) (-5 *1 (-405 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-854 (-949))))) + ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) + (-4 *4 (-1273 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) + (-4 *3 (-870)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) + (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) + (-5 *2 (-792)) (-5 *1 (-939 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) + (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) + (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-792)) + (-5 *1 (-940 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) + (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) + (-4 *9 (-13 (-380) (-375))) (-5 *2 (-792)) + (-5 *1 (-1048 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)) + (-5 *2 (-792)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1145)) (-4 *4 (-361)) - (-5 *1 (-541 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-705 *5))) (-4 *5 (-318)) (-4 *5 (-1074)) - (-5 *2 (-1292 (-1292 *5))) (-5 *1 (-1054 *5)) (-5 *4 (-1292 *5))))) + (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *1 (-709 *4 *5 *6 *2)) + (-4 *2 (-708 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1292 (-715))) (-5 *1 (-316))))) + (|partial| -12 (-5 *3 (-949)) + (-5 *2 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) + (-5 *1 (-358 *4)) (-4 *4 (-361))))) +(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1126)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) + ((*1 *2 *1) + (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) + (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) + ((*1 *2 *1) + (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) + ((*1 *2 *1) + (-12 (-14 *3 (-665 (-1206))) (-4 *5 (-244 (-3600 *3) (-792))) + (-14 *6 + (-1 (-112) (-2 (|:| -3354 *4) (|:| -2328 *5)) + (-2 (|:| -3354 *4) (|:| -2328 *5)))) + (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-870)) + (-4 *7 (-977 *2 *5 (-887 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-873)) (-4 *2 (-102)))) + ((*1 *2 *1) + (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) + (-4 *3 (-747)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *3 (-813)) (-4 *4 (-870)) + (-4 *2 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870))))) (((*1 *2 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) - ((*1 *1 *1) (-5 *1 (-1145)))) -(((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-660 (-660 (-966 (-228))))))) - ((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-660 (-660 (-966 (-228)))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-865)) - (-4 *8 (-318)) (-4 *6 (-809)) (-4 *9 (-972 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-660 (-2 (|:| -3056 (-1197 *9)) (|:| -1527 (-577))))))) - (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-865))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1125)) - (-4 *2 (-132))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-770))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1206)) + (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-588 *4 *2)) + (-4 *2 (-13 (-1232) (-987) (-1169) (-29 *4)))))) +(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-623))) + ((*1 *1) (-5 *1 (-624)))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-302))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) + (-4 *3 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-665 (-2 (|:| -2040 *1) (|:| -3548 (-665 *7))))) + (-5 *3 (-665 *7)) (-4 *1 (-1240 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) + ((*1 *2 *1) + (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) + ((*1 *2 *1) + (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) + (-4 *6 (-244 (-3600 *3) (-792))) + (-14 *7 + (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *6)) + (-2 (|:| -3354 *5) (|:| -2328 *6)))) + (-5 *2 (-734 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-870)) (-4 *8 (-977 *4 *6 (-887 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-747)) (-4 *2 (-870)) (-5 *1 (-756 *3 *2)) + (-4 *3 (-1079)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) + (-4 *4 (-870))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-420 (-577))) - (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) + (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-2 (|:| -1868 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-420 (-980 (-577))))) (-5 *4 (-665 (-1206))) + (-5 *2 (-665 (-665 *5))) (-5 *1 (-392 *5)) + (-4 *5 (-13 (-869) (-375))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-869) (-375)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-404))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) - ((*1 *1 *1 *1) (-5 *1 (-1145)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-375)) - (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-463 *4 *5 *6 *2)))) + (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) + (-5 *2 (-665 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) + (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) + (-4 *2 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) + (-4 *3 (-1247)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) + (-5 *1 (-758 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 (-665 *4)))) + (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 *4)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-665 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228))))) + (-5 *1 (-572)))) + ((*1 *2 *1) + (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-5 *2 (-665 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| R (-705 *6)) (|:| A (-705 *6)) (|:| |Ainv| (-705 *6)))) - (-5 *1 (-1003 *6)) (-5 *3 (-705 *6))))) + (-665 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228))))) + (-5 *1 (-824))))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) + (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 *4)))) + (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) + ((*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) + (-5 *1 (-343))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1273 (-171 *2)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-710 (-577))) (-5 *3 (-665 (-577))) (-5 *1 (-1140))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) + (-5 *1 (-787 *3 *4)) (-4 *3 (-729 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-569)) (-4 *2 (-977 *3 *5 *4)) + (-5 *1 (-753 *5 *4 *6 *2)) (-5 *3 (-420 (-980 *6))) (-4 *5 (-814)) + (-4 *4 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-711 *3)) (-4 *3 (-1125)) - (-5 *2 (-660 (-2 (|:| -2438 *3) (|:| -1452 (-787)))))))) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-792)))) + ((*1 *1 *1) (-4 *1 (-415)))) +(((*1 *1) (-5 *1 (-623))) ((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) + (-4 *3 (-1247))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) + (-5 *2 (-665 (-665 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) + (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465))))) +(((*1 *1 *1) (-4 *1 (-249))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-2867 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247))))) + ((*1 *1 *1) (-4 *1 (-486))) + ((*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) (((*1 *2 *3) - (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) - (-5 *3 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) + (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-318)) + (-5 *2 (-420 (-431 (-980 *4)))) (-5 *1 (-1072 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-921)) + (-5 *3 + (-2 (|:| |pde| (-665 (-327 (-228)))) + (|:| |constraints| + (-665 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-792)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) + (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) + (|:| |tol| (-228)))) + (-5 *2 (-1065))))) (((*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) - (-4 *2 (-703 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) - ((*1 *1 *1 *1) (-5 *1 (-1145)))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) - (-4 *3 (-1125))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1183)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *4 (-1090 *6 *7 *8)) (-5 *2 (-1297)) - (-5 *1 (-792 *6 *7 *8 *4 *5)) (-4 *5 (-1096 *6 *7 *8 *4))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) - (-4 *2 (-1268 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-660 (-577))) - (|:| |cols| (-660 (-577))))) - (-5 *4 (-705 *12)) (-5 *5 (-660 (-420 (-975 *9)))) - (-5 *6 (-660 (-660 *12))) (-5 *7 (-787)) (-5 *8 (-577)) - (-4 *9 (-13 (-318) (-148))) (-4 *12 (-972 *9 *11 *10)) - (-4 *10 (-13 (-865) (-627 (-1201)))) (-4 *11 (-809)) + (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) + (-4 *2 (-708 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) + (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-5 *1 (-650)))) +(((*1 *1) (-5 *1 (-624)))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-127 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) + (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-883)) (-5 *2 (-712 (-130))) (-5 *3 (-130))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-447)) (-5 *2 - (-2 (|:| |eqzro| (-660 *12)) (|:| |neqzro| (-660 *12)) - (|:| |wcond| (-660 (-975 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *9)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *9))))))))) - (-5 *1 (-947 *9 *10 *11 *12))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242))))) + (-665 + (-3 (|:| -2758 (-1206)) + (|:| -2884 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) + (-5 *1 (-1210))))) +(((*1 *1 *1) (-4 *1 (-647))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) + (-5 *2 (-112)) (-5 *1 (-1325 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)) - (-5 *3 (-660 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-705 (-420 (-577)))) + (-12 (-4 *4 (-465)) (-5 *2 - (-660 - (-2 (|:| |outval| *4) (|:| |outmult| (-577)) - (|:| |outvect| (-660 (-705 *4)))))) - (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-391)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) + (-665 + (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) + (|:| |geneigvec| (-665 (-710 (-420 (-980 *4)))))))) + (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) + (-5 *1 (-913 *4 *5)) (-4 *5 (-1130)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-5 *2 (-112)) + (-5 *1 (-914 *5 *3)) (-4 *3 (-1247)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) + (-4 *6 (-1247)) (-5 *2 (-112)) (-5 *1 (-914 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-4 *2 (-1268 *4)) - (-5 *1 (-945 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) + (-12 (-5 *2 (-792)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)) + (-4 *3 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) - (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5)))) + (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-420 (-577))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) + (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) + (-4 *8 (-13 (-27) (-1232) (-443 *7))) + (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) + (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) + (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1079)) (-4 *1 (-1280 *4 *3)) + (-4 *3 (-1257 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) + (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-1007 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-885))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1257 *3)) (-4 *3 (-1079)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1288 *3)) (-4 *3 (-1079))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1130))))) +(((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1206)) + (-4 *4 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) + (-4 *2 (-1288 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) + (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) + (-4 *2 (-1288 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) + (-5 *1 (-1183 *3))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-665 + (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *2)) + (|:| |logand| (-1202 *2))))) + (-5 *4 (-665 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-375)) (-5 *1 (-599 *2))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1068 (-577)))) + (-4 *7 (-1273 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) + (-4 *2 (-354 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) - (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 *7))) - (-5 *1 (-758 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) + (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1068 *4) (-659 *4))) + (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-465) (-1068 *5) (-659 *5))) (-5 *5 (-577)) + (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) + (-4 *7 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) + (-4 *3 (-13 (-27) (-1232) (-443 *7))) + (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-577)) (-4 *4 (-1079)) (-4 *1 (-1259 *4 *3)) + (-4 *3 (-1288 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-465)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-431 *1)) (-4 *1 (-972 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-465)) (-5 *2 (-431 *3)) - (-5 *1 (-1004 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) + (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-792)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) + (-4 *3 (-1130)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) + (-5 *2 (-577)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) + (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-542)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)))) ((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) - (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) - (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246)))) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-1079)) (-4 *6 (-977 *5 *4 *2)) + (-4 *2 (-870)) (-5 *1 (-978 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *6)) (-15 -2417 (*6 $)) + (-15 -2429 (*6 $))))))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1271 *4 *3)) - (-4 *3 (-13 (-1268 *4) (-569) (-10 -8 (-15 -3543 ($ $ $))))))) + (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) + (-5 *2 (-1206)) (-5 *1 (-1073 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-465)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *5 (-937)) (-5 *1 (-470 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-937))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-771))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-665 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1130)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-665 *4))) (-4 *4 (-1130)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-14 *5 (-660 (-1201))) - (-5 *2 - (-660 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6))))) - (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) - (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *2 (-660 (-660 (-577)))) - (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *6 *5))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1290 *3)) (-4 *3 (-23)) (-4 *3 (-1242))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-665 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1130)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) + (-5 *1 (-735 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) + ((*1 *1 *1) (-4 *1 (-1090)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *2) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) - (-5 *2 (-1060)) (-5 *1 (-770))))) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-792)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-792)) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) + (-4 *6 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-792))) + (-4 *7 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-792))) + (-4 *3 (-13 (-27) (-1232) (-443 *7))) + (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) + (-12 (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-2 (|:| -2757 (-1187 *4)) (|:| -2772 (-1187 *4)))) + (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4))))) +(((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079))))) (((*1 *2 *1) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) + (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-837)) (-5 *4 (-52)) (-5 *2 (-1297)) (-5 *1 (-847))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-486))) ((*1 *1 *1 *1) (-4 *1 (-777)))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *5 (-1268 *4)) - (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -2007 *5)))) - (-5 *1 (-825 *4 *5 *3 *6)) (-4 *3 (-672 *5)) - (-4 *6 (-672 (-420 *5)))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) - (-5 *1 (-772))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) - (-5 *2 (-1292 (-420 (-577)))) (-5 *1 (-1320 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *3 (-660 (-271))) - (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1201)) - (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *1 (-1204))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-672 *3)) (-4 *3 (-1074)) (-4 *3 (-375)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) - (-5 *1 (-675 *5 *2)) (-4 *2 (-672 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-787)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-109))) (-5 *1 (-177))))) + (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 (-577))) + (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-630 *3)) (-4 *3 (-443 *5)) + (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1202 (-420 (-577)))) + (-5 *1 (-446 *5 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) + (-4 *2 (-1079))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) - (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) + (-12 (-5 *4 (-665 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-318)) + (-5 *2 (-112)) (-5 *1 (-468 *3 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) + (-5 *1 (-541 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) + (-5 *2 (-1065)) (-5 *1 (-770))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) - (-4 *4 (-361)) (-5 *2 (-1297)) (-5 *1 (-541 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) + (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) + (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) + (-4 *6 (-465)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) + (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) + (-4 *6 (-465))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-944)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1197 *1)) - (-4 *1 (-340 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) - (-4 *2 (-1268 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) - (-5 *1 (-541 *4))))) -(((*1 *2 *2) - (-12 + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) + (-5 *2 (-710 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-665 *7) *7 (-1202 *7))) (-5 *5 (-1 (-431 *7) *7)) + (-4 *7 (-1273 *6)) (-4 *6 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-5 *2 (-665 (-2 (|:| |frac| (-420 *7)) (|:| -2281 *3)))) + (-5 *1 (-830 *6 *7 *3 *8)) (-4 *3 (-677 *7)) + (-4 *8 (-677 (-420 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-577)))) - (-4 *4 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3543 ($ $ $))))) - (-4 *3 (-569)) (-5 *1 (-1271 *3 *4))))) + (-665 (-2 (|:| |frac| (-420 *6)) (|:| -2281 (-675 *6 (-420 *6)))))) + (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6)))))) (((*1 *2 *3) - (-12 (-5 *3 (-705 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-410))))) + (-12 (-4 *4 (-569)) (-5 *2 (-1202 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *4 (-630 $)) $)) + (-15 -2429 ((-1155 *4 (-630 $)) $)) + (-15 -3709 ($ (-1155 *4 (-630 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-630 *3)) + (-4 *3 (-13 (-443 *5) (-27) (-1232))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) + (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) + (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-780))))) +(((*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-792)) (-5 *1 (-603))))) +(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-660 (-420 *7))) - (-4 *7 (-1268 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-587 *6 *7))))) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3352 *6) (|:| |sol?| (-112))) (-577) + *6)) + (-4 *6 (-375)) (-4 *7 (-1273 *6)) + (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1172 *3 *4)) (-14 *3 (-949)) (-4 *4 (-375)) + (-5 *1 (-1023 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-1268 (-420 (-577)))) (-5 *1 (-936 *3 *2)) - (-4 *2 (-1268 (-420 *3)))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-660 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-809)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) - (-5 *1 (-462 *4 *5 *6 *3))))) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) + (-15 -2429 ((-1155 *3 (-630 $)) $)) + (-15 -3709 ($ (-1155 *3 (-630 $)))))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) + (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-481)) (-5 *1 (-1301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-481)) + (-5 *1 (-1301)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) + (-5 *2 (-481)) (-5 *1 (-1301))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-665 (-271))) (-5 *1 (-1299)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1188)) (-5 *1 (-1299)))) + ((*1 *1 *1) (-5 *1 (-1299)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) + (-4 *3 (-1130))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) + (-4 *2 (-677 *4))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) + (-4 *4 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-4 *4 (-569)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-710 *4)) (-4 *5 (-677 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1240 *5 *6 *7 *3)) + (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1130)) + (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1065)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) + (-5 *2 (-665 (-1206))) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-665 *5)) + (-5 *1 (-332 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) - (-4 *3 (-1268 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-787)) (-5 *1 (-574))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) - (-5 *2 (-660 *4)) (-5 *1 (-1139 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-62 *3)) (-14 *3 (-1201)))) - ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-69 *3)) (-14 *3 (-1201)))) - ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-72 *3)) (-14 *3 (-1201)))) - ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1297)))) - ((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-410)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) - ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) -(((*1 *1) (-5 *1 (-572)))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) - ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-5 *1 (-562))) - ((*1 *1) (-4 *1 (-742))) ((*1 *1) (-5 *1 (-1201))) - ((*1 *1) (-12 (-5 *1 (-1207 *2)) (-14 *2 (-944)))) - ((*1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) - ((*1 *1) (-5 *1 (-1247))) ((*1 *1) (-5 *1 (-1248))) - ((*1 *1) (-5 *1 (-1249))) ((*1 *1) (-5 *1 (-1250)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) + (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-400)))) + ((*1 *2 *1) + (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-1206))))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-665 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1063 (-577))))) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *5)) + (-5 *1 (-978 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-660 - (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *3)) - (|:| |logand| (-1197 *3))))) - (-5 *1 (-599 *3)) (-4 *3 (-375))))) + (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-4 *5 (-870)) (-5 *2 (-665 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-1206))) + (-5 *1 (-1073 *4))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1182 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1074)) - (-5 *3 (-420 (-577))) (-5 *1 (-1185 *4))))) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-375) (-148))) + (-5 *2 (-665 (-2 (|:| -2328 (-792)) (|:| -1343 *4) (|:| |num| *4)))) + (-5 *1 (-412 *3 *4)) (-4 *4 (-1273 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1202 (-420 (-1202 *2)))) (-5 *4 (-630 *2)) + (-4 *2 (-13 (-443 *5) (-27) (-1232))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1130)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1202 *1)) (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *3 (-870)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1202 *4)) (-4 *4 (-1079)) (-4 *1 (-977 *4 *5 *3)) + (-4 *5 (-814)) (-4 *3 (-870)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-1202 *2))) (-4 *5 (-814)) (-4 *4 (-870)) + (-4 *6 (-1079)) + (-4 *2 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))) + (-5 *1 (-978 *5 *4 *6 *7 *2)) (-4 *7 (-977 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-1202 (-420 (-980 *5))))) (-5 *4 (-1206)) + (-5 *2 (-420 (-980 *5))) (-5 *1 (-1073 *5)) (-4 *5 (-569))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-327 (-577)))) - (-5 *1 (-1056))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-865)) - (-4 *5 (-809)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-404))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3846 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) - (-5 *1 (-481))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) + (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) + (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500))))))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *1) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-665 (-1206))))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) - (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) - (|:| |args| (-660 (-880))))) - (-5 *1 (-1201))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) + (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-665 (-1206)))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-385 *5)))) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-14 *5 (-665 (-1206))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *4)) (|:| -3762 (-665 (-980 *4)))))) + (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) + (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) + (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) + (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) + (-12 (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *4)) (|:| -3762 (-665 (-980 *4)))))) + (-5 *1 (-1324 *4 *5 *6)) (-5 *3 (-665 (-980 *4))) + (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1187 (-665 (-949)))) (-5 *1 (-907))))) +(((*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-722))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-720))) (-5 *1 (-341)))) + ((*1 *1) (-5 *1 (-341)))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-665 (-949))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-949)) + (-4 *2 (-375)) (-14 *5 (-1023 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-734 *5 *6 *7)) (-4 *5 (-870)) + (-4 *6 (-244 (-3600 *4) (-792))) + (-14 *7 + (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *6)) + (-2 (|:| -3354 *5) (|:| -2328 *6)))) + (-14 *4 (-665 (-1206))) (-4 *2 (-174)) + (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-977 *2 *6 (-887 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) + (-4 *4 (-1273 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-756 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-747)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) + (-4 *4 (-1079)) (-4 *5 (-870)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) + (-4 *2 (-870)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) + (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *2 (-870)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 *5)) (-4 *1 (-1003 *4 *5 *6)) + (-4 *4 (-1079)) (-4 *5 (-813)) (-4 *6 (-870)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-1003 *4 *3 *2)) (-4 *4 (-1079)) (-4 *3 (-813)) + (-4 *2 (-870))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) + (-5 *1 (-1159 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |num| (-705 *4)) (|:| |den| *4))) - (-5 *1 (-709 *4 *5)))) + (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-13 (-318) (-148))) + (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *6 (-1268 *5)) - (-5 *2 (-2 (|:| -2007 *7) (|:| |rh| (-660 (-420 *6))))) - (-5 *1 (-823 *5 *6 *7 *3)) (-5 *4 (-660 (-420 *6))) - (-4 *7 (-672 *6)) (-4 *3 (-672 (-420 *6))))) + (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) + (-5 *1 (-1159 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1261 *4 *5 *3)) - (-4 *3 (-1268 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-660 (-882 *4))) - (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) - (-4 *6 (-465))))) -(((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-404)))) - ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-404))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-2 (|:| -3056 *4) (|:| -3616 (-577))))) - (-4 *4 (-1268 (-577))) (-5 *2 (-753 (-787))) (-5 *1 (-455 *4)))) + (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) + (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) + (-5 *1 (-1159 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-431 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1074)) - (-5 *2 (-753 (-787))) (-5 *1 (-457 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) - (-5 *2 (-1294)) (-5 *1 (-265))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) -(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) + (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) + (-5 *2 (-665 (-665 (-305 (-327 *4))))) (-5 *1 (-1159 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) - (-5 *2 (-1060)) (-5 *1 (-856))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-277))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-127 *3))))) + (-12 (-5 *3 (-665 (-305 (-420 (-980 *5))))) (-5 *4 (-665 (-1206))) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) + (-5 *1 (-1159 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) + (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *4))))) + (-5 *1 (-1159 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-1213 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1074)) - (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) - ((*1 *1 *1) (-4 *1 (-558))) - ((*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-4 *1 (-1020 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1239 *3)) (-4 *3 (-1242)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) - (-4 *2 (-1074))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-705 *11)) (-5 *4 (-660 (-420 (-975 *8)))) - (-5 *5 (-787)) (-5 *6 (-1183)) (-4 *8 (-13 (-318) (-148))) - (-4 *11 (-972 *8 *10 *9)) (-4 *9 (-13 (-865) (-627 (-1201)))) - (-4 *10 (-809)) - (-5 *2 - (-2 - (|:| |rgl| - (-660 - (-2 (|:| |eqzro| (-660 *11)) (|:| |neqzro| (-660 *11)) - (|:| |wcond| (-660 (-975 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *8)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *8)))))))))) - (|:| |rgsz| (-577)))) - (-5 *1 (-947 *8 *9 *10 *11)) (-5 *7 (-577))))) + (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1251)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1273 (-420 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *6 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1166 *3 *4)) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) + (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-870)) + (-4 *3 (-1130))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) +(((*1 *2 *2) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) + (-5 *1 (-178 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) - (-4 *3 (-1268 (-420 *4)))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) + (-12 (-5 *3 (-665 (-2 (|:| -3759 (-1202 *6)) (|:| -2328 (-577))))) + (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) + (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300))))) (((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) - (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) -(((*1 *2 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) - (-4 *3 (-1268 *4))))) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *3) - (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) - (-5 *2 (-494 *4 *5)) (-5 *1 (-967 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 (-450))))) - (-5 *1 (-1205))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) - (-5 *1 (-730 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-660 (-1197 *13))) (-5 *3 (-1197 *13)) - (-5 *4 (-660 *12)) (-5 *5 (-660 *10)) (-5 *6 (-660 *13)) - (-5 *7 (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| *13))))) - (-5 *8 (-660 (-787))) (-5 *9 (-1292 (-660 (-1197 *10)))) - (-4 *12 (-865)) (-4 *10 (-318)) (-4 *13 (-972 *10 *11 *12)) - (-4 *11 (-809)) (-5 *1 (-723 *11 *12 *10 *13))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-687)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) - (-14 *4 (-944))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) - (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) - (-5 *1 (-804)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) - (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) - (-5 *1 (-804))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) + (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *9)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) + (-4 *8 (-1079)) (-4 *2 (-977 *9 *7 *5)) + (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) + (-4 *4 (-977 *8 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1197 *7)) (-5 *3 (-577)) (-4 *7 (-972 *6 *4 *5)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) - (-5 *1 (-332 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-988))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115))))) + (-12 (-5 *3 (-949)) (-5 *1 (-1062 *2)) + (-4 *2 (-13 (-1130) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-5 *2 (-1202 *3)) (-5 *1 (-1221 *3)) + (-4 *3 (-375))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1206)) (-5 *1 (-696 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232)))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1273 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) + (-4 *3 (-422 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1273 *2)) (-5 *2 (-577)) (-5 *1 (-789 *3 *4)) + (-4 *4 (-422 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) + (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *5)) + (-4 *5 (-1273 (-420 *4)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-660 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228))))) - (-5 *1 (-572)))) - ((*1 *2 *1) - (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-5 *2 (-660 *3)))) - ((*1 *2 *1) - (-12 + (-12 (-5 *2 (-665 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) + (-14 *4 (-792)) (-4 *5 (-174))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-870))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-592))))) +(((*1 *2) + (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 - (-660 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228))))) - (-5 *1 (-819))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) + (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) + (|:| |polypart| *6))) + (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) + (-4 *4 (-1273 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 *4)))) + (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1183) (-1206))) - (-5 *1 (-1206))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1125)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-1125)) (-5 *1 (-665 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) - (-5 *1 (-941 *4))))) -(((*1 *1) (-5 *1 (-839)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) - (-4 *3 (-1242)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1235 *4 *5 *3 *2)) (-4 *4 (-569)) - (-4 *5 (-809)) (-4 *3 (-865)) (-4 *2 (-1090 *4 *5 *3)))) + (-12 (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-4 *7 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-1133 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *5 (-949)) + (-5 *2 (-1302)) (-5 *1 (-481)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-5 *1 (-1239 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-787)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1242)) - (-4 *3 (-1125)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) - (-5 *2 (-577)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) - (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-542)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 *8)) - (-4 *7 (-865)) (-4 *8 (-1074)) (-4 *9 (-972 *8 *6 *7)) - (-4 *6 (-809)) (-5 *2 (-1197 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-897)) (-5 *5 (-949)) + (-5 *2 (-1302)) (-5 *1 (-481))))) +(((*1 *2 *3) + (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) + (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-660 (-1201))) - (-5 *2 (-660 (-660 (-391)))) (-5 *1 (-1048)) (-5 *5 (-391)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) - (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-975 *4))) - (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1060)) (-5 *1 (-764))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-361)) (-4 *6 (-1268 *5)) - (-5 *2 - (-660 - (-2 (|:| -2559 (-705 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-705 *6))))) - (-5 *1 (-511 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2559 (-705 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-705 *6)))) - (-4 *7 (-1268 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1232) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *5)) + (-5 *1 (-602 *5))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1206)) (-5 *6 (-665 (-630 *3))) + (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *7))) + (-4 *7 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) + (-5 *1 (-570 *7 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *1 *1) (-4 *1 (-295))) ((*1 *2 *3) (-12 (-5 *3 (-431 *4)) (-4 *4 (-569)) - (-5 *2 (-660 (-2 (|:| -2940 (-787)) (|:| |logand| *4)))) + (-5 *2 (-665 (-2 (|:| -4473 (-792)) (|:| |logand| *4)))) (-5 *1 (-331 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) ((*1 *2 *1) - (-12 (-5 *2 (-680 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) + (-12 (-5 *2 (-685 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) - (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) + (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) + (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) - (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-753 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125)))) - ((*1 *1) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) + (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) + (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) + ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-599 *3) *3 (-1206))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1206))) + (-4 *3 (-295)) (-4 *3 (-647)) (-4 *3 (-1068 *4)) (-4 *3 (-443 *7)) + (-5 *4 (-1206)) (-4 *7 (-632 (-916 (-577)))) (-4 *7 (-465)) + (-4 *7 (-910 (-577))) (-4 *7 (-1130)) (-5 *2 (-599 *3)) + (-5 *1 (-586 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-787)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) + (-12 (-5 *4 (-710 (-420 (-980 (-577))))) + (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)) + (-5 *3 (-327 (-577)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-864))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1704 (-431 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-710 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1188)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) - (-5 *2 (-660 (-688 *5))) (-5 *1 (-688 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) -(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) + (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) + (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-497 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) + (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3076 *6) (|:| |sol?| (-112))) (-577) - *6)) - (-4 *6 (-375)) (-4 *7 (-1268 *6)) - (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) + (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-318))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-194))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) + (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) + (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-112)) + (-5 *1 (-952 *5 *6 *7 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) ((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) -(((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2653 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) -(((*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) - ((*1 *1 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-865)) - (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1144)))) + (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-244 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-758 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130)))) + ((*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-5 *1 (-228))) + ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) ((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1169))) ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-1322))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) + (-5 *1 (-1190 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) - ((*1 *1 *1) (|partial| -4 *1 (-738)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-4 *6 (-569)) (-5 *2 (-660 (-327 *6))) - (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1074)))) - ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1227))) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-660 *5)) - (-5 *1 (-596 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-420 (-975 *4)))) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-660 (-327 *4))) (-5 *1 (-602 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-864)) (-4 *2 (-1174 *3)))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1090)) (-4 *3 (-1232)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-720)) (-5 *1 (-316))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-660 *1)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) - (-4 *2 (-1174 *4)))) + (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227))))) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1130)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-398 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-870)) + (-5 *2 + (-2 (|:| |f1| (-665 *4)) (|:| |f2| (-665 (-665 (-665 *4)))) + (|:| |f3| (-665 (-665 *4))) (|:| |f4| (-665 (-665 (-665 *4)))))) + (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 (-665 *4))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-665 (-391))) (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) + (-4 *6 (-13 (-569) (-1068 *5))) (-4 *5 (-569)) + (-5 *2 (-665 (-665 (-305 (-420 (-980 *6)))))) (-5 *1 (-1069 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (-12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 *2)) + (-14 *4 (-665 *2)) (-4 *5 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) + (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))))) + ((*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (|:| |mdnia| + (-2 (|:| |fn| (-327 (-228))) + (|:| -3433 (-665 (-1124 (-864 (-228))))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) + (-5 *1 (-790)))) ((*1 *2 *1) - (-12 (-5 *2 (-1307 (-1201) *3)) (-5 *1 (-1314 *3)) (-4 *3 (-1074)))) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *1 (-829)))) ((*1 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-1074))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1211))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-660 *3)))) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) + (|:| |lb| (-665 (-864 (-228)))) + (|:| |cf| (-665 (-327 (-228)))) + (|:| |ub| (-665 (-864 (-228)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-665 (-327 (-228)))) + (|:| -2443 (-665 (-228))))))) + (-5 *1 (-862)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) - (-5 *2 (-660 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + (-12 + (-5 *2 + (-2 (|:| |pde| (-665 (-327 (-228)))) + (|:| |constraints| + (-665 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-792)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) + (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) + (|:| |tol| (-228)))) + (-5 *1 (-924)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) + (-2867 + (-12 (-5 *2 (-980 *3)) + (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) + (-2779 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870))) + (-12 (-5 *2 (-980 *3)) + (-12 (-2779 (-4 *3 (-558))) (-2779 (-4 *3 (-38 (-420 (-577))))) + (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870))) + (-12 (-5 *2 (-980 *3)) + (-12 (-2779 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) + (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870))))) + ((*1 *1 *2) + (-2867 + (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-2779 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) + (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) + (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) + (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) + ((*1 *1 *2) + (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-787)) (-5 *2 (-1297))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) - (-4 *3 (-13 (-417) (-1227))))) - ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1216))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) + (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) + (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-59 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-59 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3543 (-798 *3)) (|:| |coef2| (-798 *3)))) - (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) + (-12 + (-5 *2 + (-2 (|:| -3642 (-803 *3)) (|:| |coef1| (-803 *3)) + (|:| |coef2| (-803 *3)))) + (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-2 (|:| -3543 *1) (|:| |coef2| *1))) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-672 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -2007 *3) (|:| -1814 (-660 *5)))) - (-5 *1 (-1050 *5 *3)) (-5 *4 (-660 *5)) (-4 *3 (-672 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) - (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-944)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-808)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1273 *3)) (-4 *3 (-1074))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -3642 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1206)) + (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1273 (-420 (-577)))) (-5 *1 (-941 *3 *2)) + (-4 *2 (-1273 (-420 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) + (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) + (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-562)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) + (-14 *3 (-949)) (-4 *4 (-1079)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) +(((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) + ((*1 *1 *1) (-4 *1 (-1032))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1042)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1042)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-949)))) + ((*1 *1 *1) (-4 *1 (-1042)))) (((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-787))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) - (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-2 (|:| -3145 *4) (|:| -2539 (-577))))) - (-4 *4 (-1125)) (-5 *2 (-1 *4)) (-5 *1 (-1042 *4))))) + (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) + (-5 *2 (-1202 (-980 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25)))))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-660 (-228))) (-5 *1 (-206))))) + (-12 (-4 *1 (-860)) + (-5 *3 + (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) + (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) + (|:| |ub| (-665 (-864 (-228)))))) + (-5 *2 (-1065)))) + ((*1 *2 *3) + (-12 (-4 *1 (-860)) + (-5 *3 + (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) + (-5 *2 (-1065))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) + (-4 *4 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) - (-5 *1 (-1135))))) -(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-373 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-665 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-710 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) - (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-652 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-705 (-228))) (-5 *6 (-112)) (-5 *7 (-705 (-577))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769))))) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) + (-5 *2 (-710 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1297 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-710 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-1297 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) + (-5 *2 (-1297 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) + (-5 *2 (-710 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1297 *3)) (-5 *1 (-658 *3 *4)) (-4 *3 (-375)) + (-14 *4 (-665 (-1206))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1297 *3)) (-5 *1 (-660 *3 *4)) (-4 *3 (-375)) + (-14 *4 (-665 (-1206))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-710 *5))) (-5 *3 (-710 *5)) (-4 *5 (-375)) + (-5 *2 (-1297 *5)) (-5 *1 (-1116 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-980 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-884)))) + ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-884))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) - (-4 *7 (-809)) - (-5 *2 - (-660 - (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) - (|:| |wcond| (-660 (-975 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) - (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) + (-12 (-5 *4 (-665 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1273 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *8)) (-5 *4 (-660 (-1201))) (-4 *8 (-972 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) - (-4 *7 (-809)) - (-5 *2 - (-660 - (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) - (|:| |wcond| (-660 (-975 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) - (-5 *1 (-947 *5 *6 *7 *8)))) + (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) + (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-977 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) + (-4 *7 (-977 (-48) *6 *5)) (-5 *2 (-431 (-1202 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1202 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) - (-5 *2 - (-660 - (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) - (|:| |wcond| (-660 (-975 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *4)))))))))) - (-5 *1 (-947 *4 *5 *6 *7)))) + (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1273 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-705 *9)) (-5 *5 (-944)) (-4 *9 (-972 *6 *8 *7)) - (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) - (-4 *8 (-809)) - (-5 *2 - (-660 - (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) - (|:| |wcond| (-660 (-975 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *6)))))))))) - (-5 *1 (-947 *6 *7 *8 *9)) (-5 *4 (-660 *9)))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1273 (-577))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) - (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) + (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) + (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1273 (-577))))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) + (-5 *3 (-171 (-577))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-870) + (-10 -8 (-15 -4463 ((-1206) $)) + (-15 -3341 ((-3 $ "failed") (-1206)))))) + (-4 *5 (-814)) (-4 *7 (-569)) (-5 *2 (-431 *3)) + (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) + (-4 *3 (-977 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1202 *4))) (-5 *1 (-471 *4)) + (-5 *3 (-1202 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) + (-4 *7 (-13 (-375) (-148) (-745 *5 *6))) (-5 *2 (-431 *3)) + (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1273 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) + (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) + (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) + (-4 *3 (-977 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) + (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) + (-4 *8 (-977 *7 *6 *5)) (-5 *2 (-431 (-1202 *8))) + (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1202 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-665 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *6 (-1273 *5)) (-5 *2 (-665 (-674 (-420 *6)))) + (-5 *1 (-678 *5 *6)) (-5 *3 (-674 (-420 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) + (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-693 *4))) + (-5 *1 (-693 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-577)) (-5 *2 (-665 *3)) (-5 *1 (-717 *3)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) (-5 *2 (-431 *3)) + (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) + (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) + (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-814)) + (-4 *5 + (-13 (-870) + (-10 -8 (-15 -4463 ((-1206) $)) + (-15 -3341 ((-3 $ "failed") (-1206)))))) + (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-751 *4 *5 *6 *3)) + (-4 *3 (-977 (-980 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-814)) + (-4 *5 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *6 (-569)) + (-5 *2 (-431 *3)) (-5 *1 (-753 *4 *5 *6 *3)) + (-4 *3 (-977 (-420 (-980 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-13 (-318) (-148))) + (-5 *2 (-431 *3)) (-5 *1 (-754 *4 *5 *6 *3)) + (-4 *3 (-977 (-420 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) + (-5 *2 (-431 *3)) (-5 *1 (-762 *4 *5 *6 *3)) + (-4 *3 (-977 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) + (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) + (-4 *3 (-1273 (-420 (-577)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1071 *3)) + (-4 *3 (-1273 (-420 (-980 (-577))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1273 (-420 (-577)))) + (-4 *5 (-13 (-375) (-148) (-745 (-420 (-577)) *4))) + (-5 *2 (-431 *3)) (-5 *1 (-1109 *4 *5 *3)) (-4 *3 (-1273 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1273 (-420 (-980 (-577))))) + (-4 *5 (-13 (-375) (-148) (-745 (-420 (-980 (-577))) *4))) + (-5 *2 (-431 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) + (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) + (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251)))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-977 *7 *5 *6)) + (-5 *1 (-763 *5 *6 *7 *2)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-318))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) + (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -2841 (-665 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) + (-5 *2 (-420 (-980 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) + (-5 *2 (-420 (-980 *4)))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) + ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1) + (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) + (-5 *2 (-1202 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-660 - (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) - (|:| |wcond| (-660 (-975 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *6)))))))))) - (-5 *1 (-947 *6 *7 *8 *9)))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *8)) (-5 *4 (-944)) (-4 *8 (-972 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) - (-4 *7 (-809)) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-660 - (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) - (|:| |wcond| (-660 (-975 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) - (-5 *1 (-947 *5 *6 *7 *8)))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 *9)) (-5 *5 (-1183)) - (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) - (-5 *1 (-947 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-1183)) - (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) - (-5 *1 (-947 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *8)) (-5 *4 (-1183)) (-4 *8 (-972 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) - (-4 *7 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 *10)) (-5 *5 (-944)) - (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) - (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) - (-5 *1 (-947 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) - (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) - (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) - (-5 *1 (-947 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-705 *9)) (-5 *4 (-944)) (-5 *5 (-1183)) - (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) - (-5 *1 (-947 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-189))) (-5 *1 (-189))))) -(((*1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-105))))) -(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1292 (-660 (-577)))) (-5 *1 (-493)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-710))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-717))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) - ((*1 *1) (-5 *1 (-341)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) - (-5 *4 (-1 (-228) (-228) (-228) (-228))) - (-5 *2 (-1 (-966 (-228)) (-228) (-228))) (-5 *1 (-713))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) - (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-1002 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) - (-5 *1 (-192))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) - (-5 *2 (-1060)) (-5 *1 (-772))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3076 *6) (|:| |sol?| (-112))) (-577) - *6)) - (-4 *6 (-375)) (-4 *7 (-1268 *6)) + (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) - (-2 (|:| -2845 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) - (-5 *2 (-660 (-660 *4))) (-5 *1 (-353 *3 *4 *5 *6)) - (-4 *3 (-354 *4 *5 *6)))) + (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-355 *3 *4)) (-14 *3 (-949)) + (-14 *4 (-949)))) ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-660 (-660 *3)))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 *3 (-660 *1))) - (-4 *1 (-1096 *4 *5 *6 *3))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-519)) (-5 *3 (-660 (-894))) (-5 *1 (-496))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1297)) (-5 *1 (-847))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-698 *2)) (-4 *2 (-1125)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-660 *5) (-660 *5))) (-5 *4 (-577)) - (-5 *2 (-660 *5)) (-5 *1 (-698 *5)) (-4 *5 (-1125))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) + (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-1202 *3)))) + ((*1 *2) + (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-949))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-549))) (-5 *2 (-1201)) (-5 *1 (-549))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-1140))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) - (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) - (-5 *1 (-1101 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) - (-5 *1 (-1101 *3 *4 *2)) - (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-4 *4 (-1079)) + (-5 *1 (-1059 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-665 (-630 *5))) (-5 *3 (-1206)) (-4 *5 (-443 *4)) + (-4 *4 (-1130)) (-5 *1 (-586 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3398 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1273 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-391)) (-5 *1 (-1093))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-375)) (-5 *2 (-660 (-1182 *4))) (-5 *1 (-296 *4 *5)) - (-5 *3 (-1182 *4)) (-4 *5 (-1283 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-577)) (-5 *1 (-206))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) - (-5 *4 (-660 (-944))) (-5 *5 (-660 (-271))) (-5 *1 (-481)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) - (-5 *4 (-660 (-944))) (-5 *1 (-481)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) - ((*1 *1 *1) (-5 *1 (-481)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-587 *5 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-38 (-420 (-577)))) + (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1079)) (-4 *4 (-1273 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1273 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2261 *4))) (-5 *1 (-994 *4 *3)) - (-4 *3 (-1268 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) - (-5 *2 (-2 (|:| -1970 (-660 *6)) (|:| -3263 (-660 *6))))))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-311)))) - ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-316))))) -(((*1 *1) (-5 *1 (-228))) ((*1 *1) (-5 *1 (-391)))) -(((*1 *2 *3) - (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-318)) - (-5 *2 (-420 (-431 (-975 *4)))) (-5 *1 (-1067 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) - (-5 *1 (-541 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1201)) - (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) - (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-660 *3)) - (-5 *1 (-1262 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) - (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-630 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) + (-4 *4 (-569)) (-5 *2 (-420 (-1202 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-1202 (-420 (-1202 *3)))) (-5 *1 (-573 *6 *3 *7)) + (-5 *5 (-1202 *3)) (-4 *7 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *9)) (-4 *9 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) - (-4 *8 (-1074)) (-4 *2 (-972 *9 *7 *5)) - (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) - (-4 *4 (-972 *8 *6 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-318) (-148))) - (-4 *2 (-972 *4 *6 *5)) (-5 *1 (-947 *4 *5 *6 *2)) - (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) + (-12 (-5 *4 (-1293 *5)) (-14 *5 (-1206)) (-4 *6 (-1079)) + (-5 *2 (-1270 *5 (-980 *6))) (-5 *1 (-975 *5 *6)) (-5 *3 (-980 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) - (-14 *4 (-660 (-1201))))) - ((*1 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) - (-14 *4 (-660 (-1201))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) - (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-285)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 *8)) (-5 *4 (-660 *6)) (-4 *6 (-865)) - (-4 *8 (-972 *7 *5 *6)) (-4 *5 (-809)) (-4 *7 (-1074)) - (-5 *2 (-660 (-787))) (-5 *1 (-332 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) - ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) - (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) - (-4 *4 (-1268 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) + (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-1202 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) - (-4 *3 (-865)) (-5 *2 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *2 *4)) (-4 *3 (-1074)) (-4 *4 (-865)) - (-4 *2 (-808)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1283 *3)) - (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-787))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-865)) (-4 *5 (-809)) - (-4 *6 (-569)) (-4 *7 (-972 *6 *5 *3)) - (-5 *1 (-475 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1063 (-420 (-577))) (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-152 *3)))) + (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-1202 *1)) + (-4 *1 (-977 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) + (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-420 (-1202 *3))) + (-5 *1 (-978 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1202 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $))))) + (-4 *7 (-977 *6 *5 *4)) (-4 *5 (-814)) (-4 *4 (-870)) + (-4 *6 (-1079)) (-5 *1 (-978 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1206)) (-4 *5 (-569)) + (-5 *2 (-420 (-1202 (-420 (-980 *5))))) (-5 *1 (-1073 *5)) + (-5 *3 (-420 (-980 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) + (-4 *3 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-1154 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) +(((*1 *1 *1 *1) (-4 *1 (-997)))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-1170 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) + (-5 *1 (-1171 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-665 (-1170 *3 *4))) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-660 (-2 (|:| -1527 (-787)) (|:| -4269 *4) (|:| |num| *4)))) - (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) + (-5 *2 (-665 (-2 (|:| -2328 (-792)) (|:| -1343 *4) (|:| |num| *4)))) + (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) + (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-5 *3 (-660 (-1201))) (-5 *4 (-112)) (-5 *1 (-450)))) + (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-5 *3 (-665 (-1206))) (-5 *4 (-112)) (-5 *1 (-450)))) ((*1 *2 *1) - (-12 (-5 *2 (-1182 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-1187 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) + (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) + (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) + (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 (-660 *3)))) (-4 *3 (-1125)) - (-5 *1 (-691 *3)))) + (-12 (-5 *2 (-665 (-665 (-665 *3)))) (-4 *3 (-1130)) + (-5 *1 (-696 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-729 *2 *3 *4)) (-4 *2 (-865)) (-4 *3 (-1125)) + (-12 (-5 *1 (-734 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-1130)) (-14 *4 - (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *3)) - (-2 (|:| -3251 *2) (|:| -1527 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-854)))) + (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *3)) + (-2 (|:| -3354 *2) (|:| -2328 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-859)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242)))) + (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 *4)))) - (-4 *4 (-1125)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 *4)))) + (-4 *4 (-1130)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *5)) (-4 *5 (-13 (-1125) (-34))) - (-5 *2 (-660 (-1165 *3 *5))) (-5 *1 (-1165 *3 *5)) - (-4 *3 (-13 (-1125) (-34))))) + (-12 (-5 *4 (-665 *5)) (-4 *5 (-13 (-1130) (-34))) + (-5 *2 (-665 (-1170 *3 *5))) (-5 *1 (-1170 *3 *5)) + (-4 *3 (-13 (-1130) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-660 (-2 (|:| |val| *4) (|:| -2002 *5)))) - (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) - (-5 *2 (-660 (-1165 *4 *5))) (-5 *1 (-1165 *4 *5)))) + (-12 (-5 *3 (-665 (-2 (|:| |val| *4) (|:| -3613 *5)))) + (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) + (-5 *2 (-665 (-1170 *4 *5))) (-5 *1 (-1170 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2002 *4))) - (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) - (-5 *1 (-1165 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3613 *4))) + (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) + (-5 *1 (-1170 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34))))) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-660 *3)) (-4 *3 (-13 (-1125) (-34))) - (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))))) + (-12 (-5 *4 (-665 *3)) (-4 *3 (-13 (-1130) (-34))) + (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-660 (-1165 *2 *3))) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34))) (-5 *1 (-1166 *2 *3)))) + (-12 (-5 *4 (-665 (-1170 *2 *3))) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34))) (-5 *1 (-1171 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-660 (-1166 *2 *3))) (-5 *1 (-1166 *2 *3)) - (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) + (-12 (-5 *4 (-665 (-1171 *2 *3))) (-5 *1 (-1171 *2 *3)) + (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) + (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *3 (-660 (-271))) - (-5 *1 (-269)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) - (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-1292 *6)) - (-5 *1 (-644 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) - (-14 *4 (-787)) (-4 *5 (-174))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) - (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771))))) + (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-775))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-949)) (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-813)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1278 *3)) (-4 *3 (-1079))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -3709 ($ *7))))) + (-4 *7 (-869)) + (-4 *8 + (-13 (-1275 *3 *7) (-375) (-1232) + (-10 -8 (-15 -3641 ($ $)) (-15 -1869 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) + (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) + (-14 *10 (-1206))))) +(((*1 *2) + (-12 (-4 *1 (-361)) + (-5 *2 (-665 (-2 (|:| -3759 (-577)) (|:| -2328 (-577)))))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-194))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) - (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) - (-5 *1 (-804))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1125)) (-5 *2 (-787)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-665 *4 *2 *5)) - (-4 *4 (-1125)) (-14 *5 *2)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) + (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) + (-4 *4 (-1079))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1273 (-171 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-692)))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) + (-14 *4 (-949))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322)))) + ((*1 *2 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) + (-5 *1 (-711 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) + (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3)))))) (((*1 *1 *2) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-14 *6 (-1292 (-705 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))))) - ((*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1242)))) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-14 *6 (-1297 (-710 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))))) + ((*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1247)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614 'JINT 'X 'ELAM) (-3614) (-715)))) - (-5 *1 (-61 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722 'JINT 'X 'ELAM) (-3722) (-720)))) + (-5 *1 (-61 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 'XC) (-715)))) - (-5 *1 (-63 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 'XC) (-720)))) + (-5 *1 (-63 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-3614 'X) (-3614) (-715))) (-5 *1 (-64 *3)) - (-14 *3 (-1201)))) + (-12 (-5 *2 (-351 (-3722 'X) (-3722) (-720))) (-5 *1 (-64 *3)) + (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-3614) (-3614 'XC) (-715))) (-5 *1 (-66 *3)) - (-14 *3 (-1201)))) + (-12 (-5 *2 (-351 (-3722) (-3722 'XC) (-720))) (-5 *1 (-66 *3)) + (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614 'X) (-3614 '-2464) (-715)))) - (-5 *1 (-71 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722 'X) (-3722 '-2573) (-720)))) + (-5 *1 (-71 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 'X) (-715)))) - (-5 *1 (-74 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 'X) (-720)))) + (-5 *1 (-74 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614 'X 'EPS) (-3614 '-2464) (-715)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) - (-14 *5 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722 'X 'EPS) (-3722 '-2573) (-720)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) + (-14 *5 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614 'EPS) (-3614 'YA 'YB) (-715)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) - (-14 *5 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722 'EPS) (-3722 'YA 'YB) (-720)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) + (-14 *5 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-3614) (-3614 'X) (-715))) (-5 *1 (-77 *3)) - (-14 *3 (-1201)))) + (-12 (-5 *2 (-351 (-3722) (-3722 'X) (-720))) (-5 *1 (-77 *3)) + (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-3614) (-3614 'X) (-715))) (-5 *1 (-78 *3)) - (-14 *3 (-1201)))) + (-12 (-5 *2 (-351 (-3722) (-3722 'X) (-720))) (-5 *1 (-78 *3)) + (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 'XC) (-715)))) - (-5 *1 (-79 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 'XC) (-720)))) + (-5 *1 (-79 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614) (-3614 'X) (-715)))) - (-5 *1 (-80 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722) (-3722 'X) (-720)))) + (-5 *1 (-80 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614 'X '-2464) (-3614) (-715)))) - (-5 *1 (-82 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722 'X '-2573) (-3722) (-720)))) + (-5 *1 (-82 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-705 (-351 (-3614 'X '-2464) (-3614) (-715)))) - (-5 *1 (-83 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-710 (-351 (-3722 'X '-2573) (-3722) (-720)))) + (-5 *1 (-83 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-705 (-351 (-3614 'X) (-3614) (-715)))) (-5 *1 (-84 *3)) - (-14 *3 (-1201)))) + (-12 (-5 *2 (-710 (-351 (-3722 'X) (-3722) (-720)))) (-5 *1 (-84 *3)) + (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614 'X) (-3614) (-715)))) - (-5 *1 (-85 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722 'X) (-3722) (-720)))) + (-5 *1 (-85 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-351 (-3614 'X) (-3614 '-2464) (-715)))) - (-5 *1 (-86 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-1297 (-351 (-3722 'X) (-3722 '-2573) (-720)))) + (-5 *1 (-86 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-705 (-351 (-3614 'XL 'XR 'ELAM) (-3614) (-715)))) - (-5 *1 (-87 *3)) (-14 *3 (-1201)))) + (-12 (-5 *2 (-710 (-351 (-3722 'XL 'XR 'ELAM) (-3722) (-720)))) + (-5 *1 (-87 *3)) (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-3614 'X) (-3614 '-2464) (-715))) (-5 *1 (-89 *3)) - (-14 *3 (-1201)))) + (-12 (-5 *2 (-351 (-3722 'X) (-3722 '-2573) (-720))) (-5 *1 (-89 *3)) + (-14 *3 (-1206)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) + (-12 (-5 *2 (-665 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-577)) (-14 *4 (-787)))) + (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-577)) (-14 *4 (-792)))) ((*1 *1 *2) - (-12 (-5 *2 (-1167 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) + (-12 (-5 *2 (-1172 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) ((*1 *1 *2) - (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) + (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) ((*1 *2 *3) - (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) - (-5 *2 (-1292 (-705 (-420 (-975 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) + (-5 *2 (-1297 (-710 (-420 (-980 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1117 (-327 *4))) - (-4 *4 (-13 (-865) (-569) (-627 (-391)))) (-5 *2 (-1117 (-391))) + (-12 (-5 *3 (-1122 (-327 *4))) + (-4 *4 (-13 (-870) (-569) (-632 (-391)))) (-5 *2 (-1122 (-391))) (-5 *1 (-266 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285)))) + ((*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285)))) ((*1 *2 *1) - (-12 (-4 *2 (-1268 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1273 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1277 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) - (-14 *5 (-1201)) (-14 *6 *4) - (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) + (-12 (-5 *2 (-1282 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) + (-14 *5 (-1206)) (-14 *6 *4) + (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *1 (-324 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-327 *5)) (-5 *1 (-351 *3 *4 *5)) - (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) + (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) ((*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *3 *4 *2)) (-4 *3 (-340 *4)))) @@ -4522,6099 +4996,5427 @@ (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *2 *4 *3)) (-4 *3 (-340 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) - (-5 *2 (-1316 *3 *4)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) + (-5 *2 (-1321 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) - (-5 *2 (-1307 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) + (-5 *2 (-1312 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) + (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-395)))) ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-705 (-715))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-710 (-720))) (-4 *1 (-395)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) + (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-396)))) - ((*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-396)))) + ((*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1130)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) + (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-171 (-391))))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-577)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) - ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-710)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-715)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-717)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-12 (-5 *2 (-305 (-327 (-720)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-710))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-12 (-5 *2 (-305 (-327 (-722)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + ((*1 *1 *2) + (-12 (-5 *2 (-327 (-720))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-717))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-12 (-5 *2 (-327 (-722))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) - (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) - (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) + (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) + (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-12 (-5 *2 (-665 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) - (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) - (-14 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) + (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) + (-14 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) ((*1 *1 *2) - (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-865) (-21))) + (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-870) (-21))) (-5 *1 (-440 *3 *4)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))))) ((*1 *1 *2) (-12 (-5 *1 (-440 *2 *3)) (-4 *2 (-13 (-174) (-38 (-420 (-577))))) - (-4 *3 (-13 (-865) (-21))))) + (-4 *3 (-13 (-870) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-420 (-975 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1125)) + (-12 (-5 *2 (-420 (-980 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-975 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1125)) + (-12 (-5 *2 (-980 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1125)) + (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-1074)) (-4 *3 (-1125)) + (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-1079)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) - ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-447)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-447)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-447)))) ((*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-450)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) + (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-453)))) ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 (-715))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 (-720))) (-4 *1 (-453)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4434 (-660 (-341))))) + (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -1497 (-665 (-341))))) (-4 *1 (-454)))) ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-454)))) ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-420 (-975 *3)))) (-4 *3 (-174)) - (-14 *6 (-1292 (-705 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-14 *4 (-944)) (-14 *5 (-660 (-1201))))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-481)))) + (-12 (-5 *2 (-1297 (-420 (-980 *3)))) (-4 *3 (-174)) + (-14 *6 (-1297 (-710 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-14 *4 (-949)) (-14 *5 (-665 (-1206))))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-481)))) ((*1 *1 *2) - (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) + (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-487 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) - (-4 *3 (-1074)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) - ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-515)))) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-515)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619)))) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-620 *3 *2)) (-4 *2 (-760 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1074)))) + (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-765 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1079)))) ((*1 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) + (-12 (-5 *2 (-1317 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) ((*1 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) + (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-648 *3 *2)) (-4 *2 (-760 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) + (-12 (-4 *3 (-174)) (-5 *1 (-653 *3 *2)) (-4 *2 (-765 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-698 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) ((*1 *2 *1) - (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-5 *1 (-691 *3)) - (-4 *3 (-1125)))) + (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-5 *1 (-696 *3)) + (-4 *3 (-1130)))) ((*1 *1 *2) - (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-4 *3 (-1125)) - (-5 *1 (-691 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) - ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-697)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-4 *3 (-1130)) + (-5 *1 (-696 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) + ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-702)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130)))) ((*1 *1 *2) - (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *2)) (-4 *4 (-385 *3)) + (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-717))) (-5 *1 (-710)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-715))) (-5 *1 (-710)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-710)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710)))) - ((*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-715)))) - ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-715)))) - ((*1 *2 *3) - (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-717))) (-5 *1 (-717)))) - ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-722))) (-5 *1 (-715)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-720))) (-5 *1 (-715)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-715)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715)))) + ((*1 *1 *2) (-12 (-5 *2 (-722)) (-5 *1 (-720)))) + ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-720)))) + ((*1 *2 *3) + (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-722))) (-5 *1 (-722)))) + ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-2 (|:| -2940 *3) (|:| -1740 *4)))) - (-4 *3 (-1074)) (-4 *4 (-742)) (-5 *1 (-751 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-779)))) + (-12 (-5 *2 (-665 (-2 (|:| -4473 *3) (|:| -3305 *4)))) + (-4 *3 (-1079)) (-4 *4 (-747)) (-5 *1 (-756 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-784)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) - (|:| -2097 (-660 (-1119 (-859 (-228))))) + (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) - (-5 *1 (-785)))) + (-5 *1 (-790)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) - (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) + (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *1 (-785)))) + (-5 *1 (-790)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *1 (-785)))) - ((*1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-789 *3)) (-4 *3 (-1242)))) + (-5 *1 (-790)))) + ((*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-794 *3)) (-4 *3 (-1247)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *1 (-824)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-840)))) + (-5 *1 (-829)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-845)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) - (|:| |lb| (-660 (-859 (-228)))) - (|:| |cf| (-660 (-327 (-228)))) - (|:| |ub| (-660 (-859 (-228)))))) + (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) + (|:| |lb| (-665 (-864 (-228)))) + (|:| |cf| (-665 (-327 (-228)))) + (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| - (-2 (|:| |lfn| (-660 (-327 (-228)))) - (|:| -3457 (-660 (-228))))))) - (-5 *1 (-857)))) + (-2 (|:| |lfn| (-665 (-327 (-228)))) + (|:| -2443 (-665 (-228))))))) + (-5 *1 (-862)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) - (-5 *1 (-857)))) + (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) + (-5 *1 (-862)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) - (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) - (|:| |ub| (-660 (-859 (-228)))))) - (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) - ((*1 *2 *3) - (-12 (-5 *3 (-975 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-893)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-975 (-48)))) (-5 *2 (-327 (-577))) - (-5 *1 (-893)))) - ((*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) + (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) + (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) + (|:| |ub| (-665 (-864 (-228)))))) + (-5 *1 (-862)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-881)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) + ((*1 *2 *3) + (-12 (-5 *3 (-980 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-898)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 (-980 (-48)))) (-5 *2 (-327 (-577))) + (-5 *1 (-898)))) + ((*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-660 (-327 (-228)))) + (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| - (-660 + (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-787)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) - (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) + (|:| |grid| (-792)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) + (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) - (-5 *1 (-919)))) + (-5 *1 (-924)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3)))) + (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) + (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-937 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) + (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-942 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) ((*1 *2 *3) - (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-942 *4)) + (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-947 *4)) (-4 *4 (-569)))) - ((*1 *2 *3) (-12 (-5 *2 (-1297)) (-5 *1 (-1058 *3)) (-4 *3 (-1242)))) - ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1058 *2)) (-4 *2 (-1242)))) + ((*1 *2 *3) (-12 (-5 *2 (-1302)) (-5 *1 (-1063 *3)) (-4 *3 (-1247)))) + ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1063 *2)) (-4 *2 (-1247)))) ((*1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) - (-14 *6 (-660 *2)))) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) + (-14 *6 (-665 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-569)))) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-569)))) ((*1 *1 *2) - (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) - (-4 *2 (-972 *3 (-544 *4) *4)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) + (-4 *2 (-977 *3 (-544 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1074)) (-4 *2 (-865)) (-5 *1 (-1151 *3 *2 *4)) - (-4 *4 (-972 *3 (-544 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-880)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1169)))) + (-12 (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) + (-4 *4 (-977 *3 (-544 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-885)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1174)))) ((*1 *2 *3) - (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) + (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) - (-4 *3 (-1074)) (-14 *5 *3))) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) - (-4 *3 (-1074)) (-14 *5 *3))) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) - (-14 *5 *3) (-5 *1 (-1199 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-1214 (-1201) (-450))) (-5 *1 (-1205)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1213 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3) (-12 (-5 *2 (-1222)) (-5 *1 (-1221 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) + (-14 *5 *3) (-5 *1 (-1204 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1205)))) + ((*1 *2 *1) (-12 (-5 *2 (-1219 (-1206) (-450))) (-5 *1 (-1210)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1218 *3)) (-4 *3 (-1130)))) + ((*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1226 *3)) (-4 *3 (-1130)))) ((*1 *1 *2) - (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-5 *1 (-1236 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-1074)))) + (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-5 *1 (-1241 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-1079)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) - (-4 *3 (-1074)) (-14 *5 *3))) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1242)) (-5 *1 (-1259 *3)))) + (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) - (-4 *3 (-1074)) (-14 *5 *3))) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) + (-4 *3 (-1079)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) - (-14 *5 *3) (-5 *1 (-1284 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1293)))) - ((*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1293)) (-5 *1 (-1296)))) + (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) + (-14 *5 *3) (-5 *1 (-1289 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1298)))) + ((*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1298)) (-5 *1 (-1301)))) ((*1 *1 *2) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-5 *2 (-1316 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) + (-12 (-5 *2 (-1321 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) + (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) - (-5 *1 (-1312 *3 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-1014)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-4 *4 (-1242)) (-5 *1 (-1082 *3 *4)) - (-4 *3 (-1118 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1119 *4)) (-4 *4 (-1242)) - (-5 *1 (-1117 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) - (-4 *4 (-38 (-420 (-577))))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-882 *4)) - (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-636 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3076 *4) (|:| |sol?| (-112))) - (-577) *4)) - (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *1 (-587 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-591)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-787)) (-5 *3 (-966 *5)) (-4 *5 (-1074)) - (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) - (-14 *4 (-944)) (-4 *5 (-1074)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) - (-5 *1 (-1189 *4 *5)) (-14 *4 (-944))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-1074)) - (-5 *2 (-705 *3))))) + (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) + (-5 *1 (-1317 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) (((*1 *2 *3) - (-12 (-4 *3 (-1268 *2)) (-4 *2 (-1268 *4)) - (-5 *1 (-1010 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-740 *2 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) - ((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-755 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391))))) + (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-665 *5)) + (-5 *1 (-914 *4 *5)) (-4 *5 (-1247))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-790)) (-5 *1 (-52))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *5)) (-4 *5 (-1268 *3)) (-4 *3 (-318)) - (-5 *2 (-112)) (-5 *1 (-468 *3 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 *3)) (-4 *3 (-1268 *5)) - (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 (-1197 (-577)))) (-5 *3 (-1197 (-577))) - (-5 *1 (-585)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 (-1197 *1))) (-5 *3 (-1197 *1)) - (-4 *1 (-932))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) - (-5 *2 (-112)) (-5 *1 (-1320 *4))))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-443 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-115)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-443 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-115)) (-5 *1 (-164)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) + (-4 *4 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) + ((*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *4 (-1130)) (-5 *1 (-442 *3 *4)) + (-4 *3 (-443 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) + (-4 *4 (-443 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-648 *3 *4)) + (-4 *4 (-13 (-443 *3) (-1032) (-1232))))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1220 *2)) (-4 *2 (-1130))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2) + (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) + (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) + (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-870) + (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 (*2 $)) + (-15 -3699 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-870) + (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 (*2 $)) + (-15 -3699 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) - (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) - (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-859 *3)) (-4 *3 (-1125))))) + (-12 (-4 *4 (-361)) (-5 *2 (-986 (-1202 *4))) (-5 *1 (-369 *4)) + (-5 *3 (-1202 *4))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) -(((*1 *1) (-5 *1 (-302)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) + (-12 (-4 *4 (-1079)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-665 *6))) + (-5 *1 (-1291 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-1288 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391))))) (((*1 *2 *3) - (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) - (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125)))) + (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-171 (-327 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) ((*1 *2 *3) - (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) + (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-171 *3)) (-5 *1 (-1236 *4 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1006 *4 *5 *3 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) + (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1187 *7))) (-4 *6 (-870)) + (-4 *7 (-977 *5 (-544 *6) *6)) (-4 *5 (-1079)) + (-5 *2 (-1 (-1187 *7) *7)) (-5 *1 (-1156 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1065)) (-5 *1 (-774))))) (((*1 *2 *3) - (-12 (-5 *3 (-1167 *4 *2)) (-14 *4 (-944)) - (-4 *2 (-13 (-1074) (-10 -7 (-6 (-4472 "*"))))) - (-5 *1 (-925 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) + (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *5 (-1273 *4)) + (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -2281 *5)))) + (-5 *1 (-830 *4 *5 *3 *6)) (-4 *3 (-677 *5)) + (-4 *6 (-677 (-420 *5)))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1188)) + (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1209)) (-5 *3 (-1206))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-792)) (-4 *4 (-361)) + (-5 *1 (-541 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-228))) (-5 *4 (-792)) (-5 *2 (-710 (-228))) + (-5 *1 (-316))))) (((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-835 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074))))) + (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) - (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) - (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) - (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) + (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3518 (-665 *3)) (|:| -1349 (-665 *3)))) + (-5 *1 (-1248 *3)) (-4 *3 (-1130))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-420 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-569)) + (-4 *4 (-1079)) (-4 *2 (-1288 *4)) (-5 *1 (-1291 *4 *5 *6 *2)) + (-4 *6 (-677 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) (-4 *3 (-632 (-391))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) + (-4 *3 (-632 (-391))))) + ((*1 *2 *3) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-632 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-949)) (-4 *5 (-174)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-632 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-806 *5))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) - (-4 *2 (-703 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-705 *2)) (-4 *2 (-375)) (-4 *2 (-1074)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1148 *2 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) - ((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-1212 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) - (-4 *7 (-865)) (-4 *8 (-318)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3) + (-12 (-5 *2 - (-2 (|:| |upol| (-1197 *8)) (|:| |Lval| (-660 *8)) - (|:| |Lfact| - (-660 (-2 (|:| -3056 (-1197 *8)) (|:| -1527 (-577))))) - (|:| |ctpol| *8))) - (-5 *1 (-758 *6 *7 *8 *9))))) + (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) + (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) + (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) + (-5 *4 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) + (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-420 (-577))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-420 (-577))) + (-5 *2 (-665 (-2 (|:| -3337 *5) (|:| -3352 *5)))) (-5 *1 (-1050 *3)) + (-4 *3 (-1273 (-577))) (-5 *4 (-2 (|:| -3337 *5) (|:| -3352 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))) + (-5 *4 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-420 (-577))) + (-5 *2 (-665 (-2 (|:| -3337 *4) (|:| -3352 *4)))) (-5 *1 (-1051 *3)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-420 (-577))) + (-5 *2 (-665 (-2 (|:| -3337 *5) (|:| -3352 *5)))) (-5 *1 (-1051 *3)) + (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -3337 *5) (|:| -3352 *5)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1007 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (|has| *4 (-6 (-4472 "*"))) - (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) - (|has| *4 (-6 (-4472 "*"))) (-4 *4 (-1074)) (-5 *1 (-1053 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-677)))) -(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) + (-4 *3 (-1130))))) +(((*1 *2 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) + (-5 *1 (-1305 *4)) (-4 *4 (-375))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) + (-5 *2 (-665 *3)) (-5 *1 (-798 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) + (-14 *7 (-949))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1030 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-682)))) +(((*1 *1 *2) + (-12 (-5 *2 (-710 *4)) (-4 *4 (-1079)) (-5 *1 (-1172 *3 *4)) + (-14 *3 (-792))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1232)))) + ((*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1130))))) +(((*1 *1) (-4 *1 (-997)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-954)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-954)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) + (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *1)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *4)) (-4 *4 (-1079)) (-4 *1 (-1153 *3 *4 *5 *6)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) -(((*1 *1) (-4 *1 (-992)))) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) - (-5 *1 (-758 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) - (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5)))))) + (-12 (-5 *3 (-665 (-1297 *5))) (-5 *4 (-577)) (-5 *2 (-1297 *5)) + (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079))))) +(((*1 *1 *1 *1) (-4 *1 (-682)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) + (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) + (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1202 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) (((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1182 *4))) (-4 *4 (-375)) - (-4 *4 (-1074)) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *2 (-1060)) (-5 *1 (-767))))) -(((*1 *1 *1 *1) (-4 *1 (-677)))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391))))) -(((*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) ((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577))))) + (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) + (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-792))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) - (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4)))) + (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) + (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) - (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) + (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-660 (-1197 *7))) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-318)) (-5 *2 (-1197 *7)) (-5 *1 (-939 *4 *5 *6 *7)) - (-4 *7 (-972 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-944))) + (-12 (-5 *3 (-665 (-1202 *7))) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-318)) (-5 *2 (-1202 *7)) (-5 *1 (-944 *4 *5 *6 *7)) + (-4 *7 (-977 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-949))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) - (-4 *2 (-1268 *3)))) + (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) + (-4 *2 (-1273 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-465))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-38 (-420 (-577)))) - (-4 *2 (-174))))) -(((*1 *2) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) -(((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-465))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) + (-4 *4 (-1247)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-375)) (-4 *2 (-926 *3)) (-5 *1 (-599 *2)) + (-5 *3 (-1206)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) + (-4 *4 (-1130)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *3 (-1273 *4)) (-5 *1 (-830 *4 *3 *2 *5)) (-4 *2 (-677 *3)) + (-4 *5 (-677 (-420 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-420 *5)) + (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) + (-5 *1 (-830 *4 *5 *2 *6)) (-4 *2 (-677 *5)) (-4 *6 (-677 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1242)) (-5 *2 (-577))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-660 (-112))) (-5 *5 (-705 (-228))) - (-5 *6 (-705 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) - (-5 *1 (-770))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-808)) (-4 *3 (-174))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))))) - (-5 *2 (-1060)) (-5 *1 (-316)))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-385 *4)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4391 (-391)) (|:| -2668 (-1183)) - (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) - (-5 *2 (-1060)) (-5 *1 (-316))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 (-1197 *4))) (-5 *3 (-1197 *4)) - (-4 *4 (-932)) (-5 *1 (-679 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) + (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-569)) + (-5 *1 (-714 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-1266 *2 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-792)) (-5 *2 (-1302))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-610))) (-5 *1 (-610))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-944))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-787))) (-5 *3 (-173)) (-5 *1 (-1189 *4 *5)) - (-14 *4 (-944)) (-4 *5 (-1074))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) - (-4 *3 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) - (-4 *3 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125))))) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) +(((*1 *2 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-55))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) + (-14 *4 (-792)) (-4 *5 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) + (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1251)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-420 *5))) + (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4447 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-690 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) -(((*1 *1 *1) (-4 *1 (-677)))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) + (-5 *1 (-932 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1 *1) (-4 *1 (-682)))) +(((*1 *1 *1) (-4 *1 (-1090))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813))))) (((*1 *2 *3) - (-12 (-4 *4 (-865)) - (-5 *2 - (-2 (|:| |f1| (-660 *4)) (|:| |f2| (-660 (-660 (-660 *4)))) - (|:| |f3| (-660 (-660 *4))) (|:| |f4| (-660 (-660 (-660 *4)))))) - (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 (-660 *4))))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-944)) (-5 *1 (-455 *2)) - (-4 *2 (-1268 (-577))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-944)) (-5 *4 (-787)) (-5 *1 (-455 *2)) - (-4 *2 (-1268 (-577))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *1 (-455 *2)) - (-4 *2 (-1268 (-577))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) - (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) - (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-431 *2)) (-4 *2 (-1268 *5)) - (-5 *1 (-457 *5 *2)) (-4 *5 (-1074))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-787)) (-5 *1 (-229)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-228))) (-5 *3 (-787)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-660 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) - (-5 *2 (-660 (-2 (|:| -2609 *5) (|:| -2007 *3)))) - (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) - (-4 *7 (-672 (-420 *6)))))) -(((*1 *1 *1) (-4 *1 (-558)))) -(((*1 *1) (-5 *1 (-481)))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) + (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) + (-5 *2 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) + (-5 *1 (-358 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-1079)))) + ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1206)) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-4 *4 (-13 (-29 *6) (-1232) (-987))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-665 *4)))) + (-5 *1 (-822 *6 *4 *3)) (-4 *3 (-677 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) ((*1 *1 *1 *1) (-4 *1 (-465)))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1292 (-1292 *4))) (-4 *4 (-1074)) (-5 *2 (-705 *4)) - (-5 *1 (-1054 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) - ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) - (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-944)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-944)))) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) + (-5 *1 (-1248 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) + (-5 *1 (-1248 *4))))) +(((*1 *2) + (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) + (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) + (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) - (-5 *2 (-944)))) - ((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) - (-5 *2 (-787)) (-5 *1 (-683 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-787)) - (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) - (-4 *3 (-703 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) - (-5 *2 (-787))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-465)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *5 (-932)) (-5 *1 (-470 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-932))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-34)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-257)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-996)))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-665 (-305 *4))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949))))) +(((*1 *1 *2) + (-12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) + (-5 *1 (-412 *3 *4))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-34)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1001)))) ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-577)))) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-577)))) ((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-862))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-318)) - (-5 *2 (-787)) (-5 *1 (-468 *5 *3))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *2 (-792)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-867))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079))))) (((*1 *2 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1177 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1137 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) + (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) + (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-341))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-888)))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *1 *1) (-5 *1 (-228))) ((*1 *1 *1) (-5 *1 (-391))) + ((*1 *1) (-5 *1 (-391)))) (((*1 *2 *3) - (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) - (-4 *3 (-1268 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) - (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) - (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1125) (-34))) - (-5 *2 (-112)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-879)))) - ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-879))))) + (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) + (-4 *3 (-1273 *4)) + (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) + (-4 *2 (-1130))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) + (-5 *2 (-112)) (-5 *1 (-1170 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242))))) + (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *1 *1) (-5 *1 (-549)))) -(((*1 *2 *1) - (-12 (-4 *2 (-1268 *3)) (-5 *1 (-412 *3 *2)) - (-4 *3 (-13 (-375) (-148)))))) -(((*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-981 (-1197 *4))) (-5 *1 (-369 *4)) - (-5 *3 (-1197 *4))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) - (-4 *3 (-1125)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) - (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) - (-5 *1 (-973 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) - (-4 *3 (-1125))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-391)) (-5 *1 (-1088))))) -(((*1 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295))))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) (((*1 *2 *3) - (-12 (-5 *3 (-1119 (-859 (-391)))) (-5 *2 (-1119 (-859 (-228)))) - (-5 *1 (-316))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) + (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) + (-4 *3 (-354 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) + (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-705 (-975 *4))) (-5 *1 (-1053 *4)) - (-4 *4 (-1074))))) + (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) + (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-665 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) + (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -2281 *3)))) + (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) + (-4 *7 (-677 (-420 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-665 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *6 (-1273 *5)) + (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -2281 (-675 *6 (-420 *6)))))) + (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-5 *2 (-1188))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-971 *5)) (-5 *3 (-792)) (-4 *5 (-1079)) + (-5 *1 (-1194 *4 *5)) (-14 *4 (-949))))) +(((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079))))) (((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) + (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-569)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-569))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) + (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-787))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-792))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) + (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) (-5 *1 (-885))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) - (-5 *1 (-994 *3 *4)))) + (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) + (-5 *1 (-999 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) + (|partial| -12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-569)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))) - (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) - ((*1 *1 *1) (|partial| -4 *1 (-738)))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1) (-4 *1 (-887 *2)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-497 *3))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-835 *3)) (|:| |rm| (-835 *3)))) - (-5 *1 (-835 *3)) (-4 *3 (-865)))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) + (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-52)) (-5 *1 (-850))))) +(((*1 *2 *3) + (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-254 *4 *5)) + (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206)))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) + (-5 *5 (-112)) (-5 *2 (-1299)) (-5 *1 (-265))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) + (-4 *3 (-13 (-443 *4) (-1032)))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) + (-254 *4 (-420 (-577))))) + (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-518 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-989 *3)) (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-1251)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-660 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) - (-4 *7 (-1268 *6)) - (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) + (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) + (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-954)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-954)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1125)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-398 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-840 *3)) (|:| |rm| (-840 *3)))) + (-5 *1 (-840 *3)) (-4 *3 (-870)))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-710 *7)) (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) - (-5 *2 (-1 *5)) (-5 *1 (-699 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)))) - ((*1 *1) (-4 *1 (-1177)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-787)) (-5 *3 (-966 *4)) (-4 *1 (-1159 *4)) - (-4 *4 (-1074)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-966 (-228))) (-5 *2 (-1297)) - (-5 *1 (-1294))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) -(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) - ((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) - ((*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-1182 (-577)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) -(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) - (-5 *2 (-660 *3))))) -(((*1 *2 *2) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1210))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-685 *4 *5))) + (-5 *1 (-645 *4 *5 *6)) (-4 *5 (-13 (-174) (-738 (-420 (-577))))) + (-14 *6 (-949))))) +(((*1 *2) (-12 (-5 *2 - (-660 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) - (-5 *1 (-462 *3 *4 *5 *6))))) + (-1297 (-665 (-2 (|:| -3254 (-938 *3)) (|:| -3354 (-1150)))))) + (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) + ((*1 *2) + (-12 (-5 *2 (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150)))))) + (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150)))))) + (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) - (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) - (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1024 *3)) (-4 *3 (-174)) (-5 *1 (-815 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242))))) + (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1273 *5)) + (-5 *1 (-828 *5 *2 *3 *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *3 (-677 *2)) (-4 *6 (-677 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-420 *2))) (-4 *2 (-1273 *5)) + (-5 *1 (-828 *5 *2 *3 *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) + (-4 *6 (-677 (-420 *2)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1204 *4 *5 *6)) + (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1289 *4 *5 *6)) + (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) (((*1 *2 *3) - (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) - (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-975 *4))) - (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) -(((*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) - ((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715))))) -(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3 *1) (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1187 (-228))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3433 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1065)) (-5 *1 (-316))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-103 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1188)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1130)) + (-4 *4 (-1130)))) + ((*1 *1 *2) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-870)) (-5 *3 (-665 *6)) (-5 *5 (-665 *3)) (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -1986 (-787)) (|:| |period| (-787)))) - (-5 *1 (-1182 *4)) (-4 *4 (-1242)) (-5 *3 (-787))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-787) *2)) (-5 *4 (-787)) (-4 *2 (-1125)) - (-5 *1 (-694 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-787) *3)) (-4 *3 (-1125)) (-5 *1 (-698 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-981 (-185 (-140)))) (-5 *1 (-344)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619))))) + (-2 (|:| |f1| *3) (|:| |f2| (-665 *5)) (|:| |f3| *5) + (|:| |f4| (-665 *5)))) + (-5 *1 (-1217 *6)) (-5 *4 (-665 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) + (-4 *4 (-361)) (-5 *2 (-710 *4)) (-5 *1 (-358 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1290 *3 *2)) + (-4 *2 (-1288 *3))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-775))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) + (-5 *2 (-1065)) (-5 *1 (-777))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-792))) (-5 *3 (-112)) (-5 *1 (-1194 *4 *5)) + (-14 *4 (-949)) (-4 *5 (-1079))))) +(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-792))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-986 *3)) (-5 *1 (-1193 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) + (-5 *4 (-665 (-949))) (-5 *5 (-665 (-271))) (-5 *1 (-481)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) + (-5 *4 (-665 (-949))) (-5 *1 (-481)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) + ((*1 *1 *1) (-5 *1 (-481)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 (-327 (-228)))) + (-5 *2 + (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) + (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) + (-5 *1 (-316))))) +(((*1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *2 (-1302)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-420 *5))) (-14 *7 *6)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + ((*1 *1 *1) (|partial| -4 *1 (-743)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *5 (-380)) + (-5 *2 (-792))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1187 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1079)) + (-5 *3 (-420 (-577))) (-5 *1 (-1190 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) + (-4 *2 + (-13 (-415) + (-10 -7 (-15 -3709 (*2 *4)) (-15 -2686 ((-949) *2)) + (-15 -2104 ((-1297 *2) (-949))) (-15 -4173 (*2 *2))))) + (-5 *1 (-368 *2 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-792))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-792))) + (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1273 *3))))) +(((*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-375) (-869))) (-4 *3 (-1273 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) - (-14 *4 (-660 (-1201))))) - ((*1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) - (-14 *4 (-660 (-1201))))) - ((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) - (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) - (-4 *2 (-354 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-740 *2 *3)) (-4 *3 (-1268 *2))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) - (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-271)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) + (-12 (-5 *2 (-1202 *3)) (-4 *3 (-1079)) (-4 *1 (-1273 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) + (-5 *1 (-777))))) (((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) + (-5 *1 (-369 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-112)) + (-5 *1 (-541 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-777))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) + (-5 *1 (-709 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-721 *3)) + (-4 *3 (-318))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) + (-4 *3 (-1130)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) - (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *1)))) - (-4 *1 (-1096 *4 *5 *6 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-660 (-944))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-944)) (-14 *5 (-1018 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) - (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) + (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) + (-5 *1 (-932 *4)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) - (-4 *4 (-1268 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-742)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) - (-4 *4 (-1074)) (-4 *5 (-865)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) - (-4 *2 (-865)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) - (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *2 (-865)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-4 *2 (-972 *4 (-544 *5) *5)) - (-5 *1 (-1151 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-865)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-975 *4)) (-5 *1 (-1236 *4)) - (-4 *4 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-112)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3543 *3))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) + (-12 (-5 *3 (-949)) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) + (-14 *4 *2)))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-776)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) + (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776))))) (((*1 *2 *3) - (-12 (-4 *3 (-1268 (-420 (-577)))) - (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) - (-5 *1 (-936 *3 *4)) (-4 *4 (-1268 (-420 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) - (-4 *3 (-1268 (-420 *4)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) - (-5 *1 (-770))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-707 *3)) (-5 *1 (-989 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *1 (-271)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *2 (-1297)) (-5 *1 (-1294)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1368 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *1 (-1294)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) + (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-792)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) + (-5 *1 (-1140))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) + (-5 *2 (-665 (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5))))) + (-5 *1 (-1008 *5)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1206)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) + (-4 *7 (-1273 (-420 *6))) (-5 *2 (-665 (-980 *5))) + (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) + (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *4 (-375)) + (-5 *2 (-665 (-980 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) +(((*1 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) + (-4 *5 (-569)) (-5 *2 (-665 (-665 (-980 *5)))) (-5 *1 (-1215 *5))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204)))) - ((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) - (-5 *2 (-1197 (-975 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1001)) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-4 *4 (-465)) + (-5 *2 (-665 (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4))))) + (-5 *1 (-303 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807))))) +(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-247))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-62 *3)) (-14 *3 (-1206)))) + ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-69 *3)) (-14 *3 (-1206)))) + ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-72 *3)) (-14 *3 (-1206)))) + ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1302)))) + ((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-410)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) + ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1243 *2)) - (-4 *2 (-1125)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-865)) - (-5 *1 (-1243 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 *2)) (-5 *4 (-1201)) (-4 *2 (-443 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-569)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-4 *1 (-1037)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-5 *4 (-880)) - (-4 *1 (-1037)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-944)) (-4 *4 (-13 (-864) (-375))) - (-4 *1 (-1093 *4 *2)) (-4 *2 (-1268 *4))))) + (-12 (-5 *3 (-665 *6)) (-5 *4 (-1206)) (-4 *6 (-443 *5)) + (-4 *5 (-1130)) (-5 *2 (-665 (-630 *6))) (-5 *1 (-586 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1133 *3 *4 *2 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *3 *5)) + (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) + (-4 *5 (-677 (-420 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *5 *3)) + (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-677 *2)) + (-4 *3 (-677 (-420 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1228))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1292 (-1292 (-577)))) (-5 *3 (-944)) (-5 *1 (-479))))) + (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) + (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4))))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *4 *5 *6 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-655 *3 *4)) - (-14 *4 (-660 (-1201)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) - ((*1 *1 *1) - (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) - (-14 *3 (-660 (-1201))))) - ((*1 *1 *1) - (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125)))) - ((*1 *1 *1) - (-12 (-14 *2 (-660 (-1201))) (-4 *3 (-174)) - (-4 *5 (-244 (-3501 *2) (-787))) - (-14 *6 - (-1 (-112) (-2 (|:| -3251 *4) (|:| -1527 *5)) - (-2 (|:| -3251 *4) (|:| -1527 *5)))) - (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-865)) - (-4 *7 (-972 *3 *5 (-882 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) - ((*1 *1 *1) - (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) - ((*1 *1 *1) - (-12 (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) (-4 *2 (-1074)) - (-4 *3 (-742)))) - ((*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1165 *3 *2)) (-4 *3 (-13 (-1125) (-34))) - (-4 *2 (-13 (-1125) (-34)))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-577)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-1187 (-228))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) + (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) + (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1201)) (-5 *1 (-549)))) + (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1206)) (-5 *1 (-549)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) + (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) + (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) + (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-720 *3)) - (-4 *3 (-627 (-549)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-542))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2762 *3) (|:| -1527 (-787)))) (-5 *1 (-600 *3)) - (-4 *3 (-558))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1197 (-1197 *5)))) - (-5 *1 (-1240 *5)) (-5 *3 (-1197 (-1197 *5)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027)))))) + (-12 (-5 *4 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-725 *3)) + (-4 *3 (-632 (-549)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-972 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) - (-5 *2 (-1060)) (-5 *1 (-764))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-404))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-549)) (-5 *1 (-548 *4)) - (-4 *4 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-2 (|:| -3056 *4) (|:| -3616 (-577))))) - (-4 *4 (-1268 (-577))) (-5 *2 (-787)) (-5 *1 (-455 *4))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) - (-5 *2 (-787)))) - ((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) - ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) (-5 *2 (-787)))) - ((*1 *2) - (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-437 *3 *4)) - (-4 *3 (-438 *4)))) + (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-787)) - (-5 *1 (-739 *3 *4 *5)) (-4 *3 (-740 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) + (-4 *3 (-708 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) - (-4 *3 (-1268 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-216 (-515))) (-5 *1 (-853))))) -(((*1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) + (-5 *2 (-792))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1221 *2)) (-4 *2 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-322)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1000)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1024)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1066)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1103))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-842))))) +(((*1 *1) (-4 *1 (-361)))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-695 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) (((*1 *2 *3) - (-12 (-5 *2 (-431 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) -(((*1 *2 *2) (-12 (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808))))) + (-12 (-4 *1 (-821)) + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-1065))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-241 *3)))) + ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-404)))) + ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-404))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 + (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) + (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) + (-14 *6 (-1206)) (-14 *7 *3)))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1242)) (-4 *2 (-1074)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) - ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-966 (-228))) (-5 *2 (-228)) (-5 *1 (-1238)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) - ((*1 *2 *1) - (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) - (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) - ((*1 *2 *1) - (-12 (-14 *3 (-660 (-1201))) (-4 *5 (-244 (-3501 *3) (-787))) - (-14 *6 - (-1 (-112) (-2 (|:| -3251 *4) (|:| -1527 *5)) - (-2 (|:| -3251 *4) (|:| -1527 *5)))) - (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-865)) - (-4 *7 (-972 *2 *5 (-882 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-868)) (-4 *2 (-102)))) - ((*1 *2 *1) - (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) - (-4 *3 (-742)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) - ((*1 *2 *1) - (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *3 (-808)) (-4 *4 (-865)) - (-4 *2 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) + (-5 *2 (-1202 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-176 *6)) - (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) - (-4 *4 (-1242)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) - (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-375)) (-4 *2 (-921 *3)) (-5 *1 (-599 *2)) - (-5 *3 (-1201)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) - (-4 *4 (-1125)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) + (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) + (-5 *2 (-1202 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3 *2 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) + (-5 *2 (-1065)) (-5 *1 (-770))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3642 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) + (-4 *2 (-1273 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-696 (-228))) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-771))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) - (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-420 (-577))) + (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1056 (-864 (-577)))) + (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1079)) + (-5 *1 (-608 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-4 *6 (-465)) + (-5 *2 (-665 (-665 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) + (-4 *5 (-13 (-375) (-869)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1124 *3)) (-4 *3 (-977 *7 *6 *4)) (-4 *6 (-814)) + (-4 *4 (-870)) (-4 *7 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) + (-5 *1 (-607 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) + (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232))) + (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1198 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) + (-5 *2 (-420 (-980 *5))) (-5 *1 (-1199 *5)) (-5 *3 (-980 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) + (-5 *2 (-3 (-420 (-980 *5)) (-327 *5))) (-5 *1 (-1199 *5)) + (-5 *3 (-420 (-980 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1122 (-980 *5))) (-5 *3 (-980 *5)) + (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 *3)) + (-5 *1 (-1199 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1122 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) + (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-3 *3 (-327 *5))) + (-5 *1 (-1199 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) - (-4 *3 (-1125))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) - (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4)))))) + (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-857)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-856)))) - ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) + (-12 (-5 *3 (-665 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1248 *2)) + (-4 *2 (-1130)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-870)) + (-5 *1 (-1248 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-862)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-861)))) + ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-660 (-391))) (-5 *5 (-660 (-859 (-391)))) - (-5 *6 (-660 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1060)) - (-5 *1 (-856)))) + (-12 (-5 *4 (-665 (-391))) (-5 *5 (-665 (-864 (-391)))) + (-5 *6 (-665 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1065)) + (-5 *1 (-861)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) - (-5 *5 (-660 (-859 (-391)))) (-5 *2 (-1060)) (-5 *1 (-856)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) + (-5 *5 (-665 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-861)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) - (-5 *1 (-856)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) + (-5 *1 (-861)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) - (-5 *2 (-1060)) (-5 *1 (-856))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) - ((*1 *2 *1) - (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) - (-4 *6 (-244 (-3501 *3) (-787))) - (-14 *7 - (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *6)) - (-2 (|:| -3251 *5) (|:| -1527 *6)))) - (-5 *2 (-729 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-865)) (-4 *8 (-972 *4 *6 (-882 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-742)) (-4 *2 (-865)) (-5 *1 (-751 *3 *2)) - (-4 *3 (-1074)))) - ((*1 *1 *1) - (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) - (-4 *4 (-865))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1182 *3))) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) - (-5 *2 (-1060)) (-5 *1 (-765))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1292 *3))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1063 (-577))) - (-4 *4 (-569)) (-5 *2 (-1197 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-1074)) (-4 *1 (-313)) - (-5 *2 (-1197 *1))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1183)) (|:| -2668 (-1183)))) - (-5 *1 (-838))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) - (-5 *1 (-1185 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) - (-14 *4 (-1201)) (-14 *5 *3)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) - (-5 *2 (-859 *4)) (-5 *1 (-324 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) - (-5 *2 (-859 *4)) (-5 *1 (-1278 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) - (-14 *6 *4)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 (-112) (-660 *1))) - (-4 *1 (-1096 *4 *5 *6 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) + (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) + (-5 *2 (-1065)) (-5 *1 (-861))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) - ((*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *1) (-4 *1 (-992)))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2845 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) - (-5 *3 (-420 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-587 *7 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-766))))) + (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) + (-4 *3 (-669 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1232))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) + (-4 *4 (-1247)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-2 (|:| -4376 (-1206)) (|:| -2727 (-450))))) + (-5 *1 (-1210))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-660 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *5 *6)) - (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-462 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-865)))) - ((*1 *2 *2) - (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1227))) - (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-596 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-599 (-420 (-975 *3)))) - (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-602 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -4209 *3) (|:| |special| *3))) (-5 *1 (-743 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) - (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) - (-5 *3 (-660 (-705 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1292 (-1292 *5))) (-4 *5 (-375)) (-4 *5 (-1074)) - (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) - (-5 *3 (-660 (-705 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-660 *1)) (-4 *1 (-1169)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-660 *1)) (-4 *1 (-1169))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223))))) -(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-966 (-228)))) (-5 *1 (-1293))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1063 (-48))) - (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) - (-5 *2 (-431 (-1197 (-48)))) (-5 *1 (-448 *4 *5 *3)) - (-4 *3 (-1268 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1074)) - (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-972 *2 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) - (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) - (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-318))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-194))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) - (-5 *1 (-1013 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) - (-5 *1 (-1132 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) - (-5 *2 (-1197 *3))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-1237 *3)) - (-4 *3 (-999))))) -(((*1 *1 *1) (-4 *1 (-249))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-2811 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242))))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) + (-12 (-5 *3 (-665 (-710 *5))) (-4 *5 (-318)) (-4 *5 (-1079)) + (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1059 *5)) (-5 *4 (-1297 *5))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-595))))) +(((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-665 *2) *2 *2 *2)) (-4 *2 (-1130)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (-5 *1 (-103 *2))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *2 (-1090 *4 *5 *6)) (-5 *1 (-792 *4 *5 *6 *2 *3)) - (-4 *3 (-1096 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-883)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3))))) + (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (-4 *4 (-1079)) + (-5 *1 (-1058 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) (-4 *4 (-1079)) + (-5 *1 (-1058 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1130)) (-5 *2 (-112)) + (-5 *1 (-1248 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-870)) (-4 *5 (-937)) (-4 *6 (-814)) + (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-431 (-1202 *8))) + (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-1202 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) + (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1242)) (-5 *2 (-787)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-690 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-704 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-380))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-420 (-577))))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *3 (-665 (-577))) + (-5 *1 (-907))))) (((*1 *2 *1) - (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *5)) (-5 *1 (-904 *3 *4 *5)) - (-4 *3 (-1125)) (-4 *5 (-682 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-323)) (-5 *1 (-307)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-1183))) (-5 *3 (-1183)) (-5 *2 (-323)) - (-5 *1 (-307))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-719 *3)) - (-4 *3 (-627 (-549))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228) (-228))) - (-5 *1 (-719 *3)) (-4 *3 (-627 (-549)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *1 *2) - (-12 (-5 *2 (-944)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1074)) - (-4 *4 (-1242)))) - ((*1 *1 *2) - (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) - (-4 *5 (-244 (-3501 *3) (-787))) - (-14 *6 - (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *5)) - (-2 (|:| -3251 *2) (|:| -1527 *5)))) - (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-865)) - (-4 *7 (-972 *4 *5 (-882 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) - (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) - (-4 *4 (-1125)) (-4 *5 (-1125))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2653 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) + (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-5 *1 (-450))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-642 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *2 (-1139 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-844)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2343 *1))) + (-4 *1 (-875 *3))))) +(((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *2 - (-660 - (-2 - (|:| -4323 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) - (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) - (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (|:| -2438 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391))))))) - (-5 *1 (-819))))) + (-5 *5 + (-2 (|:| |done| (-665 *11)) + (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -3613 *11)))))) + (-5 *6 (-792)) + (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -3613 *11)))) + (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) + (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) + (-4 *9 (-870)) (-5 *1 (-1099 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-665 *11)) + (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -3613 *11)))))) + (-5 *6 (-792)) + (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -3613 *11)))) + (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) + (-4 *11 (-1139 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) + (-4 *9 (-870)) (-5 *1 (-1175 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| |k| (-693 *3)) (|:| |c| *4)))) + (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949))))) (((*1 *2 *3) - (-12 (-5 *3 (-705 *2)) (-4 *4 (-1268 *2)) - (-4 *2 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1074))))) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) + (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) + (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-420 (-577))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) - (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) - (-4 *8 (-13 (-27) (-1227) (-443 *7))) - (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) - (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) - (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1074)) (-4 *1 (-1275 *4 *3)) - (-4 *3 (-1252 *4))))) + (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) + (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-5 *3 (-705 (-420 (-975 (-577))))) - (-5 *2 - (-660 - (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) - (|:| |radvect| (-660 (-705 (-327 (-577)))))))) - (-5 *1 (-1056))))) -(((*1 *2) - (-12 (-5 *2 (-1292 (-1126 *3 *4))) (-5 *1 (-1126 *3 *4)) - (-14 *3 (-944)) (-14 *4 (-944))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *6 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) - (-4 *2 (-1125))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 (-577)))) (-5 *1 (-479))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) + (-12 (-4 *4 (-375)) (-5 *2 (-949)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) - (-5 *2 (-1197 (-975 *3))))) + (-12 (-4 *4 (-375)) (-5 *2 (-854 (-949))) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) ((*1 *2) - (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3))))) + (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949)))))) +(((*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1292 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) - (-4 *1 (-740 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1268 *5)) - (-5 *2 (-705 *5))))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-577)) + (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) + (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-577)) + (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) + (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-665 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-577))))) + (-5 *1 (-431 *3)) (-4 *3 (-569)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-792)) (-4 *3 (-361)) (-4 *5 (-1273 *3)) + (-5 *2 (-665 (-1202 *3))) (-5 *1 (-511 *3 *5 *6)) + (-4 *6 (-1273 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -3709 ($ *7))))) + (-4 *7 (-869)) + (-4 *8 + (-13 (-1275 *3 *7) (-375) (-1232) + (-10 -8 (-15 -3641 ($ $)) (-15 -1869 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) + (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) + (-14 *10 (-1206))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-1130))))) (((*1 *2 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) - (-5 *1 (-178 *3))))) + (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) + (-4 *2 (-708 *3 *4 *5))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-630 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) + (-4 *2 (-13 (-443 *5) (-27) (-1232))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1130))))) (((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) - (-5 *2 (-1197 *3))))) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-577)))) + (-4 *4 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3642 ($ $ $))))) + (-4 *3 (-569)) (-5 *1 (-1276 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) + (|:| |lb| (-665 (-864 (-228)))) + (|:| |cf| (-665 (-327 (-228)))) + (|:| |ub| (-665 (-864 (-228)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-665 (-327 (-228)))) + (|:| -2443 (-665 (-228))))))) + (-5 *2 (-665 (-1188))) (-5 *1 (-277))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) + (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-323)) (-5 *1 (-307)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1063 *4) (-654 *4))) - (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *5))))) + (-12 (-5 *4 (-665 (-1188))) (-5 *3 (-1188)) (-5 *2 (-323)) + (-5 *1 (-307))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-792))) (-5 *3 (-173)) (-5 *1 (-1194 *4 *5)) + (-14 *4 (-949)) (-4 *5 (-1079))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) + (-5 *1 (-1190 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1068 *4)) (-4 *3 (-569))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1187 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1247))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-710 (-228))) (-5 *6 (-112)) (-5 *7 (-710 (-577))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) + ((*1 *2 *3) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) + (-5 *1 (-735 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) + (-5 *2 (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2519 *1))) + (-4 *1 (-1095 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2519 *1))) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-4 *5 (-375)) + (-4 *5 (-1079)) (-5 *2 (-112)) (-5 *1 (-1059 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) (-4 *4 (-1079)) + (-5 *2 (-112)) (-5 *1 (-1059 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-1211) (-792)))) (-5 *1 (-344))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) + (-5 *2 (-665 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) + (-5 *1 (-1305 *4)) (-4 *4 (-375))))) +(((*1 *1 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130))))) +(((*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-5 *3 (-665 (-1211))) (-5 *1 (-1211))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-942 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-465) (-1063 *5) (-654 *5))) (-5 *5 (-577)) - (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) - (-4 *7 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) - (-4 *3 (-13 (-27) (-1227) (-443 *7))) - (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-577)) (-4 *4 (-1074)) (-4 *1 (-1254 *4 *3)) - (-4 *3 (-1283 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1292 *6)) (-5 *4 (-1292 (-577))) (-5 *5 (-577)) - (-4 *6 (-1125)) (-5 *2 (-1 *6)) (-5 *1 (-1042 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) - (-4 *4 (-1268 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) + (-12 (-5 *4 (-431 (-980 *6))) (-5 *5 (-1206)) (-5 *3 (-980 *6)) + (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *2 (-1242 (-954))) + (-5 *1 (-329)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *7 (-1188)) + (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) + (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1188)) + (-5 *2 (-1242 (-954))) (-5 *1 (-329))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-375) (-864))) (-4 *3 (-1268 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) + (-12 (-4 *4 (-814)) + (-4 *5 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *6 (-569)) + (-5 *2 (-2 (|:| -4208 (-980 *6)) (|:| -3847 (-980 *6)))) + (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-977 (-420 (-980 *6)) *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) + (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-937)) (-4 *5 (-814)) + (-4 *6 (-870)) (-5 *1 (-934 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) + (-4 *5 (-1273 *4)) (-4 *4 (-937)) (-5 *1 (-935 *4 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-913 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-665 (-327 (-228)))) + (|:| |constraints| + (-665 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-792)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) + (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) + (|:| |tol| (-228)))) + (-5 *2 (-112)) (-5 *1 (-212))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-420 *5)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1268 *3)))) + (-12 (-5 *3 (-420 *5)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1273 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) + (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-705 (-327 (-228)))) (-5 *3 (-660 (-1201))) - (-5 *4 (-1292 (-327 (-228)))) (-5 *1 (-207)))) + (-12 (-5 *2 (-710 (-327 (-228)))) (-5 *3 (-665 (-1206))) + (-5 *4 (-1297 (-327 (-228)))) (-5 *1 (-207)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1125)) - (-4 *3 (-1242)) (-5 *1 (-305 *3)))) + (-12 (-5 *2 (-665 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1130)) + (-4 *3 (-1247)) (-5 *1 (-305 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-320 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)) + (-12 (-4 *2 (-320 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)) (-5 *1 (-305 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 (-660 *1)))) + (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) + (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 (-660 *1)))) + (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-665 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1203 (-420 (-577)))) + (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1208 (-420 (-577)))) (-5 *1 (-321 *2)) (-4 *2 (-38 (-420 (-577)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *1)) (-4 *1 (-386 *4 *5)) - (-4 *4 (-865)) (-4 *5 (-174)))) + (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *1)) (-4 *1 (-386 *4 *5)) + (-4 *4 (-870)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) + (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) + (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 (-660 *1))) - (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) + (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 (-665 *1))) + (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) - (-5 *4 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) - (-4 *5 (-1074)))) + (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) + (-5 *4 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) + (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) - (-5 *4 (-660 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) - (-4 *5 (-1074)))) + (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) + (-5 *4 (-665 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) + (-4 *5 (-1079)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 *1)) (-5 *4 (-1201)) - (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-627 (-549))))) + (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 *1)) (-5 *4 (-1206)) + (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-632 (-549))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1201)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) - (-4 *4 (-627 (-549))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1206)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) + (-4 *4 (-632 (-549))))) ((*1 *1 *1) - (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-627 (-549))))) + (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-632 (-549))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-1201))) (-4 *1 (-443 *3)) (-4 *3 (-1125)) - (-4 *3 (-627 (-549))))) + (-12 (-5 *2 (-665 (-1206))) (-4 *1 (-443 *3)) (-4 *3 (-1130)) + (-4 *3 (-632 (-549))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) - (-4 *3 (-627 (-549))))) + (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) + (-4 *3 (-632 (-549))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1242)))) + (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1247)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *5)) (-4 *1 (-527 *4 *5)) - (-4 *4 (-1125)) (-4 *5 (-1242)))) + (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *5)) (-4 *1 (-527 *4 *5)) + (-4 *4 (-1130)) (-4 *5 (-1247)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-849 *3)) (-4 *3 (-375)) (-5 *1 (-734 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) + (-12 (-5 *2 (-854 *3)) (-4 *3 (-375)) (-5 *1 (-739 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) (-4 *4 (-569)) - (-5 *1 (-1068 *4)))) + (-12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) (-4 *4 (-569)) + (-5 *1 (-1073 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-660 (-1201))) (-5 *4 (-660 (-420 (-975 *5)))) - (-5 *2 (-420 (-975 *5))) (-4 *5 (-569)) (-5 *1 (-1068 *5)))) + (-12 (-5 *3 (-665 (-1206))) (-5 *4 (-665 (-420 (-980 *5)))) + (-5 *2 (-420 (-980 *5))) (-4 *5 (-569)) (-5 *1 (-1073 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-5 *2 (-420 (-975 *4))) - (-4 *4 (-569)) (-5 *1 (-1068 *4)))) + (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-5 *2 (-420 (-980 *4))) + (-4 *4 (-569)) (-5 *1 (-1073 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) (-5 *2 (-420 (-975 *4))) - (-4 *4 (-569)) (-5 *1 (-1068 *4)))) + (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) (-5 *2 (-420 (-980 *4))) + (-4 *4 (-569)) (-5 *1 (-1073 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1182 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1187 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-318)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1130)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2203 (-792)) (|:| -2519 (-792)))) + (-5 *1 (-792)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1125)) (-5 *2 (-112)) - (-5 *1 (-1243 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) - (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1040 *4 *5)) (-5 *3 (-420 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-787)) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-787))) - (-4 *7 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-787))) - (-4 *3 (-13 (-27) (-1227) (-443 *7))) - (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) - (-4 *3 (-1125)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-241 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) - (-5 *1 (-753 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4))))) -(((*1 *1 *1) (-5 *1 (-880)))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52)))) - (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1183)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1125)) - (-4 *4 (-1125)))) - ((*1 *1 *2) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316))))) -(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-819))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-271))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) - (-5 *2 (-420 (-975 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) - (-5 *2 (-420 (-975 *4)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-721 *3 *4)) (-4 *3 (-1242)) (-4 *4 (-1242))))) -(((*1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-380)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) ((*1 *2 *1) - (-12 (-4 *2 (-865)) (-5 *1 (-729 *2 *3 *4)) (-4 *3 (-1125)) - (-14 *4 - (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *3)) - (-2 (|:| -3251 *2) (|:| -1527 *3))))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) - (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) - (-4 *2 (-703 *3 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-660 *4)) (-4 *4 (-865)) - (-5 *1 (-1212 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3) - (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)) (-5 *3 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)) - (-4 *2 (-865)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4471)) - (-4 *1 (-385 *3)) (-4 *3 (-1242))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) - (-14 *4 *2)))) -(((*1 *1 *1) - (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) - (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3))))) -(((*1 *1 *1) (-5 *1 (-1088)))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-569)) (-4 *2 (-972 *3 *5 *4)) - (-5 *1 (-748 *5 *4 *6 *2)) (-5 *3 (-420 (-975 *6))) (-4 *5 (-809)) - (-4 *4 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) - (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) - (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) - (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-302)) (-5 *1 (-169))))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) - (-5 *1 (-1231 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-660 (-420 *6))) (-5 *3 (-420 *6)) - (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-581 *5 *6))))) + (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) + (-5 *2 + (-2 (|:| -2328 (-792)) (|:| -4473 *5) (|:| |radicand| (-665 *5)))) + (-5 *1 (-331 *5)) (-5 *4 (-792)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-577))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-787)) (-4 *4 (-318)) (-4 *6 (-1268 *4)) - (-5 *2 (-1292 (-660 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-660 *6))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-701 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) - (-4 *8 (-972 *7 *5 *6)) - (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *3) (|:| |radicand| *3))) - (-5 *1 (-976 *5 *6 *7 *8 *3)) (-5 *4 (-787)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *8)) (-15 -2781 (*8 $)) (-15 -2797 (*8 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-107 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-884 *4 *5 *6 *7)) - (-4 *4 (-1074)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) - (-14 *8 (-660 *5)) (-5 *2 (-1297)) - (-5 *1 (-1304 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-972 *4 *6 *5)) - (-14 *9 (-660 *3)) (-14 *10 *3)))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) + (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) + (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) + (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) (((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) - (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 *4)))))) - ((*1 *2 *1) - (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-868)) - (-5 *2 (-660 (-891 *4 *3))))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| -2940 *3) (|:| -1740 *4)))) - (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-5 *2 (-1182 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) -(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1125)) (-5 *2 (-787))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-5 *1 (-917 *2 *3)) - (-4 *2 (-1268 *3))))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) + (-5 *2 (-665 (-665 (-971 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) (-4 *4 (-1079)) + (-4 *1 (-1164 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 (-665 (-971 *3)))) (-4 *3 (-1079)) + (-4 *1 (-1164 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-112)) + (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) + (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-665 (-173))) + (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-665 (-665 (-971 *5)))) (-5 *3 (-665 (-173))) + (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1310 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) + (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-710 (-577))) (-5 *5 (-112)) (-5 *7 (-710 (-228))) + (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-775))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) - (-4 *3 (-703 *4 *5 *6)))) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-743)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-747)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1096))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(((*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-380)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) + (-4 *4 (-361)))) ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) - (-5 *2 (-787))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *1 *1 *1) (-4 *1 (-777)))) -(((*1 *1 *2) - (-12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) - (-5 *1 (-412 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -4209 (-431 *3)) (|:| |special| (-431 *3)))) - (-5 *1 (-743 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530)))) + (-12 (-4 *2 (-870)) (-5 *1 (-734 *2 *3 *4)) (-4 *3 (-1130)) + (-14 *4 + (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *3)) + (-2 (|:| -3354 *2) (|:| -2328 *3))))))) +(((*1 *2 *2) (-12 (-5 *2 (-1124 (-864 (-228)))) (-5 *1 (-316))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *3 *2)) - (-4 *3 (-13 (-1125) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1303))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) + (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) + (-4 *3 (-1273 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) - (-14 *4 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1242)))) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) - (-14 *4 (-660 (-1201))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-865))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-313))))) -(((*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2)))) + (-12 (-4 *2 (-23)) (-5 *1 (-732 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *2 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) - (|:| -2818 *6))) - (-5 *1 (-1040 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-705 *4)) (-4 *4 (-1074)) (-5 *1 (-1167 *3 *4)) - (-14 *3 (-787))))) + (-12 (-4 *2 (-23)) (-5 *1 (-736 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-5 *1 (-720)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-710 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-375)) (-5 *1 (-1008 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) - ((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) + (-12 (-5 *3 (-1165)) (-5 *2 (-712 (-291))) (-5 *1 (-169))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -3457 (-660 (-228))))) - (-5 *2 (-660 (-1201))) (-5 *1 (-277)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-660 *5)) - (-5 *1 (-332 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-400)))) - ((*1 *2 *1) - (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-1201))))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)) (-5 *3 (-1188)))) + ((*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1079)) (-4 *2 (-1273 *4)) + (-5 *1 (-457 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-420 (-1202 (-327 *5)))) (-5 *3 (-1297 (-327 *5))) + (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1160 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-887 *3)) (-14 *3 (-665 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1019)))) ((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-660 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) - (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *5)) - (-5 *1 (-973 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))))) + (-12 (-4 *4 (-1247)) (-5 *2 (-1206)) (-5 *1 (-1087 *3 *4)) + (-4 *3 (-1123 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) ((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-4 *5 (-865)) (-5 *2 (-660 *5)))) + (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-5 *2 (-1206)))) + ((*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2)))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) ((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-1201))) - (-5 *1 (-1068 *4))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125))))) -(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-854))) (-5 *1 (-141))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-322)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-995)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1019)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1061)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1098))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) - (-4 *8 (-865)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2554 (-660 *9)))) - (-5 *3 (-660 *9)) (-4 *1 (-1235 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2554 (-660 *8)))) - (-5 *3 (-660 *8)) (-4 *1 (-1235 *5 *6 *7 *8))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1199 *4 *5 *6)) - (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1284 *4 *5 *6)) - (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4)))) + (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) + (-4 *3 (-1273 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-577))) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-569)) (-4 *8 (-972 *7 *5 *6)) - (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *9) (|:| |radicand| *9))) - (-5 *1 (-976 *5 *6 *7 *8 *9)) (-5 *4 (-787)) - (-4 *9 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *8)) (-15 -2781 (*8 $)) (-15 -2797 (*8 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) + (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-674 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) + (-5 *5 (-1 (-431 *7) *7)) + (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 *7 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) + (-5 *5 (-1 (-431 *7) *7)) + (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-674 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) + (-4 *6 (-1273 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 *5 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) + (-4 *6 (-1273 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-1232) (-987) (-29 *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-341))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) + (-4 *3 (-1273 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1197 (-420 (-1197 *2)))) (-5 *4 (-625 *2)) - (-4 *2 (-13 (-443 *5) (-27) (-1227))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1125)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197 *1)) (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *3 (-865)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197 *4)) (-4 *4 (-1074)) (-4 *1 (-972 *4 *5 *3)) - (-4 *5 (-809)) (-4 *3 (-865)))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-1197 *2))) (-4 *5 (-809)) (-4 *4 (-865)) - (-4 *6 (-1074)) - (-4 *2 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))) - (-5 *1 (-973 *5 *4 *6 *7 *2)) (-4 *7 (-972 *6 *5 *4)))) + (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1273 (-577))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-1197 (-420 (-975 *5))))) (-5 *4 (-1201)) - (-5 *2 (-420 (-975 *5))) (-5 *1 (-1068 *5)) (-4 *5 (-569))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037))))) + (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) + (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1273 (-577))))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) + (-4 *3 (-1273 (-420 (-577)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-442 *3 *4)) + (-4 *3 (-443 *4)))) + ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-557 *3)) (-4 *3 (-558)))) + ((*1 *2) (-12 (-4 *1 (-784)) (-5 *2 (-792)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-817 *3 *4)) + (-4 *3 (-818 *4)))) + ((*1 *2) + (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-1021 *3 *4)) + (-4 *3 (-1022 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-1026 *3 *4)) + (-4 *3 (-1027 *4)))) + ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1041 *3)) (-4 *3 (-1042)))) + ((*1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-792)))) + ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1089 *3)) (-4 *3 (-1090))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-577))))) + (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-549))))) +(((*1 *2 *3) + (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) + (-5 *1 (-1035))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-549))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1297 (-1297 (-577)))) (-5 *3 (-949)) (-5 *1 (-479))))) (((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3)))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1188)) (|:| -2758 (-1188)))) + (-5 *1 (-843))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3868 *3) (|:| |coef1| (-803 *3)))) + (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *2 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *2 (-1065)) (-5 *1 (-772))))) +(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212))))) +(((*1 *2 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) + ((*1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) (((*1 *2 *1) - (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) - (-4 *5 (-244 (-3501 *3) (-787))) - (-14 *6 - (-1 (-112) (-2 (|:| -3251 *2) (|:| -1527 *5)) - (-2 (|:| -3251 *2) (|:| -1527 *5)))) - (-4 *2 (-865)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-972 *4 *5 (-882 *3)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1002 *5 *6 *7 *8))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) + (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) + (-5 *2 (-864 *4)) (-5 *1 (-324 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) + (-5 *2 (-864 *4)) (-5 *1 (-1283 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) + (-14 *6 *4)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *3 (-665 (-271))) + (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-710 *3)) + (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-972 *4 *6 *5)) (-4 *4 (-465)) - (-4 *5 (-865)) (-4 *6 (-809)) (-5 *1 (-1012 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) + (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-577)) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) + (-4 *3 (-1079)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-840 *4)) (-4 *4 (-870)) (-4 *1 (-1314 *4 *3)) + (-4 *3 (-1079))))) +(((*1 *2 *1) + (-12 (-5 *2 (-971 *4)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2653 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-660 (-944))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-944)) - (-4 *2 (-375)) (-14 *5 (-1018 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-729 *5 *6 *7)) (-4 *5 (-865)) - (-4 *6 (-244 (-3501 *4) (-787))) - (-14 *7 - (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *6)) - (-2 (|:| -3251 *5) (|:| -1527 *6)))) - (-14 *4 (-660 (-1201))) (-4 *2 (-174)) - (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-972 *2 *6 (-882 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) - (-4 *4 (-1268 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-751 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-742)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) - (-4 *4 (-1074)) (-4 *5 (-865)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) - (-4 *2 (-865)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) - (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *2 (-865)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 *5)) (-4 *1 (-998 *4 *5 *6)) - (-4 *4 (-1074)) (-4 *5 (-808)) (-4 *6 (-865)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-998 *4 *3 *2)) (-4 *4 (-1074)) (-4 *3 (-808)) - (-4 *2 (-865))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *2 (-361)) (-4 *2 (-1079)) (-5 *1 (-733 *2 *3)) + (-4 *3 (-1273 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-980 (-577))) (-5 *3 (-1206)) + (-5 *4 (-1124 (-420 (-577)))) (-5 *1 (-30))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-305 (-849 *3))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-849 *3)) (-5 *1 (-649 *5 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-849 (-975 *5)))) (-4 *5 (-465)) - (-5 *2 (-849 (-420 (-975 *5)))) (-5 *1 (-650 *5)) - (-5 *3 (-420 (-975 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) - (-4 *5 (-465)) (-5 *2 (-849 *3)) (-5 *1 (-650 *5))))) + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *2)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) + (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) + (-5 *1 (-1106 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) + (-5 *1 (-1106 *3 *4 *2)) + (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) + (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-778))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1060)) (-5 *1 (-769))))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) + (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) + (-5 *3 (-665 (-577))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) + (-5 *3 (-665 (-577)))))) +(((*1 *1) (-5 *1 (-572)))) +(((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) - (-4 *5 (-1268 *4)) (-5 *2 (-660 (-420 *5))) (-5 *1 (-1041 *4 *5)) - (-5 *3 (-420 *5))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1235 *5 *6 *7 *3)) - (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) + (-5 *2 (-1065)) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) +(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) -(((*1 *2 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1307 (-1201) *3)) (-4 *3 (-1074)) (-5 *1 (-1314 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *1 (-1316 *3 *4))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-705 *3)) (|:| |invmval| (-705 *3)) - (|:| |genIdeal| (-517 *3 *4 *5 *6)))) - (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1119 *3)) (-4 *3 (-972 *7 *6 *4)) (-4 *6 (-809)) - (-4 *4 (-865)) (-4 *7 (-569)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) - (-5 *1 (-607 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-569)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) - (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1193 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227))))) + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) +(((*1 *2 *2) + (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) + (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) + (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)) (-4 *2 (-318)))) + ((*1 *2 *2) + (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) + (-4 *2 (-708 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227))) - (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1193 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) - (-5 *2 (-420 (-975 *5))) (-5 *1 (-1194 *5)) (-5 *3 (-975 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) - (-5 *2 (-3 (-420 (-975 *5)) (-327 *5))) (-5 *1 (-1194 *5)) - (-5 *3 (-420 (-975 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117 (-975 *5))) (-5 *3 (-975 *5)) - (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 *3)) - (-5 *1 (-1194 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) - (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-3 *3 (-327 *5))) - (-5 *1 (-1194 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) - (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) - (-5 *4 (-327 (-391))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) - (-5 *4 (-327 (-577))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-171 (-391))))) - (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-577)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-171 (-391))))) - (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-577)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) - (-5 *4 (-327 (-710))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) - (-5 *4 (-327 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) - (-5 *4 (-327 (-717))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-710)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-715)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-717)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-710)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-715)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-717)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-710))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-717))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-710))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-717))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-710))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-717))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-341)))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1083 *2 *3 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318))))) +(((*1 *2 *1) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-870)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) + (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209)))) + ((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-420 (-1202 (-327 *3)))) (-4 *3 (-569)) + (-5 *1 (-1160 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) + (-5 *1 (-369 *4))))) (((*1 *2 *3) - (-12 (-14 *4 (-660 (-1201))) (-4 *5 (-465)) - (-5 *2 - (-2 (|:| |glbase| (-660 (-254 *4 *5))) (|:| |glval| (-660 (-577))))) - (-5 *1 (-644 *4 *5)) (-5 *3 (-660 (-254 *4 *5)))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-814)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) + (-4 *4 (-465)) (-4 *6 (-870))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-271)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-112)) (-5 *1 (-625 *4)) - (-4 *4 (-1125)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-625 *4)) (-4 *4 (-1125)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-906 *5 *3 *4)) - (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *6)) (-4 *6 (-905 *5)) (-4 *5 (-1125)) - (-5 *2 (-112)) (-5 *1 (-906 *5 *6 *4)) (-4 *4 (-627 (-911 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-864)) (-5 *1 (-314 *3))))) + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-792))))) +(((*1 *2) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-341))))) (((*1 *2 *2 *3) + (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) + (-4 *3 (-1273 *4)) + (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-1243))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1065)) + (-5 *1 (-770))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *4))))))) - (-5 *3 (-660 *7)) (-4 *4 (-13 (-318) (-148))) - (-4 *7 (-972 *4 *6 *5)) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2653 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-876)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-988)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1014)))) - ((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *2 *3)) - (-4 *3 (-13 (-1125) (-34)))))) + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) +(((*1 *1 *1) (-4 *1 (-1090)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-660 *5))) (-4 *5 (-1283 *4)) - (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-1 (-1182 *4) (-660 (-1182 *4)))) (-5 *1 (-1285 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-894 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-14 *2 (-577)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-895 *3 *4)) + (-4 *4 (-892 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-577)) (-5 *1 (-895 *2 *3)) (-4 *3 (-892 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-577)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-1288 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1288 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) + (-14 *4 (-949))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1079)) + (-5 *1 (-876 *5 *2)) (-4 *2 (-875 *5))))) (((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-881)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-993)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1019)))) + ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *2 *3)) + (-4 *3 (-13 (-1130) (-34)))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) + (-5 *2 (-1065)) (-5 *1 (-766))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + ((*1 *1 *1) (|partial| -4 *1 (-743)))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *2 *3) + (-12 (-5 *2 (-431 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-932 *4)) + (-4 *4 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-171 (-228)))) + (-5 *2 (-1065)) (-5 *1 (-776))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1077))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-1268 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) + (-4 *2 (-174))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-660 - (-660 - (-3 (|:| -2668 (-1201)) - (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))))) - (-5 *1 (-1205))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-705 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) (((*1 *2 *3) - (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) - (-5 *2 (-2 (|:| -2940 (-420 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) + (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-980 *4))) + (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-776))))) +(((*1 *1) + (-12 (-4 *1 (-417)) (-2779 (|has| *1 (-6 -4490))) + (-2779 (|has| *1 (-6 -4482))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870)))) + ((*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-870)))) + ((*1 *1) (-4 *1 (-865))) ((*1 *1 *1 *1) (-4 *1 (-873)))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-792)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1) (-5 *1 (-173))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1130)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402)))) + ((*1 *1) (-5 *1 (-407))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) + ((*1 *1) + (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) + (-4 *4 (-687 *3)))) + ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1172 *3 *2)) (-14 *3 (-792)) (-4 *2 (-1079)))) + ((*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) + ((*1 *1 *1) (-5 *1 (-1206))) ((*1 *1) (-5 *1 (-1206))) + ((*1 *1) (-5 *1 (-1227)))) +(((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1188))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) - (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) + (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) + ((*1 *2 *2) + (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-1079)) + (-5 *2 (-710 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 *8)) + (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *9 (-977 *8 *6 *7)) + (-4 *6 (-814)) (-5 *2 (-1202 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-302)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-710 *3)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) +(((*1 *2) + (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-660 (-988))) (-5 *1 (-302))))) + (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-1166))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2343 *1))) + (-4 *1 (-875 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-653 *3 *4)) - (-14 *4 (-660 (-1201)))))) + (-12 (-5 *2 (-665 (-2 (|:| -4376 *3) (|:| -2727 *4)))) + (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *1 (-1223 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1223 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-665 (-1202 *11))) (-5 *3 (-1202 *11)) + (-5 *4 (-665 *10)) (-5 *5 (-665 *8)) (-5 *6 (-665 (-792))) + (-5 *7 (-1297 (-665 (-1202 *8)))) (-4 *10 (-870)) + (-4 *8 (-318)) (-4 *11 (-977 *8 *9 *10)) (-4 *9 (-814)) + (-5 *1 (-728 *9 *10 *8 *11))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-696 *2)) (-4 *2 (-1079)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| -4323 (-1201)) (|:| -2438 *4)))) - (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) + (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) - (-4 *7 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-1128 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) - (-4 *6 (-1268 *5)) (-5 *2 (-1197 (-1197 *7))) - (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1268 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) + (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) + (-14 *3 (-949)) (-4 *4 (-1079))))) +(((*1 *1 *1 *1) (-4 *1 (-997)))) +(((*1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-710 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) + (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) +(((*1 *2 *1) + (-12 (-5 *2 (-173)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1156 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) + (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *1 (-1156 *4 *3 *5)) + (-4 *5 (-977 *4 (-544 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1241 *4))) (-5 *3 (-1206)) (-5 *1 (-1241 *4)) + (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 (-171 (-577))))) (-5 *2 (-660 (-171 *4))) - (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) - (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 (-171 *5)))) - (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-864)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-911 *6))) - (-5 *5 (-1 (-908 *6 *8) *8 (-911 *6) (-908 *6 *8))) (-4 *6 (-1125)) - (-4 *8 (-13 (-1074) (-627 (-911 *6)) (-1063 *7))) - (-5 *2 (-908 *6 *8)) (-4 *7 (-1074)) (-5 *1 (-964 *6 *7 *8))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1135))))) -(((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-443 *4)))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4)))) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) + (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027))))) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) + (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 *7))) + (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-465)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-431 *1)) (-4 *1 (-977 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313)))) - ((*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) + (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-465)) (-5 *2 (-431 *3)) + (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1125)) (-5 *2 (-112)) - (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) + (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) + (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4)))) + (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1276 *4 *3)) + (-4 *3 (-13 (-1273 *4) (-569) (-10 -8 (-15 -3642 ($ $ $))))))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-643 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227)))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) - ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) - ((*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) - (-5 *1 (-706 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-1074)))) - ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) -(((*1 *1) (-5 *1 (-839)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-909 *4 *3)) - (-4 *3 (-1242)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 *5)) (-4 *5 (-375)) (-5 *2 (-660 *6)) - (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864)))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-145))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1110))))) -(((*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-23))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-987 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285))))) -(((*1 *1 *1) (-4 *1 (-1169)))) + (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-14 *5 (-665 (-1206))) + (-5 *2 + (-665 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6))))) + (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285))))) +(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) +(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-660 (-787)))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *5 (-1268 *4)) (-5 *2 (-1197 (-420 *5))) (-5 *1 (-628 *4 *5)) - (-5 *3 (-420 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 (-1197 (-420 *6))) (-5 *1 (-628 *5 *6)) (-5 *3 (-420 *6))))) + (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) + (-5 *2 (-1202 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) + (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) -(((*1 *2 *3) - (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211))))) -(((*1 *2 *1) (-12 (-5 *2 (-707 (-1160))) (-5 *1 (-1176))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1242)) (-4 *1 (-244 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-459)) (-5 *3 (-577))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1201)) - (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-588 *4 *2)) - (-4 *2 (-13 (-1227) (-982) (-1164) (-29 *4)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) - (-5 *1 (-771))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) - (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1305 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *3 *5)) - (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) - (-4 *5 (-672 (-420 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *5 *3)) - (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-672 *2)) - (-4 *3 (-672 (-420 *2)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) - (-4 *2 (-13 (-865) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-660 (-625 *3))) - (|:| |vals| (-660 *3)))) - (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *6)))) - (-5 *4 (-1051 (-859 (-577)))) (-5 *5 (-1201)) (-5 *7 (-420 (-577))) - (-4 *6 (-1074)) (-5 *2 (-880)) (-5 *1 (-608 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) - (-5 *1 (-1013 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) - (-5 *1 (-1132 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) - (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) - (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) - (-5 *1 (-713)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-228))) - (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1 (-966 (-228)) (-228) (-228))) - (-5 *4 (-1119 (-228))) (-5 *5 (-660 (-271))) (-5 *1 (-713))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) - (-4 *3 (-1268 *2))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) + (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1132 (-792))) (-5 *6 (-792)) + (-5 *2 + (-2 (|:| |contp| (-577)) + (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) + (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722)))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722))))) (((*1 *2 *1) - (-12 (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-904 *3 *4 *5)) - (-4 *3 (-1125)) (-4 *5 (-682 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *1 *1 *1) (-5 *1 (-228))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) - ((*1 *1 *1 *1) (-4 *1 (-1164)))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) -(((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) - ((*1 *1 *1) (-4 *1 (-1027))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1037)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1037)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-944)))) - ((*1 *1 *1) (-4 *1 (-1037)))) -(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-4 *1 (-417)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *2 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) + (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-112)) - (-5 *1 (-372 *4 *5)) (-14 *5 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-796 *4 (-882 *5)))) (-4 *4 (-465)) - (-14 *5 (-660 (-1201))) (-5 *2 (-112)) (-5 *1 (-641 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1091))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-787)) (-5 *5 (-660 *3)) (-4 *3 (-318)) (-4 *6 (-865)) - (-4 *7 (-809)) (-5 *2 (-112)) (-5 *1 (-638 *6 *7 *3 *8)) - (-4 *8 (-972 *3 *7 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-560)))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)))) - ((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) - (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) - (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-949)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-949)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) - (-4 *3 (-1268 *2))))) -(((*1 *1 *1) (-4 *1 (-642))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) - (-14 *4 (-660 (-1201))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) - (-14 *4 (-660 (-1201)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1268 (-48))))) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) + (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) - (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-972 (-48) *6 *5)))) + (-12 (-5 *4 (-420 (-577))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) - (-4 *7 (-972 (-48) *6 *5)) (-5 *2 (-431 (-1197 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1197 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1268 (-171 *4))))) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) - (-4 *3 (-1268 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1268 (-577))))) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1268 (-577))))) + (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) + (-4 *6 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) - (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1268 (-577))))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) - (-5 *3 (-171 (-577))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-865) - (-10 -8 (-15 -2176 ((-1201) $)) - (-15 -3052 ((-3 $ "failed") (-1201)))))) - (-4 *5 (-809)) (-4 *7 (-569)) (-5 *2 (-431 *3)) - (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) - (-4 *3 (-972 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1197 *4))) (-5 *1 (-471 *4)) - (-5 *3 (-1197 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) - (-4 *7 (-13 (-375) (-148) (-740 *5 *6))) (-5 *2 (-431 *3)) - (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1268 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) - (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) - (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) - (-4 *3 (-972 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) - (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) - (-4 *8 (-972 *7 *6 *5)) (-5 *2 (-431 (-1197 *8))) - (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1197 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-660 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *6 (-1268 *5)) (-5 *2 (-660 (-669 (-420 *6)))) - (-5 *1 (-673 *5 *6)) (-5 *3 (-669 (-420 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) - (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-688 *4))) - (-5 *1 (-688 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-5 *2 (-660 *3)) (-5 *1 (-712 *3)) - (-4 *3 (-1268 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) (-5 *2 (-431 *3)) - (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) - (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) - (-5 *1 (-714 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-809)) - (-4 *5 - (-13 (-865) - (-10 -8 (-15 -2176 ((-1201) $)) - (-15 -3052 ((-3 $ "failed") (-1201)))))) - (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-746 *4 *5 *6 *3)) - (-4 *3 (-972 (-975 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-809)) - (-4 *5 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *6 (-569)) - (-5 *2 (-431 *3)) (-5 *1 (-748 *4 *5 *6 *3)) - (-4 *3 (-972 (-420 (-975 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-13 (-318) (-148))) - (-5 *2 (-431 *3)) (-5 *1 (-749 *4 *5 *6 *3)) - (-4 *3 (-972 (-420 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) - (-5 *2 (-431 *3)) (-5 *1 (-757 *4 *5 *6 *3)) - (-4 *3 (-972 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) - (-5 *1 (-757 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) - (-4 *3 (-1268 (-420 (-577)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1066 *3)) - (-4 *3 (-1268 (-420 (-975 (-577))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1268 (-420 (-577)))) - (-4 *5 (-13 (-375) (-148) (-740 (-420 (-577)) *4))) - (-5 *2 (-431 *3)) (-5 *1 (-1104 *4 *5 *3)) (-4 *3 (-1268 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1268 (-420 (-975 (-577))))) - (-4 *5 (-13 (-375) (-148) (-740 (-420 (-975 (-577))) *4))) - (-5 *2 (-431 *3)) (-5 *1 (-1106 *4 *5 *3)) (-4 *3 (-1268 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) - (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) - (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246)))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) + (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) + (-4 *7 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) + (-4 *3 (-13 (-27) (-1232) (-443 *7))) + (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) + (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) + (-4 *8 (-13 (-27) (-1232) (-443 *7))) + (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) + (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) + (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) + (-4 *3 (-1079)) (-5 *1 (-608 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-609 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) + (-4 *3 (-1079)) (-4 *1 (-1257 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-792)) + (-5 *3 (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) + (-4 *4 (-1079)) (-4 *1 (-1278 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-4 *1 (-1288 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1187 (-2 (|:| |k| (-792)) (|:| |c| *3)))) + (-4 *3 (-1079)) (-4 *1 (-1288 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-465))))) +(((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-659 *5)) + (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -3684 (-710 *5)) (|:| |vec| (-1297 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) + (-5 *2 (-710 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) (((*1 *2 *1) - (-12 (-4 *2 (-724 *3)) (-5 *1 (-843 *2 *3)) (-4 *3 (-1074))))) -(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -2940 *3) (|:| |gap| (-787)) (|:| -2669 (-798 *3)) - (|:| -2689 (-798 *3)))) - (-5 *1 (-798 *3)) (-4 *3 (-1074)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) - (-5 *2 - (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2669 *1) - (|:| -2689 *1))) - (-4 *1 (-1090 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-341))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-1310 *4 *5 *6 *7))) + (-5 *1 (-1310 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) + (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-665 (-1310 *6 *7 *8 *9))) + (-5 *1 (-1310 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3642 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *1) (-5 *1 (-481)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-569)) + (-5 *2 (-2 (|:| -3684 (-710 *5)) (|:| |vec| (-1297 (-665 (-949)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) + (-15 -2429 ((-1155 *3 (-630 $)) $)) + (-15 -3709 ($ (-1155 *3 (-630 $)))))))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1206)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-665 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3398 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1232) (-27) (-443 *8))) + (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3352 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1043 *8 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1150)) (-4 *4 (-361)) + (-5 *1 (-541 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-774))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1273 *9)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-318)) + (-4 *10 (-977 *9 *7 *8)) (-5 *2 - (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2669 *1) - (|:| -2689 *1))) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) - ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) + (-2 (|:| |deter| (-665 (-1202 *10))) + (|:| |dterm| + (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-665 *6)) (|:| |nlead| (-665 *10)))) + (-5 *1 (-799 *6 *7 *8 *9 *10)) (-5 *3 (-1202 *10)) (-5 *4 (-665 *6)) + (-5 *5 (-665 *10))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-712 (-795))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-795)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-993))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-4 *1 (-417)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) - ((*1 *1 *1) (-4 *1 (-1085)))) -(((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) + (-12 (-4 *1 (-1133 *3 *4 *5 *2 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1130))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1202 *2)) (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) + (-5 *1 (-753 *5 *4 *6 *2)) (-4 *5 (-814)) + (-4 *4 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) + (-4 *6 (-569))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-792)) (-4 *4 (-318)) (-4 *6 (-1273 *4)) + (-5 *2 (-1297 (-665 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-665 *6))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-949)) (-4 *3 (-375)) + (-14 *4 (-1023 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) + ((*1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) + ((*1 *1 *1) (|partial| -4 *1 (-743))) + ((*1 *1 *1) (|partial| -4 *1 (-747))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) + (-4 *2 (-1273 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) + (-5 *2 (-2 (|:| -3684 (-710 *4)) (|:| |vec| (-1297 *4)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) + (-5 *2 (-710 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1297 (-720))) (-5 *1 (-316))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-869))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2127 (-431 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *2 (-1302)) + (-5 *1 (-481)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-882 *3)) (-14 *3 (-660 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1014)))) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-1010 *3)))) ((*1 *2 *1) - (-12 (-4 *4 (-1242)) (-5 *2 (-1201)) (-5 *1 (-1082 *3 *4)) - (-4 *3 (-1118 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1117 *3)) (-4 *3 (-1242)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-5 *2 (-1201)))) - ((*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-971 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-971 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)) (-5 *3 (-228))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-1264 (-577)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-665 (-420 *7))) + (-4 *7 (-1273 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-587 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1302)) (-5 *1 (-852))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) + (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -2899 *6))) + (-5 *1 (-1046 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1267 *3 *2)) + (-4 *2 (-1273 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3868 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) + (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) + (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) + (-254 *4 (-420 (-577))))) + (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) + (-5 *1 (-518 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-824))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1249))))) +(((*1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-375)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-228)))) ((*1 *1 *1 *1) - (-2811 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242))))) + (-2867 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247))))) ((*1 *1 *1 *1) (-4 *1 (-375))) ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-569)) (-4 *3 (-1125)) + (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) ((*1 *1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) ((*1 *1 *1 *1) (-5 *1 (-549))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-634 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-742) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-639 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-747) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-742) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)) (-4 *2 (-375)))) + (-12 (-4 *4 (-174)) (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-747) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)) (-4 *2 (-375)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-678 *2 *4 *3)) (-4 *2 (-733 *4)) - (-4 *3 (|SubsetCategory| (-742) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-683 *2 *4 *3)) (-4 *2 (-738 *4)) + (-4 *3 (|SubsetCategory| (-747) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4)) - (-4 *2 (|SubsetCategory| (-742) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4)) + (-4 *2 (|SubsetCategory| (-747) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-884 *2 *3 *4 *5)) (-4 *2 (-375)) - (-4 *2 (-1074)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-787))) - (-14 *5 (-787)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) + (|partial| -12 (-5 *1 (-889 *2 *3 *4 *5)) (-4 *2 (-375)) + (-4 *2 (-1079)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-792))) + (-14 *5 (-792)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) + (-12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-375)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-375)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-375)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1074)) (-4 *3 (-865)) - (-4 *4 (-809)) (-14 *6 (-660 *3)) - (-5 *1 (-1304 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-972 *2 *4 *3)) - (-14 *7 (-660 (-787))) (-14 *8 (-787)))) + (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1079)) (-4 *3 (-870)) + (-4 *4 (-814)) (-14 *6 (-665 *3)) + (-5 *1 (-1309 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-977 *2 *4 *3)) + (-14 *7 (-665 (-792))) (-14 *8 (-792)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1074)) - (-4 *3 (-862))))) -(((*1 *1) (-5 *1 (-610)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-1268 *4)) (-5 *2 (-1 *6 (-660 *6))) - (-5 *1 (-1286 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-1283 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1201)) - (-5 *2 - (-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) - (|:| |singularities| (-1182 (-228))))) - (-5 *1 (-105))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) - (-5 *2 (-660 (-1101 *3 *4 *5))) (-5 *1 (-1102 *3 *4 *5)) - (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-660 (-577))) (-5 *3 (-705 (-577))) (-5 *1 (-1135))))) -(((*1 *1) (-5 *1 (-1088)))) + (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1079)) + (-4 *3 (-867))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) - (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) - (-14 *6 (-1201)) (-14 *7 *3)))) + (-12 (-5 *4 (-949)) (-4 *6 (-569)) (-5 *2 (-665 (-327 *6))) + (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1079)))) + ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1232))) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-665 *5)) + (-5 *1 (-596 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-420 (-980 *4)))) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-665 (-327 *4))) (-5 *1 (-602 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-869)) (-4 *2 (-1179 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 *1)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) + (-4 *2 (-1179 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1312 (-1206) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) + (-5 *2 (-665 (-693 *5))) (-5 *1 (-693 *5))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-909 *3 *4 *5)) + (-4 *3 (-1130)) (-4 *5 (-687 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *1)))) + (-4 *1 (-1101 *4 *5 *6 *3))))) +(((*1 *1 *1) (-5 *1 (-549)))) +(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1242 *3)) + (-5 *1 (-811 *3)) (-4 *3 (-1004)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-112)) + (-5 *1 (-1242 *2)) (-4 *2 (-1004))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-865) - (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) - (-15 -2032 ((-1297) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) + (-13 (-870) + (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) + (-15 -3699 ((-1302) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-660 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-577))))) - (-4 *2 (-569)) (-5 *1 (-431 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-577)) - (|:| -1704 (-660 (-2 (|:| |irr| *4) (|:| -2087 (-577))))))) - (-4 *4 (-1268 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-318)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1125)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2669 (-787)) (|:| -2689 (-787)))) - (-5 *1 (-787)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-4 *4 (-1125)) - (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)))) - ((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-787))))) -(((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21))))) +(((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) + (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) + (-5 *1 (-1137 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *2 (-665 (-665 (-577)))) + (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *6 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-385 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 *4)) (-4 *4 (-1017 *2)) (-4 *2 (-569)) - (-5 *1 (-709 *2 *4)))) + (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) ((*1 *2 *3) - (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-1261 *2 *4 *3)) - (-4 *3 (-1268 *4))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1151 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) - (-4 *4 (-1074)) (-4 *3 (-865)) (-5 *1 (-1151 *4 *3 *5)) - (-4 *5 (-972 *4 (-544 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1236 *4))) (-5 *3 (-1201)) (-5 *1 (-1236 *4)) - (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074))))) + (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) + (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) + (-5 *4 (-1 (-228) (-228) (-228) (-228))) + (-5 *2 (-1 (-971 (-228)) (-228) (-228))) (-5 *1 (-718))))) +(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-290))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) + (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-702)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1000)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1103)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1148))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-5 *1 (-341))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-792)) + (-4 *5 (-13 (-465) (-1068 (-577)))) (-4 *5 (-569)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *5 (-630 $)) $)) + (-15 -2429 ((-1155 *5 (-630 $)) $)) + (-15 -3709 ($ (-1155 *5 (-630 $)))))))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-865) - (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) - (-15 -2032 ((-1297) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) + (-13 (-870) + (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) + (-15 -3699 ((-1302) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)))) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-1268 *3)))) + (-4 *2 (-1273 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) + (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-549))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-25))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) - (-4 *4 (-174))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027)))))) -(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-577)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) - (-5 *1 (-462 *5 *6 *7 *4))))) -(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) -(((*1 *2) - (-12 (-5 *2 (-705 (-933 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) - (-14 *4 (-944)))) - ((*1 *2) - (-12 (-5 *2 (-705 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) - (-14 *4 - (-3 (-1197 *3) - (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145))))))))) - ((*1 *2) - (-12 (-5 *2 (-705 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-944))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) - (-4 *4 (-569)) (-5 *2 (-420 (-1197 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-1197 (-420 (-1197 *3)))) (-5 *1 (-573 *6 *3 *7)) - (-5 *5 (-1197 *3)) (-4 *7 (-1125)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1288 *5)) (-14 *5 (-1201)) (-4 *6 (-1074)) - (-5 *2 (-1265 *5 (-975 *6))) (-5 *1 (-970 *5 *6)) (-5 *3 (-975 *6)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-25))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-251 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) + (-5 *1 (-685 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-1197 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-1197 *1)) - (-4 *1 (-972 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) - (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-420 (-1197 *3))) - (-5 *1 (-973 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1197 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $))))) - (-4 *7 (-972 *6 *5 *4)) (-4 *5 (-809)) (-4 *4 (-865)) - (-4 *6 (-1074)) (-5 *1 (-973 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-4 *5 (-569)) - (-5 *2 (-420 (-1197 (-420 (-975 *5))))) (-5 *1 (-1068 *5)) - (-5 *3 (-420 (-975 *5)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) - (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -2100 *3)))) - (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4))))) + (|partial| -12 (-5 *2 (-685 *3 *4)) (-5 *1 (-1317 *3 *4)) + (-4 *3 (-870)) (-4 *4 (-174))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-792)) (-4 *5 (-569)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-665 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-569)) + (-4 *3 (-1079))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1216))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-145))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -3403 (-792)))) + (-5 *1 (-803 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3403 (-792)))) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) + (-4 *4 (-38 (-420 (-577))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) + (-12 (-4 *2 (-1123 *3)) (-5 *1 (-1087 *2 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247))))) (((*1 *2) - (-12 (-4 *1 (-361)) - (-5 *2 (-660 (-2 (|:| -3056 (-577)) (|:| -1527 (-577)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530))))) -(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-290))))) -(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-697)))) - ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-995)))) - ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1098)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1143))))) -(((*1 *2 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) - (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) - (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5))))) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) (((*1 *2 *3) - (-12 (-4 *4 (-1074)) - (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *2)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) + (-12 (-4 *1 (-948)) (-5 *2 (-2 (|:| -4473 (-665 *1)) (|:| -2343 *1))) + (-5 *3 (-665 *1))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) + (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) + (-4 *5 (-13 (-443 *4) (-1032) (-1232))) + (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) + (-5 *2 + (-2 (|:| A (-710 *5)) + (|:| |eqs| + (-665 + (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5)) (|:| -2281 *6) + (|:| |rh| *5)))))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) + (-4 *6 (-677 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *6 (-677 *5)) + (-5 *2 (-2 (|:| -3684 (-710 *6)) (|:| |vec| (-1297 *5)))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) - (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-145))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1074)) (-4 *3 (-1125)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1527 (-577)))) (-4 *1 (-443 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -1527 (-911 *3)))) - (-5 *1 (-911 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) - (-4 *7 (-972 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1527 (-577)))) - (-5 *1 (-973 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) - (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) - (-5 *2 (-2 (|:| |num| (-705 *5)) (|:| |den| *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-225 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-262 *3)))) - ((*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-481)) (-5 *3 (-660 (-271))) (-5 *1 (-1293)))) - ((*1 *1 *1) (-5 *1 (-1293)))) -(((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) - (-5 *2 (-660 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |k| (-912 *3)) (|:| |c| *4)))) - (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-688 *3))) (-5 *1 (-912 *3)) (-4 *3 (-865))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-52)) (-5 *1 (-911 *4)) - (-4 *4 (-1125))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97))))) (((*1 *2 *2) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-792)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-4 *3 (-569))))) +(((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) + (-4 *4 (-1130)) (-4 *5 (-1130))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) +(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-842)) (-5 *4 (-52)) (-5 *2 (-1302)) (-5 *1 (-852))))) +(((*1 *2) + (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-792))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) + (-5 *2 (-1065)) (-5 *1 (-775))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-665 (-792))) (-5 *1 (-999 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) + (-5 *2 (-420 (-577)))))) +(((*1 *1 *2) (-12 (-5 *2 - (-517 (-420 (-577)) (-246 *4 (-787)) (-882 *3) - (-254 *3 (-420 (-577))))) - (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-518 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1002 *4 *5 *6 *7))))) + (-2 (|:| |mval| (-710 *3)) (|:| |invmval| (-710 *3)) + (|:| |genIdeal| (-517 *3 *4 *5 *6)))) + (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-665 (-577))) (-5 *3 (-665 (-949))) (-5 *4 (-112)) + (-5 *1 (-1140))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-665 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-443 *4) (-1032))) (-4 *4 (-569)) + (-5 *1 (-286 *4 *2))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) + ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-702)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1148))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-577)) (-5 *1 (-970))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) - (-5 *1 (-927 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1211))))) + (-12 (-5 *3 (-1206)) + (-5 *2 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *1 (-1209))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) + (-5 *2 (-1065)) (-5 *1 (-775))))) (((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) - (-4 *2 (-865))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) - (-5 *2 (-660 (-1119 (-228)))) (-5 *1 (-951))))) -(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-801 *3)) (-4 *3 (-627 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-5 *2 (-391)) (-5 *1 (-801 *3)) - (-4 *3 (-627 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) - (-5 *2 (-391)) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) - (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 *2)) - (-5 *2 (-391)) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) - (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) - (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) -(((*1 *1 *2) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-1292 (-705 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 (-705 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) - (-5 *2 (-1292 (-705 (-420 (-975 *5))))) (-5 *1 (-1111 *5)) - (-5 *4 (-705 (-420 (-975 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) - (-5 *2 (-1292 (-705 (-975 *5)))) (-5 *1 (-1111 *5)) - (-5 *4 (-705 (-975 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) - (-5 *2 (-1292 (-705 *4))) (-5 *1 (-1111 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-569)) + (-4 *7 (-977 *3 *5 *6)) + (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *8) (|:| |radicand| *8))) + (-5 *1 (-981 *5 *6 *3 *7 *8)) (-5 *4 (-792)) + (-4 *8 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) (-15 -2429 (*7 $)))))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1187 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1079)) + (-5 *1 (-1190 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| -2653 *3) (|:| |coef1| (-798 *3)) (|:| |coef2| (-798 *3)))) - (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-1305 *4 *5 *6 *7))) - (-5 *1 (-1305 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) - (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-660 (-1305 *6 *7 *8 *9))) - (-5 *1 (-1305 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-767))))) -(((*1 *2) - (-12 (-4 *1 (-361)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1183)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1060)) - (-5 *1 (-766))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) - (-4 *2 (-1074))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-660 *1)) (|has| *1 (-6 -4471)) (-4 *1 (-1035 *3)) - (-4 *3 (-1242))))) -(((*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) - ((*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1246)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1268 (-420 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-697)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1143))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) - (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) - (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) - (-5 *1 (-713))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) - (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) - (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-660 (-787))))) - ((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) - (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 (-787)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3426 *1) (|:| -4457 *1) (|:| |associate| *1))) - (-4 *1 (-569))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) - (-5 *1 (-704 *3 *4 *5 *6)) (-4 *6 (-703 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-716 *3)) - (-4 *3 (-318))))) -(((*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) - ((*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125))))) + (-665 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-792)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-814)) (-4 *6 (-977 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-870)) + (-5 *1 (-462 *4 *3 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) + ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1297 (-665 *3))) (-4 *4 (-318)) + (-5 *2 (-665 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) -(((*1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) - (-4 *3 (-569)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) - (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) - (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) + (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) (-4 *3 (-1063 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1051 *3)) (-4 *3 (-1242))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1268 (-171 *3)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) - (-5 *2 (-1297)) (-5 *1 (-1204)))) + (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) + (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-710 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2104 (-665 *6))) + *7 *6)) + (-4 *6 (-375)) (-4 *7 (-677 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1297 *6) "failed")) + (|:| -2104 (-665 (-1297 *6))))) + (-5 *1 (-834 *6 *7)) (-5 *4 (-1297 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) + ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) + ((*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-1187 (-577)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) - (-5 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *2 (-1297)) - (-5 *1 (-1204)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1201)) - (-5 *4 (-3 (|:| |fst| (-447)) (|:| -4154 "void"))) (-5 *2 (-1297)) - (-5 *1 (-1204))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) - (-4 *5 (-905 (-577))) - (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) - (-4 *3 (-13 (-27) (-1227) (-443 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1201)) (-5 *4 (-859 *2)) (-4 *2 (-1164)) - (-4 *2 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) - (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) - (-5 *1 (-580 *5 *2))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1060)) (-5 *1 (-769))))) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1270 *4 *5)) (-5 *3 (-665 *5)) (-14 *4 (-1206)) + (-4 *5 (-375)) (-5 *1 (-951 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *5)) (-4 *5 (-375)) (-5 *2 (-1202 *5)) + (-5 *1 (-951 *4 *5)) (-14 *4 (-1206)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-665 *6)) (-5 *4 (-792)) (-4 *6 (-375)) + (-5 *2 (-420 (-980 *6))) (-5 *1 (-1080 *5 *6)) (-14 *5 (-1206))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1704 (-660 (-2 (|:| |irr| *10) (|:| -2087 (-577))))))) - (-5 *6 (-660 *3)) (-5 *7 (-660 *8)) (-4 *8 (-865)) (-4 *3 (-318)) - (-4 *10 (-972 *3 *9 *8)) (-4 *9 (-809)) + (|:| -2127 (-665 (-2 (|:| |irr| *10) (|:| -2243 (-577))))))) + (-5 *6 (-665 *3)) (-5 *7 (-665 *8)) (-4 *8 (-870)) (-4 *3 (-318)) + (-4 *10 (-977 *3 *9 *8)) (-4 *9 (-814)) (-5 *2 - (-2 (|:| |polfac| (-660 *10)) (|:| |correct| *3) - (|:| |corrfact| (-660 (-1197 *3))))) - (-5 *1 (-638 *8 *9 *3 *10)) (-5 *4 (-660 (-1197 *3)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1316 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-865)) - (-4 *2 (-174)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-835 *4)) (-4 *1 (-1309 *4 *2)) (-4 *4 (-865)) - (-4 *2 (-1074)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1242)) - (-4 *3 (-385 *4)) (-4 *5 (-385 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) - (-5 *1 (-369 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-112)) - (-5 *1 (-541 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3))))) + (-2 (|:| |polfac| (-665 *10)) (|:| |correct| *3) + (|:| |corrfact| (-665 (-1202 *3))))) + (-5 *1 (-643 *8 *9 *3 *10)) (-5 *4 (-665 (-1202 *3)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1262 *3 *2)) - (-4 *2 (-1268 *3))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) - (-5 *2 (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2689 *1))) - (-4 *1 (-1090 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-2 (|:| -2940 *1) (|:| |gap| (-787)) (|:| -2689 *1))) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *1) (-4 *1 (-361)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) - (-4 *3 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) - (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) - (-4 *3 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) - (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1007 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-792)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-792))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 *3 (-665 *1))) + (-4 *1 (-1101 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1130)) (-4 *6 (-910 *5)) (-5 *2 (-909 *5 *6 (-665 *6))) + (-5 *1 (-911 *5 *6 *4)) (-5 *3 (-665 *6)) (-4 *4 (-632 (-916 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) + (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 *3))) (-5 *1 (-911 *5 *3 *4)) + (-4 *3 (-1068 (-1206))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) - (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) - (-5 *1 (-267 *6)))) + (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 (-980 *3)))) + (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1079)) + (-2779 (-4 *3 (-1068 (-1206)))) (-4 *3 (-910 *5)) + (-4 *4 (-632 (-916 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) - (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) - (-5 *1 (-267 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) - (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-627 (-549)) (-1125))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-627 (-549)) (-1125))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) - (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) - (-5 *1 (-267 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) - (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) - (-5 *1 (-267 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + (-12 (-4 *5 (-1130)) (-5 *2 (-913 *5 *3)) (-5 *1 (-911 *5 *3 *4)) + (-2779 (-4 *3 (-1068 (-1206)))) (-2779 (-4 *3 (-1079))) + (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5)))))) +(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-577)) + (-5 *6 + (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391)))) + (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) + (-5 *1 (-809)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-577)) + (-5 *6 + (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -2615 (-391)))) + (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) + (-5 *1 (-809))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-704 *4 *3)) (-4 *4 (-1130)) + (-4 *3 (-1130))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-710 *2)) (-5 *4 (-792)) + (-4 *2 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-311)))) + ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-986 (-185 (-140)))) (-5 *1 (-344)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-870)) (-5 *1 (-1217 *3))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-777))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *2 (-665 *3)) (-5 *1 (-952 *4 *5 *6 *3)) + (-4 *3 (-977 *4 *6 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) + ((*1 *1 *1 *1) (-5 *1 (-885))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1056 *3)) (-4 *3 (-1247))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) + (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) + (-4 *2 (-708 *3 *5 *6))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *4 (-1206)) + (-5 *1 (-1209)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1210)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *1 (-1210))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) + (-5 *2 (-420 (-577))) (-5 *1 (-1050 *4)) (-4 *4 (-1273 (-577)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1 *1 *1) (-5 *1 (-228))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) - (-5 *2 - (-2 (|:| |mval| (-705 *4)) (|:| |invmval| (-705 *4)) - (|:| |genIdeal| (-517 *4 *5 *6 *7)))) - (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-773))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) - (-5 *2 (-420 (-577))) (-5 *1 (-1045 *4)) (-4 *4 (-1268 (-577)))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-112)))) + (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) + (-5 *2 (-665 (-228))) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1187 *3))) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) + (-5 *2 (-792)))) + ((*1 *2) + (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) (-5 *2 (-792)))) + ((*1 *2) + (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-437 *3 *4)) + (-4 *3 (-438 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-862))))) + (-12 (-5 *2 (-792)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-792)) + (-5 *1 (-744 *3 *4 *5)) (-4 *3 (-745 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) + (-4 *3 (-1273 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-843))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-948))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-313))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) + (|:| |c2| (-420 *5)) (|:| |deg| (-792)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1115))))) +(((*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1036))))) +(((*1 *2 *3) + (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-914 *4 *5)) (-4 *5 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1196))))) +(((*1 *1 *2) + (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-4 *1 (-386 *3 *4)) + (-4 *4 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-577)) (-14 *4 (-792))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1140))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) + ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)) + (-5 *3 (-577))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *3 (-926 *6)) + (-5 *2 (-710 *3)) (-5 *1 (-713 *6 *3 *7 *4)) (-4 *7 (-385 *3)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499))))))) +(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-443 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-787)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-944)))) + (-12 (-5 *2 (-1202 *7)) (-5 *3 (-577)) (-4 *7 (-977 *6 *4 *5)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-5 *1 (-332 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-792)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-949)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232))) (-5 *1 (-230 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) + (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865)))) + (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) + (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) - (-4 *6 (-244 (-3501 *3) (-787))) + (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) + (-4 *6 (-244 (-3600 *3) (-792))) (-14 *7 - (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *6)) - (-2 (|:| -3251 *5) (|:| -1527 *6)))) - (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-865)) - (-4 *2 (-972 *4 *6 (-882 *3))))) + (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *6)) + (-2 (|:| -3354 *5) (|:| -2328 *6)))) + (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-870)) + (-4 *2 (-977 *4 *6 (-887 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) + (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) ((*1 *1 *1 *1) (-5 *1 (-549))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1137)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1142)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-700 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-705 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-703 *3 *2 *4)) (-4 *3 (-1074)) (-4 *2 (-385 *3)) + (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1079)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-703 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-736))) ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *1) (-4 *1 (-741))) ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) - (-5 *1 (-994 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1137)))) - ((*1 *1 *1 *1) (-4 *1 (-1137))) + (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) + (-5 *1 (-999 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2)) (-4 *2 (-1142)))) + ((*1 *1 *1 *1) (-4 *1 (-1142))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *2 (-244 *3 *4)) + (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1148 *3 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) + (-12 (-4 *1 (-1153 *3 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) - (-4 *2 (-972 *3 (-544 *4) *4)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) + (-4 *2 (-977 *3 (-544 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-966 (-228))) (-5 *3 (-228)) (-5 *1 (-1238)))) + (-12 (-5 *2 (-971 (-228))) (-5 *3 (-228)) (-5 *1 (-1243)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) + (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) + (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-21)))) + (-12 (-5 *2 (-577)) (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) + (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1164)))) + (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1283 *4)) - (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-1182 *4))) - (-5 *1 (-1285 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) -(((*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) - (-4 *3 (-1268 *4)) (-5 *2 (-577)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-1063 *2) (-654 *2) (-465))) - (-5 *2 (-577)) (-5 *1 (-1141 *4 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) - (-5 *1 (-1141 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-1183)) - (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) - (-5 *1 (-1141 *6 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))))) + (-12 (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-2 (|:| -1638 (-1187 *4)) (|:| -1648 (-1187 *4)))) + (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885))))) +(((*1 *2 *1) + (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-577)) - (-5 *1 (-1142 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 (-420 (-975 *6)))) - (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-577)) - (-5 *1 (-1142 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1201)) - (-5 *5 (-1183)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1088))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) - (-4 *4 (-1125)) (-4 *5 (-1125))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) - (-4 *4 (-865)) (-5 *1 (-1212 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1242))))) + (-12 (-5 *2 (-176 (-577))) (-5 *1 (-786 *3)) (-4 *3 (-417)))) + ((*1 *2 *1) + (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-894 *3)) (-14 *3 (-577)))) + ((*1 *2 *1) + (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) + (-5 *1 (-895 *3 *4)) (-4 *4 (-892 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-221)))) + ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-452)))) + ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1145)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-665 (-1211))) (-5 *3 (-1211)) (-5 *1 (-1148))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-665 *3)) (|:| |image| (-665 *3)))) + (-5 *1 (-933 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-577)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) + (-4 *2 (-870))))) (((*1 *2 *3) - (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1119 (-859 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) - (-5 *1 (-316)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-949))))) + (-12 (-4 *2 (-1273 *4)) (-5 *1 (-830 *4 *2 *3 *5)) + (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) + (-4 *5 (-677 (-420 *2)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-665 (-577))) (-5 *3 (-710 (-577))) (-5 *1 (-1140))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *2) + (-12 (-4 *3 (-632 (-916 *3))) (-4 *3 (-910 *3)) (-4 *3 (-465)) + (-5 *1 (-1238 *3 *2)) (-4 *2 (-632 (-916 *3))) (-4 *2 (-910 *3)) + (-4 *2 (-13 (-443 *3) (-1232)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) - (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-840)) (-5 *3 (-660 (-1201))) (-5 *1 (-841))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1) - (-12 (-4 *1 (-417)) (-2686 (|has| *1 (-6 -4461))) - (-2686 (|has| *1 (-6 -4453))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865)))) - ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-865)))) - ((*1 *1) (-4 *1 (-860))) ((*1 *1 *1 *1) (-4 *1 (-868)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1127 (-787))) (-5 *6 (-787)) - (-5 *2 - (-2 (|:| |contp| (-577)) - (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) - (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3868 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) - (-4 *4 (-703 *2 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-5 *1 (-917 *2 *4)) - (-4 *2 (-1268 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1293)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1293)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) - (-5 *2 (-1294)) (-5 *1 (-263)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-1201)) (-5 *5 (-660 (-271))) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-865) (-1063 (-577)))) - (-5 *2 (-1293)) (-5 *1 (-264 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) - (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1293)) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-627 (-549)) (-1125))))) + (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) + (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130)))) + ((*1 *2 *3) + (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-665 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-318)) + (-5 *1 (-181 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-896 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) - (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) - (-5 *1 (-267 *6)))) + (-12 (-5 *3 (-665 *8)) + (-5 *4 + (-665 + (-2 (|:| -2104 (-710 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-710 *7))))) + (-5 *5 (-792)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-361)) + (-5 *2 + (-2 (|:| -2104 (-710 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-710 *7)))) + (-5 *1 (-511 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1065)) (-5 *1 (-770)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-401)) (-5 *2 (-1065)) (-5 *1 (-770))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-710 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-896 *5)) (-5 *4 (-1117 (-391))) - (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) - (-5 *1 (-267 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) - (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) - (-5 *1 (-267 *6)))) + (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) + (-5 *2 (-1065)) (-5 *1 (-861))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) + (-4 *3 (-13 (-1232) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) - (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) - (-5 *1 (-267 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) - (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1294)) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-627 (-549)) (-1125))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) - (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) - (-5 *1 (-267 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) - (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) - (-5 *1 (-267 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1293)) (-5 *1 (-268)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) - (-5 *1 (-268)))) + (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) + (-5 *2 (-599 (-420 (-980 *5)))) (-5 *1 (-583 *5)) + (-5 *3 (-420 (-980 *5)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1007 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1130)) (-5 *1 (-992 *2 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) ((*1 *2 *3) - (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *2 (-1293)) (-5 *1 (-268)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-660 (-271))) - (-5 *2 (-1293)) (-5 *1 (-268)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1294)) (-5 *1 (-268)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1294)) - (-5 *1 (-268))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) - (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *1) (-5 *1 (-302)))) + (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| |k| (-1206)) (|:| |c| (-1319 *3))))) + (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| |k| *3) (|:| |c| (-1321 *3 *4))))) + (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-290))))) (((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -1768 (-660 (-880))) (|:| -2510 (-660 (-880))) - (|:| |presup| (-660 (-880))) (|:| -1994 (-660 (-880))) - (|:| |args| (-660 (-880))))) - (-5 *1 (-1201)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-1201))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3428 *1))) - (-4 *1 (-870 *3))))) -(((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-944)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-849 (-944))) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) - ((*1 *2) - (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944)))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1109 *3)) (-4 *3 (-133))))) -(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) - (-4 *3 (-569))))) -(((*1 *1 *2) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1201))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) - ((*1 *1 *1 *1) (-4 *1 (-558))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) - ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-787))))) -(((*1 *1 *1) (-5 *1 (-1088)))) -(((*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-1227) (-982) (-29 *4)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-385 *3)) - (-4 *3 (-1242))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-1110))))) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-787))) - (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1268 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-1125)) - (-5 *1 (-625 *5))))) + (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-629 *2 *4))))) (((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) - (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) - (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-705 *4)) (-4 *5 (-672 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) + (-15 -2429 ((-1155 *3 (-630 $)) $)) + (-15 -3709 ($ (-1155 *3 (-630 $)))))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) - (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) - (-4 *7 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)) - (-4 *3 (-808))))) + (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) + (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) - (-5 *1 (-1243 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) - (-5 *1 (-1243 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) + (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-228))) (-5 *1 (-316))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) + ((*1 *1 *1) + (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) + (-14 *3 (-665 (-1206)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) +(((*1 *1 *1 *1) (-4 *1 (-558)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1242)) - (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *7 *2)) (-4 *6 (-1074)) - (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-996))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) + (-12 (-5 *3 (-1 (-112) *7 (-665 *7))) (-4 *1 (-1240 *4 *5 *6 *7)) + (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-949)) (-5 *1 (-1060 *2)) + (-4 *2 (-13 (-1130) (-10 -8 (-15 -3114 ($ $ $)))))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) + (-4 *8 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2841 (-665 *9)))) + (-5 *3 (-665 *9)) (-4 *1 (-1240 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2841 (-665 *8)))) + (-5 *3 (-665 *8)) (-4 *1 (-1240 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-778))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-710 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) + (-12 (-4 *4 (-174)) (-4 *2 (-1273 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-745 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-420 (-577))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) + (-12 (-5 *3 (-710 (-420 (-980 *5)))) (-5 *4 (-1206)) + (-5 *2 (-980 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465)))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-5 *2 (-980 *4)) + (-5 *1 (-303 *4)) (-4 *4 (-465)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 (-171 (-420 (-577))))) + (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *4)) + (-4 *4 (-13 (-375) (-869))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *6 *3)))) + (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *4 (-1206)) + (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *5)) + (-4 *5 (-13 (-375) (-869))))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-980 (-420 (-577)))) + (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) - (-4 *7 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) - (-4 *3 (-13 (-27) (-1227) (-443 *7))) - (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) - (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) - (-4 *8 (-13 (-27) (-1227) (-443 *7))) - (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) - (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) - (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) - (-4 *3 (-1074)) (-5 *1 (-608 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-609 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) - (-4 *3 (-1074)) (-4 *1 (-1252 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-787)) - (-5 *3 (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) - (-4 *4 (-1074)) (-4 *1 (-1273 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-4 *1 (-1283 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1182 (-2 (|:| |k| (-787)) (|:| |c| *3)))) - (-4 *3 (-1074)) (-4 *1 (-1283 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-112)) - (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34)))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-1145)) (-5 *2 (-112)) (-5 *1 (-837))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) - (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) - (-5 *1 (-372 *3 *4)) (-14 *4 (-660 (-1201))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) - (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4))))) + (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *4 (-1206)) + (-5 *2 (-980 (-420 (-577)))) (-5 *1 (-800 *5)) + (-4 *5 (-13 (-375) (-869)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1068 (-48))) + (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 (-431 (-1202 (-48)))) (-5 *1 (-448 *4 *5 *3)) + (-4 *3 (-1273 *5))))) +(((*1 *1) + (-12 (-4 *1 (-417)) (-2779 (|has| *1 (-6 -4490))) + (-2779 (|has| *1 (-6 -4482))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870)))) + ((*1 *1) (-4 *1 (-865))) ((*1 *1 *1 *1) (-4 *1 (-873))) + ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *1)) (-5 *4 (-1292 *1)) (-4 *1 (-654 *5)) - (-4 *5 (-1074)) - (-5 *2 (-2 (|:| -1631 (-705 *5)) (|:| |vec| (-1292 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) - (-5 *2 (-705 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880))))) + (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-1297 *3)) + (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 + (-3 (|:| |overq| (-1202 (-420 (-577)))) + (|:| |overan| (-1202 (-48))) (|:| -4262 (-112)))) + (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *2 (-1065)) (-5 *1 (-772))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717)))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717))))) -(((*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) - (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) - (-4 *3 (-1125))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) - (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) - (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *8))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) - (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) - (-4 *2 (-1242))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) - (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4))))))) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-665 (-630 *3))) + (|:| |vals| (-665 *3)))) + (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1206)) + (-5 *2 + (-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) + (|:| |singularities| (-1187 (-228))))) + (-5 *1 (-105))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) + (-5 *2 (-1297 (-577))) (-5 *1 (-1325 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) + (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-665 *3)) + (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1139 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) + (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) + (-14 *6 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *4)) (|:| -3762 (-665 (-980 *4)))))) + (-5 *1 (-1108 *4 *5)) (-5 *3 (-665 (-980 *4))) + (-14 *5 (-665 (-1206))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) + (-5 *2 + (-665 (-2 (|:| -2634 (-1202 *5)) (|:| -3762 (-665 (-980 *5)))))) + (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) + (-14 *6 (-665 (-1206)))))) +(((*1 *2) + (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) + (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-302)) (-5 *1 (-169))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1242)))) + (-4 *5 (-385 *2)) (-4 *2 (-1247)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-660 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-577)) (-14 *5 (-787)))) + (-12 (-5 *3 (-665 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-577)) (-14 *5 (-792)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-787)))) + (-14 *4 *3) (-14 *5 (-792)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-787)))) + (-14 *4 *3) (-14 *5 (-792)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-787)))) + (-14 *4 *3) (-14 *5 (-792)))) ((*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-577)) - (-14 *4 (-787)))) + (-14 *4 (-792)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-251 (-1183))) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-1206)) (-5 *2 (-251 (-1188))) (-5 *1 (-216 *4)) (-4 *4 - (-13 (-865) - (-10 -8 (-15 -2837 ((-1183) $ *3)) (-15 -1992 ((-1297) $)) - (-15 -2032 ((-1297) $))))))) + (-13 (-870) + (-10 -8 (-15 -2916 ((-1188) $ *3)) (-15 -2064 ((-1302) $)) + (-15 -3699 ((-1302) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1014)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1019)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-865) - (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 ((-1297) $)) - (-15 -2032 ((-1297) $))))))) + (-13 (-870) + (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 ((-1302) $)) + (-15 -3699 ((-1302) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-787)) (-5 *1 (-251 *4)) (-4 *4 (-865)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-865)))) + (-12 (-5 *3 "count") (-5 *2 (-792)) (-5 *1 (-251 *4)) (-4 *4 (-870)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-870)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-865)))) + (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-870)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1242)) (-4 *2 (-1242)))) + (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) + (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) - (-4 *4 (-1268 (-420 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1183)) (-5 *1 (-515)))) + (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) + (-4 *4 (-1273 (-420 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1188)) (-5 *1 (-515)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125)))) + (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-660 (-911 *4))) (-5 *1 (-911 *4)) - (-4 *4 (-1125)))) + (-12 (-5 *2 (-115)) (-5 *3 (-665 (-916 *4))) (-5 *1 (-916 *4)) + (-4 *4 (-1130)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) - (-4 *4 (-1125)))) + (-12 (-5 *3 (-792)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) + (-4 *4 (-1130)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) + (-12 (-5 *3 "value") (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *2 (-1074)) + (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *2 (-1079)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074)))) + (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-944)) (-4 *4 (-1125)) - (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) - (-5 *1 (-1101 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) + (-12 (-5 *3 (-949)) (-4 *4 (-1130)) + (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) + (-5 *1 (-1106 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-944)) (-4 *4 (-1125)) - (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) - (-5 *1 (-1102 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1169))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) + (-12 (-5 *3 (-949)) (-4 *4 (-1130)) + (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) + (-5 *1 (-1107 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1174))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-420 *1)) (-4 *1 (-1268 *2)) (-4 *2 (-1074)) + (-12 (-5 *3 (-420 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) + (-12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) + (-12 (-5 *3 "last") (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) + (-12 (-5 *2 "rest") (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2) (-12 (-5 *2 (-849 (-577))) (-5 *1 (-547)))) - ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-228)) + (-12 (-5 *3 "first") (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-4 *7 (-977 *4 *6 *5)) (-5 *2 - (-2 (|:| |brans| (-660 (-660 (-966 *4)))) - (|:| |xValues| (-1119 *4)) (|:| |yValues| (-1119 *4)))) - (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 *4))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) - ((*1 *1 *1) - (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) - (-14 *3 (-660 (-1201)))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) - (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-1293)) - (-5 *1 (-1296)))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-665 *7)) (|:| |n0| (-665 *7)))) + (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1140))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) + (-5 *2 (-710 (-327 (-228)))) (-5 *1 (-207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) - (-5 *2 (-1293)) (-5 *1 (-1296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) -(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-52)) (-5 *1 (-845))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-4 *1 (-1085)) (-5 *2 (-577))))) + (-12 (-4 *5 (-1130)) (-4 *6 (-926 *5)) (-5 *2 (-710 *6)) + (-5 *1 (-713 *5 *6 *3 *4)) (-4 *3 (-385 *6)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-792)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1079))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) + ((*1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-5 *1 (-885)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-665 (-665 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-665 (-665 *5))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1033 *3)) (-4 *3 (-1063 (-420 (-577))))))) -(((*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4471)) (-4 *1 (-502 *3)) - (-4 *3 (-1242))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) - (-4 *3 (-569)))) - ((*1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-665 (-665 *3))) (-5 *1 (-1218 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) + (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) + (-5 *4 (-327 (-391))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) + (-5 *4 (-327 (-577))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-171 (-391))))) + (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-577)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-171 (-391))))) + (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-577)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) + (-5 *4 (-327 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) + (-5 *4 (-327 (-720))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) + (-5 *4 (-327 (-722))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-715)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-720)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-722)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-715)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-720)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-722)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-720))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-722))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-720))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-722))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-720))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-722))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-341)))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1202 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1631 (-705 (-420 (-975 *4)))) - (|:| |vec| (-660 (-420 (-975 *4)))) (|:| -3503 (-787)) - (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) - (-5 *2 - (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *4))))))) - (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5))))) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) - (-4 *3 (-1090 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) - (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *2 (-1297)) - (-5 *1 (-481)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-1005 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-966 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-966 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)) (-5 *3 (-228))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) - (-4 *5 (-865)) (-5 *2 (-975 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) - (-4 *5 (-865)) (-5 *2 (-975 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) - (-5 *2 (-975 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) - (-5 *2 (-975 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1074))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) - (-14 *4 (-787)) (-4 *5 (-174))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1183)) - (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)) + (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) + (-5 *2 (-710 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) + (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-171 (-327 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) + (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) + (-14 *4 *2)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-465)) (-4 *4 (-1130)) + (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-171 *3)) (-5 *1 (-1231 *4 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *4)))))) -(((*1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) - (|:| |c2| (-420 *5)) (|:| |deg| (-787)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228))))) - ((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *2 *2) + (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-341)))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1188) (-1211))) + (-5 *1 (-1211))))) +(((*1 *1) (-5 *1 (-1093)))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-773))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *1 (-704 *4 *5 *6 *2)) - (-4 *2 (-703 *4 *5 *6))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-787)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-787)) (-4 *5 (-174)))) - ((*1 *2 *2 *3) + (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) + (-5 *1 (-1190 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) + (-14 *4 (-1206)) (-14 *5 *3)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1120))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) (-5 *3 (-228)) + (-5 *2 (-1065)) (-5 *1 (-769))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) - (-254 *4 (-420 (-577))))) - (-5 *3 (-660 (-882 *4))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) - (-5 *1 (-518 *4 *5))))) + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3603 ($ *7))))) - (-4 *7 (-864)) - (-4 *8 - (-13 (-1270 *3 *7) (-375) (-1227) - (-10 -8 (-15 -3362 ($ $)) (-15 -4129 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) - (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) - (-14 *10 (-1201))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1) (-5 *1 (-1200))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) + (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 (-420 (-980 *6)))) + (-5 *3 (-420 (-980 *6))) + (-4 *6 (-13 (-569) (-1068 (-577)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-583 *6))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-885) (-885) (-885))) (-5 *4 (-577)) (-5 *2 (-885)) + (-5 *1 (-670 *5 *6 *7)) (-4 *5 (-1130)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-885)) (-5 *1 (-877 *3 *4 *5)) (-4 *3 (-1079)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-885)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-885)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-885)) (-5 *1 (-1202 *3)) (-4 *3 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 *2))) - (-5 *2 (-911 *3)) (-5 *1 (-1101 *3 *4 *5)) - (-4 *5 (-13 (-443 *4) (-905 *3) (-627 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) (-4 *2 (-318)) - (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) - ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) - (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 *2))) + (-5 *2 (-916 *3)) (-5 *1 (-1106 *3 *4 *5)) + (-4 *5 (-13 (-443 *4) (-910 *3) (-632 *2)))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-982))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) - (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1125)) (-5 *1 (-987 *3 *2)) (-4 *3 (-1125))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999))))) -(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-977))))) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 *1)) (-4 *1 (-443 *4)) - (-4 *4 (-1125)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1242)) (-5 *2 (-1297))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228))))) - ((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) + (-12 (-5 *2 (-1297 (-1206))) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) + (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) + (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) + (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) + (-14 *6 (-665 *2)) (-14 *7 (-1297 (-710 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) + (-14 *6 (-1297 (-710 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 (-1206))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) + (-14 *6 (-1297 (-710 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1206)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-949)) (-14 *5 (-665 *2)) (-14 *6 (-1297 (-710 *3))))) + ((*1 *1) + (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-949)) + (-14 *4 (-665 (-1206))) (-14 *5 (-1297 (-710 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1273 (-420 *2))) + (-4 *2 (-1273 *5)) (-5 *1 (-218 *5 *2 *6 *3)) + (-4 *3 (-354 *5 *2 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1247)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-519)) (-4 *4 (-1125)) (-5 *1 (-952 *4 *2)) + (-12 (-5 *3 (-519)) (-4 *4 (-1130)) (-5 *1 (-957 *4 *2)) (-4 *2 (-443 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) - (-5 *1 (-953))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) - ((*1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-385 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-4 *2 (-385 *4)) - (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) - (-5 *2 (-705 *4)) (-5 *1 (-709 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-1261 *3 *4 *2)) - (-4 *2 (-1268 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) - (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-400)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) - (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) - (-5 *2 (-1197 (-1197 *4))) (-5 *1 (-793 *4 *5 *6 *3 *7)) - (-4 *3 (-1268 *6)) (-14 *7 (-944)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *1 (-1001 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1063 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) - (|partial| -2811 - (-12 (-5 *2 (-975 *3)) - (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) - (-2686 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865))) - (-12 (-5 *2 (-975 *3)) - (-12 (-2686 (-4 *3 (-558))) (-2686 (-4 *3 (-38 (-420 (-577))))) - (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865))) - (-12 (-5 *2 (-975 *3)) - (-12 (-2686 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) - (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865))))) - ((*1 *1 *2) - (|partial| -2811 - (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) - (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) - (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) - (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))) - (-5 *1 (-819))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) - (-4 *5 (-465)) (-5 *2 (-660 (-254 *4 *5))) (-5 *1 (-644 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) - (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) - (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-634 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-742) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-733 *3)) (-5 *1 (-678 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-742) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1201)) - (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) - (-5 *2 - (-2 (|:| -2845 (-420 (-975 *5))) (|:| |coeff| (-420 (-975 *5))))) - (-5 *1 (-583 *5)) (-5 *3 (-420 (-975 *5)))))) + (-12 (-5 *3 (-1206)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) + (-5 *1 (-958))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-870)) + (-4 *5 (-814)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) + (-5 *1 (-777))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) + (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-1074)) - (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-228))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *1 *1 *1) (-5 *1 (-391))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-808)) (-5 *2 (-1065)) + (-5 *3 + (-2 (|:| |fn| (-327 (-228))) + (|:| -3433 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-808)) (-5 *2 (-1065)) + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1302)) (-5 *1 (-843))))) (((*1 *2 *3) - (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953))))) + (-12 (-5 *2 (-665 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-870)) (-5 *4 (-665 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-665 *4)))) + (-5 *1 (-1217 *6)) (-5 *5 (-665 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-420 (-975 (-577))))) - (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-864) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-305 (-420 (-975 (-577)))))) - (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-864) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 (-305 (-975 *4)))) - (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-975 (-577))))) - (-5 *2 (-660 (-305 (-975 *4)))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-864) (-375))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1201)) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-4 *4 (-13 (-29 *6) (-1227) (-982))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2559 (-660 *4)))) - (-5 *1 (-668 *6 *4 *3)) (-4 *3 (-672 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *2)) - (-4 *2 (-13 (-29 *6) (-1227) (-982))) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *1 (-668 *6 *2 *3)) (-4 *3 (-672 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1292 *5) "failed")) - (|:| -2559 (-660 (-1292 *5))))) - (-5 *1 (-683 *5)) (-5 *4 (-1292 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1292 *5) "failed")) - (|:| -2559 (-660 (-1292 *5))))) - (-5 *1 (-683 *5)) (-5 *4 (-1292 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) - (-5 *2 - (-660 - (-2 (|:| |particular| (-3 (-1292 *5) "failed")) - (|:| -2559 (-660 (-1292 *5)))))) - (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) - (-5 *2 - (-660 - (-2 (|:| |particular| (-3 (-1292 *5) "failed")) - (|:| -2559 (-660 (-1292 *5)))))) - (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) - (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4471)))) - (-5 *2 - (-660 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2559 (-660 *7))))) - (-5 *1 (-684 *5 *6 *7 *3)) (-5 *4 (-660 *7)) - (-4 *3 (-703 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) - (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) - (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *1 (-788 *5 *2)) (-4 *2 (-13 (-29 *5) (-1227) (-982))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-705 *7)) (-5 *5 (-1201)) - (-4 *7 (-13 (-29 *6) (-1227) (-982))) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1292 *7)) (|:| -2559 (-660 (-1292 *7))))) - (-5 *1 (-818 *6 *7)) (-5 *4 (-1292 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-705 *6)) (-5 *4 (-1201)) - (-4 *6 (-13 (-29 *5) (-1227) (-982))) - (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 (-660 (-1292 *6))) (-5 *1 (-818 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) - (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1292 *7)) (|:| -2559 (-660 (-1292 *7))))) - (-5 *1 (-818 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) - (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1292 *7)) (|:| -2559 (-660 (-1292 *7))))) - (-5 *1 (-818 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1201)) - (-4 *7 (-13 (-29 *6) (-1227) (-982))) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2559 (-660 *7))) *7 "failed")) - (-5 *1 (-818 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1201)) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-665 *7) (-665 *7))) (-5 *2 (-665 *7)) + (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) +(((*1 *1 *1) (-5 *1 (-1205))) + ((*1 *1 *2) + (-12 (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2559 (-660 *3))) *3 "failed")) - (-5 *1 (-818 *6 *3)) (-4 *3 (-13 (-29 *6) (-1227) (-982))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-660 *2)) - (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-5 *1 (-818 *6 *2)) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-660 *2)) - (-4 *2 (-13 (-29 *6) (-1227) (-982))) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *1 (-818 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-824)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) - (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) - (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) - (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) - (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) - (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) - (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2559 (-660 *6))) "failed") - *7 *6)) - (-4 *6 (-375)) (-4 *7 (-672 *6)) - (-5 *2 (-2 (|:| |particular| (-1292 *6)) (|:| -2559 (-705 *6)))) - (-5 *1 (-829 *6 *7)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1060)) (-5 *1 (-918)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-919)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-918)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) - (-5 *8 (-228)) (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) - (-5 *2 (-1060)) (-5 *1 (-918)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) - (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1060)) - (-5 *1 (-918)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 (-391))) - (-5 *1 (-1048)) (-5 *4 (-391)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 (-391))) (-5 *1 (-1048)) - (-5 *4 (-391)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) - (-5 *3 (-327 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) - (-5 *3 (-305 (-327 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) - (-5 *3 (-305 (-327 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) - (-5 *3 (-327 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-1201))) - (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1156 *5)) - (-5 *3 (-660 (-305 (-327 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) - (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) - (-5 *1 (-1210 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-1201))) (-4 *5 (-569)) - (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-1210 *5)) - (-5 *3 (-660 (-305 (-420 (-975 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-569)) - (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-1210 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) - (-5 *1 (-1210 *4)) (-5 *3 (-660 (-305 (-420 (-975 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-4 *5 (-569)) - (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) - (-5 *3 (-420 (-975 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-4 *5 (-569)) - (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) - (-5 *3 (-305 (-420 (-975 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) - (-5 *1 (-1210 *4)) (-5 *3 (-420 (-975 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) - (-5 *1 (-1210 *4)) (-5 *3 (-305 (-420 (-975 *4))))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *2 *3) - (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) - (-5 *2 (-494 *4 *5)) (-5 *1 (-644 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-660 (-1292 *4))) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) - (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) - (-5 *2 (-660 (-1292 *3)))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-787)) (-5 *1 (-215 *4 *2)) (-14 *4 (-944)) - (-4 *2 (-1125))))) + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) (((*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-4 *1 (-738))) - ((*1 *1) (-4 *1 (-742))) - ((*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) - ((*1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) - (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1125)) (-5 *1 (-1219 *3 *2)) (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) ((*1 *1) (-4 *1 (-558))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) + ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-4 *1 (-743))) + ((*1 *1) (-4 *1 (-747))) + ((*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) + ((*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) - (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-1189 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294)))) - ((*1 *2 *1) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-4 *2 (-1125)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-944)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074))))) + (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) + (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-665 (-1246))) (-5 *3 (-1246)) (-5 *1 (-702))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1225))))) -(((*1 *2 *1) - (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) - (-5 *2 (-426 *4 (-420 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1292 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))) - (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *3 (-318)) - (-5 *1 (-426 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) - (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) + (-5 *2 (-59 (-665 (-693 *5)))) (-5 *1 (-693 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1288 *4)) + (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-1187 *4))) + (-5 *1 (-1290 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1042)) (-5 *2 (-885))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) +(((*1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-549))) - ((*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) - (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) - (-14 *4 (-787)) (-4 *5 (-174))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-318)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-767))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) -(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) + (-5 *1 (-1015 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-745 *2 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) + (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) + (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) - (-5 *2 - (-2 (|:| -4446 (-787)) (|:| |curves| (-787)) - (|:| |polygons| (-787)) (|:| |constructs| (-787))))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) - (-5 *2 (-1060)) (-5 *1 (-761))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-660 (-798 *3))) (-5 *1 (-798 *3)) (-4 *3 (-569)) - (-4 *3 (-1074))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) - (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) - (|:| |ub| (-660 (-859 (-228)))))) - (-5 *1 (-277))))) -(((*1 *2 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) - (-5 *1 (-178 *3))))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-302))) + ((*1 *1) (-5 *1 (-885))) + ((*1 *1) + (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) + (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1115))) + ((*1 *1) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34))))) + ((*1 *1) (-5 *1 (-1209))) ((*1 *1) (-5 *1 (-1210)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1218 (-665 *4))) (-4 *4 (-870)) + (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 (-431 (-1202 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) + (-4 *3 (-1273 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2190)) (-5 *2 (-112)) (-5 *1 (-630)))) + (-12 (-5 *3 (|[\|\|]| -2288)) (-5 *2 (-112)) (-5 *1 (-635)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1885)) (-5 *2 (-112)) (-5 *1 (-630)))) + (-12 (-5 *3 (|[\|\|]| -1505)) (-5 *2 (-112)) (-5 *1 (-635)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3555)) (-5 *2 (-112)) (-5 *1 (-630)))) + (-12 (-5 *3 (|[\|\|]| -3655)) (-5 *2 (-112)) (-5 *1 (-635)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1492)) (-5 *2 (-112)) (-5 *1 (-707 *4)) - (-4 *4 (-626 (-880))))) + (-12 (-5 *3 (|[\|\|]| -1680)) (-5 *2 (-112)) (-5 *1 (-712 *4)) + (-4 *4 (-631 (-885))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-626 (-880))) (-5 *2 (-112)) - (-5 *1 (-707 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-631 (-885))) (-5 *2 (-112)) + (-5 *1 (-712 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-894)))) + (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-899)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-894)))) + (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-899)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1196))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-644))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1120))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-995))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1303))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-702))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1302))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1307))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-1206)))) + (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-1211)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1206)))) + (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1211)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1206)))) + (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1211)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1206))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) + (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1211))))) +(((*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-459)) (-5 *3 (-577))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| -2940 *4) (|:| -2669 *3) (|:| -2689 *3))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1090 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| -2940 *3) (|:| -2669 *1) (|:| -2689 *1))) - (-4 *1 (-1268 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1292 (-787))) (-5 *1 (-691 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) + (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) + (-5 *2 (-665 *4)) (-5 *1 (-1144 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-391)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-135))))) +(((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) + ((*1 *1 *1) (-4 *1 (-1235)))) (((*1 *2 *1) - (-12 (-5 *2 (-1051 (-859 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1074))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-660 (-1201))) (-4 *2 (-174)) - (-4 *3 (-244 (-3501 *4) (-787))) - (-14 *6 - (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *3)) - (-2 (|:| -3251 *5) (|:| -1527 *3)))) - (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-865)) - (-4 *7 (-972 *2 *3 (-882 *4)))))) + (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-1074)) (-5 *2 (-1292 *4)) - (-5 *1 (-1202 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-5 *2 (-1292 *3)) (-5 *1 (-1202 *3)) - (-4 *3 (-1074))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) - (-5 *2 (-705 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1292 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-705 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-1292 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1268 *4)) (-5 *2 (-1292 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) - (-5 *2 (-1292 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) - (-5 *2 (-705 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1292 *3)) (-5 *1 (-653 *3 *4)) (-4 *3 (-375)) - (-14 *4 (-660 (-1201))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1292 *3)) (-5 *1 (-655 *3 *4)) (-4 *3 (-375)) - (-14 *4 (-660 (-1201))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *3 (-665 (-271))) + (-5 *1 (-269)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-705 *5))) (-5 *3 (-705 *5)) (-4 *5 (-375)) - (-5 *2 (-1292 *5)) (-5 *1 (-1111 *5))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1268 *6)) - (-4 *6 (-13 (-375) (-148) (-1063 *4))) (-5 *4 (-577)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -2007 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1040 *6 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1145)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) + (-12 (-5 *4 (-665 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) + (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-1297 *6)) + (-5 *1 (-649 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) - (-4 *3 (-1125))))) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) - (-5 *2 (-660 (-228))) (-5 *1 (-316))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) + (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| -4473 (-420 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) + (-4 *3 (-1247))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1150)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-792)) (-4 *6 (-375)) (-5 *4 (-1241 *6)) + (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1305 *6)) + (-5 *5 (-1187 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-217 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-217 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-656 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-773))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-549))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-608 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1252 *3)) (-4 *3 (-1074)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1283 *3)) (-4 *3 (-1074))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1) (-5 *1 (-880))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) + ((*1 *1 *1) (-4 *1 (-1235)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) + (-5 *2 (-1065)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-577)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1130)) + (-4 *2 (-132))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) ((*1 *2 *3) - (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074))))) + (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-577)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-318)) + (-4 *9 (-977 *8 *6 *7)) + (-5 *2 (-2 (|:| -4181 (-1202 *9)) (|:| |polval| (-1202 *8)))) + (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9)) (-5 *4 (-1202 *8))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1300))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-443 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-174))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-660 (-625 *6))) (-5 *4 (-1201)) (-5 *2 (-625 *6)) - (-4 *6 (-443 *5)) (-4 *5 (-1125)) (-5 *1 (-586 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (|partial| -12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) - (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4)))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-122 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-465))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-1118 *3)) (-4 *3 (-1242))))) -(((*1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *2 (-1297)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1268 (-420 *5))) (-14 *7 *6)))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-660 (-112))) (-5 *7 (-705 (-228))) - (-5 *8 (-705 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) - (-5 *2 (-1060)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) - (-5 *2 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) - (-5 *1 (-358 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) - (-5 *2 (-420 (-577)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1125)) (-4 *6 (-1125)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *5 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) - (-4 *3 (-972 *7 *5 *6)) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) + ((*1 *1 *1) (-4 *1 (-1235)))) +(((*1 *1 *1) + (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) + (-4 *2 (-465)))) + ((*1 *1 *1) + (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) + (-4 *4 (-1273 (-420 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)) (-4 *3 (-465)))) + ((*1 *1 *1) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-465)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1193 *3 *2)) + (-4 *2 (-1273 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-665 (-630 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1273 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-426 *3 *2 *4 *5)) + (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1068 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) + (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) + (-14 *6 (-1297 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-4 *5 (-1079)) + (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) + (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-508)))) (-5 *1 (-508)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-508))) (-5 *1 (-508)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-665 (-630 (-508)))) + (-5 *1 (-508)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-630 (-508))) (-5 *1 (-508)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) + (-5 *1 (-541 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-745 *4 *2)) (-4 *2 (-1273 *4)) + (-5 *1 (-796 *4 *2 *5 *3)) (-4 *3 (-1273 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1090)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) + (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) + (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) + (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-931 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-341))))) +(((*1 *2) + (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) + (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *4 (-1273 *3)) (-5 *2 - (-2 (|:| -1527 (-787)) (|:| -2940 *3) (|:| |radicand| (-660 *3)))) - (-5 *1 (-976 *5 *6 *7 *3 *8)) (-5 *4 (-787)) - (-4 *8 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *3)) (-15 -2781 (*3 $)) (-15 -2797 (*3 $)))))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) - ((*1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-221)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-452)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-854)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1140)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1206))) (-5 *3 (-1206)) (-5 *1 (-1143))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-590)))) - ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-465)) (-4 *4 (-1125)) - (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) + (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-710 *3)))) + (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1273 (-577))) + (-5 *2 + (-2 (|:| -2104 (-710 (-577))) (|:| |basisDen| (-577)) + (|:| |basisInv| (-710 (-577))))) + (-5 *1 (-789 *3 *4)) (-4 *4 (-422 (-577) *3)))) + ((*1 *2) + (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) + (-5 *2 + (-2 (|:| -2104 (-710 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-710 *4)))) + (-5 *1 (-1015 *3 *4 *5 *6)) (-4 *6 (-745 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) + (-5 *2 + (-2 (|:| -2104 (-710 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-710 *4)))) + (-5 *1 (-1306 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-302))) - ((*1 *1) (-5 *1 (-880))) - ((*1 *1) - (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) - (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1110))) - ((*1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34))))) - ((*1 *1) (-5 *1 (-1204))) ((*1 *1) (-5 *1 (-1205)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-625 *1))) (-5 *3 (-660 *1)) (-4 *1 (-313)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *1))) (-4 *1 (-313)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-878)) (-5 *2 (-707 (-562))) (-5 *3 (-562))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-880)))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-450)) (-5 *1 (-1205))))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) + ((*1 *1 *1) (-4 *1 (-1235)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) + (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1232) (-29 *4)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) + (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) + (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) + (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -3613 *9)))) + (-5 *1 (-1102 *6 *7 *4 *8 *9))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) - (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) + (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) + (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1094 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3)))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1099 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *3 (-1090 *6 *7 *8)) + (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) - (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) + (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) + (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1170 *7 *8 *9 *3 *4)) (-4 *4 (-1134 *7 *8 *9 *3)))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1175 *7 *8 *9 *3 *4)) (-4 *4 (-1139 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *3 (-1090 *6 *7 *8)) + (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-221)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-692)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1091)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1121))))) -(((*1 *2 *2) - (-12 + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 - (-1012 (-420 (-577)) (-882 *3) (-246 *4 (-787)) - (-254 *3 (-420 (-577))))) - (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-1011 *3 *4))))) + (-2 (|:| |done| (-665 *4)) + (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))))) + (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) + (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) + (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) + ((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) + (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) + (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) + (-5 *1 (-718)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-228))) + (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1 (-971 (-228)) (-228) (-228))) + (-5 *4 (-1124 (-228))) (-5 *5 (-665 (-271))) (-5 *1 (-718))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-221)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-697)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1126))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1317))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) - (-5 *2 (-705 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1242))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1201)) (-5 *3 (-447)) (-4 *5 (-1125)) - (-5 *1 (-1131 *5 *4)) (-4 *4 (-443 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1201))) (-4 *6 (-375)) - (-5 *2 (-660 (-305 (-975 *6)))) (-5 *1 (-551 *5 *6 *7)) - (-4 *5 (-465)) (-4 *7 (-13 (-375) (-864)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) + ((*1 *1 *1) (-4 *1 (-1235)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) + (-4 *2 (-1273 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-96)))) + (-12 (-5 *2 (-577)) (-4 *1 (-1123 *3)) (-4 *3 (-1247))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *2 (-792)) + (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) + (-14 *4 (-949)) (-4 *5 (-1079)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) + (-5 *1 (-1194 *4 *5)) (-14 *4 (-949))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) + (-5 *1 (-608 *3)) (-4 *3 (-1079))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) + (-14 *4 (-577))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-1247))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *1) + (-12 (-4 *1 (-716 *3)) (-4 *3 (-1130)) + (-5 *2 (-665 (-2 (|:| -2727 *3) (|:| -1481 (-792)))))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-112)) + (-5 *1 (-372 *4 *5)) (-14 *5 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-801 *4 (-887 *5)))) (-4 *4 (-465)) + (-14 *5 (-665 (-1206))) (-5 *2 (-112)) (-5 *1 (-646 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-96)))) ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1125)))) - ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-451 *3)) (-14 *3 *2))) + (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-451 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-496)))) - ((*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-883)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-988)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1100 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1140)))) - ((*1 *1 *1) (-5 *1 (-1201)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880))))) + ((*1 *2 *1) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-888)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-993)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1105 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1145)))) + ((*1 *1 *1) (-5 *1 (-1206)))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-4 *2 (-13 (-443 *3) (-1032))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204))))) -(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) - (-4 *3 (-664 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) - (-4 *3 (-664 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) - ((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074))))) -(((*1 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *1 (-624 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-787)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) + ((*1 *1 *1) (-4 *1 (-1235)))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-338 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *2 *4)) (-4 *2 (-385 *3)) - (-4 *4 (-385 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-787)) (-4 *3 (-1074))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) - (-4 *4 (-1242)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-529 *3 *4)) + (-14 *4 (-577))))) +(((*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) + ((*1 *1 *1) (-4 *1 (-313))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) + ((*1 *1 *1) (-5 *1 (-885)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-977 *4 *6 *5)) (-4 *4 (-465)) + (-4 *5 (-870)) (-4 *6 (-814)) (-5 *1 (-1017 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-665 (-112))) (-5 *5 (-710 (-228))) + (-5 *6 (-710 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) + (-5 *1 (-775))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-1206)) + (-4 *2 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-287 *5 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-660 (-1197 *11))) (-5 *3 (-1197 *11)) - (-5 *4 (-660 *10)) (-5 *5 (-660 *8)) (-5 *6 (-660 (-787))) - (-5 *7 (-1292 (-660 (-1197 *8)))) (-4 *10 (-865)) - (-4 *8 (-318)) (-4 *11 (-972 *8 *9 *10)) (-4 *9 (-809)) - (-5 *1 (-723 *9 *10 *8 *11))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) + (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) +(((*1 *1 *1) (-4 *1 (-647))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1292 (-3 (-481) "undefined"))) (-5 *1 (-1293))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174))))) + (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987)))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) + (-5 *2 (-1065)) (-5 *1 (-777))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 @@ -10629,10 +10431,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1182 (-228))) + (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2097 + (|:| -3433 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -10640,6259 +10442,6305 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-465))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-705 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1246)) (-4 *5 (-1268 *3)) (-4 *6 (-1268 (-420 *5))) - (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) - (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) - (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-865)) - (-4 *5 (-809)) (-4 *2 (-276 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) - (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) -(((*1 *2 *3) - (-12 (-5 *3 (-669 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-826 *4 *2)) - (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-670 *2 (-420 *2))) (-4 *2 (-1268 *4)) - (-5 *1 (-826 *4 *2)) - (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) - ((*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) - (-4 *3 (-865)) (-5 *2 (-787))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *1 *1) (-4 *1 (-506))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-981 (-787))) (-5 *1 (-344))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-2 (|:| -2616 (-1182 *4)) (|:| -2631 (-1182 *4)))) - (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1001 *4 *5 *3 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) - (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-993))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) + (-4 *4 (-870)) (-5 *1 (-1217 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-577))) (-5 *5 (-577)) + (-4 *6 (-1130)) (-5 *2 (-1 *6)) (-5 *1 (-1047 *6))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) + (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-772))))) +(((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) - (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-972 *2 *3 *4)))) + (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) + (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) + (-4 *3 (-354 *4 *2 *5)))) ((*1 *2) - (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) - (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-932)) (-5 *1 (-930 *2 *3)) (-4 *3 (-1268 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2653 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) + (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) + (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-247)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1302)) (-5 *1 (-247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-710 *4)) + (-5 *1 (-835 *4 *5)) (-4 *5 (-677 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-375)) + (-5 *2 (-710 *5)) (-5 *1 (-835 *5 *6)) (-4 *6 (-677 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-431 *4)) (-4 *4 (-569))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1187 (-228))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3433 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-572))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-710 *11)) (-5 *4 (-665 (-420 (-980 *8)))) + (-5 *5 (-792)) (-5 *6 (-1188)) (-4 *8 (-13 (-318) (-148))) + (-4 *11 (-977 *8 *10 *9)) (-4 *9 (-13 (-870) (-632 (-1206)))) + (-4 *10 (-814)) + (-5 *2 + (-2 + (|:| |rgl| + (-665 + (-2 (|:| |eqzro| (-665 *11)) (|:| |neqzro| (-665 *11)) + (|:| |wcond| (-665 (-980 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *8)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *8)))))))))) + (|:| |rgsz| (-577)))) + (-5 *1 (-952 *8 *9 *10 *11)) (-5 *7 (-577))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) + (-5 *2 (-1065)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| -2045 (-641 *4 *5)) (|:| -3883 (-420 *5)))) + (-5 *1 (-641 *4 *5)) (-5 *3 (-420 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) + (-14 *3 (-949)) (-4 *4 (-1079)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-465)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1273 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) +(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) + (-5 *1 (-769))))) +(((*1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-105))))) +(((*1 *1 *1) (-5 *1 (-1093)))) (((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) + (-4 *4 (-1273 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-255))))) +(((*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *1 *1) (-4 *1 (-506))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-787)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *6)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-255))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-870)) + (-4 *3 (-13 (-174) (-738 (-420 (-577))))) (-14 *4 (-949)))) + ((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) + ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) ((*1 *1 *1) - (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) - (-14 *4 *2)))) -(((*1 *1 *1) - (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) - (-14 *3 (-660 (-1201)))))) -(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-130))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-787))))) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-792)) (-5 *5 (-665 *3)) (-4 *3 (-318)) (-4 *6 (-870)) + (-4 *7 (-814)) (-5 *2 (-112)) (-5 *1 (-643 *6 *7 *3 *8)) + (-4 *8 (-977 *3 *7 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) + (-5 *1 (-718))))) +(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) - (-5 *1 (-270 *2)) (-4 *2 (-1242)))) + (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) + (-5 *1 (-270 *2)) (-4 *2 (-1247)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-52)) + (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-52)) (-5 *1 (-271))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) - (-4 *6 (-1074)) (-5 *2 (-660 (-660 (-705 *6)))) (-5 *1 (-1054 *6)) - (-5 *3 (-660 (-705 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1074)) - (-5 *2 (-660 (-660 (-705 *4)))) (-5 *1 (-1054 *4)) - (-5 *3 (-660 (-705 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) - (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) - (-5 *3 (-660 (-705 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) - (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) - (-5 *3 (-660 (-705 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-841))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-4 *2 (-921 *5)) (-5 *1 (-708 *5 *2 *3 *4)) - (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *1 *1) (-4 *1 (-506))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-361))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-937))))) +(((*1 *1 *1) (-4 *1 (-647))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-5 *1 (-341))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *2) (-12 (-5 *2 (-1182 (-660 (-944)))) (-5 *1 (-902))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1074)) (-4 *3 (-1268 *4)) (-4 *2 (-1283 *4)) - (-5 *1 (-1286 *4 *3 *5 *2)) (-4 *5 (-672 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-865))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1125)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-699 *4 *5)) (-4 *4 (-1125)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) + (-12 (-5 *3 (-710 (-420 (-980 (-577))))) + (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-577)) (-5 *1 (-1187 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) + (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) + (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *2)) (-4 *2 (-977 *3 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1202 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) + (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-980 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) + (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) + (-4 *3 (-385 *4)) (-4 *5 (-385 *4))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) + (-4 *3 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-837))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *1) (-5 *1 (-610)))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 (-2 (|:| -3056 (-1197 *6)) (|:| -1527 (-577))))) - (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074))))) + (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-641 *3 *4)) + (-4 *4 (-1273 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-747)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-112))))) (((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) ((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-255))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *2 (-787)) - (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) - (-14 *4 (-944)) (-4 *5 (-1074)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) - (-5 *1 (-1189 *4 *5)) (-14 *4 (-944))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-705 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1268 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-740 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 (-420 (-975 *5)))) (-5 *4 (-1201)) - (-5 *2 (-975 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465)))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-5 *2 (-975 *4)) - (-5 *1 (-303 *4)) (-4 *4 (-465)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)))) + ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-705 (-171 (-420 (-577))))) - (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *4)) - (-4 *4 (-13 (-375) (-864))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *4 (-1201)) - (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *5)) - (-4 *5 (-13 (-375) (-864))))) + (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-112)) + (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-949)))) ((*1 *2 *3) - (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-975 (-420 (-577)))) - (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *4 (-1201)) - (-5 *2 (-975 (-420 (-577)))) (-5 *1 (-795 *5)) - (-4 *5 (-13 (-375) (-864)))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1060)) - (-5 *1 (-762))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1063 *4)) (-4 *3 (-569))))) -(((*1 *1 *1) (-4 *1 (-642))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) -(((*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1031))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) - (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) -(((*1 *2 *1) - (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *2 (-1237 (-949))) - (-5 *1 (-329)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *7 (-1183)) - (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) - (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1183)) - (-5 *2 (-1237 (-949))) (-5 *1 (-329))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-864))) - (-5 *2 (-660 (-2 (|:| -1704 (-660 *3)) (|:| -3308 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1268 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-375) (-864))) - (-5 *2 (-660 (-2 (|:| -1704 (-660 *3)) (|:| -3308 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845))))) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-949)) + (-5 *1 (-541 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) - (-5 *2 - (-660 - (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) - (|:| |eigmult| (-787)) - (|:| |eigvec| (-660 (-705 (-420 (-975 *4)))))))) - (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4))))))) -(((*1 *2) (-12 - (-5 *2 - (-1292 (-660 (-2 (|:| -3145 (-933 *3)) (|:| -3251 (-1145)))))) - (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) - ((*1 *2) - (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3145 *3) (|:| -3251 (-1145)))))) - (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944))))) + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) + (-5 *2 (-112)) (-5 *1 (-1017 *3 *4 *5 *6)) + (-4 *6 (-977 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) - (-5 *1 (-613 *4 *2 *3)) - (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227)))))) + (-12 (-4 *4 (-1079)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) + (-4 *3 (-1273 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-778))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-772))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-966 (-228)) (-228) (-228))) - (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-864) (-375))) (-5 *2 (-112)) (-5 *1 (-1086 *4 *3)) - (-4 *3 (-1268 *4))))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *3 (-577)) + (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1265 *4 *5)) (-5 *3 (-660 *5)) (-14 *4 (-1201)) - (-4 *5 (-375)) (-5 *1 (-946 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *5)) (-4 *5 (-375)) (-5 *2 (-1197 *5)) - (-5 *1 (-946 *4 *5)) (-14 *4 (-1201)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-660 *6)) (-5 *4 (-787)) (-4 *6 (-375)) - (-5 *2 (-420 (-975 *6))) (-5 *1 (-1075 *5 *6)) (-14 *5 (-1201))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) - (-4 *3 (-13 (-443 *6) (-27) (-1227))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1125))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-705 *6)) (-5 *5 (-1 (-431 (-1197 *6)) (-1197 *6))) - (-4 *6 (-375)) + (-12 (-5 *2 - (-660 - (-2 (|:| |outval| *7) (|:| |outmult| (-577)) - (|:| |outvect| (-660 (-705 *7)))))) - (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-864)))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1244))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) + (-517 (-420 (-577)) (-246 *4 (-792)) (-887 *3) + (-254 *3 (-420 (-577))))) + (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-518 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) - (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |k| (-688 *3)) (|:| |c| *4)))) - (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-228))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *1 *1 *1) (-5 *1 (-391))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) - (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) - (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) - (-5 *2 (-2 (|:| -2536 (-787)) (|:| -3386 *8))) - (-5 *1 (-934 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) - (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) - (-4 *6 (-354 (-420 (-577)) *4 *5)) - (-5 *2 (-2 (|:| -2536 (-787)) (|:| -3386 *6))) - (-5 *1 (-935 *4 *5 *6))))) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1127 *3)) (-5 *1 (-928 *3)) (-4 *3 (-380)) - (-4 *3 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1268 *5)) - (-5 *1 (-743 *5 *2)) (-4 *5 (-375))))) -(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) - (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-972 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) - (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) + (-12 (-5 *3 (-665 (-2 (|:| |deg| (-792)) (|:| -3566 *5)))) + (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *2 (-665 *5)) + (-5 *1 (-219 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-2 (|:| -3759 *5) (|:| -1597 (-577))))) + (-5 *4 (-577)) (-4 *5 (-1273 *4)) (-5 *2 (-665 *5)) + (-5 *1 (-717 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299))))) (((*1 *2 *2) - (-12 (-5 *2 (-1292 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) - (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) + (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-385 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-944)) (-4 *4 (-375)) (-5 *2 (-1292 *1)) - (-4 *1 (-340 *4)))) - ((*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1292 *1)) (-4 *1 (-340 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *1)) - (-4 *1 (-422 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) - (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) - (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) - (-5 *2 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) - (-4 *6 (-422 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-430 *3)))) + (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-4 *2 (-385 *4)) + (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 *4))) (-5 *1 (-541 *4)) - (-4 *4 (-361))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) + (-5 *2 (-710 *4)) (-5 *1 (-714 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) - (-5 *2 (-660 (-660 (-966 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) (-4 *4 (-1074)) - (-4 *1 (-1159 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 (-966 *3)))) (-4 *3 (-1074)) - (-4 *1 (-1159 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-112)) - (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) - (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-660 (-173))) - (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-660 (-660 (-966 *5)))) (-5 *3 (-660 (-173))) - (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) + (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-1266 *3 *4 *2)) + (-4 *2 (-1273 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1252)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) +(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-806 *3)) (-4 *3 (-632 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-5 *2 (-391)) (-5 *1 (-806 *3)) + (-4 *3 (-632 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-115))))) -(((*1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) - (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4447 *4))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1183)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) - (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1227) (-29 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 (-975 *6))) (-4 *6 (-569)) - (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) - (-4 *5 (-809)) - (-4 *4 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $)))))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) + (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) + (-5 *2 (-391)) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) + (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1) (-4 *1 (-887 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) - (-4 *4 (-865))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *3 (-921 *6)) - (-5 *2 (-705 *3)) (-5 *1 (-708 *6 *3 *7 *4)) (-4 *7 (-385 *3)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470))))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) - (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) - (-4 *3 (-354 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) - (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-975 (-577)))) (-5 *1 (-450)))) + (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 *2)) + (-5 *2 (-391)) (-5 *1 (-806 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-228))) (-5 *2 (-1129)) - (-5 *1 (-775)))) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-577))) (-5 *2 (-1129)) - (-5 *1 (-775))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) - (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) + (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) + (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) + (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-657 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-5 *2 (-792)))) ((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) - (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) + (-5 *2 (-792)))) + ((*1 *2 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-747))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1202 *6)) (-4 *6 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-1202 *7)) (-5 *1 (-332 *4 *5 *6 *7)) + (-4 *7 (-977 *6 *4 *5))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-792)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) +(((*1 *1) (-5 *1 (-591))) + ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-886)))) + ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1187 *4)) + (-4 *4 (-1130)) (-4 *4 (-1247))))) (((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) - (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) - (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-944)))) - ((*1 *2 *3) - (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) - (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) - (-5 *2 (-787)) (-5 *1 (-405 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-849 (-944))))) - ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) + (-4 *3 (-1273 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) + (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-992 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1079)) (-4 *3 (-1273 *4)) (-4 *2 (-1288 *4)) + (-5 *1 (-1291 *4 *3 *5 *2)) (-4 *5 (-677 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450))))) +(((*1 *2 *1) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) + (-4 *3 (-1273 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-361)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -2127 (-665 (-2 (|:| |irr| *3) (|:| -2243 (-577))))))) + (-5 *1 (-219 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-1130)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2328 (-577)))) (-4 *1 (-443 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) - (-4 *4 (-1268 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) - (-4 *3 (-865)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-865)) - (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2328 (-916 *3)))) + (-5 *1 (-916 *3)) (-4 *3 (-1130)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) - (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) - (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) - (-5 *2 (-787)) (-5 *1 (-934 *4 *5 *6 *7 *8)))) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-977 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2328 (-577)))) + (-5 *1 (-978 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) + (-15 -2429 (*7 $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-52)) (-5 *1 (-852))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))))) + (-5 *2 (-1065)) (-5 *1 (-316)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) - (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) - (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-787)) - (-5 *1 (-935 *4 *5 *6)))) + (-12 + (-5 *3 + (-2 (|:| -4423 (-391)) (|:| -2758 (-1188)) + (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) + (-5 *2 (-1065)) (-5 *1 (-316))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) + ((*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *5 (-1273 *4)) (-5 *2 (-1202 (-420 *5))) (-5 *1 (-633 *4 *5)) + (-5 *3 (-420 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 (-1202 (-420 *6))) (-5 *1 (-633 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-379 *3))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1) (-5 *1 (-1298)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 (-171 (-577))))) (-5 *2 (-665 (-171 *4))) + (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) - (-4 *7 (-1268 *6)) (-4 *4 (-1268 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) - (-4 *9 (-13 (-380) (-375))) (-5 *2 (-787)) - (-5 *1 (-1043 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)) - (-5 *2 (-787)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) - ((*1 *1 *1) (-4 *1 (-1230)))) + (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) + (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 (-171 *5)))) + (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-869)))))) (((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) - (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) - ((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) - (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1127 (-1127 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) - (-4 *2 (-1242))))) + (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) + (-4 *4 (-569)) (-5 *2 (-1297 *4)) (-5 *1 (-657 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) - (-5 *1 (-1300 *4)) (-4 *4 (-375))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) + (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) + (-5 *2 (-1302)) (-5 *1 (-1209)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) + (-5 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *2 (-1302)) + (-5 *1 (-1209)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1206)) + (-5 *4 (-3 (|:| |fst| (-447)) (|:| -1900 "void"))) (-5 *2 (-1302)) + (-5 *1 (-1209))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) + (-4 *4 (-1130)) (-4 *5 (-1130))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 (-494 *3 *4))) (-14 *3 (-665 (-1206))) + (-4 *4 (-465)) (-5 *1 (-649 *3 *4))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) + (-4 *2 (-870)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4500)) + (-4 *1 (-385 *3)) (-4 *3 (-1247))))) (((*1 *2) - (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) - (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) + (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) + (-5 *2 (-665 (-665 *4))) (-5 *1 (-353 *3 *4 *5 *6)) + (-4 *3 (-354 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-665 (-665 *3)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) - ((*1 *1 *1) (-4 *1 (-1230)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375))))) + (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) + (-5 *1 (-1217 *4)) (-4 *4 (-870))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-302))))) +(((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) - (-4 *3 (-13 (-1227) (-29 *5))))) + (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) + (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) + (-5 *1 (-1099 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) - (-5 *2 (-599 (-420 (-975 *5)))) (-5 *1 (-583 *5)) - (-5 *3 (-420 (-975 *5)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3))))) + (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) + (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) + (-5 *1 (-1175 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-1225))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-660 (-975 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-660 (-975 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-660 (-975 *3))))) - ((*1 *2) - (-12 (-5 *2 (-660 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) + (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) + (-5 *2 (-391)) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) + (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *2 (-660 (-975 *4))) - (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) - (-14 *5 (-944)) (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) - ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-692)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) -(((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) - (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4)))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) - ((*1 *1 *1) (-4 *1 (-1230)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) - (-4 *2 (-1283 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) - (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) - (-4 *2 (-1283 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) - (-5 *1 (-1178 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) - ((*1 *1 *1 *1) (-4 *1 (-809)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-777)))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-420 (-1197 (-327 *3)))) (-4 *3 (-569)) - (-5 *1 (-1155 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) - (-15 -2797 ((-1150 *3 (-625 $)) $)) - (-15 -3603 ($ (-1150 *3 (-625 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *2 (-972 *3 *5 *4)) (-5 *1 (-1012 *3 *4 *5 *2)) - (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809))))) -(((*1 *2 *1 *1) + (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) + (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-870)) (-4 *5 (-632 *2)) (-5 *2 (-391)) + (-5 *1 (-806 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-660 *3 *4)) + (-14 *4 (-665 (-1206)))))) +(((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) + (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) + (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) + (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |polnum| (-798 *3)) (|:| |polden| *3) (|:| -2212 (-787)))) - (-5 *1 (-798 *3)) (-4 *3 (-1074)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2212 (-787)))) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) + (-5 *3 + (-665 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577)))))) + (-5 *2 (-665 (-420 (-577)))) (-5 *1 (-1050 *4)) + (-4 *4 (-1273 (-577)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) + (-5 *1 (-613 *4 *2 *3)) + (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232)))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-2 (|:| -3254 *4) (|:| -2163 (-577))))) + (-4 *4 (-1130)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1) + (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-465)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *1)))) + (-4 *1 (-1101 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1251))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-1276 *3 *2)) + (-4 *2 (-13 (-1273 *3) (-569) (-10 -8 (-15 -3642 ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)) + (-5 *1 (-1207 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-5 *2 (-1297 *3)) (-5 *1 (-1207 *3)) + (-4 *3 (-1079))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) + (-5 *1 (-769))))) +(((*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) ((*1 *1 *1) - (-12 (-5 *1 (-640 *2 *3 *4)) (-4 *2 (-865)) - (-4 *3 (-13 (-174) (-733 (-420 (-577))))) (-14 *4 (-944)))) - ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) ((*1 *1 *1) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074))))) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) - (-4 *3 (-1268 *4)))) + (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) - (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1268 (-577))))) + (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) - (-4 *3 (-1268 (-420 (-577)))))) + (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316))))) +(((*1 *2 *1) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341))))) + (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) + (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1232) (-443 *3))) + (-14 *4 (-1206)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) - ((*1 *1 *1) (-4 *1 (-1230)))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) - (-4 *3 (-1125))))) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-4 *2 (-13 (-27) (-1232) (-443 *3) (-10 -8 (-15 -3709 ($ *4))))) + (-4 *4 (-869)) + (-4 *5 + (-13 (-1275 *2 *4) (-375) (-1232) + (-10 -8 (-15 -3641 ($ $)) (-15 -1869 ($ $))))) + (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1013 *5)) + (-14 *7 (-1206))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) + (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) + (-5 *1 (-809))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) - (-5 *1 (-462 *4 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) - (-4 *2 (-1242)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (|has| *1 (-6 -4470)) - (-4 *1 (-152 *2)) (-4 *2 (-1242)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) - (-4 *2 (-1242)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) - (-4 *2 (-1242)))) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-1074)) - (-5 *2 (-2 (|:| -2364 (-1197 *4)) (|:| |deg| (-944)))) - (-5 *1 (-224 *4 *5)) (-5 *3 (-1197 *4)) (-4 *5 (-569)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) - (-4 *6 (-1242)) (-4 *2 (-1242)) (-5 *1 (-245 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1268 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1125)))) - ((*1 *1 *1) - (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1268 *2)) - (-4 *4 (-1268 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1242)) (-4 *2 (-1242)) - (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1125)) (-4 *2 (-1125)) - (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) - ((*1 *1 *1) (-5 *1 (-508))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) - (-4 *2 (-1242)) (-5 *1 (-658 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074)) - (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) - (-4 *9 (-385 *2)) (-5 *1 (-701 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-703 *5 *6 *7)) (-4 *10 (-703 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-375)) - (-4 *3 (-174)) (-4 *1 (-740 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) - (-4 *2 (-1242)) (-5 *1 (-980 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) - (-14 *6 (-660 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1074)) (-4 *2 (-1074)) - (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) - (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *12 (-1078 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) - (-4 *2 (-1242)) (-5 *1 (-1180 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1235 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-809)) - (-4 *7 (-865)) (-4 *2 (-1090 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) - (-4 *2 (-1242)) (-5 *1 (-1291 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-787)) (-5 *1 (-603))))) -(((*1 *1 *1) (-5 *1 (-1088)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) - (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) - (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-112)) - (-5 *1 (-947 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1125)) - (-4 *6 (-1242)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) - (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 *5)) (-4 *6 (-1125)) - (-4 *5 (-1242)) (-5 *2 (-1 *5 *6)) (-5 *1 (-657 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) - (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) - (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *1 (-657 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450))))) -(((*1 *1) (-5 *1 (-341)))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1225))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) - (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-787)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) - (-5 *2 (-2 (|:| -1907 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) - (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032)))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) + (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *9 (-1095 *6 *7 *8)) + (-5 *2 + (-665 + (-2 (|:| -2281 (-665 *9)) (|:| -3613 *10) (|:| |ineq| (-665 *9))))) + (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) + (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *9 (-1095 *6 *7 *8)) + (-5 *2 + (-665 + (-2 (|:| -2281 (-665 *9)) (|:| -3613 *10) (|:| |ineq| (-665 *9))))) + (-5 *1 (-1137 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) - ((*1 *1 *1) (-4 *1 (-1230)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) - (-5 *2 (-112)) (-5 *1 (-683 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-112)) - (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3352 *7) (|:| |sol?| (-112))) + (-577) *7)) + (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) + (-5 *3 (-420 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-587 *7 *8))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) - (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *2)) (-4 *2 (-972 *3 *5 *4))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1235 *5 *6 *7 *8)) (-4 *5 (-569)) - (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1227))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 (-1197 (-420 (-1197 *6)))) (-5 *1 (-573 *5 *6 *7)) - (-5 *3 (-1197 *6)) (-4 *7 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) - ((*1 *2 *1) - (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1197 *11)) (-5 *6 (-660 *10)) - (-5 *7 (-660 (-787))) (-5 *8 (-660 *11)) (-4 *10 (-865)) - (-4 *11 (-318)) (-4 *9 (-809)) (-4 *5 (-972 *11 *9 *10)) - (-5 *2 (-660 (-1197 *5))) (-5 *1 (-758 *9 *10 *11 *5)) - (-5 *3 (-1197 *5)))) - ((*1 *2 *1) - (-12 (-4 *2 (-972 *3 *4 *5)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) - (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-14 *6 (-660 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-254 *4 *5)) - (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201)))))) + (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-665 (-1202 *13))) (-5 *3 (-1202 *13)) + (-5 *4 (-665 *12)) (-5 *5 (-665 *10)) (-5 *6 (-665 *13)) + (-5 *7 (-665 (-665 (-2 (|:| -3850 (-792)) (|:| |pcoef| *13))))) + (-5 *8 (-665 (-792))) (-5 *9 (-1297 (-665 (-1202 *10)))) + (-4 *12 (-870)) (-4 *10 (-318)) (-4 *13 (-977 *10 *11 *12)) + (-4 *11 (-814)) (-5 *1 (-728 *11 *12 *10 *13))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3868 *3) (|:| |coef2| (-803 *3)))) + (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3398 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-375)) (-4 *7 (-1273 *6)) + (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-1 (-1197 (-975 *4)) (-975 *4))) - (-5 *1 (-1300 *4)) (-4 *4 (-375))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1130) (-1068 *5))) + (-4 *5 (-910 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-959 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 *4)) (-5 *1 (-1166 *3 *4)) - (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34)))))) -(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1293)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1294)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) - (-4 *4 (-276 *3)) (-4 *5 (-809))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-944)) - (-5 *2 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) - (-5 *1 (-358 *4)) (-4 *4 (-361))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) - ((*1 *1 *1) (-4 *1 (-1230)))) -(((*1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) - (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1060)) (-5 *1 (-772))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) + (-12 (-5 *2 (-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52)))) + (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-842))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1268 *5)) - (-5 *1 (-823 *5 *2 *3 *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *3 (-672 *2)) (-4 *6 (-672 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-420 *2))) (-4 *2 (-1268 *5)) - (-5 *1 (-823 *5 *2 *3 *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) - (-4 *6 (-672 (-420 *2)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) - (-5 *3 (-660 (-577))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) + (-4 *3 (-1273 *4)) (-5 *2 (-577)))) ((*1 *2 *3) - (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) - (-5 *3 (-660 (-577)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1182 *4) (-1182 *4))) (-5 *2 (-1182 *4)) - (-5 *1 (-1318 *4)) (-4 *4 (-1242)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-660 (-1182 *5)) (-660 (-1182 *5)))) (-5 *4 (-577)) - (-5 *2 (-660 (-1182 *5))) (-5 *1 (-1318 *5)) (-4 *5 (-1242))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2) - (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) - (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *4 (-1268 *3)) - (-5 *2 - (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-705 *3)))) - (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1268 (-577))) - (-5 *2 - (-2 (|:| -2559 (-705 (-577))) (|:| |basisDen| (-577)) - (|:| |basisInv| (-705 (-577))))) - (-5 *1 (-784 *3 *4)) (-4 *4 (-422 (-577) *3)))) - ((*1 *2) - (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) - (-5 *2 - (-2 (|:| -2559 (-705 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-705 *4)))) - (-5 *1 (-1010 *3 *4 *5 *6)) (-4 *6 (-740 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) - (-5 *2 - (-2 (|:| -2559 (-705 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-705 *4)))) - (-5 *1 (-1301 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) -(((*1 *1 *1) (-4 *1 (-642))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) + (|partial| -12 (-4 *4 (-13 (-569) (-1068 *2) (-659 *2) (-465))) + (-5 *2 (-577)) (-5 *1 (-1146 *4 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) - (-5 *5 (-1 (-431 *7) *7)) - (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) + (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) + (-5 *1 (-1146 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-1188)) + (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) + (-5 *1 (-1146 *6 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-577)) + (-5 *1 (-1147 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-670 *7 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) - (-5 *5 (-1 (-431 *7) *7)) - (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) - (-4 *6 (-1268 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-670 *5 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) - (-4 *6 (-1268 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) - (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294))))) + (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 (-420 (-980 *6)))) + (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-577)) + (-5 *1 (-1147 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1206)) + (-5 *5 (-1188)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -3398 (-420 *6)) (|:| |coeff| (-420 *6)))) + (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-813)) (-4 *3 (-174))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-1074)) - (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-1268 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-695 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) -(((*1 *2 *1) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) - (-5 *1 (-343))))) + (-12 (-5 *3 (-665 (-971 *4))) (-4 *1 (-1164 *4)) (-4 *4 (-1079)) + (-5 *2 (-792))))) (((*1 *2 *3) - (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) - (-5 *2 (-254 *4 *5)) (-5 *1 (-967 *4 *5))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-703 *2)) (-4 *2 (-1130)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-665 *5) (-665 *5))) (-5 *4 (-577)) + (-5 *2 (-665 *5)) (-5 *1 (-703 *5)) (-4 *5 (-1130))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-112)) - (-5 *1 (-271))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) - (-4 *5 (-905 (-577))) - (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) - (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-171 (-228)))) - (-5 *2 (-1060)) (-5 *1 (-771))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1292 *4)) (-5 *3 (-705 *4)) (-4 *4 (-375)) - (-5 *1 (-683 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-375)) - (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4471)))) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))) - (-5 *1 (-684 *4 *5 *2 *3)) (-4 *3 (-703 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-660 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) - (-5 *1 (-830 *2 *3)) (-4 *3 (-672 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-695 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) + (-12 (-5 *3 (-1 (-1187 *4) (-1187 *4))) (-5 *2 (-1187 *4)) + (-5 *1 (-1323 *4)) (-4 *4 (-1247)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-665 (-1187 *5)) (-665 (-1187 *5)))) (-5 *4 (-577)) + (-5 *2 (-665 (-1187 *5))) (-5 *1 (-1323 *5)) (-4 *5 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1182 (-228))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2097 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-572))))) + (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) + (-5 *1 (-316))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-761 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-870)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *1 (-1010 *3)) (-4 *3 (-1079)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) + (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813))))) +(((*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) + ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079))))) +(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1086 (-1049 *3) (-1197 (-1049 *3)))) - (-5 *1 (-1049 *3)) (-4 *3 (-13 (-864) (-375) (-1047)))))) + (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) + (-14 *4 (-792)) (-4 *5 (-174))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-318)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-460 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) + (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-460 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) + (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-460 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) + (-4 *2 (-1247))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) + (-4 *5 (-910 (-577))) + (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) + (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-809)) - (-4 *3 (-13 (-865) (-10 -8 (-15 -2176 ((-1201) $))))) (-4 *5 (-569)) - (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) + (-12 (-4 *4 (-814)) + (-4 *3 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *5 (-569)) + (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-809)) + (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 - (-13 (-865) - (-10 -8 (-15 -2176 ((-1201) $)) - (-15 -3052 ((-3 $ "failed") (-1201)))))) - (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3)))) + (-13 (-870) + (-10 -8 (-15 -4463 ((-1206) $)) + (-15 -3341 ((-3 $ "failed") (-1206)))))) + (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *6)) + (-12 (-5 *3 (-665 *6)) (-4 *6 - (-13 (-865) - (-10 -8 (-15 -2176 ((-1201) $)) - (-15 -3052 ((-3 $ "failed") (-1201)))))) - (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) - (-4 *2 (-972 (-975 *4) *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112))))) + (-13 (-870) + (-10 -8 (-15 -4463 ((-1206) $)) + (-15 -3341 ((-3 $ "failed") (-1206)))))) + (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) + (-4 *2 (-977 (-980 *4) *5 *6))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) - (-5 *2 (-660 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-753 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-452))) (-5 *1 (-883))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-5 *2 (-1197 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1297)) (-5 *1 (-247))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-577)) (-4 *5 (-864)) (-4 *5 (-375)) - (-5 *2 (-787)) (-5 *1 (-968 *5 *6)) (-4 *6 (-1268 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) - (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) - (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) - (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) + (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) + (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) + (-4 *6 (-354 *3 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) + (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-792)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1079)) + (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) +(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-549))) (-5 *1 (-549))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1247))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 + (-2 (|:| |solns| (-665 *5)) + (|:| |maps| (-665 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1158 *3 *5)) (-4 *3 (-1273 *5))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-795)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-795)) (-5 *1 (-115))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-1079)) (-4 *4 (-1130)) + (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2328 (-577)))) + (-4 *1 (-443 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1079)) (-4 *4 (-1130)) + (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2328 (-577)))) + (-4 *1 (-443 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) + (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2328 (-577)))) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2328 (-792)))) + (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-2 (|:| |var| *5) (|:| -2328 (-792)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) - (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) - (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) - (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-977 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2328 (-577)))) + (-5 *1 (-978 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) + (-15 -2429 (*7 $)))))))) +(((*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-710 *6)) (-5 *5 (-1 (-431 (-1202 *6)) (-1202 *6))) + (-4 *6 (-375)) + (-5 *2 + (-665 + (-2 (|:| |outval| *7) (|:| |outmult| (-577)) + (|:| |outvect| (-665 (-710 *7)))))) + (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-869)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) + (-4 *4 (-276 *3)) (-4 *5 (-814))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1125) (-1063 *5))) - (-4 *5 (-905 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-954 *4 *5 *6))))) + (-12 (-5 *3 (-1172 *4 *2)) (-14 *4 (-949)) + (-4 *2 (-13 (-1079) (-10 -7 (-6 (-4501 "*"))))) + (-5 *1 (-930 *4 *2))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *2 (-1095 *4 *5 *6)) (-5 *1 (-797 *4 *5 *6 *2 *3)) + (-4 *3 (-1101 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) - (-4 *3 (-1268 *4))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) - (-4 *2 (-174))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) (-4 *1 (-642))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97))))) + (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1201)) (-5 *6 (-660 (-625 *3))) - (-5 *5 (-625 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *7))) - (-4 *7 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-2 (|:| -2845 *3) (|:| |coeff| *3))) - (-5 *1 (-570 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) + (-5 *2 (-665 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| |k| (-917 *3)) (|:| |c| *4)))) + (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-693 *3))) (-5 *1 (-917 *3)) (-4 *3 (-870))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) + (-4 *2 (-1273 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036))))) +(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-465))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-665 (-630 *6))) (-5 *4 (-1206)) (-5 *2 (-630 *6)) + (-4 *6 (-443 *5)) (-4 *5 (-1130)) (-5 *1 (-586 *5 *6))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-842))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-1208 (-420 (-577)))) + (-5 *1 (-192))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-625 *4)) (-5 *6 (-1197 *4)) - (-4 *4 (-13 (-443 *7) (-27) (-1227))) - (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-625 *4)) (-5 *6 (-420 (-1197 *4))) - (-4 *4 (-13 (-443 *7) (-27) (-1227))) - (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2559 (-660 *4)))) - (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-1206) (-787)))) (-5 *1 (-344))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-4 *2 (-1125)) (-5 *1 (-696 *5 *6 *2))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -2554 (-660 *7)))) - (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) -(((*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 (-327 (-228)))) - (-5 *2 - (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) - (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) - (-5 *1 (-316))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) - (-5 *2 (-1060)) (-5 *1 (-772))))) + (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) + (-5 *2 (-665 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)) + (-4 *7 (-977 *4 *6 *5))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-665 (-1206))) + (-4 *2 (-13 (-443 (-171 *5)) (-1032) (-1232))) (-4 *5 (-569)) + (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1032) (-1232)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) - (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) - (-4 *4 (-1268 *3))))) + (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958))))) (((*1 *2 *1) - (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) - (-4 *3 (-1125))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-707 (-1129))) (-5 *1 (-302))))) + (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-1292 *5)) (-4 *5 (-318)) - (-4 *5 (-1074)) (-5 *2 (-705 *5)) (-5 *1 (-1054 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-705 *2)) (-5 *4 (-787)) - (-4 *2 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1002 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) - (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-1002 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-577)) (-5 *1 (-1135)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-660 (-577))) (-5 *4 (-577)) - (-5 *1 (-1135))))) -(((*1 *2 *3) - (-12 (-4 *4 (-865)) (-5 *2 (-1213 (-660 *4))) (-5 *1 (-1212 *4)) - (-5 *3 (-660 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1202 *7)) + (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) + (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1273 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) + (-12 (-4 *3 (-239)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) + (-4 *6 (-814)) (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) - (-4 *2 (-1283 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) - (-4 *5 (-1268 *4)) (-4 *6 (-740 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) - (-4 *2 (-1283 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) - (-5 *1 (-555 *4 *2)) (-4 *2 (-1283 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) - (-5 *1 (-1178 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) + (-12 (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) + (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-276 *2)) (-4 *2 (-870))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-765 *3)) (-4 *3 (-174))))) +(((*1 *1) (-5 *1 (-302)))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) - (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1027) (-1227)))))) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-916 *3)) (|:| |den| (-916 *3)))) + (-5 *1 (-916 *3)) (-4 *3 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-1292 *5))) (-5 *4 (-577)) (-5 *2 (-1292 *5)) - (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *2 (-1060)) (-5 *1 (-767))))) + (-12 (-5 *4 (-665 *3)) (-4 *3 (-1139 *5 *6 *7 *8)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-604 *5 *6 *7 *8 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) + ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)) + (-4 *3 (-813))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) + (-4 *5 (-870)) (-5 *2 (-980 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) + (-4 *5 (-870)) (-5 *2 (-980 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) + (-5 *2 (-980 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) + (-5 *2 (-980 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) + (-4 *5 (-465)) + (-5 *2 + (-2 (|:| |gblist| (-665 (-254 *4 *5))) + (|:| |gvlist| (-665 (-577))))) + (-5 *1 (-649 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) + (-4 *5 (-465)) (-5 *2 (-665 (-254 *4 *5))) (-5 *1 (-649 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))) - (-5 *2 (-1060)) (-5 *1 (-316))))) -(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) - (-5 *1 (-1185 *3))))) + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) + (-4 *5 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-665 *7)) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-665 (-305 *8))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *8)) + (-5 *6 (-665 *8)) (-4 *8 (-443 *7)) + (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-115))) (-5 *6 (-665 (-305 *8))) + (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) + (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) + (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) + (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) + (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-665 *3)) + (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-665 (-665 (-971 (-228))))))) + ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-665 (-665 (-971 (-228)))))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) + (-5 *1 (-1190 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) + (-14 *4 (-1206)) (-14 *5 *3)))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-975 (-577))) (-5 *3 (-1201)) - (-5 *4 (-1119 (-420 (-577)))) (-5 *1 (-30))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) - (-4 *2 (-1268 *4))))) + (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1130))))) +(((*1 *1 *1 *1) (-4 *1 (-486))) ((*1 *1 *1 *1) (-4 *1 (-782)))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-665 (-1 *4 (-665 *4)))) (-4 *4 (-1130)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-1 *4 (-665 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1130))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) + (-4 *3 (-569))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) - (-5 *1 (-541 *4))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) - (-15 -2797 ((-1150 *3 (-625 $)) $)) - (-15 -3603 ($ (-1150 *3 (-625 $)))))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) - ((*1 *1 *1) (-4 *1 (-1085)))) -(((*1 *1) (-5 *1 (-1107)))) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-772))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-1297 (-665 (-577)))) (-5 *1 (-493)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-665 (-1106 *4 *5 *2))) (-4 *4 (-1130)) + (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) + (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-665 (-1106 *5 *6 *2))) (-5 *4 (-949)) (-4 *5 (-1130)) + (-4 *6 (-13 (-1079) (-910 *5) (-632 (-916 *5)))) + (-4 *2 (-13 (-443 *6) (-910 *5) (-632 (-916 *5)))) + (-5 *1 (-54 *5 *6 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *5 (-569)) - (-5 *2 - (-2 (|:| |minor| (-660 (-944))) (|:| -2007 *3) - (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) - (-5 *1 (-680 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-680 *3 *4)) (-5 *1 (-1312 *3 *4)) - (-4 *3 (-865)) (-4 *4 (-174))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) - ((*1 *1 *1 *1) (-5 *1 (-1247))) ((*1 *1 *1 *1) (-5 *1 (-1248))) - ((*1 *1 *1 *1) (-5 *1 (-1249))) ((*1 *1 *1 *1) (-5 *1 (-1250)))) -(((*1 *1) (-5 *1 (-839)))) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3868 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) -(((*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074))))) + (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-327 (-577)))) + (-5 *1 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) + ((*1 *1 *1 *1) (-5 *1 (-1252))) ((*1 *1 *1 *1) (-5 *1 (-1253))) + ((*1 *1 *1 *1) (-5 *1 (-1254))) ((*1 *1 *1 *1) (-5 *1 (-1255)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-577))) + (-5 *2 (-710 (-577))) (-5 *1 (-1140))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361)))) - ((*1 *1) (-4 *1 (-380))) - ((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361)))) - ((*1 *1 *1) (-4 *1 (-558))) ((*1 *1) (-4 *1 (-558))) - ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *2 *1) (-12 (-5 *2 (-928 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) - (-4 *4 (-1125)))) - ((*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-558)) (-4 *2 (-569))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-420 (-975 *6)) (-1190 (-1201) (-975 *6)))) - (-5 *5 (-787)) (-4 *6 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *6))))) - (-5 *1 (-303 *6)) (-5 *4 (-705 (-420 (-975 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) - (|:| |eigmult| (-787)) (|:| |eigvec| (-660 *4)))) - (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) - (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5))))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) - (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2007 (-660 *9)) (|:| -2002 *4) (|:| |ineq| (-660 *9)))) - (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) - (-4 *4 (-1096 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) - (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2007 (-660 *9)) (|:| -2002 *4) (|:| |ineq| (-660 *9)))) - (-5 *1 (-1132 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) - (-4 *4 (-1096 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1206)) (-5 *2 (-1 (-1202 (-980 *4)) (-980 *4))) + (-5 *1 (-1305 *4)) (-4 *4 (-375))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-361)) (-5 *2 (-1292 *1)))) + (-12 (-5 *3 (-630 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1068 (-577))) + (-4 *4 (-569)) (-5 *2 (-1202 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-146)) (-4 *1 (-932)) - (-5 *2 (-1292 *1))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) - ((*1 *1 *1 *1) (-5 *1 (-1247))) ((*1 *1 *1 *1) (-5 *1 (-1248))) - ((*1 *1 *1 *1) (-5 *1 (-1249))) ((*1 *1 *1 *1) (-5 *1 (-1250)))) + (-12 (-5 *3 (-630 *1)) (-4 *1 (-1079)) (-4 *1 (-313)) + (-5 *2 (-1202 *1))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-726 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) +(((*1 *2 *1) + (-12 (-4 *2 (-977 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2)) + (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814))))) +(((*1 *2) (-12 (-5 *2 (-854 (-577))) (-5 *1 (-547)))) + ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-660 (-660 *3))))) + (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) + (-5 *2 (-426 *4 (-420 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))) + (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-318)) + (-5 *1 (-426 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) + ((*1 *1 *1 *1) (-5 *1 (-1252))) ((*1 *1 *1 *1) (-5 *1 (-1253))) + ((*1 *1 *1 *1) (-5 *1 (-1254))) ((*1 *1 *1 *1) (-5 *1 (-1255)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) (-4 *7 (-870)) + (-4 *8 (-318)) (-4 *6 (-814)) (-4 *9 (-977 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-665 (-2 (|:| -3759 (-1202 *9)) (|:| -2328 (-577))))))) + (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-660 (-660 *5))))) + (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-660 (-660 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1052 *5 *6 *7 *3))) (-5 *1 (-1052 *5 *6 *7 *3)) - (-4 *3 (-1090 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-660 *6)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1171 *5 *6 *7 *3))) (-5 *1 (-1171 *5 *6 *7 *3)) - (-4 *3 (-1090 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-228))) - ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1164))) ((*1 *1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407))))) -(((*1 *1) (-5 *1 (-131)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-867))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 (-577))) - (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-443 *5)) - (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1197 (-420 (-577)))) - (-5 *1 (-446 *5 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-318)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-460 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) - (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-460 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) - (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-460 *4 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) + (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) + (-5 *2 (-2 (|:| -4030 (-792)) (|:| -3483 *8))) + (-5 *1 (-939 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) + (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) + (-4 *6 (-354 (-420 (-577)) *4 *5)) + (-5 *2 (-2 (|:| -4030 (-792)) (|:| -3483 *6))) + (-5 *1 (-940 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-712 (-1165))) (-5 *1 (-1181))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) + (-5 *1 (-809)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) + (-5 *1 (-809))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1250)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) + (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) + (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) + (-4 *3 (-569)))) + ((*1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-1232)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) + (-5 *3 (-577))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1297 (-792))) (-5 *1 (-696 *3)) (-4 *3 (-1130))))) (((*1 *1 *1) (-5 *1 (-228))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *2) - (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) - (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) - (-5 *1 (-1185 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) - (-14 *4 (-1201)) (-14 *5 *3)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-792)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) + (-4 *4 (-385 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1172 *2 *3)) (-14 *2 (-792)) (-4 *3 (-1079))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)))) + ((*1 *1) (-4 *1 (-1182)))) (((*1 *2 *1) - (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3)))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-173)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) + (-5 *2 (-1065)) (-5 *1 (-774))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1206)) (-5 *6 (-112)) + (-4 *7 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-4 *3 (-13 (-1232) (-987) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *7 *3)) (-5 *5 (-864 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *3 (-1095 *6 *7 *8)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -3613 *9)))) + (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) + (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) + (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -3613 *9)))) + (-5 *1 (-1138 *6 *7 *4 *8 *9))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-792)) (-5 *2 (-710 (-980 *4))) (-5 *1 (-1058 *4)) + (-4 *4 (-1079))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1065)) (-5 *1 (-774))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -3613 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) + ((*1 *1 *1) (-4 *1 (-1090)))) +(((*1 *2 *3) + (-12 (-5 *3 (-955)) + (-5 *2 + (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) + (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) + (-5 *2 + (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) + (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) + (-5 *1 (-154))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) - (-14 *3 (-944)) (-4 *4 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) + (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-318)) + (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) - (-14 *4 (-577))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) + (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) + (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) + (-4 *3 (-167 *6)) (-4 (-980 *6) (-910 *5)) + (-4 *6 (-13 (-910 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-916 *4)) (-4 *1 (-910 *4)) + (-4 *4 (-1130)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) + (-4 *6 (-13 (-1130) (-1068 *3))) (-4 *3 (-910 *5)) + (-5 *1 (-959 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) + (-4 *3 (-13 (-443 *6) (-632 *4) (-910 *5) (-1068 (-630 $)))) + (-5 *4 (-916 *5)) (-4 *6 (-13 (-569) (-910 *5))) + (-5 *1 (-960 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 (-577) *3)) (-5 *4 (-916 (-577))) (-4 *3 (-558)) + (-5 *1 (-961 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1130)) + (-4 *6 (-13 (-1130) (-1068 (-630 $)) (-632 *4) (-910 *5))) + (-5 *4 (-916 *5)) (-5 *1 (-962 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-909 *5 *6 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) + (-4 *6 (-910 *5)) (-4 *3 (-687 *6)) (-5 *1 (-963 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-916 *6) (-913 *6 *3))) + (-4 *8 (-870)) (-5 *2 (-913 *6 *3)) (-5 *4 (-916 *6)) + (-4 *6 (-1130)) (-4 *3 (-13 (-977 *9 *7 *8) (-632 *4))) + (-4 *7 (-814)) (-4 *9 (-13 (-1079) (-910 *6))) + (-5 *1 (-964 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) + (-4 *3 (-13 (-977 *8 *6 *7) (-632 *4))) (-5 *4 (-916 *5)) + (-4 *7 (-910 *5)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *8 (-13 (-1079) (-910 *5))) (-5 *1 (-964 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-1022 *6)) + (-4 *6 (-13 (-569) (-910 *5) (-632 *4))) (-5 *4 (-916 *5)) + (-5 *1 (-967 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-913 *5 (-1206))) (-5 *3 (-1206)) (-5 *4 (-916 *5)) + (-4 *5 (-1130)) (-5 *1 (-968 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-665 (-916 *7))) (-5 *5 (-1 *9 (-665 *9))) + (-5 *6 (-1 (-913 *7 *9) *9 (-916 *7) (-913 *7 *9))) (-4 *7 (-1130)) + (-4 *9 (-13 (-1079) (-632 (-916 *7)) (-1068 *8))) + (-5 *2 (-913 *7 *9)) (-5 *3 (-665 *9)) (-4 *8 (-1079)) + (-5 *1 (-969 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-705 *4 *5 *6))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *3 (-980 (-577))) + (-5 *1 (-341)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *1 (-341))))) +(((*1 *1 *1) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1))))) + (-12 (-4 *4 (-1079)) + (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) - (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *7 (-1268 *5)) (-4 *4 (-740 *5 *7)) - (-5 *2 (-2 (|:| -1631 (-705 *6)) (|:| |vec| (-1292 *5)))) - (-5 *1 (-827 *5 *6 *7 *4 *3)) (-4 *6 (-672 *5)) (-4 *3 (-672 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) - (-5 *2 (-59 (-660 (-688 *5)))) (-5 *1 (-688 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) - (-5 *1 (-772))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792))))) +(((*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) -(((*1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) + (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) + (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1079)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) + ((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-639 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-747) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-738 *3)) (-5 *1 (-683 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-747) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1130)) + (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) + (-5 *1 (-1106 *3 *4 *2)) + (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1130))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-665 (-887 *4))) + (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) + (-4 *6 (-465))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1202 (-1202 *5)))) + (-5 *1 (-1245 *5)) (-5 *3 (-1202 (-1202 *5)))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *4)) (-5 *1 (-909 *3 *4 *5)) + (-4 *3 (-1130)) (-4 *5 (-687 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-944)) (-5 *2 (-481)) (-5 *1 (-1293))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) - (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768))))) + (-12 (-5 *3 (-994 *4)) (-4 *4 (-1130)) (-5 *2 (-1132 *4)) + (-5 *1 (-995 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-949)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-897)) + (-5 *2 (-1302)) (-5 *1 (-1298))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1227))) - (-5 *1 (-596 *4 *2)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-1297 (-710 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 (-710 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) + (-5 *2 (-1297 (-710 (-420 (-980 *5))))) (-5 *1 (-1116 *5)) + (-5 *4 (-710 (-420 (-980 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) + (-5 *2 (-1297 (-710 (-980 *5)))) (-5 *1 (-1116 *5)) + (-5 *4 (-710 (-980 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-420 (-975 *4)))) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *4)) - (-5 *1 (-602 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1110))) (-5 *1 (-302))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) - (-5 *1 (-941 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) + (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) + (-5 *2 (-1297 (-710 *4))) (-5 *1 (-1116 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-577))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-1292 - (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -4446 (-577)) - (|:| -3002 (-577)) (|:| |spline| (-577)) (|:| -2899 (-577)) - (|:| |axesColor| (-892)) (|:| -4385 (-577)) - (|:| |unitsColor| (-892)) (|:| |showing| (-577))))) - (-5 *1 (-1293))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) - ((*1 *2 *2) - (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) - (-4 *6 (-1090 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -1374 *1) (|:| |upper| *1))) - (-4 *1 (-1001 *4 *5 *3 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) - (-5 *1 (-343))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)) (-4 *2 (-465)))) - ((*1 *1 *1) - (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) - (-4 *4 (-1268 (-420 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-1273 (-577))) (-5 *2 (-665 (-577))) + (-5 *1 (-499 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)) (-4 *3 (-465)))) - ((*1 *1 *1) - (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-465)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1188 *3 *2)) - (-4 *2 (-1268 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)) (-4 *3 (-465))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-569) (-148))) + (-5 *2 (-2 (|:| -3337 *3) (|:| -3352 *3))) (-5 *1 (-1267 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-843))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605)))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644)))) ((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-4 *5 (-865)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-4 *3 (-1130)) + (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) + (-5 *1 (-1106 *3 *4 *2)) + (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1065)) + (-5 *1 (-767))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-1150)) (-5 *2 (-112)) (-5 *1 (-842))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-670 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-549))) (-5 *1 (-549))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032)))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-599 *3) *3 (-1201))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1201))) - (-4 *3 (-295)) (-4 *3 (-642)) (-4 *3 (-1063 *4)) (-4 *3 (-443 *7)) - (-5 *4 (-1201)) (-4 *7 (-627 (-911 (-577)))) (-4 *7 (-465)) - (-4 *7 (-905 (-577))) (-4 *7 (-1125)) (-5 *2 (-599 *3)) - (-5 *1 (-586 *7 *3))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) - (-5 *7 (-705 (-577))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-769))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) + (-5 *2 (-665 (-792))) (-5 *1 (-799 *3 *4 *5 *6 *7)) + (-4 *3 (-1273 *6)) (-4 *7 (-977 *6 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-189))) (-5 *1 (-189))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-944))) (-5 *4 (-928 (-577))) - (-5 *2 (-705 (-577))) (-5 *1 (-603)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) - (-5 *1 (-603)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-928 (-577)))) - (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-603))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1187 *4))) (-4 *4 (-375)) + (-4 *4 (-1079)) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) + ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-697)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) - (-5 *2 (-391)) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) - (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) + (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-986 (-1150))) + (-5 *1 (-358 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) + (-4 *4 (-1247)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) + ((*1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) + (-4 *4 (-1130)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *4 (-1273 *3)) + (-5 *2 + (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-710 *3)))) + (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) - (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) + (-12 (-5 *3 (-577)) (-4 *4 (-1273 *3)) + (-5 *2 + (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-710 *3)))) + (-5 *1 (-789 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) - (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-865)) (-4 *5 (-627 *2)) (-5 *2 (-391)) - (-5 *1 (-801 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-787) (-787))) (-4 *1 (-398 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1051 (-859 (-577)))) - (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1074)) - (-5 *1 (-608 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) - (-5 *1 (-343))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) - (-5 *1 (-1030))))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-599 *3)) (-4 *3 (-375))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) + (-5 *2 + (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-710 *3)))) + (-5 *1 (-1015 *4 *3 *5 *6)) (-4 *6 (-745 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 - (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-705 *3)))) - (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-2 (|:| -2104 (-710 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-710 *3)))) + (-5 *1 (-1306 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-494 *4 *5)) + (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) + (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) + (-4 *1 (-379 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) + (-4 *1 (-382 *4 *5)) (-4 *5 (-1273 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1273 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-768))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-665 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-724 *3)) + (-4 *3 (-632 (-549))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228) (-228))) + (-5 *1 (-724 *3)) (-4 *3 (-632 (-549)))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-4 *3 (-569))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) - (-4 *4 (-1242)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) + (-12 (-4 *4 (-13 (-869) (-375))) (-5 *2 (-112)) (-5 *1 (-1091 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-769))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-792)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1079)) + (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-885)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) + (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-1023 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-375)))) + ((*1 *1 *2) + (-12 (-5 *2 (-665 (-665 *5))) (-4 *5 (-1079)) + (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) + (-4 *7 (-244 *3 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-494 *4 *5)) - (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-705 *5)) (-4 *5 (-1074)) (-5 *1 (-1079 *3 *4 *5)) - (-14 *3 (-787)) (-14 *4 (-787))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-569)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-707 (-989 *3))) (-5 *1 (-989 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) - (-5 *2 (-660 (-1201))) (-5 *1 (-1101 *3 *4 *5)) - (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) + (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-450)) (-5 *1 (-1210))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1232))) + (-5 *1 (-596 *4 *2)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-420 (-980 *4)))) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *4)) + (-5 *1 (-602 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-665 *5)) (-4 *5 (-870)) (-5 *1 (-1217 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1202 (-577))) (-5 *3 (-577)) (-4 *1 (-892 *4))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-194))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) (((*1 *2) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-173)))))) -(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-966 *5)) (-5 *3 (-787)) (-4 *5 (-1074)) - (-5 *1 (-1189 *4 *5)) (-14 *4 (-944))))) + (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-814)) (-4 *2 (-276 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *5 (-569)) + (-5 *2 + (-2 (|:| |minor| (-665 (-949))) (|:| -2281 *3) + (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-665 (-1206))))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) (-4 *1 (-295))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *1 *2) + (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-5 *1 (-645 *3 *4 *5)) + (-14 *5 (-949)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) + (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) + (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1312 (-1206) *3)) (-4 *3 (-1079)) (-5 *1 (-1319 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *1 (-1321 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) + ((*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1188)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-4 *4 (-1095 *6 *7 *8)) (-5 *2 (-1302)) + (-5 *1 (-797 *6 *7 *8 *4 *5)) (-4 *5 (-1101 *6 *7 *8 *4))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *2))))) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-760 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-665 *4))) (-5 *1 (-932 *4)) + (-5 *3 (-665 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-1132 *4))) (-5 *1 (-932 *4)) + (-5 *3 (-1132 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) (((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *5 (-380)) - (-5 *2 (-787))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-795 *4)) - (-4 *4 (-13 (-375) (-864)))))) + (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 *4)) (-4 *4 (-1074)) (-4 *2 (-1268 *4)) - (-5 *1 (-457 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-420 (-1197 (-327 *5)))) (-5 *3 (-1292 (-327 *5))) - (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1155 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-577))))) -(((*1 *1 *1) - (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) - (-4 *4 (-276 *3)) (-4 *5 (-809))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-112)) - (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) + (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-949)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1202 *1)) + (-4 *1 (-340 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) + (-4 *2 (-1273 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-700 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-944)) (-4 *5 (-318)) (-4 *3 (-1268 *5)) - (-5 *2 (-2 (|:| |plist| (-660 *3)) (|:| |modulo| *5))) - (-5 *1 (-473 *5 *3)) (-5 *4 (-660 *3))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) - (-5 *5 (-112)) (-5 *2 (-1294)) (-5 *1 (-265))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-569)) - (-5 *2 (-2 (|:| -1631 (-705 *5)) (|:| |vec| (-1292 (-660 (-944)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-994 *2 *3)) - (-4 *3 (-1268 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2) - (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-705 *2)) (-5 *4 (-577)) - (-4 *2 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) - (-5 *1 (-432 *4)))) - ((*1 *1 *1) (-5 *1 (-949))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) - ((*1 *1 *1) (-5 *1 (-950))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) - (-5 *4 (-420 (-577))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) - (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) - (-5 *4 (-420 (-577))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577))))) - (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) - (-4 *3 (-1268 *2))))) + (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) + (-5 *1 (-541 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) (((*1 *2 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) - (-5 *1 (-1300 *4)) (-4 *4 (-375))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-660 (-271))) (-5 *1 (-1294)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1183)) (-5 *1 (-1294)))) - ((*1 *1 *1) (-5 *1 (-1294)))) -(((*1 *1) (-5 *1 (-341)))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-504))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-665 (-1206))))) + ((*1 *1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-665 (-1206))))) + ((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) + (-4 *2 (-354 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-745 *2 *3)) (-4 *3 (-1273 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1202 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-780))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-385 *3)) + (-4 *3 (-1247))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-4 *3 (-1268 *4)) (-5 *1 (-825 *4 *3 *2 *5)) (-4 *2 (-672 *3)) - (-4 *5 (-672 (-420 *3))))) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-420 *5)) - (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) - (-5 *1 (-825 *4 *5 *2 *6)) (-4 *2 (-672 *5)) (-4 *6 (-672 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) - (-4 *2 (-1252 *3))))) + (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1253)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *1) (-5 *1 (-302)))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1137 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-665 *3)) (-5 *5 (-949)) (-4 *3 (-1273 *4)) + (-4 *4 (-318)) (-5 *1 (-473 *4 *3))))) (((*1 *2 *3 *4) - (-12 - (-5 *3 - (-660 - (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) - (|:| |wcond| (-660 (-975 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *5)))))))))) - (-5 *4 (-1183)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-972 *5 *7 *6)) - (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-577)) - (-5 *1 (-947 *5 *6 *7 *8))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *1 *1) (-5 *1 (-228))) ((*1 *1 *1) (-5 *1 (-391))) - ((*1 *1) (-5 *1 (-391)))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)) - (-4 *2 (-465)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-1268 (-577))) (-5 *2 (-660 (-577))) - (-5 *1 (-499 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)) (-4 *3 (-465))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) - (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-5 *3 (-792)) (-5 *4 (-1297 *2)) (-4 *5 (-318)) + (-4 *6 (-1022 *5)) (-4 *2 (-13 (-422 *6 *7) (-1068 *6))) + (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1273 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-707 (-592))) (-5 *1 (-592))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) - (-4 *3 (-1125)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-975 *4))) - (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-660 (-1071 *4 *5))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) -(((*1 *1 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-660 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) - (-4 *3 (-569)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242))))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) + (-5 *2 (-665 (-665 (-665 (-792)))))))) +(((*1 *2) + (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) (((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) + (-12 (-5 *2 (-1282 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) + (-14 *4 (-1206)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-880)))) - ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-985))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-577)) - (-5 *6 - (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391)))) - (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) - (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) - (-5 *1 (-804)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-577)) - (-5 *6 - (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4297 (-391)))) - (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) - (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) - (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-391)) (-5 *1 (-1065))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) + (-12 (-4 *2 (-1130)) (-5 *1 (-734 *3 *2 *4)) (-4 *3 (-870)) + (-14 *4 + (-1 (-112) (-2 (|:| -3354 *3) (|:| -2328 *2)) + (-2 (|:| -3354 *3) (|:| -2328 *2))))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1247))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1130)) (-4 *2 (-926 *4)) (-5 *1 (-713 *4 *2 *5 *3)) + (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4499))))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) + (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) (((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) - (-14 *4 (-1201)) (-14 *5 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-577)) (-5 *1 (-247))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) - (-5 *2 (-660 *3)) (-5 *1 (-793 *4 *5 *6 *3 *7)) (-4 *3 (-1268 *6)) - (-14 *7 (-944))))) -(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197 *6)) (-4 *6 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-1197 *7)) (-5 *1 (-332 *4 *5 *6 *7)) - (-4 *7 (-972 *6 *4 *5))))) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 (-1 *6 (-665 *6)))) + (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1288 *5)) (-5 *2 (-665 *6)) + (-5 *1 (-1290 *5 *6))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) + (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) + (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1074))))) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1079))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) + (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-667 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1295)))) - ((*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1295))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 *4)))) - (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-665 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) - (-5 *1 (-1185 *3))))) + (-12 (-5 *3 (-577)) (-4 *1 (-672 *2)) (-4 *2 (-1247))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1204)) (-5 *3 (-1201))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3428 *1))) - (-4 *1 (-870 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1213 (-660 *4))) (-4 *4 (-865)) - (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-820 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1227) (-982)))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) -(((*1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3) - (-12 (-5 *3 (-975 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-660 (-966 *4))) (-4 *1 (-1159 *4)) (-4 *4 (-1074)) - (-5 *2 (-787))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-1263 *4 *3)) - (-4 *3 (-1268 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-660 *11)) - (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -2002 *11)))))) - (-5 *6 (-787)) - (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -2002 *11)))) - (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) - (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) - (-4 *9 (-865)) (-5 *1 (-1094 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-660 *11)) - (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -2002 *11)))))) - (-5 *6 (-787)) - (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -2002 *11)))) - (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) - (-4 *11 (-1134 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) - (-4 *9 (-865)) (-5 *1 (-1170 *7 *8 *9 *10 *11))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *1) (-4 *1 (-992)))) -(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-792)) (|:| -4181 *4))) (-5 *5 (-792)) + (-4 *4 (-977 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-462 *6 *7 *8 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) + (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130))))) +(((*1 *1 *1) (-4 *1 (-892 *2)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1079)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) (-4 *2 (-695 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) + ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-5 *1 (-562))) + ((*1 *1) (-4 *1 (-747))) ((*1 *1) (-5 *1 (-1206))) + ((*1 *1) (-12 (-5 *1 (-1212 *2)) (-14 *2 (-949)))) + ((*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) + ((*1 *1) (-5 *1 (-1252))) ((*1 *1) (-5 *1 (-1253))) + ((*1 *1) (-5 *1 (-1254))) ((*1 *1) (-5 *1 (-1255)))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-710 (-1202 *8))) (-4 *5 (-1079)) (-4 *8 (-1079)) + (-4 *6 (-1273 *5)) (-5 *2 (-710 *6)) (-5 *1 (-514 *5 *6 *7 *8)) + (-4 *7 (-1273 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1093))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-112)) (-5 *1 (-916 *4)) + (-4 *4 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) - (-5 *1 (-316))))) + (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850)) (-5 *3 (-1188))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) + (-5 *1 (-779))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-792)) (-4 *2 (-1130)) + (-5 *1 (-699 *2))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -3613 *7)))) + (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -3613 *7)))) + (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1137 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) + (-5 *1 (-763 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3543 (-798 *3)) (|:| |coef1| (-798 *3)))) - (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) +(((*1 *1) (-4 *1 (-997)))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-52)) (-5 *1 (-916 *4)) + (-4 *4 (-1130))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-443 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) + (-5 *2 (-1297 (-710 (-980 *4)))) (-5 *1 (-191 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1104)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *2 (-2 (|:| -3543 *1) (|:| |coef1| *1))) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *3) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-465))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3352 *6) (|:| |sol?| (-112))) (-577) + *6)) + (-4 *6 (-375)) (-4 *7 (-1273 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) + (-2 (|:| -3398 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) + (-5 *2 (-1202 (-980 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) + (-4 *4 (-708 *2 *5 *6))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-665 (-1297 *4))) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) + (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) + (-5 *2 (-665 (-1297 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3 *3) (-12 (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) - (-254 *4 (-420 (-577))))) - (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) - (-5 *1 (-518 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-558)))) - ((*1 *2 *1) (-12 (-4 *1 (-1246)) (-5 *2 (-112))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) + (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3) + (-12 (-5 *3 (-949)) + (-5 *2 + (-3 (-1202 *4) + (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150))))))) + (-5 *1 (-358 *4)) (-4 *4 (-361))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *2 *3) + (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-954))))) +(((*1 *2) + (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *2) + (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-787))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) - (-4 *3 (-1268 *4)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-361)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *1 *1) (-4 *1 (-569)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) + (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-305 (-420 (-980 (-171 (-577))))))) + (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 (-171 (-577))))) + (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-869))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-420 (-980 (-171 (-577)))))) + (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-869)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-865)) (-5 *1 (-1212 *3))))) + (-12 + (-5 *2 + (-1017 (-420 (-577)) (-887 *3) (-246 *4 (-792)) + (-254 *3 (-420 (-577))))) + (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-1016 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1247)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-420 *6)) + (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) + (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) + (-5 *1 (-891 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) + (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) + (-5 *1 (-891 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-777))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-627 *2) (-174))) (-5 *2 (-911 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1125)) (-4 *3 (-167 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-1119 (-859 (-391))))) - (-5 *2 (-660 (-1119 (-859 (-228))))) (-5 *1 (-316)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-407)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1268 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) - (-5 *2 (-1292 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) - (-4 *3 (-1125)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-476 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-549)))) - ((*1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) - ((*1 *1 *2) - (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) - (-4 *5 (-627 (-1201))) (-4 *4 (-809)) (-4 *5 (-865)))) - ((*1 *1 *2) - (-2811 - (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) - (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) - (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) - (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) - ((*1 *1 *2) - (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) - (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) - (-5 *1 (-1094 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -2002 *8))) - (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1134 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) - (-5 *1 (-1170 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) - ((*1 *2 *3) - (-12 (-5 *3 (-796 *4 (-882 *5))) - (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) - (-5 *2 (-796 *4 (-882 *6))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *6 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-796 *4 (-882 *6))) - (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) - (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *5 (-660 (-1201))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 (-1197 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) + (-12 (-5 *3 (-1132 *4)) (-4 *4 (-1130)) (-5 *2 (-1 *4)) + (-5 *1 (-1047 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) ((*1 *2 *3) - (-12 - (-5 *3 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6)))) - (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) - (-5 *2 (-660 (-796 *4 (-882 *6)))) (-5 *1 (-1319 *4 *5 *6)) - (-14 *5 (-660 (-1201)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344))))) + (-12 (-5 *3 (-1124 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1125)) - (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) - (-5 *1 (-1101 *3 *4 *2)) - (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-1125))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-660 *11)) (-5 *5 (-660 (-1197 *9))) - (-5 *6 (-660 *9)) (-5 *7 (-660 *12)) (-5 *8 (-660 (-787))) - (-4 *11 (-865)) (-4 *9 (-318)) (-4 *12 (-972 *9 *10 *11)) - (-4 *10 (-809)) (-5 *2 (-660 (-1197 *12))) - (-5 *1 (-723 *10 *11 *9 *12)) (-5 *3 (-1197 *12))))) + (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) + (-5 *2 (-494 *4 *5)) (-5 *1 (-972 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) + (-4 *7 (-814)) (-5 *2 - (-2 (|:| |contp| (-577)) - (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) - (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) + (-665 + (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) + (|:| |wcond| (-665 (-980 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) + (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *3 (-710 *8)) (-5 *4 (-665 (-1206))) (-4 *8 (-977 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) + (-4 *7 (-814)) (-5 *2 - (-2 (|:| |contp| (-577)) - (|:| -1704 (-660 (-2 (|:| |irr| *3) (|:| -2087 (-577))))))) - (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-660 *7) *7 (-1197 *7))) (-5 *5 (-1 (-431 *7) *7)) - (-4 *7 (-1268 *6)) (-4 *6 (-13 (-375) (-148) (-1063 (-420 (-577))))) - (-5 *2 (-660 (-2 (|:| |frac| (-420 *7)) (|:| -2007 *3)))) - (-5 *1 (-825 *6 *7 *3 *8)) (-4 *3 (-672 *7)) - (-4 *8 (-672 (-420 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-665 + (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) + (|:| |wcond| (-665 (-980 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) + (-5 *1 (-952 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *2 - (-660 (-2 (|:| |frac| (-420 *6)) (|:| -2007 (-670 *6 (-420 *6)))))) - (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *3 (-1090 *6 *7 *8)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1133 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) + (-665 + (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) + (|:| |wcond| (-665 (-980 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *4)))))))))) + (-5 *1 (-952 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) - (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) - (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) - (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -2002 *9)))) - (-5 *1 (-1133 *6 *7 *4 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-572))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) - (-4 *3 (-1242))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-577)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-318)) - (-4 *9 (-972 *8 *6 *7)) - (-5 *2 (-2 (|:| -2364 (-1197 *9)) (|:| |polval| (-1197 *8)))) - (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9)) (-5 *4 (-1197 *8))))) -(((*1 *2 *1) - (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-660 *6)) - (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-52)) (-5 *1 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1125)) - (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) - (-5 *1 (-1101 *3 *4 *2)) - (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-771)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) - (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771))))) -(((*1 *1) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) - (-12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) - (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 *2)) - (-14 *4 (-660 *2)) (-4 *5 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) - (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))))) - ((*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) - ((*1 *2 *1) - (-12 + (-12 (-5 *3 (-710 *9)) (-5 *5 (-949)) (-4 *9 (-977 *6 *8 *7)) + (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) + (-4 *8 (-814)) (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (|:| |mdnia| - (-2 (|:| |fn| (-327 (-228))) - (|:| -2097 (-660 (-1119 (-859 (-228))))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) - (-5 *1 (-785)))) - ((*1 *2 *1) - (-12 + (-665 + (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) + (|:| |wcond| (-665 (-980 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *6)))))))))) + (-5 *1 (-952 *6 *7 *8 *9)) (-5 *4 (-665 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) + (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *1 (-824)))) - ((*1 *2 *1) - (-12 + (-665 + (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) + (|:| |wcond| (-665 (-980 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *6)))))))))) + (-5 *1 (-952 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-710 *8)) (-5 *4 (-949)) (-4 *8 (-977 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) + (-4 *7 (-814)) (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) - (|:| |lb| (-660 (-859 (-228)))) - (|:| |cf| (-660 (-327 (-228)))) - (|:| |ub| (-660 (-859 (-228)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-660 (-327 (-228)))) - (|:| -3457 (-660 (-228))))))) - (-5 *1 (-857)))) - ((*1 *2 *1) - (-12 + (-665 + (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) + (|:| |wcond| (-665 (-980 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) + (-5 *1 (-952 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 *9)) (-5 *5 (-1188)) + (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) + (-5 *1 (-952 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-1188)) + (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) + (-5 *1 (-952 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-710 *8)) (-5 *4 (-1188)) (-4 *8 (-977 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) + (-4 *7 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 *10)) (-5 *5 (-949)) + (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) + (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) + (-5 *1 (-952 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) + (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) + (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) + (-5 *1 (-952 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-710 *9)) (-5 *4 (-949)) (-5 *5 (-1188)) + (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) + (-5 *1 (-952 *6 *7 *8 *9))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1297 *5)) (-5 *3 (-792)) (-5 *4 (-1150)) (-4 *5 (-361)) + (-5 *1 (-541 *5))))) +(((*1 *1) (-5 *1 (-1209)))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-710 *5)) (-4 *5 (-1079)) (-5 *1 (-1084 *3 *4 *5)) + (-14 *3 (-792)) (-14 *4 (-792))))) +(((*1 *2) + (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) + (-4 *4 (-1273 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 - (-2 (|:| |pde| (-660 (-327 (-228)))) - (|:| |constraints| - (-660 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-787)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) - (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) - (|:| |tol| (-228)))) - (-5 *1 (-919)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *1 (-1001 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) - (-2811 - (-12 (-5 *2 (-975 *3)) - (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) - (-2686 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865))) - (-12 (-5 *2 (-975 *3)) - (-12 (-2686 (-4 *3 (-558))) (-2686 (-4 *3 (-38 (-420 (-577))))) - (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865))) - (-12 (-5 *2 (-975 *3)) - (-12 (-2686 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) - (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) - (-4 *5 (-865))))) - ((*1 *1 *2) - (-2811 - (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) - (-12 (-2686 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) - (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) - (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) - (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) - ((*1 *1 *2) - (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) - (-4 *3 (-1268 *4))))) + (-665 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) + (|:| |outvect| (-665 (-710 (-171 *4))))))) + (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869)))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-572))))) +(((*1 *2 *3) + (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) + (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) + (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *3 *2)) + (-4 *3 (-13 (-1130) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1007 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *2 *1) + (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) + (-5 *2 (-665 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1242))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449))))) -(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) + (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-1115))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) + (-5 *1 (-481))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) (((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-173))))))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2057)))) + (-5 *2 (-1065)) (-5 *1 (-769))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) - (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) + (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) + (-5 *2 (-112)) (-5 *1 (-688 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-112)) + (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1004))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) - ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-636 *3 *4)) - (-4 *4 (-1268 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-742)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) - (-5 *3 (-577))))) -(((*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) -(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-944)))) + (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) + ((*1 *1 *1) (-4 *1 (-869))) + ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) + ((*1 *1 *1) (-4 *1 (-1090))) ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) +(((*1 *1) (-4 *1 (-361))) ((*1 *2 *3) - (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-944)) - (-5 *1 (-541 *4))))) -(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) - ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *3 (-1090 *6 *7 *8)) + (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-665 (-1202 *5))) + (|:| |prim| (-1202 *5)))) + (-5 *1 (-445 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-569) (-148))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1202 *3)) + (|:| |pol2| (-1202 *3)) (|:| |prim| (-1202 *3)))) + (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-980 *5)) (-5 *4 (-1206)) (-4 *5 (-13 (-375) (-148))) (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) + (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) + (|:| |prim| (-1202 *5)))) + (-5 *1 (-988 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) + (-4 *5 (-13 (-375) (-148))) (-5 *2 - (-2 (|:| |done| (-660 *4)) - (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -2002 *4)))))) - (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *4 (-1268 *3)) + (-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 *5))) + (|:| |prim| (-1202 *5)))) + (-5 *1 (-988 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-5 *5 (-1206)) + (-4 *6 (-13 (-375) (-148))) (-5 *2 - (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-705 *3)))) - (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-2 (|:| -4473 (-665 (-577))) (|:| |poly| (-665 (-1202 *6))) + (|:| |prim| (-1202 *6)))) + (-5 *1 (-988 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-1268 *3)) - (-5 *2 - (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-705 *3)))) - (-5 *1 (-784 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) + (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-630 *4)) (-5 *6 (-1206)) + (-4 *4 (-13 (-443 *7) (-27) (-1232))) + (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 - (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-705 *3)))) - (-5 *1 (-1010 *4 *3 *5 *6)) (-4 *6 (-740 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 - (-2 (|:| -2559 (-705 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-705 *3)))) - (-5 *1 (-1301 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))) - (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-287 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -2002 *4)))) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) - (-4 *4 (-1242)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) - ((*1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) - (-4 *4 (-1125)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *3 (-129)) (-5 *2 (-792))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-712 (-291)))) (-5 *1 (-169))))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-665 (-710 *6))) (-5 *4 (-112)) (-5 *5 (-577)) + (-5 *2 (-710 *6)) (-5 *1 (-1059 *6)) (-4 *6 (-375)) (-4 *6 (-1079)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-5 *1 (-1059 *4)) + (-4 *4 (-375)) (-4 *4 (-1079)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-5 *2 (-710 *5)) + (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-1079))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) - (-5 *1 (-774))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3543 *3))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) - (-4 *2 (-672 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) - (-4 *3 (-1268 *2))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *5 (-944)) - (-5 *2 (-1297)) (-5 *1 (-481)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-892)) (-5 *5 (-944)) - (-5 *2 (-1297)) (-5 *1 (-481))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-944)) (-5 *1 (-1057 *2)) - (-4 *2 (-13 (-1125) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-562)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125))))) -(((*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-808)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-660 (-1201))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *3 (-665 (-420 (-980 (-577))))) + (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-869) (-375))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-665 (-305 (-420 (-980 (-577)))))) + (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-869) (-375))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) - (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) - (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1074) (-865))) - (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201))))) + (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 (-305 (-980 *4)))) + (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) - (-4 *6 (-1242)) (-4 *7 (-1242)) (-5 *2 (-246 *5 *7)) - (-5 *1 (-245 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-305 *3)))) + (-12 (-5 *3 (-305 (-420 (-980 (-577))))) + (-5 *2 (-665 (-305 (-980 *4)))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-869) (-375))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1183)) (-5 *5 (-625 *6)) - (-4 *6 (-313)) (-4 *2 (-1242)) (-5 *1 (-308 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-625 *5)) (-4 *5 (-313)) - (-4 *2 (-313)) (-5 *1 (-309 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-625 *1)) (-4 *1 (-313)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-5 *2 (-705 *6)) (-5 *1 (-315 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) - (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) - (-4 *9 (-375)) (-4 *10 (-1268 *9)) (-4 *11 (-1268 (-420 *10))) - (-5 *2 (-348 *9 *10 *11 *12)) - (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-354 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1125)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1246)) (-4 *8 (-1246)) - (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *9 (-1268 *8)) - (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1268 (-420 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) - (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-1125)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) - (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) - (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) - (-4 *6 (-1017 *5)) (-4 *7 (-1268 *6)) - (-4 *8 (-13 (-422 *6 *7) (-1063 *6))) (-4 *9 (-318)) - (-4 *10 (-1017 *9)) (-4 *11 (-1268 *10)) - (-5 *2 (-426 *9 *10 *11 *12)) - (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-422 *10 *11) (-1063 *10))))) + (|partial| -12 (-5 *5 (-1206)) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-4 *4 (-13 (-29 *6) (-1232) (-987))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2104 (-665 *4)))) + (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-677 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *2)) + (-4 *2 (-13 (-29 *6) (-1232) (-987))) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-677 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) + (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1297 *5) "failed")) + (|:| -2104 (-665 (-1297 *5))))) + (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) - (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5)))) + (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1297 *5) "failed")) + (|:| -2104 (-665 (-1297 *5))))) + (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) - (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1242)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) - (-4 *4 (-868)))) + (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) + (-5 *2 + (-665 + (-2 (|:| |particular| (-3 (-1297 *5) "failed")) + (|:| -2104 (-665 (-1297 *5)))))) + (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) - (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6)))) + (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) + (-5 *2 + (-665 + (-2 (|:| |particular| (-3 (-1297 *5) "failed")) + (|:| -2104 (-665 (-1297 *5)))))) + (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2845 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-375)) (-4 *6 (-375)) - (-5 *2 (-2 (|:| -2845 *6) (|:| |coeff| *6))) - (-5 *1 (-597 *5 *6)))) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) + (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4500)))) + (-5 *2 + (-665 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2104 (-665 *7))))) + (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-665 *7)) + (-4 *3 (-708 *5 *6 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-375)) (-4 *6 (-375)) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) + (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) + (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *1 (-793 *5 *2)) (-4 *2 (-13 (-29 *5) (-1232) (-987))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-710 *7)) (-5 *5 (-1206)) + (-4 *7 (-13 (-29 *6) (-1232) (-987))) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-597 *5 *6)))) + (-2 (|:| |particular| (-1297 *7)) (|:| -2104 (-665 (-1297 *7))))) + (-5 *1 (-823 *6 *7)) (-5 *4 (-1297 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) - (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-614 *8)) - (-5 *1 (-612 *6 *7 *8)))) + (|partial| -12 (-5 *3 (-710 *6)) (-5 *4 (-1206)) + (-4 *6 (-13 (-29 *5) (-1232) (-987))) + (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 (-665 (-1297 *6))) (-5 *1 (-823 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-614 *7)) - (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) - (-5 *1 (-612 *6 *7 *8)))) + (|partial| -12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) + (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1297 *7)) (|:| -2104 (-665 (-1297 *7))))) + (-5 *1 (-823 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1182 *7)) - (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) - (-5 *1 (-612 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-660 *6)) (-5 *1 (-658 *5 *6)))) + (|partial| -12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) + (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1297 *7)) (|:| -2104 (-665 (-1297 *7))))) + (-5 *1 (-823 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-660 *6)) (-5 *5 (-660 *7)) - (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-660 *8)) - (-5 *1 (-659 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1074)) (-4 *8 (-1074)) - (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-703 *8 *9 *10)) - (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-703 *5 *6 *7)) - (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1074)) - (-4 *8 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) - (-4 *2 (-703 *8 *9 *10)) (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-703 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) - (-4 *6 (-1268 *5)) (-4 *2 (-1268 (-420 *8))) - (-5 *1 (-725 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1268 (-420 *6))) - (-4 *8 (-1268 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1074)) (-4 *9 (-1074)) - (-4 *5 (-865)) (-4 *6 (-809)) (-4 *2 (-972 *9 *7 *5)) - (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) - (-4 *4 (-972 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-865)) (-4 *6 (-865)) (-4 *7 (-809)) - (-4 *9 (-1074)) (-4 *2 (-972 *9 *8 *6)) - (-5 *1 (-745 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-809)) - (-4 *4 (-972 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5 *7)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-4 *7 (-742)) (-5 *2 (-751 *6 *7)) - (-5 *1 (-750 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-751 *3 *4)) - (-4 *4 (-742)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-813 *6)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *4 (-813 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-848 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-859 *6)) (-5 *1 (-858 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-859 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-858 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-908 *5 *6)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-908 *5 *7)) - (-5 *1 (-907 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-5 *2 (-975 *6)) (-5 *1 (-969 *5 *6)))) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1206)) + (-4 *7 (-13 (-29 *6) (-1232) (-987))) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -2104 (-665 *7))) *7 "failed")) + (-5 *1 (-823 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-865)) - (-4 *8 (-1074)) (-4 *6 (-809)) - (-4 *2 - (-13 (-1125) - (-10 -8 (-15 -3031 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787)))))) - (-5 *1 (-974 *6 *7 *8 *5 *2)) (-4 *5 (-972 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-981 *6)) (-5 *1 (-980 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-989 *5)) (-4 *5 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-989 *6)) (-5 *1 (-991 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-5 *2 (-966 *6)) (-5 *1 (-1006 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1074)) - (-4 *2 (-972 (-975 *4) *5 *6)) (-4 *5 (-809)) - (-4 *6 - (-13 (-865) - (-10 -8 (-15 -2176 ((-1201) $)) - (-15 -3052 ((-3 $ "failed") (-1201)))))) - (-5 *1 (-1009 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) - (-4 *2 (-1017 *6)) (-5 *1 (-1015 *5 *6 *4 *2)) (-4 *4 (-1017 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1022 *6)) (-5 *1 (-1023 *4 *5 *2 *6)) (-4 *4 (-1022 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) - (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) - (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1074)) (-4 *10 (-1074)) - (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *2 (-1078 *5 *6 *10 *11 *12)) - (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) - (-4 *12 (-244 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-1119 *6)) (-5 *1 (-1114 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-864)) - (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-660 *6)) - (-5 *1 (-1114 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-1117 *6)) (-5 *1 (-1116 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) - (-4 *2 (-1174 *4)))) + (-12 (-5 *4 (-115)) (-5 *5 (-1206)) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2104 (-665 *3))) *3 "failed")) + (-5 *1 (-823 *6 *3)) (-4 *3 (-13 (-29 *6) (-1232) (-987))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-665 *2)) + (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-5 *1 (-823 *6 *2)) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-665 *2)) + (-4 *2 (-13 (-29 *6) (-1232) (-987))) + (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *1 (-823 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1065)) (-5 *1 (-826)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6)))) + (-12 (-5 *3 (-829)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-826)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) + (-5 *2 (-1065)) (-5 *1 (-826)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) + (-5 *2 (-1065)) (-5 *1 (-826)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) + (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) + (-5 *2 (-1065)) (-5 *1 (-826)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) + (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) + (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-1182 *7)) - (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) - (-5 *1 (-1181 *6 *7 *8)))) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2104 (-665 *6))) "failed") + *7 *6)) + (-4 *6 (-375)) (-4 *7 (-677 *6)) + (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -2104 (-710 *6)))) + (-5 *1 (-834 *6 *7)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-1065)) (-5 *1 (-923)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1197 *5)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-5 *2 (-1197 *6)) (-5 *1 (-1195 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125)))) + (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-923)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) + (-5 *8 (-228)) (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) + (-5 *2 (-1065)) (-5 *1 (-923)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) + (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) + (-5 *1 (-923)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5 *7 *9)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1256 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1201)))) + (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 (-391))) + (-5 *1 (-1053)) (-5 *4 (-391)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) + (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 (-391))) (-5 *1 (-1053)) + (-5 *4 (-391)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) + (-5 *3 (-327 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) + (-5 *3 (-305 (-327 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-864)) - (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1182 *6)) - (-5 *1 (-1258 *5 *6)))) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) + (-5 *3 (-305 (-327 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1265 *5 *6)) (-14 *5 (-1201)) - (-4 *6 (-1074)) (-4 *8 (-1074)) (-5 *2 (-1265 *7 *8)) - (-5 *1 (-1260 *5 *6 *7 *8)) (-14 *7 (-1201)))) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) + (-5 *3 (-327 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) - (-4 *2 (-1268 *6)) (-5 *1 (-1266 *5 *4 *6 *2)) (-4 *4 (-1268 *5)))) + (-12 (-5 *4 (-665 (-1206))) + (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1161 *5)) + (-5 *3 (-665 (-305 (-327 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1277 *5 *7 *9)) (-4 *5 (-1074)) - (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1277 *6 *8 *10)) (-5 *1 (-1272 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1201)))) + (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) + (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) + (-5 *1 (-1215 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) - (-4 *2 (-1283 *6)) (-5 *1 (-1281 *5 *6 *4 *2)) (-4 *4 (-1283 *5)))) + (-12 (-5 *4 (-665 (-1206))) (-4 *5 (-569)) + (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-1215 *5)) + (-5 *3 (-665 (-305 (-420 (-980 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-569)) + (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-1215 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) + (-5 *1 (-1215 *4)) (-5 *3 (-665 (-305 (-420 (-980 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) - (-4 *6 (-1242)) (-5 *2 (-1292 *6)) (-5 *1 (-1291 *5 *6)))) + (-12 (-5 *4 (-1206)) (-4 *5 (-569)) + (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) + (-5 *3 (-420 (-980 *5))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1292 *5)) - (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1292 *6)) - (-5 *1 (-1291 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-1074)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-1315 *3 *4)) - (-4 *4 (-862))))) -(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + (-12 (-5 *4 (-1206)) (-4 *5 (-569)) + (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) + (-5 *3 (-305 (-420 (-980 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-610))) (-5 *1 (-610))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-549))) (-5 *1 (-549))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-770))))) + (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) + (-5 *1 (-1215 *4)) (-5 *3 (-420 (-980 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) + (-5 *1 (-1215 *4)) (-5 *3 (-305 (-420 (-980 *4))))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *2 (-1065)) (-5 *1 (-773))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-705 *4)) - (-5 *1 (-830 *4 *5)) (-4 *5 (-672 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-375)) - (-5 *2 (-705 *5)) (-5 *1 (-830 *5 *6)) (-4 *6 (-672 *5))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) - (-4 *3 (-1090 *6 *7 *8)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1097 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -2002 *9)))) - (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) - (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) - (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -2002 *9)))) - (-5 *1 (-1097 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) - (-4 *2 - (-13 (-415) - (-10 -7 (-15 -3603 (*2 *4)) (-15 -2144 ((-944) *2)) - (-15 -2559 ((-1292 *2) (-944))) (-15 -1427 (*2 *2))))) - (-5 *1 (-368 *2 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) - (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) - (-5 *1 (-410)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) - (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) - (-5 *1 (-410)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-660 (-1201))) (-5 *5 (-1204)) (-5 *3 (-1201)) - (-5 *2 (-1129)) (-5 *1 (-410))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1297)) - (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *7 (-921 *6)) - (-5 *2 (-705 *7)) (-5 *1 (-708 *6 *7 *3 *4)) (-4 *3 (-385 *7)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470))))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1197 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) - (-5 *2 (-1292 (-577))) (-5 *1 (-1320 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207)))) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1079)) + (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-949)) (-4 *5 (-1079)) + (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) + (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) + (-4 *5 (-910 (-577))) + (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) + (-4 *3 (-13 (-27) (-1232) (-443 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1206)) (-5 *4 (-864 *2)) (-4 *2 (-1169)) + (-4 *2 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) + (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) + (-5 *1 (-580 *5 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-660 (-391))) (-5 *2 (-391)) (-5 *1 (-207))))) + (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-443 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) + ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-109))) (-5 *1 (-177))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-1297 (-327 (-391)))) + (-5 *1 (-316))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) - (-5 *1 (-1185 *4)))) + (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) + (-5 *1 (-1190 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) - (-14 *4 (-1201)) (-14 *5 *3)))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1) (-5 *1 (-880)))) + (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) + (-14 *4 (-1206)) (-14 *5 *3)))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) - (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-569)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-420 (-577))))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271))))) + (-12 (-5 *3 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *4 *5 *6 *7)) + (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-4 *7 (-1247))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-130))))) +(((*1 *1) (-5 *1 (-621)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-949) (-949)))) (-5 *1 (-1001))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-792)) (-4 *2 (-569)) (-5 *1 (-999 *2 *4)) + (-4 *4 (-1273 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-665 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) + (-4 *7 (-1273 *6)) + (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-504))))) (((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) - ((*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-660 *4))) (-5 *1 (-927 *4)) - (-5 *3 (-660 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-1127 *4))) (-5 *1 (-927 *4)) - (-5 *3 (-1127 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-838))))) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) + ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *1) (-12 (-5 *2 (-712 *3)) (-5 *1 (-994 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-1130))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1232) (-443 *5))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 + (-3 (-864 *3) + (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) + (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) + "failed")) + (-5 *1 (-654 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1188)) + (-4 *3 (-13 (-27) (-1232) (-443 *6))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-864 *3)) (-5 *1 (-654 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-864 (-980 *5)))) (-4 *5 (-465)) + (-5 *2 + (-3 (-864 (-420 (-980 *5))) + (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-864 (-420 (-980 *5))) "failed"))) + "failed")) + (-5 *1 (-655 *5)) (-5 *3 (-420 (-980 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) + (-4 *5 (-465)) + (-5 *2 + (-3 (-864 *3) + (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) + (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) + "failed")) + (-5 *1 (-655 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-305 (-420 (-980 *6)))) (-5 *5 (-1188)) + (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-864 *3)) + (-5 *1 (-655 *6))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322)))) - ((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-4 *4 (-1074)) - (-5 *1 (-1054 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) - (-4 *4 (-1268 *3))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) -(((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-443 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-115)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-443 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-115)) (-5 *1 (-164)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) - (-4 *4 (-13 (-443 *3) (-1027))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) - ((*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1125)) (-5 *1 (-442 *3 *4)) - (-4 *3 (-443 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) - (-4 *4 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-643 *3 *4)) - (-4 *4 (-13 (-443 *3) (-1027) (-1227))))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1215 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-375)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) - (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1268 *2)) - (-4 *5 (-1268 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) - (-4 *6 (-354 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-375)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))) - (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) - (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) - (-4 *1 (-347 *3 *4 *5 *6))))) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-665 (-1206))) + (-5 *2 + (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) + (-5 *1 (-646 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1232) (-29 *6))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-227 *6 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) (-4 *5 (-1130)) + (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) + (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 *5)) (-4 *6 (-1130)) + (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-662 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) + (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) + (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *1 (-662 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-792))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1273 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1273 (-171 *2)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4))))) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *6)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792))))) (((*1 *1 *2) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) - (-14 *4 (-660 (-1201))))) + (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) + (-4 *3 (-569)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) + (-4 *2 (-1288 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027))))) + (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) + (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) + (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) + (-4 *2 (-1288 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) - ((*1 *1 *1) (-4 *1 (-295))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) - (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) - ((*1 *1 *2) - (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-5 *1 (-640 *3 *4 *5)) - (-14 *5 (-944)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) - (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) - (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1086 (-1049 *4) (-1197 (-1049 *4)))) (-5 *3 (-880)) - (-5 *1 (-1049 *4)) (-4 *4 (-13 (-864) (-375) (-1047)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1268 *9)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-318)) - (-4 *10 (-972 *9 *7 *8)) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) + (-5 *1 (-1183 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-542)))) + ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542))))) +(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) + ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) + ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 *4)) (-5 *1 (-1171 *3 *4)) + (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34)))))) +(((*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-1221 *2)) (-4 *2 (-375))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) + (-5 *2 (-665 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-452))) (-5 *1 (-888))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) + (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) + (-4 *2 (-708 *3 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) + (-4 *4 (-361)) (-5 *2 (-1302)) (-5 *1 (-541 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) + (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-1229 *4)) + (-4 *4 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1181))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *7 (-1273 *5)) (-4 *4 (-745 *5 *7)) + (-5 *2 (-2 (|:| -3684 (-710 *6)) (|:| |vec| (-1297 *5)))) + (-5 *1 (-832 *5 *6 *7 *4 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-4 *2 (-1273 *5)) + (-5 *1 (-1291 *5 *2 *6 *3)) (-4 *6 (-677 *2)) (-4 *3 (-1288 *5))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *6)))) + (-5 *4 (-1056 (-864 (-577)))) (-5 *5 (-1206)) (-5 *7 (-420 (-577))) + (-4 *6 (-1079)) (-5 *2 (-885)) (-5 *1 (-608 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| |deter| (-660 (-1197 *10))) - (|:| |dterm| - (-660 (-660 (-2 (|:| -2129 (-787)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-660 *6)) (|:| |nlead| (-660 *10)))) - (-5 *1 (-794 *6 *7 *8 *9 *10)) (-5 *3 (-1197 *10)) (-5 *4 (-660 *6)) - (-5 *5 (-660 *10))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) - (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313))))) + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-650))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) - ((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) + (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-665 (-980 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-665 (-980 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-665 (-980 *3))))) + ((*1 *2) + (-12 (-5 *2 (-665 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-943))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-5 *2 (-660 (-2 (|:| -3056 *3) (|:| -3616 *4)))) - (-5 *1 (-712 *3)) (-4 *3 (-1268 *4))))) + (-12 (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *2 (-665 (-980 *4))) + (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) + (-14 *5 (-949)) (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-700 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -1985 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) - (-5 *1 (-1200))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) - (-5 *2 (-1060)) (-5 *1 (-770))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-994 *4 *3)) - (-4 *3 (-1268 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-966 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-775))))) -(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-768))))) + (-3 (|:| I (-327 (-577))) (|:| -2057 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) + (-5 *1 (-1205))))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1302)) (-5 *1 (-843))))) (((*1 *2 *1) - (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-176 (-577))) (-5 *1 (-781 *3)) (-4 *3 (-417)))) + (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 (-577))))) + (-5 *1 (-373 *3)) (-4 *3 (-1130)))) ((*1 *2 *1) - (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-889 *3)) (-14 *3 (-577)))) + (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) + (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 (-792))))))) ((*1 *2 *1) - (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) - (-5 *1 (-890 *3 *4)) (-4 *4 (-887 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) - (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-801 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1074))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-803)) (-5 *2 (-1060)) - (-5 *3 - (-2 (|:| |fn| (-327 (-228))) - (|:| -2097 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-803)) (-5 *2 (-1060)) - (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228))))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) (-4 *3 (-627 (-391))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-944)) (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) - (-4 *3 (-627 (-391))))) - ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-627 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-944)) (-4 *5 (-174)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-627 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) - (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) - (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) - (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-801 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-645))))) -(((*1 *2 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-865)) (-5 *3 (-660 *6)) (-5 *5 (-660 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-660 *5)) (|:| |f3| *5) - (|:| |f4| (-660 *5)))) - (-5 *1 (-1212 *6)) (-5 *4 (-660 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-569)) (-4 *2 (-1074)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *1)))) - (-4 *1 (-1096 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341))))) -(((*1 *2 *3) - (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) - (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1183))))) + (-12 (-5 *2 (-665 (-2 (|:| -3759 *3) (|:| -2328 (-577))))) + (-5 *1 (-431 *3)) (-4 *3 (-569))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) + (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) + (-5 *1 (-946 *4))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) + (|partial| -12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) ((*1 *1) (-5 *1 (-591)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) - (-4 *6 (-809)) (-4 *7 (-972 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-660 *7)) (|:| |n0| (-660 *7)))) - (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-772))))) -(((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) -(((*1 *1) (-5 *1 (-1294)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) - (-4 *3 (-1242))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-327 *5))) - (-5 *1 (-1154 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-327 *5)))) - (-5 *1 (-1154 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-865) - (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 (*2 $)) - (-15 -2032 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-865) - (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 (*2 $)) - (-15 -2032 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) - ((*1 *1 *1) (-5 *1 (-391))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-1292 (-327 (-391)))) - (-5 *1 (-316))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1197 *7)) (-4 *5 (-1074)) - (-4 *7 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-514 *5 *2 *6 *7)) - (-4 *6 (-1268 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) - (-4 *4 (-1268 *5)) (-5 *2 (-1197 *7)) (-5 *1 (-514 *5 *4 *6 *7)) - (-4 *6 (-1268 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1242)) - (-4 *5 (-385 *4)) (-4 *3 (-385 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 (-660 *6))) (-4 *6 (-972 *3 *5 *4)) - (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) - (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) - (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-975 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) - (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-577)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) + (-5 *1 (-462 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) - (-5 *2 (-1292 (-705 (-975 *4)))) (-5 *1 (-191 *4))))) + (-12 (-4 *4 (-1079)) + (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-665 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) + (-5 *2 (-665 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1201)) - (-4 *4 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1074)) (-5 *1 (-730 *4 *2)) - (-4 *2 (-664 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-852 *2)) (-4 *2 (-1074))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-787)) (-4 *2 (-1125)) - (-5 *1 (-694 *2))))) + (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) + (-4 *3 (-1130))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) + (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *2 *1) + (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) + (-5 *2 (-1202 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) - (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *5)) - (-4 *5 (-1268 (-420 *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-1074))))) -(((*1 *2 *3) (-12 (-5 *3 (-660 (-52))) (-5 *2 (-1297)) (-5 *1 (-881))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) + (-12 (-4 *4 (-361)) + (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -3566 *3)))) + (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) - (-5 *2 (-787)))) + (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3) + (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) + (-5 *2 (-949))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) + (-5 *1 (-432 *4)))) + ((*1 *1 *1) (-5 *1 (-954))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) + ((*1 *1 *1) (-5 *1 (-955))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) + (-5 *4 (-420 (-577))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) + (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) + (-5 *4 (-420 (-577))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3337 (-420 (-577))) (|:| -3352 (-420 (-577))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) + (-4 *3 (-1273 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-109))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-1187 (-1187 (-980 *5)))) + (-5 *1 (-1305 *5)) (-5 *4 (-1187 (-980 *5)))))) +(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-4 *1 (-313)))) +(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1297 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) + (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949)) (-4 *4 (-375)) (-5 *2 (-1297 *1)) + (-4 *1 (-340 *4)))) + ((*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1297 *1)) (-4 *1 (-340 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) + (-4 *1 (-422 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) - (-5 *2 (-787)))) + (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) + (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) + (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-742))))) + (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) + (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) + (-4 *6 (-422 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-430 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-541 *4)) + (-4 *4 (-361))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-577)) (-5 *1 (-1140)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-665 (-577))) (-5 *4 (-577)) + (-5 *1 (-1140))))) (((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 *1)) + (-4 *1 (-394 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 (-577)))) (-5 *1 (-479))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-290))) (-5 *1 (-290)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1099)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1063 *4)) (-4 *3 (-318)) - (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *6 (-422 *4 *5)) - (-14 *7 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1292 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1017 *3)) - (-4 *5 (-1268 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) + (-12 (-5 *2 (-665 (-756 *3 *4))) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-747)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-977 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-318)) + (-4 *5 (-1079)) (-5 *2 (-710 *5)) (-5 *1 (-1059 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1130)) (-4 *2 (-926 *5)) (-5 *1 (-713 *5 *2 *3 *4)) + (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) (((*1 *2 *1) - (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) - (-4 *3 (-1125))))) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-665 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) + (-4 *8 (-870)) (-5 *1 (-1007 *6 *7 *8 *9))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313))))) -(((*1 *1 *1) - (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-465)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *1)))) - (-4 *1 (-1096 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1246))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-1271 *3 *2)) - (-4 *2 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3543 ($ $ $)))))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-660 (-660 *4))) (-5 *2 (-660 *4)) (-4 *4 (-318)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 *8)) - (-5 *4 - (-660 - (-2 (|:| -2559 (-705 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-705 *7))))) - (-5 *5 (-787)) (-4 *8 (-1268 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-361)) + (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 - (-2 (|:| -2559 (-705 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-705 *7)))) - (-5 *1 (-511 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) + (-665 + (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) + (|:| |radvect| (-665 (-710 (-327 (-577)))))))) + (-5 *1 (-1061))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-577)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) +(((*1 *1 *1) (-4 *1 (-647))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-792)) (-5 *1 (-574))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-665 + (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) + (|:| |wcond| (-665 (-980 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *5)))))))))) + (-5 *4 (-1188)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-977 *5 *7 *6)) + (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-577)) + (-5 *1 (-952 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) + (-14 *4 (-577))))) (((*1 *2 *3) - (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-14 *5 (-660 (-1201))) - (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *4)) (|:| -2729 (-660 (-975 *4)))))) - (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) - (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (|partial| -12 (-4 *2 (-1130)) (-5 *1 (-1224 *3 *2)) (-4 *3 (-1130))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) - (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + (-665 + (-2 + (|:| -4376 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (|:| -2727 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1187 (-228))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3433 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-572))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) + (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) + (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) + (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) + (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *5)) (|:| -2729 (-660 (-975 *5)))))) - (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) - (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) + (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) + (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) +(((*1 *2 *3) + (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) + (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-864) (-318) (-148) (-1047))) - (-5 *2 - (-660 (-2 (|:| -3128 (-1197 *4)) (|:| -2729 (-660 (-975 *4)))))) - (-5 *1 (-1319 *4 *5 *6)) (-5 *3 (-660 (-975 *4))) - (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-1125))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-880))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-865) - (-10 -8 (-15 -2837 ((-1183) $ (-1201))) (-15 -1992 (*2 $)) - (-15 -2032 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-407)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515)))) - ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-726)))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1222)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1222))))) + (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-883)) (-5 *2 (-712 (-562))) (-5 *3 (-562))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) + (-4 *3 (-1130))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1210)) (-5 *1 (-1209))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-665 (-2 (|:| |totdeg| (-792)) (|:| -4181 *3)))) + (-5 *4 (-792)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) + (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) + (-4 *5 (-1273 *4)) (-5 *2 (-665 (-420 *5))) (-5 *1 (-1046 *4 *5)) + (-5 *3 (-420 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-705 (-420 (-975 (-577))))) - (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)) - (-5 *3 (-327 (-577)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) - (-4 *3 (-1125))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-756 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-865)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *1 (-1005 *3)) (-4 *3 (-1074)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) - (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) - (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) - (-5 *2 (-112)) (-5 *1 (-1165 *5 *6))))) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) - (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 *4)))) - (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-254 *5 *6))) (-4 *6 (-465)) - (-5 *2 (-254 *5 *6)) (-14 *5 (-660 (-1201))) (-5 *1 (-644 *5 *6))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1242)) - (-4 *5 (-1242)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-787)) - (-4 *7 (-1242)) (-4 *5 (-1242)) (-5 *2 (-246 *6 *5)) - (-5 *1 (-245 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1242)) (-4 *5 (-1242)) - (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1125)) (-4 *5 (-1125)) - (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-660 *6)) (-4 *6 (-1242)) - (-4 *5 (-1242)) (-5 *2 (-660 *5)) (-5 *1 (-658 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-981 *6)) (-4 *6 (-1242)) - (-4 *5 (-1242)) (-5 *2 (-981 *5)) (-5 *1 (-980 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1182 *6)) (-4 *6 (-1242)) - (-4 *3 (-1242)) (-5 *2 (-1182 *3)) (-5 *1 (-1180 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1292 *6)) (-4 *6 (-1242)) - (-4 *5 (-1242)) (-5 *2 (-1292 *5)) (-5 *1 (-1291 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) - (-5 *2 (-660 (-660 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) - (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) + (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-665 *3)) + (-5 *1 (-1267 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1074)) - (-5 *2 (-2 (|:| -2669 *1) (|:| -2689 *1))) (-4 *1 (-870 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) - (-5 *2 (-2 (|:| -2669 *3) (|:| -2689 *3))) (-5 *1 (-871 *5 *3)) - (-4 *3 (-870 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-944))) (-5 *2 (-1203 (-420 (-577)))) - (-5 *1 (-192))))) + (-12 + (-5 *2 + (-2 (|:| -4473 *3) (|:| |gap| (-792)) (|:| -2203 (-803 *3)) + (|:| -2519 (-803 *3)))) + (-5 *1 (-803 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) + (-5 *2 + (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2203 *1) + (|:| -2519 *1))) + (-4 *1 (-1095 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 + (-2 (|:| -4473 *1) (|:| |gap| (-792)) (|:| -2203 *1) + (|:| -2519 *1))) + (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-880)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) - (-4 *3 (-1242))))) -(((*1 *1) (-5 *1 (-591)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558))))) -(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2845 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-375)) (-4 *7 (-1268 *6)) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) + (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 *4)))))) + ((*1 *2 *1) + (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)) + (-5 *2 (-665 (-896 *4 *3))))) + ((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| -4473 *3) (|:| -3305 *4)))) + (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-5 *2 (-1187 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1209)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) + (-5 *1 (-1209)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) + (-5 *1 (-1209))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-375)) + (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-463 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) (-5 *2 - (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) - (-2 (|:| -2845 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) + (-2 (|:| R (-710 *6)) (|:| A (-710 *6)) (|:| |Ainv| (-710 *6)))) + (-5 *1 (-1008 *6)) (-5 *3 (-710 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) + ((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) (((*1 *2 *3) - (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) - (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-1074)) (-4 *4 (-1125)) - (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -1527 (-577)))) - (-4 *1 (-443 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1074)) (-4 *4 (-1125)) - (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -1527 (-577)))) - (-4 *1 (-443 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) - (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -1527 (-577)))) - (-4 *1 (-443 *3)))) + (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1240 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710 *4)) (-4 *4 (-375)) (-5 *2 (-1202 *4)) + (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-869)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-885))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -1527 (-787)))) - (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + (|partial| -12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-2 (|:| |var| *5) (|:| -1527 (-787)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) - (-4 *7 (-972 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1527 (-577)))) - (-5 *1 (-973 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) - (-15 -2797 (*7 $)))))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) - (-5 *2 (-1060)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880))))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-894)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-894)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-519)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-605)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-491)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1191)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-639)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1121)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1115)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1098)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-995)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1061)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-322)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1176)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-538)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1303)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1091)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-530)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-697)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1140)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-619)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1302)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-692)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-221)))) - ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *1 (-599 *2)) (-4 *2 (-1063 *3)) - (-4 *2 (-375)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) + (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-870) + (-10 -8 (-15 -2916 ((-1188) $ (-1206))) (-15 -2064 (*2 $)) + (-15 -3699 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-407)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515)))) + ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-731)))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1227)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1227))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-814)) + (-4 *3 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $))))) (-4 *5 (-569)) + (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-643 *4 *2)) - (-4 *2 (-13 (-443 *4) (-1027) (-1227))))) + (-12 (-4 *4 (-1079)) (-4 *5 (-814)) + (-4 *3 + (-13 (-870) + (-10 -8 (-15 -4463 ((-1206) $)) + (-15 -3341 ((-3 $ "failed") (-1206)))))) + (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) - (-4 *4 (-569)) (-5 *1 (-643 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-982)) (-5 *2 (-1201)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-982))))) + (-12 (-5 *3 (-665 *6)) + (-4 *6 + (-13 (-870) + (-10 -8 (-15 -4463 ((-1206) $)) + (-15 -3341 ((-3 $ "failed") (-1206)))))) + (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) + (-4 *2 (-977 (-980 *4) *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-660 (-228))) - (-5 *1 (-481))))) -(((*1 *2 *1) - (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-4 *1 (-926 *3))))) -(((*1 *1) (-5 *1 (-610)))) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3846 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) - (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787))))) + (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1219 (-949) (-792)))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) + (-4 *2 (-1247)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (|has| *1 (-6 -4499)) + (-4 *1 (-152 *2)) (-4 *2 (-1247)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) + (-4 *2 (-1247)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) + (-4 *2 (-1247)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1079)) + (-5 *2 (-2 (|:| -4181 (-1202 *4)) (|:| |deg| (-949)))) + (-5 *1 (-224 *4 *5)) (-5 *3 (-1202 *4)) (-4 *5 (-569)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) + (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-245 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1130)))) + ((*1 *1 *1) + (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1273 *2)) + (-4 *4 (-1273 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) + (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) + ((*1 *1 *1) (-5 *1 (-508))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) + (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) + (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) + (-4 *9 (-385 *2)) (-5 *1 (-706 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-375)) + (-4 *3 (-174)) (-4 *1 (-745 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) + (-4 *2 (-1247)) (-5 *1 (-985 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) + (-14 *6 (-665 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1079)) (-4 *2 (-1079)) + (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) + (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) + (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *12 (-1083 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) + (-4 *2 (-1247)) (-5 *1 (-1185 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1240 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-814)) + (-4 *7 (-870)) (-4 *2 (-1095 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) + (-4 *2 (-1247)) (-5 *1 (-1296 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1115))) (-5 *1 (-302))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) + ((*1 *1 *1) (-5 *1 (-885)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) - (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838))))) + (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-630 *5))) (-4 *4 (-1130)) (-5 *2 (-630 *5)) + (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) + (-4 *3 (-13 (-375) (-148) (-1068 (-577)))) (-5 *1 (-581 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-665 (-228))) + (-5 *1 (-481))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-277))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-763))))) + (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) + (-4 *5 (-244 (-3600 *3) (-792))) + (-14 *6 + (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *5)) + (-2 (|:| -3354 *2) (|:| -2328 *5)))) + (-4 *2 (-870)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-977 *4 *5 (-887 *3)))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1007 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-972 *7 *5 *6)) - (-5 *1 (-758 *5 *6 *7 *2)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-318))))) -(((*1 *2 *1) - (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) - (-5 *2 (-1197 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-91 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-835 *3)))) + (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1232))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-1202 (-420 (-1202 *6)))) (-5 *1 (-573 *5 *6 *7)) + (-5 *3 (-1202 *6)) (-4 *7 (-1130)))) ((*1 *2 *1) - (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) - (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) - (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-1090 *3 *4 *2)) (-4 *2 (-865)))) + (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) ((*1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-772))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1183)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) - (-4 *4 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) + (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1202 *11)) (-5 *6 (-665 *10)) + (-5 *7 (-665 (-792))) (-5 *8 (-665 *11)) (-4 *10 (-870)) + (-4 *11 (-318)) (-4 *9 (-814)) (-4 *5 (-977 *11 *9 *10)) + (-5 *2 (-665 (-1202 *5))) (-5 *1 (-763 *9 *10 *11 *5)) + (-5 *3 (-1202 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-977 *3 *4 *5)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) + (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-14 *6 (-665 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) + (-4 *7 (-870)) (-4 *8 (-318)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 - (-660 - (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) - (|:| |wcond| (-660 (-975 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) - (|:| -2559 (-660 (-1292 (-420 (-975 *4)))))))))) - (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242))))) + (-2 (|:| |upol| (-1202 *8)) (|:| |Lval| (-665 *8)) + (|:| |Lfact| + (-665 (-2 (|:| -3759 (-1202 *8)) (|:| -2328 (-577))))) + (|:| |ctpol| *8))) + (-5 *1 (-763 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-660 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-577))))) - (-5 *1 (-431 *3)) (-4 *3 (-569)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-787)) (-4 *3 (-361)) (-4 *5 (-1268 *3)) - (-5 *2 (-660 (-1197 *3))) (-5 *1 (-511 *3 *5 *6)) - (-4 *6 (-1268 *5))))) + (-12 (-4 *2 (-1273 *3)) (-5 *1 (-412 *3 *2)) + (-4 *3 (-13 (-375) (-148)))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34))) + (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-2 (|:| |k| (-835 *3)) (|:| |c| *4)))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) - (-4 *2 (-1268 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) -(((*1 *2 *3) - (-12 (-4 *1 (-816)) - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-1060))))) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228))))) (((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) + (-4 *4 (-1273 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1273 (-171 *3)))))) +(((*1 *2 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885))))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-899)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-899)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1188)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-605)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-491)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1196)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-644)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1126)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1120)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1103)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1000)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1066)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-322)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-692)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1181)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-538)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1308)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1096)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-530)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-702)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1145)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-618)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1307)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-697)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-221)))) + ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-949)) (-4 *5 (-318)) (-4 *3 (-1273 *5)) + (-5 *2 (-2 (|:| |plist| (-665 *3)) (|:| |modulo| *5))) + (-5 *1 (-473 *5 *3)) (-5 *4 (-665 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-782)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1130)) (-4 *4 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *5 *4 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3))))) +(((*1 *2) (-12 - (-5 *3 - (-2 (|:| |pde| (-660 (-327 (-228)))) - (|:| |constraints| - (-660 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-787)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) - (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) - (|:| |tol| (-228)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *1 *1) (-5 *1 (-112)))) + (-5 *2 (-2 (|:| -1349 (-665 (-1206))) (|:| -3518 (-665 (-1206))))) + (-5 *1 (-1249))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) + (-5 *1 (-748 *5 *2)) (-4 *5 (-375))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -3613 *4)))) + (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 (-1202 *4))) (-5 *3 (-1202 *4)) + (-4 *4 (-937)) (-5 *1 (-684 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) + (-15 -2429 ((-1155 *3 (-630 $)) $)) + (-15 -3709 ($ (-1155 *3 (-630 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) + (-15 -2429 ((-1155 *3 (-630 $)) $)) + (-15 -3709 ($ (-1155 *3 (-630 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-665 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *4 (-630 $)) $)) + (-15 -2429 ((-1155 *4 (-630 $)) $)) + (-15 -3709 ($ (-1155 *4 (-630 $))))))) + (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-665 (-630 *2))) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *4 (-630 $)) $)) + (-15 -2429 ((-1155 *4 (-630 $)) $)) + (-15 -3709 ($ (-1155 *4 (-630 $))))))) + (-4 *4 (-569)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *2 (-1268 *4)) (-5 *1 (-825 *4 *2 *3 *5)) - (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) - (-4 *5 (-672 (-420 *2)))))) + (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-254 *3 *4)) + (-14 *3 (-665 (-1206))) (-4 *4 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-577))) (-14 *3 (-665 (-1206))) + (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1079)) + (-4 *5 (-244 (-3600 *3) (-792))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-494 *3 *4)) + (-14 *3 (-665 (-1206))) (-4 *4 (-1079))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2) - (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) - ((*1 *2 *2) - (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-442 *3 *4)) - (-4 *3 (-443 *4)))) - ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-557 *3)) (-4 *3 (-558)))) - ((*1 *2) (-12 (-4 *1 (-779)) (-5 *2 (-787)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-812 *3 *4)) - (-4 *3 (-813 *4)))) - ((*1 *2) - (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-1016 *3 *4)) - (-4 *3 (-1017 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-1021 *3 *4)) - (-4 *3 (-1022 *4)))) - ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1036 *3)) (-4 *3 (-1037)))) - ((*1 *2) (-12 (-4 *1 (-1074)) (-5 *2 (-787)))) - ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1084 *3)) (-4 *3 (-1085))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) + (-12 (-5 *3 (-665 (-549))) (-5 *2 (-1206)) (-5 *1 (-549))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271))))) + (-12 (-5 *3 (-115)) (-4 *4 (-1079)) (-5 *1 (-735 *4 *2)) + (-4 *2 (-669 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-857 *2)) (-4 *2 (-1079))))) +(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 *3)) (-4 *3 (-1273 *5)) + (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 (-1202 (-577)))) (-5 *3 (-1202 (-577))) + (-5 *1 (-585)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-665 (-1202 *1))) (-5 *3 (-1202 *1)) + (-4 *1 (-937))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1 *1) (|partial| -4 *1 (-1182)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-665 *5)) (-5 *4 (-577)) (-4 *5 (-869)) (-4 *5 (-375)) + (-5 *2 (-792)) (-5 *1 (-973 *5 *6)) (-4 *6 (-1273 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-971 *4)) (-4 *4 (-1079)) (-5 *1 (-1194 *3 *4)) + (-14 *3 (-949))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-1 *5)) (-5 *1 (-704 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710 (-420 (-577)))) + (-5 *2 + (-665 + (-2 (|:| |outval| *4) (|:| |outmult| (-577)) + (|:| |outvect| (-665 (-710 *4)))))) + (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869)))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) + (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807))))) (((*1 *2 *3) - (-12 + (-12 (-14 *4 (-665 (-1206))) (-14 *5 (-792)) + (-5 *2 + (-665 + (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) + (-254 *4 (-420 (-577)))))) + (-5 *1 (-518 *4 *5)) (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) + (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) + (-254 *4 (-420 (-577)))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-52))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -3613 *8))) + (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-949)) (-4 *5 (-569)) (-5 *2 (-710 *5)) + (-5 *1 (-984 *5 *3)) (-4 *3 (-677 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *5 (-1130))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -2355 *4)))) + (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-670 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-630 *4)) (-5 *6 (-1202 *4)) + (-4 *4 (-13 (-443 *7) (-27) (-1232))) + (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-630 *4)) (-5 *6 (-420 (-1202 *4))) + (-4 *4 (-13 (-443 *7) (-27) (-1232))) + (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-558))) - ((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) ((*1 *1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) - (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) - (-4 *1 (-379 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) - (-4 *1 (-382 *4 *5)) (-4 *5 (-1268 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1268 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-699 *4 *3)) (-4 *4 (-1125)) - (-4 *3 (-1125))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1268 (-171 *2)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1292 (-1201))) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) - (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) - (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) - (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) - (-14 *6 (-660 *2)) (-14 *7 (-1292 (-705 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) - (-14 *6 (-1292 (-705 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1292 (-1201))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) - (-14 *6 (-1292 (-705 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1201)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-944)) (-14 *5 (-660 *2)) (-14 *6 (-1292 (-705 *3))))) - ((*1 *1) - (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-944)) - (-14 *4 (-660 (-1201))) (-14 *5 (-1292 (-705 *2)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3) - (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) - ((*1 *2 *3) - (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) - ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2443 (-665 (-228))))) + (-5 *2 (-391)) (-5 *1 (-277)))) ((*1 *2 *3) - (-12 (-5 *3 (-1197 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) + (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316))))) +(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216))))) +(((*1 *1 *1) (-5 *1 (-885)))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-458 *3)) (-4 *3 (-1079))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-1197 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) + (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) +(((*1 *2 *3) + (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-318) (-148))) + (-4 *2 (-977 *4 *6 *5)) (-5 *1 (-952 *4 *5 *6 *2)) + (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) + (-4 *5 (-385 *4)) (-4 *3 (-385 *4))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-2 (|:| -3759 *4) (|:| -1597 (-577))))) + (-4 *4 (-1273 (-577))) (-5 *2 (-758 (-792))) (-5 *1 (-455 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-660 *1)) - (-4 *1 (-1093 *4 *3))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-420 *6)) - (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) - (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) - (-5 *1 (-886 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) - (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) - (-5 *1 (-886 *5 *6 *7))))) + (-12 (-5 *3 (-431 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1079)) + (-5 *2 (-758 (-792))) (-5 *1 (-457 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-870))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-2 (|:| |k| (-840 *3)) (|:| |c| *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1091 (-1054 *4) (-1202 (-1054 *4)))) (-5 *3 (-885)) + (-5 *1 (-1054 *4)) (-4 *4 (-13 (-869) (-375) (-1052)))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1057 *5 *6 *7 *3))) (-5 *1 (-1057 *5 *6 *7 *3)) + (-4 *3 (-1095 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-665 *6)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1176 *5 *6 *7 *3))) (-5 *1 (-1176 *5 *6 *7 *3)) + (-4 *3 (-1095 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-859 *3))) (-4 *3 (-13 (-27) (-1227) (-443 *5))) - (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 - (-3 (-859 *3) - (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) - (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) - "failed")) - (-5 *1 (-649 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1183)) - (-4 *3 (-13 (-27) (-1227) (-443 *6))) - (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-859 *3)) (-5 *1 (-649 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-859 (-975 *5)))) (-4 *5 (-465)) - (-5 *2 - (-3 (-859 (-420 (-975 *5))) - (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-859 (-420 (-975 *5))) "failed"))) - "failed")) - (-5 *1 (-650 *5)) (-5 *3 (-420 (-975 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) - (-4 *5 (-465)) - (-5 *2 - (-3 (-859 *3) - (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) - (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) - "failed")) - (-5 *1 (-650 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 (-420 (-975 *6)))) (-5 *5 (-1183)) - (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-859 *3)) - (-5 *1 (-650 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-660 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-443 *4) (-1027))) (-4 *4 (-569)) - (-5 *1 (-286 *4 *2))))) -(((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) - (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) - (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) - (-5 *1 (-1132 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6))))) + (-12 (-5 *4 (-577)) (-5 *2 (-665 (-2 (|:| -3759 *3) (|:| -1597 *4)))) + (-5 *1 (-717 *3)) (-4 *3 (-1273 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1206)) (-5 *1 (-599 *2)) (-4 *2 (-1068 *3)) + (-4 *2 (-375)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-648 *4 *2)) + (-4 *2 (-13 (-443 *4) (-1032) (-1232))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) + (-4 *4 (-569)) (-5 *1 (-648 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-1206)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-987))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2058 (-577)) (|:| -2127 (-665 *3)))) + (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1130)) (-5 *1 (-992 *3 *2)) (-4 *3 (-1130))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) - (-4 *3 (-1242)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) + (-4 *3 (-1247)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) - (-4 *3 (-1242)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) + (-4 *3 (-1247)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) - (-4 *2 (-1242)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1201)) (-5 *1 (-645)))) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) + (-4 *2 (-1247)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1206)) (-5 *1 (-650)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1259 (-577))) (|has| *1 (-6 -4471)) (-4 *1 (-667 *2)) - (-4 *2 (-1242)))) + (-12 (-5 *3 (-1264 (-577))) (|has| *1 (-6 -4500)) (-4 *1 (-672 *2)) + (-4 *2 (-1247)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) - (-4 *2 (-1242)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) + (-4 *2 (-1247)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) + (-12 (-4 *1 (-1223 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) - (-4 *2 (-1242)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) + (-4 *2 (-1247)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) - (-4 *3 (-1242)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) + (-4 *3 (-1247)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) - (-4 *2 (-1242))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-130)))))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-908 *4 *5)) (-5 *3 (-908 *4 *6)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-682 *5)) (-5 *1 (-904 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1127 *4)) (-4 *4 (-1125)) (-5 *2 (-1 *4)) - (-5 *1 (-1042 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1119 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-630)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) - (-5 *2 (-660 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) - (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311))))) -(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-549))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-2 (|:| -1814 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *4)) (-5 *1 (-904 *3 *4 *5)) - (-4 *3 (-1125)) (-4 *5 (-682 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-989 *4)) (-4 *4 (-1125)) (-5 *2 (-1127 *4)) - (-5 *1 (-990 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) - (-5 *2 (-1060)) (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2786 (-577)) (|:| -1704 (-660 *3)))) - (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) -(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) + (-4 *2 (-1247))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) + (-5 *1 (-192))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1255)))))) +(((*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) + (-4 *2 (-1288 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) + (-4 *5 (-1273 *4)) (-4 *6 (-745 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) + (-4 *2 (-1288 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) + (-5 *1 (-555 *4 *2)) (-4 *2 (-1288 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) + (-5 *1 (-1183 *4))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) (-4 *2 (-690 *3))))) + (|partial| -12 (-4 *3 (-375)) (-5 *1 (-922 *2 *3)) + (-4 *2 (-1273 *3))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1114 *3)) (-4 *3 (-133))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))) + (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-287 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) + (-5 *2 (-665 (-665 (-665 (-971 *3)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-831 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-674 (-420 *6))) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 (-2 (|:| -2104 (-665 (-420 *6))) (|:| -3684 (-710 *5)))) + (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-831 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *6 (-420 *6))) (-4 *6 (-1273 *5)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-5 *2 (-2 (|:| -2104 (-665 (-420 *6))) (|:| -3684 (-710 *5)))) + (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-971 (-228)) (-228) (-228))) + (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1202 *2)) (-5 *4 (-1206)) (-4 *2 (-443 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-569)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-4 *1 (-1042)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-5 *4 (-885)) + (-4 *1 (-1042)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-949)) (-4 *4 (-13 (-869) (-375))) + (-4 *1 (-1098 *4 *2)) (-4 *2 (-1273 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1247)) (-5 *2 (-1302))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-318)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2343 *1))) + (-4 *1 (-318))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-859))) (-5 *1 (-141))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-660 (-625 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1125)) + (-12 (-5 *2 (-665 (-630 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1130)) (-5 *1 (-586 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) - (-4 *3 (-1268 *4)) - (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-1088)))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) - ((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) - ((*1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-5 *1 (-880)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-787)))) - ((*1 *1 *1) (-4 *1 (-415)))) + (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) + (-4 *2 (-677 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) - (-5 *2 (-431 (-1197 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) - (-4 *3 (-1268 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) + (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) - (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) - (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-318)))) - ((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) - (-4 *2 (-703 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1078 *2 *3 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) -(((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1165 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) - (-5 *2 (-112)) (-5 *1 (-1166 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3076 *7) (|:| |sol?| (-112))) - (-577) *7)) - (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) - (-5 *3 (-420 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-587 *7 *8))))) -(((*1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-577))) - (-5 *2 (-705 (-577))) (-5 *1 (-1135))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-5 *1 (-922 *2 *4)) + (-4 *2 (-1273 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-767))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) - (-4 *4 (-1268 *3))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-660 (-2 (|:| |totdeg| (-787)) (|:| -2364 *3)))) - (-5 *4 (-787)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) - (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-4 *6 (-905 *5)) (-5 *2 (-904 *5 *6 (-660 *6))) - (-5 *1 (-906 *5 *6 *4)) (-5 *3 (-660 *6)) (-4 *4 (-627 (-911 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 *3))) (-5 *1 (-906 *5 *3 *4)) - (-4 *3 (-1063 (-1201))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 (-975 *3)))) - (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-1074)) - (-2686 (-4 *3 (-1063 (-1201)))) (-4 *3 (-905 *5)) - (-4 *4 (-627 (-911 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-5 *2 (-908 *5 *3)) (-5 *1 (-906 *5 *3 *4)) - (-2686 (-4 *3 (-1063 (-1201)))) (-2686 (-4 *3 (-1074))) - (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5)))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1060)) (-5 *1 (-765)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-401)) (-5 *2 (-1060)) (-5 *1 (-765))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) - (-5 *2 (-1060)) (-5 *1 (-769))))) + (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) + (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-4 *1 (-931 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-792) (-792))) (-4 *1 (-398 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *1 *1) (-4 *1 (-642))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1259 *3)) (-4 *3 (-1242))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) - ((*1 *2 *3) (-12 (-5 *3 (-996)) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) -(((*1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) + (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -1343 *5) (|:| -4220 *5)))) + (-5 *1 (-828 *4 *5 *3 *6)) (-4 *3 (-677 *5)) + (-4 *6 (-677 (-420 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -1343 *4) (|:| -4220 *4)))) + (-5 *1 (-828 *5 *4 *3 *6)) (-4 *3 (-677 *4)) + (-4 *6 (-677 (-420 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -1343 *5) (|:| -4220 *5)))) + (-5 *1 (-828 *4 *5 *6 *3)) (-4 *6 (-677 *5)) + (-4 *3 (-677 (-420 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -1343 *4) (|:| -4220 *4)))) + (-5 *1 (-828 *5 *4 *6 *3)) (-4 *6 (-677 *4)) + (-4 *3 (-677 (-420 *4)))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577))))) -(((*1 *1 *1 *1) (-4 *1 (-992)))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1247)))))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-318)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *2))))) +(((*1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3868 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1065)) + (-5 *1 (-767))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-254 *3 *4)) - (-14 *3 (-660 (-1201))) (-4 *4 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-577))) (-14 *3 (-660 (-1201))) - (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1074)) - (-4 *5 (-244 (-3501 *3) (-787))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-494 *3 *4)) - (-14 *3 (-660 (-1201))) (-4 *4 (-1074))))) -(((*1 *2 *1) - (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -3251 *5) (|:| -1527 *2)) - (-2 (|:| -3251 *5) (|:| -1527 *2)))) - (-4 *2 (-244 (-3501 *3) (-787))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-865)) (-4 *7 (-972 *4 *2 (-882 *3)))))) + (-12 (-5 *2 (-665 *1)) (|has| *1 (-6 -4500)) (-4 *1 (-1040 *3)) + (-4 *3 (-1247))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-773))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1085)) (-4 *3 (-1227)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-705 (-327 (-228)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) - (-5 *1 (-207))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *3 (-975 (-577))) - (-5 *1 (-341)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *1 (-341))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391))))) -(((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-1216 *2)) (-4 *2 (-375))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *4 (-787)) - (-5 *2 (-705 (-228))) (-5 *1 (-277))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-699 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-865)) - (-4 *3 (-1125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *4 *5 *6)) - (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242))))) + (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) + (-5 *1 (-178 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112)))) + (-12 (-4 *1 (-883)) (-5 *2 (-712 (-1255))) (-5 *3 (-1255))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) + (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) + (-4 *3 (-569)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) + (-4 *3 (-1130)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) + (-4 *3 (-1130)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) + (-4 *3 (-1068 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *2) - (-12 (-4 *3 (-1074)) (-5 *1 (-843 *2 *3)) (-4 *2 (-724 *3))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-302))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) - (-14 *4 (-944))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-1238))))) -(((*1 *1) (-5 *1 (-142)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) + (-5 *2 (-2 (|:| -4473 (-577)) (|:| |var| (-630 *1)))) + (-4 *1 (-443 *3))))) +(((*1 *1) (-5 *1 (-1302)))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) - (-4 *3 (-13 (-375) (-148) (-1063 (-577)))) (-5 *1 (-581 *3 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-705 *3)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -3836 ((-431 $) $))))) - (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -4437 (-431 *3)) (|:| |special| (-431 *3)))) + (-5 *1 (-748 *5 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1160)) (-5 *2 (-707 (-291))) (-5 *1 (-169))))) -(((*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1220))))) -(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1285 *3 *2)) - (-4 *2 (-1283 *3))))) -(((*1 *2 *3 *2) - (-12 + (-12 (-5 *3 (-955)) (-5 *2 - (-660 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-787)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-809)) (-4 *6 (-972 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-865)) - (-5 *1 (-462 *4 *3 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) - (-5 *2 (-1060)) (-5 *1 (-765))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) + (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) + (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) (-5 *2 - (-2 (|:| |dpolys| (-660 (-254 *5 *6))) - (|:| |coords| (-660 (-577))))) - (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) - (-4 *2 (-1283 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *7)) (-4 *7 (-865)) - (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) + (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) + (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 (-1292 (-420 *8)) "failed")) - (|:| -2559 (-660 (-1292 (-420 *8)))))) - (-5 *1 (-685 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-577)) (-14 *4 (-787))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-135))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) - (-4 *3 (-13 (-1227) (-29 *5)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1292 (-660 *3))) (-4 *4 (-318)) - (-5 *2 (-660 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-2 (|:| -3056 (-1197 *6)) (|:| -1527 (-577))))) - (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) - (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) - (-5 *2 (-112)) (-5 *1 (-1012 *3 *4 *5 *6)) - (-4 *6 (-972 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34)))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)) - (-5 *3 (-577))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-519)) (-5 *2 (-707 (-790))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-790)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-988))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223))))) -(((*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481))))) -(((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-341))))) -(((*1 *2 *2) (-12 (-5 *2 (-1119 (-859 (-228)))) (-5 *1 (-316))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) - (-5 *1 (-764))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) - (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125)))) + (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) + (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) + (-5 *1 (-154)) (-5 *3 (-665 (-971 (-228)))))) ((*1 *2 *3) - (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) - (-4 *2 (-672 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) - (-4 *3 (-13 (-1125) (-34)))))) -(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) + (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) + (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 (-228))))))) + ((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) - (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-481)) (-5 *1 (-1296)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) + (-4 *3 (-1130)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-241 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) + (-5 *1 (-758 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) + (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) + (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) +(((*1 *2 *3) + (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079))))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-4 *2 (-1273 *4)) + (-5 *1 (-950 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-665 (-1206))))) ((*1 *2 *3) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-481)) - (-5 *1 (-1296)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) - (-5 *2 (-481)) (-5 *1 (-1296))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569))))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1247)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-665 (-1206))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-870))))) +(((*1 *1) (-5 *1 (-1093)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *1) + (-12 (-4 *2 (-1247)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1247)))) + ((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885)))))) +(((*1 *1) (-5 *1 (-1115)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-549))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-865)) (-5 *4 (-660 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-660 *4)))) - (-5 *1 (-1212 *6)) (-5 *5 (-660 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) - (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) - (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) - (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-768))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-846))))) +(((*1 *1) (-5 *1 (-844)))) (((*1 *2) - (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2559 (-660 *1)))) - (-4 *1 (-379 *3)))) + (-12 (-5 *2 (-710 (-938 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) + (-14 *4 (-949)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-466 *3 *4 *5 *6)) - (|:| -2559 (-660 (-466 *3 *4 *5 *6))))) - (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) - (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) - (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -2002 *4)))) - (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-4 *1 (-313)))) + (-12 (-5 *2 (-710 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) + (-14 *4 + (-3 (-1202 *3) + (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150))))))))) + ((*1 *2) + (-12 (-5 *2 (-710 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-949))))) (((*1 *2 *3) - (-12 (-5 *3 (-705 (-420 (-975 (-577))))) - (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-375) (-148))) - (-5 *2 (-660 (-2 (|:| -1527 (-787)) (|:| -4269 *4) (|:| |num| *4)))) - (-5 *1 (-412 *3 *4)) (-4 *4 (-1268 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-1074)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074))))) -(((*1 *1) (-4 *1 (-361))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) + (-12 (-5 *3 (-577)) (-4 *4 (-1273 (-420 *3))) (-5 *2 (-949)) + (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-420 *4)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) + (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| -3398 (-420 *5)) (|:| |coeff| (-420 *5)))) + (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-660 (-1197 *5))) - (|:| |prim| (-1197 *5)))) - (-5 *1 (-445 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-569) (-148))) + (-2 (|:| |cycle?| (-112)) (|:| -4192 (-792)) (|:| |period| (-792)))) + (-5 *1 (-1187 *4)) (-4 *4 (-1247)) (-5 *3 (-792))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) + (-5 *3 (-665 (-577)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-560)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1122 (-864 *3))) (-4 *3 (-13 (-1232) (-987) (-29 *5))) + (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1197 *3)) - (|:| |pol2| (-1197 *3)) (|:| |prim| (-1197 *3)))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-975 *5)) (-5 *4 (-1201)) (-4 *5 (-13 (-375) (-148))) + (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1122 (-864 *3))) (-5 *5 (-1188)) + (-4 *3 (-13 (-1232) (-987) (-29 *6))) + (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 - (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) - (|:| |prim| (-1197 *5)))) - (-5 *1 (-983 *5)))) + (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) - (-4 *5 (-13 (-375) (-148))) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1122 (-864 (-327 *5)))) + (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 - (-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 *5))) - (|:| |prim| (-1197 *5)))) - (-5 *1 (-983 *5)))) + (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-223 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-5 *5 (-1201)) - (-4 *6 (-13 (-375) (-148))) + (-12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1122 (-864 (-327 *6)))) + (-5 *5 (-1188)) + (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 - (-2 (|:| -2940 (-660 (-577))) (|:| |poly| (-660 (-1197 *6))) - (|:| |prim| (-1197 *6)))) - (-5 *1 (-983 *6))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) - (-4 *4 (-703 *2 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) + (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-223 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) - (-4 *3 (-1074)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-835 *4)) (-4 *4 (-865)) (-4 *1 (-1309 *4 *3)) - (-4 *3 (-1074))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97))))) -(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-318))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-1203 (-420 (-577)))) - (-5 *1 (-192))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *1) (-5 *1 (-1110)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1049 *3)) - (-4 *3 (-13 (-864) (-375) (-1047))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) - (-4 *3 (-1268 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) - (-4 *3 (-1268 *2))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-5 *1 (-715)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-705 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-375)) (-5 *1 (-1003 *5))))) + (-12 (-5 *4 (-1122 (-864 (-420 (-980 *5))))) (-5 *3 (-420 (-980 *5))) + (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 + (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-223 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1122 (-864 (-420 (-980 *6))))) (-5 *5 (-1188)) + (-5 *3 (-420 (-980 *6))) + (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 + (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-223 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1206)) + (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-3 *3 (-665 *3))) (-5 *1 (-441 *5 *3)) + (-4 *3 (-13 (-1232) (-987) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) + (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) + (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) + (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) + (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) + (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) + (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) + (-5 *5 (-1188)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) + (-5 *5 (-1206)) (-5 *2 (-1065)) (-5 *1 (-578)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) + (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-3 (-327 *5) (-665 (-327 *5)))) (-5 *1 (-602 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-761 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)) + (-4 *3 (-38 (-420 (-577)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1206)) (-5 *1 (-980 *3)) (-4 *3 (-38 (-420 (-577)))) + (-4 *3 (-1079)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-4 *2 (-870)) + (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-977 *3 (-544 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) + (-5 *1 (-1190 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1203 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-38 (-420 (-577)))) + (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-2867 + (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) + (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) + (-4 *3 (-38 (-420 (-577)))))) + (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) + (-12 (|has| *3 (-15 -3891 ((-665 *2) *3))) + (|has| *3 (-15 -1869 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) + ((*1 *1 *1 *2) + (-2867 + (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) + (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) + (-4 *3 (-38 (-420 (-577)))))) + (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) + (-12 (|has| *3 (-15 -3891 ((-665 *2) *3))) + (|has| *3 (-15 -1869 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1282 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2867 + (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) + (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) + (-4 *3 (-38 (-420 (-577)))))) + (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) + (-12 (|has| *3 (-15 -3891 ((-665 *2) *3))) + (|has| *3 (-15 -1869 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) +(((*1 *1 *2) + (-12 (-4 *3 (-1079)) (-5 *1 (-848 *2 *3)) (-4 *2 (-729 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-792)) (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-148))) - (-5 *2 (-2 (|:| -3060 *3) (|:| -3076 *3))) (-5 *1 (-1262 *4 *3)) - (-4 *3 (-1268 *4))))) + (-12 (-5 *3 (-305 (-980 (-577)))) + (-5 *2 + (-2 (|:| |varOrder| (-665 (-1206))) + (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) + (|:| |hom| (-665 (-1297 (-792)))))) + (-5 *1 (-242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232))) + (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) + (-5 *1 (-613 *4 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188))))) +(((*1 *2) + (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) + (-4 *4 (-1273 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1068 (-577))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) (((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1037)) (-5 *2 (-880))))) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-173))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-665 *4)) (-4 *4 (-870)) + (-5 *1 (-1217 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-916 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1130)) + (-4 *5 (-1247)) (-5 *1 (-914 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-916 *4)) (-5 *3 (-665 (-1 (-112) *5))) (-4 *4 (-1130)) + (-4 *5 (-1247)) (-5 *1 (-914 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-916 *5)) (-5 *3 (-665 (-1206))) + (-5 *4 (-1 (-112) (-665 *6))) (-4 *5 (-1130)) (-4 *6 (-1247)) + (-5 *1 (-914 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1247)) (-4 *4 (-1130)) + (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) (-4 *4 (-1130)) + (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1247)) + (-5 *2 (-327 (-577))) (-5 *1 (-966 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) + (-5 *2 (-327 (-577))) (-5 *1 (-966 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1 (-112) (-665 *6))) + (-4 *6 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) (-4 *4 (-1130)) + (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) + (-5 *1 (-1106 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *4 (-792)) + (-5 *2 (-710 (-228))) (-5 *1 (-277))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -2417 ((-1155 *3 (-630 $)) $)) + (-15 -2429 ((-1155 *3 (-630 $)) $)) + (-15 -3709 ($ (-1155 *3 (-630 $)))))))))) +(((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) + ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) + (-4 *2 (-1288 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) + (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) + (-4 *2 (-1288 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) + (-5 *1 (-1183 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) + (-5 *2 (-1065)) (-5 *1 (-775))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-122 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) + (-4 *3 (-977 *7 *5 *6)) + (-5 *2 + (-2 (|:| -2328 (-792)) (|:| -4473 *3) (|:| |radicand| (-665 *3)))) + (-5 *1 (-981 *5 *6 *7 *3 *8)) (-5 *4 (-792)) + (-4 *8 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *3)) (-15 -2417 (*3 $)) (-15 -2429 (*3 $)))))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-885)))) (((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) - (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-4 *4 (-1242)) (-5 *2 (-112)) - (-5 *1 (-1182 *4))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2559 (-660 *1)))) - (-4 *1 (-379 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-466 *3 *4 *5 *6)) - (|:| -2559 (-660 (-466 *3 *4 *5 *6))))) - (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1060)) - (-5 *1 (-765))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1095 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) - (-4 *7 (-809)) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-660 - (-2 (|:| -3503 (-787)) - (|:| |eqns| - (-660 - (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) - (|:| |cols| (-660 (-577)))))) - (|:| |fgb| (-660 *8))))) - (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-787))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1292 *5)) (-5 *3 (-787)) (-5 *4 (-1145)) (-4 *5 (-361)) - (-5 *1 (-541 *5))))) -(((*1 *1) (-5 *1 (-302)))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1295))))) + (-665 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) + (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) - (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530))))) -(((*1 *2 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) + (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-577))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-5 *6 (-1202 *3)) + (-4 *3 (-13 (-443 *7) (-27) (-1232))) + (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) + (-5 *6 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1232))) + (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) + (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-977 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-327 (-228))) (|:| -3457 (-660 (-228))) - (|:| |lb| (-660 (-859 (-228)))) - (|:| |cf| (-660 (-327 (-228)))) - (|:| |ub| (-660 (-859 (-228)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-660 (-327 (-228)))) - (|:| -3457 (-660 (-228))))))) - (-5 *2 (-660 (-1183))) (-5 *1 (-277))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-577)) (-5 *1 (-206))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1300)))) + ((*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-519))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-899))) (-5 *1 (-496))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1092)))) + ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1092))))) +(((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) - (-4 *4 (-38 (-420 (-577))))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *2 (-865)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1201)) - (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-4 *4 (-13 (-29 *6) (-1227) (-982))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2559 (-660 *4)))) - (-5 *1 (-817 *6 *4 *3)) (-4 *3 (-672 *4))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1814 (-115)) (|:| |arg| (-660 (-911 *3))))) - (-5 *1 (-911 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-911 *4))) - (-5 *1 (-911 *4)) (-4 *4 (-1125))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-660 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) - (-4 *8 (-865)) (-5 *1 (-1002 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277))))) + (-12 (-5 *3 (-420 (-577))) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-569)) (-4 *8 (-977 *7 *5 *6)) + (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *9) (|:| |radicand| *9))) + (-5 *1 (-981 *5 *6 *7 *8 *9)) (-5 *4 (-792)) + (-4 *9 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *8)) (-15 -2417 (*8 $)) (-15 -2429 (*8 $)))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *1 *1) + (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) + (-4 *4 (-276 *3)) (-4 *5 (-814))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 (-577))))) - (-5 *1 (-373 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) - (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -2079 (-787))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| -3056 *3) (|:| -1527 (-577))))) - (-5 *1 (-431 *3)) (-4 *3 (-569))))) -(((*1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1197 (-577))) (-5 *3 (-577)) (-4 *1 (-887 *4))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1074)) - (-5 *1 (-871 *5 *2)) (-4 *2 (-870 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) - (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-559)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1242))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1125)) - (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1074)) (-4 *4 (-1268 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1268 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242))))) -(((*1 *2 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) - (-5 *1 (-178 *3))))) -(((*1 *1) (-5 *1 (-1088)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) + (-12 (-5 *2 (-712 (-994 *3))) (-5 *1 (-994 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-991 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) + (-4 *3 (-1079)) (-4 *2 (-813)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-1202 *3)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-1001)) (-4 *2 (-132)) (-5 *1 (-1208 *3)) (-4 *3 (-569)) + (-4 *3 (-1079)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-1270 *4 *3)) (-14 *4 (-1206)) + (-4 *3 (-1079))))) (((*1 *1 *2) - (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-787))) (-5 *3 (-112)) (-5 *1 (-1189 *4 *5)) - (-14 *4 (-944)) (-4 *5 (-1074))))) -(((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1268 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-1182 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-316)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-1060))) (-5 *2 (-1060)) (-5 *1 (-316)))) - ((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *1) (-5 *1 (-1088))) - ((*1 *2 *3) - (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1179 *4)) - (-4 *4 (-1242)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-112)) - (-5 *1 (-688 *4))))) + (-12 (-5 *2 (-665 (-1106 *3 *4 *5))) (-4 *3 (-1130)) + (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) + (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) + (-5 *1 (-1107 *3 *4 *5))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-660 (-660 (-228)))) (-5 *4 (-228)) - (-5 *2 (-660 (-966 *4))) (-5 *1 (-1238)) (-5 *3 (-966 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) - (-5 *1 (-908 *4 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) + (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-977 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) + (-5 *1 (-934 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-937)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1273 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-771))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) - (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-691 *2)) (-4 *2 (-1074)) (-4 *2 (-1125))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) - (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-932)) (-4 *5 (-809)) - (-4 *6 (-865)) (-5 *1 (-929 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) - (-4 *5 (-1268 *4)) (-4 *4 (-932)) (-5 *1 (-930 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1294)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1164)))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) (((*1 *2 *3) - (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) - (-4 *4 (-1074))))) + (-12 (-5 *3 (-577)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1079)) + (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-977 *2 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-864 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1170 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) + (-5 *2 (-112)) (-5 *1 (-1171 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-651 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-217 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-217 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-651 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) - (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) - (-5 *1 (-713))))) -(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-542)))) - ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542))))) -(((*1 *2 *1) - (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-966 *4)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) - (-4 *4 (-1074))))) -(((*1 *2 *1) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-999))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) - (-4 *5 (-465)) + (-12 (-5 *2 - (-2 (|:| |gblist| (-660 (-254 *4 *5))) - (|:| |gvlist| (-660 (-577))))) - (-5 *1 (-644 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) - (-5 *2 (-1060)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-660 (-115)))))) + (-665 + (-2 + (|:| -4376 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) + (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) + (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (|:| -2727 + (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) + (|:| |expense| (-391)) (|:| |accuracy| (-391)) + (|:| |intermediateResults| (-391))))))) + (-5 *1 (-824))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4356 *3) (|:| -2328 (-792)))) (-5 *1 (-600 *3)) + (-4 *3 (-558))))) +(((*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-410))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-792)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) (-4 *3 (-865)) - (-4 *2 (-1242)))) - ((*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) - ((*1 *2 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) + (-4 *1 (-443 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-1242)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) + (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) + (-4 *3 (-1130)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) - ((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-911 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1125)) - (-4 *5 (-1242)) (-5 *1 (-909 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-911 *4)) (-5 *3 (-660 (-1 (-112) *5))) (-4 *4 (-1125)) - (-4 *5 (-1242)) (-5 *1 (-909 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-911 *5)) (-5 *3 (-660 (-1201))) - (-5 *4 (-1 (-112) (-660 *6))) (-4 *5 (-1125)) (-4 *6 (-1242)) - (-5 *1 (-909 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1242)) (-4 *4 (-1125)) - (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) (-4 *4 (-1125)) - (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1242)) - (-5 *2 (-327 (-577))) (-5 *1 (-961 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) - (-5 *2 (-327 (-577))) (-5 *1 (-961 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1 (-112) (-660 *6))) - (-4 *6 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) (-4 *4 (-1125)) - (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) - (-5 *1 (-1101 *4 *5 *6))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-660 *5)) (-4 *5 (-865)) (-5 *1 (-1212 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027)))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) - (-4 *3 (-1125)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) - (-5 *1 (-927 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-944)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-549))) (-5 *1 (-549))))) + (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) + (-5 *1 (-978 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) + (-15 -2429 (*7 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) - (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *10)) + (-5 *1 (-642 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1101 *5 *6 *7 *8)) + (-4 *10 (-1139 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) - (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-664 *5)) (-4 *5 (-1074)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-870 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-705 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1074)) - (-5 *1 (-871 *2 *3)) (-4 *3 (-870 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-928 (-577))) (-5 *4 (-577)) (-5 *2 (-705 *4)) - (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1053 *4)) - (-4 *4 (-1074)))) + (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) + (-5 *1 (-646 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-928 (-577)))) (-5 *4 (-577)) - (-5 *2 (-660 (-705 *4))) (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) - ((*1 *2 *3) - (-12 (-5 *3 (-660 (-660 (-577)))) (-5 *2 (-660 (-705 (-577)))) - (-5 *1 (-1053 *4)) (-4 *4 (-1074))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *3 *5 *6 *7)) - (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) - (-4 *7 (-1242)))) + (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-665 (-1206))) + (-5 *2 + (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) + (-5 *1 (-646 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) + (-5 *1 (-1076 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *3 *5 *6)) - (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242))))) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1240 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-843))))) +(((*1 *1 *1 *1) (-4 *1 (-782)))) +(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-538))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |k| (-1201)) (|:| |c| (-1314 *3))))) - (-5 *1 (-1314 *3)) (-4 *3 (-1074)))) - ((*1 *2 *1) - (-12 (-5 *2 (-660 (-2 (|:| |k| *3) (|:| |c| (-1316 *3 *4))))) - (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-705 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-4 *7 (-865)) - (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-4 *8 (-318)) - (-5 *2 (-660 (-787))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *5 (-787))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-728 *3 *4)) - (-4 *4 (-1268 *3))))) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-228))) (-5 *4 (-787)) (-5 *2 (-705 (-228))) - (-5 *1 (-316))))) + (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-318)) + (-5 *2 (-792)) (-5 *1 (-468 *5 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1206)) (-5 *3 (-665 *1)) (-4 *1 (-443 *4)) + (-4 *4 (-1130)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-4 *3 (-1095 *5 *6 *7)) + (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -3613 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) +(((*1 *1) + (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-622)))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) + (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-112)) (-5 *1 (-311))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| -4473 *4) (|:| -2203 *3) (|:| -2519 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-1095 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -4473 *3) (|:| -2203 *1) (|:| -2519 *1))) + (-4 *1 (-1273 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-1130)) (-5 *1 (-670 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *2) - (-12 (-4 *3 (-1063 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-443 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1197 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1074)) (-4 *1 (-313)))) - ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) - ((*1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) - (-4 *2 (-1268 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-705 (-577))) (-5 *5 (-112)) (-5 *7 (-705 (-228))) - (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-770))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34))) - (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1166 *4 *5))))) + (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-878)) (-5 *2 (-707 (-130))) (-5 *3 (-130))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-944)) (-4 *3 (-375)) - (-14 *4 (-1018 *2 *3)))) + (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) + (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) + (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) + (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) + (-4 *2 (-708 *3 *4 *5)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + (|partial| -12 (-5 *1 (-710 *2)) (-4 *2 (-375)) (-4 *2 (-1079)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) - ((*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) - ((*1 *1 *1) (|partial| -4 *1 (-738))) - ((*1 *1 *1) (|partial| -4 *1 (-742))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) - (-4 *2 (-1268 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1227) (-1027)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34)))))) + (|partial| -12 (-4 *1 (-1153 *2 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) + ((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-1217 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-949))) (-5 *4 (-933 (-577))) + (-5 *2 (-710 (-577))) (-5 *1 (-603)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) + (-5 *1 (-603)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-933 (-577)))) + (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-603))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-850))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *1) (-5 *1 (-591)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3273 *1) (|:| -4486 *1) (|:| |associate| *1))) + (-4 *1 (-569))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) + (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-660 *5)) - (-5 *1 (-909 *4 *5)) (-4 *5 (-1242))))) + (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1124 (-864 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) + (-5 *1 (-316)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-665 (-2 (|:| -3759 (-1202 *6)) (|:| -2328 (-577))))) + (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1027)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-109))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 (-1101 *3 *4 *5))) (-4 *3 (-1125)) - (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) - (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) - (-5 *1 (-1102 *3 *4 *5))))) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3642 (-803 *3)) (|:| |coef1| (-803 *3)))) + (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-2 (|:| -3642 *1) (|:| |coef1| *1))) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-404))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720))))) (((*1 *1 *1) - (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) - (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1088)) (-5 *3 (-1183))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -2845 (-420 *6)) (|:| |coeff| (-420 *6)))) - (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) (((*1 *2 *3) - (-12 (-5 *2 (-660 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-787)) - (-4 *3 (-13 (-742) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) - (-5 *1 (-252 *3))))) -(((*1 *1 *1) (-4 *1 (-1085)))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1268 (-171 *2))))) + (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) + (-5 *2 (-885)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *1 (-1137 *3 *4 *5 *6 *7))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) +(((*1 *1) (-5 *1 (-519)))) +(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1268 (-171 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-431 *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-1074)) (-5 *2 (-660 *6)) (-5 *1 (-457 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) - (-4 *4 (-1268 *2))))) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-4 *4 (-1247)) (-5 *2 (-112)) + (-5 *1 (-1187 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) + (-12 (-4 *4 (-13 (-375) (-1068 (-420 *2)))) (-5 *2 (-577)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *1) (-5 *1 (-844)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) + (-5 *2 + (-2 (|:| |mval| (-710 *4)) (|:| |invmval| (-710 *4)) + (|:| |genIdeal| (-517 *4 *5 *6 *7)))) + (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-254 *5 *6))) (-4 *6 (-465)) + (-5 *2 (-254 *5 *6)) (-14 *5 (-665 (-1206))) (-5 *1 (-649 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) + (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) + (-5 *1 (-809))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) + (-5 *1 (-775))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1) (-5 *1 (-622)))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) - (-4 *5 (-1268 *4)) - (-5 *2 (-2 (|:| -2845 (-420 *5)) (|:| |coeff| (-420 *5)))) - (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-590)))) + ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590))))) (((*1 *2 *1) - (-12 (-4 *2 (-1118 *3)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1242)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1117 *3)) (-4 *3 (-1242)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) - ((*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) - (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4)))))) -(((*1 *1) (-5 *1 (-1293)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1074)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074))))) -(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-380))))) -(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1125))))) -(((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-1292 *3)) - (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-443 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) - ((*1 *1 *1) (-4 *1 (-161)))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-569)) - (-4 *7 (-972 *3 *5 *6)) - (-5 *2 (-2 (|:| -1527 (-787)) (|:| -2940 *8) (|:| |radicand| *8))) - (-5 *1 (-976 *5 *6 *3 *7 *8)) (-5 *4 (-787)) - (-4 *8 - (-13 (-375) - (-10 -8 (-15 -3603 ($ *7)) (-15 -2781 (*7 $)) (-15 -2797 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-587 *5 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1164)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-5 *2 (-577)) - (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1268 *5)) - (-4 *6 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) - (-4 *3 (-1268 *4)) - (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) + (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *5)) (-5 *1 (-909 *3 *4 *5)) + (-4 *3 (-1130)) (-4 *5 (-687 *4))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) (((*1 *2 *3) - (-12 (-4 *1 (-916)) - (-5 *3 - (-2 (|:| |pde| (-660 (-327 (-228)))) - (|:| |constraints| - (-660 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-787)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) - (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) - (|:| |tol| (-228)))) - (-5 *2 (-1060))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1201)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-660 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2845 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1227) (-27) (-443 *8))) - (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3076 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1038 *8 *4))))) + (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) + (-4 *3 (-1273 (-420 *4)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1188)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1065)) + (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-665 (-1206))) (-4 *2 (-174)) + (-4 *4 (-244 (-3600 *5) (-792))) + (-14 *6 + (-1 (-112) (-2 (|:| -3354 *3) (|:| -2328 *4)) + (-2 (|:| -3354 *3) (|:| -2328 *4)))) + (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-870)) + (-4 *7 (-977 *2 *4 (-887 *5)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) - (-4 *3 (-13 (-443 *4) (-1027)))))) + (-12 (-5 *3 (-710 (-327 (-228)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) + (-5 *1 (-207))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-773))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-316)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-1065))) (-5 *2 (-1065)) (-5 *1 (-316)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-5 *1 (-1093))) + ((*1 *2 *3) + (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1184 *4)) + (-4 *4 (-1247)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) + (-4 *4 (-1079))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-665 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-577))))) + (-4 *2 (-569)) (-5 *1 (-431 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-577)) + (|:| -2127 (-665 (-2 (|:| |irr| *4) (|:| -2243 (-577))))))) + (-4 *4 (-1273 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-665 (-792))))) + ((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 (-792)))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3)) (-4 *3 (-1247))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-318))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-710 *2)) (-5 *4 (-577)) + (-4 *2 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) (-4 *1 (-506))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1302)) + (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) + (-12 (-5 *3 (-1124 (-864 (-391)))) (-5 *2 (-1124 (-864 (-228)))) + (-5 *1 (-316))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-864 (-228)))) (-5 *4 (-228)) (-5 *2 (-665 *4)) + (-5 *1 (-277))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710 *8)) (-5 *4 (-792)) (-4 *8 (-977 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) + (-4 *7 (-814)) (-5 *2 - (-3 (|:| |overq| (-1197 (-420 (-577)))) - (|:| |overan| (-1197 (-48))) (|:| -4197 (-112)))) - (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1242)) - (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *2 *7)) (-4 *6 (-1074)) - (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) - (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) - (-4 *6 (-354 *3 *4 *5))))) + (-665 + (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) + (|:| |cols| (-665 (-577)))))) + (-5 *1 (-952 *5 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) (((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-5 *2 (-1183))))) -(((*1 *2 *3) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) (-4 *1 (-506))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *4))))))) + (-5 *3 (-665 *7)) (-4 *4 (-13 (-318) (-148))) + (-4 *7 (-977 *4 *6 *5)) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7))))) +(((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) + (-4 *6 (-1273 *5)) (-5 *2 (-1202 (-1202 *7))) + (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1273 *6))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-420 (-980 *6)) (-1195 (-1206) (-980 *6)))) + (-5 *5 (-792)) (-4 *6 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *6))))) + (-5 *1 (-303 *6)) (-5 *4 (-710 (-420 (-980 *6)))))) + ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-1182 (-228))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) - (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) - (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311))))) + (-2 (|:| |eigval| (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) + (|:| |eigmult| (-792)) (|:| |eigvec| (-665 *4)))) + (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) + (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-361)) (-5 *2 (-1297 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-146)) (-4 *1 (-937)) + (-5 *2 (-1297 *1))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) + (-4 *3 (-13 (-1130) (-34)))))) +(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-5 *3 (-665 (-899))) (-5 *1 (-496))))) (((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-926 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-838))))) + (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) + (-4 *3 (-1130))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) (-4 *1 (-506))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-577)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) + (-5 *1 (-462 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) - (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1201)) (-5 *2 (-950)) (-5 *1 (-948 *3)) - (-4 *3 (-627 (-549))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-950)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) - (-5 *1 (-950))))) + (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *4 (-1206)) + (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) + (-4 *3 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) + (-4 *3 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-665 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *5 *6)) + (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-462 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *1 *1) (-4 *1 (-506))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) (((*1 *2 *3) - (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1214 (-944) (-787)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) - (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) - (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982)))))) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) + (-5 *2 (-665 (-1124 (-228)))) (-5 *1 (-956))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) + (-4 *5 (-870)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004))))) +(((*1 *2 *3) + (-12 (-4 *4 (-465)) + (-5 *2 + (-665 + (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) + (|:| |eigmult| (-792)) + (|:| |eigvec| (-665 (-710 (-420 (-980 *4)))))))) + (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *10)) - (-5 *1 (-637 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1096 *5 *6 *7 *8)) - (-4 *10 (-1134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) - (-5 *1 (-641 *5 *6)))) + (-12 (-5 *3 (-1202 (-980 *6))) (-4 *6 (-569)) + (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) + (-4 *5 (-814)) + (-4 *4 (-13 (-870) (-10 -8 (-15 -4463 ((-1206) $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1132 (-1132 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *1 *1) (-4 *1 (-506))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-601 *4)) + (-4 *4 (-361))))) +(((*1 *2 *3) + (-12 (-5 *3 (-980 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-999 *4 *3)) + (-4 *3 (-1273 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-792)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) + (-14 *4 *2) (-4 *5 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-949)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-949)))) + ((*1 *2) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) + (-5 *2 (-949)))) + ((*1 *2 *3) + (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-660 (-1201))) - (-5 *2 - (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) - (-5 *1 (-641 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) - (-5 *1 (-1071 *5 *6)))) + (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) + (-5 *2 (-792)) (-5 *1 (-688 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1096 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-792)) + (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) ((*1 *2 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1235 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) -(((*1 *1) (-5 *1 (-131)))) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) + (-4 *3 (-708 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) + (-5 *2 (-792))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) + (-5 *1 (-776))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) + (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + ((*1 *1 *1) (-4 *1 (-506))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) + (-5 *1 (-769))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-4 *7 (-870)) + (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-4 *8 (-318)) + (-5 *2 (-665 (-792))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *5 (-792))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1206)) (-5 *2 (-549)) (-5 *1 (-548 *4)) + (-4 *4 (-1247))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3145 *4) (|:| -3308 *4) (|:| |totalpts| (-577)) + (-2 (|:| -3254 *4) (|:| -3405 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) - (-5 *1 (-805)) (-5 *5 (-577))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-625 *3)) (-5 *5 (-1 (-1197 *3) (-1197 *3))) - (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) - (-5 *1 (-564 *6 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-787)) (-4 *1 (-1268 *4)) (-4 *4 (-1074)) - (-5 *2 (-1292 *4))))) + (-5 *1 (-810)) (-5 *5 (-577))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *7)) (-4 *7 (-870)) + (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1297 (-420 *8)) "failed")) + (|:| -2104 (-665 (-1297 (-420 *8)))))) + (-5 *1 (-690 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-937 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-431 (-975 *6))) (-5 *5 (-1201)) (-5 *3 (-975 *6)) - (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-837))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) + (-12 (-5 *2 (-845)) (-5 *3 (-665 (-1206))) (-5 *1 (-846))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130))))) +(((*1 *1) (-5 *1 (-622)))) (((*1 *2 *3) - (-12 (-5 *3 (-950)) - (-5 *2 - (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) - (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) - (-5 *2 - (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) - (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) - (-5 *1 (-154)))) - ((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) - (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) - (-5 *1 (-154)) (-5 *3 (-660 (-966 (-228)))))) - ((*1 *2 *3) + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) + (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) - (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) - (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 (-228))))))) - ((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) -(((*1 *1) (-5 *1 (-819)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) - (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-1305 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) - (-5 *1 (-927 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-660 (-305 *4))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-705 (-577))) (-5 *3 (-660 (-577))) (-5 *1 (-1135))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1074)) - (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1268 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) - (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) - (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) - (-5 *2 (-660 (-2 (|:| -1970 *1) (|:| -3263 (-660 *7))))) - (-5 *3 (-660 *7)) (-4 *1 (-1235 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) - (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-707 (-291)))) (-5 *1 (-169))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1197 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) - (-4 *3 (-375))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) - (-5 *2 (-1060)) (-5 *1 (-763))))) + (-665 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-814)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) + (-5 *1 (-462 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) + (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-977 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) + (-4 *1 (-1273 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-305 (-854 *3))) + (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *2 (-854 *3)) (-5 *1 (-654 *5 *3)) + (-4 *3 (-13 (-27) (-1232) (-443 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-854 (-980 *5)))) (-4 *5 (-465)) + (-5 *2 (-854 (-420 (-980 *5)))) (-5 *1 (-655 *5)) + (-5 *3 (-420 (-980 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) + (-4 *5 (-465)) (-5 *2 (-854 *3)) (-5 *1 (-655 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-132))))) (((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) + (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1079)) (-5 *1 (-735 *2 *4)) + (-4 *4 (-669 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-373 (-115))) (-5 *1 (-857 *2)) (-4 *2 (-1079))))) +(((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-228)) + (-5 *2 + (-2 (|:| |brans| (-665 (-665 (-971 *4)))) + (|:| |xValues| (-1124 *4)) (|:| |yValues| (-1124 *4)))) + (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-1002 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-792)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265))))) + (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) (((*1 *2 *2) - (-12 (-4 *3 (-627 (-911 *3))) (-4 *3 (-905 *3)) (-4 *3 (-465)) - (-5 *1 (-1233 *3 *2)) (-4 *2 (-627 (-911 *3))) (-4 *2 (-905 *3)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-763))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) - (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-787)) (-5 *2 (-660 (-1201))) (-5 *1 (-212)) - (-5 *3 (-1201)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-787)) (-5 *2 (-660 (-1201))) - (-5 *1 (-277)))) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-846))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3642 *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-776))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) - (-5 *2 (-660 *3)))) + (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) + (-14 *4 (-665 (-1206))))) ((*1 *2 *1) - (-12 (-5 *2 (-660 *3)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) - (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) + (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) + (-14 *4 (-665 (-1206))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) + (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-285)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1202 *8)) (-5 *4 (-665 *6)) (-4 *6 (-870)) + (-4 *8 (-977 *7 *5 *6)) (-4 *5 (-814)) (-4 *7 (-1079)) + (-5 *2 (-665 (-792))) (-5 *1 (-332 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) ((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-660 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-1268 (-420 *3))) (-5 *2 (-944)) - (-5 *1 (-936 *4 *5)) (-4 *5 (-1268 (-420 *4)))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) + (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) + (-4 *4 (-1273 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) + (-4 *3 (-870)) (-5 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1003 *3 *2 *4)) (-4 *3 (-1079)) (-4 *4 (-870)) + (-4 *2 (-813)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-792)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1288 *3)) + (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-792))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-768))))) (((*1 *2 *1) - (-12 (-5 *2 (-1277 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) - (-14 *4 (-1201)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) + (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-840 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-1125)) (-5 *1 (-729 *3 *2 *4)) (-4 *3 (-865)) - (-14 *4 - (-1 (-112) (-2 (|:| -3251 *3) (|:| -1527 *2)) - (-2 (|:| -3251 *3) (|:| -1527 *2))))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -1880 (-660 *3)) (|:| -2526 (-660 *3)))) - (-5 *1 (-1243 *3)) (-4 *3 (-1125))))) + (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) + (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-933 (-577))) (-5 *4 (-577)) (-5 *2 (-710 *4)) + (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1058 *4)) + (-4 *4 (-1079)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-933 (-577)))) (-5 *4 (-577)) + (-5 *2 (-665 (-710 *4))) (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-665 (-577)))) (-5 *2 (-665 (-710 (-577)))) + (-5 *1 (-1058 *4)) (-4 *4 (-1079))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) + (-5 *1 (-372 *3 *4)) (-14 *4 (-665 (-1206))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) + (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-777))))) +(((*1 *2 *1) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) + (-4 *3 (-13 (-417) (-1232))))) + ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) + (-14 *3 (-665 (-1206)))))) +(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-449))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) - (|:| -2097 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-112)) (-5 *1 (-311))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *4 (-1201)) - (-5 *1 (-1204)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1205)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *1 (-1205))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-705 (-420 (-975 (-577))))) - (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056))))) + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) + (-5 *1 (-207))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) + (-4 *7 (-977 *5 *6 *4)) (-4 *5 (-937)) (-4 *6 (-814)) + (-4 *4 (-870)) (-5 *1 (-934 *5 *6 *4 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) (((*1 *2 *3) - (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-899))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) - ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1205))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) - (-4 *4 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-251 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1060)) (-5 *1 (-769))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -1985)))) (-5 *3 (-228)) - (-5 *2 (-1060)) (-5 *1 (-764))))) + (-12 + (-5 *3 + (-665 + (-2 (|:| -1641 (-792)) + (|:| |eqns| + (-665 + (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) + (|:| |cols| (-665 (-577)))))) + (|:| |fgb| (-665 *7))))) + (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) + (-5 *1 (-952 *4 *5 *6 *7))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1277 *4 *5 *6)) - (|:| |%expon| (-330 *4 *5 *6)) - (|:| |%expTerms| - (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) - (|:| |%type| (-1183)))) - (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) - (-14 *5 (-1201)) (-14 *6 *4)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1063 (-577)))) - (-4 *7 (-1268 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) - (-4 *2 (-354 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) - (-5 *2 (-2 (|:| -1631 (-705 *4)) (|:| |vec| (-1292 *4)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) - (-5 *2 (-705 *4))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1201)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-660 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2845 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1227) (-27) (-443 *8))) - (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) - (-5 *2 (-660 *4)) (-5 *1 (-1039 *8 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-458 *3)) (-4 *3 (-1074))))) -(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1125)) (-4 *4 (-1125)) - (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *5 *4 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-519))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-660 (-894))) (-5 *1 (-496))))) + (-12 (-5 *2 (-1132 *3)) (-5 *1 (-933 *3)) (-4 *3 (-380)) + (-4 *3 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244))))) + (-12 (-5 *3 (-665 (-949))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1130) (-34))) + (-4 *2 (-13 (-1130) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-777))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) + (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) + (-5 *1 (-932 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1205))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) - (-4 *3 (-569)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) - (-4 *3 (-1125)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) - (-4 *3 (-1125)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) - (-4 *3 (-1063 *2))))) -(((*1 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-341))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-302))))) -(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)) (-4 *2 (-569))))) -(((*1 *1 *1) (-5 *1 (-1088)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1125)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1125))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) + (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-1202 *6)) + (-5 *1 (-332 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) + (-5 *2 (-1065)) (-5 *1 (-772))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) + (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1251)) + (-4 *6 (-1273 (-420 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-354 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-710 *2)) (-4 *4 (-1273 *2)) + (-4 *2 (-13 (-318) (-10 -8 (-15 -3206 ((-431 $) $))))) + (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) - (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) - (-4 *2 (-703 *3 *5 *6))))) + (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1079))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) + (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) + (-4 *1 (-1101 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) + (-4 *8 (-977 *7 *5 *6)) + (-5 *2 (-2 (|:| -2328 (-792)) (|:| -4473 *3) (|:| |radicand| *3))) + (-5 *1 (-981 *5 *6 *7 *8 *3)) (-5 *4 (-792)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *8)) (-15 -2417 (*8 $)) (-15 -2429 (*8 $)))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) + (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) - (-14 *4 (-660 (-1201))))) - ((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-463 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) - (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-463 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) - (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-5 *1 (-463 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) - (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145))))) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1007 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-873))))) +(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-225 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-262 *3)))) + ((*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) + (-5 *2 (-1065)) (-5 *1 (-777))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) + (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1045 *4 *5)) (-5 *3 (-420 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-2 (|:| -3759 *4) (|:| -1597 (-577))))) + (-4 *4 (-1273 (-577))) (-5 *2 (-792)) (-5 *1 (-455 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-1007 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) + (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-1007 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-130)))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) + (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-884))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (|has| *4 (-6 (-4501 "*"))) + (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) + (|has| *4 (-6 (-4501 "*"))) (-4 *4 (-1079)) (-5 *1 (-1058 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) + (-4 *3 (-1130))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) + (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-1298)) + (-5 *1 (-1301)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1013 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) + (-5 *2 (-1298)) (-5 *1 (-1301))))) +(((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1297 (-665 (-2 (|:| -3254 *4) (|:| -3354 (-1150)))))) + (-4 *4 (-361)) (-5 *2 (-792)) (-5 *1 (-358 *4)))) + ((*1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) + (-14 *4 (-949)))) + ((*1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) + (-14 *4 + (-3 (-1202 *3) + (-1297 (-665 (-2 (|:| -3254 *3) (|:| -3354 (-1150))))))))) + ((*1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-949))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-999 *2 *3)) + (-4 *3 (-1273 *2))))) +(((*1 *2 *1) + (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -3354 *5) (|:| -2328 *2)) + (-2 (|:| -3354 *5) (|:| -2328 *2)))) + (-4 *2 (-244 (-3600 *3) (-792))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-870)) (-4 *7 (-977 *4 *2 (-887 *3)))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) + (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-4 *4 (-1130)) + (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4))))) +(((*1 *1) (-5 *1 (-341)))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1210))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-904))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-599 *3)) (-4 *3 (-375))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) + (-5 *1 (-646 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) + (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1132 *5 *6 *7 *8 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-660 (-1165 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) - (-5 *1 (-1166 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-660 (-1165 *3 *4))) (-4 *3 (-13 (-1125) (-34))) - (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-177))) (-5 *1 (-1110))))) + (-12 (-5 *4 (-1206)) (-5 *2 (-955)) (-5 *1 (-953 *3)) + (-4 *3 (-632 (-549))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-955)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) + (-5 *1 (-955))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1091 (-1054 *3) (-1202 (-1054 *3)))) + (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-375) (-1052)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) + (-4 *2 (-1288 *3))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1240 *5 *6 *7 *8)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1298)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1299)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299))))) +(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-665 (-115)))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1202 *3) (-1202 *3))) + (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) + (-5 *1 (-564 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) + (-5 *7 (-710 (-577))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-774))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) + (-5 *2 (-1297 (-420 (-577)))) (-5 *1 (-1325 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1130)) (-5 *2 (-792)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-670 *4 *2 *5)) + (-4 *4 (-1130)) (-14 *5 *2)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-665 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) + (-5 *1 (-462 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) + (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1065)) (-5 *1 (-777))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) - (-4 *5 (-569)) (-5 *2 (-660 (-660 (-975 *5)))) (-5 *1 (-1210 *5))))) + (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-665 (-1241 *5))) + (-5 *1 (-1305 *5)) (-5 *4 (-1241 *5))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-778))))) +(((*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-176 *6)) + (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-733 *3 *4)) + (-4 *4 (-1273 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-885)))) +(((*1 *1) (-5 *1 (-635)))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-559)))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1130) (-34))) + (-5 *2 (-112)) (-5 *1 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3352 *4) (|:| |sol?| (-112))) + (-577) *4)) + (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *1 (-587 *4 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-792)) (-4 *5 (-361)) (-4 *6 (-1273 *5)) + (-5 *2 + (-665 + (-2 (|:| -2104 (-710 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-710 *6))))) + (-5 *1 (-511 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2104 (-710 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-710 *6)))) + (-4 *7 (-1273 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-660 *3)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) - (-4 *6 (-809)) (-4 *7 (-865)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-462 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1202 *5)) (-4 *5 (-375)) (-5 *2 (-665 *6)) + (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341))))) (((*1 *2 *1) - (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) - (-4 *1 (-1090 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) - (-5 *1 (-908 *4 *5)) (-4 *5 (-1125)))) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1206)) + (|:| |arrayIndex| (-665 (-980 (-577)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1205)) (|:| |thenClause| (-341)) + (|:| |elseClause| (-341)))) + (|:| |returnBranch| + (-2 (|:| -2687 (-112)) + (|:| -3254 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3295 (-885)))))) + (|:| |blockBranch| (-665 (-341))) + (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) + (|:| |forBranch| + (-2 (|:| -3433 (-1122 (-980 (-577)))) + (|:| |span| (-980 (-577))) (|:| -2773 (-341)))) + (|:| |labelBranch| (-1150)) + (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -2773 (-341)))) + (|:| |commonBranch| + (-2 (|:| -2758 (-1206)) (|:| |contents| (-665 (-1206))))) + (|:| |printBranch| (-665 (-885))))) + (-5 *1 (-341))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *3 *5 *6 *7)) + (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) + (-4 *7 (-1247)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-5 *2 (-112)) - (-5 *1 (-909 *5 *3)) (-4 *3 (-1242)))) + (-12 (-5 *4 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *3 *5 *6)) + (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-687 *5)) (-5 *1 (-909 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3684 (-710 (-420 (-980 *4)))) + (|:| |vec| (-665 (-420 (-980 *4)))) (|:| -1641 (-792)) + (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) + (-5 *2 + (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *4))))))) + (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) + (-5 *1 (-946 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) - (-4 *6 (-1242)) (-5 *2 (-112)) (-5 *1 (-909 *5 *6))))) + (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-465) (-148))) + (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) + (-5 *1 (-343)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-1122 (-980 (-577)))) (-5 *2 (-341)) + (-5 *1 (-343)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) + (-4 *3 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-504)) (-5 *4 (-977)) (-5 *2 (-707 (-546))) - (-5 *1 (-546)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-977)) (-4 *3 (-1125)) (-5 *2 (-707 *1)) - (-4 *1 (-783 *3))))) -(((*1 *1) (-5 *1 (-591))) - ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-881)))) - ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) + (-4 *7 (-1273 (-420 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -4233 *3))) + (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) + (-5 *2 + (-2 (|:| |answer| (-420 *6)) (|:| -4233 (-420 *6)) + (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) + (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036))))) +(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) + (-5 *2 (-1065)) (-5 *1 (-773))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) + (-4 *3 (-1130)) (-5 *2 (-792)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1182 *4)) - (-4 *4 (-1125)) (-4 *4 (-1242))))) -(((*1 *1) (-5 *1 (-1110)))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) + (-4 *4 (-1247)) (-5 *2 (-792))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-285))))) + (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) + (-14 *4 (-665 (-1206))) (-4 *5 (-400))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-1218 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-112)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) + (-4 *4 (-1247)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) + (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) + (-4 *4 (-708 *2 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) + (-4 *4 (-1079)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) +(((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1150))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1063 (-577))) (-4 *4 (-569)) + (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1068 (-577))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-443 *4)))) ((*1 *1 *1 *1) (-5 *1 (-135))) ((*1 *2 *2 *2) @@ -16901,1416 +16749,1602 @@ ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-577)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) - (-4 *5 (-1283 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1254 *4 *5)))) + (-4 *5 (-1288 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1259 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) - (-4 *5 (-1252 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1275 *4 *5)) - (-4 *6 (-1008 *5)))) + (-4 *5 (-1257 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1280 *4 *5)) + (-4 *6 (-1013 *5)))) ((*1 *1 *1 *1) (-4 *1 (-295))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) ((*1 *1 *1 *1) (-5 *1 (-391))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) - (-4 *3 (-1137)))) + (-12 (-5 *2 (-792)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) + (-4 *3 (-1142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-486)) (-5 *2 (-577)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + (-12 (-5 *2 (-792)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) + (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-549)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-549)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-549)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *4 (-1125)) - (-5 *1 (-698 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *4 (-1130)) + (-5 *1 (-703 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-375)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-12 (-5 *2 (-792)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) - (-5 *1 (-706 *4)))) + (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) + (-5 *1 (-711 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)) - (-4 *4 (-664 *3)))) + (-12 (-5 *2 (-577)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)) + (-4 *4 (-669 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1074)) - (-5 *1 (-730 *4 *5)) (-4 *5 (-664 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-787)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-852 *3)) (-4 *3 (-1074)))) + (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1079)) + (-5 *1 (-735 *4 *5)) (-4 *5 (-669 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-747)) (-5 *2 (-792)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-857 *3)) (-4 *3 (-1079)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-852 *4)) (-4 *4 (-1074)))) - ((*1 *1 *1 *1) (-5 *1 (-880))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-420 (-577))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-944)))) + (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-857 *4)) (-4 *4 (-1079)))) + ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-420 (-577))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1142)) (-5 *2 (-949)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-1148 *3 *4 *5 *6)) (-4 *4 (-1074)) + (-12 (-5 *2 (-577)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-375)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1191 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1187 *3)))) + (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1192 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) -(((*1 *2 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) - ((*1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3145 *4) (|:| -3251 (-1145)))))) - (-4 *4 (-361)) (-5 *2 (-705 *4)) (-5 *1 (-358 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-862))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-889 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-14 *2 (-577)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-890 *3 *4)) - (-4 *4 (-887 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-577)) (-5 *1 (-890 *2 *3)) (-4 *3 (-887 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) - (-4 *4 (-1283 *3)))) + (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) +(((*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1283 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) -(((*1 *1) - (-12 (-4 *1 (-417)) (-2686 (|has| *1 (-6 -4461))) - (-2686 (|has| *1 (-6 -4453))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865)))) - ((*1 *1) (-4 *1 (-860))) ((*1 *1 *1 *1) (-4 *1 (-868))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1204)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) - (-5 *1 (-1204)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) - (-5 *1 (-1204))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1201)) (-5 *1 (-691 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1) (|partial| -4 *1 (-1177)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2653 *3) (|:| |coef2| (-798 *3)))) - (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) - (-4 *3 (-1125)) (-5 *2 (-787)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) - (-4 *4 (-1242)) (-5 *2 (-787))))) + (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-870)) + (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1149)))) + ((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) + (-4 *3 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) + (-4 *3 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *2 (-2 (|:| -3398 *3) (|:| |coeff| *3))) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130))))) +(((*1 *1) (-5 *1 (-228))) ((*1 *1) (-5 *1 (-391)))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) -(((*1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) - (-4 *2 (-13 (-865) (-21)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) - (-4 *2 (-1268 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-944)) (-5 *1 (-1055 *2)) - (-4 *2 (-13 (-1125) (-10 -8 (-15 -3031 ($ $ $)))))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) - (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) + (-4 *3 (-375))))) +(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) + (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-177))) (-5 *1 (-1115))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) - (-4 *4 (-865))))) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) + (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *7 *2)) (-4 *6 (-1079)) + (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) + (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) (((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-870)) (-4 *5 (-814)) + (-4 *6 (-569)) (-4 *7 (-977 *6 *5 *3)) + (-5 *1 (-475 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1068 (-420 (-577))) (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) + (-15 -2429 (*7 $)))))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-809)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) - (-4 *4 (-465)) (-4 *6 (-865))))) -(((*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1145))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-443 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) - (-4 *4 (-174))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-660 (-1201))) (-4 *2 (-174)) - (-4 *4 (-244 (-3501 *5) (-787))) - (-14 *6 - (-1 (-112) (-2 (|:| -3251 *3) (|:| -1527 *4)) - (-2 (|:| -3251 *3) (|:| -1527 *4)))) - (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-865)) - (-4 *7 (-972 *2 *4 (-882 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-787)) (-4 *2 (-569)) (-5 *1 (-994 *2 *4)) - (-4 *4 (-1268 *2))))) + (-5 *2 + (-2 (|:| |fn| (-327 (-228))) (|:| -2443 (-665 (-228))) + (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) + (|:| |ub| (-665 (-864 (-228)))))) + (-5 *1 (-277))))) +(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) (((*1 *2 *3) - (-12 (-5 *3 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *4 *5 *6 *7)) - (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) - (-4 *7 (-1242))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2781 ((-1150 *3 (-625 $)) $)) - (-15 -2797 ((-1150 *3 (-625 $)) $)) - (-15 -3603 ($ (-1150 *3 (-625 $)))))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1237 *3)) - (-5 *1 (-806 *3)) (-4 *3 (-999)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-112)) - (-5 *1 (-1237 *2)) (-4 *2 (-999))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(((*1 *1 *1 *1) (-5 *1 (-880)))) -(((*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *2) - (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1268 *4)) - (-5 *1 (-793 *3 *4 *5 *2 *6)) (-4 *2 (-1268 *5)) (-14 *6 (-944)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-787)) (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) - ((*1 *1 *1) (-12 (-4 *1 (-1311 *2)) (-4 *2 (-375)) (-4 *2 (-380))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-764))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) - (-5 *1 (-768))))) -(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-158))))) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-443 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313)))) + ((*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1130)) (-5 *2 (-112)) + (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) + (-4 *7 (-814)) + (-5 *2 + (-665 + (-2 (|:| -1641 (-792)) + (|:| |eqns| + (-665 + (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) + (|:| |cols| (-665 (-577)))))) + (|:| |fgb| (-665 *8))))) + (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-792))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-665 (-391))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) + (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *1 *2) + (-12 (-5 *2 (-949)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-375)) (-14 *5 (-1023 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) + (-4 *3 (-1247)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1240 *4 *5 *3 *2)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *3 (-870)) (-4 *2 (-1095 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-5 *1 (-1244 *2)) (-4 *2 (-1247))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1283 *4)) - (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-1 (-1182 *4) (-1182 *4) (-1182 *4))) (-5 *1 (-1285 *4 *5))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) + (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 + (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) + (|:| |expense| (-391)) (|:| |accuracy| (-391)) + (|:| |intermediateResults| (-391)))) + (-5 *1 (-824))))) (((*1 *2 *3) - (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-844) (-1074))) (-5 *2 (-1183)) - (-5 *1 (-842 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-1074))) - (-5 *2 (-1183)) (-5 *1 (-842 *5)))) + (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2104 (-665 *1)))) + (-4 *1 (-379 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-466 *3 *4 *5 *6)) + (|:| -2104 (-665 (-466 *3 *4 *5 *6))))) + (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-792)) (-5 *3 (-971 *5)) (-4 *5 (-1079)) + (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) + (-14 *4 (-949)) (-4 *5 (-1079)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) + (-5 *1 (-1194 *4 *5)) (-14 *4 (-949))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1202 *7)) (-4 *5 (-1079)) + (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-514 *5 *2 *6 *7)) + (-4 *6 (-1273 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-838)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-844) (-1074))) - (-5 *2 (-1297)) (-5 *1 (-842 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-838)) (-5 *4 (-327 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-844) (-1074))) (-5 *2 (-1297)) (-5 *1 (-842 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-1183)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-844)) (-5 *3 (-112)) (-5 *2 (-1183)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *2 (-1297)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *4 (-112)) (-5 *2 (-1297))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) + (-4 *4 (-1273 *5)) (-5 *2 (-1202 *7)) (-5 *1 (-514 *5 *4 *6 *7)) + (-4 *6 (-1273 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845)) (-5 *3 (-1183))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1201)) (-5 *3 (-112)) (-5 *1 (-911 *4)) - (-4 *4 (-1125))))) -(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) + (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) + (-5 *2 (-665 (-1106 *3 *4 *5))) (-5 *1 (-1107 *3 *4 *5)) + (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-660 *6)) (-5 *4 (-1201)) (-4 *6 (-443 *5)) - (-4 *5 (-1125)) (-5 *2 (-660 (-625 *6))) (-5 *1 (-586 *5 *6))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) - (-4 *3 (-569))))) -(((*1 *2 *2) - (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) - (-5 *1 (-178 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-944)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-375)) (-14 *5 (-1018 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) - (-4 *5 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-660 *7)) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-660 (-305 *8))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *8)) - (-5 *6 (-660 *8)) (-4 *8 (-443 *7)) - (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-115))) (-5 *6 (-660 (-305 *8))) - (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) - (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) - (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) - (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) - (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-660 *3)) - (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-909 *4 *5)) (-4 *5 (-1242)))) - ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1191))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-519)) (-5 *2 (-665 (-993))) (-5 *1 (-302))))) (((*1 *2 *1) - (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) - (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-1095 *3 *4 *2)) (-4 *2 (-870)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-665 *11)) (-5 *5 (-665 (-1202 *9))) + (-5 *6 (-665 *9)) (-5 *7 (-665 *12)) (-5 *8 (-665 (-792))) + (-4 *11 (-870)) (-4 *9 (-318)) (-4 *12 (-977 *9 *10 *11)) + (-4 *10 (-814)) (-5 *2 (-665 (-1202 *12))) + (-5 *1 (-728 *10 *11 *9 *12)) (-5 *3 (-1202 *12))))) (((*1 *2 *1) - (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) - (-14 *4 (-787)) (-4 *5 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1176))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4471)) (-4 *4 (-375)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-534 *4 *5 *6 *3)) - (-4 *3 (-703 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4471)) (-4 *4 (-569)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *8 (-385 *7)) - (-4 *9 (-385 *7)) (-5 *2 (-660 *6)) - (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-703 *4 *5 *6)) - (-4 *10 (-703 *7 *8 *9)))) + (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) + (-4 *1 (-443 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-660 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-704 *4 *5 *6 *3)) - (-4 *3 (-703 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) + (-4 *3 (-1130)))) ((*1 *2 *1) - (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) - (-5 *2 (-660 *7))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) - (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) - (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -2818 *6))) - (-5 *1 (-1041 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) - (-5 *1 (-641 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1235 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-809)) - (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) + (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) + (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) + (-5 *1 (-978 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3709 ($ *7)) (-15 -2417 (*7 $)) + (-15 -2429 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) - (-5 *2 (-2 (|:| -2940 (-577)) (|:| |var| (-625 *1)))) - (-4 *1 (-443 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) - (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) - (-4 *3 (-569))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) + (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) + (-4 *2 (-870))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-660 (-2 (|:| -3060 (-420 (-577))) (|:| -3076 (-420 (-577)))))) - (-5 *2 (-660 (-420 (-577)))) (-5 *1 (-1045 *4)) - (-4 *4 (-1268 (-577)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361)))) + ((*1 *1) (-4 *1 (-380))) + ((*1 *2 *3) + (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) + (-4 *4 (-361)))) + ((*1 *1 *1) (-4 *1 (-558))) ((*1 *1) (-4 *1 (-558))) + ((*1 *1 *1) (-5 *1 (-792))) + ((*1 *2 *1) (-12 (-5 *2 (-933 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) + (-4 *4 (-1130)))) + ((*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-558)) (-4 *2 (-569))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) + (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-625 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) - (-5 *1 (-624 *2 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25)))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-986 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) - (-4 *3 (-1074)) (-4 *2 (-808)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-1197 *3)) (-4 *3 (-1074)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-996)) (-4 *2 (-132)) (-5 *1 (-1203 *3)) (-4 *3 (-569)) - (-4 *3 (-1074)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-1265 *4 *3)) (-14 *4 (-1201)) - (-4 *3 (-1074))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1074)) (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2))))) + (-12 (-5 *3 (-792)) (-5 *2 (-1187 (-1001))) (-5 *1 (-1001))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1079))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) - (-5 *2 (-660 (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5))))) - (-5 *1 (-1003 *5)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5))))) + (-12 (-5 *3 (-674 *4)) (-4 *4 (-354 *5 *6 *7)) + (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2104 (-665 *4)))) + (-5 *1 (-827 *5 *6 *7 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) - (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1205)) (-5 *1 (-1204))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-431 *4)) (-4 *4 (-569))))) + (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) +(((*1 *2 *3) + (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) + (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) + (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-630 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1130)) + (-4 *4 (-1130))))) +(((*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493))))) +(((*1 *1 *2) + (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-385 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |num| (-710 *4)) (|:| |den| *4))) + (-5 *1 (-714 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) + (-4 *6 (-1273 *5)) + (-5 *2 (-2 (|:| -2281 *7) (|:| |rh| (-665 (-420 *6))))) + (-5 *1 (-828 *5 *6 *7 *3)) (-5 *4 (-665 (-420 *6))) + (-4 *7 (-677 *6)) (-4 *3 (-677 (-420 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1266 *4 *5 *3)) + (-4 *3 (-1273 *5))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-944)) (-4 *5 (-569)) (-5 *2 (-705 *5)) - (-5 *1 (-979 *5 *3)) (-4 *3 (-672 *5))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1232) (-1032)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) -(((*1 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) - (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-660 *7) (-660 *7))) (-5 *2 (-660 *7)) - (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) - (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) - (-4 *2 (-1268 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) + (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +(((*1 *2 *3) + (-12 (-4 *4 (-870)) (-5 *2 (-1218 (-665 *4))) (-5 *1 (-1217 *4)) + (-5 *3 (-665 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) + (-5 *2 (-1065)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1079)) + (-5 *2 (-2 (|:| -2203 *1) (|:| -2519 *1))) (-4 *1 (-875 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) + (-5 *2 (-2 (|:| -2203 *3) (|:| -2519 *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-875 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-792)) (-4 *1 (-1273 *4)) (-4 *4 (-1079)) + (-5 *2 (-1297 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) -(((*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-55))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) - (-5 *1 (-343)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1201)) (-5 *4 (-1117 (-975 (-577)))) (-5 *2 (-341)) - (-5 *1 (-343)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) - (-4 *3 (-1125))))) -(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) - ((*1 *1 *1) (-4 *1 (-1085)))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-318)))) + (-12 (-5 *4 (-792)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3428 *1))) - (-4 *1 (-318))))) -(((*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295))))) + (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *5 (-870)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-824)))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) + (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-577)) (-5 *1 (-965))))) -(((*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-944) (-944)))) (-5 *1 (-996))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) - ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293))))) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) + (-4 *6 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-112)) + (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))) (((*1 *2 *3) - (-12 (-4 *2 (-375)) (-4 *2 (-864)) (-5 *1 (-968 *2 *3)) - (-4 *3 (-1268 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) - (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) - (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) + (|partial| -12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) + (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-806 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) + (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) + (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-806 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3868 *4))) + (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-887 *4)) + (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-630 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-5 *5 (-1202 *2)) + (-4 *2 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-630 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) + (-5 *5 (-420 (-1202 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1232))) + (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) + (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-980 *4))) + (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-5 *2 (-665 (-1076 *4 *5))) (-5 *1 (-1324 *4 *5 *6)) + (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-949)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1079)) + (-4 *4 (-1247)))) + ((*1 *1 *2) + (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) + (-4 *5 (-244 (-3600 *3) (-792))) + (-14 *6 + (-1 (-112) (-2 (|:| -3354 *2) (|:| -2328 *5)) + (-2 (|:| -3354 *2) (|:| -2328 *5)))) + (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-870)) + (-4 *7 (-977 *4 *5 (-887 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-665 (-112))) (-5 *7 (-710 (-228))) + (-5 *8 (-710 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) + (-5 *2 (-1065)) (-5 *1 (-775))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) + ((*1 *2 *2) + (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) + (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) + (-4 *6 (-1095 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3941 *1) (|:| |upper| *1))) + (-4 *1 (-1006 *4 *5 *3 *6))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-665 (-577))) + (|:| |cols| (-665 (-577))))) + (-5 *4 (-710 *12)) (-5 *5 (-665 (-420 (-980 *9)))) + (-5 *6 (-665 (-665 *12))) (-5 *7 (-792)) (-5 *8 (-577)) + (-4 *9 (-13 (-318) (-148))) (-4 *12 (-977 *9 *11 *10)) + (-4 *10 (-13 (-870) (-632 (-1206)))) (-4 *11 (-814)) + (-5 *2 + (-2 (|:| |eqzro| (-665 *12)) (|:| |neqzro| (-665 *12)) + (|:| |wcond| (-665 (-980 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1297 (-420 (-980 *9)))) + (|:| -2104 (-665 (-1297 (-420 (-980 *9))))))))) + (-5 *1 (-952 *9 *10 *11 *12))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) + (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) +(((*1 *1 *1) (-5 *1 (-885))) ((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) - (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-775))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-691 (-228))) - (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-766))))) + (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1188)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1188)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1206))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 (-112) (-665 *1))) + (-4 *1 (-1101 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) +(((*1 *2) + (-12 (-5 *2 (-1297 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4)) + (-14 *3 (-949)) (-14 *4 (-949))))) (((*1 *2 *1) - (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) - (-5 *2 (-660 (-660 (-660 (-787)))))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2845 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1268 *4))))) + (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) + (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) + (-4 *6 (-354 *3 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) + ((*1 *2 *2) + (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-5 *2 (-481)) (-5 *1 (-1298))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-1194 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299)))) + ((*1 *2 *1) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299))))) +(((*1 *1) (-5 *1 (-1112)))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) +(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) +(((*1 *1 *1) (-4 *1 (-647))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-665 (-980 (-577)))) (-5 *1 (-450)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-228))) (-5 *2 (-1134)) + (-5 *1 (-780)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-577))) (-5 *2 (-1134)) + (-5 *1 (-780))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-112)) + (-5 *1 (-271))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) + (-5 *2 (-2 (|:| -2040 (-665 *6)) (|:| -3548 (-665 *6))))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1227)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) - (-5 *2 (-1060)) (-5 *1 (-761))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1232)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) + (-4 *4 (-870)) (-4 *2 (-569))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-825 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1232) (-987)))))) (((*1 *2 *1) - (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) -(((*1 *1 *1) (-5 *1 (-880))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) - (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) - ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1183)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1201))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-447)) - (-5 *2 - (-660 - (-3 (|:| -2668 (-1201)) - (|:| -4445 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) - (-5 *1 (-1205))))) -(((*1 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242))))) -(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845))))) -(((*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) - ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074))))) -(((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1025 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1068 (-420 (-577))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1197 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-809)) - (-4 *5 (-865)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-705 (-1197 *8))) (-4 *5 (-1074)) (-4 *8 (-1074)) - (-4 *6 (-1268 *5)) (-5 *2 (-705 *6)) (-5 *1 (-514 *5 *6 *7 *8)) - (-4 *7 (-1268 *6))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2653 *3) (|:| |coef1| (-798 *3)))) - (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) - (-5 *2 (-660 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) + (|partial| -12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) + (-4 *4 (-13 (-569) (-1068 (-577)) (-148))) (-5 *1 (-583 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-869))) + (-5 *2 (-665 (-2 (|:| -2127 (-665 *3)) (|:| -3405 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1273 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-375) (-869))) + (-5 *2 (-665 (-2 (|:| -2127 (-665 *3)) (|:| -3405 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1206)) + (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) + (-4 *4 (-867))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) + (-4 *1 (-1095 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299)))) + ((*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) + (|:| -3433 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-665 (-228))) (-5 *1 (-206))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-665 (-1188))) (-5 *3 (-577)) (-5 *4 (-1188)) + (-5 *1 (-247)))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-665 (-949))) (-5 *2 (-1208 (-420 (-577)))) + (-5 *1 (-192))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) + (-4 *7 (-1095 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) + (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) + (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1074) (-865))) - (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201)))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227)))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) - (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) - (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) - (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-1088))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715))))) -(((*1 *1 *2) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1228 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-660 (-1228 *2))) (-5 *1 (-1228 *2)) (-4 *2 (-1125))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) - ((*1 *1 *2) - (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) + (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-658 *3 *4)) + (-14 *4 (-665 (-1206)))))) +(((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-1001))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) +(((*1 *2 *2) + (-12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) + (-14 *4 (-665 (-1206))))) + ((*1 *2 *2) + (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) + (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-463 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) + (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-463 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) + (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) + (-5 *1 (-463 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) + (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *3 (-665 (-271))) (-5 *1 (-269)))) ((*1 *1 *2) - (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) - (-14 *3 (-944)) (-4 *4 (-1074)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) - (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3603 ($ *7))))) - (-4 *7 (-864)) - (-4 *8 - (-13 (-1270 *3 *7) (-375) (-1227) - (-10 -8 (-15 -3362 ($ $)) (-15 -4129 ($ $))))) + (-12 (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) - (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) - (-14 *10 (-1201))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-4 *2 (-1268 *5)) - (-5 *1 (-1286 *5 *2 *6 *3)) (-4 *6 (-672 *2)) (-4 *3 (-1283 *5))))) -(((*1 *1) (-5 *1 (-519)))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-52))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-486))) - ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-902)))) - ((*1 *1 *1) (-5 *1 (-996))) - ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) - (-5 *1 (-1212 *4)) (-4 *4 (-865))))) -(((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-841))))) -((-1326 . 732125) (-1327 . 732007) (-1328 . 731727) (-1329 . 731675) - (-1330 . 731576) (-1331 . 731548) (-1332 . 731403) (-1333 . 730920) - (-1334 . 730382) (-1335 . 730164) (-1336 . 730065) (-1337 . 729998) - (-1338 . 729911) (-1339 . 729519) (-1340 . 729467) (-1341 . 729398) - (-1342 . 729279) (-1343 . 729208) (-1344 . 728806) (-1345 . 728720) - (-1346 . 728589) (-1347 . 728539) (-1348 . 728310) (-1349 . 728150) - (-1350 . 728073) (-1351 . 727936) (-1352 . 727869) (-1353 . 727812) - (-1354 . 727631) (-1355 . 727310) (-1356 . 727225) (-1357 . 727106) - (-1358 . 727010) (-1359 . 726829) (-1360 . 726731) (-1361 . 726524) - (-1362 . 726474) (-1363 . 726091) (-1364 . 726023) (-1365 . 725879) - (-1366 . 725816) (-1367 . 725719) (-1368 . 725440) (-1369 . 725358) - (-1370 . 725285) (-1371 . 725208) (-1372 . 725150) (-1373 . 724937) - (-1374 . 724836) (-1375 . 724532) (-1376 . 724462) (-1377 . 724371) - (-1378 . 724304) (-1379 . 724118) (-1380 . 724069) (-1381 . 723311) - (-1382 . 723038) (-1383 . 722908) (-1384 . 722788) (-1385 . 722715) - (-1386 . 722638) (-1387 . 722542) (-1388 . 722397) (-1389 . 722234) - (-1390 . 722002) (-1391 . 721505) (-1392 . 721420) (-1393 . 721367) - (-1394 . 721256) (-1395 . 721189) (-1396 . 721074) (-1397 . 720894) - (-1398 . 720806) (-1399 . 720641) (-1400 . 720493) (-1401 . 720281) - (-1402 . 720109) (-1403 . 719796) (-1404 . 718908) (-1405 . 718805) - (-1406 . 718692) (-1407 . 718505) (-1408 . 718332) (-1409 . 718230) - (-1410 . 718178) (-1411 . 716397) (-1412 . 716369) (-1413 . 716316) - (-1414 . 716200) (-1415 . 716100) (-1416 . 716008) (-1417 . 715864) - (-1418 . 715805) (-1419 . 715704) (-1420 . 715626) (-1421 . 715467) - (-1422 . 714691) (-1423 . 714524) (-1424 . 714475) (-1425 . 714356) - (-1426 . 714256) (-1427 . 713954) (-1428 . 713899) (-1429 . 713865) - (-1430 . 713807) (-1431 . 713576) (-1432 . 713291) (-1433 . 713126) - (-1434 . 713023) (-1435 . 712995) (-1436 . 712926) (-1437 . 712808) - (-1438 . 712515) (-1439 . 711931) (-1440 . 711877) (-1441 . 711654) - (-1442 . 711496) (-1443 . 711447) (-1444 . 711351) (-1445 . 711323) - (-1446 . 711208) (-1447 . 711105) (-1448 . 710986) (-1449 . 710863) - (-1450 . 710729) (-1451 . 710571) (-1452 . 710332) (-1453 . 710201) - (-1454 . 710159) (-1455 . 710079) (-1456 . 709799) (-1457 . 709521) - (-1458 . 709294) (-1459 . 708698) (-1460 . 708391) (-1461 . 708250) - (-1462 . 708079) (** . 705084) (-1464 . 704989) (-1465 . 704937) - (-1466 . 704841) (-1467 . 704812) (-1468 . 704454) (-1469 . 704262) - (-1470 . 703887) (-1471 . 703860) (-1472 . 703744) (-1473 . 703549) - (-1474 . 703398) (-1475 . 703338) (-1476 . 703028) (-1477 . 702972) - (-1478 . 702829) (-1479 . 702091) (-1480 . 701981) (-1481 . 701164) - (-1482 . 701086) (-1483 . 700930) (-1484 . 700684) (-1485 . 700607) - (-1486 . 700482) (-1487 . 700450) (-1488 . 700220) (-1489 . 700169) - (-1490 . 700087) (-1491 . 700034) (-1492 . 699975) (-1493 . 699157) - (-1494 . 699104) (-1495 . 699030) (-1496 . 698942) (-1497 . 698888) - (-1498 . 698818) (-1499 . 698741) (-1500 . 698673) (-1501 . 698593) - (-1502 . 698507) (-1503 . 698411) (-1504 . 698270) (-1505 . 698111) - (-1506 . 697996) (-1507 . 697853) (-1508 . 697781) (-1509 . 697712) - (-1510 . 697624) (-1511 . 697109) (-1512 . 696872) (-1513 . 696633) - (-1514 . 696170) (-1515 . 695976) (-1516 . 695805) (-1517 . 695732) - (-1518 . 695637) (-1519 . 695515) (-1520 . 695481) (-1521 . 695403) - (-1522 . 695282) (-1523 . 694796) (-1524 . 694730) (-1525 . 694520) - (-1526 . 694404) (-1527 . 693936) (-1528 . 693839) (-1529 . 693709) - (-1530 . 692893) (-1531 . 692612) (-1532 . 692468) (-1533 . 692339) - (-1534 . 692238) (-1535 . 692053) (-1536 . 692001) (-1537 . 691814) - (-1538 . 691653) (-1539 . 691500) (-1540 . 691374) (-1541 . 691264) - (-1542 . 691167) (-1543 . 691094) (-1544 . 691010) (-1545 . 690758) - (-1546 . 690552) (-1547 . 690091) (-1548 . 690001) (-1549 . 689849) - (-1550 . 689794) (-1551 . 689645) (-1552 . 689535) (-1553 . 689431) - (-1554 . 689055) (-1555 . 688917) (-1556 . 688801) (-1557 . 688773) - (-1558 . 688695) (-1559 . 687779) (-1560 . 687702) (-1561 . 687631) - (-1562 . 687274) (-1563 . 687175) (-1564 . 686999) (-1565 . 686777) - (-1566 . 686749) (-1567 . 686663) (-1568 . 684695) (-1569 . 684530) - (-1570 . 684446) (-1571 . 684065) (-1572 . 684012) (-1573 . 683938) - (-1574 . 683779) (-1575 . 683265) (-1576 . 683169) (-1577 . 683009) - (-1578 . 682757) (-1579 . 682524) (-1580 . 682366) (-1581 . 682256) - (-1582 . 681745) (-1583 . 681316) (-1584 . 680955) (-1585 . 680623) - (-1586 . 680396) (-1587 . 680238) (-1588 . 680184) (-1589 . 679868) - (-1590 . 679816) (-1591 . 679494) (-1592 . 679235) (-1593 . 679183) - (-1594 . 679008) (-1595 . 678906) (-1596 . 678838) (-1597 . 678767) - (-1598 . 678570) (-1599 . 678541) (-1600 . 678419) (-1601 . 678149) - (-1602 . 677934) (-1603 . 677878) (-1604 . 677739) (-1605 . 677638) - (-1606 . 677586) (-1607 . 677449) (-1608 . 677244) (-1609 . 677212) - (-1610 . 677066) (-1611 . 676995) (-1612 . 676843) (-1613 . 676759) - (-1614 . 676556) (-1615 . 676338) (-1616 . 676256) (-1617 . 676118) - (-1618 . 675912) (-1619 . 675859) (-1620 . 675780) (-1621 . 675685) - (-1622 . 675569) (-1623 . 675446) (-1624 . 675331) (-1625 . 674114) - (-1626 . 674035) (-1627 . 673890) (-1628 . 673707) (-1629 . 673223) - (-1630 . 673139) (-1631 . 673035) (-1632 . 672933) (-1633 . 672727) - (-1634 . 672556) (-1635 . 672461) (-1636 . 672394) (-1637 . 672138) - (-1638 . 671826) (-1639 . 671352) (-1640 . 670961) (-1641 . 670907) - (-1642 . 670855) (-1643 . 670431) (-1644 . 670312) (-1645 . 669996) - (-1646 . 669881) (-1647 . 669773) (-1648 . 669630) (-1649 . 669574) - (-1650 . 669491) (-1651 . 668339) (-1652 . 667726) (-1653 . 667667) - (-1654 . 667530) (-1655 . 667323) (-1656 . 667267) (-1657 . 667168) - (-1658 . 666989) (-1659 . 666886) (-1660 . 666827) (-1661 . 666753) - (-1662 . 666576) (-1663 . 666149) (-1664 . 665911) (-1665 . 665803) - (-1666 . 665588) (-1667 . 665436) (-1668 . 665383) (-1669 . 665052) - (-1670 . 664784) (-1671 . 664696) (-1672 . 664643) (-1673 . 664524) - (-1674 . 664411) (-1675 . 664317) (-1676 . 664264) (-1677 . 664186) - (-1678 . 664119) (-1679 . 664042) (-1680 . 663924) (-1681 . 663810) - (-1682 . 663668) (-1683 . 663573) (-1684 . 663480) (-1685 . 662850) - (-1686 . 662755) (-1687 . 662593) (-1688 . 661880) (-1689 . 661756) - (-1690 . 661682) (-1691 . 661599) (-1692 . 661305) (-1693 . 661276) - (-1694 . 661176) (-1695 . 661017) (-1696 . 660881) (-1697 . 660798) - (-1698 . 660745) (-1699 . 660686) (-1700 . 660598) (-1701 . 660425) - (-1702 . 660298) (-1703 . 660155) (-1704 . 659815) (-1705 . 659749) - (-1706 . 659520) (-1707 . 659450) (-1708 . 659194) (-1709 . 658942) - (-1710 . 658739) (-1711 . 658621) (-1712 . 658520) (-1713 . 658121) - (-1714 . 658047) (-1715 . 657994) (-1716 . 657702) (-1717 . 657651) - (-1718 . 657623) (-1719 . 657507) (-1720 . 657093) (-1721 . 657028) - (-1722 . 656924) (-1723 . 656723) (-1724 . 656315) (-1725 . 656201) - (-1726 . 656124) (-1727 . 655988) (-1728 . 655925) (-1729 . 655809) - (-1730 . 655651) (-1731 . 655456) (-1732 . 655149) (-1733 . 655120) - (-1734 . 655086) (-1735 . 654989) (-1736 . 654921) (-1737 . 654868) - (-1738 . 654727) (-1739 . 654656) (-1740 . 654380) (-1741 . 654194) - (-1742 . 653046) (-1743 . 652555) (-1744 . 652388) (-1745 . 652273) - (-1746 . 652211) (-1747 . 652125) (-1748 . 651907) (-1749 . 651774) - (-1750 . 651717) (-1751 . 651309) (-1752 . 651135) (-1753 . 650897) - (-1754 . 650699) (-1755 . 650586) (-1756 . 650219) (-1757 . 650117) - (-1758 . 650046) (-1759 . 649941) (-1760 . 649763) (-1761 . 649545) - (-1762 . 649486) (-1763 . 649321) (-1764 . 649254) (-1765 . 649173) - (-1766 . 649043) (-1767 . 648970) (-1768 . 648936) (-1769 . 648865) - (-1770 . 648812) (-1771 . 648768) (-1772 . 648674) (-1773 . 648445) - (-1774 . 648140) (-1775 . 647864) (-1776 . 647787) (-1777 . 647732) - (-1778 . 647704) (-1779 . 647501) (-1780 . 647356) (-1781 . 647177) - (-1782 . 647125) (-1783 . 647073) (-1784 . 647018) (-1785 . 646902) - (-1786 . 646773) (-1787 . 646705) (-1788 . 646427) (-1789 . 646325) - (-1790 . 646228) (-1791 . 646148) (-1792 . 646077) (-1793 . 645982) - (-1794 . 645877) (-1795 . 645781) (-1796 . 645439) (-1797 . 645189) - (-1798 . 644944) (-1799 . 644873) (-1800 . 644775) (-1801 . 644536) - (-1802 . 644437) (-1803 . 644335) (-1804 . 644281) (-1805 . 644204) - (-1806 . 644155) (-1807 . 643814) (-1808 . 643673) (-1809 . 643645) - (-1810 . 643561) (-1811 . 643506) (-1812 . 643403) (-1813 . 643324) - (-1814 . 643245) (-1815 . 643217) (-1816 . 643129) (-1817 . 643077) - (-1818 . 643025) (-1819 . 642498) (-1820 . 642358) (-1821 . 642196) - (-1822 . 642075) (-1823 . 641964) (-1824 . 641890) (-1825 . 641823) - (-1826 . 641707) (-1827 . 641640) (-1828 . 641567) (-1829 . 641399) - (-1830 . 641322) (-1831 . 641169) (-1832 . 641036) (-1833 . 640950) - (-1834 . 640666) (-1835 . 640292) (-1836 . 640232) (-1837 . 640198) - (-1838 . 640115) (-1839 . 640034) (-1840 . 639982) (-1841 . 639827) - (-1842 . 639624) (-1843 . 639552) (-1844 . 639420) (-1845 . 639257) - (-1846 . 639105) (-1847 . 639019) (-1848 . 638866) (-1849 . 638323) - (-1850 . 637613) (-1851 . 637409) (-1852 . 637307) (-1853 . 637197) - (-1854 . 636813) (-1855 . 636701) (-1856 . 636526) (-1857 . 636040) - (-1858 . 635863) (-1859 . 635739) (-1860 . 635626) (-1861 . 635554) - (-1862 . 635502) (-1863 . 634683) (-1864 . 634503) (-1865 . 634419) - (-1866 . 634307) (-1867 . 634088) (-1868 . 633997) (-1869 . 633965) - (-1870 . 633783) (-1871 . 633625) (-1872 . 633263) (-1873 . 633181) - (-1874 . 633129) (-1875 . 633061) (-1876 . 632991) (-1877 . 632869) - (-1878 . 632817) (-1879 . 632651) (-1880 . 632594) (-1881 . 632376) - (-1882 . 632107) (-1883 . 632054) (-1884 . 631508) (-1885 . 631480) - (-1886 . 631399) (-1887 . 631315) (-1888 . 631100) (-1889 . 631012) - (-1890 . 630758) (-1891 . 630612) (-1892 . 630538) (-1893 . 630479) - (-1894 . 630426) (-1895 . 629122) (-1896 . 628780) (-1897 . 628601) - (-1898 . 627303) (-1899 . 626767) (-1900 . 626178) (-1901 . 626125) - (-1902 . 626039) (-1903 . 625901) (-1904 . 624905) (-1905 . 624764) - (-1906 . 624662) (-1907 . 624563) (-1908 . 624489) (-1909 . 624430) - (-1910 . 624344) (-1911 . 623747) (-1912 . 623710) (-1913 . 623614) - (-1914 . 623287) (-1915 . 623163) (-1916 . 622672) (-1917 . 622576) - (-1918 . 622447) (-1919 . 622343) (-1920 . 621477) (-1921 . 621322) - (-1922 . 621242) (-1923 . 621073) (-1924 . 621042) (-1925 . 620614) - (-1926 . 620321) (-1927 . 620184) (-1928 . 620081) (-1929 . 619955) - (-1930 . 619620) (-1931 . 619537) (-1932 . 619312) (-1933 . 619157) - (-1934 . 618730) (-1935 . 618631) (-1936 . 618564) (-1937 . 618481) - (-1938 . 618365) (-1939 . 618258) (-1940 . 618036) (-1941 . 617644) - (-1942 . 617570) (-1943 . 617475) (-1944 . 617447) (-1945 . 617274) - (-1946 . 617201) (-1947 . 617080) (-1948 . 616986) (-1949 . 616824) - (-1950 . 616692) (-1951 . 616612) (-1952 . 616559) (-1953 . 616424) - (-1954 . 616316) (-1955 . 616101) (-1956 . 616073) (-1957 . 615990) - (-1958 . 615916) (-1959 . 615764) (-1960 . 615664) (-1961 . 615156) - (-1962 . 615101) (-1963 . 614991) (-1964 . 612930) (-1965 . 612782) - (-1966 . 611704) (-1967 . 611568) (-1968 . 611408) (-1969 . 611078) - (-1970 . 610919) (-1971 . 610864) (-1972 . 610799) (-1973 . 610771) - (-1974 . 610678) (-1975 . 610584) (-1976 . 610298) (-1977 . 610212) - (-1978 . 610013) (-1979 . 608832) (-1980 . 608755) (-1981 . 608595) - (-1982 . 608452) (-1983 . 608325) (-1984 . 608141) (-1985 . 608063) - (-1986 . 608001) (-1987 . 606802) (-1988 . 606698) (-1989 . 606555) - (-1990 . 606451) (-1991 . 606063) (-1992 . 605309) (-1993 . 605227) - (-1994 . 605193) (-1995 . 605126) (-1996 . 605055) (-1997 . 603753) - (-1998 . 603615) (-1999 . 603029) (-2000 . 602921) (-2001 . 602474) - (-2002 . 602412) (-2003 . 602283) (-2004 . 602184) (-2005 . 602081) - (-2006 . 601718) (-2007 . 601508) (-2008 . 601380) (-2009 . 601295) - (-2010 . 601048) (-2011 . 600769) (-2012 . 600668) (-2013 . 600594) - (-2014 . 600402) (-2015 . 600330) (-2016 . 600253) (-2017 . 600074) - (-2018 . 599973) (-2019 . 599801) (-2020 . 599620) (-2021 . 599524) - (-2022 . 599405) (-2023 . 599110) (-2024 . 598925) (-2025 . 598802) - (-2026 . 598746) (-2027 . 598660) (-2028 . 598326) (-2029 . 598224) - (-2030 . 597691) (-2031 . 597639) (-2032 . 597217) (-2033 . 596906) - (-2034 . 596804) (-2035 . 596775) (-2036 . 596719) (-2037 . 596516) - (-2038 . 596463) (-2039 . 595896) (-2040 . 595632) (-2041 . 595559) - (-2042 . 595378) (-2043 . 595276) (-2044 . 595107) (-2045 . 595053) - (-2046 . 594912) (-2047 . 594859) (-2048 . 594406) (-2049 . 594181) - (-2050 . 594086) (-2051 . 593992) (-2052 . 593940) (-2053 . 591808) - (-2054 . 591674) (-2055 . 591267) (-2056 . 591130) (-2057 . 590993) - (-2058 . 590890) (-2059 . 589034) (-2060 . 588525) (-2061 . 588412) - (-2062 . 588303) (-2063 . 588254) (-2064 . 588148) (-2065 . 588062) - (-2066 . 587959) (-2067 . 587830) (-2068 . 587658) (-2069 . 587526) - (-2070 . 587467) (-2071 . 587399) (-2072 . 587304) (-2073 . 587011) - (-2074 . 586949) (-2075 . 586781) (-2076 . 586372) (-2077 . 586208) - (-2078 . 586062) (-2079 . 584861) (-2080 . 584748) (-2081 . 584660) - (-2082 . 584466) (-2083 . 584371) (-2084 . 583613) (-2085 . 582446) - (-2086 . 582396) (-2087 . 582288) (-2088 . 582155) (-2089 . 582047) - (-2090 . 581901) (-2091 . 581818) (-2092 . 581747) (-2093 . 581375) - (-2094 . 581316) (-2095 . 581242) (-2096 . 581113) (-2097 . 580974) - (-2098 . 580793) (-2099 . 580578) (-2100 . 580481) (-2101 . 580233) - (-2102 . 580151) (-2103 . 579933) (-2104 . 579801) (-2105 . 579664) - (-2106 . 579562) (-2107 . 579343) (-2108 . 579116) (-2109 . 578921) - (-2110 . 578806) (-2111 . 578203) (-2112 . 578059) (-2113 . 577833) - (-2114 . 577303) (-2115 . 577053) (-2116 . 576958) (-2117 . 576867) - (-2118 . 576760) (-2119 . 576698) (-2120 . 576618) (-2121 . 576548) - (-2122 . 576486) (-2123 . 576331) (-2124 . 562099) (-2125 . 562047) - (-2126 . 561992) (-2127 . 561920) (-2128 . 561861) (-2129 . 561750) - (-2130 . 561683) (-2131 . 561356) (-2132 . 561260) (-2133 . 561082) - (-2134 . 560952) (-2135 . 560854) (-2136 . 560180) (-2137 . 559961) - (-2138 . 559801) (-2139 . 558921) (-2140 . 558836) (-2141 . 558787) - (-2142 . 558227) (-2143 . 558126) (-2144 . 557982) (-2145 . 557836) - (-2146 . 557778) (-2147 . 557678) (-2148 . 557143) (-2149 . 556749) - (-2150 . 556661) (-2151 . 556587) (-2152 . 556518) (-2153 . 556418) - (-2154 . 556315) (-2155 . 550975) (-2156 . 550822) (-2157 . 550732) - (-2158 . 550194) (-2159 . 549635) (-2160 . 549569) (-2161 . 549427) - (-2162 . 549177) (-2163 . 549087) (-2164 . 549037) (-2165 . 548507) - (-9 . 548479) (-2167 . 548402) (-2168 . 547828) (-2169 . 547449) - (-2170 . 547118) (-2171 . 546559) (-2172 . 546267) (-2173 . 546215) - (-2174 . 546160) (-2175 . 546020) (-2176 . 542353) (-2177 . 542270) - (-2178 . 542022) (-2179 . 541875) (-2180 . 541762) (-8 . 541734) - (-2182 . 541345) (-2183 . 541045) (-2184 . 540934) (-2185 . 540824) - (-2186 . 540731) (-2187 . 540633) (-2188 . 540555) (-2189 . 540396) - (-2190 . 540368) (-7 . 540340) (-2192 . 539538) (-2193 . 539372) - (-2194 . 539224) (-2195 . 539141) (-2196 . 539019) (-2197 . 538914) - (-2198 . 538831) (-2199 . 538797) (-2200 . 538704) (-2201 . 538609) - (-2202 . 538425) (-2203 . 538313) (-2204 . 538256) (-2205 . 538201) - (-2206 . 538057) (-2207 . 537975) (-2208 . 537915) (-2209 . 537863) - (-2210 . 537810) (-2211 . 537724) (-2212 . 537625) (-2213 . 537488) - (-2214 . 537330) (-2215 . 537253) (-2216 . 537110) (-2217 . 536994) - (-2218 . 536838) (-2219 . 536412) (-2220 . 536247) (-2221 . 536173) - (-2222 . 536008) (-2223 . 535948) (-2224 . 535805) (-2225 . 535688) - (-2226 . 535578) (-2227 . 535510) (-2228 . 534967) (-2229 . 534848) - (-2230 . 534601) (-2231 . 534531) (-2232 . 534260) (-2233 . 534153) - (-2234 . 534096) (-2235 . 533452) (-2236 . 533261) (-2237 . 533187) - (-2238 . 532991) (-2239 . 532871) (-2240 . 532489) (-2241 . 532404) - (-2242 . 532330) (-2243 . 532277) (-2244 . 532222) (-2245 . 531774) - (-2246 . 531677) (-2247 . 531624) (-2248 . 531487) (-2249 . 531134) - (-2250 . 531081) (-2251 . 531009) (-2252 . 530960) (-2253 . 530932) - (-2254 . 530734) (-2255 . 530609) (-2256 . 529539) (-2257 . 529348) - (-2258 . 529258) (-2259 . 529164) (-2260 . 529027) (-2261 . 528927) - (-2262 . 528757) (-2263 . 528611) (-2264 . 528429) (-2265 . 528286) - (-2266 . 528132) (-2267 . 527741) (-2268 . 527623) (-2269 . 527539) - (-2270 . 527298) (-2271 . 527175) (-2272 . 527017) (-2273 . 526871) - (-2274 . 526741) (-2275 . 526618) (-2276 . 526559) (-2277 . 526478) - (-2278 . 526302) (-2279 . 526108) (-2280 . 526025) (-2281 . 525844) - (-2282 . 525726) (-2283 . 525599) (-2284 . 525433) (-2285 . 525309) - (-2286 . 525214) (-2287 . 524968) (-2288 . 524849) (-2289 . 524752) - (-2290 . 524624) (-2291 . 524541) (-2292 . 524474) (-2293 . 524376) - (-2294 . 524228) (-2295 . 523941) (-2296 . 523101) (-2297 . 522776) - (-2298 . 522723) (-2299 . 522319) (-2300 . 522291) (-2301 . 521913) - (-2302 . 521815) (-2303 . 521716) (-2304 . 521424) (-2305 . 521330) - (-2306 . 521182) (-2307 . 521001) (-2308 . 520406) (-2309 . 520354) - (-2310 . 520248) (-2311 . 520150) (-2312 . 519718) (-2313 . 519358) - (-2314 . 519263) (-2315 . 519152) (-2316 . 519092) (-2317 . 519006) - (-2318 . 518710) (-2319 . 518511) (-2320 . 518440) (-2321 . 518192) - (-2322 . 518161) (-2323 . 518045) (-2324 . 517949) (-2325 . 517826) - (-2326 . 517748) (-2327 . 517621) (-2328 . 517522) (-2329 . 517310) - (-2330 . 517177) (-2331 . 517093) (-2332 . 516929) (-2333 . 516744) - (-2334 . 516526) (-2335 . 516253) (-2336 . 516160) (-2337 . 515963) - (-2338 . 515911) (-2339 . 515851) (-2340 . 515765) (-2341 . 515299) - (-2342 . 515021) (-2343 . 514993) (-2344 . 514930) (-2345 . 514575) - (-2346 . 513915) (-2347 . 513566) (-2348 . 513344) (-2349 . 513153) - (-2350 . 512513) (-2351 . 512028) (-2352 . 511405) (-2353 . 511348) - (-2354 . 511265) (-2355 . 511237) (-2356 . 511015) (-2357 . 510791) - (-2358 . 510552) (-2359 . 510523) (-2360 . 510422) (-2361 . 510194) - (-2362 . 510125) (-2363 . 510075) (-2364 . 509977) (-2365 . 509874) - (-2366 . 509753) (-2367 . 509674) (-2368 . 509575) (-2369 . 509480) - (-2370 . 509392) (-2371 . 509177) (-2372 . 509076) (-2373 . 508856) - (-2374 . 508722) (-2375 . 508659) (-2376 . 508563) (-2377 . 508408) - (-2378 . 508255) (-2379 . 508169) (-2380 . 508090) (-2381 . 507565) - (-2382 . 507417) (-2383 . 507312) (-2384 . 507121) (-2385 . 507039) - (-2386 . 506701) (-2387 . 506644) (-2388 . 506456) (-2389 . 506314) - (-2390 . 506231) (-2391 . 506128) (-2392 . 506020) (-2393 . 505899) - (-2394 . 505822) (-2395 . 505681) (-2396 . 505463) (-2397 . 505368) - (-2398 . 505230) (-2399 . 505158) (-2400 . 504945) (-2401 . 504868) - (-2402 . 504810) (-2403 . 504709) (-2404 . 504409) (-2405 . 504175) - (-2406 . 504032) (-2407 . 503958) (-2408 . 503884) (-2409 . 503244) - (-2410 . 503149) (-2411 . 503096) (-2412 . 503029) (-2413 . 502742) - (-2414 . 502646) (-2415 . 502511) (-2416 . 502446) (-2417 . 502394) - (-2418 . 502253) (-2419 . 502201) (-2420 . 502120) (-2421 . 501988) - (-2422 . 501907) (-2423 . 501801) (-2424 . 501664) (-2425 . 501567) - (-2426 . 501400) (-2427 . 500636) (-2428 . 500562) (-2429 . 500492) - (-2430 . 500341) (-2431 . 500196) (-2432 . 500118) (-2433 . 499893) - (-2434 . 499663) (-2435 . 499608) (-2436 . 498949) (-2437 . 498808) - (-2438 . 497606) (-2439 . 497526) (-2440 . 497474) (-2441 . 497404) - (-2442 . 496821) (-2443 . 496671) (-2444 . 496542) (-2445 . 496231) - (-2446 . 496133) (-2447 . 496053) (-2448 . 495923) (-2449 . 495825) - (-2450 . 495746) (-2451 . 495567) (-2452 . 495487) (-2453 . 495431) - (-2454 . 495308) (-2455 . 495202) (-2456 . 493424) (-2457 . 493294) - (-2458 . 493162) (-2459 . 493028) (-2460 . 492940) (-2461 . 491941) - (-2462 . 491845) (-2463 . 491721) (-2464 . 491452) (-2465 . 491362) - (-2466 . 491173) (-2467 . 490770) (-2468 . 490545) (-2469 . 490272) - (-2470 . 490241) (-2471 . 489511) (-2472 . 489354) (-2473 . 489302) - (-2474 . 489225) (-2475 . 489107) (-2476 . 488970) (-2477 . 488576) - (-2478 . 488431) (-2479 . 488308) (-2480 . 488190) (-2481 . 488063) - (-2482 . 487221) (-2483 . 487018) (-2484 . 486861) (-2485 . 486546) - (-2486 . 485816) (-2487 . 485721) (-2488 . 485514) (-2489 . 485442) - (-2490 . 485344) (-2491 . 485154) (-2492 . 485126) (-2493 . 485074) - (-2494 . 484201) (-2495 . 483977) (-2496 . 483945) (-2497 . 483871) - (-2498 . 480262) (-2499 . 480102) (-2500 . 480003) (-2501 . 479326) - (-2502 . 479270) (-2503 . 478472) (-2504 . 478096) (-2505 . 477780) - (-2506 . 477656) (-2507 . 477371) (-2508 . 477271) (-2509 . 477234) - (-2510 . 477133) (-2511 . 476687) (-2512 . 476122) (-2513 . 476036) - (-2514 . 475870) (-2515 . 475618) (-2516 . 475551) (-2517 . 475462) - (-2518 . 474794) (-2519 . 474710) (-2520 . 474366) (-2521 . 474296) - (-2522 . 474162) (-2523 . 473597) (-2524 . 473513) (-2525 . 473240) - (-2526 . 473183) (-2527 . 473149) (-2528 . 473024) (-2529 . 472816) - (-2530 . 472731) (-2531 . 472643) (-2532 . 472588) (-2533 . 472535) - (-2534 . 472011) (-2535 . 471446) (-2536 . 469190) (-2537 . 469138) - (-2538 . 469007) (-2539 . 468569) (-2540 . 468309) (-2541 . 468034) - (-2542 . 467842) (-2543 . 467765) (-2544 . 467447) (-2545 . 467376) - (-2546 . 466701) (-2547 . 466490) (-2548 . 466327) (-2549 . 466180) - (-2550 . 466035) (-2551 . 465926) (-2552 . 465749) (-2553 . 465676) - (-2554 . 465619) (-2555 . 464812) (-2556 . 464719) (-2557 . 464566) - (-2558 . 463891) (-2559 . 463023) (-2560 . 462937) (-2561 . 462594) - (-2562 . 462323) (-2563 . 462270) (-2564 . 462148) (-2565 . 462053) - (-2566 . 461976) (-2567 . 461435) (-2568 . 461299) (-2569 . 461137) - (-2570 . 460399) (-2571 . 460219) (-2572 . 460001) (-2573 . 459839) - (-2574 . 459788) (-2575 . 459498) (-2576 . 459132) (-2577 . 458742) - (-2578 . 458679) (-2579 . 458583) (-2580 . 458469) (-2581 . 457906) - (-2582 . 457832) (-2583 . 457705) (-2584 . 457622) (-2585 . 457466) - (-2586 . 457026) (-2587 . 456758) (-2588 . 456687) (-2589 . 456341) - (-2590 . 455587) (-2591 . 455499) (-2592 . 454936) (-2593 . 454877) - (-2594 . 454798) (-2595 . 454682) (-2596 . 454613) (-2597 . 454481) - (-2598 . 454364) (-2599 . 454184) (-2600 . 453099) (-2601 . 452735) - (-2602 . 452580) (-2603 . 452319) (-2604 . 451756) (-2605 . 451728) - (-2606 . 451651) (-2607 . 451598) (-2608 . 451518) (-2609 . 451101) - (-2610 . 451005) (-2611 . 450790) (-2612 . 450663) (-2613 . 450596) - (-2614 . 450529) (-2615 . 450470) (-2616 . 449794) (-2617 . 449641) - (-2618 . 449581) (-2619 . 448904) (-2620 . 448681) (-2621 . 448611) - (-2622 . 448559) (-2623 . 448458) (-2624 . 448285) (-2625 . 448232) - (-2626 . 448119) (-2627 . 447943) (-2628 . 447911) (-2629 . 447689) - (-2630 . 447580) (-2631 . 446904) (-2632 . 446623) (-2633 . 446331) - (-2634 . 446248) (-2635 . 446163) (-2636 . 446033) (-2637 . 445966) - (-2638 . 445656) (-2639 . 445512) (-2640 . 445357) (-2641 . 445298) - (-2642 . 444622) (-2643 . 444159) (-2644 . 443841) (-2645 . 443725) - (-2646 . 443607) (-2647 . 443414) (-2648 . 443129) (-2649 . 443048) - (-2650 . 442789) (-2651 . 442676) (-2652 . 441380) (-2653 . 440993) - (-2654 . 440831) (-2655 . 440267) (-2656 . 439922) (-2657 . 439827) - (-2658 . 439530) (-2659 . 439406) (-2660 . 438917) (-2661 . 438851) - (-2662 . 438753) (-2663 . 438169) (-2664 . 438099) (-2665 . 437936) - (-2666 . 437372) (-2667 . 437316) (-2668 . 436670) (-2669 . 436420) - (-2670 . 436353) (-2671 . 436165) (-2672 . 436045) (-2673 . 435974) - (-2674 . 435920) (-2675 . 435816) (-2676 . 435691) (-2677 . 435636) - (-2678 . 435416) (-2679 . 435356) (-2680 . 434792) (-2681 . 434610) - (-2682 . 434018) (-2683 . 432288) (-2684 . 432216) (-2685 . 432070) - (-2686 . 432011) (-2687 . 431868) (-2688 . 431789) (-2689 . 431580) - (-2690 . 431278) (-2691 . 431225) (-2692 . 430946) (-2693 . 430569) - (-2694 . 430006) (-2695 . 429875) (-2696 . 429815) (-2697 . 429712) - (-2698 . 429425) (-2699 . 429337) (-2700 . 429272) (-2701 . 428945) - (-2702 . 428805) (-2703 . 428699) (-2704 . 428554) (-2705 . 428349) - (-2706 . 428193) (-2707 . 428116) (-2708 . 427553) (-2709 . 427440) - (-2710 . 427367) (-2711 . 427285) (-2712 . 427176) (-2713 . 427111) - (-2714 . 426980) (-2715 . 426927) (-2716 . 426738) (-2717 . 426591) - (-2718 . 426505) (-2719 . 426169) (-2720 . 425919) (-2721 . 425856) - (-2722 . 425293) (-2723 . 425150) (-2724 . 425051) (-2725 . 424955) - (-2726 . 424900) (-2727 . 424802) (-2728 . 424458) (-2729 . 423058) - (-2730 . 422862) (-2731 . 422569) (-2732 . 422161) (-2733 . 422073) - (-2734 . 421510) (-2735 . 421422) (-2736 . 421341) (-2737 . 420914) - (-2738 . 420745) (-2739 . 417082) (-2740 . 416982) (-2741 . 416763) - (-2742 . 416605) (-2743 . 416501) (-2744 . 416423) (-2745 . 416304) - (-2746 . 416129) (-2747 . 415984) (-2748 . 415421) (-2749 . 415320) - (-2750 . 415268) (-2751 . 415161) (-2752 . 415017) (-2753 . 414904) - (-2754 . 414733) (-2755 . 414492) (-2756 . 414013) (-2757 . 413955) - (-2758 . 413775) (-2759 . 413343) (-2760 . 413071) (-2761 . 412897) - (-2762 . 412651) (-2763 . 412563) (-2764 . 412429) (-2765 . 412347) - (-2766 . 412213) (-2767 . 411966) (-2768 . 411865) (-2769 . 411665) - (-2770 . 411536) (-2771 . 411443) (-2772 . 411334) (-2773 . 401884) - (-2774 . 401789) (-2775 . 401635) (-2776 . 401552) (-2777 . 401454) - (-2778 . 401311) (-2779 . 401215) (-2780 . 400975) (-2781 . 400271) - (-2782 . 400128) (-2783 . 399649) (-2784 . 395105) (-2785 . 394661) - (-2786 . 394577) (-2787 . 394328) (-2788 . 394210) (-2789 . 393919) - (-2790 . 393795) (-2791 . 393637) (-2792 . 393221) (-2793 . 393168) - (-2794 . 393094) (-2795 . 393042) (-2796 . 392965) (-2797 . 392284) - (-2798 . 392109) (-2799 . 391910) (-2800 . 391839) (-2801 . 391711) - (-2802 . 391228) (-2803 . 390788) (-2804 . 390635) (-2805 . 390517) - (-2806 . 390284) (-2807 . 390129) (-2808 . 389819) (-2809 . 389678) - (-2810 . 389555) (-2811 . 389383) (-2812 . 389249) (-2813 . 389158) - (-2814 . 389085) (-2815 . 388763) (-2816 . 388703) (-2817 . 388277) - (-2818 . 388204) (-2819 . 388108) (-2820 . 387467) (-2821 . 387219) - (-2822 . 387058) (-2823 . 386610) (-2824 . 386357) (-12 . 386185) - (-2826 . 385958) (-2827 . 385841) (-2828 . 385190) (-2829 . 384962) - (-2830 . 384896) (-2831 . 384761) (-2832 . 384481) (-2833 . 384429) - (-2834 . 384246) (-2835 . 384028) (-2836 . 383921) (-2837 . 379921) - (-2838 . 379723) (-2839 . 379655) (-2840 . 379423) (-2841 . 378965) - (-2842 . 378873) (-2843 . 378737) (-2844 . 378642) (-2845 . 378587) - (-2846 . 378488) (-2847 . 378400) (-2848 . 378347) (-2849 . 378234) - (-2850 . 377977) (-2851 . 377719) (-2852 . 377566) (-2853 . 377474) - (-2854 . 377401) (-2855 . 377288) (-2856 . 376982) (-2857 . 374141) - (-2858 . 374089) (-2859 . 373837) (-2860 . 373742) (-2861 . 373549) - (-2862 . 373452) (-2863 . 373263) (-2864 . 373208) (-2865 . 373141) - (-2866 . 373017) (-2867 . 372959) (-2868 . 372617) (-2869 . 372308) - (-2870 . 371781) (-2871 . 371491) (-2872 . 371437) (-2873 . 371349) - (-2874 . 371192) (-2875 . 371088) (-2876 . 370920) (-2877 . 370849) - (-2878 . 370817) (-2879 . 370568) (-2880 . 370453) (-2881 . 370361) - (-2882 . 370308) (-2883 . 370239) (-2884 . 369908) (-2885 . 369764) - (-2886 . 369486) (-2887 . 369458) (-2888 . 369374) (-2889 . 369136) - (-2890 . 369075) (-2891 . 365012) (-2892 . 364912) (-2893 . 364729) - (-2894 . 364641) (-2895 . 364570) (-2896 . 364336) (-2897 . 363773) - (-2898 . 363717) (-2899 . 363463) (-2900 . 363185) (-2901 . 363097) - (-2902 . 363017) (-2903 . 362871) (-2904 . 362805) (-2905 . 362748) - (-2906 . 362683) (-2907 . 362339) (-2908 . 362222) (-2909 . 362101) - (-2910 . 361988) (-2911 . 361900) (-2912 . 361832) (-2913 . 361798) - (-2914 . 361737) (-2915 . 361680) (-2916 . 361619) (-2917 . 360276) - (-2918 . 360073) (-2919 . 359920) (-2920 . 359693) (* . 355580) - (-2922 . 355268) (-2923 . 355080) (-2924 . 354976) (-2925 . 354820) - (-2926 . 354677) (-2927 . 354423) (-2928 . 353780) (-2929 . 351435) - (-2930 . 350847) (-2931 . 350689) (-2932 . 350661) (-2933 . 350328) - (-2934 . 350216) (-2935 . 350139) (-2936 . 349868) (-2937 . 349745) - (-2938 . 349673) (-2939 . 349530) (-2940 . 349172) (-2941 . 348721) - (-2942 . 348550) (-2943 . 347964) (-2944 . 347840) (-2945 . 347467) - (-2946 . 347383) (-2947 . 347281) (-2948 . 347138) (-2949 . 346866) - (-2950 . 346152) (-2951 . 346079) (-2952 . 345833) (-2953 . 345709) - (-2954 . 345621) (-2955 . 345514) (-2956 . 345217) (-2957 . 345053) - (-2958 . 344947) (-2959 . 344666) (-2960 . 344535) (-2961 . 344315) - (-2962 . 344219) (-2963 . 344100) (-2964 . 343985) (-2965 . 343878) - (-2966 . 343773) (-2967 . 343679) (-2968 . 343433) (-2969 . 343342) - (-2970 . 343232) (-2971 . 343001) (-2972 . 342750) (-2973 . 342640) - (-2974 . 342223) (-2975 . 342128) (-2976 . 342042) (-2977 . 341880) - (-2978 . 341793) (-2979 . 341092) (-2980 . 341030) (-2981 . 340929) - (-2982 . 340008) (-2983 . 339900) (-2984 . 339805) (-2985 . 339644) - (-2986 . 339546) (-2987 . 339496) (-2988 . 339337) (-2989 . 339233) - (-2990 . 339069) (-2991 . 338991) (-2992 . 338811) (-2993 . 338707) - (-2994 . 338323) (-2995 . 338213) (-2996 . 338016) (-2997 . 337832) - (-2998 . 337246) (-2999 . 337143) (-3000 . 336998) (-3001 . 336911) - (-3002 . 336818) (-3003 . 336689) (-3004 . 336637) (-3005 . 336588) - (-3006 . 336520) (-3007 . 336466) (-3008 . 336388) (-3009 . 336294) - (-3010 . 336156) (-3011 . 336013) (-3012 . 335874) (-3013 . 335622) - (-3014 . 335363) (-3015 . 335310) (-3016 . 335257) (-3017 . 335160) - (-3018 . 335074) (-3019 . 334738) (-3020 . 334599) (-3021 . 334550) - (-3022 . 334404) (-3023 . 334263) (-3024 . 332861) (-3025 . 332502) - (-3026 . 332401) (-3027 . 332148) (-3028 . 332077) (-3029 . 331962) - (-3030 . 331867) (-3031 . 330681) (-3032 . 330366) (-3033 . 330242) - (-3034 . 329816) (-3035 . 329759) (-3036 . 329516) (-3037 . 329400) - (-3038 . 329311) (-3039 . 328890) (-3040 . 328832) (-3041 . 328461) - (-3042 . 327279) (-3043 . 326960) (-3044 . 326931) (-3045 . 326841) - (-3046 . 326638) (-3047 . 326461) (-3048 . 326229) (-3049 . 326076) - (-3050 . 326048) (-3051 . 323840) (-3052 . 323321) (-3053 . 322970) - (-3054 . 322424) (-3055 . 322345) (-3056 . 316831) (-3057 . 316761) - (-3058 . 316545) (-3059 . 316413) (-3060 . 316075) (-3061 . 314895) - (-3062 . 314754) (-3063 . 314547) (-3064 . 314488) (-3065 . 314308) - (-3066 . 314189) (-3067 . 313927) (-3068 . 313665) (-3069 . 313540) - (-3070 . 313147) (-3071 . 313063) (-3072 . 312728) (-3073 . 312519) - (-3074 . 312366) (-3075 . 312104) (-3076 . 311766) (-3077 . 311221) - (-3078 . 311168) (-3079 . 310816) (-3080 . 310764) (-3081 . 310322) - (-3082 . 310252) (-3083 . 310042) (-3084 . 309790) (-3085 . 309671) - (-3086 . 309329) (-3087 . 309243) (-3088 . 309112) (-3089 . 308736) - (-3090 . 308629) (-3091 . 308294) (-3092 . 308241) (-3093 . 308146) - (-3094 . 308073) (-3095 . 307875) (-3096 . 307801) (-3097 . 307721) - (-3098 . 307660) (-3099 . 307609) (-3100 . 307521) (-3101 . 307469) - (-3102 . 307417) (-3103 . 307364) (-3104 . 307283) (-3105 . 306850) - (-3106 . 306763) (-3107 . 306731) (-3108 . 306672) (-3109 . 306592) - (-3110 . 306540) (-3111 . 306484) (-3112 . 306432) (-3113 . 306283) - (-3114 . 306111) (-3115 . 306083) (-3116 . 305957) (-3117 . 305814) - (-3118 . 305762) (-3119 . 305674) (-3120 . 305580) (-3121 . 305474) - (-3122 . 305259) (-3123 . 304417) (-3124 . 304327) (-3125 . 304063) - (-3126 . 303996) (-3127 . 303878) (-3128 . 303563) (-3129 . 303483) - (-3130 . 303412) (-3131 . 303352) (-3132 . 303176) (-3133 . 302887) - (-3134 . 302809) (-3135 . 302704) (-3136 . 302625) (-3137 . 302542) - (-3138 . 302301) (-3139 . 302207) (-3140 . 302041) (-3141 . 301870) - (-3142 . 301693) (-3143 . 301641) (-3144 . 301474) (-3145 . 301161) - (-3146 . 301011) (-3147 . 300918) (-3148 . 300783) (-3149 . 300733) - (-3150 . 300439) (-3151 . 300366) (-3152 . 299703) (-3153 . 299531) - (-3154 . 299333) (-3155 . 296552) (-3156 . 296479) (-3157 . 296393) - (-3158 . 294965) (-3159 . 294895) (-3160 . 294659) (-3161 . 294473) - (-3162 . 294358) (-3163 . 294302) (-3164 . 294130) (-3165 . 293709) - (-3166 . 293557) (-3167 . 293456) (-3168 . 293391) (-3169 . 293292) - (-3170 . 293174) (-3171 . 292995) (-3172 . 292907) (-3173 . 292855) - (-3174 . 292678) (-3175 . 292621) (-3176 . 292463) (-3177 . 291967) - (-3178 . 291795) (-3179 . 291722) (-3180 . 290093) (-3181 . 289997) - (-3182 . 289867) (-3183 . 289815) (-3184 . 289670) (-3185 . 289618) - (-3186 . 289418) (-3187 . 289131) (-3188 . 288993) (-3189 . 288909) - (-3190 . 288832) (-3191 . 288755) (-3192 . 288688) (-3193 . 288516) - (-3194 . 287657) (-3195 . 287427) (-3196 . 287300) (-3197 . 286962) - (-3198 . 286690) (-3199 . 286609) (-3200 . 286091) (-3201 . 285780) - (-3202 . 285702) (-3203 . 285643) (-3204 . 285576) (-3205 . 285491) - (-3206 . 284194) (-3207 . 283989) (-3208 . 283890) (-3209 . 283615) - (-3210 . 283227) (-3211 . 283143) (-3212 . 283070) (-3213 . 282912) - (-3214 . 282702) (-3215 . 282637) (-3216 . 282133) (-3217 . 281914) - (-3218 . 281847) (-3219 . 281639) (-3220 . 281471) (-3221 . 281404) - (-3222 . 281291) (-3223 . 281257) (-3224 . 281229) (-3225 . 280647) - (-3226 . 280549) (-3227 . 280478) (-3228 . 280256) (-3229 . 279771) - (-3230 . 279391) (-3231 . 279317) (-3232 . 278986) (-3233 . 278826) - (-3234 . 278517) (-3235 . 278413) (-3236 . 278069) (-3237 . 277998) - (-3238 . 277947) (-3239 . 277827) (-3240 . 277589) (-3241 . 277362) - (-3242 . 277169) (-3243 . 277137) (-3244 . 277013) (-3245 . 276840) - (-3246 . 276632) (-3247 . 276446) (-3248 . 276409) (-3249 . 276295) - (-3250 . 276139) (-3251 . 275812) (-3252 . 275682) (-3253 . 275517) - (-3254 . 275276) (-3255 . 275108) (-3256 . 275020) (-3257 . 274967) - (-3258 . 274917) (-3259 . 274864) (-3260 . 274805) (-3261 . 274737) - (-3262 . 274675) (-3263 . 274501) (-3264 . 274381) (-3265 . 274350) - (-3266 . 273607) (-3267 . 273555) (-3268 . 271789) (-3269 . 271598) - (-3270 . 271470) (-3271 . 271388) (-3272 . 271127) (-3273 . 267177) - (-3274 . 267125) (-3275 . 267020) (-3276 . 266932) (-3277 . 266819) - (-3278 . 266717) (-3279 . 266615) (-3280 . 266474) (-3281 . 265019) - (-3282 . 264925) (-3283 . 264752) (-3284 . 264652) (-3285 . 264493) - (-3286 . 264416) (-3287 . 264034) (-3288 . 263954) (-3289 . 263855) - (-3290 . 263513) (-3291 . 263405) (-3292 . 263192) (-3293 . 261702) - (-3294 . 261424) (-3295 . 260878) (-3296 . 260801) (-3297 . 260705) - (-3298 . 260575) (-3299 . 260459) (-3300 . 260377) (-3301 . 260242) - (-3302 . 260156) (-3303 . 259718) (-3304 . 259645) (-3305 . 259411) - (-3306 . 259124) (-3307 . 258999) (-3308 . 258690) (-3309 . 258656) - (-3310 . 258534) (-3311 . 258450) (-3312 . 258353) (-3313 . 258274) - (-3314 . 258222) (-3315 . 258163) (-3316 . 258010) (-3317 . 257849) - (-3318 . 257113) (-3319 . 257016) (-3320 . 256988) (-3321 . 256894) - (-3322 . 256542) (-3323 . 256465) (-3324 . 256313) (-3325 . 255902) - (-3326 . 255763) (-3327 . 255600) (-3328 . 255400) (-3329 . 255154) - (-3330 . 255087) (-3331 . 255019) (-3332 . 254955) (-3333 . 253863) - (-3334 . 253698) (-3335 . 253483) (-3336 . 253346) (-3337 . 253272) - (-3338 . 252805) (-3339 . 252771) (-3340 . 252643) (-3341 . 252547) - (-3342 . 252492) (-3343 . 252331) (-3344 . 252202) (-3345 . 251775) - (-3346 . 251557) (-3347 . 251463) (-3348 . 251230) (-3349 . 251124) - (-3350 . 251047) (-3351 . 250783) (-3352 . 250647) (-3353 . 250579) - (-3354 . 249935) (-3355 . 249256) (-3356 . 249134) (-3357 . 249067) - (-3358 . 249039) (-3359 . 248936) (-3360 . 248794) (-3361 . 248700) - (-3362 . 247638) (-3363 . 247479) (-3364 . 247257) (-3365 . 246086) - (-3366 . 245770) (-3367 . 245685) (-3368 . 245611) (-3369 . 245527) - (-3370 . 245448) (-3371 . 245414) (-3372 . 245337) (-3373 . 244401) - (-3374 . 244196) (-3375 . 244104) (-3376 . 244013) (-3377 . 243847) - (-3378 . 243732) (-3379 . 243617) (-3380 . 243477) (-3381 . 243404) - (-3382 . 243309) (-3383 . 243119) (-3384 . 243066) (-3385 . 243010) - (-3386 . 242564) (-3387 . 242496) (-3388 . 242358) (-3389 . 242284) - (-3390 . 242176) (-3391 . 241040) (-3392 . 240934) (-3393 . 240829) - (-3394 . 240691) (-3395 . 240542) (-3396 . 240463) (-3397 . 240391) - (-3398 . 240307) (-3399 . 240219) (-3400 . 239482) (-3401 . 239280) - (-3402 . 239227) (-3403 . 238845) (-3404 . 238771) (-3405 . 238581) - (-3406 . 238486) (-3407 . 238430) (-3408 . 238290) (-3409 . 236950) - (-3410 . 236891) (-3411 . 236400) (-3412 . 236272) (-3413 . 236198) - (-3414 . 235972) (-3415 . 235769) (-3416 . 235655) (-3417 . 235381) - (-3418 . 235295) (-3419 . 235145) (-3420 . 235086) (-3421 . 233497) - (-3422 . 233168) (-3423 . 233010) (-3424 . 232937) (-3425 . 232794) - (-3426 . 232605) (-3427 . 232213) (-3428 . 231602) (-3429 . 231478) - (-3430 . 231288) (-3431 . 231221) (-3432 . 231165) (-3433 . 231070) - (-3434 . 230941) (-3435 . 230778) (-3436 . 230681) (-3437 . 230463) - (-3438 . 229580) (-3439 . 229524) (-3440 . 229441) (-3441 . 229337) - (-3442 . 229182) (-3443 . 228758) (-3444 . 228522) (-3445 . 228424) - (-3446 . 228354) (-3447 . 228257) (-3448 . 228204) (-3449 . 228125) - (-3450 . 228054) (-3451 . 227983) (-3452 . 227931) (-3453 . 227616) - (-3454 . 227557) (-3455 . 227473) (-3456 . 227272) (-3457 . 227147) - (-3458 . 227029) (-3459 . 226810) (-3460 . 226758) (-3461 . 226370) - (-3462 . 226248) (-3463 . 226195) (-3464 . 225952) (-3465 . 225600) - (-3466 . 225418) (-3467 . 225255) (-3468 . 225182) (-3469 . 225123) - (-3470 . 225063) (-3471 . 225029) (-3472 . 224967) (-3473 . 224846) - (-3474 . 224793) (-3475 . 224727) (-3476 . 224502) (-3477 . 224416) - (-3478 . 223555) (-3479 . 223453) (-3480 . 223351) (-3481 . 223236) - (-3482 . 223164) (-3483 . 223060) (-3484 . 222450) (-3485 . 222345) - (-3486 . 222290) (-3487 . 222195) (-3488 . 222164) (-3489 . 222077) - (-3490 . 221921) (-3491 . 221818) (-3492 . 221766) (-3493 . 221614) - (-3494 . 221340) (-3495 . 221271) (-3496 . 221062) (-3497 . 221010) - (-3498 . 220927) (-3499 . 220820) (-3500 . 220702) (-3501 . 220285) - (-3502 . 220026) (-3503 . 218776) (-3504 . 218581) (-3505 . 218444) - (-3506 . 218337) (-3507 . 218222) (-3508 . 218135) (-3509 . 218107) - (-3510 . 218076) (-3511 . 217822) (-3512 . 217563) (-3513 . 217462) - (-3514 . 216711) (-3515 . 216474) (-3516 . 216443) (-3517 . 216388) - (-3518 . 216293) (-3519 . 216166) (-3520 . 215688) (-3521 . 215564) - (-3522 . 215481) (-3523 . 215414) (-3524 . 215340) (-3525 . 215288) - (-3526 . 215167) (-3527 . 214831) (-3528 . 214716) (-3529 . 214644) - (-3530 . 214457) (-3531 . 214385) (-3532 . 214227) (-3533 . 214168) - (-3534 . 213921) (-3535 . 213869) (-3536 . 213644) (-3537 . 213529) - (-3538 . 213477) (-3539 . 213421) (-3540 . 213245) (-3541 . 213139) - (-3542 . 213082) (-3543 . 211980) (-3544 . 211884) (-3545 . 211317) - (-3546 . 211237) (-3547 . 211185) (-3548 . 211069) (-3549 . 211035) - (-3550 . 210907) (-3551 . 210758) (-3552 . 210548) (-3553 . 210339) - (-3554 . 210195) (-3555 . 210167) (-3556 . 210086) (-3557 . 210013) - (-3558 . 209954) (-3559 . 209920) (-3560 . 209663) (-3561 . 209583) - (-3562 . 209217) (-3563 . 209143) (-3564 . 208176) (-3565 . 208003) - (-3566 . 207874) (-3567 . 207737) (-3568 . 207682) (-3569 . 207464) - (-3570 . 207245) (-3571 . 207173) (-3572 . 207145) (-3573 . 207060) - (-3574 . 206988) (-3575 . 206365) (-3576 . 206150) (-3577 . 206034) - (-3578 . 205546) (-3579 . 205428) (-3580 . 205358) (-3581 . 205242) - (-3582 . 205156) (-3583 . 205040) (-3584 . 204962) (-3585 . 204925) - (-3586 . 204824) (-3587 . 204695) (-3588 . 204596) (-3589 . 204229) - (-3590 . 204201) (-3591 . 204130) (-3592 . 203912) (-3593 . 203773) - (-3594 . 203694) (-3595 . 203596) (-3596 . 203540) (-3597 . 203408) - (-3598 . 203355) (-3599 . 203226) (-3600 . 203192) (-3601 . 203068) - (-3602 . 202739) (-3603 . 184164) (-3604 . 184130) (-3605 . 184033) - (-3606 . 183761) (-3607 . 183576) (-3608 . 183423) (-3609 . 183071) - (-3610 . 182861) (-3611 . 182712) (-3612 . 182596) (-3613 . 182251) - (-3614 . 179430) (-3615 . 179124) (-3616 . 177010) (-3617 . 176958) - (-3618 . 176780) (-3619 . 176709) (-3620 . 176580) (-3621 . 176179) - (-3622 . 176065) (-3623 . 175706) (-3624 . 175471) (-3625 . 175371) - (-3626 . 175274) (-3627 . 175156) (-3628 . 175103) (-3629 . 174903) - (-3630 . 174718) (-3631 . 174570) (-3632 . 174412) (-3633 . 174027) - (-3634 . 173817) (-3635 . 173734) (-3636 . 173604) (-3637 . 173552) - (-3638 . 173473) (-3639 . 173209) (-3640 . 172834) (-3641 . 172762) - (-3642 . 172685) (-3643 . 172599) (-3644 . 172394) (-3645 . 172295) - (-3646 . 172158) (-3647 . 172086) (-3648 . 172007) (-3649 . 171979) - (-3650 . 171819) (-3651 . 171508) (-3652 . 171158) (-3653 . 171011) - (-3654 . 170831) (-3655 . 170661) (-3656 . 170572) (-3657 . 170475) - (-3658 . 170164) (-3659 . 169994) (-3660 . 169617) (-3661 . 169302) - (-3662 . 169183) (-3663 . 169128) (-3664 . 169071) (-3665 . 168997) - (-3666 . 164837) (-3667 . 164557) (-3668 . 164428) (-3669 . 164209) - (-3670 . 164123) (-3671 . 164031) (-3672 . 163661) (-3673 . 163590) - (-3674 . 163496) (-3675 . 163254) (-3676 . 163122) (-3677 . 163016) - (-3678 . 162857) (-3679 . 162783) (-3680 . 162695) (-3681 . 162440) - (-3682 . 162352) (-3683 . 162181) (-3684 . 161948) (-3685 . 161648) - (-3686 . 161593) (-3687 . 161360) (-3688 . 161264) (-3689 . 161193) - (-3690 . 161068) (-3691 . 160853) (-3692 . 160577) (-3693 . 160507) - (-3694 . 159540) (-3695 . 159476) (-3696 . 159355) (-3697 . 159273) - (-3698 . 158881) (-3699 . 158755) (-3700 . 158682) (-3701 . 158532) - (-3702 . 158436) (-3703 . 158384) (-3704 . 157996) (-3705 . 157829) - (-3706 . 157618) (-3707 . 157463) (-3708 . 157183) (-3709 . 157027) - (-3710 . 156972) (-3711 . 156851) (-3712 . 156694) (-3713 . 156604) - (-3714 . 156520) (-3715 . 156341) (-3716 . 155114) (-3717 . 154947) - (-3718 . 154618) (-3719 . 154476) (-3720 . 154439) (-3721 . 154087) - (-3722 . 153892) (-3723 . 152630) (-3724 . 152486) (-3725 . 152433) - (-3726 . 152363) (-3727 . 152156) (-3728 . 151635) (-3729 . 151583) - (-3730 . 151096) (-3731 . 151068) (-3732 . 150957) (-3733 . 150536) - (-3734 . 150482) (-3735 . 150430) (-3736 . 150277) (-3737 . 150205) - (-3738 . 150104) (-3739 . 150031) (-3740 . 149436) (-3741 . 149313) - (-3742 . 149149) (-3743 . 149082) (-3744 . 148720) (-3745 . 148559) - (-3746 . 148138) (-3747 . 147956) (-3748 . 147854) (-3749 . 147780) - (-3750 . 147650) (-3751 . 147562) (-3752 . 147462) (-3753 . 147392) - (-3754 . 147177) (-3755 . 146930) (-3756 . 146829) (-3757 . 146584) - (-3758 . 146469) (-3759 . 146287) (-3760 . 146129) (-3761 . 145509) - (-3762 . 144833) (-3763 . 144749) (-3764 . 144676) (-3765 . 144604) - (-3766 . 144426) (-3767 . 144348) (-3768 . 144220) (-3769 . 144151) - (-3770 . 143886) (-3771 . 143751) (-3772 . 143571) (-3773 . 142697) - (-3774 . 142645) (-3775 . 142378) (-3776 . 142283) (-3777 . 142203) - (-3778 . 142150) (-3779 . 142100) (-3780 . 141921) (-3781 . 141818) - (-3782 . 141745) (-3783 . 141695) (-3784 . 141539) (-3785 . 141431) - (-3786 . 141308) (-3787 . 141055) (-3788 . 140877) (-3789 . 140596) - (-3790 . 140062) (-3791 . 140034) (-3792 . 139975) (-3793 . 139800) - (-3794 . 139249) (-3795 . 139125) (-3796 . 139039) (-3797 . 138859) - (-3798 . 138789) (-3799 . 138717) (-3800 . 138661) (-3801 . 138313) - (-3802 . 138214) (-3803 . 137975) (-3804 . 137871) (-3805 . 137568) - (-3806 . 137508) (-3807 . 137431) (-3808 . 137348) (-3809 . 137113) - (-3810 . 136738) (-3811 . 136628) (-3812 . 136486) (-3813 . 136326) - (-3814 . 136146) (-3815 . 136087) (-3816 . 135972) (-3817 . 135762) - (-3818 . 135649) (-3819 . 135354) (-3820 . 135207) (-3821 . 135097) - (-3822 . 134868) (-3823 . 134803) (-3824 . 134663) (-3825 . 134576) - (-3826 . 134397) (-3827 . 133824) (-3828 . 133685) (-3829 . 133599) - (-3830 . 133522) (-3831 . 133304) (-3832 . 133097) (-3833 . 132890) - (-3834 . 132748) (-3835 . 132645) (-3836 . 131371) (-3837 . 131268) - (-3838 . 131200) (-3839 . 131044) (-3840 . 130945) (-3841 . 130816) - (-3842 . 130599) (-3843 . 130513) (-3844 . 130409) (-3845 . 130311) - (-3846 . 130241) (-3847 . 129607) (-3848 . 129504) (-3849 . 129423) - (-3850 . 129224) (-3851 . 129117) (-3852 . 129064) (-3853 . 128972) - (-3854 . 128809) (-3855 . 128752) (-3856 . 128699) (-3857 . 128599) - (-3858 . 128484) (-3859 . 128432) (-3860 . 128380) (-3861 . 128184) - (-3862 . 127824) (-3863 . 127732) (-3864 . 127396) (-3865 . 127346) - (-3866 . 127258) (-3867 . 127094) (-3868 . 127011) (-3869 . 126870) - (-3870 . 126773) (-3871 . 126667) (-3872 . 126597) (-3873 . 126279) - (-3874 . 126135) (-3875 . 126049) (-3876 . 125949) (-3877 . 125865) - (-3878 . 125714) (-3879 . 125613) (-3880 . 125560) (-3881 . 125489) - (-3882 . 125296) (-3883 . 125133) (-3884 . 125074) (-3885 . 124964) - (-3886 . 124909) (-3887 . 123463) (-3888 . 123309) (-3889 . 123196) - (-3890 . 123119) (-3891 . 122997) (-3892 . 122860) (-3893 . 122782) - (-3894 . 122629) (-3895 . 122525) (-3896 . 122430) (-3897 . 122278) - (-3898 . 122030) (-3899 . 121963) (-3900 . 121911) (-3901 . 121810) - (-3902 . 121383) (-3903 . 121276) (-3904 . 121136) (-3905 . 121083) - (-3906 . 120987) (-3907 . 120858) (-3908 . 119316) (-3909 . 119260) - (-3910 . 118652) (-3911 . 118461) (-3912 . 118168) (-3913 . 118043) - (-3914 . 117916) (-3915 . 117820) (-3916 . 117764) (-3917 . 117611) - (-3918 . 117559) (-3919 . 117487) (-3920 . 116888) (-3921 . 116751) - (-3922 . 116655) (-3923 . 116528) (-3924 . 116400) (-3925 . 116244) - (-3926 . 115958) (-3927 . 115763) (-3928 . 115572) (-3929 . 115498) - (-3930 . 115276) (-3931 . 115214) (-3932 . 114847) (-3933 . 113782) - (-3934 . 113664) (-3935 . 113576) (-3936 . 113499) (-3937 . 113055) - (-3938 . 112869) (-3939 . 112750) (-3940 . 112654) (-3941 . 111918) - (-3942 . 111544) (-3943 . 111489) (-3944 . 111439) (-3945 . 111220) - (-3946 . 111153) (-3947 . 110707) (-3948 . 110613) (-3949 . 110303) - (-3950 . 110148) (-3951 . 109954) (-3952 . 109886) (-3953 . 109748) - (-3954 . 109681) (-3955 . 109604) (-3956 . 109386) (-3957 . 109126) - (-3958 . 109030) (-3959 . 108839) (-3960 . 108732) (-3961 . 108619) - (-3962 . 108392) (-3963 . 108363) (-3964 . 108289) (-3965 . 107836) - (-3966 . 107520) (-3967 . 107467) (-3968 . 107333) (-3969 . 107264) - (-3970 . 107138) (-3971 . 106020) (-3972 . 105905) (-3973 . 105798) - (-3974 . 105653) (-3975 . 105465) (-3976 . 105381) (-3977 . 105329) - (-3978 . 105252) (-3979 . 104855) (-3980 . 104795) (-3981 . 104503) - (-3982 . 104398) (-3983 . 104224) (-3984 . 103360) (-3985 . 103308) - (-3986 . 102915) (-3987 . 102820) (-3988 . 102747) (-3989 . 102529) - (-3990 . 102399) (-3991 . 102349) (-3992 . 102151) (-3993 . 102020) - (-3994 . 101830) (-3995 . 101628) (-3996 . 101463) (-3997 . 101411) - (-3998 . 101185) (-3999 . 101054) (-4000 . 100911) (-4001 . 100807) - (-4002 . 100706) (-4003 . 100623) (-4004 . 100537) (-4005 . 100442) - (-4006 . 100346) (-4007 . 100250) (-4008 . 100177) (-4009 . 99658) - (-4010 . 99602) (-4011 . 99360) (-4012 . 99332) (-4013 . 99273) - (-4014 . 99202) (-4015 . 99101) (-4016 . 98939) (-4017 . 98826) - (-4018 . 98446) (-4019 . 98059) (-4020 . 97925) (-4021 . 96139) - (-4022 . 95893) (-4023 . 95765) (-4024 . 95682) (-4025 . 95620) - (-4026 . 95318) (-4027 . 95265) (-4028 . 95214) (-4029 . 95133) - (-4030 . 94963) (-4031 . 94861) (-4032 . 94565) (-4033 . 94319) - (-4034 . 93995) (-4035 . 93879) (-4036 . 93792) (-4037 . 93582) - (-4038 . 93104) (-4039 . 92966) (-4040 . 92869) (-4041 . 92711) - (-4042 . 92683) (-4043 . 92551) (-4044 . 92239) (-4045 . 92109) - (-4046 . 91950) (-4047 . 91806) (-4048 . 91298) (-4049 . 91202) - (-4050 . 91031) (-4051 . 90700) (-4052 . 90545) (-4053 . 90486) - (-4054 . 90365) (-4055 . 90313) (-4056 . 89353) (-4057 . 89258) - (-4058 . 89180) (-4059 . 88895) (-4060 . 88721) (-4061 . 88626) - (-4062 . 88557) (-4063 . 88301) (-4064 . 88214) (-4065 . 88047) - (-4066 . 87413) (-4067 . 86809) (-4068 . 86757) (-4069 . 86422) - (-4070 . 86353) (-4071 . 86187) (-4072 . 85916) (-4073 . 85864) - (-4074 . 85660) (-4075 . 85364) (-4076 . 85206) (-4077 . 83774) - (-4078 . 82551) (-4079 . 81959) (-4080 . 81882) (-4081 . 81762) - (-4082 . 81650) (-4083 . 81558) (-4084 . 81311) (-4085 . 81152) - (-4086 . 80493) (-4087 . 80370) (-4088 . 80261) (-4089 . 79933) - (-4090 . 79668) (-4091 . 79467) (-4092 . 79373) (-4093 . 79322) - (-4094 . 79158) (-4095 . 79106) (-4096 . 78856) (-4097 . 78410) - (-4098 . 78123) (-4099 . 78027) (-4100 . 77831) (-4101 . 77763) - (-4102 . 77645) (-4103 . 77512) (-4104 . 77441) (-4105 . 77288) - (-4106 . 77235) (-4107 . 77156) (-4108 . 77099) (-4109 . 77067) - (-4110 . 76986) (-4111 . 76908) (-4112 . 76826) (-4113 . 76396) - (-4114 . 76315) (-4115 . 76221) (-4116 . 75657) (-4117 . 75532) - (-4118 . 75282) (-4119 . 75174) (-4120 . 74957) (-4121 . 74735) - (-4122 . 74704) (-4123 . 74644) (-4124 . 74471) (-4125 . 74347) - (-4126 . 74273) (-4127 . 74069) (-4128 . 73727) (-4129 . 66784) - (-4130 . 66624) (-4131 . 66526) (-4132 . 66455) (-4133 . 66421) - (-4134 . 66198) (-4135 . 66066) (-4136 . 65827) (-4137 . 65667) - (-4138 . 65615) (-4139 . 65105) (-4140 . 65027) (-4141 . 64512) - (-4142 . 63836) (-4143 . 63755) (-4144 . 63402) (-4145 . 63108) - (-4146 . 63047) (-4147 . 62980) (-4148 . 62923) (-4149 . 62816) - (-4150 . 62520) (-4151 . 62302) (-4152 . 62235) (-4153 . 61756) - (-4154 . 61727) (-4155 . 61669) (-4156 . 61586) (-4157 . 60558) - (-4158 . 60349) (-4159 . 60191) (-4160 . 60023) (-4161 . 59878) - (-4162 . 59765) (-4163 . 59699) (-4164 . 59646) (-4165 . 59534) - (-4166 . 59485) (-4167 . 59433) (-4168 . 59405) (-4169 . 59226) - (-4170 . 59085) (-4171 . 58800) (-4172 . 58354) (-4173 . 58251) - (-4174 . 58168) (-4175 . 58115) (-4176 . 57957) (-4177 . 57888) - (-4178 . 57689) (-4179 . 57569) (-4180 . 57199) (-4181 . 56771) - (-4182 . 56665) (-4183 . 56601) (-4184 . 56425) (-4185 . 56353) - (-4186 . 56258) (-4187 . 55294) (-4188 . 55211) (-4189 . 55158) - (-4190 . 55089) (-4191 . 54979) (-4192 . 54880) (-4193 . 54715) - (-4194 . 54664) (-4195 . 54534) (-4196 . 54324) (-4197 . 54156) - (-4198 . 53645) (-4199 . 53613) (-4200 . 53517) (-4201 . 53119) - (-4202 . 52953) (-4203 . 52897) (-4204 . 52842) (-4205 . 52425) - (-4206 . 52337) (-4207 . 52152) (-4208 . 52072) (-4209 . 51994) - (-4210 . 51831) (-4211 . 51171) (-4212 . 50969) (-4213 . 50874) - (-4214 . 50800) (-4215 . 50666) (-4216 . 50610) (-4217 . 50557) - (-4218 . 50500) (-4219 . 50427) (-4220 . 50317) (-4221 . 49894) - (-4222 . 49734) (-4223 . 48964) (-4224 . 48895) (-4225 . 48684) - (-4226 . 48582) (-4227 . 48497) (-4228 . 48366) (-4229 . 48270) - (-4230 . 48078) (-4231 . 47935) (-4232 . 47857) (-4233 . 47330) - (-4234 . 47112) (-4235 . 47011) (-4236 . 46930) (-4237 . 46644) - (-4238 . 46516) (-4239 . 46421) (-4240 . 46244) (-4241 . 46006) - (-4242 . 45690) (-4243 . 45633) (-4244 . 45475) (-4245 . 45402) - (-4246 . 45049) (-4247 . 44891) (-4248 . 44809) (-4249 . 44415) - (-4250 . 44169) (-4251 . 44092) (-4252 . 43909) (-4253 . 43832) - (-4254 . 43759) (-4255 . 43666) (-4256 . 43482) (-4257 . 43312) - (-4258 . 43229) (-4259 . 42930) (-4260 . 42775) (-4261 . 42449) - (-4262 . 42338) (-4263 . 42243) (-4264 . 42112) (-4265 . 41959) - (-4266 . 41816) (-4267 . 41714) (-4268 . 41587) (-4269 . 41256) - (-4270 . 40837) (-4271 . 40718) (-4272 . 40571) (-4273 . 40464) - (-4274 . 40378) (-4275 . 40329) (-4276 . 40274) (-4277 . 40035) - (-4278 . 39776) (-4279 . 39524) (-4280 . 39465) (-4281 . 39267) - (-4282 . 39195) (-4283 . 39094) (-4284 . 38877) (-4285 . 38270) - (-4286 . 38039) (-4287 . 37828) (-4288 . 37558) (-4289 . 37302) - (-4290 . 37164) (-4291 . 36937) (-4292 . 36585) (-4293 . 36487) - (-4294 . 36434) (-4295 . 36307) (-4296 . 36059) (-4297 . 36003) - (-4298 . 35924) (-4299 . 35853) (-4300 . 35754) (-4301 . 35584) - (-4302 . 35336) (-4303 . 35128) (-4304 . 35005) (-4305 . 34852) - (-4306 . 34775) (-4307 . 34189) (-4308 . 33685) (-4309 . 33635) - (-4310 . 33383) (-4311 . 33332) (-4312 . 33261) (-4313 . 33178) - (-4314 . 33111) (-4315 . 33017) (-4316 . 32923) (-4317 . 32845) - (-4318 . 32359) (-4319 . 32246) (-4320 . 31940) (-4321 . 31888) - (-4322 . 31495) (-4323 . 31341) (-4324 . 31176) (-4325 . 30978) - (-4326 . 30812) (-4327 . 30757) (-4328 . 30611) (-4329 . 30321) - (-4330 . 30220) (-4331 . 30037) (-4332 . 29982) (-4333 . 29886) - (-4334 . 29834) (-4335 . 29741) (-4336 . 29443) (-4337 . 27866) - (-4338 . 27643) (-4339 . 27548) (-4340 . 27231) (-4341 . 27106) - (-4342 . 26218) (-4343 . 26039) (-4344 . 25980) (-4345 . 23565) - (-4346 . 23419) (-4347 . 23261) (-4348 . 23128) (-4349 . 23047) - (-4350 . 23015) (-4351 . 22893) (-4352 . 22697) (-4353 . 22518) - (-4354 . 22455) (-4355 . 22289) (-4356 . 22133) (-4357 . 21885) - (-4358 . 21790) (-4359 . 19562) (-4360 . 19437) (-4361 . 19352) - (-4362 . 19215) (-4363 . 19096) (-4364 . 19017) (-4365 . 18933) - (-4366 . 18760) (-4367 . 18158) (-4368 . 18096) (-4369 . 17922) - (-4370 . 17813) (-4371 . 17730) (-4372 . 17622) (-4373 . 17521) - (-4374 . 17454) (-4375 . 17371) (-4376 . 17301) (-4377 . 17102) - (-4378 . 16986) (-4379 . 16926) (-4380 . 16855) (-4381 . 16712) - (-4382 . 16656) (-4383 . 16466) (-4384 . 16321) (-4385 . 15937) - (-4386 . 15903) (-4387 . 15806) (-4388 . 15739) (-4389 . 15444) - (-4390 . 15290) (-4391 . 11991) (-4392 . 11938) (-4393 . 11886) - (-4394 . 11746) (-4395 . 11094) (-4396 . 10622) (-4397 . 10536) - (-4398 . 10423) (-4399 . 10349) (-4400 . 10185) (-4401 . 10059) - (-4402 . 9915) (-4403 . 9846) (-4404 . 9458) (-4405 . 9364) - (-4406 . 9225) (-4407 . 8979) (-4408 . 8882) (-4409 . 8778) - (-4410 . 8727) (-4411 . 8648) (-4412 . 8516) (-4413 . 8463) - (-4414 . 8435) (-4415 . 8114) (-4416 . 8047) (-4417 . 7681) - (-4418 . 7629) (-4419 . 7574) (-4420 . 7163) (-4421 . 7036) - (-4422 . 6740) (-4423 . 6654) (-4424 . 6224) (-4425 . 6124) - (-4426 . 6020) (-4427 . 5882) (-4428 . 5675) (-4429 . 5517) - (-4430 . 5328) (-4431 . 5182) (-4432 . 5081) (-4433 . 4908) - (-4434 . 3727) (-4435 . 3668) (-4436 . 3335) (-4437 . 3177) - (-4438 . 2986) (-4439 . 2808) (-4440 . 2667) (-4441 . 2615) - (-4442 . 1825) (-4443 . 1723) (-4444 . 1649) (-4445 . 1588) - (-4446 . 1495) (-4447 . 792) (-4448 . 552) (-4449 . 101) (-4450 . 30))
\ No newline at end of file + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *1 (-271)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *2 (-1302)) (-5 *1 (-1299)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -2641 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *1 (-1299)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) +((-1331 . 731750) (-1332 . 730933) (-1333 . 730866) (-1334 . 730813) + (-1335 . 730708) (-1336 . 730579) (-1337 . 730551) (-1338 . 730336) + (-1339 . 730277) (-1340 . 730183) (-1341 . 729831) (-1342 . 729739) + (-1343 . 729408) (-1344 . 729350) (-1345 . 729108) (-1346 . 728868) + (-1347 . 728752) (-1348 . 728564) (-1349 . 728507) (-1350 . 727940) + (-1351 . 727594) (-1352 . 727542) (-1353 . 727490) (-1354 . 727405) + (-1355 . 727260) (-1356 . 726609) (-1357 . 726425) (-1358 . 726195) + (-1359 . 726099) (-1360 . 725914) (-1361 . 725816) (-1362 . 725556) + (-1363 . 725328) (-1364 . 725196) (-1365 . 725143) (-1366 . 725093) + (-1367 . 725064) (-1368 . 724792) (-1369 . 724721) (-1370 . 724644) + (-1371 . 724489) (-1372 . 724329) (-1373 . 724221) (-1374 . 724166) + (-1375 . 724095) (-1376 . 723937) (-1377 . 723776) (-1378 . 723455) + (-1379 . 723321) (-1380 . 722687) (-1381 . 722255) (-1382 . 722159) + (-1383 . 722058) (-1384 . 721853) (-1385 . 721415) (-1386 . 720771) + (-1387 . 720690) (-1388 . 720302) (-1389 . 719710) (-1390 . 719613) + (-1391 . 719474) (-1392 . 719344) (-1393 . 717488) (-1394 . 717418) + (-1395 . 717027) (-1396 . 716619) (-1397 . 716591) (-1398 . 716064) + (-1399 . 715904) (-1400 . 715805) (-1401 . 715750) (-1402 . 715464) + (-1403 . 715411) (-1404 . 715285) (-1405 . 714991) (-1406 . 714886) + (-1407 . 714613) (-1408 . 714498) (-1409 . 714410) (-1410 . 714339) + (-1411 . 713465) (-1412 . 713409) (-1413 . 713326) (-1414 . 713248) + (-1415 . 713143) (-1416 . 713045) (-1417 . 712749) (-1418 . 712655) + (-1419 . 712602) (-1420 . 712309) (-1421 . 712206) (-1422 . 712127) + (-1423 . 711945) (-1424 . 711322) (-1425 . 711227) (-1426 . 710617) + (-1427 . 710286) (-1428 . 710119) (-1429 . 709897) (-1430 . 709818) + (-1431 . 709730) (-1432 . 709677) (-1433 . 709474) (-1434 . 709378) + (-1435 . 709044) (-1436 . 708677) (-1437 . 708269) (-1438 . 708192) + (-1439 . 707713) (-1440 . 707226) (-1441 . 707110) (-1442 . 707036) + (-1443 . 706963) (-1444 . 706571) (-1445 . 706187) (-1446 . 705773) + (-1447 . 705610) (-1448 . 704768) (-1449 . 704697) (-1450 . 704478) + (-1451 . 704172) (-1452 . 704032) (-1453 . 703944) (-1454 . 703649) + (-1455 . 703397) (-1456 . 703194) (-1457 . 702972) (-1458 . 702902) + (-1459 . 702842) (-1460 . 702735) (-1461 . 702680) (-1462 . 702617) + (-1463 . 702548) (-1464 . 702451) (-1465 . 702293) (-1466 . 702240) + (-1467 . 701652) (-1468 . 701260) (** . 698265) (-1470 . 698211) + (-1471 . 697720) (-1472 . 697668) (-1473 . 697485) (-1474 . 697361) + (-1475 . 697309) (-1476 . 697250) (-1477 . 697166) (-1478 . 697070) + (-1479 . 696817) (-1480 . 696628) (-1481 . 696389) (-1482 . 696258) + (-1483 . 696178) (-1484 . 696119) (-1485 . 696069) (-1486 . 695991) + (-1487 . 695896) (-1488 . 695744) (-1489 . 695293) (-1490 . 694989) + (-1491 . 694741) (-1492 . 694630) (-1493 . 694182) (-1494 . 694105) + (-1495 . 693959) (-1496 . 693647) (-1497 . 692466) (-1498 . 692410) + (-1499 . 692261) (-1500 . 691932) (-1501 . 691714) (-1502 . 691630) + (-1503 . 691478) (-1504 . 691419) (-1505 . 691391) (-1506 . 691357) + (-1507 . 691216) (-1508 . 691114) (-1509 . 691008) (-1510 . 690849) + (-1511 . 690794) (-1512 . 690674) (-1513 . 690549) (-1514 . 690490) + (-1515 . 690217) (-1516 . 689920) (-1517 . 689681) (-1518 . 689628) + (-1519 . 689476) (-1520 . 689204) (-1521 . 689057) (-1522 . 688653) + (-1523 . 688576) (-1524 . 688397) (-1525 . 688221) (-1526 . 688138) + (-1527 . 688067) (-1528 . 687958) (-1529 . 687899) (-1530 . 687505) + (-1531 . 687302) (-1532 . 687205) (-1533 . 687152) (-1534 . 687011) + (-1535 . 686630) (-1536 . 686577) (-1537 . 686405) (-1538 . 686286) + (-1539 . 686208) (-1540 . 686154) (-1541 . 686126) (-1542 . 686010) + (-1543 . 685861) (-1544 . 685577) (-1545 . 685477) (-1546 . 684998) + (-1547 . 684931) (-1548 . 684651) (-1549 . 684547) (-1550 . 684290) + (-1551 . 684226) (-1552 . 684074) (-1553 . 683937) (-1554 . 683878) + (-1555 . 683540) (-1556 . 683335) (-1557 . 683144) (-1558 . 682988) + (-1559 . 682791) (-1560 . 682718) (-1561 . 682542) (-1562 . 682459) + (-1563 . 682128) (-1564 . 682018) (-1565 . 681058) (-1566 . 680780) + (-1567 . 680554) (-1568 . 680355) (-1569 . 680221) (-1570 . 680092) + (-1571 . 679927) (-1572 . 679823) (-1573 . 679713) (-1574 . 679561) + (-1575 . 679451) (-1576 . 679368) (-1577 . 679260) (-1578 . 679177) + (-1579 . 679082) (-1580 . 678689) (-1581 . 678637) (-1582 . 678567) + (-1583 . 678374) (-1584 . 678015) (-1585 . 677965) (-1586 . 677864) + (-1587 . 677631) (-1588 . 677452) (-1589 . 677345) (-1590 . 677087) + (-1591 . 676992) (-1592 . 676518) (-1593 . 676315) (-1594 . 676182) + (-1595 . 676009) (-1596 . 675877) (-1597 . 673762) (-1598 . 673619) + (-1599 . 673489) (-1600 . 673437) (-1601 . 673385) (-1602 . 673242) + (-1603 . 673083) (-1604 . 672988) (-1605 . 672905) (-1606 . 672810) + (-1607 . 672643) (-1608 . 672395) (-1609 . 672177) (-1610 . 672125) + (-1611 . 671937) (-1612 . 671860) (-1613 . 671759) (-1614 . 671263) + (-1615 . 671011) (-1616 . 670448) (-1617 . 670392) (-1618 . 670153) + (-1619 . 670007) (-1620 . 669919) (-1621 . 669794) (-1622 . 669556) + (-1623 . 669528) (-1624 . 669437) (-1625 . 669357) (-1626 . 668794) + (-1627 . 668657) (-1628 . 668594) (-1629 . 668541) (-1630 . 668263) + (-1631 . 668041) (-1632 . 667988) (-1633 . 667896) (-1634 . 667801) + (-1635 . 667595) (-1636 . 667546) (-1637 . 667381) (-1638 . 666705) + (-1639 . 666321) (-1640 . 666214) (-1641 . 664964) (-1642 . 664861) + (-1643 . 664800) (-1644 . 664733) (-1645 . 664650) (-1646 . 664556) + (-1647 . 664524) (-1648 . 663848) (-1649 . 663763) (-1650 . 663552) + (-1651 . 663499) (-1652 . 663231) (-1653 . 663159) (-1654 . 663131) + (-1655 . 662949) (-1656 . 662870) (-1657 . 662842) (-1658 . 662734) + (-1659 . 662677) (-1660 . 662001) (-1661 . 661852) (-1662 . 661798) + (-1663 . 661707) (-1664 . 661542) (-1665 . 661064) (-1666 . 660919) + (-1667 . 660666) (-1668 . 660606) (-1669 . 660535) (-1670 . 660484) + (-1671 . 659920) (-1672 . 659817) (-1673 . 659738) (-1674 . 659613) + (-1675 . 659508) (-1676 . 659317) (-1677 . 658832) (-1678 . 658656) + (-1679 . 658570) (-1680 . 658511) (-1681 . 658217) (-1682 . 657653) + (-1683 . 657509) (-1684 . 657423) (-1685 . 657395) (-1686 . 657089) + (-1687 . 657037) (-1688 . 656930) (-1689 . 656828) (-1690 . 656713) + (-1691 . 656576) (-1692 . 656012) (-1693 . 655854) (-1694 . 655663) + (-1695 . 655595) (-1696 . 655523) (-1697 . 655442) (-1698 . 655161) + (-1699 . 654790) (-1700 . 654694) (-1701 . 654641) (-1702 . 654011) + (-1703 . 653448) (-1704 . 653320) (-1705 . 653167) (-1706 . 653083) + (-1707 . 653001) (-1708 . 652708) (-1709 . 652655) (-1710 . 652627) + (-1711 . 652575) (-1712 . 652329) (-1713 . 652214) (-1714 . 652177) + (-1715 . 651614) (-1716 . 651586) (-1717 . 651558) (-1718 . 651436) + (-1719 . 651333) (-1720 . 650945) (-1721 . 650917) (-1722 . 650845) + (-1723 . 650731) (-1724 . 650552) (-1725 . 650330) (-1726 . 650269) + (-1727 . 649706) (-1728 . 649546) (-1729 . 649475) (-1730 . 649221) + (-1731 . 649193) (-1732 . 649161) (-1733 . 649040) (-1734 . 648960) + (-1735 . 648888) (-1736 . 648774) (-1737 . 648211) (-1738 . 648056) + (-1739 . 648028) (-1740 . 647949) (-1741 . 647597) (-1742 . 647569) + (-1743 . 647516) (-1744 . 647403) (-1745 . 647317) (-1746 . 647218) + (-1747 . 647168) (-1748 . 646605) (-1749 . 646305) (-1750 . 646210) + (-1751 . 645949) (-1752 . 645605) (-1753 . 645324) (-1754 . 645296) + (-1755 . 645158) (-1756 . 645106) (-1757 . 645013) (-1758 . 644907) + (-1759 . 644771) (-1760 . 644589) (-1761 . 644561) (-1762 . 644487) + (-1763 . 644432) (-1764 . 644361) (-1765 . 644036) (-1766 . 643790) + (-1767 . 642823) (-1768 . 642296) (-1769 . 642142) (-1770 . 641721) + (-1771 . 641294) (-1772 . 641199) (-1773 . 640989) (-1774 . 640904) + (-1775 . 640821) (-1776 . 640793) (-1777 . 640724) (-1778 . 640634) + (-1779 . 640409) (-1780 . 640358) (-1781 . 639942) (-1782 . 639875) + (-1783 . 639757) (-1784 . 639676) (-1785 . 639598) (-1786 . 639517) + (-1787 . 639489) (-1788 . 639336) (-1789 . 639270) (-1790 . 639193) + (-1791 . 639140) (-1792 . 639039) (-1793 . 639005) (-1794 . 638953) + (-1795 . 636985) (-1796 . 636377) (-1797 . 636268) (-1798 . 636208) + (-1799 . 636018) (-1800 . 635965) (-1801 . 635419) (-1802 . 635242) + (-1803 . 635129) (-1804 . 635057) (-1805 . 634990) (-1806 . 634940) + (-1807 . 634845) (-1808 . 634706) (-1809 . 634641) (-1810 . 634519) + (-1811 . 634491) (-1812 . 634403) (-1813 . 634244) (-1814 . 634050) + (-1815 . 633998) (-1816 . 633688) (-1817 . 633482) (-1818 . 632984) + (-1819 . 632901) (-1820 . 632579) (-1821 . 632461) (-1822 . 632375) + (-1823 . 632037) (-1824 . 631981) (-1825 . 631876) (-1826 . 631761) + (-1827 . 631623) (-1828 . 631507) (-1829 . 631297) (-1830 . 631026) + (-1831 . 630236) (-1832 . 630208) (-1833 . 630124) (-1834 . 629888) + (-1835 . 629800) (-1836 . 629684) (-1837 . 629628) (-1838 . 629301) + (-1839 . 629241) (-1840 . 629145) (-1841 . 629072) (-1842 . 628933) + (-1843 . 628487) (-1844 . 628432) (-1845 . 628319) (-1846 . 628241) + (-1847 . 628023) (-1848 . 627738) (-1849 . 627710) (-1850 . 627491) + (-1851 . 627396) (-1852 . 627303) (-1853 . 627192) (-1854 . 627097) + (-1855 . 627030) (-1856 . 625878) (-1857 . 625776) (-1858 . 625662) + (-1859 . 625574) (-1860 . 625501) (-1861 . 625220) (-1862 . 625112) + (-1863 . 625059) (-1864 . 624885) (-1865 . 624668) (-1866 . 624580) + (-1867 . 624493) (-1868 . 624414) (-1869 . 617471) (-1870 . 617412) + (-1871 . 617332) (-1872 . 617235) (-1873 . 617072) (-1874 . 616857) + (-1875 . 616727) (-1876 . 616368) (-1877 . 616340) (-1878 . 616280) + (-1879 . 616018) (-1880 . 615955) (-1881 . 615926) (-1882 . 615864) + (-1883 . 615732) (-1884 . 615704) (-1885 . 615652) (-1886 . 615623) + (-1887 . 615119) (-1888 . 615016) (-1889 . 614801) (-1890 . 614713) + (-1891 . 614661) (-1892 . 614558) (-1893 . 614501) (-1894 . 613758) + (-1895 . 613656) (-1896 . 612740) (-1897 . 612582) (-1898 . 612414) + (-1899 . 612318) (-1900 . 612289) (-1901 . 612141) (-1902 . 611323) + (-1903 . 611192) (-1904 . 611111) (-1905 . 611011) (-1906 . 610892) + (-1907 . 610787) (-1908 . 610665) (-1909 . 610581) (-1910 . 610398) + (-1911 . 610257) (-1912 . 610186) (-1913 . 610036) (-1914 . 609963) + (-1915 . 609788) (-1916 . 609644) (-1917 . 609558) (-1918 . 608670) + (-1919 . 608512) (-1920 . 608348) (-1921 . 608296) (-1922 . 608201) + (-1923 . 607914) (-1924 . 607831) (-1925 . 607715) (-1926 . 607632) + (-1927 . 607532) (-1928 . 607403) (-1929 . 607151) (-1930 . 606973) + (-1931 . 606611) (-1932 . 606531) (-1933 . 606472) (-1934 . 606259) + (-1935 . 606135) (-1936 . 606068) (-1937 . 606016) (-1938 . 605961) + (-1939 . 605905) (-1940 . 605168) (-1941 . 605041) (-1942 . 604013) + (-1943 . 603897) (-1944 . 603796) (-1945 . 603722) (-1946 . 603670) + (-1947 . 603510) (-1948 . 603441) (-1949 . 603369) (-1950 . 603274) + (-1951 . 603176) (-1952 . 602651) (-1953 . 602596) (-1954 . 602536) + (-1955 . 602387) (-1956 . 602290) (-1957 . 600986) (-1958 . 600900) + (-1959 . 600823) (-1960 . 600701) (-1961 . 600193) (-1962 . 600061) + (-1963 . 599401) (-1964 . 599255) (-1965 . 599129) (-1966 . 598914) + (-1967 . 598649) (-1968 . 598565) (-1969 . 598442) (-1970 . 598264) + (-1971 . 598041) (-1972 . 597974) (-1973 . 597905) (-1974 . 597874) + (-1975 . 597823) (-1976 . 597605) (-1977 . 597278) (-1978 . 596638) + (-1979 . 596570) (-1980 . 596427) (-1981 . 596287) (-1982 . 596191) + (-1983 . 596061) (-1984 . 595603) (-1985 . 595551) (-1986 . 595481) + (-1987 . 595393) (-1988 . 595280) (-1989 . 595199) (-1990 . 594914) + (-1991 . 594846) (-1992 . 594794) (-1993 . 594502) (-1994 . 594285) + (-1995 . 594202) (-1996 . 594084) (-1997 . 593905) (-1998 . 593849) + (-1999 . 593797) (-2000 . 593742) (-2001 . 593640) (-2002 . 593588) + (-2003 . 593437) (-2004 . 593395) (-2005 . 593342) (-2006 . 593229) + (-2007 . 593174) (-2008 . 592686) (-2009 . 592600) (-2010 . 592494) + (-2011 . 592444) (-2012 . 592272) (-2013 . 592195) (-2014 . 591821) + (-2015 . 591721) (-2016 . 590757) (-2017 . 590626) (-2018 . 590505) + (-2019 . 590286) (-2020 . 590128) (-2021 . 590006) (-2022 . 589910) + (-2023 . 589843) (-2024 . 589764) (-2025 . 589692) (-2026 . 589582) + (-2027 . 589494) (-2028 . 589420) (-2029 . 589337) (-2030 . 589194) + (-2031 . 589125) (-2032 . 589088) (-2033 . 589016) (-2034 . 588834) + (-2035 . 586772) (-2036 . 586670) (-2037 . 586596) (-2038 . 586495) + (-2039 . 586367) (-2040 . 586208) (-2041 . 586138) (-2042 . 586057) + (-2043 . 585912) (-2044 . 585833) (-2045 . 585738) (-2046 . 585372) + (-2047 . 584530) (-2048 . 584366) (-2049 . 584289) (-2050 . 584209) + (-2051 . 583922) (-2052 . 583870) (-2053 . 583798) (-2054 . 583698) + (-2055 . 583557) (-2056 . 583432) (-2057 . 583354) (-2058 . 583270) + (-2059 . 583210) (-2060 . 579601) (-2061 . 579517) (-2062 . 579370) + (-2063 . 578711) (-2064 . 577957) (-2065 . 577811) (-2066 . 577599) + (-2067 . 577417) (-2068 . 577307) (-2069 . 577216) (-2070 . 576856) + (-2071 . 576576) (-2072 . 576091) (-2073 . 575545) (-2074 . 575431) + (-2075 . 575079) (-2076 . 574900) (-2077 . 574833) (-2078 . 574629) + (-2079 . 574556) (-2080 . 574449) (-2081 . 574421) (-2082 . 574342) + (-2083 . 574124) (-2084 . 573360) (-2085 . 573307) (-2086 . 571861) + (-2087 . 571773) (-2088 . 571609) (-2089 . 571161) (-2090 . 571091) + (-2091 . 570959) (-2092 . 570907) (-2093 . 570837) (-2094 . 570698) + (-2095 . 570485) (-2096 . 570405) (-2097 . 570176) (-2098 . 570038) + (-2099 . 569885) (-2100 . 569660) (-2101 . 569518) (-2102 . 569202) + (-2103 . 569011) (-2104 . 568143) (-2105 . 568002) (-2106 . 567940) + (-2107 . 567800) (-2108 . 567721) (-2109 . 566651) (-2110 . 566557) + (-2111 . 566469) (-2112 . 566389) (-2113 . 566250) (-2114 . 566156) + (-2115 . 565972) (-2116 . 565868) (-2117 . 565788) (-2118 . 565511) + (-2119 . 565409) (-2120 . 565266) (-2121 . 565010) (-2122 . 564829) + (-2123 . 564718) (-2124 . 564666) (-2125 . 564561) (-2126 . 564527) + (-2127 . 564187) (-2128 . 564116) (-2129 . 564084) (-2130 . 563912) + (-2131 . 563832) (-2132 . 563540) (-2133 . 562872) (-2134 . 562786) + (-2135 . 562734) (-2136 . 562515) (-2137 . 562399) (-2138 . 562274) + (-2139 . 562064) (-2140 . 561970) (-2141 . 561845) (-2142 . 561777) + (-2143 . 561746) (-2144 . 561642) (-2145 . 561497) (-2146 . 561285) + (-2147 . 561182) (-2148 . 561089) (-2149 . 560965) (-2150 . 560823) + (-2151 . 560667) (-2152 . 560437) (-2153 . 560363) (-2154 . 560240) + (-2155 . 560188) (-2156 . 560136) (-2157 . 560017) (-2158 . 559884) + (-2159 . 559783) (-2160 . 559680) (-2161 . 559234) (-2162 . 558963) + (-2163 . 558525) (-2164 . 558303) (-2165 . 558098) (-2166 . 557225) + (-2167 . 557123) (-2168 . 556970) (-2169 . 556753) (-2170 . 556698) + (-2171 . 556646) (-2172 . 556423) (-2173 . 556337) (-2174 . 556285) + (-2175 . 556208) (-2176 . 554910) (-2177 . 554882) (-2178 . 554811) + (-2179 . 554737) (-2180 . 554709) (-2181 . 554580) (-2182 . 554527) + (-2183 . 554284) (-2184 . 554188) (-2185 . 554085) (-2186 . 554011) + (-2187 . 553853) (-2188 . 553825) (-2189 . 553773) (-2190 . 553694) + (-2191 . 553529) (-2192 . 553444) (-2193 . 553226) (-2194 . 553124) + (-2195 . 552944) (-2196 . 552885) (-2197 . 552797) (-2198 . 552538) + (-2199 . 551952) (-2200 . 551650) (-2201 . 551576) (-2202 . 551517) + (-2203 . 551267) (-2204 . 551142) (-2205 . 541692) (-2206 . 541273) + (-2207 . 541241) (-2208 . 541157) (-2209 . 541087) (-2210 . 540906) + (-2211 . 540596) (-2212 . 540348) (-2213 . 539200) (-2214 . 539122) + (-2215 . 538636) (-2216 . 538535) (-2217 . 538439) (-2218 . 538382) + (-2219 . 538067) (-2220 . 537901) (-2221 . 537742) (-2222 . 537692) + (-2223 . 537589) (-2224 . 537521) (-2225 . 537450) (-2226 . 537364) + (-2227 . 537206) (-2228 . 537111) (-2229 . 537038) (-2230 . 536985) + (-2231 . 536828) (-2232 . 536746) (-2233 . 536648) (-2234 . 536620) + (-2235 . 536456) (-2236 . 536248) (-2237 . 536181) (-2238 . 535954) + (-2239 . 535901) (-2240 . 535605) (-2241 . 535555) (-2242 . 535317) + (-2243 . 535209) (-2244 . 535091) (-2245 . 534995) (-2246 . 534966) + (-2247 . 534850) (-2248 . 530690) (-2249 . 530631) (-2250 . 530501) + (-2251 . 530298) (-2252 . 530044) (-2253 . 529841) (-2254 . 529807) + (-2255 . 529271) (-2256 . 529175) (-2257 . 529055) (-2258 . 528873) + (-2259 . 528730) (-2260 . 528078) (-2261 . 528047) (-2262 . 527956) + (-9 . 527928) (-2264 . 527773) (-2265 . 527707) (-2266 . 527545) + (-2267 . 527408) (-2268 . 527351) (-2269 . 527015) (-2270 . 526849) + (-2271 . 526815) (-2272 . 526574) (-2273 . 526503) (-2274 . 526303) + (-2275 . 526117) (-2276 . 525735) (-8 . 525707) (-2278 . 525640) + (-2279 . 525290) (-2280 . 525177) (-2281 . 524967) (-2282 . 524848) + (-2283 . 524764) (-2284 . 524452) (-2285 . 524348) (-2286 . 524244) + (-7 . 524216) (-2288 . 524188) (-2289 . 524026) (-2290 . 523959) + (-2291 . 523815) (-2292 . 523385) (-2293 . 523275) (-2294 . 523174) + (-2295 . 523076) (-2296 . 522998) (-2297 . 522897) (-2298 . 522844) + (-2299 . 522751) (-2300 . 522685) (-2301 . 522542) (-2302 . 522485) + (-2303 . 522256) (-2304 . 522222) (-2305 . 521688) (-2306 . 521625) + (-2307 . 521477) (-2308 . 521395) (-2309 . 521299) (-2310 . 521103) + (-2311 . 520906) (-2312 . 520872) (-2313 . 520734) (-2314 . 520444) + (-2315 . 520392) (-2316 . 520306) (-2317 . 520150) (-2318 . 519724) + (-2319 . 519594) (-2320 . 519423) (-2321 . 519307) (-2322 . 519251) + (-2323 . 519141) (-2324 . 518900) (-2325 . 518805) (-2326 . 518652) + (-2327 . 518590) (-2328 . 518122) (-2329 . 518028) (-2330 . 517930) + (-2331 . 517745) (-2332 . 517621) (-2333 . 517269) (-2334 . 517241) + (-2335 . 517146) (-2336 . 517086) (-2337 . 516917) (-2338 . 516813) + (-2339 . 516764) (-2340 . 516711) (-2341 . 516609) (-2342 . 516543) + (-2343 . 515932) (-2344 . 515792) (-2345 . 515739) (-2346 . 515364) + (-2347 . 515287) (-2348 . 515145) (-2349 . 515064) (-2350 . 514692) + (-2351 . 514614) (-2352 . 514415) (-2353 . 514297) (-2354 . 514111) + (-2355 . 512910) (-2356 . 512671) (-2357 . 512553) (-2358 . 512476) + (-2359 . 512386) (-2360 . 512309) (-2361 . 512166) (-2362 . 512023) + (-2363 . 511850) (-2364 . 511766) (-2365 . 511680) (-2366 . 511613) + (-2367 . 511553) (-2368 . 511257) (-2369 . 511186) (-2370 . 510884) + (-2371 . 510811) (-2372 . 510739) (-2373 . 510641) (-2374 . 510055) + (-2375 . 509931) (-2376 . 509831) (-2377 . 509717) (-2378 . 509665) + (-2379 . 509500) (-2380 . 509357) (-2381 . 509188) (-2382 . 508954) + (-2383 . 508847) (-2384 . 508721) (-2385 . 508124) (-2386 . 507997) + (-2387 . 507117) (-2388 . 507015) (-2389 . 506341) (-2390 . 506284) + (-2391 . 506182) (-2392 . 505930) (-2393 . 505781) (-2394 . 505693) + (-2395 . 505619) (-2396 . 505449) (-2397 . 505334) (-2398 . 505254) + (-2399 . 504884) (-2400 . 504792) (-2401 . 504719) (-2402 . 504539) + (-2403 . 504486) (-2404 . 503927) (-2405 . 503875) (-2406 . 503717) + (-2407 . 503335) (-2408 . 503089) (-2409 . 503012) (-2410 . 502311) + (-2411 . 502153) (-2412 . 502076) (-2413 . 501858) (-2414 . 501718) + (-2415 . 501538) (-2416 . 500979) (-2417 . 500275) (-2418 . 500102) + (-2419 . 500045) (-2420 . 499799) (-2421 . 499656) (-2422 . 499553) + (-2423 . 499385) (-2424 . 499242) (-2425 . 497014) (-2426 . 496925) + (-2427 . 496738) (-2428 . 496685) (-2429 . 496004) (-2430 . 495606) + (-2431 . 495505) (-2432 . 495290) (-2433 . 495119) (-2434 . 495017) + (-2435 . 494943) (-2436 . 494413) (-2437 . 494247) (-2438 . 494195) + (-2439 . 494128) (-2440 . 493793) (-2441 . 493641) (-2442 . 493560) + (-2443 . 493435) (-2444 . 492946) (-2445 . 492749) (-2446 . 492668) + (-2447 . 492568) (-2448 . 492519) (-2449 . 492482) (-2450 . 492229) + (-2451 . 492091) (-2452 . 492036) (-2453 . 491674) (-2454 . 491613) + (-2455 . 491072) (-2456 . 490765) (-2457 . 490447) (-2458 . 490225) + (-2459 . 489746) (-2460 . 489660) (-2461 . 489553) (-2462 . 489429) + (-2463 . 489380) (-2464 . 489250) (-2465 . 489017) (-2466 . 488899) + (-2467 . 488813) (-2468 . 488701) (-2469 . 488479) (-2470 . 488430) + (-2471 . 488322) (-2472 . 488172) (-2473 . 487778) (-2474 . 487348) + (-2475 . 487033) (-2476 . 486975) (-2477 . 486748) (-2478 . 486704) + (-2479 . 486600) (-2480 . 486309) (-2481 . 486249) (-2482 . 486157) + (-2483 . 485829) (-2484 . 485700) (-2485 . 485647) (-2486 . 485582) + (-2487 . 485479) (-2488 . 485261) (-2489 . 485116) (-2490 . 483335) + (-2491 . 483262) (-2492 . 482970) (-2493 . 482916) (-2494 . 482773) + (-2495 . 482718) (-2496 . 482575) (-2497 . 482368) (-2498 . 481942) + (-2499 . 481762) (-2500 . 481665) (-2501 . 481470) (-2502 . 481317) + (-2503 . 481250) (-2504 . 481176) (-2505 . 481117) (-2506 . 480907) + (-2507 . 480703) (-2508 . 480626) (-2509 . 480598) (-2510 . 480525) + (-2511 . 480034) (-2512 . 479668) (-2513 . 479613) (-2514 . 479415) + (-2515 . 479336) (-2516 . 479182) (-2517 . 478972) (-2518 . 478754) + (-2519 . 478545) (-2520 . 478450) (-2521 . 478353) (-2522 . 478265) + (-2523 . 478212) (-2524 . 478119) (-2525 . 477972) (-2526 . 477757) + (-2527 . 477675) (-2528 . 477562) (-2529 . 477488) (-2530 . 477387) + (-2531 . 477304) (-2532 . 477234) (-2533 . 477131) (-2534 . 477027) + (-2535 . 476643) (-2536 . 476392) (-2537 . 476298) (-2538 . 476246) + (-2539 . 476085) (-2540 . 475948) (-2541 . 475772) (-2542 . 475653) + (-2543 . 475598) (-2544 . 475480) (-2545 . 475190) (-2546 . 475116) + (-2547 . 474038) (-2548 . 473893) (-2549 . 473637) (-2550 . 473537) + (-2551 . 473418) (-2552 . 473365) (-2553 . 472937) (-2554 . 472880) + (-2555 . 472784) (-2556 . 472657) (-2557 . 472497) (-2558 . 471838) + (-2559 . 471758) (-2560 . 471447) (-2561 . 471239) (-2562 . 470878) + (-2563 . 470412) (-2564 . 470360) (-2565 . 470247) (-2566 . 470192) + (-2567 . 470055) (-2568 . 468856) (-2569 . 468770) (-2570 . 468666) + (-2571 . 468573) (-2572 . 468512) (-2573 . 468243) (-2574 . 468038) + (-2575 . 467933) (-2576 . 467818) (-2577 . 467615) (-2578 . 466272) + (-2579 . 466198) (-2580 . 466055) (-2581 . 466002) (-2582 . 465882) + (-2583 . 465715) (-2584 . 465577) (-2585 . 465525) (-2586 . 465265) + (-2587 . 465210) (-2588 . 465079) (-2589 . 464980) (-2590 . 464559) + (-2591 . 464428) (-2592 . 464374) (-2593 . 464343) (-2594 . 463857) + (-2595 . 463761) (-2596 . 463692) (-2597 . 463058) (-2598 . 462943) + (-2599 . 462889) (-2600 . 462637) (-2601 . 462452) (-2602 . 462397) + (-2603 . 462287) (-2604 . 462213) (-2605 . 461821) (-2606 . 461313) + (-2607 . 460916) (-2608 . 460668) (-2609 . 460443) (-2610 . 460339) + (-2611 . 460143) (-2612 . 459696) (-2613 . 459636) (-2614 . 459504) + (-2615 . 459448) (-2616 . 459292) (-2617 . 459112) (-2618 . 459040) + (-2619 . 458698) (-2620 . 458593) (-2621 . 457753) (-2622 . 457685) + (-2623 . 457181) (-2624 . 457147) (-2625 . 457005) (-2626 . 456923) + (-2627 . 456805) (-2628 . 456494) (-2629 . 456286) (-2630 . 456171) + (-2631 . 456055) (-2632 . 455682) (-2633 . 455536) (-2634 . 455221) + (-2635 . 455192) (-2636 . 455097) (-2637 . 455026) (-2638 . 454800) + (-2639 . 454367) (-2640 . 454297) (-2641 . 454018) (-2642 . 453682) + (-2643 . 453627) (-2644 . 453553) (-2645 . 453487) (-2646 . 452901) + (-2647 . 452620) (-2648 . 452421) (-2649 . 452173) (-2650 . 452121) + (-2651 . 451994) (-2652 . 451914) (-2653 . 451794) (-2654 . 451741) + (-2655 . 451645) (-2656 . 451287) (-2657 . 451197) (-2658 . 450979) + (-2659 . 450835) (-2660 . 450705) (-2661 . 450540) (-2662 . 450261) + (-2663 . 450132) (-2664 . 449211) (-2665 . 449156) (-2666 . 449096) + (-2667 . 449029) (-2668 . 448585) (-2669 . 448433) (-2670 . 448121) + (-2671 . 447874) (-2672 . 447786) (-2673 . 447709) (-2674 . 447529) + (-2675 . 447352) (-2676 . 447266) (-2677 . 447143) (-2678 . 447030) + (-2679 . 446951) (-2680 . 446874) (-2681 . 446745) (-2682 . 446536) + (-2683 . 446311) (-2684 . 446035) (-2685 . 445743) (-2686 . 445599) + (-2687 . 445293) (-2688 . 445086) (-2689 . 445013) (-2690 . 444961) + (-2691 . 444862) (-2692 . 444764) (-2693 . 444736) (-2694 . 444659) + (-2695 . 444504) (-2696 . 443969) (-2697 . 443843) (-2698 . 443477) + (-2699 . 443354) (-2700 . 443059) (-2701 . 442902) (-2702 . 442780) + (-2703 . 442698) (-2704 . 442536) (-2705 . 442484) (-2706 . 442369) + (-2707 . 442237) (-2708 . 442108) (-2709 . 441885) (-2710 . 441808) + (-2711 . 441737) (-2712 . 441560) (-2713 . 441380) (-2714 . 441004) + (-2715 . 440951) (-2716 . 440849) (-2717 . 440817) (-2718 . 440760) + (-2719 . 440595) (-2720 . 440543) (-2721 . 440475) (-2722 . 440360) + (-2723 . 439937) (-2724 . 439771) (-2725 . 439151) (-2726 . 439054) + (-2727 . 437852) (-2728 . 437732) (-2729 . 437482) (-2730 . 437337) + (-2731 . 437062) (-2732 . 436904) (-2733 . 436848) (-2734 . 436692) + (-2735 . 436551) (-2736 . 436430) (-2737 . 436358) (-2738 . 436235) + (-2739 . 436166) (-2740 . 434870) (-2741 . 434784) (-2742 . 434637) + (-2743 . 434472) (-2744 . 434340) (-2745 . 434288) (-2746 . 434235) + (-2747 . 434168) (-2748 . 434032) (-2749 . 433824) (-2750 . 433734) + (-2751 . 433489) (-2752 . 433302) (-2753 . 433157) (-2754 . 432987) + (-2755 . 432870) (-2756 . 432700) (-2757 . 431970) (-2758 . 431324) + (-2759 . 431166) (-2760 . 430904) (-2761 . 430818) (-2762 . 430703) + (-2763 . 430629) (-2764 . 430558) (-2765 . 430475) (-2766 . 430311) + (-2767 . 430199) (-2768 . 429835) (-2769 . 429753) (-2770 . 429676) + (-2771 . 429490) (-2772 . 428760) (-2773 . 428168) (-2774 . 427623) + (-2775 . 427330) (-2776 . 426988) (-2777 . 425258) (-2778 . 425170) + (-2779 . 425111) (-2780 . 425030) (-2781 . 424500) (-2782 . 424337) + (-2783 . 424164) (-2784 . 424076) (-2785 . 423399) (-2786 . 423343) + (-2787 . 422344) (-2788 . 422291) (-2789 . 422220) (-2790 . 422155) + (-2791 . 422081) (-2792 . 421701) (-2793 . 421415) (-2794 . 419629) + (-2795 . 419495) (-2796 . 418900) (-2797 . 418335) (-2798 . 417952) + (-2799 . 417897) (-2800 . 417779) (-2801 . 417195) (-2802 . 417130) + (-2803 . 417079) (-2804 . 416829) (-2805 . 416673) (-2806 . 416576) + (-2807 . 416438) (-2808 . 416272) (-2809 . 415707) (-2810 . 415652) + (-2811 . 415530) (-2812 . 415292) (-2813 . 415134) (-2814 . 415036) + (-2815 . 414934) (-2816 . 414768) (-2817 . 414652) (-2818 . 414307) + (-2819 . 414092) (-2820 . 413896) (-2821 . 413331) (-2822 . 413279) + (-2823 . 413173) (-2824 . 413044) (-2825 . 412920) (-2826 . 412846) + (-2827 . 409182) (-2828 . 409148) (-2829 . 408968) (-2830 . 408741) + (-2831 . 408688) (-2832 . 408576) (-2833 . 408199) (-2834 . 407524) + (-2835 . 407250) (-2836 . 407060) (-2837 . 406923) (-2838 . 406794) + (-2839 . 406623) (-2840 . 406571) (-2841 . 406514) (-2842 . 406324) + (-2843 . 406109) (-2844 . 405981) (-2845 . 405918) (-2846 . 405765) + (-2847 . 405090) (-2848 . 404974) (-2849 . 404847) (-2850 . 404766) + (-2851 . 404592) (-2852 . 403949) (-2853 . 403702) (-2854 . 403503) + (-2855 . 403450) (-2856 . 402692) (-2857 . 402494) (-2858 . 402410) + (-2859 . 402339) (-2860 . 401932) (-2861 . 401194) (-2862 . 400703) + (-2863 . 400624) (-2864 . 400514) (-2865 . 400442) (-2866 . 400286) + (-2867 . 400114) (-2868 . 399865) (-2869 . 399693) (-2870 . 399620) + (-2871 . 399457) (-2872 . 398461) (-2873 . 397934) (-2874 . 397371) + (-2875 . 397293) (-2876 . 397240) (-2877 . 397157) (-2878 . 396982) + (-2879 . 396767) (-2880 . 396203) (-2881 . 395877) (-12 . 395705) + (-2883 . 395511) (-2884 . 395450) (-2885 . 395287) (-2886 . 395069) + (-2887 . 394996) (-2888 . 394883) (-2889 . 394854) (-2890 . 394701) + (-2891 . 394633) (-2892 . 394503) (-2893 . 394475) (-2894 . 394346) + (-2895 . 394191) (-2896 . 394060) (-2897 . 393887) (-2898 . 393742) + (-2899 . 393669) (-2900 . 393548) (-2901 . 393215) (-2902 . 393078) + (-2903 . 392918) (-2904 . 390137) (-2905 . 389788) (-2906 . 389719) + (-2907 . 389607) (-2908 . 389516) (-2909 . 389217) (-2910 . 389185) + (-2911 . 389091) (-2912 . 389001) (-2913 . 388930) (-2914 . 388666) + (-2915 . 388491) (-2916 . 384491) (-2917 . 384420) (-2918 . 384147) + (-2919 . 383283) (-2920 . 383187) (-2921 . 383050) (-2922 . 382996) + (-2923 . 382819) (-2924 . 382567) (-2925 . 382433) (-2926 . 382380) + (-2927 . 382147) (-2928 . 381972) (-2929 . 381831) (-2930 . 381553) + (-2931 . 381353) (-2932 . 380268) (-2933 . 380203) (-2934 . 380099) + (-2935 . 379581) (-2936 . 379466) (-2937 . 379358) (-2938 . 379139) + (-2939 . 378960) (-2940 . 378926) (-2941 . 378874) (-2942 . 378807) + (-2943 . 378709) (-2944 . 378526) (-2945 . 378437) (-2946 . 378354) + (-2947 . 378106) (-2948 . 377821) (-2949 . 377663) (-2950 . 377552) + (-2951 . 377423) (-2952 . 377360) (-2953 . 377104) (-2954 . 376917) + (-2955 . 376780) (-2956 . 376653) (-2957 . 376576) (-2958 . 376517) + (-2959 . 376353) (-2960 . 376009) (-2961 . 375831) (-2962 . 375660) + (-2963 . 375117) (-2964 . 374957) (-2965 . 374371) (-2966 . 374213) + (-2967 . 374146) (-2968 . 374031) (-2969 . 373813) (-2970 . 373683) + (-2971 . 373498) (-2972 . 373464) (-2973 . 373374) (-2974 . 373205) + (-2975 . 373110) (-2976 . 373036) (-2977 . 372911) (-2978 . 372624) + (-2979 . 372115) (-2980 . 372059) (-2981 . 371904) (* . 367791) + (-2983 . 367627) (-2984 . 367560) (-2985 . 367368) (-2986 . 367251) + (-2987 . 367155) (-2988 . 367086) (-2989 . 366973) (-2990 . 366668) + (-2991 . 366612) (-2992 . 366496) (-2993 . 366400) (-2994 . 366227) + (-2995 . 366158) (-2996 . 366102) (-2997 . 365869) (-2998 . 365804) + (-2999 . 365670) (-3000 . 365614) (-3001 . 365552) (-3002 . 365484) + (-3003 . 365234) (-3004 . 365181) (-3005 . 364245) (-3006 . 364109) + (-3007 . 364057) (-3008 . 363914) (-3009 . 363859) (-3010 . 363724) + (-3011 . 363590) (-3012 . 363255) (-3013 . 363202) (-3014 . 363046) + (-3015 . 362560) (-3016 . 362404) (-3017 . 362271) (-3018 . 361999) + (-3019 . 361821) (-3020 . 361678) (-3021 . 361571) (-3022 . 361488) + (-3023 . 361402) (-3024 . 361278) (-3025 . 361222) (-3026 . 360995) + (-3027 . 360880) (-3028 . 360809) (-3029 . 360609) (-3030 . 360421) + (-3031 . 360322) (-3032 . 359779) (-3033 . 359618) (-3034 . 359568) + (-3035 . 358858) (-3036 . 358698) (-3037 . 358612) (-3038 . 358497) + (-3039 . 358318) (-3040 . 358248) (-3041 . 358141) (-3042 . 357910) + (-3043 . 357459) (-3044 . 357069) (-3045 . 356509) (-3046 . 356194) + (-3047 . 355590) (-3048 . 355445) (-3049 . 355338) (-3050 . 355099) + (-3051 . 354992) (-3052 . 354915) (-3053 . 354599) (-3054 . 354512) + (-3055 . 354426) (-3056 . 354278) (-3057 . 354165) (-3058 . 354088) + (-3059 . 353969) (-3060 . 353937) (-3061 . 353830) (-3062 . 353488) + (-3063 . 353309) (-3064 . 353232) (-3065 . 353165) (-3066 . 353057) + (-3067 . 352898) (-3068 . 352662) (-3069 . 352556) (-3070 . 352403) + (-3071 . 352296) (-3072 . 352167) (-3073 . 352008) (-3074 . 351921) + (-3075 . 351820) (-3076 . 351691) (-3077 . 351578) (-3078 . 351491) + (-3079 . 351389) (-3080 . 351224) (-3081 . 351005) (-3082 . 350971) + (-3083 . 350811) (-3084 . 350711) (-3085 . 350641) (-3086 . 350512) + (-3087 . 350040) (-3088 . 349866) (-3089 . 349756) (-3090 . 349619) + (-3091 . 349537) (-3092 . 349465) (-3093 . 349372) (-3094 . 349320) + (-3095 . 349144) (-3096 . 348874) (-3097 . 348756) (-3098 . 348724) + (-3099 . 348408) (-3100 . 348305) (-3101 . 348224) (-3102 . 348147) + (-3103 . 348097) (-3104 . 348020) (-3105 . 347950) (-3106 . 347919) + (-3107 . 347815) (-3108 . 347753) (-3109 . 347572) (-3110 . 347486) + (-3111 . 347419) (-3112 . 347195) (-3113 . 347122) (-3114 . 345936) + (-3115 . 345612) (-3116 . 345553) (-3117 . 345293) (-3118 . 345193) + (-3119 . 345120) (-3120 . 345067) (-3121 . 344897) (-3122 . 344553) + (-3123 . 344346) (-3124 . 344250) (-3125 . 344137) (-3126 . 344046) + (-3127 . 343704) (-3128 . 342522) (-3129 . 342289) (-3130 . 342188) + (-3131 . 342157) (-3132 . 341828) (-3133 . 341492) (-3134 . 341283) + (-3135 . 341162) (-3136 . 341110) (-3137 . 341031) (-3138 . 340064) + (-3139 . 337856) (-3140 . 337783) (-3141 . 337732) (-3142 . 337676) + (-3143 . 337626) (-3144 . 337428) (-3145 . 337300) (-3146 . 337241) + (-3147 . 337125) (-3148 . 336963) (-3149 . 336796) (-3150 . 336684) + (-3151 . 336598) (-3152 . 336505) (-3153 . 336432) (-3154 . 336119) + (-3155 . 336047) (-3156 . 335744) (-3157 . 335691) (-3158 . 335624) + (-3159 . 334983) (-3160 . 334826) (-3161 . 334742) (-3162 . 334588) + (-3163 . 334351) (-3164 . 334133) (-3165 . 334015) (-3166 . 333927) + (-3167 . 332710) (-3168 . 332550) (-3169 . 332346) (-3170 . 332278) + (-3171 . 332175) (-3172 . 331913) (-3173 . 331684) (-3174 . 331601) + (-3175 . 331192) (-3176 . 331061) (-3177 . 330960) (-3178 . 330449) + (-3179 . 330221) (-3180 . 330051) (-3181 . 330023) (-3182 . 329893) + (-3183 . 329836) (-3184 . 329419) (-3185 . 328904) (-3186 . 328803) + (-3187 . 328546) (-3188 . 328380) (-3189 . 328267) (-3190 . 325426) + (-3191 . 325260) (-3192 . 325161) (-3193 . 324927) (-3194 . 324868) + (-3195 . 324715) (-3196 . 324638) (-3197 . 324503) (-3198 . 324476) + (-3199 . 324424) (-3200 . 324330) (-3201 . 324262) (-3202 . 324191) + (-3203 . 324136) (-3204 . 324077) (-3205 . 324021) (-3206 . 322747) + (-3207 . 322652) (-3208 . 322579) (-3209 . 322484) (-3210 . 322169) + (-3211 . 322011) (-3212 . 321915) (-3213 . 321799) (-3214 . 321628) + (-3215 . 321594) (-3216 . 321560) (-3217 . 321375) (-3218 . 321280) + (-3219 . 321156) (-3220 . 321103) (-3221 . 320835) (-3222 . 320490) + (-3223 . 320288) (-3224 . 320144) (-3225 . 320065) (-3226 . 319971) + (-3227 . 319919) (-3228 . 319749) (-3229 . 319721) (-3230 . 319514) + (-3231 . 319415) (-3232 . 319169) (-3233 . 318951) (-3234 . 318746) + (-3235 . 318692) (-3236 . 317922) (-3237 . 317644) (-3238 . 317513) + (-3239 . 317417) (-3240 . 317334) (-3241 . 316451) (-3242 . 316159) + (-3243 . 316053) (-3244 . 315905) (-3245 . 315843) (-3246 . 315693) + (-3247 . 315629) (-3248 . 315570) (-3249 . 315402) (-3250 . 315318) + (-3251 . 315290) (-3252 . 315169) (-3253 . 315050) (-3254 . 314737) + (-3255 . 314610) (-3256 . 314483) (-3257 . 314380) (-3258 . 313784) + (-3259 . 313647) (-3260 . 313615) (-3261 . 313443) (-3262 . 313242) + (-3263 . 313158) (-3264 . 313063) (-3265 . 312981) (-3266 . 312823) + (-3267 . 312741) (-3268 . 312688) (-3269 . 312607) (-3270 . 312431) + (-3271 . 312318) (-3272 . 312146) (-3273 . 311957) (-3274 . 311734) + (-3275 . 311590) (-3276 . 311490) (-3277 . 311236) (-3278 . 311046) + (-3279 . 310855) (-3280 . 310036) (-3281 . 309984) (-3282 . 309831) + (-3283 . 309659) (-3284 . 309585) (-3285 . 309533) (-3286 . 309414) + (-3287 . 309326) (-3288 . 309193) (-3289 . 309165) (-3290 . 308976) + (-3291 . 308822) (-3292 . 308447) (-3293 . 308395) (-3294 . 308342) + (-3295 . 308204) (-3296 . 308032) (-3297 . 307911) (-3298 . 307825) + (-3299 . 307727) (-3300 . 307584) (-3301 . 307452) (-3302 . 307227) + (-3303 . 306875) (-3304 . 306776) (-3305 . 306500) (-3306 . 306326) + (-3307 . 306238) (-3308 . 305943) (-3309 . 305516) (-3310 . 305442) + (-3311 . 305346) (-3312 . 305175) (-3313 . 305116) (-3314 . 304988) + (-3315 . 304835) (-3316 . 304704) (-3317 . 304610) (-3318 . 304522) + (-3319 . 304469) (-3320 . 304417) (-3321 . 304365) (-3322 . 304268) + (-3323 . 304216) (-3324 . 304069) (-3325 . 303859) (-3326 . 303806) + (-3327 . 303734) (-3328 . 303639) (-3329 . 303557) (-3330 . 303504) + (-3331 . 302638) (-3332 . 301840) (-3333 . 301759) (-3334 . 301591) + (-3335 . 301520) (-3336 . 299742) (-3337 . 299404) (-3338 . 299346) + (-3339 . 299209) (-3340 . 299114) (-3341 . 298595) (-3342 . 298496) + (-3343 . 298385) (-3344 . 298144) (-3345 . 298048) (-3346 . 297938) + (-3347 . 297803) (-3348 . 297617) (-3349 . 297540) (-3350 . 297345) + (-3351 . 296632) (-3352 . 296294) (-3353 . 296227) (-3354 . 295900) + (-3355 . 295819) (-3356 . 295700) (-3357 . 295413) (-3358 . 295230) + (-3359 . 295178) (-3360 . 295105) (-3361 . 295046) (-3362 . 294963) + (-3363 . 294587) (-3364 . 293780) (-3365 . 293707) (-3366 . 293469) + (-3367 . 293326) (-3368 . 293095) (-3369 . 292936) (-3370 . 292870) + (-3371 . 292624) (-3372 . 292203) (-3373 . 288253) (-3374 . 287825) + (-3375 . 287696) (-3376 . 287643) (-3377 . 287529) (-3378 . 287198) + (-3379 . 286959) (-3380 . 286729) (-3381 . 285975) (-3382 . 285618) + (-3383 . 285475) (-3384 . 285417) (-3385 . 285360) (-3386 . 285235) + (-3387 . 285155) (-3388 . 285009) (-3389 . 284946) (-3390 . 284544) + (-3391 . 284470) (-3392 . 284393) (-3393 . 284143) (-3394 . 284042) + (-3395 . 283709) (-3396 . 283527) (-3397 . 283400) (-3398 . 283345) + (-3399 . 283065) (-3400 . 282949) (-3401 . 282866) (-3402 . 282749) + (-3403 . 282650) (-3404 . 282526) (-3405 . 282217) (-3406 . 281818) + (-3407 . 281583) (-3408 . 281313) (-3409 . 281166) (-3410 . 281110) + (-3411 . 280973) (-3412 . 280490) (-3413 . 280155) (-3414 . 279776) + (-3415 . 279561) (-3416 . 279510) (-3417 . 279179) (-3418 . 279084) + (-3419 . 278999) (-3420 . 278898) (-3421 . 278695) (-3422 . 278171) + (-3423 . 278114) (-3424 . 278015) (-3425 . 277835) (-3426 . 277033) + (-3427 . 276889) (-3428 . 276861) (-3429 . 276672) (-3430 . 276620) + (-3431 . 276527) (-3432 . 276430) (-3433 . 276291) (-3434 . 276226) + (-3435 . 276155) (-3436 . 276034) (-3437 . 275717) (-3438 . 275456) + (-3439 . 275255) (-3440 . 275072) (-3441 . 275020) (-3442 . 274951) + (-3443 . 274850) (-3444 . 274699) (-3445 . 274597) (-3446 . 274473) + (-3447 . 274266) (-3448 . 274100) (-3449 . 273421) (-3450 . 273219) + (-3451 . 273136) (-3452 . 271708) (-3453 . 271634) (-3454 . 271440) + (-3455 . 271292) (-3456 . 271128) (-3457 . 271034) (-3458 . 270827) + (-3459 . 270687) (-3460 . 270584) (-3461 . 270434) (-3462 . 270170) + (-3463 . 270101) (-3464 . 270028) (-3465 . 269890) (-3466 . 269745) + (-3467 . 269543) (-3468 . 269224) (-3469 . 269089) (-3470 . 268964) + (-3471 . 268868) (-3472 . 268575) (-3473 . 268304) (-3474 . 268209) + (-3475 . 268181) (-3476 . 268110) (-3477 . 267798) (-3478 . 267724) + (-3479 . 267638) (-3480 . 267056) (-3481 . 267006) (-3482 . 266922) + (-3483 . 266476) (-3484 . 266381) (-3485 . 266285) (-3486 . 265771) + (-3487 . 265709) (-3488 . 265626) (-3489 . 265428) (-3490 . 265319) + (-3491 . 264977) (-3492 . 264767) (-3493 . 264623) (-3494 . 264549) + (-3495 . 263998) (-3496 . 263948) (-3497 . 263880) (-3498 . 263722) + (-3499 . 263564) (-3500 . 263448) (-3501 . 263353) (-3502 . 263304) + (-3503 . 263153) (-3504 . 263096) (-3505 . 263043) (-3506 . 262691) + (-3507 . 262528) (-3508 . 262454) (-3509 . 262370) (-3510 . 262276) + (-3511 . 262086) (-3512 . 261877) (-3513 . 261339) (-3514 . 261311) + (-3515 . 261138) (-3516 . 261000) (-3517 . 260861) (-3518 . 260804) + (-3519 . 260488) (-3520 . 260370) (-3521 . 260073) (-3522 . 259942) + (-3523 . 259878) (-3524 . 259607) (-3525 . 259484) (-3526 . 259416) + (-3527 . 259338) (-3528 . 259225) (-3529 . 259159) (-3530 . 258869) + (-3531 . 258772) (-3532 . 258546) (-3533 . 258423) (-3534 . 258265) + (-3535 . 258144) (-3536 . 258073) (-3537 . 257917) (-3538 . 257704) + (-3539 . 257319) (-3540 . 257215) (-3541 . 257118) (-3542 . 256994) + (-3543 . 256856) (-3544 . 256749) (-3545 . 256650) (-3546 . 256509) + (-3547 . 256284) (-3548 . 256110) (-3549 . 256036) (-3550 . 255894) + (-3551 . 255829) (-3552 . 254764) (-3553 . 254670) (-3554 . 254398) + (-3555 . 253995) (-3556 . 253911) (-3557 . 253471) (-3558 . 253298) + (-3559 . 253157) (-3560 . 253035) (-3561 . 252947) (-3562 . 252748) + (-3563 . 252585) (-3564 . 251405) (-3565 . 251350) (-3566 . 251253) + (-3567 . 250864) (-3568 . 250754) (-3569 . 250366) (-3570 . 250220) + (-3571 . 250093) (-3572 . 250027) (-3573 . 249949) (-3574 . 249088) + (-3575 . 249031) (-3576 . 248908) (-3577 . 248830) (-3578 . 248686) + (-3579 . 248542) (-3580 . 248148) (-3581 . 248052) (-3582 . 247951) + (-3583 . 247432) (-3584 . 247305) (-3585 . 246917) (-3586 . 246830) + (-3587 . 246674) (-3588 . 246490) (-3589 . 246391) (-3590 . 246233) + (-3591 . 246148) (-3592 . 246114) (-3593 . 246055) (-3594 . 245996) + (-3595 . 245572) (-3596 . 244834) (-3597 . 244757) (-3598 . 244661) + (-3599 . 244577) (-3600 . 244159) (-3601 . 244046) (-3602 . 243894) + (-3603 . 243551) (-3604 . 243423) (-3605 . 243230) (-3606 . 243143) + (-3607 . 242891) (-3608 . 242765) (-3609 . 242620) (-3610 . 242429) + (-3611 . 242398) (-3612 . 242345) (-3613 . 242283) (-3614 . 242179) + (-3615 . 242094) (-3616 . 241961) (-3617 . 241676) (-3618 . 241597) + (-3619 . 241461) (-3620 . 241316) (-3621 . 241193) (-3622 . 241123) + (-3623 . 241004) (-3624 . 240955) (-3625 . 240655) (-3626 . 240568) + (-3627 . 240506) (-3628 . 240472) (-3629 . 240395) (-3630 . 240336) + (-3631 . 240265) (-3632 . 239839) (-3633 . 239724) (-3634 . 239600) + (-3635 . 239541) (-3636 . 239453) (-3637 . 239279) (-3638 . 239181) + (-3639 . 239093) (-3640 . 238740) (-3641 . 237678) (-3642 . 236576) + (-3643 . 236003) (-3644 . 235924) (-3645 . 235838) (-3646 . 235542) + (-3647 . 235508) (-3648 . 235353) (-3649 . 235234) (-3650 . 234790) + (-3651 . 234738) (-3652 . 234620) (-3653 . 234203) (-3654 . 234136) + (-3655 . 234108) (-3656 . 233912) (-3657 . 233811) (-3658 . 233762) + (-3659 . 233663) (-3660 . 233629) (-3661 . 233557) (-3662 . 233480) + (-3663 . 233315) (-3664 . 233190) (-3665 . 233091) (-3666 . 232995) + (-3667 . 232795) (-3668 . 231363) (-3669 . 231277) (-3670 . 231173) + (-3671 . 231077) (-3672 . 230942) (-3673 . 230620) (-3674 . 230496) + (-3675 . 228364) (-3676 . 228265) (-3677 . 228102) (-3678 . 227944) + (-3679 . 227828) (-3680 . 227775) (-3681 . 227641) (-3682 . 227546) + (-3683 . 227393) (-3684 . 227289) (-3685 . 227212) (-3686 . 227115) + (-3687 . 227033) (-3688 . 226892) (-3689 . 226663) (-3690 . 226486) + (-3691 . 226295) (-3692 . 226151) (-3693 . 226089) (-3694 . 225779) + (-3695 . 225724) (-3696 . 225571) (-3697 . 225466) (-3698 . 225078) + (-3699 . 224656) (-3700 . 224465) (-3701 . 224411) (-3702 . 224138) + (-3703 . 224071) (-3704 . 223976) (-3705 . 223924) (-3706 . 222757) + (-3707 . 222641) (-3708 . 222589) (-3709 . 204014) (-3710 . 203880) + (-3711 . 203774) (-3712 . 203666) (-3713 . 203606) (-3714 . 203460) + (-3715 . 203299) (-3716 . 203197) (-3717 . 203089) (-3718 . 202992) + (-3719 . 202509) (-3720 . 202254) (-3721 . 202113) (-3722 . 199292) + (-3723 . 199133) (-3724 . 198823) (-3725 . 198744) (-3726 . 198710) + (-3727 . 198640) (-3728 . 198429) (-3729 . 198328) (-3730 . 198137) + (-3731 . 198051) (-3732 . 196649) (-3733 . 196491) (-3734 . 196435) + (-3735 . 196276) (-3736 . 196170) (-3737 . 196096) (-3738 . 195938) + (-3739 . 195866) (-3740 . 195685) (-3741 . 195559) (-3742 . 195451) + (-3743 . 195367) (-3744 . 195259) (-3745 . 194961) (-3746 . 193843) + (-3747 . 193749) (-3748 . 193696) (-3749 . 193501) (-3750 . 193473) + (-3751 . 192813) (-3752 . 192572) (-3753 . 192338) (-3754 . 192258) + (-3755 . 192119) (-3756 . 192042) (-3757 . 191959) (-3758 . 191797) + (-3759 . 186283) (-3760 . 186180) (-3761 . 186106) (-3762 . 184706) + (-3763 . 184629) (-3764 . 184370) (-3765 . 184275) (-3766 . 183905) + (-3767 . 183877) (-3768 . 183792) (-3769 . 183410) (-3770 . 183017) + (-3771 . 182479) (-3772 . 182420) (-3773 . 182172) (-3774 . 182068) + (-3775 . 181833) (-3776 . 181710) (-3777 . 181357) (-3778 . 181274) + (-3779 . 181130) (-3780 . 180937) (-3781 . 180867) (-3782 . 180425) + (-3783 . 175085) (-3784 . 174889) (-3785 . 174757) (-3786 . 174669) + (-3787 . 174616) (-3788 . 174506) (-3789 . 174269) (-3790 . 174214) + (-3791 . 174119) (-3792 . 173997) (-3793 . 173945) (-3794 . 173610) + (-3795 . 173524) (-3796 . 173447) (-3797 . 173380) (-3798 . 173247) + (-3799 . 173148) (-3800 . 173020) (-3801 . 172966) (-3802 . 172611) + (-3803 . 172432) (-3804 . 172336) (-3805 . 172256) (-3806 . 172168) + (-3807 . 171991) (-3808 . 171868) (-3809 . 171809) (-3810 . 171750) + (-3811 . 171526) (-3812 . 171427) (-3813 . 171321) (-3814 . 171236) + (-3815 . 171026) (-3816 . 170615) (-3817 . 170542) (-3818 . 170118) + (-3819 . 170019) (-3820 . 169760) (-3821 . 169617) (-3822 . 169239) + (-3823 . 169024) (-3824 . 168928) (-3825 . 167701) (-3826 . 167414) + (-3827 . 167083) (-3828 . 167024) (-3829 . 166924) (-3830 . 166797) + (-3831 . 166470) (-3832 . 166382) (-3833 . 166093) (-3834 . 165991) + (-3835 . 165914) (-3836 . 165696) (-3837 . 165668) (-3838 . 165446) + (-3839 . 165352) (-3840 . 165299) (-3841 . 165229) (-3842 . 165049) + (-3843 . 164933) (-3844 . 164844) (-3845 . 164665) (-3846 . 163962) + (-3847 . 163893) (-3848 . 163813) (-3849 . 163715) (-3850 . 163604) + (-3851 . 163495) (-3852 . 163423) (-3853 . 163022) (-3854 . 162803) + (-3855 . 162746) (-3856 . 162633) (-3857 . 162518) (-3858 . 162315) + (-3859 . 162215) (-3860 . 162116) (-3861 . 161979) (-3862 . 161817) + (-3863 . 161735) (-3864 . 161393) (-3865 . 161361) (-3866 . 161283) + (-3867 . 161168) (-3868 . 160781) (-3869 . 160729) (-3870 . 160518) + (-3871 . 159295) (-3872 . 157664) (-3873 . 157287) (-3874 . 157220) + (-3875 . 155918) (-3876 . 155702) (-3877 . 155674) (-3878 . 155378) + (-3879 . 155326) (-3880 . 155199) (-3881 . 154972) (-3882 . 154113) + (-3883 . 153946) (-3884 . 153868) (-3885 . 153759) (-3886 . 153685) + (-3887 . 153633) (-3888 . 153578) (-3889 . 153125) (-3890 . 153039) + (-3891 . 151741) (-3892 . 151549) (-3893 . 151413) (-3894 . 150992) + (-3895 . 150893) (-3896 . 150769) (-3897 . 150674) (-3898 . 150496) + (-3899 . 150404) (-3900 . 150331) (-3901 . 150239) (-3902 . 150041) + (-3903 . 149971) (-3904 . 149870) (-3905 . 149503) (-3906 . 149430) + (-3907 . 149145) (-3908 . 149043) (-3909 . 148991) (-3910 . 148711) + (-3911 . 148595) (-3912 . 148521) (-3913 . 148471) (-3914 . 148318) + (-3915 . 148053) (-3916 . 147895) (-3917 . 147835) (-3918 . 147588) + (-3919 . 147014) (-3920 . 146899) (-3921 . 146679) (-3922 . 146358) + (-3923 . 146131) (-3924 . 145886) (-3925 . 145713) (-3926 . 145617) + (-3927 . 145520) (-3928 . 145367) (-3929 . 145300) (-3930 . 145182) + (-3931 . 145088) (-3932 . 144810) (-3933 . 144701) (-3934 . 144613) + (-3935 . 144447) (-3936 . 144379) (-3937 . 144224) (-3938 . 142458) + (-3939 . 142358) (-3940 . 142270) (-3941 . 142169) (-3942 . 141567) + (-3943 . 141430) (-3944 . 141378) (-3945 . 141119) (-3946 . 140641) + (-3947 . 140513) (-3948 . 139992) (-3949 . 138537) (-3950 . 138298) + (-3951 . 138052) (-3952 . 137606) (-3953 . 137425) (-3954 . 137397) + (-3955 . 137314) (-3956 . 137064) (-3957 . 136878) (-3958 . 136809) + (-3959 . 136498) (-3960 . 135008) (-3961 . 134799) (-3962 . 134424) + (-3963 . 134278) (-3964 . 134211) (-3965 . 133969) (-3966 . 133853) + (-3967 . 133721) (-3968 . 133540) (-3969 . 133456) (-3970 . 133377) + (-3971 . 133326) (-3972 . 133228) (-3973 . 133156) (-3974 . 133083) + (-3975 . 133055) (-3976 . 132970) (-3977 . 132874) (-3978 . 132711) + (-3979 . 132282) (-3980 . 132164) (-3981 . 131428) (-3982 . 131229) + (-3983 . 131128) (-3984 . 130976) (-3985 . 130897) (-3986 . 130844) + (-3987 . 130760) (-3988 . 130597) (-3989 . 130404) (-3990 . 130326) + (-3991 . 130240) (-3992 . 129829) (-3993 . 129772) (-3994 . 129611) + (-3995 . 129527) (-3996 . 129437) (-3997 . 129335) (-3998 . 129237) + (-3999 . 129109) (-4000 . 128966) (-4001 . 128371) (-4002 . 128334) + (-4003 . 128216) (-4004 . 127617) (-4005 . 127474) (-4006 . 126928) + (-4007 . 126641) (-4008 . 126500) (-4009 . 126231) (-4010 . 126108) + (-4011 . 126025) (-4012 . 125972) (-4013 . 125919) (-4014 . 125274) + (-4015 . 125068) (-4016 . 125012) (-4017 . 124922) (-4018 . 124843) + (-4019 . 124764) (-4020 . 124566) (-4021 . 124492) (-4022 . 124419) + (-4023 . 124342) (-4024 . 124246) (-4025 . 123074) (-4026 . 122700) + (-4027 . 122543) (-4028 . 122390) (-4029 . 122323) (-4030 . 120067) + (-4031 . 120014) (-4032 . 119682) (-4033 . 119579) (-4034 . 119305) + (-4035 . 118591) (-4036 . 118494) (-4037 . 118379) (-4038 . 118241) + (-4039 . 118061) (-4040 . 117902) (-4041 . 117707) (-4042 . 117576) + (-4043 . 117235) (-4044 . 117067) (-4045 . 116614) (-4046 . 116541) + (-4047 . 116225) (-4048 . 115089) (-4049 . 114976) (-4050 . 114784) + (-4051 . 114538) (-4052 . 114406) (-4053 . 114305) (-4054 . 114111) + (-4055 . 114003) (-4056 . 113917) (-4057 . 113846) (-4058 . 113762) + (-4059 . 112220) (-4060 . 112191) (-4061 . 112099) (-4062 . 111835) + (-4063 . 111707) (-4064 . 111455) (-4065 . 111357) (-4066 . 111305) + (-4067 . 111116) (-4068 . 110960) (-4069 . 110847) (-4070 . 110768) + (-4071 . 110673) (-4072 . 110513) (-4073 . 110436) (-4074 . 110366) + (-4075 . 110146) (-4076 . 110045) (-4077 . 109935) (-4078 . 109628) + (-4079 . 109490) (-4080 . 109437) (-4081 . 109385) (-4082 . 109305) + (-4083 . 109199) (-4084 . 108992) (-4085 . 108886) (-4086 . 108731) + (-4087 . 108671) (-4088 . 108574) (-4089 . 108359) (-4090 . 108305) + (-4091 . 107961) (-4092 . 107820) (-4093 . 107792) (-4094 . 107637) + (-4095 . 106997) (-4096 . 106969) (-4097 . 106935) (-4098 . 106898) + (-4099 . 106839) (-4100 . 106705) (-4101 . 106458) (-4102 . 106345) + (-4103 . 106253) (-4104 . 106194) (-4105 . 106101) (-4106 . 106034) + (-4107 . 105823) (-4108 . 105430) (-4109 . 105363) (-4110 . 105335) + (-4111 . 105207) (-4112 . 105129) (-4113 . 104781) (-4114 . 104689) + (-4115 . 104587) (-4116 . 104515) (-4117 . 104297) (-4118 . 104202) + (-4119 . 104041) (-4120 . 103963) (-4121 . 103736) (-4122 . 103657) + (-4123 . 103540) (-4124 . 103485) (-4125 . 103399) (-4126 . 103303) + (-4127 . 103143) (-4128 . 103071) (-4129 . 103013) (-4130 . 102939) + (-4131 . 102424) (-4132 . 102343) (-4133 . 102312) (-4134 . 102214) + (-4135 . 102158) (-4136 . 101382) (-4137 . 101187) (-4138 . 101105) + (-4139 . 101077) (-4140 . 100830) (-4141 . 100677) (-4142 . 100445) + (-4143 . 100082) (-4144 . 99615) (-4145 . 99535) (-4146 . 99377) + (-4147 . 98985) (-4148 . 98933) (-4149 . 98863) (-4150 . 98708) + (-4151 . 98657) (-4152 . 98563) (-4153 . 98510) (-4154 . 98457) + (-4155 . 98292) (-4156 . 98125) (-4157 . 97367) (-4158 . 97222) + (-4159 . 97076) (-4160 . 96933) (-4161 . 96864) (-4162 . 96663) + (-4163 . 96565) (-4164 . 96458) (-4165 . 96139) (-4166 . 95463) + (-4167 . 94880) (-4168 . 94472) (-4169 . 94136) (-4170 . 94048) + (-4171 . 92459) (-4172 . 92200) (-4173 . 91898) (-4174 . 91471) + (-4175 . 91292) (-4176 . 91049) (-4177 . 90782) (-4178 . 90482) + (-4179 . 90454) (-4180 . 90380) (-4181 . 90282) (-4182 . 90212) + (-4183 . 90085) (-4184 . 89927) (-4185 . 89874) (-4186 . 89686) + (-4187 . 89393) (-4188 . 89017) (-4189 . 88964) (-4190 . 87702) + (-4191 . 87579) (-4192 . 87517) (-4193 . 86766) (-4194 . 86714) + (-4195 . 86620) (-4196 . 86521) (-4197 . 85898) (-4198 . 85736) + (-4199 . 85687) (-4200 . 85469) (-4201 . 85335) (-4202 . 84447) + (-4203 . 84349) (-4204 . 84154) (-4205 . 83801) (-4206 . 83701) + (-4207 . 83606) (-4208 . 83505) (-4209 . 83447) (-4210 . 83318) + (-4211 . 83178) (-4212 . 82761) (-4213 . 82475) (-4214 . 82329) + (-4215 . 81653) (-4216 . 81507) (-4217 . 81409) (-4218 . 81302) + (-4219 . 81224) (-4220 . 80895) (-4221 . 80710) (-4222 . 80639) + (-4223 . 80571) (-4224 . 80338) (-4225 . 80280) (-4226 . 80148) + (-4227 . 80028) (-4228 . 79888) (-4229 . 79570) (-4230 . 79475) + (-4231 . 79403) (-4232 . 79307) (-4233 . 79129) (-4234 . 79097) + (-4235 . 78938) (-4236 . 78866) (-4237 . 78333) (-4238 . 78227) + (-4239 . 78124) (-4240 . 78014) (-4241 . 77351) (-4242 . 77277) + (-4243 . 77224) (-4244 . 77121) (-4245 . 77053) (-4246 . 76982) + (-4247 . 76701) (-4248 . 76556) (-4249 . 76364) (-4250 . 76312) + (-4251 . 76219) (-4252 . 76099) (-4253 . 75920) (-4254 . 75846) + (-4255 . 75636) (-4256 . 74455) (-4257 . 74372) (-4258 . 74315) + (-4259 . 74174) (-4260 . 74070) (-4261 . 73806) (-4262 . 73638) + (-4263 . 73154) (-4264 . 73101) (-4265 . 73031) (-4266 . 72964) + (-4267 . 71387) (-4268 . 70820) (-4269 . 70701) (-4270 . 70616) + (-4271 . 70548) (-4272 . 70449) (-4273 . 70363) (-4274 . 70208) + (-4275 . 69989) (-4276 . 69818) (-4277 . 69665) (-4278 . 69581) + (-4279 . 69523) (-4280 . 69393) (-4281 . 69272) (-4282 . 69150) + (-4283 . 69067) (-4284 . 68972) (-4285 . 68831) (-4286 . 68776) + (-4287 . 68639) (-4288 . 68542) (-4289 . 68480) (-4290 . 68258) + (-4291 . 68180) (-4292 . 67960) (-4293 . 67847) (-4294 . 67031) + (-4295 . 66945) (-4296 . 66857) (-4297 . 66723) (-4298 . 66645) + (-4299 . 66568) (-4300 . 66503) (-4301 . 66417) (-4302 . 66335) + (-4303 . 66145) (-4304 . 66093) (-4305 . 65952) (-4306 . 65833) + (-4307 . 65703) (-4308 . 65323) (-4309 . 65222) (-4310 . 64795) + (-4311 . 64695) (-4312 . 64628) (-4313 . 64349) (-4314 . 64298) + (-4315 . 64156) (-4316 . 63924) (-4317 . 63787) (-4318 . 63710) + (-4319 . 63562) (-4320 . 63467) (-4321 . 63269) (-4322 . 63240) + (-4323 . 62853) (-4324 . 62782) (-4325 . 62422) (-4326 . 62328) + (-4327 . 62233) (-4328 . 62109) (-4329 . 62008) (-4330 . 61980) + (-4331 . 61391) (-4332 . 61287) (-4333 . 61214) (-4334 . 60976) + (-4335 . 56432) (-4336 . 56234) (-4337 . 56130) (-4338 . 56006) + (-4339 . 55758) (-4340 . 55295) (-4341 . 55243) (-4342 . 54932) + (-4343 . 54421) (-4344 . 54338) (-4345 . 54044) (-4346 . 53869) + (-4347 . 53702) (-4348 . 53518) (-4349 . 53365) (-4350 . 53306) + (-4351 . 53138) (-4352 . 52675) (-4353 . 52243) (-4354 . 52176) + (-4355 . 52125) (-4356 . 51879) (-4357 . 51796) (-4358 . 51518) + (-4359 . 51448) (-4360 . 51008) (-4361 . 50878) (-4362 . 50783) + (-4363 . 50712) (-4364 . 50611) (-4365 . 50526) (-4366 . 49790) + (-4367 . 49668) (-4368 . 49497) (-4369 . 49222) (-4370 . 49170) + (-4371 . 49102) (-4372 . 49030) (-4373 . 48935) (-4374 . 48816) + (-4375 . 46401) (-4376 . 46247) (-4377 . 46219) (-4378 . 45868) + (-4379 . 45781) (-4380 . 45639) (-4381 . 45193) (-4382 . 44802) + (-4383 . 44683) (-4384 . 44596) (-4385 . 44540) (-4386 . 44467) + (-4387 . 44218) (-4388 . 44072) (-4389 . 44011) (-4390 . 43917) + (-4391 . 43843) (-4392 . 43784) (-4393 . 43665) (-4394 . 43298) + (-4395 . 42695) (-4396 . 42634) (-4397 . 42021) (-4398 . 41933) + (-4399 . 41624) (-4400 . 41543) (-4401 . 40866) (-4402 . 40737) + (-4403 . 40664) (-4404 . 40581) (-4405 . 40507) (-4406 . 40438) + (-4407 . 40328) (-4408 . 40257) (-4409 . 40030) (-4410 . 39603) + (-4411 . 39384) (-4412 . 39068) (-4413 . 39001) (-4414 . 38783) + (-4415 . 38668) (-4416 . 38549) (-4417 . 24317) (-4418 . 24204) + (-4419 . 24042) (-4420 . 23810) (-4421 . 19747) (-4422 . 19650) + (-4423 . 16351) (-4424 . 15744) (-4425 . 15414) (-4426 . 15386) + (-4427 . 15146) (-4428 . 15097) (-4429 . 15048) (-4430 . 14929) + (-4431 . 14781) (-4432 . 14729) (-4433 . 14219) (-4434 . 14083) + (-4435 . 14055) (-4436 . 13809) (-4437 . 13731) (-4438 . 13477) + (-4439 . 13378) (-4440 . 12794) (-4441 . 12696) (-4442 . 12644) + (-4443 . 12548) (-4444 . 12301) (-4445 . 12218) (-4446 . 11909) + (-4447 . 11772) (-4448 . 11520) (-4449 . 11448) (-4450 . 11364) + (-4451 . 11286) (-4452 . 10194) (-4453 . 10142) (-4454 . 10086) + (-4455 . 9909) (-4456 . 9691) (-4457 . 9634) (-4458 . 9582) + (-4459 . 9458) (-4460 . 7113) (-4461 . 6940) (-4462 . 6817) + (-4463 . 3150) (-4464 . 3057) (-4465 . 2990) (-4466 . 2860) + (-4467 . 2730) (-4468 . 2167) (-4469 . 2111) (-4470 . 1861) + (-4471 . 1755) (-4472 . 1620) (-4473 . 1262) (-4474 . 1055) + (-4475 . 799) (-4476 . 690) (-4477 . 602) (-4478 . 141) (-4479 . 30))
\ No newline at end of file |